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Does the measurement of a quantum system necessarily break Lorentz invariance? We present a simple
model of a detector that measures the spacetime localization of a relativistic particle in a Lorentz invariant
manner. The detector does not select a preferred Lorentz frame as a Newton-Wigner measurement would do.
The result indicates that there exists a Lorentz invariant notion of quantum measurement and sheds light on the
issue of the localization of a relativistic particle. The framework considered is that of single-particle mechanics
as opposed to field theory. The result may be taken as support for the interpretation postulate of the spacetime-
states formulation of single-particle quantum theory.
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I. INTRODUCTION freedom be chosen as an “intrinsic timg2,3] and taken to
play a special role. Preserving Lorentz invariance in a Lor-
Does the measurement of a quantum system necessarigntz invariant model provides an elegant way to show that,
break Lorentz invariance? Does a state prepared by a quadespite appearances at intermediate steps in our procedure,
tum measurement necessarily know about the Lorentz frameo such special role has in fact been assigned to any degree
in which the measurement was performed? Of course, thef freedom. While there is no exact symmetry to preserve
center of mass of any measurement apparatus selects a Lavhen similar methods are applied to models without Lorentz
entz frame, and the prepared state may well depend on thigvariant dynamics, our results here suggest that these meth-
frame. But can we use a fully Lorentz covariant descriptionods will continue to treat all degrees of freedom on an equal
of the system and the apparatus, and formulate a Lorentzonceptual footing.
covariant measurement theory, including the projection pos- Consider then the single-particle setting. In this frame-
tulate, such that all probabilities computed are Lorentz inwork, can we not just measure whether or not the particle is
variant? aroundx, with no reference to a simultaneity surface? More
The naive Copenhagen-style answer is that a quanturprecisely, is it not possible to compute a well defined prob-
measurement does break Lorentz invariance: a measurematiility P, , of detecting the particle arounyif it was previ-
happens at a certain timie namely on a specific simultane- ously detected arounx such tha®, , would not depend on
ity surface. Therefore it selects a Lorentz frame. As a consea preferred Lorentz frame?
guence, for instance, the localization of a quantum relativis- In this paper we argue that there is at least one limit in
tic particle is only defined after the choice of a frame. Onewhich this is possible, contrary to what is often assurtied
often discusses the Newton-Wigner position operafdls see[4]). Toward this aim, we present a simple model of a
which are not covariant. According to the Newton-Wigner detector for a relativistic particle, and show that the prob-
theory, we cannot simply measure whether or not the particlabilities of its outcomes are Lorentz invariant. More pre-
is at or around a spacetime poixt We can only measure cisely, we consider two detectors. The first detects the par-
whether or not the particle is aroundin a certain Lorentz ticle in a regionR, around a poink in order to prepare the
frame. This is reflected in the fact that the Newton-Wignerstate for the second measurement. Assuming the particle has
operators in different frames do not commute. Accordingly, abeen detectedand therefore that its wave function has
(generalizeyl quantum state prepared by a Newton-Wigner“collapsed™®), we calculate the probability that the particle
measurement does not depend only on the spacetinis then detected in a regidR, aroundy. We find this prob-
point—it also depends on a Lorentz frame at that point.  ability to be given by a Lorentz invariant function Bf, and
In the context of field theory, it is of course clear thatR, .
localized and covariant measurements can be associated with The two key ingredients for the definition of the detector
fieldssmeared over regions of spacetime. Our concern here e as follows. The first is the observatifs—9] that any
rather with single-particle mechanics. realistic detector interacts with the system during a time in-
In particular, we are interested in the possible implicationgerval which cannot be null. Thus, we shall not neglect the
for quantum cosmology through its well-known mathemati-
cal analogy with single-particle relativistic mechanics. Al-
though such quantum cosmology settings need not possesdwe follow tradition and use such language, though it is not nec-
Lorentz invariant dynamics, the issue is often raised ofessarily our intention to endorse a Copenhagen interpretation of
whether quantum cosmology requires that some degree @fuantum mechanics.
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finite duration of the interaction. Therefore the detection ofboth the relativistic and nonrelativistic cases, though the gen-
the particle “around” the poink does not mean here in small eralization tod dimensions is trivial.

spaceregion around, but rather is a smalipacetimeegion We want to measure the position of the particle at a cer-
aroundx. tain time. That is, we want to check whether the particle is

The second ingredient is the observation that any phySiCéﬂresent at a certain space poﬁqto at a certain timé=0.
interaction, including the one between the system and thgve thus set up a physical apparatus that interacts with the
measuring device, must be Lorentz invariant. Thus we Shabarticle. This apparatus will have a pointer that tells us
choose a Lorentz invariant interaction Hamiltonian describywhether or not the particle has been detected. We exploit the
ing the system/apparatus interaction. We take these two offreedom in choosing the boundary between the quantum sys-
servations into account and perform a standard analysis of @m under observation and the measuring apparatus: we treat
measurement using first order perturbation theory and thge particle and the detector as the quantum system, and
standard Copenhagen theory of the wave function collapse @ssume that the Von Neumann measurement is realized when
the time of the measurement. Our main tool is the standarghe position of the pointer is observed. This trick allows us to
trick of exploiting the freedom, pointed out by Von Neu- petter understand which aspect of the particle state is probed
mann, of moving the boundary between the quantum systefy an apparatus measuring the localization of the particle.
and the classical world. Thus, we describe the apparatus Consider a pointer which has two possible states: a state
guantum mechanically, and assume that the Copenhag¢0>, which corresponds to no detection, and a stdtg
measurements happen on the detector. which corresponds to detection. We represent the state space

The intermediate steps of the calculation are highly nonyf the coupled particle-detector system by the Hilbert space
covariant: the wave function collapses on a certain simultay , = H & C2, whereH is the Hilbert space of the particle
neity surface and so on. Rather surprisingly the various facang c2 s the state space of a two-state system. We write a

tors that depend on the Lorentz frame cancel out at the endyate of the combined system at titres[we use the notation
The result suggests that, at least in the limit we consider, :(i ]

there exists a Lorentz invariant notion of quantum measurey-(

ment and quantum collapse. One may also choose to take

this as an indication that such an interpretation exists more

generally. . N t any time after the interaction, one may describe the two
The result also sheds light on the controversial issue o . “ N .

oo A . Crerms in Eq.(1) as “branches” of the state corresponding to

the localization of a relativistic particle. The states prepare Yetection [1)) and nondetection|Q)) of the particle

and detected by the detector are different from the Newton- We write the s i functi pf " : ficle’

Wigner states. They were first introduced by Phil[i$], pacetime wave iunction of the particle's

though without a measurement interpretation. The result oftates Wo(t) and Wy(t) as yo(x,t)=(x|Wo(t)) and

this paper therefore shows that these states do correspondig(X,t)=(x|¥(t)). The free Hamiltonian of the particle is

a rather well defined measurement. Unlike the Newtonp?/2m, and we take the free Hamiltonian of the detector to

Wigner states, the Philips states are defined in a fully covabe zero. Note that here we are in a standard nonrelativistic

riant manner. setting so that the norm oF ; is ft=toddx|¢//o(x,t0)|, where

Finally, a covariant interpretation of quantum theory q is the dimension of a=t, slice and, as usual, unitarity
based on the so-called spacetime states has been propose(guaramees the norm to be independent,of

.[9] (see alscill]). This interpretation is based ona cpvariant We need an interaction Hamiltoniad;,;, representing
interpretation postulate on the extended configuration SPaCfa interaction that gives rise to the measuremlnt, must

In [9] it was shown that in the context of nonrelativistic have the following properties. First, it must cause the transi-

dard interpretation. The postulate was then assumed to tr)ﬂeon 10)—11). Secolnd, the Pf:l[tlcle should interact .only ator
d the spacetime positior=0,t=0. Thus the interac-

true, by inference, in more general contexts. The problenft’®U"

was raised of whether the postulate could be reconciled witHon Hamiltonian must be time dependent, and vanish for late
the predictions of relativistic quantum particle mechanics@nd €arly times. We have to concentrate the interaction
oundt=0. However, we cannot have a perfectly instanta-

The result that we obtain here using standard quantum theo ) ) . JoleLty
eous interaction because this would require infinite force to

and taking a certain limit is precisely the postulate[8f. - X
Therefore the result presented here provides some support fgVe @ finite effect. We must therefore assume that the inter-
action is nonvanishing for a finite period of time. Putting

the covariant formulation of quantum theory considered in . - i
[9]. these requirements together, and requiring that the Hamil-

tonian is self-adjoint, we arrive at an interaction Hamiltonian
of the form

V() =Wo()@|0)+Wy()®[1). 1

Il. ANONRELATIVISTIC PARTICLE DETECTOR

We begin by describing a related detector in the nonrela- Hin=aV(x,)(|1)(0]+[0)(1]) 2)

tivistic context, following[9] (see alsd6] for an earlier dis- .

cussion of the same detectofhis serves to set the stage for Wherea V(xt) is the potential acting on the particle in the
our relativistic(and Lorentz invarianttreatment in Sec. IV. interaction (with « a coupling constant The potential
For definiteness, we work in the familiart3L dimensions in ~ V(x,t) is concentrated in a small but finite spacetime region

023510-2



RELATIVISTIC QUANTUM MEASUREMENT

R, aroundx=0 andt=0. For simplicity, we také/ to be the
characteristic function of the regioR (one onR and zero

PHYSICAL REVIEW D 66, 023510 (2002

PR:f dx| g (X, ()|

elsewherg Nothing substantial changes in the discussion if

one uses a different functiovi.

The Schradinger equation for the spacetime wave func-

tions ¢o(X,t) and ¢, (X,t) reads

Py h? .

IﬁWZ—ﬁvzl/lo‘F aViy 3
ap,  hZ

Iﬁwz—ﬁvzlﬁlﬁ‘ aViyg. (4)

Assume that at some early tinig <0 the particle is in

2
_a_ 4 4,1 iy ! ’
= ﬁszd XfRd X'WOGX") ho(X) tho(X7). (12)

Since we have assumed thRt is small, we can take the

lowest order terms in the size & and assume tha&o(ﬁ,t)
is constant oveRR. If X is an arbitrary spacetime point R
we have then

2

some arbitrary normalized initial state and the pointer is inwhere

the statg0):
W (tin) =¥o(tin)®|0). )

What is the state of the system at a later time0? It is

« 2
Pr= c2p2 |o(Xz)| (13
i=J d4xJ d*yW(x;y) (14)
ci Jr R

is a normalization factor that plays an important role in what

straightforward to integrate the evolution equations to firstg|ows.

order ina. One obtains

Yo%t = f X WK i) (K i), ®)
- o >

hkt)= J AWt XV o) (D)
a >

== RdAX’W(X,tf;X')wo(X'), €S))

whereW is the propagator

g &b %
x' 1) = i[p(x—x")—E(t—t")] _
W(X,t;x",t") f4 zhszé S| E om

w

=f£ei/h[5(x'x")(52/2m)<tt’)1
474102

( 27rm )3’2 p| m(i—i')z}
=] expl———=—}. (9
ifi(t—t") 2ih(t—t")

Is the result that we have obtained reasonable? In order to
test it, let us assume that the regi@nhas a finite but very
small time extension. Then the measurement we consider can
be identified with a position measurement at a fixed time,
and we must recover the usual interpretation of the modulus
of the wave function as apatial probability density. If the
temporal sizeAt of R is very small mAt<#AV?®) com-
pared with its spatial volum@aV, the normalization factor
Cr” is easy to computésee[9)). It turns out to be given by

Cr2=AVAtZ (15)
Therefore the detection probability for this region is
Pr=YAV|o(xr)|%. (16)
Here
, a’At?
Y=o 17)

is a dimensionless parameter that characterizes the efficiency
of the detector. On the other hamly/|o(xz)|? is the prob-
ability for the particle to be detected in a small spatial region

The probabilityPy, that the pointer is observed in the state of volumeAV at timet; . Therefore] y/o(xz)|? is the spatial

|1) after the interaction is the norm oF ,(t;). Using the
well known properties of the propagator

W(x;y) =W(y;x) (10

and
W(i,t;i’,t’)zf dX"W(X,t; X" t)YW(X" t":X" 1),
(17)

this probability is easily computed

probability density and the result is fully consistent with the
standard interpretation of the wave function. The fagtdis
interpreted as the intrinsic efficiency of our detector. Note
that some such parameter is necessarily present as our per-
turbative analysis assumes that the interaction is weak.

After the measurement, we may consider the state of the
system collapse t&@,/||¥,||®|1). Namely after the mea-
surement, the state of the particle may be described by the
wave function

Patter(X) = CRfRdAYW(X;y)- (18)
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Notice that the dependences on both the initial wave functionvhere we have defined
and on the coupling constant disappear with the normal-

ization. We denote this state of the particle|&. That is
W(RZle):f d“Xf dyW(x;y). (26)
<X|R> = Yatter(X)- (19 R R
xplicitly, after the interaction we have course, this result is in no way Lorentz invariant.
Explicitly, after the i i h Of hi Itisi y L i i
We close this section with two brief comments on these
IR)=C f d*y|x) (20) results. First, note that this result could also have been
Rz ' achieved by simply coupling two copies of our detector to

the system. One would then consider the brangh) of the
where|x)=|x,t) is the eigenstate of the Heisenberg positionstate in which both detectof¢he one inR, and the one in
operatorx(t) with eigenvaluex. This is an example of a R2) are excited. Each detector has some efficiengyy,
spacetime-smeared state associated to a region, as defineddiMen by the appropriate form of E¢L7). From Eq.(21) it

[9]. follows that
Coming back to the statéy;) e H, for which (x| ) -
=,(x) and which represents the branch of the wave func- (Y12 12y = Y1V5((Ra| W ) P R R
tion in which the particle is detected iR, we see that this
state may be written = Y5P(RO)K R4 R, (27)
[1)=¥(R|Vo)[R). (21)  as desired.

) ] ) Finally, we remind the reader that in order to reach the
This result is the key to the standard measurement interpresnclusion(26) we must ask thaR, and R, have a large
tation that the interaction “measures” some projection assOseparation in timdrelative to some scale set by the size of
ciated with the normalized stafe) with some efficiency ) so that dispersion does indeed guarantee that the wave

y®. Itis of course important that the detector efficiencybe  function of the statéR,) is indeed nearly constant over the
independent of the initial stateV ). It immediately follows regionR,.

that the detection probabiliti?; can be written as

Pr=v(R| ¥ (22) Ill. RELATIVISTIC DYNAMICS

Summarizing, Eq(21) allows us to say that the detector ~ The quantum theory of a single relativistic particle is not
we have described prepares the statg defined in Eq(20); a reahsfuc theory_ since |_t ne'glects the physical phenomgnon
the amplitude to detect an arbitrady state isy(R|¥), and of particle creation which is described by quantum field
the efficiency of the detector ig?, given in Eq.(17). theory. Nevertheless it is interesting to ask whether there

It is convenient to denotéR|¥) as the amplitude for a exists a logically consistent quantum theory, or several,
particle in the statdW) to be detected iR. This is the whose classical limit is the dynamics of a single relativistic
theoretical amplitude of a hypothetical detector with effi- Particle and which respects the Lorentz invariance of the
ciency 1.(“Hypothetical” since above we have used pertur- classical theory. Two such quantizations appear natural: one

bation theory and therefore assumedand thereforey, to Whi_ch contains only positive frequency solutions _of the
be small) Klein-Gordon equation and one with both frequencies. For

Finally, consider two detectors: the detector 1 in the re-SimPplicity, we consider here only the firsthough adding the
gion R4, and the detector 2 in the regidR,. We takeR, negative frequency modes should not cause undue complica-

(entirely) in the past ofR,. Assume that the detector 1 has tons. We start from the classical theory defined by
detected the particle. What is then the probabfty » that

. . p?=m?, (28
the detector 2 detects the particle? Applying the results of the
previous section it is immediate to conclude that (treeo-
retical: y=1) probability is E>0, (29

_ 2 R R
Pr,r, = Ral R)I" (23 wherep=(p,E) andp®= —p?+E?2. We use herdi=c=1.
That | Upon quantization, the constrai(28) becomes the Klein-
atis Gordon equation
2
Pr.r =C& C3 f d*x f dyW(x;y)| . (24) P
2/%1 1772 IRy R, Z g2 2 v t)—
P Vet+me | ¢(x,t)=0 (30
Equivalently,
2
Py = IW(R2,Ry)| ' (25) 2However, our energies will no longer be entirely positive once
2" W(R1, R1)W(R2,R>) we add an interaction with the detector.
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and the positive energy conditid29) becomes the restric- U= aV(x,1)(|1)(0|+|0)(1]) (38)
tion to positiveﬂfrequencies. Equivalently, we can write the '
relativistic Schrdinger equation to the free positive frequency Hamiltoniath,. But the re-
P sulting theory is not Lorentz invariarieven at the classical
iﬁ'r”(;’t): V= V24 m2g(x,t) level). This can easily be seen from the relation
. E=Vp2+m?+U. (39
=Hoy(x,1), (31
) ) ) ) We have(keeping only the linear term in the perturbation
where the square root is defined by Fourier transféirm,
by spectral methods The general solutions(x) of these p?=m?+2EU. (40)
equations is the Fourier transform of a function supported on
the upper massi hyperboloid in momentum space, To get a Lorentz invariant theory, we must add a local

interaction to the constraii28). That is, we consider instead
the interaction between the particle and the detector defined

d* = -
lﬁ(X):J4—7725(E—\/p2+m2)¢(p)e'px. 32y
p?=m?+U. (41)

Given the wave function/;(i,O) on an initial time surface,
we obtain a solution of the Schiimger equation by E>O0. (42)

— A~ iHgt —
W (t)=e" oW (0)=Wo() ¥ (0). (33 To first order in the coupling we have

U
E=+ \/52+m2+ — (43)
P(x)= f dx' Wo(x;x",0) ¢/(x",0), (34) 2Vp?+m?

We order the corresponding Schimger equation symmetri-
cally, obtaining the total Hamiltonian

Explicitly, we have

where the kernel of the evolution operat@vy(t) is the
propagator

4 H=Ho+(2Ho) YU(2H)  Y2=Ho+H,. (44
wo(x;x')=f4—25(E—\/52+m2)eiP<XX’>
aa

Therefore,

P oo Hint=(2Ho) "Y2U(2H,) 12 45
_ dp2eip(x_x,)_iE(p)(t_t,), (35 int=(2Ho) (2Ho) (45
4m Even here the quantum system fails to be manifestly in-
. - = ) ) variant. Indeed, we have
with E(p)=+ Vp?+m?. This propagator is not a Lorentz
invariant object. For later purposes, we can consider also the 2

Lorentz invariant propagator ~ 2 =H?y
d

d*p .
W | =P 2_ .2 —ip(x—x") 1
W(X:X )_f4W25(p m?) g(E)ePx—x :H§¢+E(Hé’ZUH51’2+Hgl’ZUHé’2)¢+O(U2).
:Jd_pzéeip(x*—iw—iE(ﬁ)(t—t'). (36) (48
4m" 2E(p) However, it turns out that) andH, > commute in the limit
that we consider. To see this, note that at the semi-classical

Notice that level the commutator is a sum of terms involving derivatives
W= 2H W= (2H,) YAN(2H 1) 2 3 of the_ characteristic fun_cnofv with respect to the spatial
0 oW=(2Ho) (2Ho) 37 coordinates<'. But, we will act only on statefy,) that are
whereW(x;y) is the kernel ofW. approximately constant oveR, so that expectation values

involving d;V vanish. The vanishing of this commutator may
also be checked by a longer but fully quantum calculation.
As a result, our interaction is effectively Lorentz invariant.
Let us now couple a particle detector of the kind consid- Let us now consider a setting analogous to that of Sec. II,
ered in Sec. Il to the relativistic theory described in Sec. Ill.with the same sort of initial stateV')) evolving into a state
One may be tempted to simply add the interaction Hamil-with two branches|;) and|y,) corresponding to the de-
tonian tection of the particle iR and to the lack of such detection.

IV. RELATIVISTIC PARTICLE DETECTOR
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If we take V to represent the Heisenberg operaldr
=fdtV(>Z,t), the branch corresponding to detection may be

1 0/

Note that the associated wave function at a time after the
interaction would contain a factor &/, (representing time

evolution and would thus take the same form as in E).

PHYSICAL REVIEW D 66, 023510 (2002

Y5Pr,(Ri R, (53

wherePR1 is the probability of detecting the particle ;.

Thus, idealizing to a perfectf=1) detector of this sort, we
may say that the probability for a particle prepared/y) to
arrive inR, is

b o IW(Re Ry
R W(Ry, Ry)W(R,,Ry)

(54)

In this case, it will turn out that the detection probability is Here

proportional not toW y(xz), but to (x| 1/\2Hy|¥). As a
result, it is useful to introduce the state

[Ty = (48)

1

—|¥

\/2_H0| 0>

and the associated wave functi@iy(x) = (x| ¥).
Much as in Sec. I, we now assume thag(x) is roughly

constant over R. In this case, we haveV|¥,)
~W o (xz) [ 2d*x|x) so that we may write Eq(47) as

a 1 _
|4h1)= % \/?HO\PO(XR) fRd4X|X>- (49

Recall that our goal is to express this in the fof2i) of a
product of a state-independent detector efficiencya nor-
malized stat¢R), and an inner produgtR|¥ ) of the initial
state with the same normalized st¢fe):

)= ¥(RI¥)|R).

Introducing the spacetime voluméol,(R) of R and the
normalization factor

(50

CR?=W(R,R)= fRd“x fRd“yW(X.y), (51

we now make the identifications:

(04
7 hC2vol,(R)
R)=Cr | d*(aHo) )
R

(R|W )= CrVOl4(R) W o(Xr). (52

The last of these identifications is of course not independent,

but instead follows directly from the identification ¢R).

Note that the efficiency17) of the detector in Sec. Il can

also be written in the above form.
As pointed out in Sec. I, the fortb0) immediately im-
plies that when two detector@ssociated with region®,

W(R,,Rq)= fR d“fo dyW(x;y) (55)
1 2

whereW(x;y) is the Lorentz invariant propagator, defined in
Eq. (36).

That is, despite the appearance oH@ Y2 in the defi-
nition of | R), the probability amplitude to detect the particle
in R, if it was detected inR, is Lorentz invariant. In the
next section we will come to understand this factor of
(2H,) Y2 as merely compensating for writif@®) in terms
of states|x) whose inner product singles out a preferred
Lorentz frame. This factor will disappear whgR) is writ-
ten in terms of the truly Lorentz invariant “Philips states.”

V. PHILIPS STATES

Historically, two types of(generalizell states have been

associated to spacetime points (x,t) in relativistic quan-
tum mechanics. Recall from Ed32) that we can write

#(x,t) as the Fourier transform of a function supported on
the upper masgi hyperboloid in momentum space

d* - -
t//(X)=j4—;5(E—sz+m2)¢(p)8'px- (56)

We can also write the equivalent but more covariant looking
expression

w(x)=fd“pé(pz—mz)ﬁ(E)?&(p) 2pee’*.  (57)

We remind the reader tha2pe'P* gives plane waves with
the Lorentz invariant normalization @) ®)(p—p’) on the
mass shell, corresponding to the Lorentz invariant measure
d3p/(2py). The relation between Eq&6) and(57) is obvi-
ously

1/2

b(p). (58)

Pp)=| —F—
(2 52+m2>

Now, pick a pointy in Minkowski space and consider the

two generalized states associated to this point defined, re-

spectively, by

andR,) are considered, the probability of detecting the par-

ticle in both regions is

Py(p)=e€'PY (59)
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and by where| %) is the state introduced in E¢48). Intuitively, in
_ , the limit in which the regiorR shrinks to a poiny, the states
dy(p)=e. (60 |R) approachy{""). Thus, the detector we have described

- . ) is a “detector of Philips states.”
Explicitly, the two states are given by the following two course, all propagators that we have considered

solutions of the relativistic Schdinger equation: “propagate faster than light,” as is well known. They do not
(NW)[ o vanish at spacelike separations. The leakage out of the light

Py (X)=Wo(Xx.y), (61) cone is small: it is exponentially damped with the Compton

and wavelength of the particle. In particular, the Philips states

associated to the different spatial points on a given simulta-
PH), o\ _ neity surface are not orthogonal to each other. This feature of
% )(x)—Wl,z(x,y), (62) the special relativistic quantum dynamics of a particle is
; _ 12_ 112 sometimes regarded as a defect of the theory, which could
where, in operator formWi,=Wo/(2Ho) “=W(2Ho) = ompromise its consistency or its classical limit. We do not
hink this is the case. Simply, the quantum particle has an
intrinsic Compton “extension” that allows it to excite two
<¢(PH)|¢(PH)>:W(y X). (63) §pe_10elike S(.aparafte(but CIQSQ detectqrsf’. In the classical

y X ’ limit, the trajectories stay inside the light cone.

Of course, this acausal feature makes the theory less at-
tractive than quantum field theofin which such effects do
not occuy. Note that this observation implies that the above
detectors cannot be constructed from quantum field theoretic
local measuring devices in any limit. As a result, they pre-
sumably do not correspond to “real” particle detectors any

12 more than do the Newton-Wigner detectorich share this
%pH)()g):f df)( _ 1 ) elP(x=y) (65) gcgusal proper)ylnstead, t.hese detectors exist in a “relativ-
24 m? istic particle” system that is best thought of as a toy model
for quantum cosmology.

The Lorentz invariance of the Philips states is now manifes
from the inner product

If y=(§,t), the states are given at fixed timéy
YN (x)=8(x,y) (64)

and

Therefore the statez;.txg,'\‘w’ form a(generalizegl orthonormal
basis VI. EXACTLY LORENTZ INVARIANT DETECTOR

N N - =, .
( ¢§7 tM|¢,§ ,\:V)>: 83(y,y") (669 ~ We found the detector above to be effectively Lorentz

' ’ invariant due to the fact thdd andH, commute in the limit
while the states/"") do not. The stateg") are the well ~hat we have tak;an. One r_mghtl asl|<_ at()jogt a trulyv\l;orer?tﬁ
known Newton-Wigner state$l]: they diagonalize the invariant notion of a spacetime localized detector. We shal

Newton-Wigner position operator at timeThey are nonco- not discuss this issue in detail, but we sketch here a possible
answer.
€

variantly defined. That is, they depend not only on the space= Consider the followi ifestly L . . |
time pointy, but also on the choice of a preferred Lorentz . onsl e_r_t € Joflowing man g;ty _orentz Invariant aigo-
rithm. By fixing boundary conditions in the past as we did

frame aty. above, one can compare solutions of tjuadraticconstraint
What about the states!P™? They are associated to the ’ ; \ :
o8y y p2+m?=0 with solutions of the perturbed quadratic con-

spacetime poiny and are invariantly defined. That is, they traintp?+m2+U=0. One simply imposes that the two so-

only depend on the point, not on any choice of referenc‘isutions agree on any Cauchy surface to the past of the sup-
frame at the point. These states were first considered by Phil- 9 Y Y P P

ips [10], shortly after the appearance of the Newton-Wigne aﬁg 3];1Uér-trl?rtt)23 ?(;ﬂrs?rgifntgeasg?npoart rzﬁe, ;hnil Fi?lreturtzzft(ilrbed
paper. In spite of the virtue of being covariantly defined, the unp ) 9 9 P
PIutlon can be written as a sum of two unperturbed solu-

Philips states have not been very popular. The reason is th . o L
so far their physical interpretation has not been clear. In paréons as in Eq(1). One would then associate *probabilities

ticular it was not clear what kind of measurement Wouldfor detection/nondetection with the norms of these two un-

produce a Philips state. The discussion in the previous Seﬁ_erturbed states. One needs only a Lorentz-invariant defini-

tion shows that the spacetime detector considered there do Qn of this norm to complete th? dlscus_5|on. . .
indeed prepare states of this sort. In particular, In general, one cannot restrict consideration to positive

frequency states, as negative frequencies may be introduced
by the interactionU. However, the technique known as
|R)=f d*x| Py, (67)  “group averaging”(see e.g[12-15) allows one to define a

R positive definite manifestly Lorentz invariant inner product

An immediate consequence is the property

(PH) ~ 3Nevertheless, one wonders if this might be improved in a single-
(y by=1(y), (68)  particle formalism which allows negative frequency states.
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on all solutions of any constraint of the forpf+m?+U think about quantum measurement in a fully covariant way,
=0 whereU is a localized disturbance. In fact, it defines at least in a certain limit. By covariant, we mean not only
such an inner product in much more general circumstancethat Lorentz invariance can be preserved in models with Lor-
as well. See in particular the recent work[@6—-18 for the  entz invariant dynamics, but more generally that measure-
connection to BRST techniques. The fact that it is positivement models exist which treat all degrees of freedom on an
definite is a strong advantage over the historically moresqual conceptual footing. This result is close in spirit with
popular Klein-Gordon inner product. Hartle’s generalized quantum mechanjds. See alsd19-

We do not pursue here a detailed treatment of this mani21].
festly Lorentz-invariant approach, because of the distance In particular, the results presented here support the legiti-
from the familiar von Neumann measurement theory of nonimacy of the particular postulate proposed®l1] for a co-
relativistic quantum mechanics. Furthermore, due to the asrariant spacetime-states formulation(c&nonical quantum
signment of positive norms to negative frequency statestheory” According to this postulate, the probability for de-
such a scheme can be physically appropriate only in théecting a system in a small regidd’ of the extended con-
guantum cosmology setting. In that context, negative frefiguration space if it was detected in a small regiBnis
guency states can be interpreted simply as collapsing ungiven by
verses and not as particles traveling backwards in time. Per-
haps there is some general lesson in this last observation, in IW(R5,Ry)|2
that one must decide at the outset whether one wishes to Pr,r,= WR, ROW(R, Ry’
discuss something approximating the relativistic particles of 17 2™
the real world(which are of course properly described by
excitations of a field theobyor whether one really wishes to Where
discuss a simplified model of quantum cosmology. While the
two systems seem rather similar mathematically, the radi-
cally different conceptual status of the associated causal W(R2,R1) = f dx f dyWx;y) (70)
structures on the configuration space may in the end require R1 Re
radically different foundations for the corresponding notions

(69

of measurement theory and detectors. wheredx is a measure on the extended configuration space
and W(x;y) is the covariant propagator that defines the
VIl. CONCLUSIONS quantum theory. This postulate is assumed to replace and

generalize the usual interpretation of the wave function, in
Does a real particle detector detect a Newton-Wigner stat@hich measurements happen at fixed time. Here we have
or a Philips state? Is a real detector better represented by tR@own that this postulate is true in a certain limit of relativ-
interaction that we have described or by a Newton-Wigneistic quantum particle mechanics, provided that the interac-
operator? As noted above, the proper answer is “neither,” asion producing the measurement is described in a covariant
a real particle detector is a local construction in quantummanner.
field theory. However, taking the relativistic particle as a toy
model for quantum cosmology, one may still ask which de-
tector is the most useful. In this context, the Philips detector 4one can also imagine a fully covariant interpretation without a
has the interesting property of being associated with Lorentg|ass of preferred measurements such as those associated with
invariant probabilities. spacetime regions above. In such a framework, our Philips mea-
The interest of the model we have presented, however, isurements would stand on an equal footing with tfieme-
not in the realism of the model detector considered. Rather, iependent Newton-Wigner measurements. This is essentially the
is in the fact that the construction shows that it is possible tdormulation used irf12].
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