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Semiclassical zero temperature black holes in spherically reduced theories
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We numerically integrate the semiclassical equations of motion for spherically symmetric Einstein-Maxwell
theory with a dilaton coupled scalar field and look for zero temperature configurations. The solution we find is
studied in detail close to the horizon and comparison is made with the corresponding one in the minimally
coupled case.
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I. INTRODUCTION

The most attractive feature of zero temperature bl
holes is that they are the natural candidates for the end
of the evaporation process. Indeed, they represent the
setting where one can address the various issues conn
with the quantum evolution of black holes, such as, for
stance, the problem of information loss~see, e.g.,@1#!.

In spherically symmetric Einstein-Maxwell theory th
only solution with this property is the extremal Reissn
Nordström ~RN! black hole. Turning to semiclassical theor
quantum corrections induced by the vacuum expecta
value of the stress energy tensor due to matter fields mo
the spacetime geometry, and it is very important to ch
whether the resulting solution still has a zero temperatu
Perturbative correctionsO(\) to the classical geometr
evaluated close to the horizon in four dimensions do
appear to answer the above question unambiguously@2,3#. It
is clear that more information will come only if one know
the exact analytical solution to the semiclassical equation
motion. For the simple case of spherically reduced Einste
Maxwell theory coupled with 2D minimal scalar field
Trivedi @4# was able to prove the existence of zero tempe
ture solutions which reduce, as\→0, to the extreme RN
black hole. He also showed that, although the energy den
measured by an infalling observer close to the horizon
verges for the classical solution, the semiclassical config
tion is regular there~only a mild singularity emerges in th
second derivative of the scalar curvature!. The drawback of
this analysis is that, due to the special type of matter fie
used, these results do not have an obvious four-dimensi
interpretation. In order to improve this study, we consid
here a more realistic 2D model that recently has receive
lot of attention. We employ a 2D conformal scalar field no
minimally coupled to the dilaton field, which classically co
responds to the s-wave sector of a 4D minimal scalar fi
~this model was first studied in@5#!. We perform a numerica
integration of the semiclassical equations of motion a
show good evidence that zero temperature black holes e
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in this theory. In particular, we inspect in detail the spaceti
geometry in the region close to the horizon and compar
with the results one gets by numerical integration of t
minimally coupled case.

The outline of this article is the following. In Sec. II w
briefly review the spherically reduced Einstein-Maxwe
theory and its zero temperature solution, the extreme
black hole. In Sec. III the matter model we shall use is
troduced and the expression for^Tab& in the extreme RN
background derived. In Sec. IV we numerically solve t
back reaction equations, and finally Sec. V contains a disc
sion of our results and a comparison with the case analy
in @4#.

II. EINSTEIN-MAXWELL THEORY IN DÄ2

Let us start with Einstein-Maxwell theory in four dimen
sions

S5SG1Se.m. , ~1!

whereSG is the Einstein-Hilbert action1

SG5
1

8pE d4xA2g(4)R(4), ~2!

andSe.m. denotes the action associated with the electrom
netic field

Se.m.52
1

8pE d4xA2g(4)F2. ~3!

R(4) is the four-dimensional scalar curvature andF2 the
strength of the electromagnetic fieldFmn . Assuming spheri-
cal symmetry, the 4D metric can be written

ds25ga b
(2)dxadxb1e22f(xa)dV2, ~4!

wherega b
(2)(xa) (a,b51,2) is the two-dimensional metric in

the (r -t) plane, f(xa) the dilaton, and dV25du2

1sin2udf2 the line element of the unit two-sphere. Dime

1We use units where\5G5c5kB51.
©2002 The American Physical Society12-1
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sional reduction of the Einstein-Hilbert action~2! can be per-
formed by integrating over the anglesu andf:

SG
(2)5

1

2E d2xA2g(2)e22f

3@R(2)12~¹f!212e2f#. ~5!

Proceeding similarly and consideringFmn5Fmn(xa), the
Maxwell action becomes

Se.m.
(2) 52

1

2E d2xA2g(2)e22fF̃2, ~6!

whereF̃2 represents the field strength of a two-dimensio
gauge field. Black hole solutions of the theory defined by

S(2)5SG
(2)1Se.m.

(2) ~7!

are given by the Reissner-Nordstro¨m solution

ds252 f ~r !dt21
1

f ~r !
dr2, e22f5r 2, ~8!

with

f ~r !512
2M

r
1

Q2

r 2
. ~9!

The parameterM is the Arnowitt-Deser-Misner~ADM ! mass
andQ the electric charge~the corresponding field strength
F̃rt5Q/r 2). The equationf 50 has two solutions forM
.uQu given by r 65M6AM22Q2. r 1[r h and r 2 are, re-
spectively, the event horizon and the inner horizon. T
Hawking temperature is

TH5
AM22Q2

2pr h
2

. ~10!

Vanishing ofTH , i.e.,M5uQu, defines the extremal configu
ration for whichr 15r 2[r h5M .

III. MATTER FIELDS

In order to investigate the existence of zero tempera
solutions in the semiclassical theory we must coupleS(2) in
Eq. ~7! to quantized free matter fields. Reference@4# consid-
ered a 2D minimally coupled scalar field described by
classical action2

SM52
1

4E d2xA2g(2)~¹ f̃ !2 ~11!

2Usually, in order to make physical sense of the semiclass
approximation one considersN matter fields and considers the larg
N limit while keepingN\ fixed. In this way the quantum correc
tions due to the other fields can be neglected.
02401
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which, after quantization, yields the well-known Polyako
effective action@6#

Se f f52
1

96pE d2xA2g(2)R(2)
1

h
R(2). ~12!

This action can be formally obtained by functional integr
tion of the trace anomaly

^T&5
R(2)

24p
. ~13!

As it was mentioned in@4#, due to the 2D origin of this field
the results one gets usingStot5S(2)1SM1Se f f do not have
an obvious four-dimensional interpretation. To start with,
shall instead consider a 4D minimally coupled scalar fiel

SM
(4)52

1

16pE d4xA2g(4)~¹ f !2. ~14!

In a spherically symmetric spacetime, the matter fields
be expanded into spherical harmonics, thes-wave sectorf̃ of
the scalar fieldf depending only ont and r. For thes-wave
field f̃ dimensional reduction gives the 2D action:

SM
(2)52

1

4E d2xA2g(2)e22f~¹ f̃ !2. ~15!

Comparison with the scalar field in Eq.~11! shows that the
field f̃ , though still 2D conformal, has acquired a nontrivi
coupling with the dilaton fieldf. The corresponding trace
anomaly has additionalf-dependent terms@5#:

^T&5
1

24p
@R(2)26~¹f!216hf#. ~16!

Performing a functional integration of this expression we
the following effective action@5,7,8#:

Se f f
(2)52

1

2pE d2xA2g(2)F 1

48
R(2)

1

h
R(2)

2
1

4
~¹f!2

1

h
R(2)1

1

4
fR(2)G , ~17!

where the first nonlocal term is the same as in Eq.~12!. It is
important to point out that, unlike Eq.~12!, this effective
action is not exact. Unphysical results obtained for t
evaporation of Schwarzschild black holes@5,8# suggest that,
at least at finite temperature,Se f f

(2) must be modified by the
addition of conformally invariant~local and nonlocal! terms
@9,10#. Considering instead zero temperature configuratio
Se f f

(2) gives physically meaningful results@10#.
In the conformal gauge

ds252 f dudv ~18!

this action becomes local@i.e., (1/h)R(2)52 ln f#, and for
static configurations

al
2-2



wi
to
en
:

n
w

ro

ions
n.

l

an

a-

olu-

ding

in

rtur-

-
the

pa-
t in
t of
ich

SEMICLASSICAL ZERO TEMPERATURE BLACK HOLES . . . PHYSICAL REVIEW D 66, 024012 ~2002!
f 5 f ~r ! ~19!

where

u5t2r * , v5t1r * , r * 5E dr

f ~r !
, ~20!

the components of the 2D stress energy tensor read

^Tuu
(2)&5^Tvv

(2)&

5
1

96p F f f 92
1

2
~ f 8!2G1

1

64p
f 2

3F S k8

k D 2

ln f 2S k8

k D 2

12
k9

k G , ~21!

^Tuv
(2)&5

1

96p
f f 9

1
1

32p
f F f 8

k8

k
1 f

k9

k
2

1

2
f S k8

k D 2G , ~22!

where the notation

k5e22f ~23!

has been introduced and the prime denotes derivative
respect tor. Considering now the dependence on the dila
field, another relation can be deduced by functional differ
tiation of the effective action~17! with respect to the dilaton

1

A2g(2)

dSe f f
(2)

df
5

1

4p H F f 8
k8

k
2 f S k8

k D 2

1 f
k9

k G ln f

1 f 8
k8

k
2 f 9J . ~24!

This term is specific to the effective action considered a
does not appear in the Polyakov theory. From a 4D vie
point it is related to the tangential pressure^P&[^Tu

u&
5^Tf

f& through the relation~@5,8#!

^P&5
1

8pe22fA2g(2)

dSe f f
(2)

df
. ~25!

For the particular case of the extremal Reissner-Nordst¨m
black holef 5(12M /r )2,k5r 2 we obtain the following re-
sults ~see also@11#!:

^Tuu
(2)&5^Tvv

(2)&

52
1

24p

M

r 3 S 12
M

r D 3

1
1

16pr 2
f 2ln f , ~26!
02401
th
n
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^Tuv
(2)&52

1

48p

M

r 3 S 12
M

r D 2S 223
M

r D
1

1

8p

M

r 3 S 12
M

r D 3

, ~27!

where the first term on the right-hand side of these equat
comes from the Polyakov contribution to the effective actio
Also, from Eqs.~24! and ~25! we obtain the 4D tangentia
pressure:

^P&52
1

16p2r 4 S 12
M

r D S 123
M

r D ln f

1
M

16p2r 5 S 425
M

r D . ~28!

Another important physical quantity is

F5
~Tr

r2Tt
t!

f
5

4^Tuu&

f 2
, ~29!

which is proportional to the energy density measured by
infalling observer@13#. Equation~26! leads to

F52
1

6p

M

r 2~r 2M !
1

1

2pr 2
lnU12

M

r U. ~30!

As in the minimally coupled caseF diverges whenr→M .
The term;1/(r 2M ) is the same as that found in the Poly
kov theory@4#, but despite its presence it was shown in@4#
that the corresponding semiclassical zero temperature s
tion is regular at the horizon~only a mild divergence is
present in the second derivative of the scalar curvatureR). In
our case, in addition to this term there appears a sublea
logarithmic divergence; ln(r2M), which is present also in
the analytic approximations in four dimensions proposed
@12#, as well as a nontrivial pressurêP& @Eq. ~28!#. As
stressed in the first of Refs.@2#, the divergence ofF on the
horizon of the classical extreme black hole causes the pe
bative expansion in powers of\ to break down there. The
calculations performed in@2# are motivated by the fact thatF
has been proven to be finite atr 5M numerically inD54
@13#, but due to the result~30! reliable near horizon calcula
tions for zero temperature black holes performed using
effective action~17! must be nonperturbative in\. Similarly,
the O(\) results presented in@14# ~obtained by considering
near-extreme black holes in the near horizon region! do not
appear to have much physical meaning.

IV. BACK REACTION

We now come to the main question addressed in this
per: Do self-consistent zero temperature black holes exis
the semiclassical theory? For this purpose, we need firs
all to write down the semiclassical Einstein equations, wh
can be derived by differentiation of the actionStot

(2)5S(2)
2-3
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1SM
(2)1Sef f

(2) @see Eqs.~7!, ~15!, and~17!# with respect to the
2D metric gab

(2) and the dilaton fieldf. In the conformal
gauge ~18! and considering the static configurations~19!,
~20! the relevant expressions concerning the matter par
the action were derived in Eqs.~21!, ~22!, and ~24!. The
corresponding quantities coming from the gravity and el
tromagnetic actions~whereF2522Q2/k2) can be easily ob-
tained by differentiation of Eqs.~5! and ~6!.

The uu ~or vv) constraint reads

05 f 2k92
1

2 S f
k8

k D 2

k1jS f 9 f 2
1

2
~ f 8!2D

13jF1

2 S f
k8

k D 2

ln f 2
1

2 S f
k8

k D 2

13 f 2
k9

k G , ~31!

where the coefficientj5\/12p has been introduced~we
have reintroduced\ in the formulas in order to make th
distinction between classical and quantum terms clear!.
The equation obtained by varying the trace of the metric~i.e.,
guv) reads

05221 f 8k81 f k912
Q2

k
1j f 9

13jF f 8
k8

k
1 f

k9

k
2

1

2
f S k8

k D 2G . ~32!

Finally, differentiation with respect tof gives

05 f 92
1

2
f S k8

k D 2

1 f 8
k8

k
1 f

k9

k
2

2Q2

k2

23jF f 8k8

k2
2

f 9

k
1 ln f S f 8k8

k2
2 f

~k8!2

k3
1 f

k9

k2D G . ~33!

For j50 Eqs.~31!, ~32!, and~33! are the classical equation
of motion, for which the only zero temperature configurati
is the extremal Reissner-Nordstro¨m black hole f 5(1
2M /r )2,k5r 2. In the quantum terms, we have separated
ones multiplyingj, coming from the Polyakov contribution
to the effective action and present also in@4#, and those
proportional to 3j representing the additional contribution
in the effective actionSe f f

(2) @Eq. ~17!#.
As the three previous equations involve only two indep

dent functionsf (r ) andk(r ), one is redundant. Indeed, the
are related through the Bianchi identities combined with
‘‘nonconservation’’ equations for the matter part@8#:

¹a^Tb
(2)a&18pe22f^P&¹bf50. ~34!

Also, as these nonlinear differential equations involve
second order derivatives off andk, two boundary conditions
on these functions are required to determine them uniqu
For a zero temperature black hole, natural boundary co
tions can be imposed on the functionf at the horizon. First of
all, f has to vanish there. Moreover, in the gauge used
temperature of the black hole takes the simple expressio
02401
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TH5
k

2p
, ~35!

where

k5
1

2
f 8U

r 5r h

~36!

is the surface gravity andr h denotes the radius of the hor
zon. SoTH50 meansf 850 at r 5r h .

In the Polyakov case, starting from these boundary c
ditions Trivedi @4# has found the form of the exact solutio
~nonperturbative in\! close to the horizon as a~nonanalytic!
expansion in powers of the coordinate distance from the
rizon r 2r h . In our case, however, the terms proportional
ln f complicate this analysis exceedingly and seem to prev
an expansion in closed form of the solution for small valu
of r 2r h analogous to that proposed in@4#.

A numerical resolution was then undertaken and
boundary conditions were imposed at infinity@15#, where the
solution is to a good approximation the extreme black h
R.N. In this region apart from a finite but very small reno
malization of the classical mass@following @3# it is MR /Q
511O(j2/Q4)# the first quantum corrections to the spac
time metric are of the orderO(1/r 3).

To start with, we introduced dimensionless variables a
functions in the differential equations that we have to in
grate:

x5r /Q, k̃~x!5k~r !/Q2, F̃~x!5 f ~r !.

This means choosing the black hole charge to be the na
unit of length.

Our numerical integrations were performed using t
uu-constraint equation~31! and thef equation~33! for the
value j/Q251025. Throughout our calculations, the solu
tions of these equations have been checked to be compa
with Eq. ~32! as well with a precision less than 1027.

FIG. 1. Plot of the functionf for our model~left! and the corre-
spondingf for the minimally coupled case~right!. We have setQ
51.

FIG. 2. Comparison of the values off 8 for the two theories.
2-4
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In order to probe the accuracy of our numerical simu
tions, we first considered the integration of the semiclass
equations for the minimally coupled case@i.e., discarding the
terms proportional to 3j in Eqs. ~31!, ~32!, and ~33!# and
compared the numerical results with the form of the ex
solution close to the horizon given by Trivedi@4#. We find
that, for a value of the horizonxP51.0229~in units where
Q51), i.e., with a deviation of about 2.3% from the clas
cal value, the functionsf and f 8 behave like those in@4# with
a precision of about 531024 whenx→xP and thatk is ac-
curate with a precision 531025 and k8 with the accuracy
231024. We can then expect the global precision of o
simulation to be at least about 531022%.

Considering now the nonminimally coupled case, we ha
integrated Eqs.~31! and ~33!. The results of this simulation
are illustrated by the plots on the left of Figs. 1–4 where
functionsf andk and their first derivatives have been show
for x varying from the horizonxD51.0378 to 5~in units
whereQ51). To facilitate the comparison, the same fun
tions in the minimal case~the plots on the right of Figs. 1–4!
have been reported forx varying fromxP51.0229 to 5.

V. DISCUSSION AND CONCLUSIONS

Our numerical simulations presented in Figs. 1–4 and
comparison with the corresponding solution of the Polyak
theory appear to give good evidence that zero tempera
configurations exist in this theory. To get some insights fr
these results, we compared the numerical values close to
horizon of these solutions with those obtained in the m
mally coupled case. It turns out that the differences betw
the values of the functionsf and f 8 for the two theories are
less than 831024 ~as deduced previously, the numerical pr
cision is about 531024). The same reasoning applies to t
function k with a difference less than 831025. The first
noticeable difference between the two theories appears a
first order derivative of the functionk: the value ofk8 on the
horizon for our model is estimated at218.094 compared to
12.075 for the Polyakov case. Going further in the deriv
tives of the functionf we have that the third derivative off

FIG. 3. Plots of the functionk.

FIG. 4. Plots of the functionsk8.
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blows up at the horizon for the nonminimally coupled fie
compared to the divergence of the fourth derivative in
minimal case. Moreover, it is interesting to stress that
value of the coordinatex at the horizonxD51.0378~in units
whereQ51) differs fromxP51.0229 by about 1.5%~up to
a numerical precision of about 531022%).

Curvature invariants can be easily calculated starting fr
the results presented here. The 2D Ricci scalarR(2)52 f 9 is
finite on the horizon, as shown in the plot of Fig. 5. Mor
over, the finiteness ofk andk8 are enough to prove that th
corresponding four-dimensional scalar curvatureR(4) is also
regular as the horizon is approached. A similar conclusi
despite the divergence ofF at the horizon of the extreme RN
black hole, was found in the minimally coupled case@4#. In
our case, since the leading term in Eq.~30! is the same as in
the Polyakov theory, it is reasonable that the main conclus
about the regularity of the geometry at the horizon is u
changed. The difference with respect to the case analyze
@4# is that the ‘‘mild’’ singularity appearing at the horizon i
the second derivative of the curvature close to the hori
(; f +) is replaced by a ‘‘stronger’’ divergence in its firs
derivative ~i.e., f-). This is due to the logarithmic diver
gence ln(f) appearing in Eq.~30! as well as in Eqs.~31! and
~33!.

In conclusion, by numerical integration of the two
dimensional semiclassical equations of motion for the c
of the spherically reduced Einstein-Maxwell theory and
scalar field nonminimally coupled to the dilaton we foun
solutions describing zero temperature black holes. Simil
ties and differences with respect to the simpler minima
coupled case were studied in detail. Due to the intrinsic fo
dimensional nature of the matter field used, our results co
be relevant in order to address the same issue in the phy
world D54. Finally, following Refs.@2#, an interesting ex-
tension of this work would be to check whether the soluti
found here does indeed represent the end point of the ev
ration process~for the minimally coupled case this problem
has been addressed both in the near-horizon approxima
@16# and in the whole spacetime numerically@17#!.
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FIG. 5. Values off 952R(2) for our model.
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