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Perturbation theory calculation of the black hole elastic scattering cross section

Chris Doran* and Anthony Lasenby†
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~Received 14 June 2001; published 28 June 2002!

The differential cross section for scattering of a Dirac particle in a black hole background is found. The
result is the gravitational analogue of the Mott formula for scattering in a Coulomb background. The equiva-
lence principle is neatly embodied in the cross section, which depends only on the incident velocity, and not the
particle mass. The low angle limit agrees with classical calculations based on the geodesic equation. The
calculation employs a well-defined iterative scheme which can be extended to higher orders. Repeating the
calculation in different gauges shows that our result for the cross section is gauge invariant and highlights the
issues involved in setting up a sensible iterative scheme.
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I. INTRODUCTION

Scattering of a charged fermion in a background Coulo
field is a widely studied process which can be analyzed p
turbatively in quantum field theory. To lowest order the sc
tering process is summarized in the Mott formula for t
unpolarized differential scattering cross section@1#:

ds

dV U
Mott

5
Z2a2

4p2v2sin4~u/2!
@12v2sin2~u/2!#. ~1!

Here p is the momentum,v5upu/E, a is the fine structure
constant and the source has chargeZe. Curiously, there have
only been sporadic attempts to repeat the analysis leadin
the Mott formula for the case of a black hole@2,3#. The
problem of scattering by a black hole has certainly been ta
led by many authors~see for example the books by Futte
man, Handler and Matzner@4# and Chandrasekhar@5#, or the
recent article by Andersson and Jensen@6#!. But few authors
tackle the problem in perturbation theory and there is a
table reluctance to analyze the fermion case, with most w
carried out for the case of a massless scalar field.

Unlike scattering in a Coulomb field, black hole scatteri
is complicated by the additional effects of absorption a
emission. Absorption is due to the singularity in the gravi
tional field and manifests itself as a lack of Hermiticity in th
fermion wave equation@7–9#. Emission is due to the Hawk
ing radiation and cannot effectively be treated without so
of the apparatus of quantum field theory@10#. Despite these
complicating factors, we show here that an iterative sche
can be set up, based on the Dirac equation, which produc
formula for the lowest-order scattering cross section w
little difficulty.

In this paper we concentrate on the scattering cross
tion for a fermion in the background field of a spherica
symmetric black hole. We find that the unpolarized differe
tial scattering cross section is given by
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ds

dV
5

~GM!2

4v4sin4~u/2!
@112v223v2sin2~u/2!

1v42v4sin2~u/2!#. ~2!

We calculate this result in two quite different gauges, wh
require going to different orders in perturbation theory. T
first calculation utilizes a series of gauge choices for
gravitational fields which convert the Dirac equation into
simple, Hamiltonian form @8,9#. This can be analyzed
straightforwardly through a perturbation expansion. Unli
approaches based on the Schwarzschild coordinate sys
the gauge used here does not contain a singularity at
horizon and extends right up to the origin. This means t
each step in the perturbation series can be treated exa
avoiding the problems encountered by Collinset al. @2# who
attempted a Born approximation scheme based on Schwa
child coordinates. The result they obtained was physica
unreasonable, though their explanation of why this occur
~as the result of wave packet dispersion! seems incorrect in
light of the present calculation.

The choice of gauge employed in our first calculati
leads to an unusual form of the vertex factor in moment
space, which vanishes when both the incoming and outgo
fermions are on shell. It follows that the first-order contrib
tion to the scattering cross section in this gauge is identic
zero. Since the vertex factor turns out to go as the square
of the black hole mass, the fact that the process is sec
order does make sense. The integrals involved in the sec
order calculation are all finite and do not require any form
regularization procedure. The result of the calculation~2! is
the gravitational analogue of the Mott scattering formula. F
low energies the cross section reduces to the familiar R
erford formula. As the energy is increased, relativistic c
rections become more significant. The formula neatly e
bodies the equivalence principle, in that the cross sec
depends only on the particle’s velocity, and not its mass
the low-angle limit our formula agrees with earlier results f
the classical cross section based on the geodesic equatio@2#.

The success of the calculation suggests a more gen
scheme for tackling the scattering problem, and this is
plored in the second half of this paper. We calculate the cr
section in a different gauge, using a first-order scheme,
confirm that the same result is obtained. This provide
©2002 The American Physical Society06-1
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CHRIS DORAN AND ANTHONY LASENBY PHYSICAL REVIEW D66, 024006 ~2002!
check, though not a proof, that the cross section formul
gauge invariant. The second calculation also highlights
conceptual difficultly of carrying through a full program
based on perturbation theory, as choice of gauge at the
of the calculation can dictate features as important as
order of Feynman diagrams one needs to consider. This
pears to be the correct explanation for the failure of the C
lins et al. @2# calculation. Their scheme was based on
Schwarzschild gauge, and they only went to first order
perturbation theory. But to be consistent we should inclu
terms from the Schwarzschild metric to first order inM,
which then recovers the correct result.

Throughout we employ units withc5\51, while factors
of G are stated explicitly. Where appropriate, factors ofc and
\ are also included. The Minkowski spacetime metric h
signature (1,21,21,21).

II. THE DIRAC EQUATION

Our starting point is the Schwarzschild line element in
standard form

ds25S 12
2GM

r Dd t̄ 22S 12
2GM

r D 21

dr2

2r 2~du21sin2udf2!, ~3!

where t̄ is the proper time measured by stationary observ
andr, u andf have their usual meaning. We first transfor
to a new time coordinatet, corresponding to the proper tim
for particles infalling radially from rest at infinity. This co
ordinate has

dt5d t̄1
~2GMr !1/2

r 22GM
dr. ~4!

In terms of this new coordinate the line element~3! becomes

ds25dt22Fdr1S 2GM

r D 1/2

dtG2

2r 2~du21sin2udf2!. ~5!

The coordinate system is valid for 0<r ,`. We will not
consider the effects of analytic continuation through the
troduction of Kruskal-Szekeres coordinates. See@8,9,11# for
a more detailed discussion of the form of the metric e
ployed here.

In order to write the Dirac equation in its simplest form
is useful to revert to Cartesian coordinates by writing

x5r sinu cosf,

y5r sinu sinf,

z5r cosu. ~6!

With the coordinates writtenxm5(t,x,y,z), m50, . . . 3, the
line element~5! can be written as
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ds25hmndxmdxn2
2GM

r
dt2

2
2

r S 2GM

r D 1/2

xidxidt ~7!

where i 51, . . . 3, hmn is the Minkowski metric and re-
peated indices are summed over. To write down the Di
equation in this background we start with the standard Di
g-matrices and from these we define the sets$gm(x)% and
$gm(x)% by

g05g0, gi5g i2S 2GM

r D 1/2xi

r
g0 ~8!

and

g05g01S 2GM

r D 1/2xi

r
g i , gi5g i . ~9!

It is straightforward to check that these satisfy

$gm ,gn%52gmnI , $gm ,gn%52dm
n I ~10!

where gmn is the metric specified by Eq.~7! and I is the
identity matrix. In terms of thegm matrices the Dirac equa
tion is

igm¹mc5mc, ~11!

where

¹mc5S ]m1
i

2
Gm

abSabDc, Sab5
i

4
@ga ,gb#, ~12!

and the components of the spin connection are found in
standard way~see @12#, for example!. With our choice of
matrices we find that the Dirac equation takes the sim
form

i ]”c2 ig0S 2GM

r D 1/2S ]

]r
1

3

4r Dc5mc. ~13!

Here ]”5gm]m is the familiar Dirac derivative operator in
Minkowski spacetime. The gravitational effects are co
tained in a single interaction term in an analogous manne
the Coulomb interaction. The main difference is the prese
of a radial derivative. This form of the equation is clear
ideal for scattering calculations as the interaction can
treated perturbatively. In the asymptotic region the me
coordinates all agree with the standard Minkowski interp
tation, so there is no ambiguity in the meaning of any cro
sections computed.

III. NON-RELATIVISTIC APPROXIMATION

Before studying the relativistic cross section it is useful
first consider the nonrelativistic limit of the Dirac equatio
The Hamiltonian form of Eq.~13! contains a single interac
tion term

ĤIc5 i\~2GM/r !1/2r 23/4] r~r 3/4c!, ~14!
6-2
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PERTURBATION THEORY CALCULATION OF THE . . . PHYSICAL REVIEW D 66, 024006 ~2002!
where dimensional constants have been included. This in
action Hamiltonian, which incorporates all~general! relativ-
istic effects, is independent of the particle mass and so
bodies the equivalence principle. The interaction term is a
independent of the speed of light, so the non-relativistic
proximation of the Dirac equation can proceed in the st
dard manner@1#. There are no spin effects to consider, so
arrive at the Schro¨dinger equation

2
\2

2m
“

2c1 i\~2GM/r !1/2r 23/4] r~r 3/4c!5Ec ~15!

where we have assumed that we have a stationary sta
energyE. To simplify this equation we introduce the phas
transformed variable

C5c exp@2 i ~r /aG!1/2# ~16!

where

aG5
\2

8GMm2
~17!

and is~eight times! the gravitational equivalent of the Boh
radius. The new variableC satisfies the simple equation

2
\2

2m
“

2C2
GMm

r
C5EC. ~18!

This is precisely the equation we would expect if we used
Newtonian gravitational potential, and the solutions forC
are Coulomb wave functions. The standard arguments a
the long range logarithmic phase effects in Coulomb wa
functions apply equally to ther 1/2 behavior, so the cros
section can be found in the conventional way@13#. So, in the
non-relativistic limit, the gravitational differential scatterin
cross section reduces to the Rutherford formula. We th
fore expect that the full, relativistic calculation will give
cross section which reduces to the Rutherford formula
small velocities.

IV. SCATTERING CROSS SECTION

The Dirac equation~13! is well suited to an iterative so
lution in the standard manner. We seek a solution of

@ i ]” 22B~x2!2m#SG~x2 ,x1!5d4~x22x1! ~19!

where

B~x!5 ig0S 2GM

r D 1/2S ]

]r
1

3

4r D . ~20!

The iterative solution to this equation is

SG~xf ,xi !5SF~xf ,xi !

1E d4x1SF~xf ,x1!B~x1!SF~x1 ,xi !

1E E d4x1d4x2SF~xf ,x1!B~x1!SF~x1 ,x2!
02400
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B~x2!SF~x2 ,xi !1••• ~21!

whereSF(x2 ,x1) is the ~position space! Feynman propaga
tor. The interaction termB(x) is independent of time so en
ergy is conserved throughout the interaction. Converting
momentum space we define the amplitude

M5ūs~pf !Vur~pi !, ~22!

where

V5B~pf ,pi !1E d3k

~2p!3
B~pf ,k!

3
k”1m

k22m21 i e
B~k,pi !1•••. ~23!

HereB(pf ,pi) is the spatial Fourier transform of the intera
tion term, bold symbols refer to spatial components only, a
for the spinor terms we follow the conventions of Mandl a
Shaw @14#. In terms ofM the differential cross section i
given by

ds

dV
5S m

2p D 2

uMu2. ~24!

The Fourier transform of the interaction term is

B~p2 ,p1!5~2GM!1/2ig0E d3xe2 ip2•x
1

r 1/2

3S ]

]r
1

3

4r Deip1•x. ~25!

To evaluate this we first write

B~p2 ,p1!5~2GM!1/2ig0S 3

4
f ~p12p2!

1
] f ~lp12p2!

]l U
l51

D ~26!

where

f ~p!5E d3x
eip•x

r 3/2
5S 2p

upu D
3/2

. ~27!

We therefore find that the momentum space vertex facto

B~p2 ,p1!53p3/2i ~GM!1/2
p2

22p1
2

up22p1u7/2
g0. ~28!

This vertex factor has the unusual feature of vanishing if
ingoing and outgoing particles are on shell, since energ
conserved. It follows that the lowest order contribution to t
scattering cross section vanishes. This is reassuring, as
vertex factor goes asAM , and we expect the amplitude to g
as M to recover the Rutherford formula in the low veloci
limit.
6-3
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Working to the lowest non-zero order inM the transition
amplitude becomes

M529p3GMūs~pf !g
0I 1g0ur~pi ! ~29!

where

I 15E d3k

~2p!3

pf
22k2

upf2ku7/2

k”1m

k22m21 i e

k22pi
2

uk2pi u7/2
. ~30!

Now

k22m25E22k22m25p22k2, ~31!

whereE is the particle energy andp25pi
25pf

2 . The pole in
the propagator is therefore cancelled by the vertex factors
there is no need for thei e prescription. The integral we nee
to evaluate is therefore

I 15E d3k

~2p!3

k22p2

upf2ku7/2uk2pi u7/2
~k”1m!, ~32!

which is evaluated in the Appendix. The result is

I 15
1

9p2q2
@2m13~p” f1p” i !24Eg0# ~33!

whereq5pf2pi . It follows that

M52
pGM

q2
ūs~pf !@2m23~p” f1p” i !18Eg0#ur~pi !

52
4pGM

q2
ūs~pf !~2Eg02m!ur~pi !, ~34!

and the differential cross section is given by

ds

dV
5

~2GMm!2

q4
uūs~pf !~2Eg02m!ur~pi !u2. ~35!

So, despite the complexity of going to second order in
iterative solution, the result is quite straightforward. P
forming the usual spin sums gives an unpolarized cross
tion of
02400
so

e
-
c-

ds

dV
5

~GM!2

2q4
Tr$~p” f1m!~2Eg02m!

3~p” i1m!~2Eg02m!%

5
2~GM!2

q4
@m2~E22pf•pi !1~2E22m2!2

14E2pf•pi #. ~36!

If we let v5upu/E denote the particle velocity, andu the
scattering angle, we arrive at the simple expression

ds

dV
5

~GM!2

4v4sin4~u/2!
@112v223v2sin2~u/2!

1v42v4sin2~u/2!#. ~37!

The formula has the satisfying property of being independ
of the particle mass, as one would expect from the equ
lence principle. We delay a fuller discussion of the propert
of this result until after we have discussed the issue of ga
invariance.

V. THE KERR-SCHILD GAUGE

The iterative scheme employed here suggests a gene
zation to alternative field configurations. In effect, what w
have done is taken the covariant Dirac equation and
written it in the form

~ i ]”2m!c5 i ~]”2gm¹m!c ~38!

and we have interpreted the right-hand side as an interac
termB(x). This method will clearly provide a sensible itera
tive scheme if the right-hand side contains a single facto
some power ofM. If this is not the case, there can be n
simple correspondence between the order of the iterative
lution, and the order ofM in the amplitude. The gauge w
have exploited to date has the feature thatB(x) goes asM1/2.
The obvious question now is whether we can do better
find a gauge where the interaction goes asM. This should
then avoid having to integrate over intermediate momenta
a second order diagram. Such a gauge is provided by in
ducing the Eddington-Finkelstein advanced time coordina
which can be employed to convert the Schwarzschild me
to Kerr-Schild form@15#:

ds25hmndxmdxn2
2GM

r
l ml ndxmdxn, ~39!

where

l m5~1,x/r ,y/r ,z/y!. ~40!

For ourgm(x) matrices we choose

g05g01
GM

r
~g02g r !,

~41!

gi5g i2
GM

r

xi

r
~g02g r !,
6-4
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PERTURBATION THEORY CALCULATION OF THE . . . PHYSICAL REVIEW D 66, 024006 ~2002!
where

g r5
xi

r
g i . ~42!

The reciprocal matrices are found to be

g05g02
GM

r
~g02g r !,

~43!

gi5g i2
GM

r

xi

r
~g02g r !.

In this gauge the Dirac equation becomes

i ]”c1
iGM

r
~g02g r !S ]

]t
2

]

]r
2

1

2r Dc5mc, ~44!

which achieves our goal of constructing an interaction te
of orderM.

The momentum space representation of the interac
term is now

B~p2 ,p1!5GME d3xe2 ip2•x
1

r S g02
xi

r
g i D

3S 2E1 i
]

]r
1

i

2r Deip1•x. ~45!

The result of this integral is

B~p2 ,p1!52
2pGM

uqu2
~4Eg02p” 12p” 2!

2
4pGM

uqu4
~p2

22p1
2!~p” 22p” 1!

1
ip2GM

uqu3
@~p2

22p1
2!g0

22E~p” 22p” 1!#. ~46!

This form of interaction is certainly not as elegant as o
earlier gauge choice, but has the advantage that the
order term in the iterative solution gives theO(M ) contribu-
tion to the amplitude. Since the final two terms inB(p2 ,p1)
vanish on shell, only the first term contributes to the amp
tude, and we find

M52
4pGM

q2
ūs~pf !~2Eg02m!ur~pi !, ~47!

precisely as obtained earlier.
This calculation supports the claim that the different

cross section formula, to orderM2, is gauge invariant. Two
additional pieces of evidence offer further support. The fi
is that the calculation can be repeated with a Schwarzsc
form of the line element, expanded to first order inM, and
the same result is obtained. The second is that the serie
the amplitude in the Kerr-Schild gauge can only increase
orders ofM, which implies that there can be noM3/2 contri-
02400
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bution in the earlier gauge setup. That is, the third order te
in the expansion of Eq.~21! must vanish. This is confirmed
by ~somewhat tedious! calculations. Taken together this
strong evidence, though not a proof, that our result is ga
invariant. A rigorous proof appears harder to achieve, p
ticularly as the order of expansion is not a gauge-invari
concept.

VI. DISCUSSION

Our calculations in two distinct gauges have shown th
to lowest order in the black-hole mass, the unpolarized
ferential scattering cross section for a spin-1/2 particle
given by

ds

dV
5

~GM!2

4v4sin4~u/2!
@112v223v2sin2~u/2!

1v42v4sin2~u/2!#. ~48!

As already commented, this formula is independent of
particle mass and depends only on the incident velocity. T
confirms that the equivalence principle is directly encoded
the Dirac equation, though it remains to be shown whet
this holds to all orders. The formula also makes it clear t
the low velocity limit recovers the Rutherford formula. Th
higher order relativistic corrections are not obvious, but
agree with the small angle formulas obtained by Coll
et al. @2#, who found that asu°0 the classical cross sectio
is given by

ds

dV
5

4~GM!2

v4u4
~112v21v4!. ~49!

Unlike the Collinset al. formula @their Eq. ~12!#, however,
there is no cubic term inu21 in the quantum result, which is
an even function ofu. The low angle limit can be shown to
hold for a general spherically symmetric distribution,
holds for scattering by a star as well as a black hole. The
cross section is unique to the black hole case, however.
not simply a weak-field result, as it is vital that the Fouri
transform integrals include the region inside the horizo
This observation is interesting as we have avoided specify
boundary conditions at the horizon. The fact that we
working with plane-wave states suggests that we are imp
itly restricted to wave functions which are regular at the h
rizon. This requires further work, as a more rigorous tre
ment involves a partial wave analysis of scattering a
absorption effects.

The massless limitm°0 is well defined and leads to th
simple formula

ds

dV
5

~GM!2cos2~u/2!

sin4~u/2!
. ~50!

Again, the low-angle limit recovers the classical formula f
the bending of light. This result also predicts zero amplitu
in the backward direction,u5p. Null geodesics produce a
significant flux in the backward direction, and the fact th
zero is predicted here is a diffraction effect for neutrin
6-5
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which goes beyond the predictions of geometric optics
similar prediction of zero backscattering for neutrinos w
made in@4#. A more detailed analysis of the cross section
the backward direction also reveals a large ‘‘glory’’ scatt
ing @4,6#. In the geometric optics limit this is attributable t
multiple orbits, and in the quantum description the glo
scattering is described by higher-order terms inGM. To de-
scribe these effects in the present scheme requires exten
to higher order in perturbation theory, which should also
veal effects due to absorption and, potentially, emission. T
is currently under investigation.

Extending to higher orders also raises the question of
convergence of the iterative scheme proposed here. Th
not a straightforward issue to address as there is no dim
sionless coupling constant in the problem. Also, it is n
clear whether higher-order quantum terms should still be
pected to obey the equivalence principle. One can easily
mulate desirable criteria for convergence, such asGME,1
or GMEv,1, but these are too restrictive, given that t
low angle formula we arrive at is expected to be valid for
masses and velocities. It would appear that the only wa
investigate convergence is to compute the next order term
the perturbation series directly.

This work should also have clarified the importance
working consistently to the correct order inM. This is par-
ticularly clear in the Schwarzschild gauge, where the in
action term contains factors of 12(122GM/r )1/2. An itera-
tive scheme based on this gauge choice should expand
B(x) as a series inM, and then keep all of the terms up to th
desired order. Such a scheme is workable, but has the d
vantage of introducing new vertex terms at each order in
series solution. This explains the failure of the Born appro
mation discussed by Collinset al. @2# for the scalar case
These authors used a similar technique of viewing the dif
ence between the true and and flat space metrics as an
action term, and constructed the amplitude

T~p2 ,p1!52GME d3xe2 i (p22p1)•x

3S E2

r 22GM
1

p2•xp1•x

r 3 D . ~51!

Applying this in the Born approximation as it stands pr
duces an unphysical answer which departs radically from
classical cross section. Collinset al. argued that this was
because the quantum calculation did not treat wave pac
correctly, as it failed to account for delays due to multis
ralling. In fact, the resolution is far simpler. In using th
Born approximation their answer can only be valid to low
order inM. We must therefore form a series expansion of
amplitude so that, working to first order inM, we should
compute

T~p2 ,p1!52GME d3xe2 i (p22p1)•x

3S E2

r
1

p2•xp1•x

r 3 D . ~52!
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Precisely this integral is obtained in both of the the oth
gauges discussed in this paper, up to terms which vanish
shell. Working to first order inM gives rise to the differentia
cross section

ds

dV
5

~GM!2

4v4sin4~u/2!
~11v2!2, ~53!

appropriate for a scalar field. Again, we see that the equ
lence principle is obeyed, and the various low-angle a
low-velocity approximations are retained.

This work suggests a number of generalizations, the m
obvious of which is to more general black-hole configu
tions. In this respect a start for the Kerr case has already b
made in@9#, where the Kerr solution was formulated in
gauge with similar properties to that employed in the fi
half of this paper. In addition, both gauges discussed h
look well set up to give a proper, quantum description
radiation processes as a particle is accelerated in a gra
tional field. Classical descriptions of such processes are
toriously tricky and ambiguous. A further question is wheth
the formalism developed here is also appropriate for the
sorption problem@7,16#. This involves modifying the vertex
factor in such a way as to explicitly expose the no
Hermiticity due to the singularity. We expect to tackle the
issues in future papers.

APPENDIX: EVALUATION OF I 1

To evaluate the integralI 1 of Eq. ~32! we first displace the
origin in k-space by (pf1pi)/2 to get

I 15E d3k

~2p!3

@k1~pf1pi !/2#22p2

uq/22ku7/2uk1q/2u7/2

3@k”1~p” f1p” i !/22Eg01m#. ~A1!

We now choose coordinate axis withq and pf1pi defining
the 3 and 1 directions respectively. These vectors are
thogonal as the momenta are on shell. We next introduce
spheroidal coordinates

k15a sinhu sinv cosf,

k25a sinhu sinv sinf, ~A2!

k25a coshu cosv,

where 0<u,`, 0<v<p, 0<f,2p and a5uqu/2. Ex-
ploiting the symmetry ink the integral reduces to two terms

I 15
1

2p2q2E0

`

duE
0

p

dv sinhu sinv

3H sinh2u2sin2v

~sinh2u1sin2v !5/2
~p” f1p” i12m!

1
sinh2u sin2v

~sinh2u1sin2v !5/2
~p” f1p” i22Eg0!J . ~A3!

These integrals are simple to perform and lead to the re
of Eq. ~33!.
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