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Semiclassical zero temperature black holes in spherically reduced theories
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We numerically integrate the semiclassical equations of motion for spherically symmetric Einstein-Maxwell
theory with a dilaton coupled scalar field and look for zero temperature configurations. The solution we find is
studied in detail close to the horizon and comparison is made with the corresponding one in the minimally
coupled case.
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[. INTRODUCTION in this theory. In particular, we inspect in detail the spacetime
geometry in the region close to the horizon and compare it
The most attractive feature of zero temperature blackvith the results one gets by numerical integration of the
holes is that they are the natural candidates for the end starainimally coupled case.
of the evaporation process. Indeed, they represent the ideal The outline of this article is the following. In Sec. Il we
setting where one can address the various issues connectedefly review the spherically reduced Einstein-Maxwell
with the quantum evolution of black holes, such as, for in-theory and its zero temperature solution, the extreme RN
stance, the problem of information lo&see, e.g.[1]). black hole. In Sec. Ill the matter model we shall use is in-
In spherically symmetric Einstein-Maxwell theory the troduced and the expression f(T,,) in the extreme RN
only solution with this property is the extremal Reissner-background derived. In Sec. IV we numerically solve the
Nordstran (RN) black hole. Turning to semiclassical theory, back reaction equations, and finally Sec. V contains a discus-
quantum corrections induced by the vacuum expectatiofion of our results and a comparison with the case analyzed
value of the stress energy tensor due to matter fields modifin [4]-
the spacetime geometry, and it is very important to check
whether the resulting solution still has a zero temperature. [l. EINSTEIN-MAXWELL THEORY IN D=2
Perturbative correction®©(#) to the classical geometry . . . : :
evaluated close to the horizon in four dimensions do not . Let us start with Einstein-Maxwell theory in four dimen-
appear to answer the above question unambigudasdy. It ~ S'ONS
is clear that more information will come only if one knows _
) : . : . S=S+Sem 1
the exact analytical solution to the semiclassical equations of
motion. For the simple case of spherically reduced Einsteing/hereS;, is the Einstein-Hilbert action
Maxwell theory coupled with 2D minimal scalar fields,
Trivedi [4] was able to prove the existence of zero tempera- 1
ture solutions which reduce, a@—0, to the extreme RN 5028—77f d*x/—g™R®, 2
black hole. He also showed that, although the energy density
measured by an infalling observer close to the horizon diandS, ,, denotes the action associated with the electromag-
verges for the classical solution, the semiclassical configuranetic field
tion is regular thergonly a mild singularity emerges in the
second derivative of the scalar curvaturéhe drawback of 1 4 T2
this analysis is that, due to the special type of matter fields Sem.=— gf d xv—g( P2,
used, these results do not have an obvious four-dimensional
interpretation. In order to improve this study, we considerR is the four-dimensional scalar curvature aRd the
here a more realistic 2D model that recently has received strength of the electromagnetic fiehd, . Assuming spheri-
lot of attention. We employ a 2D conformal scalar field non-cal symmetry, the 4D metric can be written
minimally coupled to the dilaton field, which classically cor-
responds to the s-wave sector of a 4D minimal scalar field ds?=gPdxtdx+ e~ 2¢Cad 2, (4)
(this model was first studied ib]). We perform a numerical
integration of the semiclassical equations of motion anthereggfg(xa) (a,b=1,2) is the two-dimensional metric in
show good evidence that zero temperature black holes exithe (r-t) plane, ¢(x,) the dilaton, and dQ?=d¢?
+sirf6d¢? the line element of the unit two-sphere. Dimen-
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sional reduction of the Einstein-Hilbert acti¢?) can be per- which, after quantization, yields the well-known Polyakov

formed by integrating over the anglésand ¢: effective action 6]
1 1
SP=— f d?x\/—gPe2¢ Seft=— @f dzxx/—ng(z)ER(z). (12)
X[R®)+2(V ¢)*+2e?%]. (5)  This action can be formally obtained by functional integra-

. - o tion of the trace anomaly
Proceeding similarly and considering,,=F ,,(x?%), the

Maxwell action becomes R(2)
. (=5, (13
(2) — _ T 24— g@e2¢F2
Sem. ZJ d™xy—ge ' ©) As it was mentioned if4], due to the 2D origin of this field

~ the results one gets usirfj,;= S+ Sy + Sefs do not have
whereF? represents the field strength of a two-dimensionalan obvious four-dimensional interpretation. To start with, we
gauge field. Black hole solutions of the theory defined by shall instead consider a 4D minimally coupled scalar field

(2) = g(2) 1 g(2)
S SG Se.m. (7) S(4)_ o d4XW(Vf)2 (14)

are given by the Reissner-Nordstrgolution
In a spherically symmetric spacetime, the matter fields can

1 ; - - =
ds?= — f(r)dt?+ ——dr2, e 2¢=r2 8 be expande_d into spher_|cal harmonics, $heave sectorf of
(r) f(r) e ' ® the scalar field depending only ort andr. For thes-wave
ith field T dimensional reduction gives the 2D action:
Wi
1 ~
oM Q2 sﬁ:—zf d2x\—g@e 2¢(VT)2. (15)
f(l’)=1—T+—2. 9

r
Comparison with the scalar field in E€L1) shows that the

The parameteM is the Arnowitt-Deser-MisnefADM) mass  field T, though still 2D conformal, has acquired a nontrivial
andQ the electric chargéhe corresponding field strength is coupling with the dilaton fieldp. The corresponding trace
E,.=Q/r?). The equationf=0 has two solutions fo  anomaly has additionap-dependent termgb]:

>|Q| given byr, =M= M?=QZ? r,=r, andr_ are, re-

spectively, the event horizon and the inner horizon. The <T>=L[R(2)—6(V¢)2+ 60 6] (16)
Hawking temperature is 24

M2=02 Performing a functional integration of this expression we get
TH=—2Q. (100  the following effective actio5,7,8:
Vanishing ofTy,, i.e.,M=|Q|, defines the extremal configu- SOES —J d?x\/—g® { R(z) R

ration for whichr . =r_=r,=M.

——(V¢>2 R@+ — ¢R<2> (17)

Ill. MATTER FIELDS

In order to investigate the existence of zero temperaturguhere the first nonlocal term is the same as in @6). It is
solutions in the semiclassical theory we must cofé in  important to point out that, unlike Eq12), this effective
Eq. (7) to quantized free matter fields. Referefédgconsid-  action is not exact. Unphysical results obtained for the
ered a 2D minimally coupled scalar field described by thegyaporation of Schwarzschild black hol&s8] suggest that,

classical actioh at least at finite temperatur&{Z} must be modified by the
1 addition of conformally invariantiocal and nonlocalterms
[ @) vF 9,10]. Considering instead zero temperature configurations,
:_ZJ =gV ) [(2) ]IVES h gII ful FI)SKO ’
Set g physically meaningful resulf&0].
In the conformal gauge

2Usually, in order to make physical sense of the semiclassical ds’=—fdudv (18
approximation one considels matter fields and considers the large
N limit while keepingN# fixed. In this way the quantum correc- this action becomes locél.e., (10)R®)=—Inf], and for
tions due to the other fields can be neglected. static configurations
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f=f(r) (19)

where

dr
u=t—r*, v=t+r*, r*:ff(—r), (20)

the components of the 2D stress energy tensor read

(TED=(Ti)

_ £ 1 £ 2 4 1 f2
“g6x 2" e
k/ 2 k/ 2 "
X r) Inf—(? +2?}, (21
CN_ _— sgn
(TE)= 5o 1 f
! ff’k, ka 1f K)? 22
T Tt ) @2
where the notation
k=e 2% (23
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Ty = M M 22—3M
(Tu)= 487 3 r r

+1|v|1|v|3
8w 3 :

. 27)
where the first term on the right-hand side of these equations
comes from the Polyakov contribution to the effective action.
Also, from Egs.(24) and (25) we obtain the 4D tangential
pressure:

<P>=—#(1—¥)(1—3¥)mf

M 4 M 28
Flemzs | ) 29
Another important physical quantity is
T-TH «T
F _ ( r t — < UU> ) (29)

f £2

which is proportional to the energy density measured by an
infalling observel{13]. Equation(26) leads to

F ! M + ! | ‘1 M
= —_— — n R
67 r2(r—M) 27r? r

. (30

has been introduced and the prime denotes derivative with
respect tar. Considering now the dependence on the dilatorAs in the minimally coupled casE diverges wherr —M.
field, another relation can be deduced by functional differenThe term~ 1/(r —M) is the same as that found in the Polya-

tiation of the effective actiofl7) with respect to the dilaton:

1 oSG 1 ([ K ALY
=—i|f'——fl—| +f—|Inf
J—9@ 8¢ 4m|| k |k k
ThSY 24

kov theory[4], but despite its presence it was shown 41

that the corresponding semiclassical zero temperature solu-
tion is regular at the horizorfonly a mild divergence is
present in the second derivative of the scalar curvaR)rén

our case, in addition to this term there appears a subleading
logarithmic divergence-In(r—M), which is present also in
the analytic approximations in four dimensions proposed in
[12], as well as a nontrivial pressukP) [Eq. (28)]. As
stressed in the first of Reff2], the divergence oF on the

This term is specific to the effective action considered andorizon of the classical extreme black hole causes the pertur-
does not appear in the Polyakov theory. From a 4D viewbative expansion in powers df to break down there. The

point it is related to the tangential pressufB)=(T§)
=(T4) through the relatior([5,8])

1 52

P e 20y—g® 66

(29

calculations performed if2] are motivated by the fact th&t

has been proven to be finite =M numerically inD=4
[13], but due to the resul30) reliable near horizon calcula-
tions for zero temperature black holes performed using the
effective action(17) must be nonperturbative . Similarly,

the O(#) results presented ifl4] (obtained by considering
near-extreme black holes in the near horizon regm not

For the particular case of the extremal Reissner-Nordstro @Ppear to have much physical meaning.

black holef=(1—M/r)? k=r? we obtain the following re-
sults(see alsd11]):

(T&)=(T)

vv

3
+

f2nf,

244 r3

r

(26)

1M( M

16712

IV. BACK REACTION

We now come to the main question addressed in this pa-
per: Do self-consistent zero temperature black holes exist in
the semiclassical theory? For this purpose, we need first of
all to write down the semiclassical Einstein equations, which
can be derived by differentiation of the acti@}?)=S?
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+52+52 [see Eqs(7), (15), and(17)] with respect to the f ®

2D metric g{3) and the dilaton fieldg. In the conformal  *¢ y

gauge (18) and considering the static configuratio(is), oa 0

(20) the relevant expressions concerning the matter part obas 03

the action were derived in Eq$21), (22), and (24). The 02 02

corresponding quantities coming from the gravity and elec-%! 01

tromagnetic actionévhereF?= —2Q?/k?) can be easily ob- ' 3 3 : ERE 3 3 : 5"

tained by differentiation of Eq45) and(6).

. FIG. 1. Plot of the functiorf for our model(left) and the corre-
Theuu (or vv) constraint reads

spondingf for the minimally coupled casg&ight). We have seQ

—_ £2lr__ . ne__ T f1N\2
0="fk 2(fl<)k+§ff 2(f)) .
Ty=7—, 3
+3gl(fkl)2| f (fk,)2+3f2kq (31 s >
— — n —_—— — — ,
21k 21k k where
where the coefficient=#/127 has been introduce@we
have reintroduced: in the formulas in order to make the k=5t (36)
distinction between classical and quantum terms clearer r=rp
Th [ i ing th f th i
g (;t?g;g;lon obtained by varying the trace of the met, is the surface gravity and, denotes the radius of the hori-
u zon. SoT,=0 meansf’'=0 atr=r,,.
Q2 In the Polyakov case, starting from these boundary con-
0=—-2+f'k'+fk"+ 27+§f” ditions Trivedi[4] has found the form of the exact solution
(nonperturbative i) close to the horizon as(@onanalyti¢
k' K k' 2 expansion in powers of the coordinate distance from the ho-
+3¢ f’?+f?— Ef M (32 rizonr—ry. In our case, however, the terms proportional to

In f complicate this analysis exceedingly and seem to prevent
an expansion in closed form of the solution for small values
of r—r}, analogous to that proposed [i4].

A numerical resolution was then undertaken and the

Finally, differentiation with respect tg gives

1\ 2 ! " 2
0=f"— Ef<_ +f'k_+ f k_ _ 2 boundary conditions were imposed at infiniyo], where the
21k k kg2 solution is to a good approximation the extreme black hole
R.N. In this region apart from a finite but very small renor-
3 frk’ 7 n fk’ f(k’)z fk” 33 malization of the classical mag®llowing [3] it is Mr/Q
—3¢ ok K23 + 2 @3 _ 1+ O(&?%/Q*)] the first quantum corrections to the space-

time metric are of the orde®(1/r3).

For £=0 Egs.(31), (32), and(33) are the classical equations 10 start with, we introduced dimensionless variables and
is the extremal Reissner-Nordatno black hole f=(1  grate:
—M/r)? k=r2. In the quantum terms, we have separated the
ones multiplyingé, coming from the Polyakov contribution
to the effective action and present also [#4], and those
proportional to & representing the additional contributions = .
. . . unit of length.
in the effective actior8{2} [Eq. (17)]. g

As the th . . ivol | ind Our numerical integrations were performed using the
S the three previous equations involve only two Indepeny, _cqnsiraint equatioidl) and thed equation(33) for the

dent functionsf(r) andk(r), one is redundant. Indeed, they value £&/Q?=10"5. Throughout our calculations, the solu-

are related through the Bianchi identities combined with thg;, 5 of these equations have been checked to be compatible
nonconservation” equations for the matter pa#i: with Eq. (32) as well with a precision less than 10

x=r/Q, k(x)=k(r)/Q? F(x)=f(r).

This means choosing the black hole charge to be the natural

V(T2 +8me 2(P)V,¢p=0. (34) . op

Also, as these nonlinear differential equations involve the®” 025

second order derivatives baandk, two boundary conditions

. . . . 0.15 0.15
on these functions are required to determine them uniquely o1
For a zero temperature black hole, natural boundary condi, 008
tions can be imposed on the functibat the horizon. First of " ; . o 5 : ; o

all, f has to vanish there. Moreover, in the gauge used the
temperature of the black hole takes the simple expression  FIG. 2. Comparison of the values bf for the two theories.
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FIG. 3. Plots of the functiotk. r
>—3 4 5
In order to probe the accuracy of our numerical simula- FIG. 5. Values off” = — R® for our model.

tions, we first considered the integration of the semiclassical
equations for the minimally coupled case., discarding the . o .
terms proportional to 8 in Egs. (31), (32), and(33)] and  Plows up at the horizon for the nonminimally coupled field
compared the numerical results with the form of the exacfompared to the divergence of the fourth derivative in the
solution close to the horizon given by Triveldt]. We find ~ Minimal case. Moreover, it is interesting to stress that the
that, for a value of the horizor,=1.0229(in units where Value of the coordinate at the horizorxp=1.0378(in units
Q=1), i.e., with a deviation of about 2.3% from the classi- WhereQ=1) differs fromxp=1.0229 by about 1.5%up to
cal value, the functionsandf’ behave like those ifd] with & numerical precision of about&10 “9%). _
a precision of about 5104 whenx— xp and thatk is ac- Curvature invariants can be easily calculated starting from
curate with a precision 10 ° andk’ with the accuracy the results presented here. The 2D Ricci scRft=—f is
2% 1074 We can then expect the global precision of ourfinite on the horizon, as shown in the plot of Fig. 5. More-
simulation to be at least about<sL0™ 2% . over, the finiteness df andk’ are enough to prove that the
Considering now the nonminimally coupled case, we havé&orresponding four-dimensional scalar curvatRf® is also
integrated Eqs(31) and (33). The results of this simulation egular as the horizon is approached. A similar conclusion,
are illustrated by the plots on the left of Figs. 1—4 where thelespite the divergence &fat the horizon of the extreme RN
functionsf andk and their first derivatives have been shown Plack hole, was found in the minimally coupled cqég In
for x varying from the horizorx,=1.0378 to 5(in units  OUr case, since the leading term in E8Q) is the same as in
whereQ=1). To facilitate the comparison, the same func-the Polyakov theory, it is reasonable that the main conclusion
tions in the minimal caséhe plots on the right of Figs. 134 about the regularity of the geometry at the horizon is un-
have been reported forvarying fromxp=1.0229 to 5. changed. The difference with respect to the case analyzed in
[4] is that the “mild” singularity appearing at the horizon in
the second derivative of the curvature close to the horizon
(~f") is replaced by a “stronger” divergence in its first

Our numerical simulations presented in Figs. 1-4 and th&erivative (i.e., ). This is due to the logarithmic diver-
comparison with the corresponding solution of the Polyakowd€nce Inf) appearing in Eq(30) as well as in Eqs(31) and
theory appear to give good evidence that zero temperatur@3)- ) ) ) .
configurations exist in this theory. To get some insights from _ I conclusion, by numerical integration of the two-
these results, we compared the numerical values close to tifmensional semiclassical equations of motion for the case
horizon of these solutions with those obtained in the mini-Cf the spherically reduced Einstein-Maxwell theory and a
mally coupled case. It turns out that the differences betweeficalar field nonminimally coupled to the dilaton we found
the values of the functionsand f’ for the two theories are Solutions describing zero temperature black holes. Similari-
less than & 10~ (as deduced previously, the numerical pre_ties and differences with respect to the simpler minimally

cision is about 5 10~%). The same reasoning applies to the coupled case were studied in detail. Due to the intrinsic four-
function k with a difference less than 810 5. The first  dimensional nature of the matter field used, our results could

noticeable difference between the two theories appears at t¢ €levantin order to address the same issue in the physical
first order derivative of the functiokt the value ok’ onthe ~ World D=4. Finally, following Refs[2], an interesting ex-

horizon for our model is estimated at18.094 compared to tension of this work would be to check whether the solution
found here does indeed represent the end point of the evapo-

+2.075 for the Polyakov case. Going further in the deriva-"-~ L .
tives of the functiorf we have that the third derivative 6f 'ation processfor the minimally coupled case this problem
has been addressed both in the near-horizon approximation

y op [16] and in the whole spacetime numerically7]).

V. DISCUSSION AND CONCLUSIONS
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