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Wave tails in time-dependent backgrounds

Shahar Hod
Department of Condensed Matter Physics, Weizmann Institute, Rehovot 76100, Israel
(Received 7 January 2002; published 26 June 2002

It is well known that waves propagating under the influence of a scattering potential develop “tails.”
However, the study of late-time tails has so far been restricted to time-independent backgrounds. In this paper,
we explore the late-time evolution of spherical waves propagating under the influenceénuf-dependent
scattering potential. It is shown that the tail structure is modified due to the temporal dependence of the
potential. The analytical results are confirmed by numerical calculations.
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The phenomenon of wave tails has fascinated manyime tail is a direct consequence of the scattering of the
physicists and mathematicians from the early explorations ofvaves at asymptotically far regions, it has been pointed out
wave theories. Wave tails have found various applicationshat the same power-law tails would develop independently
from the first studies in light propagatidd] to the theory of the existence of a horizofil4]. This implies that tails
behind the proposed experiments to detect gravitationathould also be formed when the collapse fails to produce a
waves[2-4]. In fact, tail-free propagation seems to be theblack hole, or even in the context of stellar dynanies., in
exception rather than the ru[&,6]. For instance, it is well perturbations of neutron starsin recent years, there has
established that scalar, electromagnetic, and gravitationddeen a flurry of activity in the field of wave tails; see, e.g.,
waves in curved spacetimes propagate not only along lighHtLt5—-47, and references therein.
cones, but also spread inside them. This implies that waves Yet, in spite of the numerous works addressing the prob-
do not cut off sharply after the passage of the wave front, bulem of wave tails, a thorough understanding of this fascinat-
rather leave a tail or wake at late times. ing phenomenon is not complete. In particular, most of the

From a physical point of view, the most interesting previous analyses were restricted to the specific class of
mechanism for the production of late-time tails is the back(time-independent “logarithmic potentials” of the form
scattering of waves off a potenti@r a spacetime curvature V(x)~In®x/x* (wherea>2 andB=0,1 are parameter§9].
at asymptotically far regionf7,8]. This can be described as Recently, we have given a systematic analysis of the tail
follows. Consider a wave from a source pointThe late- phenomenon for waves propagating under the influence of a
time tail observed at a fixed spatial locatiwand at timetis  generaltime-independent scattering potentiaD].

a consequence of the wave first propagating to a distant point It should be realized, however, that a realistic gravita-
x>y, X, being scattered by/(x’,t’) at timet'=t/2, and tional collapse produces time-dependenspacetime geom-
then returning toc at a timet=(x’ —y)+(x' —x)=2x’ [9].  etry, on which the tails are developing. This fact calls for a
Hence, the scattering amplitudand thus the late-time tail systematic exploration of the general properties of wave tails
itselfy is expected to be proportional tovV(x',t") in dynamical(time-dependentbackgrounds. This is the aim
=V(t/2t/2). (However, in a previous pap¢fiO] we have of the present paper, in which we present our main results.
shown that this picture is somewhat naive, and requires some We consider the evolution of a wave field whose dynam-
important modification$. ics is governed by a KG-type equatiah,+V(r,t)®=0.

The propagation of spherical waves in curved spacetimeSubstituting ® =" (t,r)/r(r being the circumferential ra-
or in optical cavities is often governed by the Klein-Gordondius), one obtains a wave equation of the form Eb.[48].
(KG) equation[11] It proves useful to introduce the double-null coordinates
u=t—x andv=t+x, which are a retarded time coordinate
and an advanced time coordinate, respectively. The initial
data are in the form of some compact outgoing pulse in the
range up<u=<u,, specified on an ingoing null surface
whereV(x,t) is an effective curvature potential which deter- =v,,.
mines the scattering of the waves by the background geom- The general solution to the wave equatidncan be writ-
etry (we henceforth take,= 1 without loss of generalily It ~ ten as a series depending on two arbitrary functiersdG
was first demonstrated by Pri¢8] that a(nearly spherical  [8]:
collapsing star leaves behind it a “tail” which decays asymp-
totically as an inverse power of time. o

The analysis of Price has been extended by many authors. = GO(u)+FO(y)+ > [By(u,v)G ¥ D(u)
Gundlach, Price, and Pullii2] showed that power-law tails k=0
are a genuine feature of gravitational collapse—the existence
of these tails was demonstrated in falbnlinear numerical
simulations of the collapse of a self-gravitating scalar field
(this was later reproduced [1.3]). Moreover, since the late- For any functionH, H® is its kth derivative; negative-
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order derivatives are to be interpreted as integfais shall
also denot@'d"H by H(™"). The functionsB,(u,v) satisfy
the recursion relation

Bky=—Bk-1,u—3VBk_1 ©)
for k=1 and

Bo,=— V/4. (4)
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nonsingular mode(e.g., a stellar modg], one finds that at
late timesg(t) = —f(t) to first order in the scattering poten-
tial V (see, e.g.[8,14] for additional details That is, the
incoming and outgoing parts of the tail are equal in magni-
tude at late times. This almost total reflection of the ingoing
waves at smallr can easily be understood on physical
grounds—it simply manifests the impenetrability of the bar-
rier to low-frequency wavel8] (which are the ones to domi-
nate the late-time evolutiorl6]). We therefore find that the

For the first Born approximation to be valid, the scatteringlate-time behavior of the field at a fixed radiug<t) is

potential V should approach zero faster tham4hsv —;

see, e.g.9,24]. Otherwise, the scattering potential cannot be

neglected at asymptotically far regiofsee Eq.(6) below].
The recursion relation, Eq.(3), vyields By(u,v)=
(—1)<riytebyg,

It is useful to classify the scattering potentials into two

groups, according to their asymptotic behavior: grouivl,|
approaches zerfaster than |V| as v—o; group II, |V |
approaches zero at tlsamerate aslV| asv— .

Group |. The first stage of the evolution is the scattering

of the field in the regiomg<u=<u;. The first sum in Eq(2)
represents the primary waves in the wave fréint., the
zeroth-order solution, witt’=0), while the second sum rep-

dominated bysee Eq.8)]
W =2K3tD(t)x, C)
which implies
P=—2"KIGE(uy)xV(u=u,,v=t), (10)
or equivalently
W(x,1)=—2"KIG V(U )xV(t/2t/2). (11)

Group Il. The dominant back scatter of the primary waves
is W(u=uy,X)=3p_,Br(u=uy,0)GC ¥ Y(u,). Using an

resents back scattered waves. The interpretation of these ianalysis along the same lines as before, one finds
tegral terms as back scatter comes from the fact that they

depend on data spread out ovesectionof the past light
cone, while outgoing waves depend only on data at a fixed

[8].

P = E 2_1K8Xn2 (_1)k+1G(—k—l)(ul)V(k,n—l)
n=1,3 k=0

After the passage of the primary waves there is no outgo- X(Uu=uq,v=t) (12

ing radiation foru>u,, aside from back scattered waves.
This means thaG(u,)=0. Hence, au=u, and forv>u,
(wheret=x=v/2), the dominant term in Eq?2) is

W(u=uy,v)=Bo(u=uy,v)GI(uy). (5)

This is the dominant back scatter of the primary waves.
With this specification of characteristic data o0& u,, we

shall next consider the asymptotic evolution of the field. We

confine our attention to the regia>u;, x>X,. To afirst
Born approximation, the spacetime in this region is approxi
mated as flaf8,14]. Thus, to first order itV (that is, in a first
Born approximationthe solution for¥ can be written as

¥ =gOu)+ ). (6)

Comparing Eq.(6) with the initial data onu=u4, Eq. (5),
one finds

f(v)=—GUD(u)YVO D(u=uy,v)/4. 7)

For late timest>x, one can expandg(u)=X,_,
(—1)"g™(t)x"/n! and similarly forf(v). With these expan-
sions, Eq.(6) can be rewritten as

W= 3 KHTFO ) +(=1)"g (1)), ®)

where the coefficientky are those given if8].
Using the boundary conditions for smallregularity as
x— —o, at the horizon of a black hole, or a=0, for a

at late times. Note that E412) is merely a generalization of
Eq. (10), and reduces to it ifV,| or |V | approaches zero
faster thar]V/| (in which casev(®9 dominates at late timgs

We next consider the implications of our results to the
case of the gravitational collapse of a star. It should be em-
phasized that in all previous analyses it has been assumed
that the fields propagate orfiaedbackground. In particular,
the leading-order scattering potential is taken toNbér 3,
with the parameteM being aconstant However, it is well

known that the mass parameter approaches a constant value

only asymptotically. NamelyM (t) =M+ Mt~ < at asymp-
totically late timesM being the mass of the formed black
hole (the value ofa depends on the multipole order of the
field [8]). Thus, the results of the present paper reveal that
one should expect to find higher-order corrections to the tail
of gravitational collapséas compared with the predictions of
the fixedbackground analysgsThese higher-order correc-
tions “contaminate” the leading-order tail, and vanish only
asymptotically.

Moreover, forsubcritical initial data[49] (in which case
the collapsing matter fails to produce a black hole or a) star
the spacetime geometry is hightyne-dependentThus, in
these cases the central mass of the spacetihf€), cannot
be taken as a constant. Rather, it evolves with time and even-
tually falls to zero. A fixed background analysis would there-
fore be inappropriate in these situations, and one should con-
sider the scattering by a time-dependent scattering potential
(with a decreasing mass parametedne such example is
given in Fig. 1.
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FIG. 1. Temporal evolution of the field for time-dependent scat- FIG. 2. Temporal evolution of the field for time-dependent scat-
tering potentials of the fornv(x,t)=1/x*t# (the results presented tering potentials of the fornV(x,t) =sin(wt)/x* (the results pre-
here are fora=3). The power-law indices are 4.04 and—5.08  sented here are far=4 and w= 7/100). The slopgdetermined
for =1 (upper graphandB=2, respectively. These values should from the maxima of the oscillationss —4.07, in excellent agree-
be compared with thanalytically predicted values of-4 and  ment with theanalytically predicted value of-4. The frequency of
—5, respectively. the oscillations isw to within 1%.

Numerical calculationslt is straightforward to integrate time-dependenscattering potential. It was shown that the
Eq. (1) using the methods described[i¥,27]. Thelate-time Iate-tme tail at a flx_ed spatial Ioca_\tlon is go_verned by the
evolution of the field is independent of the form of the initial Scattering potential itself, and by its derivativésoth the
data used. The results presented here are for a Gaussi@atial and the temporal one§he analytical results are in
pulse. agreement with numerical calculations. _

The temporal evolutions of the wavasder the influence We are at present extending the analysis to include scat-
of the various scattering potentialsre shown in Figs. 1 and tering potentials that lack spherical symmeiry which case
2. (We have studied other potentials as well, which are nothe scattering problem is of-21 dimensionj
shown here. We find an excellent agreement between the
analytical results and theumericalcalculations. | thank Tsvi Piran for discussions. This research was sup-

In summary, we have explored the tail phenomena fomported by grant 159/99-3 from the Israel Science Foundation
spherical waves propagating under the influence of a generahd by the Dr. Robert G. Picard fund in physics.
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