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Ermakov-Pinney equation in scalar field cosmologies
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It is shown that the dynamics of cosmologies sourced by a mixture of perfect fluids and self-interacting
scalar fields are described by the nonlinear, Ermakov-Pinney equation. The general solution of this equation
can be expressed in terms of particular solutions to a related, linear differential equation. This characteristic is
employed to derive exact cosmologies in the inflationary and quintessential scenarios. The relevance of the
Ermakov-Pinney equation to the braneworld scenario is discussed.
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I. INTRODUCTION curved spacefl5| and quantum cosmologyl6]. (For fur-
ther references, see, e.g., Réfs7].)

Observations of the cosmic microwave background In the one-dimensional case, the two equations decouple
(CMB) power spectrunil] now provide strong support for and the system reduces to a single equation known as the
the inflationary scenari2] (for recent reviews, see, e.g., Ermakov-Pinney equatiof®,18]. This is given by
[3]). The simplest mechanism for inflation utilizes the poten-
tial energy associated with the self-interaction of a scalar
inflaton field to drive the accelerated expansion. High red-
shift observations of type la supernovae suggest that the uni-
verse is experiencing another phase of accelerated expansi@mere Q is an arbitrary function ofr and \ is a constant.
at the present epod#]. This, combined with the CMB data, Although Eq.(1) is a nonlinear ODE, it exhibits a remark-
presents a picture of the universe dominated by a dark energible superposition properft0,20 that implies that its gen-
component5,6]. One possible source of this dark energy is aeral solution can be expressed directly in terms of particular
scalar quintessence field that interacts with baryonic andolutions to the relatetinear, second-order ODE, whene
nonbaryonic matter in such a way that its potential energy is=0 [18].
currently dominating the cosmic dynaml[(ﬁ The observa- The paper is Organized as follows. We discuss the
tions favor a model of structure formation where 70% of theErmakov-Pinney equation ina Cosmo|ogica| setting in Sec. Il
energy density of the universe is presently in the form ofand proceed in Sec. Ill to develop algorithms for solving the
quintessencg6]. The remaining fraction of the energy den- field equations. A number of models are considered in Sec.
Sity is Comprised of visible and cold dark matter which col- V. Section V considers the role of the Ermakov_Pinney
lectively act as a pressureless perfect fluid. equation within the context of the recently developed brane-

The ekpyrotic scenario has recently been proposed as aforld scenario and we conclude with a discussion in Sec. VI.
alternative to the standard inflationary cosmol¢gy In this

scenario the big bang is inter_preted as the (':ollisi.on of _two Il. THE ERMAKOV-PINNEY EQUATION IN

domain walls or branes traveling through a fifth dimension. COSMOLOGY

Before the collision, the effective dynamics on the four di-

mensional branes is described by Einstein’s gravity mini- We begin by deriving the Ermakov-Pinney equation in a
mally coupled to a self-interacting scalar field. The field pa-cosmological context. The field equations for a spatially flat,
rametrizes the separation between the branes and at eafyiedmann-Robertson-WalkéFRW) universe with a scalar
times slowly rolls down anegativepotential. This results in  field and perfect fluid matter source are given by

an accelerated collapse of the universe and since the field is

d?b A
§+Q(T)b=g, 1

minimally coupled, its energy density is related to the K2[1. D

Hubble parameter by the standard Friedmann equation. Thus, H?= 3 §¢2+V(¢>)+ - 2
self-interacting scalar fields play a central role in modern a

cosmology and in view of the above developments, it is im-

portant to investigate cosmologies that contain both a scalar b+3Ho+ d_V_O’ 3)

field and a perfect fluid. dé

In this paper, we develop an analytical approach to mod- )
els of this type by expressing the cosmological field equawhere p ,= $?12+ V() is the energy density of the scalar
tions in terms of an Ermakov systef@—11]. In general, an field with potentialV(¢), pma=Da " is the energy density
Ermakov system is a pair of coupled, second-order, nonlinear
ordinary differential equation®©DES9 [11] and such systems
often arise in studies of nonlinear opt{d<], nonlinear elas-  Equation(1) is sometimes referred to as the Milne-Pinney equa-
ticity [13], molecular structuresl4], quantum field theory in  tion [19].
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of the barotropic perfect fluid with equation of stabe,,
=[(n—3)/3]pmat,» & dot denotes differentiation with respect
to cosmic timet, H=a/a represents the Hubble parameter,
ais the scale factor of the umversIB is an arbitrary, positive
constant, Bn<6, x’=87my? andm; is the Planck mass.

Equation(3) represents the conservation of the energy mo-
mentum of the scalar field and can be expressed in the form

—3H¢2.
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d’b n«?(d¢ Zb_ Dn?%«k? 1 10
a2 A a0
and comparison with Eq1) then implies that
2 d¢ 2 Dn2K2
=—| = = (12)
4 \dr 12

One method of reducing this second-order, nonlinear pair The change of variable®) and(9) is interesting because

of ODEs(2),(3) is to write them as a first-order system. This

Pinney[18] has shown that two linearly independent solu-

can be done if the scalar field varies monotonically withtions, (b;(7),b,(7)), of the time-dependent oscillator equa-

cosmic time. It then follows that E¢3) can be expressed as
[21]

g -3 (4
and the Friedmann equati@8) then takes the form
dy dp ) )
@HJF(HK )xpgs=—NnkD, 5

where y=a". The perfect fluid source leads to a nontrivial
right-hand side in Eq(5). The general solution to E¢b) can

be expressed in terms of quadratures if the functional form of

p () is known:

a(p)= exp[—xfw%(cm(—g) ]

dpy|
dé

dp¢ -1
de

- nKZDJ d¢(

1/in
] ()

wherell is a constant of integration. The effects of the fluid
source are contained in the second term.

X ex;{nxzj'(ﬁdéo%(@)

The disadvantage of this change of variables is that it is

not valid if the scalar field exhibits oscillatory behavior at

tion

d%b

— tQ(7)b=0 (12)

dr

can be combined to give the general solution to the
Ermakov-Pinney equatiofl):
bp=[Abf+Bb3+2Ch;b,]*?, (13

where{A,B,C} are constants satisfying the constraint equa-
tion

5 N
AB—C _V? (14
and the Wronskian
db, db,
W= bld —bzd (15

is a constant due to Abel's theorem. It can be verified by
direct differentiation that Eq(13) does indeed satisfy Eq.
(1). An important property of Eq(12) is that if a particular
solution,b,(7), is known, a second solution can be written in
terms of a quadrature:

 dr
by(7)=Wby(7) J —bzi (16)
1(7)

any time. We therefore consider a different approach by dif-

ferentiating Eq(2) and substituting Eq.3). This implies that

KT, nD -
a 2 - 2 ¢ Sa“ ( )
We now define an effective scale factbr,
a=h?" (8)
and a new time parameter,
d =b d 9
ai-Cqs )

and sinceb is positive-definite,r is a monotonic increasing
function of cosmic timet. Equation(7) then transforms into
the second-order, nonlinear Ermakov-Pinney equation

Thus, the general solution to the Ermakov-Pinney equation
(10) is found in terms of a particular solution to Ed.2).

The perfect fluid componeni)(# 0) results in the nonlin-
ear sector on the right-hand side of E#0) and the effects
of the scalar field are parametrized entirely in terms of the
function, Q, defined in Eq(11). We refer to this function as
the “oscillator potential.” It is worth noting that Eq10) is
independent of the specific functional form of the scalar field
interaction potentialV/(¢).

For the pure scalar field moddDE0), Eq.(12) may also
be interpreted as a classical analogue of the zero-energy
Schralinger equation, where the scale factby,plays the
role of the “wave function” and the “wave vector,Q(7), is
determined by the kinetic energy of the scalar field. An equa-
tion of this form has arisen previously in studies of FRW
cosmologies containing only a perfect fluid source with
a constant equation of state= pmya/pmat [22] and for the
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special case of a self-interacting scalar field that satisfies thisource results in an effective constant shift in the total energy
condition [23]. This analogy may be extended further by of the system, as in Eq17), or equivalently introduces a
considering an alternative reparametrization, where a newonlinear term as is the case in E40). In particular, the
scale factor and time variable are defineddsya "2 and  problem of solving Eq(10) for a coupled perfect fluid and
o= [dtc, respectively. It follows that E¢(7) may then be scalar field cosmology has been reduced to solving(E).

expressed as a one-dimensional Sdhwger equation: for a given functional form ofQ(7). This is interesting be-
cause this latter equation has been studied extensively in the
d%c literature. For example, algorithms that extend the Wentzel,
EJF[E_ P(o)]c=0, 17 Kramers and BrilluedfWKB) technique have recently been

developed to find power series solutions to B@) [24]. For

where E= — (n?«?D)/12 represents the total energy of the related work, see also Rg25]
system, and is determined by the momentum of the

perfect fluid, and the potential energy is given m/ 11l. ALGORITHMS FOR SOLVING THE FIELD
= (nk?/4)(d¢/da)? in terms of the scalar field. EQUATIONS
There is a close relationship between the Sdimger
equation(17) and the Ermakov-Pinney equatidh), as dis- We now proceed to outline an algorithm for deriving ex-

cussed by Milnd19], who developed a method for solving act cosmological models when both a scalar field and perfect
the former equation in full generality in terms of a particular fluid are dynamically significant. Attention to date has pri-
solution of the latter, in such a way that the oscillatory be-marily focused on pure scalar field model21,26-28.
havior of the wavefunction is manifest. In this approach, theSome specific models with a perfect fluid were also recently

general solution to Eq12) is expressed in the form analyzed 29]. From a particle physics perspective the poten-
tial of the scalar field is the fundamental quantity that defines
bHZUw(T)COS(\/XG(T)—I—e), (18)  the model. In general, however, Eq®) and (3) are very

difficult, if not impossible, to solve unless the potential has a
where {U, e} are arbitrary constants ands(r),0(7)} are  specific form, as in the exponential c426]. There are sev-
functions that need to be determined. Substituting this ansaeral possible routes to take when solving the Ermakov-
into the homogeneous equati¢h?) reveals that Eq(18) Pinney equatioril). Given its properties as discussed above,
represents the general solution if these functions satisfy thene possibility is to specify the time dependence of the scalar

coupled system of ODE’s: field, ¢=@(7), since the functional form oR=Q(7) is
unaltered when deriving the solutidd3) from the corre-
d2y \ sponding solutions to the homogeneous equati@.
@“LQ(T) - ﬁ (19 From the cosmological point of view, however, it is the

time-dependence of the scale factor that is important. In par-
ticular, the effective equation of state and the potential of the
v (20) scalar field can in principle be determined directly from high
dr y? redshift observations if the dependence of the scale factor on
redshift is known to a sufficiently high accura¢$0,31.
and it follows, therefore, that the general solution to theThis question has recently attracted renewed interest in light
Schralinger equatior(12) can be deduced, at least with re- of the proposed Supernova/Acceleration Prof&NAP)
spect to the quadraturé=f"d7y2(7), if a solution to the  [31.32. . _ _
Ermakov-Pinney equatiol9) is known. Instead of choosing the potential, therefore, an alternative
Furthermore, two linearly independent parametric solu-2PProach is to invert the problem by first specifying the de-
tions to Eq. (12 are given byb1=l,[/COS(\/X0) and b, pendence_of the scalg fgctor on cosmic tif2é,27. One
= yrsin(yX 6), where the Wronskian 2=\, 6(7) satisfies could begin by substituting an ansatz for the scale factor

Eq. (20) and () is a particular solution to Eq19). Sub- ﬁirectly intp Eﬂ'(lg)' The disadvantage %f SUCE an 'apprgach,
stituting these two solutions into E(L3) gives owever, is that a square root must be taken in order to

express the resulting equation as a first-order, nonlinear ODE

bp=¢[Acosz(\/X0)+Bsin2(\/X0) in the scalar field and, ir_1 general, the_ reSl_JIt.ing integral can
not be performed analytically. In practice, it is more conve-
+(AB-1)"2sin(2 N 6)]1¥2 (21)  nient to begin with an ansatz for the scale facti(t), or

equivalently, the rescaled functiob,(t), and employ Eq.

where we have employed Eql4). This implies that the (12) to find Q(r). Integrating this function then yields the
general solution to the Ermakov-Pinney equati@hcan be time dependence of the scalar field. The general solution to
determined in terms of a particular solutio#(7), to this  the Ermakov-Pinney equation can be deduced immediately
equation[20]. from Eqgs.(13) and (16). The scale factor for the Ermakov-

To summarize thus far, the dynamics of a pure scalar fieldPinney equation in parametric form then follows from Eg.
cosmology is determined by a one-dimensional oscillator8). Its dependence on cosmic time may be evaluated by
equation with a time-dependent frequency. Depending on thtegrating Eq(9) and inverting the result. Finally, the scalar
parametrization chosen, the inclusion of a perfect fluidfield potential is reconstructed directly from the Friedmann
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Function for scalar field
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FIG. 1. lllustrating the pos-
sible routes for finding the scalar
field potential in a pure scalar field
system and in a system comprised
of both a scalar field and a perfect
fluid. The cosmological Ermakov-
Pinney equatior{10) plays a cen-
tral role. The two potentials can be
found from a given functional
form of the oscillator potential,
Q(7), or from the scale factors,
a(t). In principle, it is consistent
to begin at any point on this fig-
ure. From a cosmological perspec-
tive, the scale factor is the primary
function of interest, and specify-
ing this parameter from the outset
is physically well motivated.

Pinney Equation

b+ Q(Tb=¢/ b3

Homogeneous Equation
b’ +Q(T)b =0

Solution to Homogeneous
Equation

b,®)

Solution to Pinney Equation

byc)

b, (0)

Scale Factor a P(t)

Scale Factor  a (t)

Potential V, (¢) Potential Vp ()

equation (2), rewritten in terms of the new variabld8) —\\ )
and (9): ap= T) sin?"(At). (24
12 [(dbp\? 1 ,[dé 2D A more general ansatz for the scale factor is given by
V()= — | —5bpl =] — - (22)
neldr ) 2dr) by a.(h)=Gt, 29

The form ofV(¢) then follows by invertings(7) and sub- whereq. are constants an@=[2/(2+nq-)]%. Using the
stituting 7(¢) into Eq. (22). relationship betweea andb given in Eq.(8), it is possible to
The various possible algorithms are illustrated in Fig. 1. express the two solutions to the homogeneous equation as

IV. EXACT COSMOLOGIES SOURCED BY SCALAR (26)

FIELDS AND PERFECT FLUIDS where p.=nqg./(2+nqg.). Solving the homogeneous

We now illustrate this procedure with a number of ex-equation(12) then gives the form of the scalar fielt(7),
amples. The simplest case is that of the scale factor as an CF 5
exponential function of time,(t)=e?/" where the power ¢=Fln7, (27)
has been chosen so thaf(7) =7 and thereforédy(n)=1.  \ hore the constank is related to the powep. via the
Such a choice produces a static scalar fidid/d =0, cor- uadratic e :

. . . quation
responding to a pure cosmological constant. The solution fo(rl
a cosmological constant with a perfect fluid is already known
[33], but this example illustrates the generality of the tech-
nique. Thus, from Eq¥8) and(13), the general solution for
the scale factor when a perfect fluid is present is given by

_1i V1—nk?F?

5 (28)

P

The Wronskian isW?=1—n«?F? and, for consistency,
we assume thatx’F?<1 in what follows. The general so-

ap=(A7+2Cr+B)*" (23
whereAB— C?= —Dn?«?/12. Since the scalar field remains
independent of time, the potential is also a constant,
=12A/(«k?n?), from Eq.(22). Finally, the dependence of the
scale factor on cosmic time is deduced by using Bgand
integrating Eq.(9):

lution to Eq.(10) is then found by substituting E§26) into
Eq. (13) and is
ap=(AT?P++B7r?-+2Cr)™" (29)

The analytical form of the potential deduced from Eq.
(22) is a combination of exponential functions of the scalar
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24p? 2p_
> - _FZ) exl{—?(f)} (34)

Nk

0.6

" Potential —— A

sz

at late times {—), sincep, >1/2. In this limit, the scale
factor asymptotes tatP, wherep=2p./(np_) and it is
straightforward to verify that this power law behavior is the
late-time attractor for a universe dominated by a single scalar
field with an exponential potentialVocexp(2x¢/\/p).
Sincep,.>p_, the power of the expansion in this limj,
exceeds that of the pure perfect fluid modet¢>") and it is
greater than unity ip, >n«F/+/8. In this region of param-
eter space, therefore, the solution given by E&8) and(32)
describes a universe that behaves as a perfect fluid cosmol-
ogy at early times. However, the perfect fluid becomes neg-
ligible as the expansion proceeds and the universe subse-
FIG. 2. The potential32) for A=1, B=0, C=43, D=1, F  quently enters a phase of power law, inflationary expansion
=1/2, k=1 andn=3. The potential asymptotes to an exponential driven by the exponential potential of a scalar field. For
form at high and low energies. =3, the fluid is pressureless and current observations indi-
] ) ] . cate that the universe is undergoing such a transition at the
field. The simplest case arises far=B=0. Equations(11)  present epoch4—6]. Thus, it has been demonstrated in the
and(14) then imply a relationship between the constants: example outlined here that the algorithm for solving the cos-
mological field equation$2) and (3) using the Ermakov-
Pinney equatioril0) has generated a new exact solution de-
scribing the quintessence scenario. Moreover, exponential
potentials often arise in superstring-inspired models through
and consequently, the scale factor, the scalar field and itsonperturbative effec{85]. The asymptotic form of the gen-

V(phi)

2

D=— 2(1—nK2F2) (30
Nk

potential are given by eral solution(29) is determined by the numerical values of
) the constants defined in EQL4). These in turn are deter-
ap(t)=(Ct)=" mined by the initial conditions in the early universe. In par-

ticular, as we have shown, different late-time behavior arises
if the constantA is nontrivial. Hence, the approach devel-
oped in Sec. Il provides direct insight into the question of
how the conditions for tracking and quintessence at late
CF?(6—n) 1) times depend on conditions in the early universe.
TEXF< - E)- (3D Another class of solvable models arises when the scale
factor is a trigonometric function of. The two solutions to

The solution(31) describes a cosmology where the energyEq. (12) are b;=sinyr and b,=cosyr, wherey is a con-
density of the scalar field tracks that of the perfect fluid in astant and the Wronskian W= — y. Given this ansatz for the
way that leaves the dependence of the scale factor on cosnmicale factor, the scalar field varies linearly withsuch that
time unaltered from the pure perfect fluid mod@aH]. The

C
d(t)=FIn E) + 2FInt

V(¢)=

self-interaction couplingf, of the scalar field is constrained 2y
only by the condition that the fluid integration constabt, p= Nk (395
be real.

Equation(31) represents a past or future attractor for the
more general classes of solutions given by &§). For ex-
ample, ifA#0 andB=0 the potentialshown in Fig. 2 for
the case of a pressureless fluisl given by

The solution to Eq(10) is then given by
ap=[Asirtyr+ Bcogyr+ Csin 2y7]*". (36)

12 F2y2 In general, the potential is a complicated expression of trigo-

V= 1 72— e 2¢F_p|, (320  nhometric functions. However, for the particular choiée
Y| n?k? 2 =B=0, Eq.(22) takes the simple form
where _2c 52 R
Y=Ae?+#F 1 2CelF Ve e (Nresinined) 37
Z=Ap, el@p+ =Dl C, (33 and it follows from Eq.(36) that Vocalh. Consequently, the
In the early-time limit ¢—0), Eq.(32) asymptotes to Eq. potential energy of the scalar field is inversely proportional
(31). On the other hand, the potential reduces to to the energy density of the perfect fluid.
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So far in this section it has been demonstrated that once a 2 P “
solution to the pure scalar field system given in ER) is szgp( 1+ N + —: (47
a

known, a solution to the Ermakov-Pinney equat{d@0) de-
scribing a scalar field and perfect fluid cosmology can be , , .
found. Before concluding this section, we employ the correWhere\ is the brane tension,, is related to the mass of the
spondence summarized in E¢$8)—(20) to show the reverse black hole in thg bulk and=4. .The standard, linear depen-
procedure, i.e., to derive a pure scalar field cosmology fronfleénce of the Friedmann equation on the energy densitg,

a known solution to the Ermakov-Pinney equatid®). We  recovered in the low-energy regimgs<A. Further modifi-
invoke the ansat#(t) = AeM which in terms of the rescaled cations to the Friedmann equati¢dl) may also arise in
time variabler is = A 7, whereA is a constant. Substitut- More general braneworld settings. For example, a term of the
ing this ansatz into Eq(19) and solving Eq.(11) for the ~ form S6=ued °, whereus<O0, arises if the black hole car-

scalar field gives ries an electric charget3,47.
For this model, the energy-momentum tensor of matter on
112 the brane is covariantly conserved, and consequently3xqg.
4\ 1 - ; . )
=3 —] —, (38)  Mustalso be satisfied for the case of a single, self-interacting
nk?| A%r scalar field. Equation&3) and(41) are therefore relevant to a

number of braneworld scenarios. By differentiating &)
where the integration constant is specified to be zero withoutith respect to cosmic time, substituting for the scalar field
loss of generality. Integrating Eq20) implies that 9=  from Eq.(3), and using the change of variabl@ and(9), it
—1/(A?7) and after specifying) =1 ande=0 for simplic-  can be shown that the dynamics of this system can be written
ity, the scale factor of the universe and the potential for suctn the Ermakov-Pinney form
a pure scalar field model are given by

i +Ob= "t 42)
W dr? 4b3 "
a=|Arco§ — (39
A?r
where
2 K2 p\[de)?
_ 22 — Pl =2
V= n2K2[6(COS(p+(pSIn(p) ne?coe], (40) Q= 1+)\)(d7’> . (43)

In Eq. (42), the effects that lead to the quadratic dependence
whereg=\nk$/2. In the small field limite<1, the poten-  of the Friedmann equatiof1) on the energy density of the
tial (40) approximates to an inverted harmonic oscillator andscalar field modify only the oscillator potenti@3), whereas
for sufficiently small values of the scalar field, the universethe nonlinear term on the right-hand side arises through the
undergoes inflatioi36]. Potentials of this form generically pulk black hole contribution. Thus, in principle, a similar
produce a spectrum of density perturbations in the postinflagpproach to that outlined above in Sec. Il may be developed
tionary universe that increases in amplitude on larger scale®r analytically investigating the importance of these terms
without producing a detectable signal of gravitational wavesn braneworld cosmologies. For example, if a given solution
[37]. Observations of CMB anisotropies presently favor suchis known for the case where there is no black hole in the bulk

a spectruni38]. [48], it may serve as a seed for generating a corresponding
cosmology when the black hole is present. This is interesting
V. BRANEWORLD SCENARIOS since it has recently been shown that such terms can signifi-

cantly alter the qualitative dynamics of braneworld cosmolo-

It is also of interest to consider whether the approactyies[49].
outlined above can be applied to other cosmological sce-
narios. Considerable attention has been focused recently on
the possibility that the observable universe may be viewed as
a domain wall or bran€39] that is moving along a timelike In this paper it has been demonstrated that after a suitable
geodesic in a five-dimensional, static, bulk spacetjd@-  redefinition of variables, Eq¥2),(3) can be related to the
43], where the brane equations of motion are determined bgimplest Ermakov system, thus reducing the problem of solv-
the Israel junction conditiong44]. An observer confined to ing these equations to solving a single second-order, linear
the domain wall interprets such motion in terms of cosmicODE. Moreover, the nature of the Ermakov-Pinney equation
expansion or contraction. The junction conditions relate themplies that there exists a correspondence between a spatially
second fundamental forfextrinsic curvaturgof the induced flat FRW universe containing a scalar field and a cosmology
metric on the brane to the energy-momentum tensor of magontaining both a scalar field and a perfect fluid. The func-
ter confined on the brane. For the case of a spatially flational form of the scalar field$(7), is identical for the two
brane moving through a Schwarzschild—anti—de Sitter spacenodels, but the potential¥/(¢), are different in each case.
the effective Friedmann equation on the brane is, after som@/e have proposed an algorithm for finding exact solutions
simplifying assumption$41,43,45,4% given by for a scalar field and perfect fluid model by employing a pure

VI. SUMMARY

023523-6



ERMAKOV-PINNEY EQUATION IN SCALAR FIELD . .. PHYSICAL REVIEW D66, 023523 (2002

scalar field cosmology as a seed. The algorithm is foundetligher-dimensional theories of gravity, including the string
on the property that a particular solution to the homogeneousffective actions, may be expressed in a scalar-tensor form
equation(12) leads to the general solution of Ed). It has  [51]. Since these theories are conformally equivalent to Ein-
also been shown that a model containing both a scalar fieldtein gravity that is minimally coupled to a scalar field, it is
and perfect fluid can act as a seed for finding more generdab be expected that a similar approach can be employed. A
pure scalar field cosmologies, since a particular solution teelated, but distinct, class of theories has recently been de-
Eq. (1) allows the general solution of E¢L2) to be deduced veloped to allow for a possible variation in the fine-structure
[19]. Exact solutions are important because they allow one ta@onstan{52]. Observational evidence for such an effect has
gain insight into the generic nature of cosmologies of thisbeen growing[53] and this behavior can again be param-
type and they also provide a framework for classifying theetrized in terms of a scalar field that is coupled to the matter
different behaviors that may arise. fields in an appropriate fashion.

The emphasis of the present work has focused on the In conclusion, therefore, Ermakov systems have applica-
effect of introducing a perfect fluid source. However, thetions in many branches of mathematics and physics. In this
approach we have developed may also be employed to copaper, we have found that the simplest such system is rel-
sider pure scalar field cosmologies in more general spacevant to scalar field cosmological models that are favored by
times. In particular, the last term on the right-hand side ofastrophysical observations.

Eqg. (2) may be interpreted as arising from the spatial curva-
ture of the universe ih=2, whereD>0 (D<0) for nega-
tive (positive) curvature. On the other hand, the shear of the
spatially flat, anisotropic Bianchi type | metric leads to a R.M.H. is supported by the Particle Physics and As-
term wheren=6. tronomy Research CoundiPPARQ and J.E.L. is supported

Finally, it would be of interest to investigate whether by the Royal Society. We thank A. Garcia, B. Mielnik, H.
other classes of scalar field cosmologies can be analyzed Rosu and C. Terrero for helpful discussions. J.E.L. thanks the
terms of an Ermakov system. Scalar-tensor cosmologies pr@roup at the Centro de Investigacion y de Estudios Avanza-
vide one such example, where the scalar field plays the roldos del IPN, Mexico, for hospitality under CONACyT grant
of the gravitational coupling50]. Many higher-order and 38495-E.
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