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Relativistic quantum measurement
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Does the measurement of a quantum system necessarily break Lorentz invariance? We present a simple
model of a detector that measures the spacetime localization of a relativistic particle in a Lorentz invariant
manner. The detector does not select a preferred Lorentz frame as a Newton-Wigner measurement would do.
The result indicates that there exists a Lorentz invariant notion of quantum measurement and sheds light on the
issue of the localization of a relativistic particle. The framework considered is that of single-particle mechanics
as opposed to field theory. The result may be taken as support for the interpretation postulate of the spacetime-
states formulation of single-particle quantum theory.
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I. INTRODUCTION

Does the measurement of a quantum system necess
break Lorentz invariance? Does a state prepared by a q
tum measurement necessarily know about the Lorentz fr
in which the measurement was performed? Of course,
center of mass of any measurement apparatus selects a
entz frame, and the prepared state may well depend on
frame. But can we use a fully Lorentz covariant descript
of the system and the apparatus, and formulate a Lor
covariant measurement theory, including the projection p
tulate, such that all probabilities computed are Lorentz
variant?

The naive Copenhagen-style answer is that a quan
measurement does break Lorentz invariance: a measure
happens at a certain timeT, namely on a specific simultane
ity surface. Therefore it selects a Lorentz frame. As a con
quence, for instance, the localization of a quantum relati
tic particle is only defined after the choice of a frame. O
often discusses the Newton-Wigner position operators@1#,
which are not covariant. According to the Newton-Wign
theory, we cannot simply measure whether or not the part
is at or around a spacetime pointx. We can only measure
whether or not the particle is aroundx in a certain Lorentz
frame. This is reflected in the fact that the Newton-Wign
operators in different frames do not commute. Accordingly
~generalized! quantum state prepared by a Newton-Wign
measurement does not depend only on the space
point—it also depends on a Lorentz frame at that point.

In the context of field theory, it is of course clear th
localized and covariant measurements can be associated
fieldssmeared over regions of spacetime. Our concern he
rather with single-particle mechanics.

In particular, we are interested in the possible implicatio
for quantum cosmology through its well-known mathema
cal analogy with single-particle relativistic mechanics. A
though such quantum cosmology settings need not pos
Lorentz invariant dynamics, the issue is often raised
whether quantum cosmology requires that some degre
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freedom be chosen as an ‘‘intrinsic time’’@2,3# and taken to
play a special role. Preserving Lorentz invariance in a L
entz invariant model provides an elegant way to show th
despite appearances at intermediate steps in our proce
no such special role has in fact been assigned to any de
of freedom. While there is no exact symmetry to prese
when similar methods are applied to models without Lore
invariant dynamics, our results here suggest that these m
ods will continue to treat all degrees of freedom on an eq
conceptual footing.

Consider then the single-particle setting. In this fram
work, can we not just measure whether or not the particl
aroundx, with no reference to a simultaneity surface? Mo
precisely, is it not possible to compute a well defined pro
ability Py,x of detecting the particle aroundy if it was previ-
ously detected aroundx, such thatPy,x would not depend on
a preferred Lorentz frame?

In this paper we argue that there is at least one limit
which this is possible, contrary to what is often assumed~but
see@4#!. Toward this aim, we present a simple model of
detector for a relativistic particle, and show that the pro
abilities of its outcomes are Lorentz invariant. More pr
cisely, we consider two detectors. The first detects the p
ticle in a regionRx around a pointx in order to prepare the
state for the second measurement. Assuming the particle
been detected~and therefore that its wave function ha
‘‘collapsed’’1!, we calculate the probability that the partic
is then detected in a regionRy aroundy. We find this prob-
ability to be given by a Lorentz invariant function ofRx and
Ry .

The two key ingredients for the definition of the detect
are as follows. The first is the observation@5–9# that any
realistic detector interacts with the system during a time
terval which cannot be null. Thus, we shall not neglect

1We follow tradition and use such language, though it is not n
essarily our intention to endorse a Copenhagen interpretatio
quantum mechanics.
©2002 The American Physical Society10-1
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finite duration of the interaction. Therefore the detection
the particle ‘‘around’’ the pointx does not mean here in sma
spaceregion aroundx, but rather is a smallspacetimeregion
aroundx.

The second ingredient is the observation that any phys
interaction, including the one between the system and
measuring device, must be Lorentz invariant. Thus we s
choose a Lorentz invariant interaction Hamiltonian desc
ing the system/apparatus interaction. We take these two
servations into account and perform a standard analysis
measurement using first order perturbation theory and
standard Copenhagen theory of the wave function collaps
the time of the measurement. Our main tool is the stand
trick of exploiting the freedom, pointed out by Von Neu
mann, of moving the boundary between the quantum sys
and the classical world. Thus, we describe the appar
quantum mechanically, and assume that the Copenha
measurements happen on the detector.

The intermediate steps of the calculation are highly n
covariant: the wave function collapses on a certain simu
neity surface and so on. Rather surprisingly the various
tors that depend on the Lorentz frame cancel out at the
The result suggests that, at least in the limit we consid
there exists a Lorentz invariant notion of quantum measu
ment and quantum collapse. One may also choose to
this as an indication that such an interpretation exists m
generally.

The result also sheds light on the controversial issue
the localization of a relativistic particle. The states prepa
and detected by the detector are different from the Newt
Wigner states. They were first introduced by Philips@10#,
though without a measurement interpretation. The resul
this paper therefore shows that these states do correspo
a rather well defined measurement. Unlike the Newt
Wigner states, the Philips states are defined in a fully co
riant manner.

Finally, a covariant interpretation of quantum theo
based on the so-called spacetime states has been propo
@9# ~see also@11#!. This interpretation is based on a covaria
interpretation postulate on the extended configuration sp
In @9# it was shown that in the context of nonrelativist
quantum mechanics this postulate is equivalent to the s
dard interpretation. The postulate was then assumed to
true, by inference, in more general contexts. The prob
was raised of whether the postulate could be reconciled w
the predictions of relativistic quantum particle mechani
The result that we obtain here using standard quantum th
and taking a certain limit is precisely the postulate of@9#.
Therefore the result presented here provides some suppo
the covariant formulation of quantum theory considered
@9#.

II. A NONRELATIVISTIC PARTICLE DETECTOR

We begin by describing a related detector in the nonre
tivistic context, following@9# ~see also@6# for an earlier dis-
cussion of the same detector!. This serves to set the stage f
our relativistic~and Lorentz invariant! treatment in Sec. IV.
For definiteness, we work in the familiar 311 dimensions in
02351
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both the relativistic and nonrelativistic cases, though the g
eralization tod dimensions is trivial.

We want to measure the position of the particle at a c
tain time. That is, we want to check whether the particle
present at a certain space pointxW50 at a certain timet50.
We thus set up a physical apparatus that interacts with
particle. This apparatus will have a pointer that tells
whether or not the particle has been detected. We exploit
freedom in choosing the boundary between the quantum
tem under observation and the measuring apparatus: we
the particle and the detector as the quantum system,
assume that the Von Neumann measurement is realized w
the position of the pointer is observed. This trick allows us
better understand which aspect of the particle state is pro
by an apparatus measuring the localization of the particl

Consider a pointer which has two possible states: a s
u0&, which corresponds to no detection, and a stateu1&,
which corresponds to detection. We represent the state s
of the coupled particle-detector system by the Hilbert sp
HPD5H ^ C2, whereH is the Hilbert space of the particl
andC2 is the state space of a two-state system. We writ
state of the combined system at timet as@we use the notation
x5(xW ,t)#

C~ t !5C0~ t ! ^ u0&1C1~ t ! ^ u1&. ~1!

At any time after the interaction, one may describe the t
terms in Eq.~1! as ‘‘branches’’ of the state corresponding
detection (u1&) and nondetection (u0&) of the particle.

We write the spacetime wave function of the particle
states C0(t) and C1(t) as c0(xW ,t)5^xW uC0(t)& and
c0(xW ,t)5^xW uC0(t)&. The free Hamiltonian of the particle i
pW 2/2m, and we take the free Hamiltonian of the detector
be zero. Note that here we are in a standard nonrelativ
setting so that the norm ofC0 is * t5t0

ddxuc0(x,t0)u, where

d is the dimension of at5t0 slice and, as usual, unitarit
guarantees the norm to be independent oft0.

We need an interaction HamiltonianHint , representing
the interaction that gives rise to the measurement.Hint must
have the following properties. First, it must cause the tran
tion u0&→u1&. Second, the particle should interact only at
around the spacetime positionxW50,t50. Thus the interac-
tion Hamiltonian must be time dependent, and vanish for l
and early times. We have to concentrate the interac
aroundt50. However, we cannot have a perfectly instan
neous interaction because this would require infinite force
have a finite effect. We must therefore assume that the in
action is nonvanishing for a finite period of time. Puttin
these requirements together, and requiring that the Ha
tonian is self-adjoint, we arrive at an interaction Hamiltoni
of the form

Hint5aV~xW ,t !~ u1&^0u1u0&^1u! ~2!

wherea V(xW ,t) is the potential acting on the particle in th
interaction ~with a a coupling constant!. The potential
V(xW ,t) is concentrated in a small but finite spacetime reg
0-2
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R, aroundxW50 andt50. For simplicity, we takeV to be the
characteristic function of the regionR ~one onR and zero
elsewhere!. Nothing substantial changes in the discussion
one uses a different functionV.

The Schro¨dinger equation for the spacetime wave fun
tions c0(xW ,t) andc1(xW ,t) reads

ı\
]c0

]t
52

\2

2m
¹W 2c01aVc1 ~3!

ı\
]c1

]t
52

\2

2m
¹W 2c11aVc0 . ~4!

Assume that at some early timet in!0 the particle is in
some arbitrary normalized initial state and the pointer is
the stateu0&:

C~ t in!5C0~ t in! ^ u0&. ~5!

What is the state of the system at a later timet f@0? It is
straightforward to integrate the evolution equations to fi
order ina. One obtains

c0~xW ,t !5E dxW8W~xW ,t;xW8,t in!c0~xW8,t in!, ~6!

c1~xW ,t f !5
a

i\E d4x8W~xW ,t f ;x8!V~x8!c0~x8! ~7!

5
a

i\ER
d4x8W~xW ,t f ;x8!c0~x8!, ~8!

whereW is the propagator

W~xW ,t;xW8,t8!5E dpW

4p2\2
dEei /\[ pW (xW2xW8)2E(t2t8)]dS E2

pW 2

2m
D

5E dpW

4p4\2
ei /\[ pW (xW2xW8)2(pW 2/2m)(t2t8)]

5S 2pm

i\~ t2t8!
D 3/2

expH 2
m~xW2xW8!2

2i\~ t2t8!
J . ~9!

The probabilityPR that the pointer is observed in the sta
u1& after the interaction is the norm ofC1(t f). Using the
well known properties of the propagator

W~x;y!5W~y;x! ~10!

and

W~xW ,t;xW8,t8!5E dxW9W~xW ,t;xW9,t9!W~xW9,t9;xW8,t8!,

~11!

this probability is easily computed
02351
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PR5E dxW uc1~xW ,t f !u2

5
a2

\2ER
d4xE

R
d4x8W~x;x8!c0~x!c0~x8!. ~12!

Since we have assumed thatR is small, we can take the
lowest order terms in the size ofR and assume thatc0(xW ,t)
is constant overR. If xR is an arbitrary spacetime point inR
we have then

PR5
a2

CR
2 \2

uc0~xR!u2 ~13!

where

1

CR
2

5E
R

d4xE
R

d4yW~x;y! ~14!

is a normalization factor that plays an important role in wh
follows.

Is the result that we have obtained reasonable? In orde
test it, let us assume that the regionR has a finite but very
small time extension. Then the measurement we consider
be identified with a position measurement at a fixed tim
and we must recover the usual interpretation of the modu
of the wave function as aspatial probability density. If the
temporal sizeDt of R is very small (mDt!\DV2/3) com-
pared with its spatial volumeDV, the normalization factor
CR

22 is easy to compute~see@9#!. It turns out to be given by

CR
225DVDt2. ~15!

Therefore the detection probability for this region is

PR5gDVuc0~xR!u2. ~16!

Here

g25
a2Dt2

\2
~17!

is a dimensionless parameter that characterizes the effici
of the detector. On the other hand,DVuc0(xR)u2 is the prob-
ability for the particle to be detected in a small spatial reg
of volumeDV at time t f . Thereforeuc0(xR)u2 is thespatial
probability density and the result is fully consistent with t
standard interpretation of the wave function. The factorg2 is
interpreted as the intrinsic efficiency of our detector. No
that some such parameter is necessarily present as our
turbative analysis assumes that the interaction is weak.

After the measurement, we may consider the state of
system collapse toC1 /uuC1uu ^ u1&. Namely after the mea-
surement, the state of the particle may be described by
wave function

ca f ter~x!5CRER
d4yW~x;y!. ~18!
0-3
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Notice that the dependences on both the initial wave func
and on the coupling constanta disappear with the normal
ization. We denote this state of the particle asuR&. That is

^xuR&5ca f ter~x!. ~19!

Explicitly, after the interaction we have

uR&5CRER
d4yux&, ~20!

whereux&5uxW ,t& is the eigenstate of the Heisenberg positi
operatorxW (t) with eigenvaluexW . This is an example of a
spacetime-smeared state associated to a region, as defin
@9#.

Coming back to the stateuc1&PH, for which ^xuc1&
5c1(x) and which represents the branch of the wave fu
tion in which the particle is detected inR, we see that this
state may be written

uc1&5g^RuC0&uR&. ~21!

This result is the key to the standard measurement inter
tation that the interaction ‘‘measures’’ some projection as
ciated with the normalized stateuR& with some efficiency
g2. It is of course important that the detector efficiencyg2 be
independent of the initial stateuC0&. It immediately follows
that the detection probabilityPR can be written as

PR5g2z^RuC0& z2. ~22!

Summarizing, Eq.~21! allows us to say that the detecto
we have described prepares the stateuR& defined in Eq.~20!;
the amplitude to detect an arbitraryC state isg^RuC&, and
the efficiency of the detector isg2, given in Eq.~17!.

It is convenient to denotêRuC& as the amplitude for a
particle in the stateuC& to be detected inR. This is the
theoretical amplitude of a hypothetical detector with e
ciency 1.~‘‘Hypothetical’’ since above we have used pertu
bation theory and therefore assumeda, and thereforeg, to
be small.!

Finally, consider two detectors: the detector 1 in the
gion R1, and the detector 2 in the regionR2. We takeR2
~entirely! in the past ofR1. Assume that the detector 1 ha
detected the particle. What is then the probabilityPR2R1

that
the detector 2 detects the particle? Applying the results of
previous section it is immediate to conclude that the~theo-
retical: g51) probability is

PR2R1
5 z^R2uR1& z2. ~23!

That is

PR2R1
5CR1

2 CR2

2 U E
R1

d4xE
R2

d4yW~x;y!U2

. ~24!

Equivalently,

PR2R1
5

uW~R2 ,R1!u2

W~R1 ,R1!W~R2 ,R2!
, ~25!
02351
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where we have defined

W~R2 ,R1!5E
R1

d4xE
R2

d4yW~x;y!. ~26!

Of course, this result is in no way Lorentz invariant.
We close this section with two brief comments on the

results. First, note that this result could also have b
achieved by simply coupling two copies of our detector
the system. One would then consider the branchuc12& of the
state in which both detectors~the one inR1 and the one in
R2) are excited. Each detector has some efficiencyg1 ,g2
given by the appropriate form of Eq.~17!. From Eq.~21! it
follows that

^c12uc12&5g1
2g2

2~ z^R1uC0& z2!z^R1uR2& z2

5g2
2P~R1!z^R1uR2& z2, ~27!

as desired.
Finally, we remind the reader that in order to reach t

conclusion~26! we must ask thatR1 and R2 have a large
separation in time~relative to some scale set by the size
R2) so that dispersion does indeed guarantee that the w
function of the stateuR1& is indeed nearly constant over th
regionR2.

III. RELATIVISTIC DYNAMICS

The quantum theory of a single relativistic particle is n
a realistic theory since it neglects the physical phenome
of particle creation which is described by quantum fie
theory. Nevertheless it is interesting to ask whether th
exists a logically consistent quantum theory, or seve
whose classical limit is the dynamics of a single relativis
particle and which respects the Lorentz invariance of
classical theory. Two such quantizations appear natural:
which contains only positive frequency solutions of t
Klein-Gordon equation and one with both frequencies. F
simplicity, we consider here only the first,2 though adding the
negative frequency modes should not cause undue comp
tions. We start from the classical theory defined by

p25m2, ~28!

E.0, ~29!

wherep5(pW ,E) and p252pW 21E2. We use here\5c51.
Upon quantization, the constraint~28! becomes the Klein-
Gordon equation

S ]2

]t2
2¹W 21m2D c~xW ,t !50 ~30!

2However, our energies will no longer be entirely positive on
we add an interaction with the detector.
0-4
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and the positive energy condition~29! becomes the restric
tion to positive frequencies. Equivalently, we can write t
relativistic Schro¨dinger equation

i
]

]t
c~xW ,t !5A2¹W 21m2c~xW ,t !

[H0c~xW ,t !, ~31!

where the square root is defined by Fourier transform~i.e.,
by spectral methods!. The general solutionc(x) of these
equations is the Fourier transform of a function supported
the upper mass-m hyperboloid in momentum space,

c~x!5E d4p

4p2
d~E2ApW 21m2!c̃~p!eipx. ~32!

Given the wave functionc(xW ,0) on an initial time surface
we obtain a solution of the Schro¨dinger equation by

C~ t !5e2 iH 0tC~0![W0~ t !C~0!. ~33!

Explicitly, we have

c~x!5E dxW8W0~x;xW8,0!c~xW8,0!, ~34!

where the kernel of the evolution operatorW0(t) is the
propagator

W0~x;x8!5E d4p

4p2
d~E2ApW 21m2!e2 ip(x2x8)

5E dpW

4p2
eipW (xW2xW8)2 iE(pW )(t2t8), ~35!

with E(pW )51ApW 21m2. This propagator is not a Lorent
invariant object. For later purposes, we can consider also
Lorentz invariant propagator

W~x;x8!5E d4p

4p2
d~p22m2!u~E!e2 ip(x2x8)

5E dpW

4p2

1

2E~pW !
eiP(xW2xW8)2 iE(pW )(t2t8). ~36!

Notice that

W052H0W5~2H0!1/2W~2H0!1/2, ~37!

whereW(x;y) is the kernel ofW.

IV. RELATIVISTIC PARTICLE DETECTOR

Let us now couple a particle detector of the kind cons
ered in Sec. II to the relativistic theory described in Sec.
One may be tempted to simply add the interaction Ham
tonian
02351
n

he

-
.
l-

U5aV~xW ,t !~ u1&^0u1u0&^1u! ~38!

to the free positive frequency HamiltonianH0. But the re-
sulting theory is not Lorentz invariant~even at the classica
level!. This can easily be seen from the relation

E5ApW 21m21U. ~39!

We have~keeping only the linear term in the perturbation!

p25m212EU. ~40!

To get a Lorentz invariant theory, we must add a loc
interaction to the constraint~28!. That is, we consider instea
the interaction between the particle and the detector defi
by

p25m21U. ~41!

E.0. ~42!

To first order in the coupling we have

E51ApW 21m21
U

2ApW 21m2
. ~43!

We order the corresponding Schro¨dinger equation symmetri
cally, obtaining the total Hamiltonian

H5H01~2H0!21/2U~2H0!21/2[H01Hint . ~44!

Therefore,

Hint5~2H0!21/2U~2H0!21/2. ~45!

Even here the quantum system fails to be manifestly
variant. Indeed, we have

2
]2

]t2
c5H2c

5H0
2c1

1

2
~H0

1/2UH0
21/21H0

21/2UH0
1/2!c1O~U2!.

~46!

However, it turns out thatU andH0
21/2 commute in the limit

that we consider. To see this, note that at the semi-class
level the commutator is a sum of terms involving derivativ
of the characteristic functionV with respect to the spatia
coordinatesxi . But, we will act only on statesuc0& that are
approximately constant overR, so that expectation value
involving ] iV vanish. The vanishing of this commutator ma
also be checked by a longer but fully quantum calculati
As a result, our interaction is effectively Lorentz invariant

Let us now consider a setting analogous to that of Sec
with the same sort of initial stateuC0& evolving into a state
with two branches,uc1& and uc0& corresponding to the de
tection of the particle inR and to the lack of such detection
0-5
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If we take V to represent the Heisenberg operatorV

5*dtV(xW ,t), the branch corresponding to detection may
written

uc1&5
a

\

1

A2H0

V
1

A2H0

uC0&. ~47!

Note that the associated wave function at a time after
interaction would contain a factor ofW0 ~representing time
evolution! and would thus take the same form as in Eq.~8!.
In this case, it will turn out that the detection probability
proportional not toC0(xR), but to ^xRu1/A2H0uC0&. As a
result, it is useful to introduce the state

uC̃0&5
1

A2H0

uC0& ~48!

and the associated wave functionC̃0(x)5^xuC̃0&.
Much as in Sec. II, we now assume thatC̃0(x) is roughly

constant over R. In this case, we haveVuC̃0&
'C̃0(xR)*Rd4xux& so that we may write Eq.~47! as

uc1&5
a

\

1

A2H0

C̃0~xR!E
R

d4xux&. ~49!

Recall that our goal is to express this in the form~21! of a
product of a state-independent detector efficiencyg, a nor-
malized stateuR&, and an inner product^RuC0& of the initial
state with the same normalized stateuR&:

uc1&5g^RuC0&uR&. ~50!

Introducing the spacetime volumeVol4(R) of R and the
normalization factor

CR
225W~R,R![E

R
d4xE

R
d4yW~x,y!, ~51!

we now make the identifications:

g5
a

\CR
2 vol4~R!

,

uR&5CRER
d4x~2H0!21/2ux&,

^RuC0&5CRvol4~R!C̃0~xR!. ~52!

The last of these identifications is of course not independ
but instead follows directly from the identification ofuR&.
Note that the efficiency~17! of the detector in Sec. II can
also be written in the above form.

As pointed out in Sec. II, the form~50! immediately im-
plies that when two detectors~associated with regionsR1
andR2) are considered, the probability of detecting the p
ticle in both regions is
02351
e

e

t,

-

g2
2PR1

z^R1uR2& z2, ~53!

wherePR1
is the probability of detecting the particle inR1.

Thus, idealizing to a perfect (g51) detector of this sort, we
may say that the probability for a particle prepared inuR1& to
arrive in R2 is

PR2R1
5

uW~R2 ,R1!u2

W~R1 ,R1!W~R2 ,R2!
. ~54!

Here

W~R2 ,R1!5E
R1

d4xE
R2

d4yW~x;y! ~55!

whereW(x;y) is the Lorentz invariant propagator, defined
Eq. ~36!.

That is, despite the appearance of (2H0)21/2 in the defi-
nition of uR&, the probability amplitude to detect the partic
in R2 if it was detected inR1 is Lorentz invariant. In the
next section we will come to understand this factor
(2H0)21/2 as merely compensating for writinguR& in terms
of statesux& whose inner product singles out a preferr
Lorentz frame. This factor will disappear whenuR& is writ-
ten in terms of the truly Lorentz invariant ‘‘Philips states.’

V. PHILIPS STATES

Historically, two types of~generalized! states have been
associated to spacetime pointsx5(xW ,t) in relativistic quan-
tum mechanics. Recall from Eq.~32! that we can write
c(xW ,t) as the Fourier transform of a function supported
the upper mass-m hyperboloid in momentum space

c~x!5E d4p

4p2
d~E2ApW 21m2!c̃~p!eipx. ~56!

We can also write the equivalent but more covariant look
expression

c~x!5E d4pd~p22m2!u~E!f̃~p!A2p0eipx. ~57!

We remind the reader thatA2p0eipx gives plane waves with
the Lorentz invariant normalization (2p0)d (3)(pW 2pW 8) on the
mass shell, corresponding to the Lorentz invariant meas
d3p/(2p0). The relation between Eqs.~56! and~57! is obvi-
ously

c̃~p!5S 1

2ApW 21m2D 1/2

f̃~p!. ~58!

Now, pick a pointy in Minkowski space and consider th
two generalized states associated to this point defined,
spectively, by

c̃y~p!5eipy ~59!
0-6
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and by

f̃y~p!5eipy. ~60!

Explicitly, the two states are given by the following tw
solutions of the relativistic Schro¨dinger equation:

cy
(NW)~x!5W0~x,y!, ~61!

and

cy
(PH)~x!5W1/2~x,y!, ~62!

where, in operator form,W1/25W0 /(2H0)1/25W(2H0)1/2.
The Lorentz invariance of the Philips states is now manif
from the inner product

^cy
(PH)ucx

(PH)&5W~y,x!. ~63!

If y5(yW ,t), the states are given at fixed timet by

cy
(NW)~xW !5d~xW ,yW ! ~64!

and

cy
(PH)~xW !5E dpW S 1

pW 21m2D 1/2

eipW (xW2yW ). ~65!

Therefore the statescy
(NW) form a ~generalized! orthonormal

basis

^cyW ,t
(NW)ucyW8,t

(NW)
&5d3~yW ,yW 8! ~66!

while the statescy
(PH) do not. The statescy

(NW) are the well
known Newton-Wigner states@1#: they diagonalize the
Newton-Wigner position operator at timet. They are nonco-
variantly defined. That is, they depend not only on the spa
time point y, but also on the choice of a preferred Loren
frame aty.

What about the statescy
(PH)? They are associated to th

spacetime pointy and are invariantly defined. That is, the
only depend on the point, not on any choice of referen
frame at the point. These states were first considered by P
ips @10#, shortly after the appearance of the Newton-Wign
paper. In spite of the virtue of being covariantly defined,
Philips states have not been very popular. The reason is
so far their physical interpretation has not been clear. In p
ticular it was not clear what kind of measurement wou
produce a Philips state. The discussion in the previous
tion shows that the spacetime detector considered there
indeed prepare states of this sort. In particular,

uR&5E
R

d4xucx
(PH)&. ~67!

An immediate consequence is the property

^cy
(PH)uc&5c̃~y!, ~68!
02351
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whereuc̃& is the state introduced in Eq.~48!. Intuitively, in
the limit in which the regionR shrinks to a pointy, the states
uR& approachucy

(PH)&. Thus, the detector we have describ
is a ‘‘detector of Philips states.’’

Of course, all propagators that we have conside
‘‘propagate faster than light,’’ as is well known. They do n
vanish at spacelike separations. The leakage out of the
cone is small: it is exponentially damped with the Compt
wavelength of the particle. In particular, the Philips sta
associated to the different spatial points on a given simu
neity surface are not orthogonal to each other. This featur
the special relativistic quantum dynamics of a particle
sometimes regarded as a defect of the theory, which co
compromise its consistency or its classical limit. We do n
think this is the case. Simply, the quantum particle has
intrinsic Compton ‘‘extension’’ that allows it to excite two
spacelike separated~but close! detectors.3 In the classical
limit, the trajectories stay inside the light cone.

Of course, this acausal feature makes the theory less
tractive than quantum field theory~in which such effects do
not occur!. Note that this observation implies that the abo
detectors cannot be constructed from quantum field theor
local measuring devices in any limit. As a result, they p
sumably do not correspond to ‘‘real’’ particle detectors a
more than do the Newton-Wigner detectors~which share this
acausal property!. Instead, these detectors exist in a ‘‘relati
istic particle’’ system that is best thought of as a toy mod
for quantum cosmology.

VI. EXACTLY LORENTZ INVARIANT DETECTOR

We found the detector above to be effectively Loren
invariant due to the fact thatU andH0 commute in the limit
that we have taken. One might ask about a truly Lore
invariant notion of a spacetime localized detector. We sh
not discuss this issue in detail, but we sketch here a poss
answer.

Consider the following manifestly Lorentz invariant alg
rithm. By fixing boundary conditions in the past as we d
above, one can compare solutions of thequadraticconstraint
p21m250 with solutions of the perturbed quadratic co
straintp21m21U50. One simply imposes that the two so
lutions agree on any Cauchy surface to the past of the s
port of U. To the future of the support ofU, the perturbed
and unperturbed constraints again agree and the pertu
solution can be written as a sum of two unperturbed so
tions as in Eq.~1!. One would then associate ‘‘probabilities
for detection/nondetection with the norms of these two u
perturbed states. One needs only a Lorentz-invariant de
tion of this norm to complete the discussion.

In general, one cannot restrict consideration to posit
frequency states, as negative frequencies may be introd
by the interactionU. However, the technique known a
‘‘group averaging’’~see e.g.@12–15#! allows one to define a
positive definite manifestly Lorentz invariant inner produ

3Nevertheless, one wonders if this might be improved in a sing
particle formalism which allows negative frequency states.
0-7
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on all solutions of any constraint of the formp21m21U
50 whereU is a localized disturbance. In fact, it define
such an inner product in much more general circumstan
as well. See in particular the recent work of@16–18# for the
connection to BRST techniques. The fact that it is posit
definite is a strong advantage over the historically m
popular Klein-Gordon inner product.

We do not pursue here a detailed treatment of this m
festly Lorentz-invariant approach, because of the dista
from the familiar von Neumann measurement theory of n
relativistic quantum mechanics. Furthermore, due to the
signment of positive norms to negative frequency sta
such a scheme can be physically appropriate only in
quantum cosmology setting. In that context, negative
quency states can be interpreted simply as collapsing
verses and not as particles traveling backwards in time.
haps there is some general lesson in this last observatio
that one must decide at the outset whether one wishe
discuss something approximating the relativistic particles
the real world~which are of course properly described b
excitations of a field theory! or whether one really wishes t
discuss a simplified model of quantum cosmology. While
two systems seem rather similar mathematically, the ra
cally different conceptual status of the associated ca
structures on the configuration space may in the end req
radically different foundations for the corresponding notio
of measurement theory and detectors.

VII. CONCLUSIONS

Does a real particle detector detect a Newton-Wigner s
or a Philips state? Is a real detector better represented b
interaction that we have described or by a Newton-Wig
operator? As noted above, the proper answer is ‘‘neither,
a real particle detector is a local construction in quant
field theory. However, taking the relativistic particle as a t
model for quantum cosmology, one may still ask which d
tector is the most useful. In this context, the Philips detec
has the interesting property of being associated with Lore
invariant probabilities.

The interest of the model we have presented, howeve
not in the realism of the model detector considered. Rathe
is in the fact that the construction shows that it is possible
on
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think about quantum measurement in a fully covariant w
at least in a certain limit. By covariant, we mean not on
that Lorentz invariance can be preserved in models with L
entz invariant dynamics, but more generally that measu
ment models exist which treat all degrees of freedom on
equal conceptual footing. This result is close in spirit w
Hartle’s generalized quantum mechanics@4#. See also@19–
21#.

In particular, the results presented here support the le
macy of the particular postulate proposed in@9,11# for a co-
variant spacetime-states formulation of~canonical! quantum
theory.4 According to this postulate, the probability for de
tecting a system in a small regionR8 of the extended con-
figuration space if it was detected in a small regionR is
given by

PR2R1
5

uW~R2 ,R1!u2

W~R1 ,R1!W~R2 ,R1!
, ~69!

where

W~R2 ,R1!5E
R1

dxE
R2

dyW~x;y! ~70!

wheredx is a measure on the extended configuration sp
and W(x;y) is the covariant propagator that defines t
quantum theory. This postulate is assumed to replace
generalize the usual interpretation of the wave function,
which measurements happen at fixed time. Here we h
shown that this postulate is true in a certain limit of relat
istic quantum particle mechanics, provided that the inter
tion producing the measurement is described in a covar
manner.

4One can also imagine a fully covariant interpretation withou
class of preferred measurements such as those associated
spacetime regions above. In such a framework, our Philips m
surements would stand on an equal footing with the~frame-
dependent! Newton-Wigner measurements. This is essentially
formulation used in@12#.
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