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Ermakov-Pinney equation in scalar field cosmologies
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~Received 20 March 2002; published 30 July 2002!

It is shown that the dynamics of cosmologies sourced by a mixture of perfect fluids and self-interacting
scalar fields are described by the nonlinear, Ermakov-Pinney equation. The general solution of this equation
can be expressed in terms of particular solutions to a related, linear differential equation. This characteristic is
employed to derive exact cosmologies in the inflationary and quintessential scenarios. The relevance of the
Ermakov-Pinney equation to the braneworld scenario is discussed.
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I. INTRODUCTION

Observations of the cosmic microwave backgrou
~CMB! power spectrum@1# now provide strong support fo
the inflationary scenario@2# ~for recent reviews, see, e.g
@3#!. The simplest mechanism for inflation utilizes the pote
tial energy associated with the self-interaction of a sca
inflaton field to drive the accelerated expansion. High r
shift observations of type Ia supernovae suggest that the
verse is experiencing another phase of accelerated expa
at the present epoch@4#. This, combined with the CMB data
presents a picture of the universe dominated by a dark en
component@5,6#. One possible source of this dark energy i
scalar quintessence field that interacts with baryonic
nonbaryonic matter in such a way that its potential energ
currently dominating the cosmic dynamics@7#. The observa-
tions favor a model of structure formation where 70% of t
energy density of the universe is presently in the form
quintessence@6#. The remaining fraction of the energy de
sity is comprised of visible and cold dark matter which c
lectively act as a pressureless perfect fluid.

The ekpyrotic scenario has recently been proposed a
alternative to the standard inflationary cosmology@8#. In this
scenario the big bang is interpreted as the collision of t
domain walls or branes traveling through a fifth dimensio
Before the collision, the effective dynamics on the four
mensional branes is described by Einstein’s gravity m
mally coupled to a self-interacting scalar field. The field p
rametrizes the separation between the branes and at
times slowly rolls down anegativepotential. This results in
an accelerated collapse of the universe and since the fie
minimally coupled, its energy density is related to t
Hubble parameter by the standard Friedmann equation. T
self-interacting scalar fields play a central role in mode
cosmology and in view of the above developments, it is i
portant to investigate cosmologies that contain both a sc
field and a perfect fluid.

In this paper, we develop an analytical approach to m
els of this type by expressing the cosmological field eq
tions in terms of an Ermakov system@9–11#. In general, an
Ermakov system is a pair of coupled, second-order, nonlin
ordinary differential equations~ODEs! @11# and such system
often arise in studies of nonlinear optics@12#, nonlinear elas-
ticity @13#, molecular structures@14#, quantum field theory in
0556-2821/2002/66~2!/023523~8!/$20.00 66 0235
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curved spaces@15# and quantum cosmology@16#. ~For fur-
ther references, see, e.g., Refs.@17#.!

In the one-dimensional case, the two equations decou
and the system reduces to a single equation known as
Ermakov-Pinney equation@9,18#. This is given by1

d2b

dt2
1Q~t!b5

l

b3
, ~1!

whereQ is an arbitrary function oft and l is a constant.
Although Eq.~1! is a nonlinear ODE, it exhibits a remark
able superposition property@10,20# that implies that its gen-
eral solution can be expressed directly in terms of particu
solutions to the relatedlinear, second-order ODE, wherel
50 @18#.

The paper is organized as follows. We discuss
Ermakov-Pinney equation in a cosmological setting in Sec
and proceed in Sec. III to develop algorithms for solving t
field equations. A number of models are considered in S
IV. Section V considers the role of the Ermakov-Pinn
equation within the context of the recently developed bra
world scenario and we conclude with a discussion in Sec.

II. THE ERMAKOV-PINNEY EQUATION IN
COSMOLOGY

We begin by deriving the Ermakov-Pinney equation in
cosmological context. The field equations for a spatially fl
Friedmann-Robertson-Walker~FRW! universe with a scalar
field and perfect fluid matter source are given by

H25
k2

3 S 1

2
ḟ21V~f!1

D

anD ~2!

f̈13Hḟ1
dV

df
50, ~3!

whererf[ḟ2/21V(f) is the energy density of the scala
field with potentialV(f), rmat[Da2n is the energy density

1Equation~1! is sometimes referred to as the Milne-Pinney equ
tion @19#.
©2002 The American Physical Society23-1
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of the barotropic perfect fluid with equation of statepmat
5@(n23)/3#rmat, a dot denotes differentiation with respe
to cosmic time,t, H[ȧ/a represents the Hubble paramet
a is the scale factor of the universe,D is an arbitrary, positive
constant, 0<n<6, k2[8pmP

22 andmP is the Planck mass
Equation~3! represents the conservation of the energy m
mentum of the scalar field and can be expressed in the f
ṙf523Hḟ2.

One method of reducing this second-order, nonlinear p
of ODEs~2!,~3! is to write them as a first-order system. Th
can be done if the scalar field varies monotonically w
cosmic time. It then follows that Eq.~3! can be expressed a
@21#

drf

df
523Hḟ ~4!

and the Friedmann equation~2! then takes the form

dx

df

drf

df
1~nk2!xrf52nk2D, ~5!

wherex[an. The perfect fluid source leads to a nontrivi
right-hand side in Eq.~5!. The general solution to Eq.~5! can
be expressed in terms of quadratures if the functional form
rf(f) is known:

a~f!5expF2k2Ef

df̃rf~f̃ !S drf

df̃
D 21G

3H P2nk2DEf

df̃S drf

df̃
D 21

3 expFnk2E f̃
dwrf~w!S drf

dw D 21G J 1/n

, ~6!

whereP is a constant of integration. The effects of the flu
source are contained in the second term.

The disadvantage of this change of variables is that i
not valid if the scalar field exhibits oscillatory behavior
any time. We therefore consider a different approach by
ferentiating Eq.~2! and substituting Eq.~3!. This implies that

ä

a
2

ȧ2

a2
52

k2

2 S ḟ21
nD

3anD . ~7!

We now define an effective scale factor,b:

a[b2/n ~8!

and a new time parameter,t:

d

dt
[b

d

dt
~9!

and sinceb is positive-definite,t is a monotonic increasing
function of cosmic time,t. Equation~7! then transforms into
the second-order, nonlinear Ermakov-Pinney equation
02352
,

-
m

ir

f

is

f-

d2b

dt2
1

nk2

4 S df

dt D 2

b52
Dn2k2

12

1

b3
~10!

and comparison with Eq.~1! then implies that

Q5
nk2

4 S df

dt D 2

, l52
Dn2k2

12
. ~11!

The change of variables~8! and~9! is interesting because
Pinney @18# has shown that two linearly independent so
tions, „b1(t),b2(t)…, of the time-dependent oscillator equ
tion

d2b

dt2
1Q~t!b50 ~12!

can be combined to give the general solution to
Ermakov-Pinney equation~1!:

bP5@Ab1
21Bb2

212Cb1b2#1/2, ~13!

where$A,B,C% are constants satisfying the constraint equ
tion

AB2C25
l

W2
~14!

and the Wronskian

W[b1

db2

dt
2b2

db1

dt
~15!

is a constant due to Abel’s theorem. It can be verified
direct differentiation that Eq.~13! does indeed satisfy Eq
~1!. An important property of Eq.~12! is that if a particular
solution,b1(t), is known, a second solution can be written
terms of a quadrature:

b2~t!5Wb1~t!E t dt̃

b1
2~ t̃ !

. ~16!

Thus, the general solution to the Ermakov-Pinney equa
~10! is found in terms of a particular solution to Eq.~12!.

The perfect fluid component (DÞ0) results in the nonlin-
ear sector on the right-hand side of Eq.~10! and the effects
of the scalar field are parametrized entirely in terms of
function,Q, defined in Eq.~11!. We refer to this function as
the ‘‘oscillator potential.’’ It is worth noting that Eq.~10! is
independent of the specific functional form of the scalar fi
interaction potential,V(f).

For the pure scalar field model (D50), Eq.~12! may also
be interpreted as a classical analogue of the zero-en
Schrödinger equation, where the scale factor,b, plays the
role of the ‘‘wave function’’ and the ‘‘wave vector,’’Q(t), is
determined by the kinetic energy of the scalar field. An eq
tion of this form has arisen previously in studies of FR
cosmologies containing only a perfect fluid source w
a constant equation of statev5pmat/rmat @22# and for the
3-2
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ERMAKOV-PINNEY EQUATION IN SCALAR FIELD . . . PHYSICAL REVIEW D66, 023523 ~2002!
special case of a self-interacting scalar field that satisfies
condition @23#. This analogy may be extended further b
considering an alternative reparametrization, where a n
scale factor and time variable are defined byc[a2n/2 and
s[*dtc, respectively. It follows that Eq.~7! may then be
expressed as a one-dimensional Schro¨dinger equation:

d2c

ds2
1@E2P~s!#c50, ~17!

whereE52(n2k2D)/12 represents the total energy of th
system, and is determined by the momentum of
perfect fluid, and the potential energy is given byP
5(nk2/4)(df/ds)2 in terms of the scalar field.

There is a close relationship between the Schro¨dinger
equation~17! and the Ermakov-Pinney equation~1!, as dis-
cussed by Milne@19#, who developed a method for solvin
the former equation in full generality in terms of a particu
solution of the latter, in such a way that the oscillatory b
havior of the wavefunction is manifest. In this approach,
general solution to Eq.~12! is expressed in the form

bH5Uc~t!cos„Alu~t!1e…, ~18!

where $U,e% are arbitrary constants and$c(t),u(t)% are
functions that need to be determined. Substituting this an
into the homogeneous equation~12! reveals that Eq.~18!
represents the general solution if these functions satisfy
coupled system of ODE’s:

d2c

dt2
1Q~t!c5

l

c3
~19!

du

dt
5

1

c2
~20!

and it follows, therefore, that the general solution to t
Schrödinger equation~12! can be deduced, at least with r
spect to the quadrature,u5*tdt̃c22( t̃), if a solution to the
Ermakov-Pinney equation~19! is known.

Furthermore, two linearly independent parametric so
tions to Eq. ~12! are given byb15c cos(Alu) and b2

5c sin(Alu), where the Wronskian isW25l, u(t) satisfies
Eq. ~20! andc(t) is a particular solution to Eq.~19!. Sub-
stituting these two solutions into Eq.~13! gives

bP5c@Acos2~Alu!1Bsin2~Alu!

1~AB21!1/2sin~2Alu!#1/2, ~21!

where we have employed Eq.~14!. This implies that the
general solution to the Ermakov-Pinney equation~1! can be
determined in terms of a particular solution,c(t), to this
equation@20#.

To summarize thus far, the dynamics of a pure scalar fi
cosmology is determined by a one-dimensional oscilla
equation with a time-dependent frequency. Depending on
parametrization chosen, the inclusion of a perfect fl
02352
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source results in an effective constant shift in the total ene
of the system, as in Eq.~17!, or equivalently introduces a
nonlinear term as is the case in Eq.~10!. In particular, the
problem of solving Eq.~10! for a coupled perfect fluid and
scalar field cosmology has been reduced to solving Eq.~12!
for a given functional form ofQ(t). This is interesting be-
cause this latter equation has been studied extensively in
literature. For example, algorithms that extend the Went
Kramers and Brilluen~WKB! technique have recently bee
developed to find power series solutions to Eq.~12! @24#. For
related work, see also Ref.@25#.

III. ALGORITHMS FOR SOLVING THE FIELD
EQUATIONS

We now proceed to outline an algorithm for deriving e
act cosmological models when both a scalar field and per
fluid are dynamically significant. Attention to date has p
marily focused on pure scalar field models@21,26–28#.
Some specific models with a perfect fluid were also recen
analyzed@29#. From a particle physics perspective the pote
tial of the scalar field is the fundamental quantity that defin
the model. In general, however, Eqs.~2! and ~3! are very
difficult, if not impossible, to solve unless the potential ha
specific form, as in the exponential case@26#. There are sev-
eral possible routes to take when solving the Ermak
Pinney equation~1!. Given its properties as discussed abo
one possibility is to specify the time dependence of the sc
field, f5f(t), since the functional form ofQ5Q(t) is
unaltered when deriving the solution~13! from the corre-
sponding solutions to the homogeneous equation~12!.

From the cosmological point of view, however, it is th
time-dependence of the scale factor that is important. In p
ticular, the effective equation of state and the potential of
scalar field can in principle be determined directly from hi
redshift observations if the dependence of the scale facto
redshift is known to a sufficiently high accuracy@30,31#.
This question has recently attracted renewed interest in l
of the proposed Supernova/Acceleration Probe~SNAP!
@31,32#.

Instead of choosing the potential, therefore, an alterna
approach is to invert the problem by first specifying the d
pendence of the scale factor on cosmic time@26,27#. One
could begin by substituting an ansatz for the scale fac
directly into Eq.~19!. The disadvantage of such an approa
however, is that a square root must be taken in order
express the resulting equation as a first-order, nonlinear O
in the scalar field and, in general, the resulting integral c
not be performed analytically. In practice, it is more conv
nient to begin with an ansatz for the scale factor,a1(t), or
equivalently, the rescaled function,b1(t), and employ Eq.
~12! to find Q(t). Integrating this function then yields th
time dependence of the scalar field. The general solutio
the Ermakov-Pinney equation can be deduced immedia
from Eqs.~13! and ~16!. The scale factor for the Ermakov
Pinney equation in parametric form then follows from E
~8!. Its dependence on cosmic time may be evaluated
integrating Eq.~9! and inverting the result. Finally, the scala
field potential is reconstructed directly from the Friedma
3-3
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FIG. 1. Illustrating the pos-
sible routes for finding the scala
field potential in a pure scalar field
system and in a system comprise
of both a scalar field and a perfec
fluid. The cosmological Ermakov-
Pinney equation~10! plays a cen-
tral role. The two potentials can b
found from a given functional
form of the oscillator potential,
Q(t), or from the scale factors
a(t). In principle, it is consistent
to begin at any point on this fig-
ure. From a cosmological perspec
tive, the scale factor is the primar
function of interest, and specify
ing this parameter from the outse
is physically well motivated.
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equation ~2!, rewritten in terms of the new variables~8!
and ~9!:

V~t!5
12

n2k2 S dbP

dt D 2

2
1

2
bP

2 S df

dt D 2

2
D

bP
2

. ~22!

The form ofV(f) then follows by invertingf(t) and sub-
stituting t(f) into Eq. ~22!.

The various possible algorithms are illustrated in Fig.

IV. EXACT COSMOLOGIES SOURCED BY SCALAR
FIELDS AND PERFECT FLUIDS

We now illustrate this procedure with a number of e
amples. The simplest case is that of the scale factor a
exponential function of timea1(t)5e2t/n where the power
has been chosen so thatb1(t)5t and thereforeb2(t)51.
Such a choice produces a static scalar field,df/dt50, cor-
responding to a pure cosmological constant. The solution
a cosmological constant with a perfect fluid is already kno
@33#, but this example illustrates the generality of the tec
nique. Thus, from Eqs.~8! and~13!, the general solution for
the scale factor when a perfect fluid is present is given b

aP5~At212Ct1B!1/n, ~23!

whereAB2C252Dn2k2/12. Since the scalar field remain
independent of time, the potential is also a constantV
512A/(k2n2), from Eq.~22!. Finally, the dependence of th
scale factor on cosmic time is deduced by using Eq.~8! and
integrating Eq.~9!:
02352
an

or
n
-

aP5S 2l

A D 1/n

sinh2/n~AAt!. ~24!

A more general ansatz for the scale factor is given by

a6~ t !5Gtq6, ~25!

whereq6 are constants andG[@2/(21nq6)#q6. Using the
relationship betweena andb given in Eq.~8!, it is possible to
express the two solutions to the homogeneous equation

b65tp6, ~26!

where p65nq6 /(21nq6). Solving the homogeneou
equation~12! then gives the form of the scalar fieldf(t),

f5F lnt, ~27!

where the constantF is related to the powerp6 via the
quadratic equation

p65
16A12nk2F2

2
. ~28!

The Wronskian isW2512nk2F2 and, for consistency
we assume thatnk2F2,1 in what follows. The general so
lution to Eq.~10! is then found by substituting Eq.~26! into
Eq. ~13! and is

aP5~At2p11Bt2p212Ct!1/n. ~29!

The analytical form of the potential deduced from E
~22! is a combination of exponential functions of the sca
3-4
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field. The simplest case arises forA5B50. Equations~11!
and ~14! then imply a relationship between the constants

D5
12C2

n2k2
~12nk2F2! ~30!

and consequently, the scale factor, the scalar field and
potential are given by

aP~ t !5~Ct!2/n

f~ t !5F lnS C

2 D12F lnt

V~f!5
CF2~62n!

n
expS 2

f

F D . ~31!

The solution~31! describes a cosmology where the ener
density of the scalar field tracks that of the perfect fluid in
way that leaves the dependence of the scale factor on co
time unaltered from the pure perfect fluid model@34#. The
self-interaction coupling,F, of the scalar field is constraine
only by the condition that the fluid integration constant,D,
be real.

Equation~31! represents a past or future attractor for t
more general classes of solutions given by Eq.~29!. For ex-
ample, if AÞ0 andB50 the potential~shown in Fig. 2 for
the case of a pressureless fluid! is given by

V5
1

Y F 12

n2k2
Z22

F2Y2

2
e22f/F2DG , ~32!

where

Y[Ae2p1f/F12Cef/F

Z[Ap1e[(2p121)f/F]1C. ~33!

In the early-time limit (t→0), Eq.~32! asymptotes to Eq
~31!. On the other hand, the potential reduces to

FIG. 2. The potential~32! for A51, B50, C5A3, D51, F
51/2, k51 andn53. The potential asymptotes to an exponent
form at high and low energies.
02352
its

y

ic

V`5
A

2 S 24p1
2

n2k2
2F2D expF2

2p2

F
fG ~34!

at late times (t→`), sincep1.1/2. In this limit, the scale
factor asymptotes toa}tp, wherep[2p1 /(np2) and it is
straightforward to verify that this power law behavior is th
late-time attractor for a universe dominated by a single sc
field with an exponential potential,V}exp(A2kf/Ap).
Sincep1.p2 , the power of the expansion in this limit,p,
exceeds that of the pure perfect fluid model (a}t2/n) and it is
greater than unity ifp1.nkF/A8. In this region of param-
eter space, therefore, the solution given by Eqs.~29! and~32!
describes a universe that behaves as a perfect fluid cos
ogy at early times. However, the perfect fluid becomes n
ligible as the expansion proceeds and the universe su
quently enters a phase of power law, inflationary expans
driven by the exponential potential of a scalar field. Forn
53, the fluid is pressureless and current observations i
cate that the universe is undergoing such a transition at
present epoch@4–6#. Thus, it has been demonstrated in t
example outlined here that the algorithm for solving the c
mological field equations~2! and ~3! using the Ermakov-
Pinney equation~10! has generated a new exact solution d
scribing the quintessence scenario. Moreover, expone
potentials often arise in superstring-inspired models thro
nonperturbative effects@35#. The asymptotic form of the gen
eral solution~29! is determined by the numerical values
the constants defined in Eq.~14!. These in turn are deter
mined by the initial conditions in the early universe. In pa
ticular, as we have shown, different late-time behavior ari
if the constantA is nontrivial. Hence, the approach deve
oped in Sec. II provides direct insight into the question
how the conditions for tracking and quintessence at l
times depend on conditions in the early universe.

Another class of solvable models arises when the sc
factor is a trigonometric function oft. The two solutions to
Eq. ~12! are b15singt and b25cosgt, whereg is a con-
stant and the Wronskian isW52g. Given this ansatz for the
scale factor, the scalar field varies linearly witht, such that

f5
2g

Ank
t. ~35!

The solution to Eq.~10! is then given by

aP5@Asin2gt1Bcos2gt1Csin 2gt#1/n. ~36!

In general, the potential is a complicated expression of tri
nometric functions. However, for the particular choiceA
5B50, Eq. ~22! takes the simple form

V52
2Cg2

n2k2
~n16!sin~Ankf! ~37!

and it follows from Eq.~36! that V}aP
n . Consequently, the

potential energy of the scalar field is inversely proportion
to the energy density of the perfect fluid.

l

3-5
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So far in this section it has been demonstrated that on
solution to the pure scalar field system given in Eq.~12! is
known, a solution to the Ermakov-Pinney equation~10! de-
scribing a scalar field and perfect fluid cosmology can
found. Before concluding this section, we employ the cor
spondence summarized in Eqs.~18!–~20! to show the reverse
procedure, i.e., to derive a pure scalar field cosmology fr
a known solution to the Ermakov-Pinney equation~19!. We
invoke the ansatzc(t)5LeLt which in terms of the rescale
time variablet is c5Lt, whereL is a constant. Substitut
ing this ansatz into Eq.~19! and solving Eq.~11! for the
scalar field gives

f57S 4l

nk2D 1/2
1

L2t
, ~38!

where the integration constant is specified to be zero with
loss of generality. Integrating Eq.~20! implies that u5
21/(L2t) and after specifyingU51 ande50 for simplic-
ity, the scale factor of the universe and the potential for s
a pure scalar field model are given by

a5FLt cosS Al

L2t
D G 2/n

~39!

V5
2L2

n2k2
@6~cosw1w sinw!22nw2 cos2w#,

~40!

wherew[Ankf/2. In the small field limit,w!1, the poten-
tial ~40! approximates to an inverted harmonic oscillator a
for sufficiently small values of the scalar field, the univer
undergoes inflation@36#. Potentials of this form generically
produce a spectrum of density perturbations in the postin
tionary universe that increases in amplitude on larger sc
without producing a detectable signal of gravitational wav
@37#. Observations of CMB anisotropies presently favor su
a spectrum@38#.

V. BRANEWORLD SCENARIOS

It is also of interest to consider whether the approa
outlined above can be applied to other cosmological s
narios. Considerable attention has been focused recentl
the possibility that the observable universe may be viewe
a domain wall or brane@39# that is moving along a timelike
geodesic in a five-dimensional, static, bulk spacetime@40–
43#, where the brane equations of motion are determined
the Israel junction conditions@44#. An observer confined to
the domain wall interprets such motion in terms of cosm
expansion or contraction. The junction conditions relate
second fundamental form~extrinsic curvature! of the induced
metric on the brane to the energy-momentum tensor of m
ter confined on the brane. For the case of a spatially
brane moving through a Schwarzschild–anti–de Sitter sp
the effective Friedmann equation on the brane is, after so
simplifying assumptions@41,43,45,46#, given by
02352
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H25
k2

3
rS 11

r

2l D1
mn

an
, ~41!

wherel is the brane tension,mn is related to the mass of th
black hole in the bulk andn54. The standard, linear depen
dence of the Friedmann equation on the energy density,r, is
recovered in the low-energy regime,r!l. Further modifi-
cations to the Friedmann equation~41! may also arise in
more general braneworld settings. For example, a term of
form S65m6a26, wherem6,0, arises if the black hole car
ries an electric charge@43,47#.

For this model, the energy-momentum tensor of matter
the brane is covariantly conserved, and consequently, Eq~3!
must also be satisfied for the case of a single, self-interac
scalar field. Equations~3! and~41! are therefore relevant to
number of braneworld scenarios. By differentiating Eq.~41!
with respect to cosmic time, substituting for the scalar fie
from Eq.~3!, and using the change of variables~8! and~9!, it
can be shown that the dynamics of this system can be wri
in the Ermakov-Pinney form

d2b

dt2
1Q̃b52

n2mn

4b3
, ~42!

where

Q̃[
nk2

4 S 11
r

l D S df

dt D 2

. ~43!

In Eq. ~42!, the effects that lead to the quadratic depende
of the Friedmann equation~41! on the energy density of the
scalar field modify only the oscillator potential~43!, whereas
the nonlinear term on the right-hand side arises through
bulk black hole contribution. Thus, in principle, a simila
approach to that outlined above in Sec. III may be develo
for analytically investigating the importance of these ter
on braneworld cosmologies. For example, if a given solut
is known for the case where there is no black hole in the b
@48#, it may serve as a seed for generating a correspond
cosmology when the black hole is present. This is interes
since it has recently been shown that such terms can sig
cantly alter the qualitative dynamics of braneworld cosmo
gies @49#.

VI. SUMMARY

In this paper it has been demonstrated that after a suit
redefinition of variables, Eqs.~2!,~3! can be related to the
simplest Ermakov system, thus reducing the problem of so
ing these equations to solving a single second-order, lin
ODE. Moreover, the nature of the Ermakov-Pinney equat
implies that there exists a correspondence between a spa
flat FRW universe containing a scalar field and a cosmolo
containing both a scalar field and a perfect fluid. The fun
tional form of the scalar field,f(t), is identical for the two
models, but the potentials,V(f), are different in each case
We have proposed an algorithm for finding exact solutio
for a scalar field and perfect fluid model by employing a pu
3-6
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ERMAKOV-PINNEY EQUATION IN SCALAR FIELD . . . PHYSICAL REVIEW D66, 023523 ~2002!
scalar field cosmology as a seed. The algorithm is foun
on the property that a particular solution to the homogene
equation~12! leads to the general solution of Eq.~1!. It has
also been shown that a model containing both a scalar
and perfect fluid can act as a seed for finding more gen
pure scalar field cosmologies, since a particular solution
Eq. ~1! allows the general solution of Eq.~12! to be deduced
@19#. Exact solutions are important because they allow on
gain insight into the generic nature of cosmologies of t
type and they also provide a framework for classifying t
different behaviors that may arise.

The emphasis of the present work has focused on
effect of introducing a perfect fluid source. However, t
approach we have developed may also be employed to
sider pure scalar field cosmologies in more general sp
times. In particular, the last term on the right-hand side
Eq. ~2! may be interpreted as arising from the spatial cur
ture of the universe ifn52, whereD.0 (D,0) for nega-
tive ~positive! curvature. On the other hand, the shear of
spatially flat, anisotropic Bianchi type I metric leads to
term wheren56.

Finally, it would be of interest to investigate wheth
other classes of scalar field cosmologies can be analyze
terms of an Ermakov system. Scalar-tensor cosmologies
vide one such example, where the scalar field plays the
of the gravitational coupling@50#. Many higher-order and
t,

e,

s

et
d

ys

d

02352
d
s

ld
al
to

to
s

e

n-
e-
f
-

e

in
o-
le

higher-dimensional theories of gravity, including the stri
effective actions, may be expressed in a scalar-tensor f
@51#. Since these theories are conformally equivalent to E
stein gravity that is minimally coupled to a scalar field, it
to be expected that a similar approach can be employe
related, but distinct, class of theories has recently been
veloped to allow for a possible variation in the fine-structu
constant@52#. Observational evidence for such an effect h
been growing@53# and this behavior can again be param
etrized in terms of a scalar field that is coupled to the ma
fields in an appropriate fashion.

In conclusion, therefore, Ermakov systems have appl
tions in many branches of mathematics and physics. In
paper, we have found that the simplest such system is
evant to scalar field cosmological models that are favored
astrophysical observations.
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