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Wave tails in time-dependent backgrounds
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~Received 7 January 2002; published 26 June 2002!

It is well known that waves propagating under the influence of a scattering potential develop ‘‘tails.’’
However, the study of late-time tails has so far been restricted to time-independent backgrounds. In this paper,
we explore the late-time evolution of spherical waves propagating under the influence of atime-dependent
scattering potential. It is shown that the tail structure is modified due to the temporal dependence of the
potential. The analytical results are confirmed by numerical calculations.
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The phenomenon of wave tails has fascinated m
physicists and mathematicians from the early exploration
wave theories. Wave tails have found various applicati
from the first studies in light propagation@1# to the theory
behind the proposed experiments to detect gravitatio
waves@2–4#. In fact, tail-free propagation seems to be t
exception rather than the rule@5,6#. For instance, it is well
established that scalar, electromagnetic, and gravitati
waves in curved spacetimes propagate not only along l
cones, but also spread inside them. This implies that wa
do not cut off sharply after the passage of the wave front,
rather leave a tail or wake at late times.

From a physical point of view, the most interestin
mechanism for the production of late-time tails is the ba
scattering of waves off a potential~or a spacetime curvature!
at asymptotically far regions@7,8#. This can be described a
follows. Consider a wave from a source pointy. The late-
time tail observed at a fixed spatial locationx and at timet is
a consequence of the wave first propagating to a distant p
x8@y,x, being scattered byV(x8,t8) at time t8.t/2, and
then returning tox at a timet.(x82y)1(x82x).2x8 @9#.
Hence, the scattering amplitude~and thus the late-time tai
itself! is expected to be proportional toV(x8,t8)
.V(t/2,t/2). ~However, in a previous paper@10# we have
shown that this picture is somewhat naive, and requires s
important modifications.!

The propagation of spherical waves in curved spacetim
or in optical cavities is often governed by the Klein-Gord
~KG! equation@11#

F ]2

]t2 2
]2

]x2 1
1

xs
2 V~x,t !GC50, ~1!

whereV(x,t) is an effective curvature potential which dete
mines the scattering of the waves by the background ge
etry ~we henceforth takexs51 without loss of generality!. It
was first demonstrated by Price@8# that a~nearly spherical!
collapsing star leaves behind it a ‘‘tail’’ which decays asym
totically as an inverse power of time.

The analysis of Price has been extended by many auth
Gundlach, Price, and Pullin@12# showed that power-law tails
are a genuine feature of gravitational collapse—the existe
of these tails was demonstrated in fullnonlinear numerical
simulations of the collapse of a self-gravitating scalar fi
~this was later reproduced in@13#!. Moreover, since the late
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time tail is a direct consequence of the scattering of
waves at asymptotically far regions, it has been pointed
that the same power-law tails would develop independe
of the existence of a horizon@14#. This implies that tails
should also be formed when the collapse fails to produc
black hole, or even in the context of stellar dynamics~e.g., in
perturbations of neutron stars!. In recent years, there ha
been a flurry of activity in the field of wave tails; see, e.
@15–47#, and references therein.

Yet, in spite of the numerous works addressing the pr
lem of wave tails, a thorough understanding of this fascin
ing phenomenon is not complete. In particular, most of
previous analyses were restricted to the specific class
~time-independent! ‘‘logarithmic potentials’’ of the form
V(x); lnbx/xa ~wherea.2 andb50,1 are parameters! @9#.
Recently, we have given a systematic analysis of the
phenomenon for waves propagating under the influence
generaltime-independent scattering potential@10#.

It should be realized, however, that a realistic gravi
tional collapse produces atime-dependentspacetime geom-
etry, on which the tails are developing. This fact calls for
systematic exploration of the general properties of wave t
in dynamical~time-dependent! backgrounds. This is the aim
of the present paper, in which we present our main resu

We consider the evolution of a wave field whose dyna
ics is governed by a KG-type equationF ;n

;n1V(r ,t)F50.
Substituting F5C(t,r )/r (r being the circumferential ra
dius!, one obtains a wave equation of the form Eq.~1! @48#.

It proves useful to introduce the double-null coordina
u[t2x and v[t1x, which are a retarded time coordina
and an advanced time coordinate, respectively. The in
data are in the form of some compact outgoing pulse in
range u0<u<u1, specified on an ingoing null surfacev
5v0.

The general solution to the wave equation~1! can be writ-
ten as a series depending on two arbitrary functionsF andG
@8#:

C5G(0)~u!1F (0)~v !1 (
k50

`

@Bk~u,v !G(2k21)~u!

1Ck~u,v !F (2k21)~v !#. ~2!

For any functionH, H (k) is its kth derivative; negative-
©2002 The American Physical Society01-1
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order derivatives are to be interpreted as integrals~we shall
also denote]u

m]v
nH by H (m,n)). The functionsBk(u,v) satisfy

the recursion relation

Bk,v52Bk21,uv2 1
4 VBk21 ~3!

for k>1 and

B0,v52V/4. ~4!

For the first Born approximation to be valid, the scatteri
potentialV should approach zero faster than 1/v2 asv→`;
see, e.g.,@9,24#. Otherwise, the scattering potential cannot
neglected at asymptotically far regions@see Eq.~6! below#.
The recursion relation, Eq. ~3!, yields Bk(u,v)5
(21)k11V(k,21)/4.

It is useful to classify the scattering potentials into tw
groups, according to their asymptotic behavior: group I,uV,uu
approaches zerofaster than uVu as v→`; group II, uV,uu
approaches zero at thesamerate asuVu asv→`.

Group I. The first stage of the evolution is the scatteri
of the field in the regionu0<u<u1. The first sum in Eq.~2!
represents the primary waves in the wave front~i.e., the
zeroth-order solution, withV[0), while the second sum rep
resents back scattered waves. The interpretation of thes
tegral terms as back scatter comes from the fact that
depend on data spread out over asectionof the past light
cone, while outgoing waves depend only on data at a fixeu
@8#.

After the passage of the primary waves there is no out
ing radiation foru.u1, aside from back scattered wave
This means thatG(u1)50. Hence, atu5u1 and for v@u1
~wheret.x.v/2), the dominant term in Eq.~2! is

C~u5u1 ,v !5B0~u5u1 ,v !G(21)~u1!. ~5!

This is the dominant back scatter of the primary waves.
With this specification of characteristic data onu5u1, we

shall next consider the asymptotic evolution of the field. W
confine our attention to the regionu.u1 , x@xs . To afirst
Born approximation, the spacetime in this region is appro
mated as flat@8,14#. Thus, to first order inV ~that is, in a first
Born approximation! the solution forC can be written as

C5g(0)~u!1 f (0)~v !. ~6!

Comparing Eq.~6! with the initial data onu5u1, Eq. ~5!,
one finds

f ~v !52G(21)~u1!V(0,21)~u5u1 ,v !/4. ~7!

For late times t@x, one can expandg(u)5(n50
`

(21)ng(n)(t)xn/n! and similarly for f (v). With these expan-
sions, Eq.~6! can be rewritten as

C5 (
n50

`

K0
nxn@ f (n)~ t !1~21!ng(n)~ t !#, ~8!

where the coefficientsK0
n are those given in@8#.

Using the boundary conditions for smallr @regularity as
x→2`, at the horizon of a black hole, or atx50, for a
02400
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nonsingular model~e.g., a stellar model!#, one finds that at
late timesg(t)52 f (t) to first order in the scattering poten
tial V ~see, e.g.,@8,14# for additional details!. That is, the
incoming and outgoing parts of the tail are equal in mag
tude at late times. This almost total reflection of the ingoi
waves at smallr can easily be understood on physic
grounds—it simply manifests the impenetrability of the ba
rier to low-frequency waves@8# ~which are the ones to domi
nate the late-time evolution@16#!. We therefore find that the
late-time behavior of the field at a fixed radius (x!t) is
dominated by@see Eq.~8!#

C.2K0
1f (1)~ t !x, ~9!

which implies

C.2221K0
1G(21)~u1!xV~u5u1 ,v5t !, ~10!

or equivalently

C~x,t !.2221K0
1G(21)~u1!xV~ t/2,t/2!. ~11!

Group II. The dominant back scatter of the primary wav
is C(u5u1 ,x)5(k50

` Bk(u5u1 ,v)G(2k21)(u1). Using an
analysis along the same lines as before, one finds

C. (
n51,3, . . .

`

221K0
nxn(

k50

`

~21!k11G(2k21)~u1!V(k,n21)

3~u5u1 ,v5t ! ~12!

at late times. Note that Eq.~12! is merely a generalization o
Eq. ~10!, and reduces to it ifuV,xu or uV,tu approaches zero
faster thanuVu ~in which caseV(0,0) dominates at late times!.

We next consider the implications of our results to t
case of the gravitational collapse of a star. It should be e
phasized that in all previous analyses it has been assu
that the fields propagate on afixedbackground. In particular
the leading-order scattering potential is taken to beM /r 3,
with the parameterM being aconstant. However, it is well
known that the mass parameter approaches a constant
only asymptotically. Namely,M (t)5M01M1t2a at asymp-
totically late times,M0 being the mass of the formed blac
hole ~the value ofa depends on the multipole order of th
field @8#!. Thus, the results of the present paper reveal t
one should expect to find higher-order corrections to the
of gravitational collapse~as compared with the predictions o
the fixed-background analyses!. These higher-order correc
tions ‘‘contaminate’’ the leading-order tail, and vanish on
asymptotically.

Moreover, forsubcritical initial data @49# ~in which case
the collapsing matter fails to produce a black hole or a s!
the spacetime geometry is highlytime-dependent. Thus, in
these cases the central mass of the spacetime,M (t), cannot
be taken as a constant. Rather, it evolves with time and e
tually falls to zero. A fixed background analysis would ther
fore be inappropriate in these situations, and one should c
sider the scattering by a time-dependent scattering pote
~with a decreasing mass parameter!. One such example is
given in Fig. 1.
1-2
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Numerical calculations. It is straightforward to integrate
Eq. ~1! using the methods described in@14,27#. The late-time
evolution of the field is independent of the form of the initi
data used. The results presented here are for a Gau
pulse.

The temporal evolutions of the waves~under the influence
of the various scattering potentials! are shown in Figs. 1 and
2. ~We have studied other potentials as well, which are
shown here.! We find an excellent agreement between
analytical results and thenumericalcalculations.

In summary, we have explored the tail phenomena
spherical waves propagating under the influence of a gen

FIG. 1. Temporal evolution of the field for time-dependent sc
tering potentials of the formV(x,t)51/xatb ~the results presente
here are fora53!. The power-law indices are24.04 and25.08
for b51 ~upper graph! andb52, respectively. These values shou
be compared with theanalytically predicted values of24 and
25, respectively.
e

ys

02400
ian

t
e

r
ral

time-dependentscattering potential. It was shown that th
late-time tail at a fixed spatial location is governed by t
scattering potential itself, and by its derivatives~both the
spatial and the temporal ones!. The analytical results are in
agreement with numerical calculations.

We are at present extending the analysis to include s
tering potentials that lack spherical symmetry~in which case
the scattering problem is of 211 dimensions!.

I thank Tsvi Piran for discussions. This research was s
ported by grant 159/99-3 from the Israel Science Founda
and by the Dr. Robert G. Picard fund in physics.

- FIG. 2. Temporal evolution of the field for time-dependent sc
tering potentials of the formV(x,t)5sin(vt)/xa ~the results pre-
sented here are fora54 andv5p/100). The slope~determined
from the maxima of the oscillations! is 24.07, in excellent agree
ment with theanalyticallypredicted value of24. The frequency of
the oscillations isv to within 1%.
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