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Generic estimate of trans-Planckian modifications to the primordial power spectrum in inflation
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We derive a general expression for the power spectra of scalar and tensor fluctuations generated during
inflation given an arbitrary choice of boundary condition for the mode function at a short distance. We assume
that the boundary condition is specified at a short-distance cutoff at a scaleM which is independent of time.
Using a particular prescription for the boundary condition at momentump;M , we find that the modulation to
the power spectra of density and gravitational wave fluctuations is of order (H/M ), whereH is the Hubble
parameter during inflation, and we argue that this behavior is generic, although by no means inevitable. With
a fixed boundary condition, we find that the shape of the modulation to the power spectra is determined entirely
by the deviation of the background spacetime from the de Sitter limit.
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I. INTRODUCTION

There is currently significant interest in the possibility th
Planck scale physics might leave an observable signatu
the cosmic microwave background radiation. The comm
thread running through this work is that early universe qu
tum field fluctuations may be sensitive to short distan
physics, and this sensitivity may induce small modificatio
to the CMB ~cosmic microwave background! spectrum pro-
duced by inflation. A variety of approaches have been ta
to calculate the precise signature and a variety of results h
been found. These include modifications to the dispers
relation for quantum modes at short distance,v2Þp21m2

@1–9#, string-inspired changes to the Heisenberg uncerta
relation @10–14#, and noncommutative geometry@15–17#.
Other ideas for probing Planck-scale physics in inflat
have been proposed@18#.

In this paper, we look at the problem of modifications
the power spectrum from short-distance effects in a gen
way, independent of the specific nature of the short-dista
physics assumed. We make the supposition that the mo
cation to physics at short distances has no explicit time
pendence. That is, there will be a cutoff momentumpc which
is given by a physical constant such as the Planck mas
the string scale that is independent of time. Any change
standard physics at short distance or high momentump
.pc will be completely described~in a phenomenologica
sense! by the boundary condition imposed on quantu
modes at the cutoff scale. The boundary conditions at
cutoff are equivalent to the selection of a vacuum state
the theory. In this paper, we derive a general expression
the change in the scalar and tensor power spectra which
sults from an arbitrary choice of vacuum at short distanc

We apply this result to the ansatz of Danielsson@21# for
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selecting a boundary condition for the mode functio
Danielsson’s proposal is simply that modes are ‘‘created’
the cutoff length in a local Minkowski state, even though t
vacuum state of the spacetime is slightly rotated from
Minkowski vacuum. We generalize Danielsson’s result to
arbitrary non–de Sitter background. This ansatz clearly f
short of being a complete description of physics at sh
distances. However, it does represent a phenomenologic
reasonable way to estimate the magnitude and form of
changes to the primordial power spectrum due to the p
ence of a short-distance cutoff. For a cutoff momentumpc
;M , Kaloperet al. @19# have argued that the largest effe
consistent with effective field theory was of order (H/M )2,
where H!M is the Hubble constant during inflation. Th
differed from the conclusion of Eastheret al. @12,13# that the
effect in a particular well-motivated model@10# was of order
H/M , potentially large enough to have an observable eff
on the primordial power spectrum. Brandenberger and M
tin @20# and subsequently Danielsson@21# have argued tha
deviations of the quantum state of the field from the lo
vacuum state generically result in an effect of orderH/M ,
and we adopt this point of view here. Certainly the fin
resolution of this issue awaits the formulation of a mo
complete theory of physics at short distances. In the me
time, a phenomenological perspective can potentially all
us to constrain the form of such a theory using astrophys
observations, which is a tantalizing prospect.

The paper is structured as follows: Section II contains
calculation of the scalar and tensor power spectra for a g
eral choice of vacuum. Section III considers the case of
Danielsson ansatz for an adiabatic vacuum. Section IV c
tains a summary and conclusions. A review of the genera
of perturbations in inflation, including definitions of som
parameters used in the paper, are contained in an Appen

II. THE MODE FUNCTION FOR ARBITRARY VACUUM

It can be shown that the scalar fluctuation modesuk and
tensor fluctuation modesvk generated during inflation obe
the following equations of motion:
©2002 The American Physical Society18-1
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y2~12e!2
d2uk

dy2 12ye~e2h!
duk

dy
1@y22F~e,h,j!#uk50,

~1!

where

F~e,h,j![2S 11e2
3

2
h1e222eh1

1

2
h21

1

2
j2D ,

~2!

and

y2~12e!2
d2vk

dy2 12ye~e2h!
dvk

dy
1@y22~22e!#vk50.

~3!

Heree,h,j are slow-roll parameters~see Appendix!, and the
‘‘time’’ variable y is defined to be the wavelength of th
mode relative to the horizon size:

y[
k

aH
. ~4!

The variabley can be related to the conformal timet by

dy52k~12e!dt, ~5!

where during an inflationary phase the conformal time
negative,t,0, with dt.0 and e,1. We emphasize tha
these equations are exact in the sense that no assumpti
slow roll has been made.

We will assume that at wavelengths much longer th
some cutoff distance,l@lC , the mode equations~1! and~3!
describe the evolution of the scalar and tensor mode fu
tions, respectively. For definiteness, we begin with
power-law inflation case and then extend the calculation
the slow-roll case. For power-law inflation,e5h5j
5const, and the scale factor obeysa}t1/e. In this case, the
mode equations for scalars and tensors become identica

y2~12e!2
d2uk

dy2 1@y22~22e!#uk50 ~6!

for scalar fluctuations and

y2~12e!2
d2vk

dy2 1@y22~22e!#vk50 ~7!

for tensor fluctuations. We will confine our discussion of t
mode behavior to the scalar fluctuations with the understa
ing that the properties of the solutions apply equally well
tensor modes. Sincee5const, the exact solution to the mod
equations is

uk5
1

2
Ap

k
A y

12eFC1HnS y

12e D1C2Hn* S y

12e D G .
~8!

Here the variabley is just the wavelength of the mode rel
tive to the horizon size,y[k/(aH), and
02351
s
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n5
32e

2~12e!
. ~9!

Note in particular that this solution is equally valid fo
modes inside the horizon and modes outside the horizon
the solution is fixed by a boundary condition well inside t
horizon,y5k/(aH)@1, this solution can be seamlessly fo
lowed to the long-wavelength limit,y→0 without the need
for ‘‘matching’’ solutions at horizon crossing (y51). The
case of a Bunch-Davies vacuum is then exactly equivalen
selectingC151 andC250 in the general solution~8!. The
canonical commutation relation for the field requiresuC1u2
2uC2u251. Note that since the fluctuation amplitudePR
}uuku depends only on the amplitude of the mode functio
the problem contains an arbitrary overall phase.

Previous investigations of whether an observable sig
ture of short-distance physics in inflation is possib
@1–4,10–13,16,17# have approached the problem by defini
a particular model of short-distance physics and then ev
ating the influence of that ansatz on the amplitude of
modes at long wavelength. Here we use a more generic
proach:whateverthe nature of the short-distance physics,
we assume that the mode equations~1! and ~3! are valid at
long wavelength, then the only influence the short-dista
physics can have on the behavior of the modes at long wa
length is through the choice of the coefficientsC6 . ~This
fact was noted by Starobinsky@22#.! However, the coeffi-
cients C6 in general need not be constant: they may a
have an intrinsick dependence. An important question is: c
we determine thek dependence of the coefficients witho
knowing the precise nature of the short-distance physics
this section we show that the dependence ofC6(k) on k
depends only on the nature of the background spacetime
long as there is no explicit time dependence in the bound
condition at short wavelength.~This condition will be made
precise below.!

We wish to introduce a modification to standard quant
field theory at short distances. That is, for states with m
mentum higher than some cutoffp.pc , the standard equa
tions of motion for the modes no longer apply. Brande
berger and Martin @1,2# and Niemeyer @3# proposed
modifying the dispersion relation of the modes at high m
mentumv2Þp21m2. Kempf proposed a cutoff based on
modification to the uncertainty relation@10,11# DxDp
>(1/2)@11b(Dp)21•••#. Other choices are certainly pos
sible @16,17#. However, whatever choice we wish to mak
for the nature of the physics at momentump.pc , once a
given state is redshifted to low momentump!pc , the stan-
dard mode equation~6! holds and the solutions will be of th
form ~8!. Thus, any choice of short-distance physics can
mapped to a choice of the coefficientsC6(k). We will there-
fore consider an arbitrary boundary condition fixing theC6

at the cutoff momentumpc :

C65C6~k/a5pc!. ~10!

We will make the assumption that this boundary conditi
contains no explicit time dependence: that is, the cutoff m
8-2
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mentumpc is constant in time. Taking the cutoff to be at
scale much smaller than the horizon,pc@H, the mode func-
tion becomes

uk→C1eiy /(12e)1C2e2 iy /(12e), y@1. ~11!

Since at short wavelength the mode functionuk depends only
on y5k/(aH)5p/H, the boundary condition on the mod
function is set by specifying the values ofuk(y) and its de-
rivative aty5yc[pc /H:

C15
1

2
e2 iyc /(12e)@uk~yc!2 i ~12e!uk8~yc!#

C25
1

2
e1 iyc /(12e)@uk~yc!1 i ~12e!uk8~yc!#.

~12!

Note that thek dependence of the coefficients is then entir
contained in the boundary valueyc . This is due to the de-
pendence ofyc on the Hubble parameter, which is in gene
time dependent:

yc~k![
k

aH U
(k/a)5pc

. ~13!

That is,yc(k) is defined to be the value ofk/(aH) at the time
when a given comoving modek is at the cutoff scale (k/a)
5pc in physical units. Especially important is that in th
limit of de Sitter space,H5const and thereforeyc5const, so
that the coefficientsC6 are generically independent ofk in
the de Sitter limit. The power spectrumPR is defined in the
long-wavelength limity→0, where

uuku→
2n23/2

A2k

G~n!

G~3/2!
uC1~k!1C2~k!uS y

12e D 1/22n

.

~14!

The scalar power spectrum is then

PR
1/25A k3

2p2Uuk

z U52n23/2

2p

G~n!

G~3/2! S H

mPlAe
D

3uC1~k!1C2~k!uS y

12e D 3/22n

, ~15!

where theC6 are given by Eq.~12!, and in the case o
power-law inflation,n is given by Eq.~9!. This is trivially
generalized to the case of slow-roll inflation, which assum
e andh are constant and small but unequal, so that

F~e,h,j!.2S 11e2
3

2
h D.const. ~16!

The solutions to the mode equation are then of the form~15!,
but with

n5
3

2
12e2h. ~17!
02351
l

s

Note that for the power-law case,e5h, this is simply the
small e limit of Eq. ~9!. Similarly, the tensor fluctuation am
plitude is

PT
1/2~k!5A k3

2p2U vk

mPla
U52n23/2

2p

G~n!

G~3/2! S H

mPl
D

3uC1~k!1C2~k!uS y

12e D 3/22n

, ~18!

where

n5
32e

2~12e!
~19!

in the power law case, and

n5
3

2
2e ~20!

in the slow roll case. We assume that the boundary con
tions are identical for the scalar and the tensor modes,
thus that theC6(k) are identical for scalars and tensors.
the case of Bunch-Davies vacuum,C151 andC250, the
spectraPR andPT are power-law ink, and we can calculate
the spectral indices:

nR[11
d log PR
d logk

511
d log PR
d logy U

(aH)5const

5422n, ~21!

for the scalar modes and

nT [
d log PT
d logk

5
d logPT
d logy U

(aH)5const

5322n. ~22!

These are the standard results. However, a choice of vac
different from Bunch-Davies will in general lead to an add
tional k dependence in the spectrum. One possible obse
tional signature of a modulation of the power spectrum i
violation of the inflationary ‘‘consistency condition,’’ which
relates the ratio of the tensor and scalar amplitudes to
tensor spectral index:

PT
PR

52
1

2
nT . ~23!

Modulation of the power spectra leaves the tensor-scalar
tio unchanged, but alters the spectral indexnT , leading to a
violation of the consistency condition@23#.

To determine the specific form of the change in the pow
spectra, we must determineyc(k). This can be done as fol
lows. Take the functionk(t) as the wave number corre
sponding to the cutoff scalepc at conformal timet,
8-3
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k~t!}a~t!. ~24!

Then we can calculate

d logyc

d logk
5

d logH21

d loga
5

d logH21

df

df

dt

dt

d loga
. ~25!

Working out the terms individually, we have~see Appendix!

d logH21

df
52

H8~f!

H~f!
, ~26!

df

dt
5aḟ52

mPl
2

4p
aH8~f!, ~27!

and

dt

d loga
5

1

aH
. ~28!

Then

d logyc

d logk
5

mPl
2

4p FH8~f!

H~f! G2

5e. ~29!

This equation is exact. Therefore the dependence ofyc on k
is particularly simple

yc~k!}ke, ~30!

a result which holdsin general, including the power-law and
slow-roll cases. We then have a very simple expression
the modification to the standard spectra arising from a cho
of vacuum different from Bunch-Davies:

PR,T 5uC1~k!1C2~k!u2PR,T
B2D , ~31!

where the coefficientsC6(k) are given by Eq.~12! and
yc(k)}ke. This solution is valid in both the slow roll an
power-law cases. The important feature is that thek depen-
dence of the modulation depends entirely on the behavio
the background spacetime, that is the time dependenc
yc[k/aH. In particular, in the de Sitter limite→0, andyc
→const, so that there is no additionalk dependence in the
power spectrum, although the normalization can be alte
A concrete example of this was studied in@12#. In the gen-
eral ~non–de Sitter! case, the boundary valueyc is time de-
pendent, and we expect a modulation of the power spect
@13#.

III. BOUNDARY CONDITIONS FOR THE
ADIABATIC VACUUM

Danielsson@21# has proposed a general ansatz for para
etrizing the choice of vacuum in an inflationary spacetim
The choice of Bunch-Davies vacuum can be expressed
relation between the field and its conjugate momentum in
ultraviolet limit,
02351
or
e
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of
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m
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a

e

dfp

dt
→2 ipfp , p→`. ~32!

Danielsson’s prescription for an adiabatic vacuum is to
force this relation at afinite momentumpc :

dfp

dt
[2 ipfp , p5pc . ~33!

This is simply translated into comoving variables,

1

a

d

dt S uk

a D[2 i
k

a2 uk , ~k/a!5~k/a!c . ~34!

In terms of the variabley, the Danielsson boundary conditio
becomes

uk8~yc!5F iyc21

yc~12e!Guk~yc!. ~35!

The adiabatic vacuum can be translated into coefficientsC6

using Eq.~12!, that is using theasymptotic(k→`) form of
the mode functionuk .1

C15
1

2
e2 iyc /(12e)S 2yc1 i

yc
Duk~yc!

C252
1

2
e1 iyc /(12e)S i

yc
Duk~yc!, ~36!

or

C252e2iyc /(12e)S i

2yc1 i DC1 . ~37!

This is a generalization of the result of Danielsson to ar
trary background. Note that this condition completely spe
fies the modulation to the power spectrum, since the Wron
ian conditionuC1u22uC2u251 constrainsC1 :

uC1u25
114yc

2

4yc
2 . ~38!

In the limit yc→`, we haveuC1u→1, as expected. We ar
free to choose the overall phase, so we can write the
coefficients as

C15
2yc1 i

2yc
e2 iyc /(12e),

1We note that if we use the exact solution for the mode funct
~8! instead of the asymptotic version~11!, the vacuum rotation will
necessarily be exactly zero. The essential physics of this ansa
that we assume the mode is ‘‘created’’ in the local Minkowski sta
but the true vacuum of the spacetime is slightly non-Minkowski
8-4
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C252
i

2yc
e1 iyc /(12e). ~39!

~A similar expression was derived in Ref.@22#.! With yc
}ke, the modulation of the power spectrum is then co
pletely determined. Note also that the amplitude of
vacuum rotationC2 is of orderyc

21 . If we consider a theory
with a cutoff at a scalepc;M , the modulation of the powe
spectrum is then first order inH/M :

C2;yc
21;

H

M
. ~40!

We expect in general that if short-scale physics results
rotation of the vacuum, then the lowest-order correction
C6 will be of this form @21,12,13#. From Eq.~31!, the cor-
rection to the power spectrum is then also generically
orderH/M . This is consistent with the modulation found
Refs. @12,13,20,21#. However, it must be emphasized th
this answer depends on the choice of boundary condition
the mode, and is not forced on us by the physics. Ot
choices are possible—including the choice of Bunch-Dav
vacuum withC250! Only a more complete understandin
of short scale physics will fix the boundary conditions fro
first principles.

Figures 1 and 2 show the power spectrum and mod
tion, respectively, for power-law inflation withe50.01. We
have chosenyc;(M /H)5100, a value consistent with a cu
off determined by the string scale in conventional stri
theory, which can be as much as two orders of magnit
larger than the Planck length2 @24#. The modulation to the

2TakingM!mPl is also necessary to be consistent with the bou
derived by Starobinsky@22#.

FIG. 1. Power spectrumP1/2(k) as a function ofk, for e
50.01 andyc(k0)5100.
02351
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power spectrum is of order one percent—a potentially
servable value.

IV. CONCLUSIONS

We have shown that, since any new physics at short
tance will influence the modes generated during inflat
through the choice of boundary condition, it is possible
derive a generic formula for the form of the quantum mod
at long wavelength. In the limit of de Sitter space, we
cover a scale-invariant perturbation spectrum regardles
the choice of boundary condition, although with altered a
plitude. However, for non–de Sitter backgrounds, the se
tion of boundary condition has a potentially large effect
the form of the primordial power spectrum, both for sca
modes and tensor modes. Allowing freedom in the choice
vacuum opens up a very rich set of possibilities for the p
mordial power spectrum, since particular instances of
general solution~31! can in principle take on a very comple
form. Tilting the spectra toward the red or the blue is po
sible, as well as introducing single features or oscillato
behavior, depending on the background and the choice
boundary condition. However, we find in general that t
scale dependence of the modulation is determined by
deviation of the background spacetime from the de Si
limit and not by the particular form of the boundary cond
tions.

We study the particular case of the ansatz proposed
Danielsson for selecting the boundary condition for the mo
function at the short-distance cutoff@21#, and extend the re-
sult of Ref.@21# to the case of arbitrary background. We fin
that deviations from the standard power spectra are gen
cally of orderH/M , whereH is the Hubble constant during
inflation, andM is the cutoff scale. This scenario provides
much simpler realization of the effects studied in Re

d

FIG. 2. The modulationDP1/2/P1/2512uC11C2u as a func-
tion of wave numberk, for e50.01 andyc(k0)5100.
8-5
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EASTHER, GREENE, KINNEY, AND SHIU PHYSICAL REVIEW D66, 023518 ~2002!
@12,13# and suggests that the relevant physics determin
the amplitude of the modulation is due to the presence o
fixed cutoff scaleM, and not, for example, due to the brea
ing of Lorentz invariance. While the amplitude of the mod
lation depends sensitively on boundary conditions set by
known short-scale physics, we find it exciting that there
well-motivated choices that yield changes to the primord
power spectrum at the edge of detectability with presen
foreseen experiments@13#.

ACKNOWLEDGMENTS

We would like to thank Lam Hui for many helpful con
versations. The work of B.G. is supported in part by DO
grant DE-FG02-92ER40699B and the work of G.S. was s
ported in part by the DOE grants DE-FG02-95ER40893, D
EY-76-02-3071 and the University of Pennsylvania Sch
of Arts and Sciences Dean’s funds. ISCAP gratefully a
knowledges the generous support of the Ohrstrom Foun
tion.

APPENDIX: INFLATION AND THE PRODUCTION
OF FLUCTUATIONS

In this section we review the basics of scalar field dyna
ics in inflationary cosmology with emphasis on the very u
ful Hamilton-Jacobi formalism@25–27#. The emphasis is
pedagogical; a more formal review can be found in Ref.@28#.
The first basic ingredient is a cosmological metric, which
shall take to be of the flat Robertson-Walker form

ds25dt22a2~ t !udxu25a2~t!@dt22udxu2#. ~A1!

The quantityt is the conformal time, withdt5adt. The
second ingredient is a spatially homogeneous scalar fielf
with potentialV(f) and equation of motion

f̈13Hḟ1V8~f!50, ~A2!

where the Hubble parameterH is defined as

H[S ȧ

a
D . ~A3!

An overdot denotes a derivative with respect to the coo
nate timet. If the stress energy of the universe is domina
by the scalar fieldf, the Einstein field equations for th
evolution of the background metricGmn58pGTmn can be
written as

H25S ȧ

a
D 2

5
8p

3mPl
2 FV~f!1

1

2
ḟ2G ~A4!

and

S ä

a
D 5

8p

3mPl
2 @V~f!2ḟ2#, ~A5!

where mPl5G21/2.1019 GeV is the Planck mass. Thes
background equations, along with the equation of mot
02351
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n

~A2!, form a coupled set of differential equations describi
the evolution of the universe. The fundamental quantities
be calculated aref(t) and a(t), and the potentialV(f) is
input from some model. Inflation is defined to be a period
accelerated expansion

S ä

a
D .0, ~A6!

indicating an equation of state in which vacuum ener
dominates over the kinetic energy of the fieldḟ2,V(f). In
the limit thatḟ50, the expansion of the universe is of the
Sitter form, with the scale factor increasing exponentially
time:

H5AS 8p

3mPl
2 D V~f!5const,

a}eHt. ~A7!

Note that with the Hubble distanceH21 constant and the
scale factor increasing exponentially, comoving length sca
initially smaller than the horizon are rapidly redshifted ou
side the horizon. In general, the Hubble parameterH will not
be exactly constant, but will vary as the fieldf evolves
along the potentialV(f). A convenient approach to the mor
general case is to express the Hubble parameter directly
function of the fieldf instead of as a function of time,H
5H(f). This is consistent as long ast is a single-valued
function of f. Differentiating Eq.~A4! with respect to time,

2H~f!H8~f!ḟ5S 8p

3mPl
2 D @V8~f!1f̈#ḟ

52S 8p

mPl
2 D H~f!ḟ2. ~A8!

The equation of motion~A2! was used to simplify the right-
hand side. Substituting back into the definition ofH in Eq.
~A4! results in the system of two first-order equations

ḟ52
mPl

2

4p
H8~f!,

@H8~f!#22
12p

mPl
2

H2~f!52
32p2

mPl
4

V~f!. ~A9!

These equations are completely equivalent to the seco
order equation of motion~A2!. The second of these is re
ferred to as theHamilton-Jacobiequation, and can be writte
in the useful form

H2~f!F12
1

3
e~f!G5S 8p

3mPl
2 D V~f!, ~A10!

where the parametere is defined as
8-6
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e[
mPl

2

4p S H8~f!

H~f! D 2

. ~A11!

The physical meaning of the parametere can be seen by
expressing Eq.~A5! as

S ä

a
D 5H2~f!@12e~f!#, ~A12!

so that the condition for inflation~A6! is given simply bye
,1. Equivalently,e can be viewed as parametrizing th
equation of state of the scalar field matter, with the press
p and energy densityr related as

p5rS 2

3
e21D . ~A13!

The condition for inflatione,1 is the same asr13p,0.
The de Sitter case ise50 or p52r. In what follows, it will
be convenient to define the additional parameters@29–31#

h[
mPl

2

4p S H9~f!

H~f! D ~A14!

and

j[
mPl

2

4p S H8~f!H-~f!

H2~f!
D 1/2

. ~A15!

These are often referred to as ‘‘slow-roll’’ parameters, but
definition here is independent of the assumption of slow r

The metric perturbations created during inflation are
two types: scalar, or curvature perturbations, which coupl
the stress energy of matter in the universe and form
‘‘seeds’’ for structure formation, and tensor, or gravitation
wave perturbations, which do not couple to matter. Both s
lar and tensor perturbations contribute to CMB anisotro
Scalar fluctuations can also be interpreted as fluctuation
the density of the matter in the universe. The power spect
of curvature perturbations is given by@32#

PR
1/2~k!5A k3

2p2Uuk

z U ~A16!

wherek is a comoving wave number, and the mode funct
uk satisfies the differential equation@33–35#

d2uk

dt2 1S k22
1

z

d2z

dt2Duk50. ~A17!

The quantityz is defined as

z[2ApS aḟ

H
D 52mPlaAe, ~A18!

and
02351
re

e
l.
f
to
e
l
-
.
in
m

n

1

z

d2z

dt2 52a2H2S 11e2
3

2
h1e222eh1

1

2
h21

1

2
j2D .

~A19!

Solutions to the second-order differential equation for
modeuk in general contain two integration constants whi
can be taken to be phase and normalization. Normalizatio
fixed by the canonical quantization condition for the fluctu
tions, which in terms of theuk is a Wronskian condition

uk*
duk

dt
2uk

duk*

dt
52 i . ~A20!

Note that in the short wavelength limit, the equation of m
tion is just a wave equation. In a standard analysis, the ph
is fixed at short wavelengths by selecting the so-cal
‘‘Bunch-Davies’’ vacuum, which is equivalent to specifyin
thatuk receive a contribution only from a negative-frequen
component

uk}e2 ikt, k→`. ~A21!

The solution in the long wavelength limitk→0 is just uk
}z. It is the second condition~A21! that we relax in this
analysis, allowing contributions from both positive- an
negative-frequency components:

uk}C1e2 ikt1C2e1 ikt, k→`. ~A22!

The usual method of obtaining general solutions to
mode equation~A17! is to solve for the quantity (aH) as a
function of the conformal timet. To do this, take the exac
relation

dt5
d~aH!

~aH!2~12e!
~A23!

and integrate by parts:

t52
1

~aH!~12e!
1E d~aH!

~aH!

d

d~aH!S 1

12e D
52

1

~aH!~12e!
1E 2e~e2h!

~aH!2~12e!3 d~aH!.

~A24!

In the limit of power-law inflatione5h5const the second
integral in Eq.~A24! vanishes, and the conformal time
exactly

t52
1

~aH!~12e!
. ~A25!

The mode equation~A17! then becomes a Bessel equatio
with the solution

uk5
1

2
A2pt@C1Hn~2kt!1C2Hn* ~2kt!#, ~A26!

whereHn is a Hankel function of the first kind, and
8-7
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n5
32e

2~12e!
. ~A27!

Here we have normalizeduk so that the Wronskian conditio
~A20! is equivalent to the condition

uC1u22uC2u251 ~A28!

on the constantsC6 . Note that Eq.~A28! is valid in general,
not just in the short wavelength (k→`) limit. Thus the
choice of the Bunch-Davies vacuum at short wavelength
equivalent to settingC250 in the general solution~A26!.
The limit of de Sitter expansion ise→0, and this reduces to
n53/2, which is the case of a scale invariant spectr
P(k)}k. Thus, de Sitter expansion can be considered to b
limiting case of power-law inflation. The so-called ‘‘slow
roll expansion’’ is an expansion in small parameters ab
the de Sitter limit. In cases whereeÞh, but bothe andh are
small, the conformal time is given by the~now approximate!
relation

t.2
1

~aH!~12e!
.2

1

~aH!
~11e!. ~A29!

Note that despite the formal similarity between this and
power-law case, slow roll involves distinct assumptions@36#:
the slow-roll and power-law solutions are the same only
the de Sitter limit. Higher-order corrections can be obtain
by continuing the integration by parts,

t52
1

~aH!~12e! F11
2e~e2h!

~12e!2 1O~eh2!1•••G .
~A30!

As long as this series converges, the conformal time is w
defined as a series in slow-roll parameters. In the slow-
approximatione,h!1, it is consistent to takee andh to be
approximately constant, and the solutions are again Ha
functions of the form~A26!, with

n5
3

2
12e2h ~A31!

to first order in the slow-roll parameters.
D

02351
is

a

t

e

n
d

ll
ll

el

Instead of expressing the mode equation~A17! as a dif-
ferential equation in the conformal timet, it is convenient to
switch variables to the wavelength of the fluctuation mo
relative to the horizon size@37#,

y[S k

aHD.S dH

l D . ~A32!

Then

dy52k
d~aH!

~aH!252k~12e!dt, ~A33!

and the mode equation~A17! can be expressed exactly as

y2~12e!2
d2uk

dy2 12ye~e2h!
duk

dy
1@y22F~e,h,j!#uk50,

~A34!

where

F~e,h,j![2S 11e2
3

2
h1e222eh1

1

2
h21

1

2
j2D .

~A35!

The case of tensor fluctuations is exactly analogous.
tensor fluctuation amplitude is defined as

PT
1/2~k!5A k3

2p2U vk

mPla
U, ~A36!

where the mode functionvk obeys the equation of motion:

d2vk

dt2 1S k22
1

a

d2a

dt2D vk50. ~A37!

This can be written in a form similar to Eq.~A34!,

y2~12e!2
d2vk

dy2 12ye~e2h!
dvk

dy
1@y22~22e!#vk50.

~A38!

This equation is also exact. We can then take Eqs.~1! and~3!
as the starting point for an analysis of the effect of the cho
of vacuum at short wavelengths.
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