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Holographic discreteness of inflationary perturbations
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The holographic entropy bound is used to estimate the quantum-gravitational discreteness of inflationary
perturbations. In the context of scalar inflaton perturbations produced during standard slow-roll inflation, but
assuming that horizon-scale perturbations “freeze out” in discrete steps separated by one bit of total observable
entropy, it is shown that the Hilbert space of a typical horizon-scale inflaton perturbation is equivalent to that
of about 18 binary spins—approximately the inverse of the final scalar metric perturbation amplitude, inde-
pendent of other parameters. Holography thus suggests that in a broad class of fundamental theories, inflation-
ary perturbations carry a limited amount of informati@atout 16 bits per modgand should therefore display
discreteness not predicted by the standard field theory. Some manifestations of this discreteness may be
observable in cosmic background anisotropy.
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[. INTRODUCTION the parameters of the inflaton potential. In this approxima-
tion, there is no telltale signature of quantum discreteness in
The origin of cosmological perturbations now appears tadhe observable classical remnant—the anisotropy of the
be well understood from the quantum theory of fields inbackground radiation. Although sky maps contain images of
curved spacetim@l—7]. They originate during inflation as “single quanta,” their spectrum is continuous and the
zero point fluctuations of the quantum modes of variousamount of information is in principle infinite.
fields—the inflaton giving rise to scalar perturbations, the |t has always been acknowledged that this description is
graviton to tensor perturbations. The field quanta in the origiincomplete, and will be modified by including a proper ac-
nal fluctuations convert to classical perturbations as theyount of spacetime quantization. Although the fundamental
pass through the de Sitter—like event horizon; they are thefheory of such quantization is not known, a “h0|ographic
parametrically amplified by an exponential factor during theentropy bound” already constrains with remarkable precision
many subsequerg-foldings of inflation, creating an enor- the total number of fundamental quantum degrees of free-
mous number of coherent quanta in phase with the origingjom. The complete Hilbert space of a bounded volume is
quantum seed perturbation. From the classical point of viewinjte and discrete rather than infinite and continuous, limit-
the quantum fluctuations create perturbations in the classicqafl,g the range of accessible configurations in any region to a
gravitational gauge-invariant potentia}, [8], leading to ob-  definite, calculable number. In particular this limit applies to
servable background anisotropy and large scale structufi@fiaton quanta collapsing into classical metric perturbations.
[9-16]. All stages of this process are under good calculaThis paper uses the holographic entropy bound to estimate
tional control, even the conversion of quantum to classicajyhere field theory breaks down in the inflationary analysis,
regimes[17-22. The phase and amplitude of the large-scalethe effective dimension of the Hilbert space for the observ-
classical perturbation modes observed today are a direct rghle perturbations when they freeze out, the maximum
sult of the quantum field activity during inflation; indeed, the amount of information contained in the perturbations, and
pattern of microwave anisotropy on the largest scales correhe level at which quantum-gravitational discreteness ap-
sponds to a faithfully amplified image of microscopic field pears in cosmic background anisotropy. The main result is
configurations as they froze out during inflation. Roughlythat in fundamental theories where the holographic entropy
speaking, each hot or cold patch on the sky derives originallyound arises from discrete fundamental eigenstates, the
from about one quantum. amount of information in the anisotropy is remarkably lim-
The standard calculation of these proce$2@s24 uses a jted: it can be described with only about®1bits per sky-
semiclassical approximation: spacetime is assumed to Bgarmonic mode, implying that the perturbations should be
classical(not quantizefl and the perturbed fieldshe infla- pixelated in some way. In principle, this effect may be ob-

ton and graviton are described using relativistic quantum servable, and provide concrete data on the discrete elements
field theory, essentla"YIn the limit of free massless f|e|ﬁs or eigenstates of quantum gra\/ity_

an infinite collection of quantized harmonic oscillators. The
Hilbert space of this system is infinite, so although the fields
are quantized, they are continuously variable functions that
can assume any values. The creation of the particles can be
viewed as an effect of the nonadiabatic expansion, and the
“collapse of the wave function”(in this case, “freezing Quantitative insights into the Hilbert space of inflationary
out”) can be described as a unitary quantum process of stagpacetimes come from the thermodynamics of black holes
squeezing. The theory generically predicts random-phasg5-32 and de Sitter spacetimg¢83]. The black hole en-
Gaussian noise with a continuous spectrum determined biyopy derived from thermodynamic reasoning appears to be

Il. HOLOGRAPHIC BOUND ON INFORMATION
CONTENT
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complete, in the sense that it includes all possible degrees of A 4
freedom of mass energy that make up the hole. If we insist

that black holes are quantum mechanical objects that obey ©
unitary evolution, they must somehow encode all the infor-

mation counted in this entropy, then radiate it to spatial in-
finity as Hawking quanta as they evaporg8d—37. Such
considerations led 't Hooft and Susskind to propf&&39 a
“holographic principle”[40] for physical systems: the total
entropy S within any surface is bounded by one-quarter of
the areaA of the surface in Planck unitgUnless otherwise
indicated, throughout this paper we adéptc=G=1, with
Planck massnp anc= (AC/G)Y?=1.22x 10*° GeV.] This is

an “absolute” entropy; the dimensioN of the Hilbert space

is given byeS, and the total number of distinguishable quan-
tum states available to the system is given by a binary num-
ber withn=S/In2=A/41n 2 digits[41].

Bousso[42] has collected and reviewed these arguments, giG. 1. Embedding diagram of an observable region of de Sitter
and proposed a more rigorous formulation called the “covaspacetime, with one spatial dimension supressed, in proper physical
riant entropy bound”: the area of a surface gives a bound omnits. The cylinder represents the world sheet swept out by the
total entropy, not of the enclosed spacelike 3-volume but ofvent horizon(a 2-spherk of an inertial observer at the center.
the 3-volume defined by certain light sheets propagated frorhforizontal sheets correspond to the slices of constant time in Eq.
the surface. This bound is apparently universal in nature; &); curved sheets represent schematically the behavior of the
least, no counterexamples to it have been found. Althouglonstant-time surfaces in E).
th n ms to hold in all physical situations we can
imitgbiﬁg, ?h:fee d(?esono? 2eemat0pb()e/sa$16)l/ vSvaL)I/atoodSerivz Sv?]graphic bound 51,52 that the "observable entropy”of

this should be so, given only the physics we have. The fac ny universe cannot egce@inax 377/.A' where A IS the .
. .cosmological constant in Planck units. In a de Sitter uni-
that it always works presumably reflects a deep structure i ; .
antum aravit verse, as in a black hole, this corresponds to one-quarter of
quantum gravity. o . the area of the event horizon in Planck units, but the bound is
Although a true derivation of the covariant entropy bound

. . - onjectured to hold for any spacetime, even Friedmann-
is not yet known, its seems to originate from a fundamenta obertson-WalkeXFRW) universes with matter as well as

theory that incorporate; discretg elemen.ts or eigenstatgs: R& In the de Sitter case, which we will adopt as a local model
cent examples of theories that display this property explicitlyso, the inflationary spacetimeS,,.= m/H2, whereH is the
include loop quantum gravity43] (where discrete eigen- expansion rate.
states appear at a very early stage and appear to be a funda-The bound includes all degrees of freedom of all matter
mental featureand M theory, where it is demonstrated in fields as well as all quantum degrees of freedom of the
particular situations where discrete degrees of freedom cagpacetime itself. It implies, for example, that a number with
be explicitly traced via holograpHyor example, in the case /H?In 2 bits is sufficient to specify everything that is going
of AdS5 CFT duality to discrete symmetries of projective, on in a causal diamond of an inflationary universe. We con-
dual field theories. These types of fundamental structuresider the constraints imposed by the entropy bound on a
would also impose a logarithmically finite constraint on theparticular experiment conducted by nature during inflation:
number of possible solutions of fields during inflation—thatthe formation of classical perturbations from quantum
is, jumps between possible configurations correspond tfuctuations—or equivalently, nonadiabatic particle produc-
changes ‘“in the exponent” of the number of states, in thetion and phase wrapping of a highly squeezed field state.
same way that adding just one more discrete elerfegt, a
spin-1/2 particlg to a system of binary spins discontinu- [I. INFORMATION CONSTRAINTS ON FIELD
ously grows the Hilbert space from dimensioht® 2"*1. MODES DURING INFLATION

This property is 'the most important assumption made in \yo adopt as an idealized model of the inflationary period
the quant|ta_t|v_e estlmates of obse_zrvable dlscrete_ness of back- portion of de Sitter spacetinf®1,53. Figures 1 and 2
ground radiation anisotropy derived below. It is probablyjjystrate different views of de Sitter spacetime, each show-

general enough to apply across a broad class of theoriegyg two different ways of laying down time and space coor-
including those now receiving the most theoretical attention.

Indeed, the main point is that anisotropy data may provide———

our first direct view of the underlying, basic elements or The gbservable entropy corresponds to the information contained
eigenstates of the fundamental theory. in a “causal diamond,” a spacetime volume bounded by two inter-

The holographic conjecture has been analyzed in a varietyecting light cones, one open in the future direction of the beginning
of relativistic cosmologies, including de Sitter and anti—deof an experiment and one in the past direction of the end of the
Sitter spacg¢44—50. The cosmological version of the holo- experiment.
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FIG. 2. Penrose diagram of the portions of de Sitter space de-
scribed by the metrics, E¢l) and Eq.(2), showing the same spatial " e
slicings as Fig. 1. The shaded region corresponds to the observable
region shown in Fig. 1the whole region described by E@®)].

dinates. Usually, the field theory analysis of inflationary per- FIG. 3. Penrose diagram of an inflationary cosmology, showing
turbations is done with the FRW-like slicing of de Sitter the route of information flow from inflation to observable anisot-
spacetime, since these space slices map directly onto thepy. As usual, points represents spheres, the left-hand edge repre-
usual spacelike hypersurfaces of the postinflationary FRVéents the world line of an observer at the origin, and the extremities
metric. The metric in this slicing, which covers half of the represent boundaries at infinity. The lower half represents a

full de Sitter solution, appears to have flat spatial slices: quasi—de SitteQdS space, the upper half represents a Friedmann-
Robertson-Walke(FRW) space. The join between them is the ep-
ds?=—d72+exd 2H r]dx'dx; . (1)  och of reheatingRH), and shaded regions of each show the regions
within the “apparent horizon” of an observer at the origapparent
The comoving modes have fixed lengths in the Euclidearfent horizon for QdS, apparent particle horizon for FRIbled
spacelike hypersurfaces include the recombination ed&H#C)

sz?l:[;]ael ;%%rggstgfééram for a whole inflationary spacetimeand Big Bang Nucleosynthesi8BN). Spacelike hypersurfaces in
. : . . g ._the QdS ph h for two diff t slici iat
including the FRW part at late times, is shown in Fig. 3. This € QS phase are shown for two different slicings, one appropriate

di h h by which inf ion fi db for matching onto FRW and the other for holographic analysis. The
lagram shows the route by which information flows an Yintersection of our past light cone with the recombination surface is

which observable patterns are imprinted on the backgroung,e yo-sphere of the “last scattering surfac&’s) of the cosmic
radiation by quantum perturbations. For completeness, Fig. §ackground radiation. The timelike trajectory of a comoving sphere
includes not only the causal path for creating microwavecms) is shown, first within the inflationary event horizon, then
background perturbations, but also the trajectories for gravipassing outside of it, then eventually reentering the apparent par-
tons in a possible high-frequency gravitational wave backticle horizon during the FRW phase. The particular CMS shown is
ground, such as might be detected directly by interferometersne that enters close to recombination, and therefore is on a scale
such as the Laser Interferometric Gravitational Wave Obsetrthat affects the observed microwave anisotropy. Perturbations are
vatory (LIGO), Laser Interferometer Space AntenldSA) imprinted by fluctuating quantum field®QF) on the scale of the

or their successors at frequencied 0”2 Hz. It can be pro-  apparent horizon during the slow-roll period of inflatié8R). (The
duced by quantum graviton fluctuations during inflation, andapparent horizon grows slightly during SR as indicated by the two
also classically by mescoscopic mass motions at later timeglosely parallel null lines, as expanded in Fig) Zhis includes
from, e.g. symmetry breaking, dimensional reduction, or recontributions from both tensor and scalar modes that are frozen in
heating. Holographic discreteness might manifest itself in théo the classical metric outside the apparent horizon. A high-
directly measured classical metric perturbation of the inflafréquency gravitational wave backgrou@WB) reaches us via

tionary waves, but that effect is beyond the scope of thigirect null trajectories. The classical continuum picture breaks down
' for all past trajectories beyond some holographic litrit.).

paper.
Another slicing of the de Sitter spacetim@hich re-
sembles an inside-out version of a black hole spacetime in _4m 12w @
Schwarzschild coordinatess described by the metric THZ A
ds?=—U(r)dt?+U"Y(r)dr2+r2dQ?, (2)  These coordinates cover the entire “causal diamond” acces-
sible to any actual observation by an observer at the origin,
where comprising a finite spatial regiofas opposed to the infinite

volume of the FRW slicingsubject to the holographic en-
(2 tropy bound. Figure 1 shows a spacetime embedding dia-
Ur)=1——, (3)  gram of this volume with the two slicings in physical units,
0 and Fig. 2 compares their Penrose diagrams.
It has been established that holography is not consistent
andd(}, is the 2D angular interval. The event horizon standswith independent field modg4?2], and this can be seen from
at radiusro=H 1, the Bekenstein-Hawking temperature is considering the flow of information in these figures. A space-
Ten=(27r,) 1, and the event horizon area is like hypersurface in the coordinaté®) extends into the dis-
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tant, highly redshifted past and gets very close to the everttlilbert space dimensioN (as the fundamental quantitg0])
horizon. The bulk of the information from a typical small is to come out to be an integet, proceeds through a series
3-volume near such a surface in the distant past ended ugf discrete steps with
getting advected out of the horizofT.he full information of
a 3-volume only survives from the Planck scale to the hori- Ho— | ™
zon scale for a single Planck-sized patch in the very center of ! InN;
the volume at =0.) Following one of the hypersurfacé€®)
back to where it lies within a Planck wavelength of the ho-where N; are integers. For example, nearly exact Planck-
rizon corresponds to a redshift of only2/H relative to  scale inflationH = \/7/In(23)=1.00092 . . . occurs forN
where it intersects the origifrather than~H ! which takes =23.
a horizon-scale mode to the Planck leng®ince this is the In principle, this property is observable. The pattern of
regime where we expect quantum-gravitational informatiormicrowave anisotropy on the sky on large scales includes
mixing among modes, the vacua of the modes will be afdirect images, created by the Sachs-Wolfe effect, of the in-
fected by quantum gravity at a physical mode wavelengthglaton perturbations in abolf,.~10* independent de Sitter
much larger than the Planck scale. The “stretched event hosolumes, wheré, . is the angular wave number correspond-
rizon” of the de Sitter space acts like the event horizon of aing to the horizon at last scatterin@Below this scale the
black hole, thermalizing the system by allowirigtrong observed anisotropy is strongly affected by plasma oscilla-
gravitational interactions between modes of different wave-tions and propagating modes, so the primordial information
lengths, so that unitary evolution is not independent for eaclis less directly visiblg.Thus in this example we can observe
comoving-wavelength mode; instead their information is10* samplings of a process that originally only yielded 23
mixed. distinguishable outcomes, and we should be able to discern
Consider the holographic constraints on the propagatiofepeated patterns.
of physical influences from above the Planck scale. Note that Of course, we cannot yet predict what those patterns are,
for realistic inflation models wittH well below the Planck since we do not know what the states of quantum gravity
scale, the maximum observable entray,= m/H? is al-  look like (although Bekensteii41] has made quantitative
ways much less than the 3D de Sitter volume/3H3. This  conjectures about quantum states of black hole spacetimes
means that the holographic bound precludes informatiorrhe quantum gravitational discreteness could manifest itself
from the super-Planck regime from directly propagating toin a very simple way, such as a discrete component to the
observable scales: there is not enough information availablepectrum of spherical harmonics instead of the continuous
in the de Sitter volume to specify the state of every mode orGaussian random phase distribution predicted by the field
the Planck scale at any given time. Conversely, when anyheory approximation; or in a more subtle way, as repeated
given mode has expanded to the de Sitter scale, much leggitterns of sky pixel amplitudes. In this case the discreteness
than one bit of information per de Sitter volume survivesmay be more conspicuous in the phase informafs op-
from *“its own” Planck epoch. Holography allows at most on posed to the power spectrum amplitu@é anisotropy.
average only one bit per mode at a scalg,, The number of distinguishable states grows exponentially,
~(N3jancd H) Y3 below this scale holography tells us that it N=exg 7H2]. If this corresponds to the number of possible
is inconsistent to assume that the states of each mode can bptions for the horizon-scale fluctuations in a de Sitter space-
specified independently, because there is not enough infotime, the holographic discreteness is only observabld if
mation available to do sdincidentally, this scale is about a lies within a factor of a few of the Planck scale. Even in
Fermi today, based on the current estimates\ phowever, principle, the largest number of independent inflationary ho-
this has no effect on any local experiment. rizons on the skyobservable in principle in an inflationary
While the effects of super-Planckian physics have been gravitational-wave backgrounds “only” 10 %8 (the inverse
subject of debate within the field theory framew¢84—-59, solid angle of a comoving Planck paj¢chtherefore if
these information-counting arguments suggests that in these/H?In(10)=58, the discrete system becomes indistinguish-
models, any field theory omits an important constraint of able from a continuum. Thus we certainly neee-0.15 for
spacetime quantization on the fluctuations even well belovan observable effect.
the Planck scale. Of course, counting arguments do not in- We know thatH during inflation is not nearly this large.
form us by what mechanism the holographic constraint interQuantum graviton fluctuations lead to classical tensor-mode
venes. perturbations of amplitudl,,s~H. This leads to a general
upper bounddiscussed in more detail belpwn the Hubble
constant during inflation, from observations of large angular
IV. DISCRETENESS OF COSMIC BACKGROUND scale background anisotropy, of abddit<10~°. The maxi-
ANISOTROPY mum observable de Sitter entropy exceeds,~ 10
which means that the total number of quantum states exceeds
exd 10'%. If the number of distinguishable states accessible
to an inflaton mode when its wave function collapses were
The holographic constraint clearly imposes some discretethis large, the usual continuum approximation would be a
ness on the behavior of an inflationary spacetime. At the vergood one for all conceivable microwave background obser-
least, if the classicaH adjusts itself in such a way that the vations on large scales.

©)

A. Minimal discreteness: Spacetimes quantized in discrete
steps ofN
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However, this estimate does not apply in many theoriesless than one bit, which is not enough even to include the
Holographic discreteness in string theory and loop quantundegree of freedom represented just by the jumplin
gravity, like discreteness in the Hilbert spaces of more famil- The final state is the product of transition operators, the
iar quantum systems such as collections of spinning parfinal information the sum of that in the transitions. The
ticles, probably derives ultimately from discrete elements inchange in the dimension of the total Hilbert space for the
the fundamental theory. In the remainder of this paper weumulative effect—including the change in the set of all pos-
assume that it is these elements, and not the states, which csible field fluctuations—is still very large, 6N
only be added “one at a time.” In this case, fluctuations are=exd S,.Jd0Snax; this reflects the cumulative effect of
quantized in discrete steps of(or S) rather than\. choices made in each new bit. The holographic bound indi-
cates that the Hilbert space is the same size as a collection of
n spins; in this model, spacetimes are assumed to exhibit the
same discreteness as a discrete integer number of such spins.
Holography tells us that the maximum observable total To estimate the observable consequences of the toy
entropy and the de Sitter expansion rate are connected Byodel, we use the classical dynamics of the inflaton, the bulk
Smax=m/H?. We assume that this connection arises fromof which forms a nearly homogeneous zero-momentum con-
fundamental discrete elements so tB&br n=S/In 2) occurs  densate. The classical expectation valfieof the inflaton
in integer steps, fixing a finite set of discrete valuesHor field has a unique connection to the entropy through its effect
Scalar perturbations, which appear today as observable tergn the spacetime geometry: the effective potentiab.) and
perature perturbations, are determined classically by the dye Sitter rateH that controls the total entropy are related via
namics of the inflaton field$; the inflaton perturbations the Friedmann equation
originate as quantum states, and when they freeze, they in
turn directly fixH, so that their configurations are also con- , 8m -
strained to a finite discrete set of options. We now proceed to H*=—2-[V(de) + bc/2]. ®
estimate observable discreteness—characterized by the num-
ber of options available or the amount of information con-Therefore, large-scale classical perturbations in the inflaton
tained II’I the C|aSSica| Scalar perturbations—fOIIOWing theSQ|e|d are directly mapped onto total observable entropy and
connections. o . _ -also, in the toy model, come in discrete steps. We assume
To estimate the graininess associated with holographignat in the discrete sequence of de Sitter eigenstates, eigen-
constraints on inflaton fluctuations, we consider a Verystates ofH are also eigenstates df. .
simple toy model, where observable regions of quasi—de Sit- The backgroundunperturbed, continuous, classicalo-
ter spaces occur in a discrete set of eigenstate ofith  |ytion of a homogeneous noninteracting scalar figid is
splitting AH between adjacent levels: controlled by the classical dynamical equat[@d,61]

B. Fluctuations quantized in discrete steps o

$ot3Hb+V' (¢0) =0, ©)
—|Hg=2AH)«<|Hg—3AH)« ..., (6)
whereV’'=dV/d¢.. We assume for simplicity that the ob-

where|H,) denotes a reference de Sitter space with eXpamg,erved modes crossed the inflationary horizon during a stan-

sion rateH,. The secular classical evolution of an inflation- dard so-called “slow roll” or Hubble-viscosity-limited phase

ary spacetime represents a steady rightward flow, and quaF?—f inflation, COffeSp_Ondlng toV'/V=<y48w and V"IV

tum fluctuations can go in either directigi@although the <24, during which¢.~—V'/3H. The rate of the roll is

field-theory fluctuations are in general coherent over many omuch slower than the expansion rateso the kinetic term in

these transitions This leads to discreteness in observableEq. (8) can be ignored in the mean evolution. The slow-roll

anisotropy with steps of some amplitudd/T. phase of inflation creates approximately scale-invariant cur-
The key assumption of the toy model is tithe back-  vature perturbations.

ground spacetime and horizon-scale fluctuations occur We define a combination of inflationary parameters by

through a sequence of transitions between discrete states, "™

each of which adds (or subtracts) one bit of information to _ H?® N V3 8|32

the total maximum observable entrofifat is, instead of the Qs= WN vz |3 (10

H coming in discrete steps df as in Eq.(5), it comes in

discrete steps af: This combination controls the Hilbert space attached to the

perturbations. It also happens that it can be estimated fairly
[ = accurately, since it also controls the amplitude of the scalar
Hi= n;in2 () perturbations observed in the microwave background anisot-
ropy. Adopting the notation of62], the anisotropy can be
ISigcomposed into scalar and tensor components,

wheren; are integers. Once we have assumed discrete ste

in H, this ansatzrepresents a plausible lower bound on the (Q)?
step size required for g:onsistency:AH were smaller, the =S+ To, (11)
total entropy incremen(in all modes of all fieldswould be T
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where(Q) denotes thégloba) mean quadrupole anisotropy
amplitude, T,=2.725-0.002 the mean temperatu{€2],
and the scalar and tensor contributiofg and Tq, to the
mean quadrupol€, are given by[61] 3
2
5C2 200 12 !
0=y ~29 12
2
and 1
T 5C2 0.56v 13
Q_EN . [l ( )

using numerical factors for a slow-roll, flat model. The
best fit to the four-year Cosmic Background Explorer g 4. A close-up view of freeze-out: the formation and “col-

(COBE) Differential Microwave Rad'omete(DMR) data,  |apse” of a quantum fluctuation into a classical perturbation. It takes
assuming scale invarianca€ 1, andTo=0), yields[10,11  apout one Hubble time for a perturbation on the horizon scale to

(Q)=18+1.6 uK, and hence, combining the above, freeze out. During this time, the inflaton rolls slightly aktlde-
creases slightly; the corresponding apparent horizons are shown as
Qs=9.4+0.84x 10 5. (14 1 and 2 in the figure. Arrows indicate the physical size of a comov-

ing mode as it passes through the horizon. By time 3, the perturba-
(Note that if we instead assung=0, these formulas also tion is “outside the horizon” and the frozen-in perturbed value of
yield the upper boundH=<2x10 ° discussed above, from the inflaton fixes the expansion rate of the background spacetime on

the tensor modes alone. subhorizon scales. The total increase in entropy during the interval
During slow-roll inflation, there is a steady increase in (1,2 (that is, the difference in entropy between the two triangkes
observable entropy at a rate about 16° but the frozen-in perturbation represents only a small
fraction of these degrees of freedom, about. 10
8’772 \VA 2 )
=— —=8mHQg°. 15 8w op|
Smax 9 H5 QS ( ) 5Stot:T W Qsl ) (17)

Every inflationarye-folding Sy,ax increases by an amount of  The standard field theory analysis for the horizon-size
order 18° due just to the classical evolution of the system.perturbations predicts that as they are frozefoinsqueezed

(In a time ~10"*%H, the total observable entropy changesinto a classical state, the quantjty/H] is statistically de-

by about one bij. The important point, which we will now termined, with a continuous Gaussian statistical distribution
elaborate, is that the information attached to the observablgf order unit width. The corresponding incremedis, i,

quantity—the horizon-scale perturbation in the inflaton—is%(8772/3)(351 then is roughly the jump in the total observ-
much smaller than this, of order 10The basic reason is that aple cosmological entropy associated with the creation or
tion ~10° of the total change in observable entropy; con-  Therefore, the standard quantum transition corresponding
sequently, we conjecture that a typical perturbation can bgy a typical perturbation yields a total change of no more
completely characterized by 10° bits per Hubble volume. han about 3Sy~ (87%3)Qs '~1C° in the maximum ob-
The framework for this argument is illustrated in Fig. 4. gervable entropyThis is much less than the increase given
Consider a spatially uniform chang®b,. in the classical by Eg. (15 in the total information during an expansion

inflaton condensate, extending over a volume greater thagine. Thus the amount of informatiodS,(, attached to the
(47/3)H™°. This changes the total observable de Sitter €Nperturbation in the horizon-size inflaton quantud as it

tropy in the affected volume by an amount freezes into a classical state is much less than the total
) o4 growth of information of the spacetime during the same
=2 —2m 4w i -1 -2 i
5Si01=—g SH= —o —\/' 5. (16) time, of orderQg - rather tharQS_ . This may be enough to
H H® 3H produce a detectable level of discreteness.

Is this story consistent with the more general ideas that
Now consider the effect of a quantum perturbation in themotivated holography in the first place? The naiive assump-
inflaton field of amplituded¢, assuming that it behaves like tion in our toy model is that the dimension of the observable
a “frozen in” classical spacetime background. SubstitutingHilbert space changes in steps of one bit in the exponent,
from the classical slow-roll formulas above, an estimate foiwith each binary choice corresponding to a transition to a
the jump in total entropy associated with a horizon-scalenew quasi—de Sitter eigenstate. This does not mesh trivially
perturbationd¢ can be directly expressed in terms of the with the idea of preserving overall unitary evolution so this
observable quantit@s, cannot be quite the whole story; but indeed it is not a trivial
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Ag

matter to even define unitarity rigorously in de Sitter space- AT
time [50]. Another comment is that modes much smaller than @
the horizon have their accessible Hilbert space changed due

to a quantum fluctuation on the horizon scale. From the pointhe amplitude difference at which the discreteness appears is
of view of an observer at rest in the center of & patch,”  gpbout
much of the incremental information attachedd$ appears

in modes much smaller thakl ~*—the short-wavelength

modes close to the stretched event horizon that are still hav-

ing their vacuum initial states formed, and only later expand

to the horizon scale. Much of the “new” information repre-
sented bysS;,; must be available to modes near the stretched
event horizon as viewed by any given observer—modes The toy-model results should not be taken as a literal
which are much smaller thad ~ 1. Thus it makes sense that physical prediction of the character of the discreteness; such
the information available to the configurations of horizon-a prediction would require understanding of the true eigen-
scale fluctuations is much smaller th8g,y. modes of the system. We do not know from these arguments
what their detailed character is, or how they might be mani-
fested in theéA,, spectrum of the anisotropgfor this reason,

. i o we have also glossed over the facts that observed anisotropy
It is useful to delve into some more detail with a more s 5 superposition of modes from different comoving scales,
concrete, albeit unrealistic, toy model for discreteness in thgnqg that these are increasingly affected, on scales smaller
perturbations. Suppose that the possible values of thghan the quadrupole, by propagation effects before, during
horizon-size inflaton perturbatiofy are selected from a dis- and after recombination that modify the primordial signal

crete set of levels separated by some step Aige The in- [16].)

cremental observable information made available by the The analysis above doeS’ however, hlgh“ght several new

ATZ[AH—ﬂ(Q>~10‘1° K. (22

V. OBSERVATIONS?

C. Toy model of anisotropy with discrete levels ofT

transition between levels is and unexpected features that might apply to the real-world
2 discreteness(l) The characteristic fractional amplitude of
8w |Ad| . : ; . .
ASi=—|—|Qst, (18  the inflaton perturbation discreteness is not exponentially
ot 3 H S . .
small, but is comparable to the overall scalar perturbation

amplitude.(2) The information in a typical horizon-scale per-
including all the degrees of freedom of all the fields, not justturbation does not depend explicitly on unknown parameters
the inflaton. We now assert thatmps iné¢ occur in steps  such as the values f or V', except through the observable

of at least a certain minimum siz&¢, such thatAS,;  combinationQg. (3) The holographic counting arguments
=In 2 (that is, a change of at least one bit in total observablesuggest that an inflaton perturbation at the time it freezes out
entropy) This leads to a definite minimum step size, has a Hilbert space equivalent to only abol® binary
spins.We therefore conjecture that the theory incorporating
Ag ) . the true eigenmodes may predict sofoaspecified kind of
T |ZQs(3In2/8m%)=2.5x10"". (19 discreteness corresponding to less than abotibite of in-
formation per mode.
As above, thimnsatzseems necessary for consistency: a step _The ot':cservzbtlll_ty 0;: discreteness dﬁ penfljls greatly lon how
at least this large is needed just to specify the degree o'% Is manifested. To choose a somev(\;s at_ sty example, sup-
freedom represented by theg transition itself. pose that rather than'occ.umng Al d'sg[.,et‘? levels (.)f
Taking this model literally and assuming subsequent "n_amplltude, a perturbation is composed-ellQ discrete bi-

ear classical evolution, this discreteness of the field amplipary pixels on the sky. This level of pixelation in the quad-

tudes leads to a discrete set of values for the curvature pe[;EijIe modessay) wou_ld not be cpmpletely erased by trans-
turbation (e.g., Bardeen's[8] ¢.), and therefore the port effects at recombination, which propagate on an angular

observed temperature perturbatiém, which is largely de- SV(::/IE %%%pba;?tgfe ttr?eth;i?s?I)‘fglczllfgircexggnkeleiﬁt?ﬁeagguﬁllgr
termined by this quantity via the Sachs-Wolfe effect. The P g

2 ~ ; 2.
discrete jumps are smaller than the total standard predicte%OWer .spectrurlncl S at |~200, correspopdmg 0°~4 .
perturbation amplitude by about the factor X 10* pixels). With discreteness encoded this way, each pixel

might be either hot or coldsT/T==+1x10"° (say. Inter-
mediate gray levels would appear as a checkerboard pattern
AT Ao . .

—_~— (20) of alternating hot and cold pixels on a scale of about a degree

oT  o¢ of arc. Such a pattern would be very conspicuous in the

current data, even allowing for the complication that it would

That is, the amplitude of the anisotropy on the sky, instead obe superimposed on approximately Gaussian noise from
coming from a continuous distributiqwith variance~(Q)?  smaller scale modes of comparable overall amplitude.
contributed by fluctuations in each octave of angular wave Thus, for some kinds of eigenmodes, observations of ho-
numbej, comes from a discrete distribution, with valuesTof lographic discretness may be practical. The possibility of
formed by a sum of discrete increments of orddr, where  finding such a qualitatively new effect motivates a search in
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the microwave background data for discrete behavior, in eiappears only as discrete levels of Sachs-Wolfe perturbation
ther the amplitudes or the multipole phases. Some tests ammplitude (say), plasma motions during recombination, as
straightforward; for example, a histogram Af, amplitudes  well as nonlinear couplings, are likely to smear out all the
normalized to a best-fit smoot®, spectrum might show sta- observable traces of primordial discreteness even on the larg-
tistically significant departures from a Gaussian distributionest scales.

These discreteness effects are qualititively different from

(and _have a more distinctively quantum Characte_:rllu:_mhI\er ACKNOWLEDGMENTS
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