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Dynamics of brane-world cosmological models
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We show that generically the initial singularity is isotropic in spatially homogeneous cosmological models in
the brane-world scenario. We then argue that it is plausible that the initial singularity is isotropic in typical
brane world cosmological models. Therefore, brane cosmology naturally gives rise to a set of initial data that
provides the conditions for inflation to subsequently take place, thereby solving the initial conditions problem
and leading to a self-consistent and viable cosmology.
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I. INTRODUCTION isotropic Robertson-WalkefRW) “Friedmann” model, for
which
Recent developments in string theory suggest that gravity
may be a truly higher-dimensional theory, becoming effec-
tively 4-dimensional at lower energies. This leads to modifi-
cations of Einstein’s theory of general relativii@R) at high
energies and particularly at early times. There is currentlyvhere D, is the totally projected part of the brane covariant
great interest in higher-dimensional gravity theories inspiredierivative. Hence, in such cosmological settings the evolu-
by string theory in which the matter fields are confined to ation of &, is fully determined, and the system of equations
3-dimensional “brane-world” embedded int13+d dimen-  is closed. In general/#0 in the Friedmann background.
sions, while the gravitational field can also propagate irdthe Much effort is currently being devoted to understanding the
extra dimensionsi.e., in the “bulk”) [1]. In this paradigm it cosmology of the brane world scenario, and the Friedmann
is not necessary for thé extra dimensions to be small or prane models have been extensively investigffedl.
even compact, a departure from the standard Kaluza-Klein Cosmological observations indicate that we live in a Uni-
scenario. In recent work Randall and Sundr{# have verse which is remarkably uniform on very large scales.
shown that, ford=1, gravity can be localized on a single However, the spatial homogeneity and isotropy of the Uni-
3-brane even when the fifth dimension is infinite. An elegantverse is difficult to explain within the standard GR frame-
geometric formulation and generalization of the class ofwork since, in the presence of matter, the class of solutions to
Randall-Sundrum-type brane-world models has been givethe Einstein equations which evolve towards a RW universe
in [3]. is essentially a set of measure z¢. In the inflationary
The dynamical equations on the 3-brane differ from thescenario, we live in an isotropic region of a potentially
GR equations by terms that carry the effects of embeddingighly irregular universe as the result of an expansion phase
and of the free gravitational fields in the 5-dimensional bulk.in the early universe thereby solving many of the problems
The local(quadrati¢ matter field corrections are significant of cosmology. Thus this scenario can successfully generate a
only at very high energies. In addition, there are nonlocahomogeneous and isotropic RW-like universe from initial
effects from the free gravitational field in the bulk, transmit- conditions which, in the absence of inflation, would have
ted via the projectiort,,, of the bulk Weyl tensor, that con- resulted in a universe far removed from the one we live in
tribute further corrections to the Einstein equations on thaoday. However, still only a restricted set of initial data will
brane.£,, can be irreducibly decomposédith respectto a lead to smooth enough conditions for the onset of inflation
timelike congruencau”) in terms of an effective nonlocal (i.e., the so-called cosmic no-hair theorems only apply to
energy density on the bran#, arising from the free gravi- non-generic modelg8]), so the issue of homogenization and
tational field in the bulk, an effective nonlocal anisotropic isotropization is still not satisfactorily solved. Indeed, the
stress,P,,, on the brane, and an effective nonlocal energyinitial conditions problem, that is to explain why the Uni-
flux on the braneQ,, [4]. verse so isotropic and spatial homogeneous from generic ini-
In general, the conservation equations do not determingal conditions, is one of the central problems of modern
all of the independent components &f, on the brane; in theoretical cosmology. We would like to revisit these issues
particular, there is no evolution equation f@Y,,. Thus in  in the context of brane cosmology.
general, the projection of the 5-dimensional field equations
onto the brane does not lead to a closed system. If the in-
duced metric on the brane is flat, and the bulk is anti—-de The field equations induced on the brane, using the
Sitter, as in the original Randall-Sundrum scen&fif) then ~ Gauss-Codazzi equations, matching conditions Zndym-
&,,=0. More importantly, in cosmology the background in- metry, were derived i§3,4], resulting in a modification of
duced metric is not flat, but a spatially homogeneous ané¢he standard GR equations with the new terms carrying bulk
effects onto the brane:

D U=9,=P,,=0, (1)

Governing equations

_ 2 ~4 _ _2-tot
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where «?=8/M; \=6x?/x". The generalized Friedmann oo, =652a, =0, ®)
equation, which determines the expansion of the universe, in
the case of spatially homogeneous cosmological models Bianchi type | models on the brane have been studied by a

given by number of authorg9,15]. A similar shear term occurs in
other hypersurface orthogonal Bianchi cosmological models
) 5 p 5 , 1 2U (such as Bianchi type V models
Ho=3« P(1+ x| g RtgotzA+ L () (iv) We assume that the matter content is a non-tilting

perfect fluid with a linear barotropic equation of state, i.e.,

where °R is the scalar curvature of the hypersurfaces orP=(v—1)p, where the energy conditions impjy=0, and

) . . . the constanty satisfiesye[0,2]. A dynamical analysis of
thogor_1a| to the f'“';’_f'o‘gvk; Wh'(.:h we associate with the €OS“scalar field models indicates that at early times the scalar
mological fluid, 2r“=0%"0,, is the shear scalar, and

o . field is effectively massless. A massless scalar field is equiva-
=ala is the mean Hubble expansion parameter. _lent to a perfect fluid with a stiff equation of state parameter
The brane energy-momentum tensor for a perfect fluid Or,— 2 Equation(5) then yieldsp = pya 37, wherepo>0.

a minimally coupled scalar field is given by We can therefore write down a phenomenological gener-
alized Friedmann equation:

T/LVZPUMUV+ph}LV’ (4)
. . . K’py  K%p5 k1 32 U,
whereu* is the 4-velocity,p andp are the energy density H?= T T e a2t aA 7 9
and isotropic pressure, aft,,=g,,+u,u, . It follows [3] 3a%” 6na® a” 3 & a
that the brane energy-momentum tensor separately satisfi;?_%. tion i licable i ide cl f tiallv h
the conservation equation, IS equation IS applicablé In a wide class ot spatially no-
mogeneous cosmological models; in particular, it is valid in
: Bianchi type | brane models. In many applications the four-
p+3H(p+p)=0. ) P iy

dimensional cosmological constant is assumed to be[2&ro

For a minimally coupled scalar field the energy density ancj;\e>reowe shall assume that if it is non-zero it is positive, i.e.

pressure are, respectively,

: : Il. EARLY UNIVERSE
p=3d*+V(¢), p=34*—V(e), (6)
_ _ _ _ It is of considerable interest to study the classical dynami-
and Eq.(5) is equivalent to the Klein-Gordon equation. cal effects in these cosmological models. A unique feature of

There are many reasons to consider cosmological modelsrane cosmology is thai? dominates at early times which
that are more general than RW, both spatially homogeneougill lead to completely different behavior from that in GR.
and anisotropic, and spatially inhomogeneous. First, there is the question of the existence of singularities.

(i) The 3-curvature in RW models is given byR  The generalized Raychaudhuri equation governs gravita-
=6k/a®, where k=0,+1 is the curvature constant. An tional collapse and initial singularity behavior on the brane.
equivalent 3-curvature occurs in spatially homogeneous angthe local energy density and pressure corrections further en-
isotropic curvature models, and a similar term occurs imhance the tendency to collap$ié 2 p+3p>0) [10]. The
other cosmological models. nonlocal term can act either way depending on its sign; a

(i) For BrangB)-RW models, Eq.(1) implies thati/  negativel/ enhances the localization of the gravitational field
=U(t). In the models of Bianchi type Q,=0 but there is  on the branéthe singularity can be avoided in this casand
no restriction orP,y,; however, the particular case in which g positivel/ acts against localization, and also reinforces the
this term is zero can be studied. Thus, in RW and BianCh'tendency to collapse. For the models governed by(8) it

type | models the evolution equation foiris [4] is easy to show that once a critical valueaofs attained, a
) singularity must occur.
U+4HU=0, (7) As in GR the powerful singularity theorems of Penrose

and Hawking, which guarantee the existence of spacetime

which integrates td/=U,/a*, which has the structure of a singularities, will be generally applicable in brane world
“dark” radiation fluid, wherel{, can be negative. models. However, these theorems give little information

(iii ) A Bianchi type | brane is covariantly characterized in about the nature of the singularities they predict. The most
[9]. The conservation equations reduce to B, an evolu-  detailed proposal for the structure of spacetime singularities
tion equation foi/ and a differential constraint oR,,,. The  in GR are the conjectures of Belinskii, Khalatnikov and Lif-
presence ofP,, in the governing equations means that inshitz (BKL) [11] which essentially consist of two parts. Part
general we cannot integrate to find the shear as in GR. Howk-is as follows: Perfect fluid spacetimésith a linear equa-
ever, when the nonlocal energy density vanishes or is neglidon of stat¢ with non-stiff matter have the property that
gible, i.e., U=0, then the conservation equations imply asymptotically close to the singularity, matter is not dynami-
a*"P,,=0, which is consistent on the brafé]. This as- cally significant. In the case of spatially homogeneous mod-
sumption is often made in the case of RW braf@s The els this implies that spacetimes are space-like and oscillatory
shear evolution equation may then be integrated to give (asymptotic Mixmaster behavior, oscillating indefinitely as
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the cosmological initial singularity is approached into the 2 ThyA
pas}, or are space-like and non-oscillatognd asymptoti- pll=p+ —+—+ —,
cally Kasner at the singularityIn the case of stiff matter, «
which includes the massless scalar field case, the matter is
not insignificant near the singularity and generically the
spacetimes have singularities which are space-like and non-
oscillatory (asymptotically of Jacobs form

Theoretical justification for part | of the BKL conjectures ~ For the  Bianchi type IX models with v
in Bianchi models, in which the Einstein equations are a=diag(a;,a3,a3), where the mean scale factor is given in
system of ordinary differential equatio®®DE's), has been terms of the three spatial scales By=a,a,as, it can be
provided using dynamical systems methddg] and more proven[17] from the conservation equatidb), the nonlocal
rigorous methodf13]. There are, howevespecialclasses of conservation equatiofv), and the perfect fluid generalized
models that do not obey the BKL conjectures in GR, theRaychaudhuri equation that there is a singulaféyt=0),
most important being models with asotropic initial singu-  @nd thatp— ast—0. Close to the singularity we have that
larity [14], whose evolution near the cosmological initial sin- H<0, and
gularity is approximatedin an appropriately defined math- 1 o
ematical sengeby the flat Friedmann model. tot_ eff__— 2 tot_ eﬁzﬂ 2

. p pe, pPO=p pe. (10
An essential feature of the brane models governed by Eq. 2\ 2\

. . . 2 6,)/ .
(9)is that at h|gh densm_es the term{pg/6ra”) dom'”?‘es The Bianchi type IX equations of motion then become
and the effective equation of state becomes ultra stiff. Con-

sequently matter dominates the shear and curvature the s 2 29 4 k*(1—y) 6 2

othe terms in Eq.(9) when y>1, leading to isotropic ex- ~ (Inap)"—(a;—az)"+a;=————a’p etcyc (11
pansion of the early universe in such cases. In particular,

0?/H?2—0 ast—0. where a prime denotes differentiation with respect 7o

Indeed, the flat, spatially homogeneous and isotropi¢wheredt=a3dr so thatr— —« as the singularity is ap-
non-GR brane-worldwithout brane tensionBRW model, proacheg, andet cyc.denotes two more equations obtained
denoted here byF,, in which a(t)~t¥®” [6], is always a by cycling the indices o&; on the left-hand side of Eq11)
source(repelley for y=1 [as can clearly be seen from Eq. (the right-hand side remains the samas in the GR case,
(9)]. These BRW models are valid as the initial singularity isthere exists a first integral
approachedt(—0), and therefore for all physically relevant 2/ N 2.2 4 o 6 2
values ofy the singularity is isotropi§14]. We expect this to (Inay)’(inaz)’+2asa;—ay +cyc =(«7/8N)avp '(12)
be a generic feature of more general cosmological models in
the brane-world scenario, as we will discuss further below. The BRW solutionF,, a;=a,=az=a=a, [with ay(t)

From Eq. (9), in the brane-world scenario anisotropy =t*"], occurs ag— —= (t—0) anda— . From the gov-
dominates at early times only fop<1 (whereas in GR it erning equationfwhere we use Eq12) to eliminatex?p?/\
dominates fory<2!), in which case the repellers are the in Egs.(11) and the Raychaudhuri equation governs the evo-
usual anisotropic Kasner models. In the absence of shear, ttigtion of H], we obtain the following 5 essential eigenvalues
BRW models are sources fop=1/3 when/=0 and y  for the linearization aboufy:
=2/3 wheni/+# 0 [15]. The fact that the initial singularity is
isotropic in Bianchi type | and type V models was noted in 3(y=1).3(y=1),@y=1).@y-1).@y-1) (13

[9,15]. (the first two eigenvalues corresponddbearmodes while

The particular models we have considered, in which thgne |ast three correspond turvaturemodes. Thus 7, is a
curvature and shear are given by the expressions in the aboygst-attractofrepeller/sourceof the Bianchi type IX models
phenomenological Eq9), are special. In particular, the Bi- for ,>1 (for y=1 the BRW solution is an analogue of the
anchi type | and type V models are not generic, and so thgacobs stiff fluid solution in GR and is a past attractor
study of the dynamics of these models does not shed light omihere are no other past attractts]; in particular, the ana-
the typical behavior of spatially homogeneous brane modeldogues of the non-flat Kasner vacuum solutions saddles
In order to do this we shall next consider the general BianchHence the singularity is non-oscillatory and isotropic. It can
type IX model. be shown thatF, is a source in all Bianchi mode[47].

The matter corrections to the Einstein equations on the The results are incomplete in that a description of the
brane are given b)SW=ﬁp2uMuv+ Sp(p+ 2p)h,, for a  gravitational field in the bulk is not provided. Unfortunately,
perfect fluid (or minimally coupled scalar fie)d There are the evolution of the anisotropic stress parhis determined
also nonlocal effects from the free gravitational field in theon the brane. These nonlocal terms also enter into crucial
bulk via 4. All of the bulk corrections may be consolidated dynamical equations, such as the Raychaudhuri equation and
into an effective total energy density via E®) so that the the shear propagation equation, and can lead to important
modified Einstein equations take on the standard perfect fluidffects. The correction terms must be consistently derived
form with from the higher-dimensional equations. Additional modifica-
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tions occur for more general higher-dimensioffallk) ge-  might offer an explanation of why our Universe might have
ometry, higher curvature corrections, higher-dimensionabegan its evolution in such a smooth manner and may pro-

matter fields in the bulk, and for motion of the brane. vide a realization of Penrose’s ideas on gravitational entropy
and the second law of thermodynamics in cosmolgtiy.
I1l. DISCUSSION More importantly, it is therefore possible that a quiescent

. o cosmological period occuring in brane cosmology provides a
_ Consequently, we have shown thgeinerically the initial  physical scenario in which the universe starts off smooth and
singularity is isotropidn spatially homogeneous brane world that naturally gives rise to the conditions for inflation to sub-
cosmological models. _ ~ sequently take place. As noted earlier, in the conventional
Part Il of the BKL conjectures is as follows: Each spatial scenario only a restricted set of initial data will lead to the
point evolves towards the singularity as if it were a spatiallyconditions possible for inflation to occur. We thus argue that
homogeneous cosmology. That is, generic spacetimes haygane cosmology in tandem with inflation may lead to a fully
the property that spatial points decouple near the singularitye|t-consistent and physically viable cosmoldgyg].
and the Einstein equations effectively reduce to ODEs, so gypsequently, the models evolve essentially as in standard
that the local dynamical behavior is asymptotically like Bi- cosmology. The modified Friedmann equation for a flat RW
anchi models near the singularity. Therefore, according to th%rane(with A=0=1) and the Klein-Gordon equatiob)
BKL ~conjectures, the . singularities n general four— ield p=—3¢?p at early times for a scalar field source, so
dimensional spacetimes in GR are space-like and oscillato atp is monotonically decreasing and the models will even-
or are space-like and non-oscillatdfg.g., for massless sca- tuaII’;/ evolve to the low density regime
lar,gr?li?{allysis of the behavior of spatially inhomogeneous The intermediate dynamics is affected by the brane cor-
. ) . . 2 - . rections. The issue of inflation on the brane was investigated
solutions to Einstein’s equations near an initial singularity is.

o . in [10], where it was shown that on a RW brane in
in its infancy, and hence there is less support for part Il of th%—dimensional anti—de Sitter space the quadratic term in
BKL conjectures. However, a special class of Abeli@n

. : . increases friction in the inflaton field equation and inflation
spatially inhomogeneous models were analyzed and it was, | ; . .

. . . . at high energies proceeds at a higher rate than the corre-
found that the evolution at different spatial points approach

that of different Kasner solutiongl8]. A recent numerical sponding rate in GR. Moreover, it was shown that, contrary

investigation of a class of vacuum Gow@, cosmological to expectations, a large initisdnisotropyintroduces more
9 . ogical damping into the scalar field equation of motion and results
spacetimes has shown evidence that at a generic point

. R T '} more inflation[9].
space the evolution towards the initial singularity is asymp- At late(r) times a number of features of the cosmological

totically that of a spatially homogeneous spacetime with 4 . : :

. X ynamics can be deduced directly from Ef), consistent
Mlxma_ster behaV|o_[19]. In both of these cases the Presence i the qualitative analysis of perfect fluid RW and Bianchi
of the inhomogeneity ceases to govern the dynamics asym

. ; . - FB)'/pe | and type V cosmological models in the Randall-
totically toward the sm_gularlty, thereby providing further Sundrum brane-world scenario 5], Models with a posi-
support for the BKL conjectures.

tive curvature can recollapse. However, 60 models can

s ;?iaallld d'ﬁﬁgﬁ'}g aei%eult;qug:gigvecfgmaﬁsif; anff:jseslsm(re)collapse(even without a positive curvaturéor any val-
P Y 9 2 9 ues ofy. Indeed, for/<0 and positive curvaturéas in the

(with one spatial degree of freedpmear the initial cosmo- k=1 BRW model3, there exist oscillating universes in

logical singularity, it was found thalF, is again a Iocal_ which the physical variables oscillate periodically without
source[17]. It was also argued, based upon local dynam|ca|r achin like sinqularites] (i q i
e g any spacelike singularity5] (it was noted earlier

con3|dera_t|ons a_nd.physmal _arggments_, that the main resu[lhat when there are bulk effects present a singularity can be
that the singularity is isotropic will persist when additional, avoided. When a positive cosmological constant is present
more general, affects are included. the de Sitter model is always the global attractor#i:0.

Thus it is plausible, from the BKL conjectures in GR and For <0, models car(re)collapse(even without a positive
from this recent study of spatially inhomogeneous brane ' P P

models, thattypically the initial singularity is isotropidn I(i)ucr:lt:trter}ai(t)og(]aa:u;n tLheISc%ass;remiéhﬁoqﬁaisrltiﬁggg%elisl,sc%r;ge?
brane world cosmological models. .
Therefore, unlike the situation in GR, it is plausible that aquently violatec[16]).
wide range of brane cosmological modédd of non-zero
measurg admit an isotropic singularity. Such a “quiescent” ACKNOWLEDGMENT
cosmology[20], in which the universe began in a highly
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