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Dynamics of brane-world cosmological models
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~Received 1 February 2002; published 17 July 2002!

We show that generically the initial singularity is isotropic in spatially homogeneous cosmological models in
the brane-world scenario. We then argue that it is plausible that the initial singularity is isotropic in typical
brane world cosmological models. Therefore, brane cosmology naturally gives rise to a set of initial data that
provides the conditions for inflation to subsequently take place, thereby solving the initial conditions problem
and leading to a self-consistent and viable cosmology.
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I. INTRODUCTION

Recent developments in string theory suggest that gra
may be a truly higher-dimensional theory, becoming eff
tively 4-dimensional at lower energies. This leads to mod
cations of Einstein’s theory of general relativity~GR! at high
energies and particularly at early times. There is curren
great interest in higher-dimensional gravity theories inspi
by string theory in which the matter fields are confined to
3-dimensional ‘‘brane-world’’ embedded in 1131d dimen-
sions, while the gravitational field can also propagate in thd
extra dimensions~i.e., in the ‘‘bulk’’! @1#. In this paradigm it
is not necessary for thed extra dimensions to be small o
even compact, a departure from the standard Kaluza-K
scenario. In recent work Randall and Sundrum@2# have
shown that, ford51, gravity can be localized on a sing
3-brane even when the fifth dimension is infinite. An eleg
geometric formulation and generalization of the class
Randall-Sundrum-type brane-world models has been g
in @3#.

The dynamical equations on the 3-brane differ from
GR equations by terms that carry the effects of embedd
and of the free gravitational fields in the 5-dimensional bu
The local~quadratic! matter field corrections are significan
only at very high energies. In addition, there are nonlo
effects from the free gravitational field in the bulk, transm
ted via the projectionEmn of the bulk Weyl tensor, that con
tribute further corrections to the Einstein equations on
brane.Emn can be irreducibly decomposed~with respect to a
timelike congruenceum) in terms of an effective nonloca
energy density on the brane,U, arising from the free gravi-
tational field in the bulk, an effective nonlocal anisotrop
stress,Pmn , on the brane, and an effective nonlocal ene
flux on the brane,Qm @4#.

In general, the conservation equations do not determ
all of the independent components ofEmn on the brane; in
particular, there is no evolution equation forPmn . Thus in
general, the projection of the 5-dimensional field equatio
onto the brane does not lead to a closed system. If the
duced metric on the brane is flat, and the bulk is anti–
Sitter, as in the original Randall-Sundrum scenario@2#, then
Emn50. More importantly, in cosmology the background i
duced metric is not flat, but a spatially homogeneous
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isotropic Robertson-Walker~RW! ‘‘Friedmann’’ model, for
which

DmU5Qm5Pmn50, ~1!

where Dm is the totally projected part of the brane covaria
derivative. Hence, in such cosmological settings the evo
tion of Emn is fully determined, and the system of equatio
is closed. In generalUÞ0 in the Friedmann background
Much effort is currently being devoted to understanding
cosmology of the brane world scenario, and the Friedm
brane models have been extensively investigated@5,6#.

Cosmological observations indicate that we live in a U
verse which is remarkably uniform on very large scal
However, the spatial homogeneity and isotropy of the U
verse is difficult to explain within the standard GR fram
work since, in the presence of matter, the class of solution
the Einstein equations which evolve towards a RW unive
is essentially a set of measure zero@7#. In the inflationary
scenario, we live in an isotropic region of a potentia
highly irregular universe as the result of an expansion ph
in the early universe thereby solving many of the proble
of cosmology. Thus this scenario can successfully genera
homogeneous and isotropic RW-like universe from init
conditions which, in the absence of inflation, would ha
resulted in a universe far removed from the one we live
today. However, still only a restricted set of initial data w
lead to smooth enough conditions for the onset of inflat
~i.e., the so-called cosmic no-hair theorems only apply
non-generic models@8#!, so the issue of homogenization an
isotropization is still not satisfactorily solved. Indeed, t
initial conditions problem, that is to explain why the Un
verse so isotropic and spatial homogeneous from generic
tial conditions, is one of the central problems of mode
theoretical cosmology. We would like to revisit these issu
in the context of brane cosmology.

Governing equations

The field equations induced on the brane, using
Gauss-Codazzi equations, matching conditions andZ2 sym-
metry, were derived in@3,4#, resulting in a modification of
the standard GR equations with the new terms carrying b
effects onto the brane:

Gmn52Lgmn1k2Tmn1k̃4Smn2Emn[k2Tmn
tot , ~2!
©2002 The American Physical Society12-1
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wherek258p/Mp
2 ,l[6k2/k̃4. The generalized Friedman

equation, which determines the expansion of the universe
the case of spatially homogeneous cosmological mode
given by

H25
1

3
k2rS 11

r

2l D2
1

6
3R1

1

3
s21

1

3
L1

2U
lk2

, ~3!

where 3R is the scalar curvature of the hypersurfaces
thogonal to the fluid flow, which we associate with the co
mological fluid, 2s2[sabsab is the shear scalar, andH
5ȧ/a is the mean Hubble expansion parameter.

The brane energy-momentum tensor for a perfect fluid
a minimally coupled scalar field is given by

Tmn5rumun1phmn , ~4!

whereum is the 4-velocity,r and p are the energy densit
and isotropic pressure, andhmn[gmn1umun . It follows @3#
that the brane energy-momentum tensor separately sat
the conservation equation,

ṙ13H~r1p!50. ~5!

For a minimally coupled scalar field the energy density a
pressure are, respectively,

r5 1
2 ḟ21V~f!, p5 1

2 ḟ22V~f!, ~6!

and Eq.~5! is equivalent to the Klein-Gordon equation.
There are many reasons to consider cosmological mo

that are more general than RW, both spatially homogene
and anisotropic, and spatially inhomogeneous.

~i! The 3-curvature in RW models is given by3R
56k/a2, where k50,61 is the curvature constant. A
equivalent 3-curvature occurs in spatially homogeneous
isotropic curvature models, and a similar term occurs
other cosmological models.

~ii ! For Brane~B!-RW models, Eq.~1! implies that U
5U(t). In the models of Bianchi type I,Qa50 but there is
no restriction onPab ; however, the particular case in whic
this term is zero can be studied. Thus, in RW and Bian
type I models the evolution equation forU is @4#

U̇14HU50, ~7!

which integrates toU5U0 /a4, which has the structure of
‘‘dark’’ radiation fluid, whereU0 can be negative.

~iii ! A Bianchi type I brane is covariantly characterized
@9#. The conservation equations reduce to Eq.~5!, an evolu-
tion equation forU and a differential constraint onPmn . The
presence ofPmn in the governing equations means that
general we cannot integrate to find the shear as in GR. H
ever, when the nonlocal energy density vanishes or is ne
gible, i.e., U50, then the conservation equations imp
smnPmn50, which is consistent on the brane@4#. This as-
sumption is often made in the case of RW branes@6#. The
shear evolution equation may then be integrated to give
02351
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Bianchi type I models on the brane have been studied b
number of authors@9,15#. A similar shear term occurs in
other hypersurface orthogonal Bianchi cosmological mod
~such as Bianchi type V models!.

~iv! We assume that the matter content is a non-tilt
perfect fluid with a linear barotropic equation of state, i.
p5(g21)r, where the energy conditions implyr>0, and
the constantg satisfiesgP@0,2#. A dynamical analysis of
scalar field models indicates that at early times the sc
field is effectively massless. A massless scalar field is equ
lent to a perfect fluid with a stiff equation of state parame
g52. Equation~5! then yieldsr5r0a23g, wherer0.0.

We can therefore write down a phenomenological gen
alized Friedmann equation:

H25
k2r0

3a3g
1

k2r0
2

6la6g
2

k

a2 1
1

3
L1

S2

a6 1
U 0

a4 . ~9!

This equation is applicable in a wide class of spatially h
mogeneous cosmological models; in particular, it is valid
Bianchi type I brane models. In many applications the fo
dimensional cosmological constant is assumed to be zero@2#;
here we shall assume that if it is non-zero it is positive,
L>0.

II. EARLY UNIVERSE

It is of considerable interest to study the classical dyna
cal effects in these cosmological models. A unique feature
brane cosmology is thatr2 dominates at early times whic
will lead to completely different behavior from that in GR
First, there is the question of the existence of singularit
The generalized Raychaudhuri equation governs grav
tional collapse and initial singularity behavior on the bran
The local energy density and pressure corrections further
hance the tendency to collapse~if 2r13p.0) @10#. The
nonlocal term can act either way depending on its sign
negativeU enhances the localization of the gravitational fie
on the brane~the singularity can be avoided in this case!, and
a positiveU acts against localization, and also reinforces
tendency to collapse. For the models governed by Eq.~9!, it
is easy to show that once a critical value ofa is attained, a
singularity must occur.

As in GR the powerful singularity theorems of Penro
and Hawking, which guarantee the existence of spacet
singularities, will be generally applicable in brane wor
models. However, these theorems give little informati
about the nature of the singularities they predict. The m
detailed proposal for the structure of spacetime singulari
in GR are the conjectures of Belinskii, Khalatnikov and L
shitz ~BKL ! @11# which essentially consist of two parts. Pa
I is as follows: Perfect fluid spacetimes~with a linear equa-
tion of state! with non-stiff matter have the property tha
asymptotically close to the singularity, matter is not dynam
cally significant. In the case of spatially homogeneous m
els this implies that spacetimes are space-like and oscilla
~asymptotic Mixmaster behavior, oscillating indefinitely
2-2
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the cosmological initial singularity is approached into t
past!, or are space-like and non-oscillatory~and asymptoti-
cally Kasner at the singularity!. In the case of stiff matter
which includes the massless scalar field case, the matt
not insignificant near the singularity and generically t
spacetimes have singularities which are space-like and
oscillatory ~asymptotically of Jacobs form!.

Theoretical justification for part I of the BKL conjecture
in Bianchi models, in which the Einstein equations are
system of ordinary differential equations~ODE’s!, has been
provided using dynamical systems methods@12# and more
rigorous methods@13#. There are, however,specialclasses of
models that do not obey the BKL conjectures in GR, t
most important being models with anisotropic initial singu-
larity @14#, whose evolution near the cosmological initial si
gularity is approximated~in an appropriately defined math
ematical sense! by the flat Friedmann model.

An essential feature of the brane models governed by
~9! is that at high densities the term (k2r0

2/6la6g) dominates
and the effective equation of state becomes ultra stiff. C
sequently matter dominates the shear and curvature~and the
other! terms in Eq.~9! when g.1, leading to isotropic ex-
pansion of the early universe in such cases. In particu
s2/H2→0 ast→0.

Indeed, the flat, spatially homogeneous and isotro
non-GR brane-world~without brane tension! BRW model,
denoted here byFb , in which a(t);t1/3g @6#, is always a
source~repeller! for g>1 @as can clearly be seen from E
~9!#. These BRW models are valid as the initial singularity
approached (t→0), and therefore for all physically relevan
values ofg the singularity is isotropic@14#. We expect this to
be a generic feature of more general cosmological mode
the brane-world scenario, as we will discuss further belo

From Eq. ~9!, in the brane-world scenario anisotrop
dominates at early times only forg,1 ~whereas in GR it
dominates forg,2!!, in which case the repellers are th
usual anisotropic Kasner models. In the absence of shea
BRW models are sources forg>1/3 when U50 and g
>2/3 whenUÞ0 @15#. The fact that the initial singularity is
isotropic in Bianchi type I and type V models was noted
@9,15#.

The particular models we have considered, in which
curvature and shear are given by the expressions in the a
phenomenological Eq.~9!, are special. In particular, the Bi
anchi type I and type V models are not generic, and so
study of the dynamics of these models does not shed ligh
the typical behavior of spatially homogeneous brane mod
In order to do this we shall next consider the general Bian
type IX model.

The matter corrections to the Einstein equations on
brane are given bySmn5 1

12 r2umun1 1
12 r(r12p)hmn for a

perfect fluid ~or minimally coupled scalar field!. There are
also nonlocal effects from the free gravitational field in t
bulk via U. All of the bulk corrections may be consolidate
into an effective total energy density via Eq.~2! so that the
modified Einstein equations take on the standard perfect fl
form with
02351
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1

k̃4U
k6

1
L

k2 ,

ptot5p1
r2

2l
1

rp

l
2

k̃4U
3k6

2
L

k2 .

For the Bianchi type IX models with g i j

5diag(a1
2 ,a2

2 ,a3
2), where the mean scale factor is given

terms of the three spatial scales bya35a1a2a3, it can be
proven@17# from the conservation equation~5!, the nonlocal
conservation equation~7!, and the perfect fluid generalize
Raychaudhuri equation that there is a singularity~at t50),
and thatr→` ast→0. Close to the singularity we have tha
Ḣ,0, and

r tot5reff5
1

2l
r2, ptot5peff5

~2g21!

2l
r2. ~10!

The Bianchi type IX equations of motion then become

~ ln a1
2!92~a2

22a3
2!21a1

45
k2~12g!

l
a6r2, et cyc. ~11!

where a prime denotes differentiation with respect tot
~where dt5a3dt so thatt→2` as the singularity is ap-
proached!, andet cyc.denotes two more equations obtain
by cycling the indices ofai on the left-hand side of Eq.~11!
~the right-hand side remains the same!. As in the GR case,
there exists a first integral

~ ln a1
2!8~ ln a2

2!812a1
2a2

22a1
41cyc.5~k2/8l! a6r2.

~12!

The BRW solutionFb , a15a25a35a[ab @with ab(t)
5t1/3g#, occurs ast→2` (t→0) anda→`. From the gov-
erning equations@where we use Eq.~12! to eliminatek2r2/l
in Eqs.~11! and the Raychaudhuri equation governs the e
lution of H#, we obtain the following 5 essential eigenvalu
for the linearization aboutFb :

3~g21!,3~g21!,~3g21!,~3g21!,~3g21! ~13!

~the first two eigenvalues correspond toshearmodes while
the last three correspond tocurvaturemodes!. ThusFb is a
past-attractor~repeller/source! of the Bianchi type IX models
for g.1 ~for g51 the BRW solution is an analogue of th
Jacobs stiff fluid solution in GR and is a past attracto!.
There are no other past attractors@17#; in particular, the ana-
logues of the non-flat Kasner vacuum solutions aresaddles.
Hence the singularity is non-oscillatory and isotropic. It c
be shown thatFb is a source in all Bianchi models@17#.

The results are incomplete in that a description of
gravitational field in the bulk is not provided. Unfortunatel
the evolution of the anisotropic stress part isnot determined
on the brane. These nonlocal terms also enter into cru
dynamical equations, such as the Raychaudhuri equation
the shear propagation equation, and can lead to impor
effects. The correction terms must be consistently deri
from the higher-dimensional equations. Additional modific
2-3
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tions occur for more general higher-dimensional~bulk! ge-
ometry, higher curvature corrections, higher-dimensio
matter fields in the bulk, and for motion of the brane.

III. DISCUSSION

Consequently, we have shown thatgenerically the initial
singularity is isotropicin spatially homogeneous brane wor
cosmological models.

Part II of the BKL conjectures is as follows: Each spat
point evolves towards the singularity as if it were a spatia
homogeneous cosmology. That is, generic spacetimes
the property that spatial points decouple near the singula
and the Einstein equations effectively reduce to ODEs,
that the local dynamical behavior is asymptotically like B
anchi models near the singularity. Therefore, according to
BKL conjectures, the singularities in general fou
dimensional spacetimes in GR are space-like and oscilla
or are space-like and non-oscillatory~e.g., for massless sca
lar fields!.

An analysis of the behavior of spatially inhomogeneo
solutions to Einstein’s equations near an initial singularity
in its infancy, and hence there is less support for part II of
BKL conjectures. However, a special class of AbelianG2
spatially inhomogeneous models were analyzed and it
found that the evolution at different spatial points approa
that of different Kasner solutions@18#. A recent numerical
investigation of a class of vacuum GowdyG2 cosmological
spacetimes has shown evidence that at a generic poin
space the evolution towards the initial singularity is asym
totically that of a spatially homogeneous spacetime w
Mixmaster behavior@19#. In both of these cases the presen
of the inhomogeneity ceases to govern the dynamics asy
totically toward the singularity, thereby providing furthe
support for the BKL conjectures.

In addition, in a recent qualitative analysis of a class
spatially inhomogeneousG2 brane cosmological model
~with one spatial degree of freedom! near the initial cosmo-
logical singularity, it was found thatFb is again a local
source@17#. It was also argued, based upon local dynami
considerations and physical arguments, that the main re
that the singularity is isotropic will persist when additiona
more general, affects are included.

Thus it is plausible, from the BKL conjectures in GR an
from this recent study of spatially inhomogeneous bra
models, thattypically the initial singularity is isotropicin
brane world cosmological models.

Therefore, unlike the situation in GR, it is plausible tha
wide range of brane cosmological models~and of non-zero
measure! admit an isotropic singularity. Such a ‘‘quiescen
cosmology@20#, in which the universe began in a high
regular state but subsequently evolved towards irregula
B
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might offer an explanation of why our Universe might ha
began its evolution in such a smooth manner and may p
vide a realization of Penrose’s ideas on gravitational entr
and the second law of thermodynamics in cosmology@21#.

More importantly, it is therefore possible that a quiesce
cosmological period occuring in brane cosmology provide
physical scenario in which the universe starts off smooth
that naturally gives rise to the conditions for inflation to su
sequently take place. As noted earlier, in the conventio
scenario only a restricted set of initial data will lead to t
conditions possible for inflation to occur. We thus argue t
brane cosmology in tandem with inflation may lead to a fu
self-consistent and physically viable cosmology@22#.

Subsequently, the models evolve essentially as in stan
cosmology. The modified Friedmann equation for a flat R
brane ~with L505U) and the Klein-Gordon equation~5!

yield ṙ523ḟ2r at early times for a scalar field source, s
thatr is monotonically decreasing and the models will eve
tually evolve to the low density regime.

The intermediate dynamics is affected by the brane c
rections. The issue of inflation on the brane was investiga
in @10#, where it was shown that on a RW brane
5-dimensional anti–de Sitter space the quadratic term ir
increases friction in the inflaton field equation and inflati
at high energies proceeds at a higher rate than the co
sponding rate in GR. Moreover, it was shown that, contr
to expectations, a large initialanisotropy introduces more
damping into the scalar field equation of motion and resu
in more inflation@9#.

At late~r! times a number of features of the cosmologic
dynamics can be deduced directly from Eq.~9!, consistent
with the qualitative analysis of perfect fluid RW and Bianc
type I and type V cosmological models in the Randa
Sundrum brane-world scenario of@15#. Models with a posi-
tive curvature can recollapse. However, forU,0 models can
~re!collapse~even without a positive curvature! for any val-
ues ofg. Indeed, forU,0 and positive curvature~as in the
k51 BRW models!, there exist oscillating universes i
which the physical variables oscillate periodically witho
reaching any spacelike singularity@15# ~it was noted earlier
that when there are bulk effects present a singularity can
avoided!. When a positive cosmological constant is prese
the de Sitter model is always the global attractor forU>0.
For U,0, models can~re!collapse~even without a positive
curvature! so that in this case the de Sitter model is only
local attractor~and the cosmic no-hair theorem is cons
quently violated@16#!.
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