PHYSICAL REVIEW D 66, 024006 (2002

Perturbation theory calculation of the black hole elastic scattering cross section
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The differential cross section for scattering of a Dirac particle in a black hole background is found. The
result is the gravitational analogue of the Mott formula for scattering in a Coulomb background. The equiva-
lence principle is neatly embodied in the cross section, which depends only on the incident velocity, and not the
particle mass. The low angle limit agrees with classical calculations based on the geodesic equation. The
calculation employs a well-defined iterative scheme which can be extended to higher orders. Repeating the
calculation in different gauges shows that our result for the cross section is gauge invariant and highlights the
issues involved in setting up a sensible iterative scheme.
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I. INTRODUCTION dor (GM)?2

e
Scattering of a charged fermion in a background Coulomb 4@ avlsin(0/2)
field is a widely studied process which can be analyzed per- +vi—v?sir(6/2)]. 2)
turbatively in quantum field theory. To lowest order the scat-
tering process is summarized in the Mott formula for theWe calculate this result in two quite different gauges, which
unpolarized differential scattering cross sectith require going to different orders in perturbation theory. The
first calculation utilizes a series of gauge choices for the
gravitational fields which convert the Dirac equation into a
do Z%a? ) simple, Hamiltonian form[8,9]. This can be analyzed
FTo) :m[l_v sif(6/2)]. (1) straightforwardly through a perturbation expansion. Unlike
Mot *P°U approaches based on the Schwarzschild coordinate system,
the gauge used here does not contain a singularity at the
, ) i horizon and extends right up to the origin. This means that
Herep is the momentumy =[p|/E, « is the fine structure  o,ch step in the perturbation series can be treated exactly,
constant and the source has chafge Curiously, there have avoiding the problems encountered by Colletsal. [2] who
only been sporadic attempts to repeat the analysis leading {@tempted a Born approximation scheme based on Schwarzs-
the Mott formula for the case of a black hol@,3]. The  child coordinates. The result they obtained was physically
problem of scattering by a black hole has certainly been tackanreasonable, though their explanation of why this occurred
led by many authorgsee for example the books by Futter- (as the result of wave packet dispergiseems incorrect in
man, Handler and Matzné4] and Chandrasekh@B], or the  light of the present calculation.
recent article by Andersson and Jen§&J). But few authors The choice of gauge employed in our first calculation
tackle the problem in perturbation theory and there is a noleads to an unusual form of the vertex factor in momentum
table reluctance to analyze the fermion case, with most workpace, which vanishes when both the incoming and outgoing
carried out for the case of a massless scalar field. fermions are on shell. It follows that the first-order contribu-
Unlike scattering in a Coulomb field, black hole scatteringtion to the scattering cross section in this gauge is identically
is complicated by the additional effects of absorption andzero. Since the vertex factor turns out to go as the square root
emission. Absorption is due to the singularity in the gravita-of the black hole mass, the fact that the process is second
tional field and manifests itself as a lack of Hermiticity in the order does make sense. The integrals involved in the second
fermion wave equatiofir—9]. Emission is due to the Hawk- order calculation are all finite and do not require any form of
ing radiation and cannot effectively be treated without someegularization procedure. The result of the calculati@nis
of the apparatus of quantum field thedd0]. Despite these the gravitational analogue of the Mott scattering formula. For
complicating factors, we show here that an iterative scheméiw energies the cross section reduces to the familiar Ruth-
can be set up, based on the Dirac equation, which producesesford formula. As the energy is increased, relativistic cor-
formula for the lowest-order scattering cross section withrections become more significant. The formula neatly em-
little difficulty. bodies the equivalence principle, in that the cross section
In this paper we concentrate on the scattering cross seclepends only on the particle’s velocity, and not its mass. In
tion for a fermion in the background field of a spherically the low-angle limit our formula agrees with earlier results for
symmetric black hole. We find that the unpolarized differen-the classical cross section based on the geodesic eqli2tion
tial scattering cross section is given by The success of the calculation suggests a more general
scheme for tackling the scattering problem, and this is ex-
plored in the second half of this paper. We calculate the cross
*Email address: c.doran@mrao.cam.ac.uk section in a different gauge, using a first-order scheme, and
"Email address: a.n.lasenby@mrao.cam.ac.uk confirm that the same result is obtained. This provides a
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check, though not a proof, that the cross section formula is

gauge invariant. The second calculation also highlights the ds’= 7, dx*dx"— Tdtz

conceptual difficultly of carrying through a full program

based on perturbation theory, as choice of gauge at the start 2(2GM\¥2

of the calculation can dictate features as important as the - F(_) x'dx'dt "
order of Feynman diagrams one needs to consider. This ap-

pears to be the correct explanation for the failure of the Colwherei=1, ... 3, 7,, is the Minkowski metric and re-

lins et al. [2] calculation. Their scheme was based on thepeated indices are summed over. To write down the Dirac
Schwarzschild gauge, and they only went to first order inequation in this background we start with the standard Dirac

perturbation theory. But to be consistent we should includey-matrices and from these we define the defs(x)} and
terms from the Schwarzschild metric to first order Nh {9,(0)} by

which then recovers the correct result.

Throughout we employ units witb=7% =1, while factors 0_ .0 i i_(ZGM l/ZX_' 0 ®)
of G are stated explicitly. Where appropriate, factorg ahd o=y, g=v r r
f are also included. The Minkowski spacetime metric has
signature (17 1,—1,—1). and
2GM l/ZXi
IIl. THE DIRAC EQUATION 9o=7"+ r ) 7Y 9T ©

Our starting point is the Schwarzschild line element in its

It is straightforward to check that these satis
standard form 9 fy

{9..9.1=29,,1, {9,.9"1=26,] (10
2GM| —, 2GM\ "t : g g .
ds’=|1- r dte—{1- r dr whereg,, is the metric specified by Ed7) and | is the
identity matrix. In terms of thg* matrices the Dirac equa-
—r?(d6*+sin*od¢?), (@) tionis
ig*V,p=my, 1

wheret is the proper time measured by stationary observers,

andr, 6 and ¢ have their usual meaning. We first transform where

to a new time coordinate corresponding to the proper time

for particles infalling radially from rest at infinity. This co- V=
ordinate has m

i i
d,+ Ergﬁzaﬁ) ¥ Zap=zlva vel, (12

_ (2GMn)Y? and the components of the spin connection are found in the
di=dt+ T—=ydr. (4 standard way(see[12], for exampl¢. With our choice of
matrices we find that the Dirac equation takes the simple
In terms of this new coordinate the line eleméjtbecomes  0'M
2GM |12 12 iby—i O(ZGM)M( i ) (13)
idy—iy’| — —+ — | y=my.
ds?=dt2—|dr+ T) dt A or " |V
—r2(d6?+sirfad ?). (5) Here 4= y*d, is the familiar Dirac derivative operator in

Minkowski spacetime. The gravitational effects are con-
tained in a single interaction term in an analogous manner to

consider the effects of analviic continuation throuah the in_the Coulomb interaction. The main difference is the presence
vt 9 of a radial derivative. This form of the equation is clearly

troduction of Kruskal-Szekeres coordinates. £&6,11 for ideal for scattering calculations as the interaction can be

;lorgggehi?éa”ed discussion of the form of the metric Mireated perturbatively. In the asymptotic region the metric

In order to write the Dirac equation in its simplest form it coordinates all agree with the standard Minkowski interpre-

: . . " tation, so there is no ambiguity in the meaning of any cross
is useful to revert to Cartesian coordinates by writing sections computed guity 9 y

The coordinate system is valid forsr <cw. We will not

X=r Sinf cosq¢,
IIl. NON-RELATIVISTIC APPROXIMATION

y=rsingsing, Before studying the relativistic cross section it is useful to
first consider the nonrelativistic limit of the Dirac equation.
Z=r cos®. ®  The Hamiltonian form of Eq(13) contains a single interac-
tion term
With the coordinates writter*=(t,x,y,z), =0, ... 3, the
line element(5) can be written as H,y=ik(2GM/r)Y2r =34, (r34%y), (14
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where dimensional constants have been included. This inter- B(X5) Sp(Xp,X) + - - - (21)
action Hamiltonian, which incorporates &fjeneral relativ-

istic effects, is independent of the particle mass and so enwhere Sg(X,,X;) is the (position spaceFeynman propaga-
bodies the equivalence principle. The interaction term is alseor. The interaction ternB(x) is independent of time so en-
independent of the speed of light, so the non-relativistic apergy is conserved throughout the interaction. Converting to
proximation of the Dirac equation can proceed in the stanmomentum space we define the amplitude

dard mannef1]. There are no spin effects to consider, so we _

arrive at the Schidinger equation M=us(p)Vu(p), (22)

2

i h
— 5 V2R (2GMIN Y, (1) =By (19 where

d3k
V=B(p; api)+J (2m)° B(ps k)

where we have assumed that we have a stationary state of
energyE. To simplify this equation we introduce the phase-
transformed variable
X————Bk,p)+---. (23
V=yexd—i(rlag)*?] (16) K2—m?+ie
where HereB(ps,p;) is the spatial Fourier transform of the interac-
tion term, bold symbols refer to spatial components only, and
_ h? 1 for the spinor terms we follow the conventions of Mandl and
aG_geMmz (A7) Shaw([14]. In terms of M the differential cross section is
given by
and is(eight timeg the gravitational equivalent of the Bohr do ( m )2
| M|?

radius. The new variabl# satisfies the simple equation 50 (24)

2m
%2 5 GMm
“omV Y- ——VY=EV. (18 The Fourier transform of the interaction term is

This is p.remsely'the. equation we would expect if we used the B(p,.p;) =(2GM)Y? yof d3xefip2~x%/2
Newtonian gravitational potential, and the solutions for r
are Coulomb wave functions. The standard arguments about

the long range logarithmic phase effects in Coulomb wave x(i+i
functions apply equally to the'? behavior, so the cross ar A4r
section can be found in the conventional Wag]. So, in the

non-relativistic limit, the gravitational differential scattering To evaluate this we first write
cross section reduces to the Rutherford formula. We there- 3
fore expect that the full, relativistic calculation will give a B(p,,p;)=(2GM)*3 YO(_f(pl_pz)
cross section which reduces to the Rutherford formula for 4

small velocities.

elPrx, (25)

If(\py—
. ( g; P2) ) 26)
IV. SCATTERING CROSS SECTION A=1
The Dirac equatiorf13) is well suited to an iterative so- where
lution in the standard manner. We seek a solution of )
- elp-x 2 3/2
[14,—B(X2) —M]Sg(X2,X1) = 8*(Xo— X1) (19 f(p)=f d3xlr3,2 :(W) : (27)
where i )
We therefore find that the momentum space vertex factor is
B0 =i O(ZGM)”Z a+3) 20 ,
X)=1y o 4ar) : P2~ P
rooNer A B(pz,p1>=3w3’%<GM>l’2m ° (29
27 M1

The iterative solution to this equation is
. _ This vertex factor has the unusual feature of vanishing if the
Se(X¢,Xi) = Se(X¢ . X)) ingoing and outgoing particles are on shell, since energy is
A conserved. It follows that the lowest order contribution to the
+f d™X1 Se(X¢,X1) B(X1) Sg(X1,Xi) scattering cross section vanishes. This is reassuring, as the
vertex factor goes agM, and we expect the amplitude to go

asM to recover the Rutherford formula in the low velocit
+j f d*x10%%,SE(X¢ ,X1) B(X1) SE(X1,X2) limit. y
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Working to the lowest non-zero order M the transition
amplitude becomes

M==9mGMug(pr) ¥ 17°u (p) (29)
where
2 1,2 2_ 2
'12[ (;1:3 ||c|zf—|<k|7’2 kz—kr_:]:i—ie |:—p:|)l7/2' 30
Now
k?—m?=E?—k?>—m?=p?>— Kk, (31

whereE is the particle energy angP=p?=p?. The pole in

PHYSICAL REVIEW D66, 024006 (2002

do (GM)? 0
d—Q—Z—q“TT{(IbeFm)(ZE?’ —-m)

X (i +m)(2Ey°—m)}

2(GM)?

[M3(E2—ps-p) + (2E2—m?)?

+4E%p;-p]. (36)

If we let v=|p|/E denote the particle velocity, and the
scattering angle, we arrive at the simple expression
do (GM)?

dQ  aplsirf( 012)

+ot—vsint(6/2)].

[1+2v%—3v?sir?(6/2)

(37

The formula has the satisfying property of being independent
of the particle mass, as one would expect from the equiva-
lence principle. We delay a fuller discussion of the properties

the propagator is therefore cancelled by the vertex factors, sof this result until after we have discussed the issue of gauge
there is no need for thiee prescription. The integral we need invariance.

to evaluate is therefore

| f d% -p (k+m), (32
= m s
S 2m? p— K" k—p| ™2
which is evaluated in the Appendix. The result is
1 0
l1=—S>[2m+3(pe+ ) —4E¥°] (33
9mq

whereq=p;—p; . It follows that

TGM_—_ 0
M= — 7us(pf)[zm—:a(pf+ pi) +8Ey°]u,(p)

V. THE KERR-SCHILD GAUGE

The iterative scheme employed here suggests a generali-
zation to alternative field configurations. In effect, what we
have done is taken the covariant Dirac equation and re-
written it in the form

(i0—m)g=i(d—g*V, )¢

and we have interpreted the right-hand side as an interaction
term B(x). This method will clearly provide a sensible itera-
tive scheme if the right-hand side contains a single factor of
some power ofM. If this is not the case, there can be no
simple correspondence between the order of the iterative so-
lution, and the order oM in the amplitude. The gauge we
have exploited to date has the feature Bt) goes asv*/2

The obvious question now is whether we can do better and
find a gauge where the interaction goesMisThis should
then avoid having to integrate over intermediate momenta in
a second order diagram. Such a gauge is provided by intro-
ducing the Eddington-Finkelstein advanced time coordinate,
which can be employed to convert the Schwarzschild metric

(39

A47GM— .
= —ZUS( p)(2E°—m)u,(p)), (34)  to Kerr-Schild form[15]:
a , 2GM )
ds?= 7, dx dx"— — Ll dxedx, (39
and the differential cross section is given by
where
do (2GMm)2 _ 0 , l,=(1x/r,ylr,zly). (40
0= o lu(p)Ey° —mu(p)®. (39 _
q For ourg*(x) matrices we choose
- : : : 9°=7°+ﬂ(7°—7)

So, despite the complexity of going to second order in the r r
iterative solution, the result is quite straightforward. Per- : (42)
forming the usual spin sums gives an unpolarized cross sec- i i % X_( 0
tion of 9=y ror Y Y
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where bution in the earlier gauge setup. That is, the third order term
in the expansion of Eq21) must vanish. This is confirmed

(42) by (somewhat tedioyscalculations. Taken together this is
strong evidence, though not a proof, that our result is gauge
invariant. A rigorous proof appears harder to achieve, par-
ticularly as the order of expansion is not a gauge-invariant

X
Y= e

The reciprocal matrices are found to be

GM concept.
o=~ —— ("= ),
VI. DISCUSSION
GM X' “3 . -
g=vi—— —(¥"— ). Our calculations in two distinct gauges have shown that,
rr to lowest order in the black-hole mass, the unpolarized dif-
In this gauge the Dirac equation becomes fe_rentigl scattering cross section for a spin-1/2 particle is
given by
'ﬂzlf+iGM( ° )(a ’ l)t/f g, (44 d GM)2
I P S 2 10l w =my, o
r gt ar o 2r ( [1+2v%—3v?sir?(6/2)

dQ  ap4sirt(6/2)
which achieves our goal of constructing an interaction term

of orderM. +ot—vsint(6/2)]. (48)

The momentum space representation of the interaction , .

term is now As already commented, this formula is independent of the

, particle mass and depends only on the incident velocity. This

B 3 —ip WL X' confirms that the equivalence principle is directly encoded in

B(p2,p) =GM | dxe 27| y"— — the Dirac equation, though it remains to be shown whether

this holds to all orders. The formula also makes it clear that

| —E+i i+l_ ipy-x 45 the low velocity limit recovers the Rutherford formula. The
T e (45 higher order relativistic corrections are not obvious, but do
o ) agree with the small angle formulas obtained by Collins
The result of this integral is et al.[2], who found that a®— 0 the classical cross section
22GM is given by
- 0_ W, —
B(pZapl) |q|2 (4E7 pl pZ) dO’_4(GM)2 Lo 2+ . 49
47GM d_Q_W( e “
T (p2—p2 _
ql* (P2~ P (P2~ P1) Unlike the Collinset al. formula [their Eq.(12)], however,
there is no cubic term i@~ in the quantum result, which is
i m°GM 2 2 0 an even function o). The low angle limit can be shown to
+ FE [(p2—P1) Y hold for a general spherically symmetric distribution, so
holds for scattering by a star as well as a black hole. The full
—2E(p,—p1)]. (46)  cross section is unique to the black hole case, however. It is

not simply a weak-field result, as it is vital that the Fourier
This form of interaction is certainly not as elegant as ourtransform integrals include the region inside the horizon.
earlier gauge choice, but has the advantage that the firsthis observation is interesting as we have avoided specifying
order term in the iterative solution gives ti€M) contribu-  boundary conditions at the horizon. The fact that we are
tion to the amplitude. Since the final two termsBip,,p;) working with plane-wave states suggests that we are implic-
vanish on shell, only the first term contributes to the ampli-itly restricted to wave functions which are regular at the ho-

tude, and we find rizon. This requires further work, as a more rigorous treat-
ArGM ment involves a partial wave analysis of scattering and
_ ame 0_ _ absorption effects.
M P Us(Pr) (2Ey"=m)ur(py), “7) The massless limin—0 is well defined and leads to the

simple formula
precisely as obtained earlier. )
This calculation supports the claim that the differential d_": (GM)?cos’(4/2)
cross section formula, to ord®?, is gauge invariant. Two dQ sint(6/2) '
additional pieces of evidence offer further support. The first
is that the calculation can be repeated with a Schwarzschilégain, the low-angle limit recovers the classical formula for
form of the line element, expanded to first orderMip and  the bending of light. This result also predicts zero amplitude
the same result is obtained. The second is that the series for the backward directiond= 7r. Null geodesics produce a
the amplitude in the Kerr-Schild gauge can only increase irsignificant flux in the backward direction, and the fact that
orders ofM, which implies that there can be m¢%? contri-  zero is predicted here is a diffraction effect for neutrinos

(50
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which goes beyond the predictions of geometric optics. APrecisely this integral is obtained in both of the the other
similar prediction of zero backscattering for neutrinos wasgauges discussed in this paper, up to terms which vanish on
made in[4]. A more detailed analysis of the cross section inshell. Working to first order iftM gives rise to the differential
the backward direction also reveals a large “glory” scatter-cross section

ing [4,6]. In the geometric optics limit this is attributable to d (GM)?
multiple orbits, and in the quantum description the glory _U:—(1+v2)2, (53)
scattering is described by higher-order term&iM. To de- dQ  4p4sirt(6/2)

scrit_)e these eff(_ects in the present schem_e requires extendiggpropriate for a scalar field. Again, we see that the equiva-
to higher order in perturba_non theory, Wh.'Ch shou_ld _also "lence principle is obeyed, and the various low-angle and
veal effects due to absorption and, potentially, emission. Th'fow-velocity approximation,s are retained

IS currentl_y under_ Investigation. . . This work suggests a number of generalizations, the most
Extending to higher orders also raises the question of th((n)bvious of which is to more general black-hole configura-

convergence of the |t¢rat|ve scheme proposed here. Th|s tfons. In this respect a start for the Kerr case has already been
not a stralghtfqrward Issue to address as there is no_dlme%ade in[9], where the Kerr solution was formulated in a
sionless COUp“ng constant in the problem. Also, It 1 nOtgauge with similar properties to that employed in the first
clear whether higher-order quantum terms should still be eXRalf of this paper. In addition, both gauges discussed here
pected to obey the equivalence principle. One can easily forI : ’
mulate desirable criteria for convergence, suclGaE<1

or GMEv <1, but these are too restrictive, given that the
low angle formula we arrive at is expected to be valid for all
masses and velocities. It would appear that the only way t
investigate convergence is to compute the next order terms

the perturbation series directly.

ook well set up to give a proper, quantum description of
radiation processes as a particle is accelerated in a gravita-
tional field. Classical descriptions of such processes are no-
toriously tricky and ambiguous. A further question is whether
%he formalism developed here is also appropriate for the ab-
IQorption probleni7,16]. This involves modifying the vertex
factor in such a way as to explicitty expose the non-

Tkh's work _s?outlld ?Istcr)] have cl?nﬂgd t&e _I|_rr1]1_pqrtance OfHermiticity due to the singularity. We expect to tackle these
working consistently to the correct order M. This is par- <o as in future papers.

ticularly clear in the Schwarzschild gauge, where the inter-
action term contains factors of-1(1—2GM/r)*2 An itera-
tive scheme based on this gauge choice should expand out
B(x) as a series iM, and then keep all of the terms up to the  To evaluate the integra) of Eq. (32) we first displace the
desired order. Such a scheme is workable, but has the disagrigin in k-space by ;+p;)/2 to get

vantage of introducing new vertex terms at each order in the

series solution. This explains the failure of the Born approxi- &%k [kt (petpy)/2)P - p?

mation discussed by Collinst al. [2] for the scalar case. 1_f (2m)° |g/2— k|7 k+ /2|72

These authors used a similar technique of viewing the differ-

ence between the true and and flat space metrics as an inter- X [k+ (P + pi) /12— Ey°+m]. (A1)
action term, and constructed the amplitude

APPENDIX: EVALUATION OF 1|,

We now choose coordinate axis withand p;+ p; defining

s i the 3 and 1 directions respectively. These vectors are or-
T(pz,pl)ZZGMf d3xe (P27 Pa) X thogonal as the momenta are on shell. We next introduce the
spheroidal coordinates
E2 P, Xpy - X ko= . .
4 ' 1= a sinhu sinv cosg,
r—2GM™m r3 6D . i i
k,= a sinhu sinv sin ¢, (A2)
Applying this in the Born approximation as it stands pro- k,= a coshu cosv,

duces an unphysical answer which departs radically from the

classical cross section. Colliret al. argued that this was Where Osu<e, O<vs<m, 0<¢<27 and a=|q|/2. Ex-
because the quantum calculation did not treat wave packefdoiting the symmetry irk the integral reduces to two terms:
correctly, as it failed to account for delays due to multispi-

ralling. In fact, the resolution is far simpler. In using the |1=fodufwdv sinhu sinv
Born approximation their answer can only be valid to lowest 2w Jo 0
order inM. We must therefore form a series expansion of the ] )
amplitude so that, working to first order i, we should sinffu—sirf (By+ B +2m)
compute (sinfu+sirf)s2
N i(py—py)- inffu sirf
T(pz,pl)—ZGMdeXt—:‘ (2P x T +p—2E10) (. (A3)
(sinl*?u+sin2v)5’2('éf b )
2 . .
X E_+ w> ) (52)  These integrals are simple to perform and lead to the result
r r3 of Eq. (33).
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