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Generic estimate of trans-Planckian modifications to the primordial power spectrum in inflation
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We derive a general expression for the power spectra of scalar and tensor fluctuations generated during
inflation given an arbitrary choice of boundary condition for the mode function at a short distance. We assume
that the boundary condition is specified at a short-distance cutoff at acadeich is independent of time.

Using a particular prescription for the boundary condition at momenttrivi, we find that the modulation to

the power spectra of density and gravitational wave fluctuations is of okl ), whereH is the Hubble
parameter during inflation, and we argue that this behavior is generic, although by no means inevitable. With
a fixed boundary condition, we find that the shape of the modulation to the power spectra is determined entirely
by the deviation of the background spacetime from the de Sitter limit.
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[. INTRODUCTION selecting a boundary condition for the mode function.
Danielsson’s proposal is simply that modes are “created” at
There is currently significant interest in the possibility thatthe cutoff length in a local Minkowski state, even though the
Planck scale physics might leave an observable signature kacuum state of the spacetime is slightly rotated from the
the cosmic microwave background radiation. The commorMinkowski vacuum. We generalize Danielsson’s result to an
thread running through this work is that early universe quanarbitrary non—de Sitter background. This ansatz clearly falls
tum field fluctuations may be sensitive to short distanceshort of being a complete description of physics at short
physics, and this sensitivity may induce small modificationsdistances. However, it does represent a phenomenologically
to the CMB (cosmic microwave backgrouphdpectrum pro- reasonable way to estimate the magnitude and form of the
duced by inflation. A variety of approaches have been takeshanges to the primordial power spectrum due to the pres-
to calculate the precise signature and a variety of results hav@nce of a short-distance cutoff. For a cutoff momentogn
been found. These include modifications to the dispersion-M, Kaloperet al. [19] have argued that the largest effect
relation for quantum modes at short distan@8zp?+m?  consistent with effective field theory was of ordet/(V)?,
[1-9], string-inspired changes to the Heisenberg uncertaintwhere H<M is the Hubble constant during inflation. This
relation [10—14, and noncommutative geometfi5-17. differed from the conclusion of Easthet al.[12,13 that the
Other ideas for probing Planck-scale physics in inflationeffect in a particular well-motivated modglO] was of order
have been proposdd8]. H/M, potentially large enough to have an observable effect
In this paper, we look at the problem of modifications toon the primordial power spectrum. Brandenberger and Mar-
the power spectrum from short-distance effects in a generitin [20] and subsequently Danielssf21] have argued that
way, independent of the specific nature of the short-distancdeviations of the quantum state of the field from the local
physics assumed. We make the supposition that the modifiracuum state generically result in an effect of oréiM,
cation to physics at short distances has no explicit time deand we adopt this point of view here. Certainly the final
pendence. That is, there will be a cutoff momentoymvhich  resolution of this issue awaits the formulation of a more
is given by a physical constant such as the Planck mass @omplete theory of physics at short distances. In the mean-
the string scale that is independent of time. Any change iriime, a phenomenological perspective can potentially allow
standard physics at short distance or high momenfum us to constrain the form of such a theory using astrophysical
>p,. will be completely describedin a phenomenological observations, which is a tantalizing prospect.
sens¢ by the boundary condition imposed on quantum The paper is structured as follows: Section Il contains the
modes at the cutoff scale. The boundary conditions at thealculation of the scalar and tensor power spectra for a gen-
cutoff are equivalent to the selection of a vacuum state foeral choice of vacuum. Section Il considers the case of the
the theory. In this paper, we derive a general expression fdpanielsson ansatz for an adiabatic vacuum. Section IV con-
the change in the scalar and tensor power spectra which réains a summary and conclusions. A review of the generation
sults from an arbitrary choice of vacuum at short distance. of perturbations in inflation, including definitions of some
We apply this result to the ansatz of Daniels$@n]| for =~ parameters used in the paper, are contained in an Appendix.

. . Il. THE MODE FUNCTION FOR ARBITRARY VACUUM
*Email address: easther@phys.columbia.edu

TEmail address: greene@phys.columbia.edu It can be shown that the scalar fluctuation modgsnd
*Email address: kinney@phys.columbia.edu tensor fluctuation modes, generated during inflation obey
$Email address: shiu@dept.physics.upenn.edu the following equations of motion:
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Heree, ,¢ are slow-roll parametersee Appendix and the

“time” variable y is defined to be the wavelength of the

mode relative to the horizon size:

k
aH’

y (4)

The variabley can be related to the conformal timeby

dy=—k(1—e€)dr, (5)

where during an inflationary phase the conformal time i
negative,7<0, with d7>0 and e<1. We emphasize that
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Note in particular that this solution is equally valid for
modes inside the horizon and modes outside the horizon. If
the solution is fixed by a boundary condition well inside the
horizon,y=k/(aH)>1, this solution can be seamlessly fol-
lowed to the long-wavelength limity— 0 without the need

for “matching” solutions at horizon crossingy&1). The
case of a Bunch-Davies vacuum is then exactly equivalent to
selectingC, =1 andC_=0 in the general solutio(8). The
canonical commutation relation for the field requités, |2
—|C_]?=1. Note that since the fluctuation amplitudRs,
«|u,| depends only on the amplitude of the mode function,
the problem contains an arbitrary overall phase.

Previous investigations of whether an observable signa-
ture of short-distance physics in inflation is possible
[1-4,10-13,16,Mave approached the problem by defining
a particular model of short-distance physics and then evalu-
ating the influence of that ansatz on the amplitude of the
modes at long wavelength. Here we use a more generic ap-
proach:whateverthe nature of the short-distance physics, if
we assume that the mode equatighsand (3) are valid at
long wavelength, then the only influence the short-distance
physics can have on the behavior of the modes at long wave-
length is through the choice of the coefficier@s. . (This

Sfact was noted by Starobinsk22].) However, the coeffi-

cientsC.. in general need not be constant: they may also

these equations are exact in the sense that no assumption\plye an intrinsik dependence. An important question is: can

slow roll has been made.

we determine thé& dependence of the coefficients without

We will assume that at wavelengths much longer tharn,ying the precise nature of the short-distance physics? In

some cutoff distancey> A\, the mode equationd) and(3)

this section we show that the dependenceCaf(k) on k

describe the evolution of the scalar and tensor mode f“ncdepends only on the nature of the background spacetime, as

tions, respectively. For definiteness, we begin with th

8Bong as there is no explicit time dependence in the boundary

power-law inflation case and then extend the calculation tQ.,nqition at short wavelengtiiThis condition will be made

the slow-roll case. For power-law inflatione=n=¢
=const, and the scale factor obegstY<. In this case, the

mode equations for scalars and tensors become identical:

2 2d2uk 2
y(1—e) d—yz+[y —(2—€)Ju=0 (6)

for scalar fluctuations and

2 2d2vk 2 _
y“(1—e) d_y2+[y —(2=€)]vy=0 (7)

for tensor fluctuations. We will confine our discussion of the
mode behavior to the scalar fluctuations with the understancg—
ing that the properties of the solutions apply equally well to
tensor modes. Since= const, the exact solution to the mode

equations is

_1\/; [y
“k_i k Vi—e

y Y
e vl 2]

8

precise below.

We wish to introduce a modification to standard quantum
field theory at short distances. That is, for states with mo-
mentum higher than some cutqit>p., the standard equa-
tions of motion for the modes no longer apply. Branden-
berger and Martin[1,2] and Niemeyer[3] proposed
modifying the dispersion relation of the modes at high mo-
mentume?# p2+m?. Kempf proposed a cutoff based on a
modification to the uncertainty relatiofn10,11 AxAp
=(1/2)[1+ B(Ap)?+ - - -]. Other choices are certainly pos-
sible [16,17]. However, whatever choice we wish to make
for the nature of the physics at momentyp® p;, once a
iven state is redshifted to low momentypxp,, the stan-
ard mode equatiof®) holds and the solutions will be of the
form (8). Thus, any choice of short-distance physics can be
mapped to a choice of the coefficietis (k). We will there-
fore consider an arbitrary boundary condition fixing tbe
at the cutoff momentunp,:

C.=C.(kla=py). (10)

Here the variableg is just the wavelength of the mode rela- We will make the assumption that this boundary condition

tive to the horizon sizey=k/(aH), and

contains no explicit time dependence: that is, the cutoff mo-
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mentumpy, is constant in time. Taking the cutoff to be at a Note that for the power-law case= », this is simply the
scale much smaller than the horizgn>H, the mode func- small e limit of Eq. (9). Similarly, the tensor fluctuation am-
tion becomes plitude is

u—C eV 9rc_e Wl 9 y=1. (11 P21 = /k3\ vk |_2"% T(w) ( H)
- Mp)

Since at short wavelength the mode functigrdepends only |mp|a| 2m T'(3/2)

on y=k/(aH)=p/H, the boundary condition on the mode y %%

function is set by specifying the values of(y) and its de- X |C+(k)+C(k)|(1T€) : (18
rivative aty=y.=p./H:

where
1 I(1-¢) ; /
Cy=5e Ve ulye) —i(1—e)u(yc)] 3
- 19)
L "T2(1-e) (
— —atiyc/(1—¢) i1 ’
C-=3¢ [U(Ye) +i (1= e)i(yo) - in the power law case, and
12
3
Note that thek dependence of the coefficients is then entirely V=o€ (20)

contained in the boundary valyg . This is due to the de-

pendence of; on the Hubble parameter, which is in generali, he sjow roll case. We assume that the boundary condi-
time dependent: tions are identical for the scalar and the tensor modes, and
thus that theC..(k) are identical for scalars and tensors. In
) (13 the case of Bunch-Davies vacuu@, =1 andC_=0, the
(kla)=p, spectraPy, andPrare power-law irk, and we can calculate
the spectral indices:

ye(k)=—

That is,y (k) is defined to be the value &f(aH) at the time
when a given comoving modeis at the cutoff scalek(a) dlogPr

=p. in physical units. Especially important is that in the Np=1+ dlogk
limit of de Sitter spaceid =const and therefong.= const, so
that the coefficient€.. are generically independent &fin —14 dlogPr —4_2, 21)
the de Sitter limit. The power spectruRy, is defined in the dlogy (aH) = const '
long-wavelength limity— 0, where
for the scalar modes and
ov- 3/2 F( ) y 1/2—
|uk| \/—k I‘(3/2|C+(k)+c (k)|< 6) . 0 =dlogP7
=
(14) dlogk
The scalar power spectrum is then ((jjllong _3_9, 22)
-3/2 ogy (aH)=const
pi2_ |uk 2 I'(v) H
772|7 T 27 T(312 Mpp/e These are the standard results. However, a choice of vacuum

different from Bunch-Davies will in general lead to an addi-
y ¥ tional k dependence in the spectrum. One possible observa-
X |C+(k)+C—(k)|(E) , (19  tional signature of a modulation of the power spectrum is a
violation of the inflationary “consistency condition,” which

where theC. are given by Eq.12), and in the case of relates the ratio of the tensor and scalar amplitudes to the

power-law inflation,v is given by Eq.(9). This is trivially ~ tensor spectral index:

generalized to the case of slow-roll inflation, which assumes

e and » are constant and small but unequal, so that P_T: 1 23)

=const. (16 Modulation of the power spectra leaves the tensor-scalar ra-

tio unchanged, but alters the spectral index leading to a
The solutions to the mode equation are then of the fdrb, violation of the consistency conditidi23].
but with To determine the specific form of the change in the power
spectra, we must determing(k). This can be done as fol-
lows. Take the functiork(7) as the wave number corre-
sponding to the cutoff scalg, at conformal timer,

F(e,n,§)22(1+6—g7]

v=—-+2e— 1. (17)
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k(7)eca(r). (24) d¢ .

i 1Py, P (32
Then we can calculate
Danielsson’s prescription for an adiabatic vacuum is to en-

-1 -1
dlogy; dlogH " dlogH " d¢ dr (25) force this relation at dinite momentump,:

dlogk dloga  d¢ drdloga’

dé .
Working out the terms individually, we haveee Appendix d—tpE—IDd’p, P=pc- (33

dlogH™!  H'(¢)

(26)  This is simply translated into comoving variables,

d¢ — H(¢)’
d g =4 K ey, (39
d)_ L ad—TEE—I;Uk, a)=(k/a)¢.
ara¢=—g-ak'(4), (27
In terms of the variablg, the Danielsson boundary condition
and becomes
dr 1 .
= —_— ’ Iy - 1
dloga aH’ (28) Ug(Ye)= —yc(;—e) Uk(Ye)- (35
Then The adiabatic vacuum can be translated into coeffici€nts
, using Eq.(12), that is using theasymptotic(k— o) form of
d |09Yc:m_$>| H'($) 2:6 (29  the mode functioru, .
dlogk 47| H(¢)
. Lo 1 —iyc/(1—€) 2Ycti
This equation is exact. Therefore the dependencg. @i k Co=5e 7 y U(Ye)
is particularly simple ¢
ye(k)ocke, (30) C_=- %e*‘yc“lf)('—) u(Ye), (36)
Ye
a result which hold#n general including the power-law and
slow-roll cases. We then have a very simple expression fo@r
the modification to the standard spectra arising from a choice _
of vacuum different from Bunch-Davies: c _eZin/(lE)(zyl+i c.. a7
_ C
Prr=|C4(K)+C_(K)|?PR 7, (31

This is a generalization of the result of Danielsson to arbi-
where the coefficient<.. (k) are given by Eq.(12) and  trary background. Note that this condition completely speci-
yc(K)cke. This solution is valid in both the slow roll and fies the modulation to the power spectrum, since the Wronsk-
power-law cases. The important feature is thatkieepen-  jan condition|C, |>—|C_|?=1 constrainC. :
dence of the modulation depends entirely on the behavior of
the background spacetime, that is the time dependence of 1+4y?
y.=k/aH. In particular, in the de Sitter limie—0, andy, |C.|?= 2
—-const, so that there is no additiorladependence in the Ye
power spectrum, although the normalization can be altere
A concrete example of this was studied[i2]. In the gen-
eral (non—de Sittercase, the boundary valyg is time de-
pendent, and we expect a modulation of the power spectru
[13].

(38

qh the limit y.—o, we have|C,|—1, as expected. We are
free to choose the overall phase, so we can write the two
r(I:]oefficients as

+i
L=t e

IIl. BOUNDARY CONDITIONS FOR THE 2Ye
ADIABATIC VACUUM

Danielssor{21] has proposed a general ansatz for param- e note that if we use the exact solution for the mode function
etrizing the choice of vacuum in an inflationary spacetimes) instead of the asymptotic versig¢hl), the vacuum rotation will
The choice of Bunch-Davies vacuum can be expressed asnacessarily be exactly zero. The essential physics of this ansatz is
relation between the field and its conjugate momentum in thehat we assume the mode is “created” in the local Minkowski state,
ultraviolet limit, but the true vacuum of the spacetime is slightly non-Minkowski.
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FIG. 1. Power spectrunP~4k) as a function ofk, for e FIG. 2. The modulatiom PY2P¥2=1—|C,+C_| as a func-

=0.01 andy(ko) = 100. tion of wave numbek, for e=0.01 andy.(k,) = 100.

cC =— i +iyc/(1—€) power spectrum is of order one percent—a potentially ob-
_=—5—¢e . (39
2y, servable value.

(A similar expression was derived in RdR22].) With vy,
«k€, the modulation of the power spectrum is then com-
pletely determined. Note also that the amplitude of the e have shown that, since any new physics at short dis-
vacuum rotatiorC _ is of ordery; *. If we consider a theory tance will influence the modes generated during inflation
with a cutoff at a scale.~M, the modulation of the power through the choice of boundary condition, it is possible to
spectrum is then first order id/M: derive a generic formula for the form of the quantum modes
at long wavelength. In the limit of de Sitter space, we re-
cover a scale-invariant perturbation spectrum regardless of
the choice of boundary condition, although with altered am-
plitude. However, for non—de Sitter backgrounds, the selec-
We expect in general that if short-scale physics results in @on of boundary condition has a potentially large effect on
rotation of the vacuum, then the lowest-order correction tahe form of the primordial power spectrum, both for scalar
C.. will be of this form[21,12,13. From Eq.(31), the cor- modes and tensor modes. Allowing freedom in the choice of
rection to the power spectrum is then also generically ovacuum opens up a very rich set of possibilities for the pri-
orderH/M. This is consistent with the modulation found in mordial power spectrum, since particular instances of the
Refs.[12,13,20,2] However, it must be emphasized that general solutior{31) can in principle take on a very complex
this answer depends on the choice of boundary condition foform. Tilting the spectra toward the red or the blue is pos-
the mode, and is not forced on us by the physics. Othesible, as well as introducing single features or oscillatory
choices are possible—including the choice of Bunch-Davieswehavior, depending on the background and the choice of
vacuum withC_=0! Only a more complete understanding boundary condition. However, we find in general that the
of short scale physics will fix the boundary conditions from scale dependence of the modulation is determined by the
first principles. deviation of the background spacetime from the de Sitter
Figures 1 and 2 show the power spectrum and modulalimit and not by the particular form of the boundary condi-
tion, respectively, for power-law inflation wite=0.01. We tions.
have chosen.~(M/H)=100, a value consistent with a cut-  We study the particular case of the ansatz proposed by
off determined by the string scale in conventional stringDanielsson for selecting the boundary condition for the mode
theory, which can be as much as two orders of magnitudéunction at the short-distance cutdft1], and extend the re-
larger than the Planck lendth24]. The modulation to the sult of Ref.[21] to the case of arbitrary background. We find
that deviations from the standard power spectra are generi-
cally of orderH/M, whereH is the Hubble constant during
2Taking M <mg, is also necessary to be consistent with the boundinflation, andM is the cutoff scale. This scenario provides a
derived by Starobinskj22]. much simpler realization of the effects studied in Refs.

IV. CONCLUSIONS

C 1
_~Ye T~ (40

M .
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[12,13 and suggests that the relevant physics determiningA2), form a coupled set of differential equations describing
the amplitude of the modulation is due to the presence of ¢he evolution of the universe. The fundamental quantities to
fixed cutoff scaleM, and not, for example, due to the break- be calculated are)(t) anda(t), and the potentiaV(¢) is

ing of Lorentz invariance. While the amplitude of the modu- input from some model. Inflation is defined to be a period of
lation depends sensitively on boundary conditions set by unaccelerated expansion
known short-scale physics, we find it exciting that there are )
well-motivated choices that yield changes to the primordial a
power spectrum at the edge of detectability with presently >0,
foreseen experimen{d 3].

(A6)

indicating an equation of state in which vacuum energy
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V(¢)=const,

APPENDIX: INFLATION AND THE PRODUCTION Note that with the Hubble distandd ! constant and the
OF FLUCTUATIONS scale factor increasing exponentially, comoving length scales

In this section we review the basics of scalar field dynam—ggfltlzes&?:lgnthlin tehneerhaﬁntzhoenHaL:ﬁbrlzpl(zjalryarrr?gti;ilﬁtigtOUt-

ics in inflationary cosmology with emphasis on the very use- -ng ' b

. . . .7 .~ be exactly constant, but will vary as the fiell evolves
ful Hamilton-Jacobi formalism{25-27. The emphasis is . .
pedagogical; a more formal review can be found in IRef. along the potentiaV/(¢). A convenient approach to the more

The first basic ingredient is a cosmological metric, which Wegeneral case is to express the Hubble parameter directly as a

shall take to be of the flat Robertson-Walker form function of the field¢ instead of as a function of time;
=H(¢). This is consistent as long dsis a single-valued

ds?’=dt?—a?(t)|dx|?=a’(r)[dr?—|dx|?]. (A1) function of ¢. Differentiating Eq.(A4) with respect to time,

The quantity 7 is the conformal time, withdt=ad7. The , : 8w , .
second ingredient is a spatially homogeneous scalar feld 2H(P)H (@) = ) [V'($)+ o]
with potentialV(¢) and equation of motion Pl
b+3HP+V'($)=0, A2 8w -
where the Hubble parameteris defined as Pl
- The equation of motioifA2) was used to simplify the right-
H= E) (A3)  hand side. Substituting back into the definitiontéfin Eq.
a (A4) results in the system of two first-order equations

An overdot denotes a derivative with respect to the coordi- _ mél

nate timet. If the stress energy of the universe is dominated d=— 4—H’(¢),
by the scalar fieldgp, the Einstein field equations for the m
evolution of the background metri@,,=87GT,, can be

- 127 3272
writien as [H' ()= —5 H2A(d)= = V(). (A9)
V2 g 1 mp) Mpy
28] 2T g+ 22 (A4) - i
a 3m3, 2 These equations are completely equivalent to the second-

order equation of motioriA2). The second of these is re-
and ferred to as thélamilton-Jacobiequation, and can be written
in the useful form
a 8 :
(—) =—[V(¢)— %], (A5)

al 3my H()

1
1-3e(9) V(¢),  (A10)

. o
3mp,
where mp=G~1?=10'° GeV is the Planck mass. These
background equations, along with the equation of motionwhere the parameter is defined as
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2 1 d?%z - 3 1, )
(Al11) - =2aH 1+E—§7]+E—267]+277+ g

zdr?
(A19)

The physical meaning of the parametercan be seen by

expressing Eq(A5) as Solutions to the second-order differential equation for the

modeu, in general contain two integration constants which
A can be taken to be phase and normalization. Normalization is

(_) =H%($)[1—e(d)], (A12) f!xed by the (;anonlcal quantlgat|on cond|t.|on for th_g fluctua-
a tions, which in terms of the is a Wronskian condition

so that the condition for inflatiofA6) is given simply bye L dug dug )
<1. Equivalently,e can be viewed as parametrizing the Uk g7 kg, =1 (A20)
equation of state of the scalar field matter, with the pressure
p and energy density related as Note that in the short wavelength limit, the equation of mo-
tion is just a wave equation. In a standard analysis, the phase
2 is fixed at short wavelengths by selecting the so-called
pP=p §€_1 : (A13)  “Bunch-Davies” vacuum, which is equivalent to specifying

thatu, receive a contribution only from a negative-frequency

The condition for inflatione<1 is the same ap+3p<0. component
The de Sitter case is=0 or p=—p. In what follows, it will —ikr

be convenient to define the additional paramefgts-31 uyce 7, ke, (A21)

The solution in the long wavelength limk—O0 is justu

mP,< () (A14) «z. It is the second conditiofA21) that we relax in this
H(¢) analysis, allowing contributions from both positive- and
negative-frequency components:
and . .
uxCoe k7 +C ek koo, (A22)
2 ’ m
E% H'(¢)H"(¢) (A15) The usual method of obtaining general solutions to the
Aar H2( ) ' mode equatiorfAl7) is to solve for the quantitygH) as a

function of the conformal timer. To do this, take the exact
These are often referred to as “slow-roll” parameters, but therelation
definition here is independent of the assumption of slow roll.
The metric perturbations created during inflation are of r= —d(aH) (A23)
two types: scalar, or curvature perturbations, which couple to (aH)*(1—¢)
the stress energy of matter in the universe and form the
“seeds” for structure formation, and tensor, or gravitational@nd integrate by parts:

wave perturbations, which do not couple to matter. Both sca-

lar and tensor perturbations contribute to CMB anisotropy. r=— f diaH) d [ 1
Scalar fluctuations can also be interpreted as fluctuations in (aH) (aH) d(aH)|1-
the density of the matter in the universe. The power spectrum
of curvature perturbations is given H$2] B 1 . 2e(e— 1) sar,
KUy (aH)(1-¢) ' J (aH)*(1-¢)
l/2(k)_ T ;- (AlG) (A24)

In the limit of power-law inflatione= »=const the second
wherek is a comoving wave number, and the mode functionintegral in Eq.(A24) vanishes, and the conformal time is

u satisfies the differential equatig83—35 exactly
d?uy 1 d%z 1
. 2_ 2" u.= == A25
s +<k - de)uk 0. (A17) = @mi-eo (A25)

The mode equatiofA17) then becomes a Bessel equation,

The quantityz is defined as with the solution

a 1
z=2\m| | =—mpae, (A18) U=V =TT C L H,(—kn)+ C_HE(—kn)], (A26)
and whereH , is a Hankel function of the first kind, and
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3—¢ Instead of expressing the mode equatigi?) as a dif-
=5 (A27)  ferential equation in the conformal time it is convenient to
2(1—¢) ) X X
switch variables to the wavelength of the fluctuation mode
Here we have normalized|, so that the Wronskian condition relative to the horizon sizg37],
(A20) is equivalent to the condition

14

LA A32
c.~|c_[2=1 (A28) y=lan/=In ) (A32)
on the constant§€ .. . Note that Eq(A28) is validin genera] ~ Then
not just in the short wavelengthk{>«) limit. Thus the
choice of the Bunch-Davies vacuum at short wavelength is d ——kd(aH)——k(l— )d (A33)
equivalent to settindC_=0 in the general solutiofA26). y= (aH)? 8T

The limit of de Sitter expansion is— 0, and this reduces to
»=3/2, which is the case of a scale invariant spectrunfnd the mode equatioi17) can be expressed exactly as
P(k) k. Thus, de Sitter expansion can be considered to be a 2, du

limiting case ?f_power-law inflation. The so-called “slow- y2(1— ¢)2= X4 2ye(e— ) —— +[y2—F(e€, 7,£)]u =0,
roll expansion” is an expansion in small parameters about d dy

the de Sitter limit. In cases wheee* 7, but bothe and » are (A34)
small, the conformal time is given by tlieow approximatg

. where
relation

3 1 1
1+e— - n+e’—2en+ 57724- Efz .

L L Fle7.6)=2 >

“GRE e amtte »29

T=
(A35)
Note that despite the formal similarity between this and therne case of tensor fluctuations is exactly analogous. The

power-law case, slow roll involves distinct assumptipsg): tensor fluctuation amplitude is defined as
the slow-roll and power-law solutions are the same only in

the de Sitter limit. Higher-order corrections can be obtained k3| v
.. . . Pl/2 k)= k (A36)
by continuing the integration by parts, 7 (k)= o2 _mp,a ;
1 2e(e—7) . - : on:
- o where the mode function, obeys the equation of motion:
T @l (1—e) 1+ 1=e)? +O0(en?)+ . ] 2
d Uy 1 d“a
(A30) W+( =2 gz |v=0. (A37)
As long as this series converges, the conformal time is well
defined as a series in slow-roll parameters. In the slow-roliris can be written in a form similar to E¢A34),
approximatione, n<<1, it is consistent to take and z to be
approximately constant, and the solutions are again Hankel , 2d2vk duy ) B
functions of the form(A26), with y{(1-e) v +2ye(e— ﬂ)d—y"'[y —(2—€)]Jvx=0.
3 (A38)
v=>5+2e-7 (A31)  This equation is also exact. We can then take Efjsand (3)
as the starting point for an analysis of the effect of the choice
to first order in the slow-roll parameters. of vacuum at short wavelengths.
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