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Cosmology with negative potentials
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We investigate cosmological evolution in models where the effective potentialV(f) may become negative

for some values of the fieldf. Phase portraits of such theories in the space of variables (f,ḟ,H) have several
qualitatively new features as compared with phase portraits in the theories withV(f).0. Cosmological
evolution in models with potentials with a ‘‘stable’’ minimum atV(f),0 is similar in some respects to the
evolution in models with potentials unbounded from below. Instead of reaching an AdS regime dominated by
the negative vacuum energy, the universe reaches a turning point where its energy density vanishes, and then
it contracts to a singularity with properties that are practically independent ofV(f). We apply our methods to
investigation of the recently proposed cyclic universe scenario. We show that in addition to the singularity
problem there are other problems that need to be resolved in order to realize a cyclic regime in this scenario.
We propose several modifications of this scenario and conclude that the best way to improve it is to add a usual
stage of inflation after the singularity and use that inflationary stage to generate perturbations in the standard
way.

DOI: 10.1103/PhysRevD.66.023507 PACS number~s!: 98.80.Cq, 04.65.1e, 11.25.2w
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I. INTRODUCTION

Since the invention of inflationary cosmology@1–5#, the
theory of the evolution of scalar fields in an expanding u
verse has been investigated quite extensively, both at
classical and the quantum level. While many features of s
lar field cosmology are well understood, the overall pictu
remains somewhat incomplete. In this paper we will exte
the investigation of scalar field cosmology to models w
negative effective potentials. We are also going to bring
gether several other issues, such as the impact of radia
and particle production on the onset of inflation. This w
allow us to get a better understanding of various possibili
that may appear in scalar field cosmology.

We are going to use a general approach based on
investigation of 3D phase portraits that show the behavio
the scalar fieldf, its velocity ḟ, and the Hubble constan
H5ȧ/a. We will see that the phase portraits of models w
V(f).0 and withV(f),0 are qualitatively different and
that additional changes appear when one adds matter a
radiation.

There are several reasons to study cosmology with ne
tive potentials. The first one is related to the cosmologi
constant problem. The simplest potential used in inflation
cosmology isV(f)5 1

2 m2f2 @4#. One can add to this poten
tial a small cosmological constantV0 without changing any
features of inflation. A small positiveV0;102120 ~in Planck
units! would be sufficient to describe the present accelera
of the universe in a de Sitter–like state. But why shouldV0
be so small and positive? What would happen forV0,0?
Does the post-inflationary universe withV0,0 behave like
anti–de Sitter space, which is so popular in M theory?

Rather unexpectedly, the answer to this question app
to be negative: After a long stage of inflation the unive
with V0,0 cannot approach an AdS regime; instead of t
it collapses@6–8#. In this paper we will study cosmologica
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behavior in a large class of theories with negative potent
and explain why the universe in these theories stops exp
ing and eventually collapses.

Another reason to study theories with negative potent
is provided by the investigation of cosmology inN52,4,8
gauged supergravity. Recently it was found that in all kno
versions of these theories potentials with extrema atV(f)
.0 are unbounded from below. Despite this fact, such m
els can, under certain conditions, describe the present s
of acceleration of the universe@7,8#.

One more reason is related to a formal connection w
warp factor or bulk scalar dynamics in brane cosmology
has recently been shown that the equations for the warp
tor and scalar field in brane cosmology with a scalar fi
potentialV(f) are similar to the equations for the scale fa
tor and scalar field in 4D cosmology with the opposite p
tential 2V(f) @9#. This reveals an interesting relation o
cosmology with negative potentials and warp geometry w
positive potentials.

Finally, cosmology with a negative potentialV(f) is the
basis of the recently proposed ‘‘cyclic universe’’ model@10#
based in part on the ekpyrotic scenario@11#. However, unlike
in the ekpyrotic scenario@11#, the authors of@10# assume, in
accordance with@13#, that the scalar field potentialV(f) at
largef is positive and nearly constant. As a result, the u
verse experiences ‘‘superluminal expansion’’~inflation! that
helps to solve some of the cosmological problems. In t
sense cyclic scenario, unlike the ekpyrotic scenario of R
@11#, is a specific version of inflationary theory rather than
alternative to inflation@12#. Then the scalar field rolls to a
minimum of its effective potential withV(f),0, the uni-
verse contracts to a singularity, reemerges and again ent
stage of inflation. This scenario inherits many unsolved pr
lems of the ekpyrotic model@13#, including the singularity
problem@14#. The authors assume that the universe can p
through the singularity and that one can use perturba
theory and specific matching conditions at the singularity
©2002 The American Physical Society07-1
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FELDER, FROLOV, KOFMAN, AND LINDE PHYSICAL REVIEW D66, 023507 ~2002!
calculate density perturbations in the post-big-bang unive
generated by processes prior to the singularity@15#. This
issue is rather controversial@16#. The possibility of achieving
a cyclic regime depends on various assumptions concer
the creation of matter and the acceleration of the scalar fi
during the big bang.

The idea that the big bang is not the beginning of
universe but a point of a phase transition is quite interest
see e.g.@17–23#. However, the more assumptions about t
singularity one needs to make, the less trustworthy are
conclusions. In this respect, inflationary theory provides
with a unique possibility to construct a theory largely ind
pendent of any assumptions about the initial singularity. A
cording to this theory, the structure of the observable par
the universe is determined by processes at the last stag
inflation, at densities much smaller than the Planck dens
As a result, observational data practically do not depend
the unknown initial conditions in the early universe.

Since the cyclic scenario does require repeated period
inflation anyway, it would be nice to avoid the vulnerabili
of this scenario with respect to the unknown physics at
singularity by placing the stage of inflation before the sta
of large scale structure formation rather than after it.

In order to achieve this goal we will examine the con
tions that are necessary for the existence of the cyclic reg
in the model of Ref.@10# and then check whether the mod
can be modified in a way that would not require vario
speculations about the behavior of matter, the scalar fi
and density perturbations near the singularity.

Our paper will thus consist of two parts. The first part w
contain a general study of scalar field cosmology with po
tive and negative potentials. The second part will be devo
to a more speculative subject, it will include application
our general results to the cyclic scenario.

In Sec. II we will describe several basic regimes that
possible in scalar field cosmology: the universe can be do
nated by potential energy, by kinetic energy, by the ene
density of an oscillating scalar field, or by matter or rad
tion. The discussion of these four distinct regimes will he
us to understand the phase portraits of the universe tha
are going to draw in the subsequent sections.

Section III will describe the use of phase portraits f
studying cosmological evolution. We will write the evolutio
equations for the field and scale factor in the form of th
first order equations plus one time dependent constraint.
solutions to these equations can then be represented a
jectories in phase space, clearly showing the possible w
the universe can evolve in different situations. Finally,
using a Poincare´ projection we can map the entire pha
space onto a finite sphere, thus allowing the complete se
possible trajectories to be easily seen.

In Sec. IV we will apply these methods to models wi
positive definite potentials. Such potentials have been ex
sively studied before with the use of phase portraits@24,25#.
We study them here partly to introduce the methods we
using and to provide a point of comparison for the negat
potentials of the following section. We also present so
new results concerning the effects of matter and radiation
the development of inflation.
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In Sec. V we show the phase portraits for a model wh
the effective potential can become negative. We discuss g
eral properties of such models, and in particular the way
which they differ from the models of the previous sectio
One of our major conclusions is that such models generic
enter a stage of contraction. In Sec. VI we will examine
detail the transition from expansion to contraction in mod
of this type.

Many of the features of scalar field cosmology that we
going to discuss are model independent. The phase port
in Secs. IV–VI all use the simplest modelV(f)5m2f2/2
1V0, but in Sec. VII we discuss some other theories w
negative potentials.

In Sec. VIII we will discuss cosmological evolution nea
the initial and final singularities, and in particular the role
particle production and anisotropy near the singularity.

In Sec. IX we will apply our methods to the investigatio
of the cyclic scenario. As we will see, the cyclic regime
this scenario does not appear automatically. One should fi
tune the potentialV(f) and learn how to work with the
super-Planckian potentialsuV(f)u.1. One should also intro-
duce superheavy particles with specific properties, st
their production at the singularity, and make sure that they
not affect the present stage of the evolution of the unive
This adds new ‘‘epicycles’’ to this scenario, making it eve
more speculative. We discuss several possible modificat
of this scenario and conclude that the best way to improv
is to add a usual stage of inflation before the stage of la
scale structure formation. This modification resolves ma
problems of the original version of the cyclic scenario.
this modified form of the cyclic scenario, inflation is onc
again the source of density perturbations as well as the r
lution of the cosmological problems such as homogene
and flatness.

Section X summarizes our main conclusions concern
cosmology with negative potentials and cyclic universe.

II. FOUR BASIC REGIMES IN SCALAR FIELD
COSMOLOGY

A. A toy model with V„f…Ä 1
2 m2f2¿V0

We will study the behavior of a homogeneous scalar fi
in a Friedmann universe with the metric

ds252dt21a2~ t !ds3
2 , ~1!

whereds3
25g i j dxidxj is the metric of a 3D space with con

stant curvature,k50,61.
In this paper we will use a system of units in whichM p

51, where M p5(8pG)21/2;231018 GeV. The Fried-
mann equation for a scalar field with potential energy den
V(f) is

H25S ȧ

a
D 2

5
1

3
r2

k

a25
1

3 S 1

2
ḟ21V~f!1raD2

k

a2 . ~2!

Here r is the total energy density andra is the density of
matter with equation of statepa5ara . For nonrelativistic
mattera50, while for radiationa51/3.
7-2
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The evolution ofH is given by a combination of the Ein
stein equations

Ḣ52
1

2
~r1p!1

k

a2 52
1

2
„ḟ21ra~11a!…1

k

a2 . ~3!

Alternatively, one can use the equation

ä

a
52

1

6
~r13p!5

1

3
„V~f!2ḟ2

…2
1

6
ra~113a!. ~4!

The evolution of the scalar fieldf follows from the Einstein
equations,

f̈13Hḟ1V,f50. ~5!

We shall study the basic properties of a 4D scalar fi
cosmology using as an example the simplest harmonic o
lator potential

V~f!5
1

2
m2f21V0 . ~6!

~For investigation of 5D brane cosmology with similar p
tentials see@26# and references therein.! Surprisingly, we will
find that cosmology with the potential~6! with V0,0 shares
some common features with the cosmology of the ‘‘invers
harmonic oscillator potential

V~f!52
1

2
m2f22V0 . ~7!

In particular, the expansion of the universe in theories w
V0,0 always turns into cosmological contraction.

Constructing phase portraits is a powerful method for
vestigating the dynamics of the scale factor or scalar fi
system~3!–~5!. Before we look at the phase portraits f
various values ofV0 in this model, it will be useful to discus
some of their features. For the remainder of this section
will considerk50, i.e. flat universes. While this case will b
the main focus of our discussion throughout the paper,
will in several cases refer to the extension of our results
open or closed universes as well.

There are four basic regimes that we may encounter:
universe can be dominated by the potential energy den
V(f), by the kinetic energy densityḟ2/2, by the energy
density of an oscillating scalar field, in which caseV(f)
;ḟ2/2, or by matter or radiationra .

B. The inflationary regime: Energy density dominated
by V„f…

Inflation occurs when the energy density is dominated
V(f). In this caseḟ2/2,ra!V(f) and uf̈u!u3Hḟu. This
corresponds to the vacuum-like equation of state

p52r. ~8!

The equations fora andf in this regime have the following
form:
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H25S ȧ

a
D 2

5
m2f2

6
1

V0

3
, ~9!

3
ȧ

a
ḟ1m2f50. ~10!

The solutions of the equations forf(t) anda(t) for the most
interesting casem2f2/2@uV0u are given by@4,27#

f~ t !5f02A2

3
mt, ~11!

a~ t !5a0expS f0
22f2~ t !

4 D . ~12!

These solutions, which describe inflationary expansion,
valid only for ḟ2/2!V(f), which implies that inflation ends
at

ufeu;1. ~13!

In this paper we will assume thatm2@uV0u, in which case
m2f2/2@uV0u is always satisfied during inflation.

Note that the same solution is valid if one reverses
time arrow,t→2t, in which case it describes a quasiexp
nential contraction of the universe~deflation!.

C. The kinetic regime: Energy density dominated byḟ2Õ2

Another important regime occurs when the energy den
is dominated byḟ2/2. In this caseV(f),ra!ḟ2/2 and
uf̈u,u3Hḟu@m2f. This corresponds to the ‘‘stiff’’ equation
of state

p5r. ~14!

The equations fora andf are

H25S ȧ

a
D 2

5
ḟ2

6
, ~15!

f̈

ḟ
523

ȧ

a
. ~16!

The solutions can be written as follows:

a~ t !5t1/3, ~17!

f5f06A2

3
ln

t0

t
;

ḟ2

2
5

1

3t2 . ~18!

These solutions can describe an expanding universe or a
verse collapsing towards a singularity.

During the expansion of the universe, the inflationary
gime V(f)@ḟ2/2 represents a stable intermedia
asymptotic attractor. Even if a flat universe begins in a st
with ḟ2/2@V(f), it typically rapidly switches to an infla-
7-3
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FIG. 1. Evolution of the scalar field and the scale factor in the modelV(f)5(m2/2)f21V0 with V0.0. In the beginning we have a
stage of inflation with the fieldf linearly decreasing atf.1. At this stage the equation of state isp'2r. Then the field enters a stage o
oscillations with a gradually decreasing amplitude of the field;p!r. When the energy of the oscillations becomes smaller thanV0, the
universe enters a second stage of inflation.
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tionary regime withV(f)@ḟ2/2 @24,25,28#. This occurs be-
cause during the expansion of the universe withḟ2/2
@V(f), the value of the kinetic energy drops down liket22,
whereas the field changes only logarithmically. Therefore
all power-law potentials, the value ofV(f) decreases much
more slowly thanḟ2/2. When it becomes greater thanḟ2/2,
inflation begins.

During the collapse of the universe, the opposite occ
V(f) grows only logarithmically, whereasḟ2/2 diverges as
t22, where t is the time remaining before the big crunc
singularity. This means that the regimeḟ2/2@V(f) generi-
cally occurs at the stage of collapse. In this regime one
neglectV(f) in the investigation of the singularity att→0.

D. The oscillatory regime: Evolution determined by the energy
density of an oscillating scalar field

Now let us assume that the fieldf oscillates nearf50
with frequency much greater thanH, and that the averag
value ofV(f) during these oscillations is much greater th
V05V(0). In this case one can neglect the term 3Hḟ in Eq.
~5!, so that in the first approximation one simply has

f̈1m2f50 ~19!

and

f5F sinmt. ~20!

Here F is the amplitude of the oscillation. The pressurep

5ḟ2/22V(f) produced by these oscillations is given b
(m2/2)F2cos 2mt, so if one takes an average over many o
cillations, the pressure vanishes,p'0. The universe in this
regime expands asa;t2/3. Since the total energy of pressur
less matter is conserved, the amplitude of the oscillati
decreases,F(t);a23/2;t21.

The regime of oscillations usually begins after the end
inflation, atf&1. As long as one can neglectV0, the field
oscillations after inflation approach the following asympto
regime@29#:
02350
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f

f~ t !'2A 2

A3
mt sinmt'A 2

pA3
N sinmt. ~21!

Here t is the time after the end of inflation andN is the
number of oscillations.

It is amazing that this simple model withV0.0 can de-
scribe not only chaotic inflation in the early universe@4# and
the stage of self-reproduction of the universe@30#, but also
the present stage of inflation or acceleration. Indeed, w
the amplitude becomes very small the termV0 will become
important, and the universe enters a second stage of infla
with H25V0/3. The amplitude of oscillations of the fieldf
in this regime falls down exponentially. In particular, fo
m2@H2 the amplitude decreases ase23Ht/2. The evolution of
the scalar field and the scale factor in the theory withV0
.0 is shown in Fig. 1.

Note that in the casem2!V0/3 the stages of inflation a
largef and at smallf overlap. However, ifm2@V0/3 (V0
&102120 in Planck units, as suggested by the observatio
data!, these two stages occur separately, see Fig. 1. In
case we have a stage of self-reproduction of inflationary u
verse at very largef ~at f.m21/2@1), then a regular stage
of inflation without self-reproduction at smallerf. This stage
ends atf&1, and the field begins to oscillate. Eventually w
have a late-time stage of inflation when the fieldf relaxes at
f50.

If one considers the model withV0,0, a dramatic change
occurs when the energy density of oscillations~and matter!
gradually decreases and becomes comparable to2V0. Ac-
cording to Eqs.~2! and ~3!, the expansion of the univers
slows down at that time, and eventually the universe beg
collapsing; see Fig. 2.

When the universe contracts, the amplitude of oscillatio
grows asa23/2. However, this process does not continue t
long. Indeed, let us compare 3Hḟ andm2f in this regime. If
one can neglectV0 ~and this is always the case for a suf
ciently largeF), one hasH'mF/A6 and ḟ;mf. There-
fore one hasu3Hḟu@um2fu for f@1, so instead of Eq.~20!
one should use Eq.~16!. Thus, during the collapse of th
universe the stage of oscillations ends and the regime do
nated by kinetic energy begins at
7-4
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FIG. 2. Evolution of the scalar field and the scale factor in the modelV(f)5(m2/2)f21V0 with V0,0. In the beginning we have a
stage of inflation with the fieldf linearly decreasing atf.1. At this stage the equation of state isp'2r. Then the field enters a stage o
oscillations with a gradually decreasing amplitude of the field;p!r. When the energy of the oscillations becomes equal touV0u, the universe
stops expanding and begins to contract. At this stage the amplitude of oscillations grows. When it becomes greater thanO(1), thefield stops
oscillating, the energy density is dominated by the kinetic energy of the scalar field,p'r, and the universe collapses.
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Note thatufbu;ufeu, see Eq.~13!.
We will study the switch from expansion to contraction

a flat universe in a much more detailed way in Sec.
However, we would like to make here some comments c
cerning this process.

The general textbook wisdom is that open and flat u
verses expand forever, whereas closed universes event
collapse. This lore was based on investigation of univer
with vanishing cosmological constants. A closed unive
with a sufficiently large positive cosmological constant m
expand forever, whereas open and flat universes with a n
tive cosmological constant eventually collapse.

One of the well-known solutions of this type is an op
universe with a negative vacuum energyV0. There is a solu-
tion to the Friedmann equationH22a225V0/3 for V0,0:
a(t)5A3/uV0u sinAuV0u/3t. This is a specific section o
anti–de Sitter space, which is popular in M theory and bra
cosmology. This universe has a coordinate singularity at
5pA3/uV0u. Naively, one might think that this is exactl
what we have found in our investigation of universes w
V0,0, namely that when the energy density of matter in
expanding universe decreases and the total energy de
becomes dominated by a negative cosmological constant
universe reaches an AdS regime dominated by a nega
cosmological constant.

However, this is not the case. We discuss here a flat
verse regime, which appears after a long stage of inflation
this case~unless one considers open inflation models w
V,1) the termk/a2 with k561,0 can be omitted in the
general Friedmann equation. The Friedmann equationH2

5r/3 describing a flat universe does not have any soluti
with r(f),0. Once the universe approaches the turn
point where the total energy density vanishes it begins
lapsing, and the total energy density becomes positive a
@6–8#. Thus the standard inflationary predictionV51 im-
plies that we cannot live in AdS space dominated by a ne
tive cosmological constant@7,8#.
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E. Evolution determined by the energy density
of matter or radiation

The first models of inflation were based on the assum
tion that the universe from the very beginning was in a st
of thermal equilibrium; inflation began when the temperatu
of the universe became much smaller than the Planck t
peratureT;M p @2,3#. Later it was found that this assump
tion is not necessary, and in many models inflation may s
immediately after the big bang@4#. In this case the existenc
of matter prior to inflation becomes less important, a
sometimes it even hampers the development of inflation@27#.
Therefore many works on initial conditions for inflation n
glect the possible impact of matter on the motion of t
scalar field and concentrate on finding self-consistent cos
logical solutions describing scalar fields in otherwise em
universes. This is the simplest approach, especially in ca

where ḟ2/2!V(f) and inflation begins immediately afte
the big bang.

However, in some cases the scalar field initially may ha
large kinetic energy,ḟ2/2@V(f). Moreover, one may ex-
pect creation of relativistic or nonrelativistic particles ne
the singularity. Note that the existence of even a sm
amount of matter may have an important effect on the m
tion of the field. Indeed, the kinetic energy of the scalar fie
ḟ2/2 in the regimeḟ2/2@V(f) decreases asa26. Mean-
while, the density of radiation decreases asa24 and the den-
sity of nonrelativistic matter decreases asa23. Therefore the
energy density of matter eventually becomes greater t
ḟ2/2. As we will see, once it occurs, the field rapidly slow
down or even completely freezes. This effect may prov
good initial conditions for a subsequent stage of inflati
@31#.

Indeed, let us assume that in the beginning the fieldf

moves very fast, so thatu3Hḟu@uV,fu5um2fu. Suppose,
however, that at some moment the energy density of
universe becomes dominated by matter with the equatio
statepa5ara . In this regime one can represent the cosm
logical evolution in the following form@27#:
7-5
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ra5ra~ t0!S a~ t !

a0
D 23(11a)

,

a~ t !5a0S t

t0
D 2/3(11a)

,

H5
2

3~11a!t
,

ḟ5ḟ0

a0
3

a3 5ḟ0S t0

t D 2/(11a)

. ~23!

This regime has a very interesting feature: Even if it cont
ues for an indefinitely long time, the change of the fieldf
during this time remains quite limited. Indeed,

Df<E
t0

`

ḟdt5ḟ0E
t0

`S t0

t D 2/(11a)

dt5
11a

12a
ḟ0t0 .

~24!

If t0 is the very beginning of matter domination (ḟ0
2/2

;ra), thenḟ0t0;2/A3(11a)5O(1). Therefore

Df&1 ~25!

in Planck units~i.e.Df&M p). This means, in particular, tha
a free fieldf in a matter dominated universe cannot move
more thanO(M p).

This simple result has important implications. In partic
lar, if the motion of the field in a matter-dominated univer

FIG. 3. Phase portrait for the theoryV(f)5
1
2 m2f21V0 with

V0.0 in rescaled coordinates (f,ḟ,H). The branches describin
stages of expansion and contraction~upper and lower parts of the
hyperboloid! are disconnected.
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begins atufu@1, then it can move only byDf&1. There-
fore in theories with flat potentials the field always rema
frozen atufu@1.

The field begins moving again only when the Hubble co
stant decreases andu3Hḟu becomes comparable touV,fu.
But in this case the condition 3Hḟ'uV,fu automatically
leads to inflation in the theorym2f2/21V0 for uV0u,m2 and
f@1.

This means that even a small amount of matter or rad
tion may increase the chances of reaching a stage of in
tion, see@31# and Fig. 5 in Sec. V. Indeed, consider an
theory withV(f);fn. Suppose in the beginning we had
kinetic energy dominated regimeḟ2/2@ra ,V(f) starting at
f@1. Then the fieldf would change very slowly, wherea
ḟ2/2 would rapidly drop down until it became comparab
either toV(f) or to ra . If at that momentV(f).ra , in-
flation would begin immediately. But even in the most unf
vorable caseV(f)!ra inflation would begin eventually. In-
deed, at f@1 one has the double inequalitym25V9
!V(f)!ra;H2. Therefore the Hubble constant is muc
greater than the effective scalar field mass. In this case
field practically does not move until the desirable regim
V(f).ra is reached and inflation begins.

III. PHASE PORTRAITS AND COSMOLOGICAL
EVOLUTION

Having discussed some important limiting regimes in s
lar field cosmology, we are now ready to investigate t
complete evolution of a Friedmann universe with a sca
field. Later we will discuss the effects of adding matter
this system, but for now we restrict ourselves to a syst
with three independent variables,f, ḟ, andH. To study this
system we find it most convenient to rewrite the evoluti
equations fora and f as a set of three coupled, first-orde
differential equations:

FIG. 4. Projection of the upper branch of the full phase portr
for the theoryV(f)5

1
2 m2f21V0 with V0.0 in rescaled coordi-

nates (f,ḟ).
7-6
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df

dt
5ḟ ~26!

dḟ

dt
523Hḟ2V,f ~27!

dH

dt
52

1

3
~ḟ22V!2H2 ~28!

plus the constraint equation

H22
1

6
ḟ22

1

3
V52

k

a2 . ~29!

All solutions to these three equations can be represe
as trajectories in the 3D phase space off, ḟ, andH. Simply
looking at plots showing a number of these trajectories
help give some intuition for the cosmology of a particu
model~as defined by the potentialV). There are a number o
ways to get more information out of the phase portraits, ho
ever.

One important step is to determine all of the critic
points, i.e. the points for which the derivatives of all thr
phase variables vanish. There are finite and infinite crit
points. Every trajectory must begin and end at these crit
points.

To find infinite critical points and visualize the flow o
trajectories at infinity, a useful trick is to do a Poincare´ map-
ping

xP[
x

11r
, ~30!

where x is any of (f, ḟ, H) and r 25f21ḟ21H2. The
interior of the unit spherefP

2 1ḟP
2 1HP

2 51 maps to the in-

finite phase space off, ḟ, andH, so by plotting trajectories
in these new coordinates the entire phase space can be e
visualized. At times in this paper we will plot a 2D pha
portrait, e.g. in the variablesf andḟ only. In these cases w
use a 2D Poincare´ mapping wherer 25f21ḟ2.

With the Poincare´ mapping it is possible to identify a se
of infinite critical points, namely those that occur on t
bounding spherefP

2 1ḟP
2 1HP

2 51. These points represen
the possible starting and ending points for all trajectories
go off to infinity in the usual coordinates.

Because no two trajectories can ever cross in phase sp
it is easy to define the behavior of a system whose ph
portrait is two dimensional. Fortunately, for the cosmologi
systems we are considering we can identify a 2D surface
separates different regions of the 3D phase space. For th
universek50 the constraint equation~29! defines a 2D sur-
face. All trajectories in this case are located at this surfa
i.e. the phase portrait for the flat universe is two dimension
This surface in turn divides the phase space into three s
rate regions~including the surface itself! representing the
possible types of curvature. No trajectory can pass from
of these regions to another. Although the location of the fin
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critical points for a given model depends strongly onV, the
structure of the infinite critical points is very similar across
wide range of potentials. See@9# for recent discussion.

IV. COSMOLOGY WITH A NON-NEGATIVE POTENTIAL

As a simple example we consider the modelV(f)5V0
1 1

2 m2f2 discussed in Sec. II A. By rescaling the field an
time variables the massm can be eliminated from the equa
tions, so for simplicity we simply setm51 in what follows.
Thus the evolution and constraint equations become

df

dt
5ḟ ~31!

dḟ

dt
523ḟH2f ~32!

dH

dt
52

1

3
ḟ21

1

6
f21

1

3
V02H2 ~33!

6H22ḟ22f222V0526
k

a2 . ~34!

The hypersurface representing a flat universe is given
settingk50 in the constraint equation, which gives

6H22ḟ22f252V0 . ~35!

The surface defined by this equation is a hyperboloid.
positive definite potentialsV0.0 it is a hyperboloid of two
sheets, meaning the two branches atH.0 and H,0 are
disconnected. ForV050 this hyperboloid reduces to
double cone.

There are two finite critical points for this system atf

5ḟ50, H56AV0/3. ForV050 these two points reduce t
a single finite critical point at the origin. To find the infinit
critical points we first rewrite the evolution equations
terms of the Poincare´ variables and then set their derivative
equal to zero. This yields eight points.

Figure 3 shows the phase space for this model withV0
.0 along with a sample of trajectories fork50. The hyper-
boloid along which all of these trajectories lie represent
flat universe. The upper branch corresponds to expansion
the lower one to contraction. The fact that the two branc
are disconnected means that in a flat universe in this mo
expansion can never reverse and become contraction.
that this conclusion is unchanged for the caseV050. In that
case the hyperboloid becomes a double cone and the
branches touch at a single point. Since that point is a crit
point, however, no trajectories can pass from one branc
the cone to the other. The lower branch corresponds to
upper branch with time reversalt→2t. The upper branch of
the flat universe hyperboloid is shown projected into a
plot in Fig. 4. This plot is very similar to the one shown
@24# for this model withV050. Note that the 2D plot is no
a direct ‘‘shadow’’ of the 3D plot since it uses the 2D rath
than the 3D Poincare´ mapping; see Sec. III. Effectively th
7-7
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FELDER, FROLOV, KOFMAN, AND LINDE PHYSICAL REVIEW D66, 023507 ~2002!
upper branch of the hyperboloid is stretched out onto
circle rather than vertically projected down to it. From he
on we will refer to such 2D portraits as projections of the 3
ones.

For an expanding universe there are four infinite criti
points, two repulsors labeledR1 and R2 and two saddle
points labeledS1 andS2. All trajectories begin atR1 , R2 and
wind towards the focus at the center. The separatrices e
nating fromS1 andS2 represent attractor trajectories~not to
be confused with attractor critical points!. Along these tra-
jectories the universe experiences inflation (f2@ḟ2) until it
nears the center and begins winding around it, correspon
to field oscillations near the potential minimum. These se
ratrices represent a set of measure zero in the space o
jectories; the two shown are the only trajectories that be
at the saddle points. Nonetheless they are important bec
most of the trajectories emanating from the repulsor po
asymptotically approach the separatrices. This is why in
tion is a generic feature of models such as this one, and
why inflation erases all information about the initial cond
tions that preceded it.

Thus a typical trajectory passes through three of the f
regimes described in Sec. II. Near the repulsors the kin
energy dominates and the equation of state is stiff,p'r.
Near the main part of the separatrices the equation of sta
inflationary, p'2r. Finally near the center the scalar fie
oscillates and the equation of state is that of nonrelativi
matter, p!r. During the oscillations the scalar field de
creases as

f~ t !'
1

4N
sinmt, ~36!

FIG. 5. Phase portrait for the theoryV(f)5
1
2 m2f2 without

Poincare´ mapping. The thick lines show trajectories describing
universe without radiation. The scalar field has half Planck den
at the beginning of the simulations. The thin lines show trajecto
where an equal amount of energy in radiation was added to
system. As we see, in the presence of radiation the velocity of
scalar field rapidly decreases, which usually leads to the onse
inflation.
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whereN is the number of oscillations, see Eq.~21!. Although
particle production is not included in these phase portra
this evolution will typically end with the scalar field decay
ing into other forms of matter, thus finishing the evolution
the fourth regime, matter and/or radiation domination. T
contracting branch is a mirror image of the expanding o
with the same three regimes occurring in the opposite or
finally ending with a big crunch singularity at the attract
pointsA1 andA2.

For an open or closed universe the trajectories would
in the interior or exterior of the hyperboloid, respective
@24#. For an open universe nearly all trajectories would
ymptotically approach the separatrices on the flat unive
hypersurface. This tendency reflects the fact that for m
initial conditions inflation will occur and drive the univers
towards flatness. Once this has occurred the trajectories
ral in towards the focus at the bottom of the hyperboloid. F
a closed universe there are also many trajectories that rap
approach these separatrices, but there is also a class o
jectories that moves from the repulsive critical points to t
attractive ones without ever passing near the flat unive
hypersurface. These trajectories reflect closed universes
collapse rapidly before inflation has a chance to occur.

This conclusion becomes even more apparent if one ta
into account matter or radiation@31#. As we have argued in
Sec. II E, the existence of matter rapidly freezes the mot
of the scalar field. Therefore if the fieldf was initially large
and had a large velocity such thatf@1, ḟ2/2@V(f), then
the presence of matter would increase the probability of
flation. This can be confirmed by comparing the phase p
traits of the universe with and without radiation. Althoug
the phase portrait with radiation is three dimensional, it
convenient to make its projection to the (ḟ,f) plane; see
Fig. 5.

In the second and fourth quadrants of this figure the fi
starts out moving towards the minimum. The presence
radiation slows the field down, causing it to move mo
quickly towards the inflationary separatrix trajectory. In t
first and third quadrants where the field starts out mov
away from the minimum the duration of inflation is slight
diminished by the presence of radiation, but the probabi
of inflation is nearly unity.

V. COSMOLOGY WITH A NEGATIVE POTENTIAL

Now we turn to the main subject of our investigatio
cosmological models with scalar field potentials that m
become negative. We will continue using the simple exam
V(f)5V01 1

2 m2f2, but now we will considerV0,0. The
hypersurface representing a flat universe is still defined b

6H22ḟ22f252V0 , ~37!

but with V0 negative, this surface is a hyperboloid of on
sheet.

Figure 6 shows the phase space for this model and sam
trajectories for a flat universe. The phase space is two dim
sional, but its topology is very different from that for non
negative potentials. The infinite critical points are unchang
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s
e
e
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COSMOLOGY WITH NEGATIVE POTENTIALS PHYSICAL REVIEW D66, 023507 ~2002!
because the finite termV0 has no effect at infinity, but there
are no finite critical points. Thus all trajectories begin
infinity with H.0 and end at infinity withH,0. This is
possible because the regions corresponding to expansion
contraction are now connected. This property is valid for
types of curvaturek, i.e. for open, flat or closed universes

To show a 2D projection of the flat universe hypersurfa
for this model, we have to plot both the expanding and c
tracting branches, as depicted on Fig. 7. Trajectories in
expanding universe region spiral in towards the center. W
they touch the inner circle, the ‘‘throat’’ of the hyperboloi
they pass into the contracting universe region. There t
spiral back out to infinity, i.e. the big crunch. Thus typic
trajectories in this scenario pass through the three regi

FIG. 6. Phase portrait for the theoryV(f)5
1
2 m2f21V0 for

V0,0. The branches describing stages of expansion and con
tion ~upper and lower parts of the hyperboloid! are connected by a
throat.
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described above, kinetic energy domination, potential ene
domination, and oscillations, and then pass back thro
them in reverse order. As before, including particle prod
tion will typically introduce a matter or radiation dominate
regime after the first stage of oscillations. Eventually, ho
ever, the matter and radiation will redshift away and the u
verse will begin contracting. We will examine this process
more detail in the next section.

Aside from this ‘‘wormhole’’ connecting the expandin
and contracting branches this phase portrait looks a lot
the one forV0.0 shown in Fig. 4. Note, however, that i
this case the separatrices emanating from the saddle p
S1 andS2 no longer spiral in to the center, but rather end
reaching the pointsA1 and A2. Likewise there are separa
trices that begin atR1 andR2 and end onS3 andS4. In the
expanding phase their segments and segments of nearb
jectories represent the rare cases that manage to avoid
tion. In the contracting phase they become the marginal
jectories separating those that end at positive and negativf.
The number of windings~i.e. field oscillations! can be esti-
mated by settingm2f2/25uV0u and using Eq.~36! to give

N'
m

6AuV0u
. ~38!

~This number of windings can be used to determine wh
repulsors and attractors are connected to which saddle po
e.g. whether the separatrix that begins atR1 ends atS3 or
S4.!

The phase portraits shown above were constructed
way symmetric with respect to time reversal,t→2t. This is
a legitimate approach, since our equations allow all of
solutions shown in the previous figures. However, one
obtain some additional information if, for example, one co
siders trajectories equally distributed with respect to the
tial value of the fieldf at the Planck time and follows thei
evolution from the region withH.0 to the region withH
,0.

If we do so, the phase portrait shown in Fig. 6 sta
looking somewhat different. Almost no trajectories beg
ning in the upper part of the hyperboloid are seen in its low
part, and those few that can be seen there are positioned

c-
l

FIG. 7. Left: (f,ḟ) projection

of theH.0 branch. Right: (f,ḟ)
projection of the H,0 branch.
Trajectories from the left pane
continue on the right panel.
7-9
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FELDER, FROLOV, KOFMAN, AND LINDE PHYSICAL REVIEW D66, 023507 ~2002!
close to the separatrices going fromS1 to A2, and fromS2
to A1; see Fig. 8. No trajectories are seen near the li
going fromR1 to S3 and fromR2 to S4. This might seem
surprising because these lines are solutions of the equa
of motion, so there must be other solutions nearby. Ind
we have seen them in Fig. 7. However, the lines going fr
S1 to A2 and fromS2 to A1 are strong attractors in th
regimeH,0, whereas the lines going fromR1 to S3 and
from R2 to S4 are strong repulsors. Therefore most of t

FIG. 8. A different version of the phase portrait for the theo

V(f)5
1
2 m2f21V0 for V0,0. We begin with the trajectories

evenly distributed with respect to the initial values off in the early
universe~upper part of the hyperboloid! and see what happens t
them in the lower part. These trajectories are concentrated nea
boldface separatrices and repulsed from the shaded ones.
02350
s

ns
d

trajectories originating atH.0 and homogeneously distrib
uted with respect to the fieldf at the Planck density are
repelled from the lines going fromR1 to S3 and fromR2 to
S4, and tend to merge with the lines going fromS1 to A2
and fromS2 to A1.

This effect is especially apparent in the 2D phase portr
where we do not make the Poincare´ mapping, see Fig. 9
Most of the trajectories coming from the panel withH.0
have merged with the separatrix on the panel correspon
to H,0.

An important~and obvious! feature of the 3D phase por
traits Figs. 6 and 8 is that the separatrices, as well as o
trajectories, never intersect in 3D. This is a trivial cons
quence of the fact that we are solving a system of 3 fi
order equations for 3 variables,f, ḟ and H. One of the
implications of this fact is that a bunch of trajectories in t
immediate vicinity of the lines going fromR1 to S3 and
from R2 to S4 never reach the inflationary regime describ
by the inflationary separatrices going fromS1 to A2 and
from S2 to A1. Only the trajectories that are sufficiently fa
away from the lines going fromR1 to S3 and fromR2 to S4
can enter the stage of inflation.

This observation will be important for us when we d
scribe the cyclic scenario@10#; see Sec. IX. In this regime th
boldface inflationary separatrices reach the singularity
are supposed to bounce back. In the language of the p
portraits this bouncing back implies that the end of the l
going from S1 to A2 becomes the beginning of the lin
going from R1 to S3. But in this case the universe cann
attain the inflationary regime, since the trajectories close
the line going fromR1 to S3 never switch to the vicinity of
the line going fromS1 to A2. Thus the cyclic regime is
possible only if bouncing from the singularity shifts the tr
jectory to the right from the shaded separatrix. From Fig.
is obvious that this shift may happen either due to an
crease ofḟ or due to an increase of the fieldf.

The evolution of this system in an open or closed unive
is not very different from the flat universe evolution, a
though the phase space is three dimensional. Because o

the
s

-

FIG. 9. As in the previous fig-
ure, we begin with the trajectorie
evenly distributed with respect to
the initial values off in the early
universe. However, now we show
a 2D projection of these trajecto
ries, without Poincare´ mapping.

Left: (f,ḟ) projection of theH

.0 branch. Right: (f,ḟ) projec-
tion of theH,0 branch. Trajecto-
ries from the left panel continue
on the right panel.
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COSMOLOGY WITH NEGATIVE POTENTIALS PHYSICAL REVIEW D66, 023507 ~2002!
structure of the trajectory flow between their ends at the
finite critical points, all trajectories pass from expansion
contraction, even for an open universe. As withV0.0 the
trajectories for the open and closed cases will tend to asy
totically approach the flat universe hypersurface, and m
specifically will tend to approach the inflationary sepa
trices. As before, however, the closed universe will inclu
some trajectories that quickly collapse before experienc
inflation.

It is instructive to estimate the time that the universe m
spend in its post-inflationary expanding phase before it
gins to contract. The energy density of the oscillations of
scalar field, just like the energy density of nonrelativis
matter, decreases asrCDM;4/3t2. The universe begins to
collapse atrCDM1V050. This happens att;2/A3uV0u. As
one could expect, this time can be greater than the pre
age of the universe only ifuV0u&102120.

This estimate remains true for a wide variety of potenti
and for matter with any reasonable equation of state. H
ever, in the theories whereV(f) has a very flat plateau or
local minimum, the universe may spend a very long tim
before the fieldf falls down to the minimum withV(f)
,0 @7,8,10#. Therefore in general the lifetime of the univer
may be very large even in theories with a very deep m
mum of V(f).

VI. GOING FROM EXPANSION TO CONTRACTION
IN THE MODEL V„f…Ä„m2Õ2…f2¿V0

Having analyzed general properties of phase portrait
the theoryV(f)5(m2/2)f21V0, let us study in a more de
tailed way the most interesting feature of the models w
V0,0, the switch from expansion to contraction. It is alwa
possible to study this process numerically, but sometim
one can do better than that.

It will be convenient to representV(f)5(m2/2)f21V0
in the form

V~f!5
m2

2
~f22f0

2!. ~39!

This potential has a minimum atf50, where it takes a
negative valueV(f)52(m2/2)f0

2. The potential vanishes
@V(f)50# at f56f0.

Let us assume, in the first approximation, that the sc
factor of the universe does not change much during e
oscillation of the fieldf. In such a case the fieldf would
experience a simple oscillatory motion,

f~ t !5F cosmt, ~40!

whereF is the amplitude of the oscillations. In this case t
total energy density of the scalar field would remain co
stant,r5(m2/2)(F22f0

2).
This approximation works well forF'f0. For F.f0,

there are two cosmological solutions, describing either
expanding universe withH51mA(F22f0

2)/6 or a con-
tracting universe withH52mA(F22f0

2)/6.
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If the Hubble constantH is positive, the amplitude of the
field and its total energy density decrease. If the initial a
plitude of the oscillations is much greater thanf0, the field
oscillates with a slowly decreasing amplitude until it a
proachesf0. But the energy density cannot decrease
much because at the moment whenr5V(f)1ḟ2/2 van-
ishes, the Hubble constant vanishes too, so thatȧ50. Then
the universe begins to collapse,ȧ,0, and the amplitude of
the oscillations begins to grow. Eventually this growth b
comes so fast that the field stops oscillating and moves
wardsf56`.

The best way to understand this effect is to examine w
happens during the critical oscillation when the sign ofȧ
changes. We will study this process analytically, maki
some simplifying approximations.

First of all, we will assume that the fieldf begins this
oscillation att50 moving with zero initial velocity from a
point f1'f0 such that 0,Df5f12f0!f0. The initial
energy density of the field isDV5V(f1)5(m2/2)(f1

2

2f0
2)!uV(0)u. We will try to evaluate the turning point mo

ment tc whereȧ50 ~i.e. H50).
Let us consider the series expansion of the Hubble par

eter around the beginning of this process

H~ t !'H11Ḣ1t1
1

2
Ḧ1t21

1

3!
Ĥ1t31•••, ~41!

whereH1 and its derivatives are taken att50. The reason to
include the terms up tot3 in this series is the following.
From the relationḢ52 1

2 ḟ2 we find that for vanishing ini-
tial velocity ḟ150 one hasḢ15Ḧ150. The first nonvan-

ishing coefficient Ĥ1'2f̈2'2„V8(f1)…252m4f1
2 is

negative. Note thatH15AV(f1)/35ADV/3. This means
that at the moment

tc'S 12V~f1!

„V8~f1!…4
D 1/6

5m21S 12DV

m2f0
4D 1/6

~42!

the Hubble parameter vanishes. Note that the first part of
equation is pretty general, whereas the second one is spe
to quadratic potentials.

At the turning point

fc'f02S 3DV

2m2f0
D 1/3

. ~43!

These results imply that the turn occurs during the first
cillation starting atf1 if DV&m2f0

4, i.e. f1
22f0

2&f0
4. In

the most interesting caseDV!m2f0
4 the turn occurs in the

immediate vicinity of the pointf0 where the potential be
comes negative.

To study the subsequent evolution off(t) anda(t), let us
assume that the scale factora during the first oscillation does
not change much. This is a reasonable assumption sincȧ
7-11
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FELDER, FROLOV, KOFMAN, AND LINDE PHYSICAL REVIEW D66, 023507 ~2002!
50 at the turning point. We will therefore takea51 during
this oscillation, andf(t)5f1 cosmt. The potential energy
density of the field is

V~f!5DV2
m2f1

2

2
sin2mt ~44!

and the acceleration of the universe is given by

ä'
ä

a
5

V2ḟ2

3
5

DV

3
2

m2f1
2

2
sin2mt. ~45!

Taking into account that initiallyȧ5aADV/3'ADV/3, this
yields

ȧ'
DV

3
t2

m2f1
2

4
t1

mf1
2

8
sin 2mt1ADV/3. ~46!

By integrating this relation fromt50 to t5p/m, i.e. during
one-half of an oscillation, one finds that the conditiona'1
implies then thatf1'f0!1, i.e.f0!M p .

Now we are going to find how the energy densityr of the
field f changes during the timep/m when the fieldf moves
from f1 to 2f1. In order to do this, we will represent th
scalar field equationf̈13Hḟ52V8(f) in the form

ṙ5
d~V1ḟ2/2!

dt
523Hḟ2. ~47!

Thus in order to find the total change of the energy density
the scalar field during some time one should integr
23Hḟ2:

Dr5D~V1ḟ2/2!523E
t0

t

Hḟ2dt. ~48!

Using this equation, one can find the change of the ene
density of the fieldf during the timep/m when the fieldf
moves fromf1 to 2f1:

Dr25
3p2

16
m2f1

42
pA3DV

2
mf1

22
p2

4
DVf1

2 . ~49!

In the most interesting casef1'f0, one can neglect the las
term in this equation and replacef1 by f0:

Dr25
3p2

16
m2f0

42
pA3DV

2
mf0

2 . ~50!

Thus, if the initial kinetic energy of the field is equal to ze
at the beginning of the oscillation atf5f1, at the moment
when the fieldf will reach the point2f1 its kinetic energy
will be positive,

ḟ2

2
5Dr25

3p2

16
m2f0

42
pA3DV

2
mf0

2 . ~51!
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Note that forDV!m2f0
4 the last term is much smalle

than the first one, so one finds, in the first approximati
that the fieldf coming to the point2f1 acquires kinetic
energy

ḟ2

2
5Dr2'

3p2

16
m2f0

45
3p2f0

2

8
V0!V0 , ~52!

and velocity

ḟ'A3p2

8
mf0

2 . ~53!

This velocity continues to grow during subsequent osci
tions and eventually the scalar fieldf and the scale factora
blow up, as shown in Fig. 2.

So far we have studied an expanding universe that s
its expansion and collapses. But what if it was collapsing
the beginning of the oscillation? Suppose the scalar field
moving very slowly until it reached the pointf1. Then it
started falling down, just as in the case considered abo
However, this time we will assume that the universe was
expanding but collapsing. This corresponds to the choicȧ
52ADV/3 at the beginning of the process.

In this case the universe will continue collapsing wi
ever growing speed. The evolution of the fieldf can be
studied by the same methods as the ones used above
main difference will be that the fieldf passing through the
point f52f1'f0 will have kinetic energy

ḟ2

2
5Dr15

3p2

16
m2f0

41
pA3DV

2
mf0

2 . ~54!

The kinetic energy of the fieldf at f52f0 differs from
that atf52f1 by DV. However, forDV!m2f0

4 this dif-
ference is much smaller than each of the terms in Eqs.~50!,
~54!. Thus these two equations with the above-mention
accuracy give the kinetic energy of the fieldf not only at
f52f1 but also atf52f0.

This discussion, as well as the difference betweenDr2

andDr1 , will play an important role in our investigation o
the cyclic universe scenario@10#. As we will see, the cyclic
regime is possible only if the fieldf, after bouncing from the
singularity, approaches the point2f0 with energy density
greater thanDr1 , which in its turn is greater thanDr2 ,
which is the energy of this field at the point2f0 on its way
towards the singularity. Thus one needs this field to bou
from the singularity with an increased energy, and o
should check that the possible source of this additional
ergy does not create problems for the scenario. In fact,
will see that with an account taken of particle production, t
required energy increase can be much greater than the d
ence betweenDr1 andDr2 .

VII. OTHER MODELS WITH V„f…Ë0

Until now we have studied only one simple model with
quadratic potential. However, many features of models w
negative potentials are model-independent. Consider, for
7-12
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FIG. 10. Evolution of the scalar field and scale factor in the modelV(f)5V02m2f2/2.
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ample, the model with the ‘‘inverted potential’’V(f)5V0
2m2f2/2 with V0.0. This is the simplest example of
potential unbounded from below. The evolution of the sca
field and scale factor in this model is shown in Fig. 10.
we see, in the beginning the universe experiences a stag
inflation when the scalar field slowly rolls from the top of th
effective potential.~We considered a model withV0@m2.!
Later on, inflation ends and the speed of the field increa
If one neglects the effects of the expansion of the universe
largef one hasḟ252„V02V(f)…. Therefore

ä

a
5

1

3
„V~f!2ḟ2

…5V~f!2
2

3
V0 . ~55!

At large f the universe starts moving with ever growin
negative acceleration. If one takes into account the expan
of the universe,ḟ2 becomes even smaller, and the decele
tion is even greater. As a result, the expansion slows do
and the universe starts contracting. At this stage the ‘‘frict
term’’ 3Hḟ in the equation of motion of the scalar fie
becomes negative, which causes the fieldf to grow and
leads to a rapid collapse of the universe.

Another example is the standard potential used for
description of spontaneous symmetry breaking, with the
dition of a negative cosmological constantV0,0:

V~f!5
l

4
~f22v2!21V0

52
1

2
m2f21

m2

4v2 f41
1

4
m2v21V0 . ~56!
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Herem2[lv2 and the pointf5v corresponds to the mini
mum of V(f) with symmetry breaking. The potentialV(f)
becomes equal toV0,0 in the minimum ofV(f) at f5v.
As we see in Fig. 11, the scalar field in this case experien
a stage of oscillations near the minimum of the effect
potential withV(f)5V0,0, but then it jumps off the mini-
mum and blows up because of the ‘‘negative friction’’ in th
collapsing universe. For most model parameters and in
conditions, if the field originally moves towards the min
mum with f51v it will blow up in the directionf→2`
andvice versa. The reason is that at the initial stages of t
development of the instability the fieldf is most efficiently
accelerated by the negative friction if for a while it moves
a relatively flat direction, i.e. from one minimum to anothe
instead of directly moving upwards@8#.

When the field accelerates enough it enters the reg

ḟ2@V(f) and continues growing with a speed practica

independent ofV(f): f; lnt, ḟ;t21, see Eq.~18!. So for
all potentialsV(f) growing at largef no faster than some
power off one hasḟ2/2 growing much faster thanV(f) ~a
power law singularity versus a logarithmic singularity!. This
means that one can indeed neglectV(f) in the investigation
of the singularity, virtually independently of the choice of th
potential. Thus we see that from the point of view of t
singular behavior of the fieldf(t) and the scale factor,po-
tentials having a global minimum with V(f),0 are as dan-
gerous as potentials unbounded from below.

Since a small modification of the potential@shifting the
minimum of V(f) towardsV(f),0# may lead to a change
of regime from expansion to contraction, one may wond
FIG. 11. Evolution of the scalar field and the scale factor in the modelV(f)5(l/4)(f22v2)21V0, with V0,0.
7-13
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FELDER, FROLOV, KOFMAN, AND LINDE PHYSICAL REVIEW D66, 023507 ~2002!
whether some other modification ofV(f) can switch the
regime of contraction back to expansion. The answer follo
from the equationḢ52 1

2 (r1p). This equation implies tha
Ḣ<0 becauser1p>0 in accordance with the null energ
condition. This means, in particular, that if the univer
switches from expansion to contraction, it cannot later ret
to the regime of expansion. The only possible except
would be if the universe were to pass through a stage
super-Planckian density in which the Einstein equations w
invalid.

Even though many properties of the theories with ne
tive potentials are model-independent, the topology of th
phase portraits depends on the choice of the potentialV(f).
For example, the hypersurface representing a flat univers
the theoryV(f)5V02m2f2/2 is given by the constrain
equation

ḟ256H21m2f222V0 . ~57!

This equation describes a hyperboloid just like the flat u
verse hypersurface of the theoryV(f)5V01m2f2/2. In this
case, however, the axis of the hyperboloid is in theḟ direc-
tion rather than theH direction. Moreover, the hyperboloi
for this model has two sheets forV0,0 and one sheet fo
V0.0, which is the reverse of the situation forV(f)5V0
1m2f2/2. The different orientation of the hyperboloi
means, for example, that for the theory unbounded from
low all trajectories end in a big crunch singularity, regardle
of the signs ofV0 andk.

VIII. APPROACH TO THE SINGULARITY, QUANTUM
CORRECTIONS, AND PARTICLE PRODUCTION

Talking about the dynamics of the cosmological sca
field, until now we have remained in the realm of classi
physics. We ignored possible quantum effects, and in part
lar the effects of particle production. These effects may le
to some important qualitative changes of the phase portr
however, especially near the singularity.

First of all, near the singularity one may need to take in
account quantum corrections to the effective action of g
eral relativity. Even ignoring possible effects related to bra
cosmology or M theory, one may need to add to the effec
action terms proportional toR2, RmnRmn, etc.

An important example of such a theory is given by
combination of scalar field theory and the Starobins
model, where the effective Lagrangian has additional te
;R2 @25#. Whereas this addition is not very significant
low energies, it completely changes the behavior of
theory near the singularity.

For example, in the absence of this term the generic
gime for a scalar field approaching the singularity isḟ2/2
@V(f), which corresponds to the equation of statep5r.
This regime was recently discussed in@32# in the context of
string cosmology. As we have seen, in this casea;t1/3, f
; ln t.

However, if one adds the termR2, the most general re
gime for theories where the potential is not too steep
02350
s

n
n
of
re

-
ir

in

i-

e-
s

r
l
u-
d
ts,

o
-

e
e

y
s

e

e-

-

comes quite different:a;t1/2, f;t21/2 @25#.
It is even more important to consider the effects of p

ticle production. If one ignores quantum effects, one ty
cally finds the curvatureR;t22 in a collapsing universe
Scalar particles minimally coupled to gravity, as well
gravitons and helicity 1/2 gravitinos@33#, are not confor-
mally invariant; their frequencies thus experience ra
nonadiabatic changes induced by the changing curvat
These changes lead to particle production due to nonadi
ticity with typical momentak2;R;t22. The total energy-
momentum tensor of such particles produced at a timet after
~or before! the singularity isTmn;O(k4);R2;t24 @34,35#.
Comparing the density of produced particles with the clas
cal matter or radiation density of the universer;t22, one
finds that the density of created particles produced at
Planck timet;1 is of the same order as the total ener
density in the universe.

The main point of this discussion is that particle produ
tion near a cosmological singularity can be extremely e
cient. Generically one expects that when the unive
emerges from or approaches a singularity and its densit
close to the Planck density, the density of produced partic
should be comparable to the total energy density of the u
verse.

This is a pretty general conclusion. For example, in bra
cosmology a similar effect of particle production may occ
even thoughR50 in 4D. Indeed, the change of distanc
between branes leads to a nonadiabatic change of the s
trum of Kaluza-Klein modes and thus to particle productio
one may call it a time-dependent Casimir effect. Note t
this effect exists even in theories with unbroken supersy
metry @36#.

This observation has many implications. In particular, o
can no longer expect that matter~or a scalar field! has the
equation of statep5r near the singularity. Even if the uni
verse around the Planck time was dominated by matter w
p5r, the creation of particles would immediately change t
situation. And even if the density of created particles initia
was somewhat smaller than the energy density of matter w
p5r, this situation would rapidly change. The density of t
component of matter withp5r decreases asa26, whereas
the energy density of radiation and nonrelativistic partic
decrease asa24 anda23 respectively. Therefore the energ
density of such particles soon becomes greater than the
ergy density of the matter component withp5r. Once this
happens the scalar field immediately freezes. It loses its
tial kinetic energy and begins moving very slowly. As w
already discussed, this provides perfect initial conditions
inflation. This result also has important implications for t
cyclic universe scenario@10#.

IX. CYCLIC UNIVERSE

A. The basic scenario

Until now we have studied the evolution of the univer
and classified new possibilities that appear in scalar theo
with negative potentials. This problem is very interesting.
investigation has already brought us to an important real
tion: We cannot live in anti–de Sitter space dominated b
7-14
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COSMOLOGY WITH NEGATIVE POTENTIALS PHYSICAL REVIEW D66, 023507 ~2002!
negative cosmological constant, not because the nega
cosmological constant is forbidden, but because a univ
dominated by negative vacuum energy cannot appear af
long stage of inflation@6–8#. Another interesting realization
is that the available observational data can tell us noth
about the future of the universe: we may live in a stage o
nearly constant de Sitter–like inflationary acceleration, bu
may end with a global collapse@37–39,7,8#.

A common feature of cosmological evolution in mode
with negative potentials is that it begins in a singularityand
ends in a singularity, even if the universe is not closed. Th
was not the case for the theories withV(f).0, where the
universe may continue expanding forever and never end
singularity even if it is closed.

This naturally brought back old speculations about
oscillating, or cyclic, evolution of the universe; see e.g.@17–
23,10#. The universe may be created in a singularity, th
collapse and reemerge again.

There is a certain intellectual attractiveness in this id
However, during the past 20 years this idea has lost som
its initial appeal. Indeed, if there was a stage of inflation a
the singularity, then the initial conditions producing our un
verse are nearly irrelevant for the investigation of the form
tion of large-scale structure in the observable part of
universe. Moreover, inflation in many of its simplest versio
is eternal@30,40#. This fact may not solve the singularit
problem@41#, but it puts the origin of our part of the univers
indefinitely far away in the past@42#.

Recently Steinhardt and Turok proposed a version of
flationary theory where the stage of inflation occursafter
formation of the large scale structure of the universe a
perturbations responsible for the formation of the structure
the universe are producedbefore the singularity, during the
previous cycle of the universe evolution@10#. In this scenario
inflation does not protect us from all uncertainties associa
with the physical processes occurring around the big ba
On the contrary, in order to describe our universe in t
scenario one must know exactly what happens with sm
perturbations of the metric when they pass through the
gularity.

The cyclic scenario@10# is a modified version of the ek
pyrotic scenario@11#. It is based on the idea that we live o
one of two branes whose separation can be parametrized
scalar fieldf. It is assumed that one can describe the br
interaction by an effective 4D theory with the effective p
tential V(f) having a minimum atV(f),0. In the original
version of the ekpyrotic scenario it was assumed thatV(f) is
always negative, but it vanishes atf50 and atf→`. It was
claimed that one of the main advantages of the ekpyr
scenario was the absence of a cosmological singularity
the possibility to solve the major cosmological problem
without the help of inflation, which was called ‘‘superlum
nal expansion.’’

However, later it was found that it is difficult to solve th
cosmological problems in the ekpyrotic scenario without
ing inflation @13#. Moreover, perturbations of the fieldf that
could be responsible for large scale structure formation
this scenario are generated due to tachyonic instability@43#
at the time whenV(f) was supposed to be smaller tha
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210250 in Planck units. Therefore it is difficult to avoid
inflation in this model: Even a miniscule positive contrib
tion to V(f) of the order 10250 would lead to a stage o
exponential expansion of the universe at largef @13#. Also,
in @44# it was shown that in the context of the effective 4
theory used in@11# the universe can only collapse. Th
means that the ekpyrotic scenario suffers from the cos
logical singularity problem. This problem has been analyz
in @14#, but so far it remains unresolved.

In the cyclic universe scenario the authors assume, in
cordance with the suggestion of Ref.@13#, thatV(f) is posi-
tive at largef, and therefore the universe experiences a st
of inflation. This stage provides the solution to the ma
cosmological problems. However, it is assumed that this
an extremely low-scale inflation associated with the pres
stage of acceleration of the universe in a state withV(f)
;102120. Inflationary perturbations produced at this sta
have wavelengths comparable to the present size of the
rizon, so they cannot be responsible for galaxy formation

Therefore it is assumed that the desired perturbation
the scalar field are produced after inflation, by the same
chyonic mechanism as in the ekpyrotic scenario@11,13,43#.
The effective potential of the scalar field in the cyclic sc
nario has the shape shown in Fig. 12. Inflation occurs at la
f. Once the field rolls down to the region whereV(f),0,
the universe begins to collapse. At that time perturbations
the scalar field are generated. The speed of the field
collapsing universe grows. It reaches the plateau atf→
2` where, according to@10#, the potential vanishes. Th
universe enters the regime where its energy density is do
nated by the kinetic energy of the scalar field, and it evolv
towards the singularity in accordance with Eqs.~17!, ~18!.

Usually, this would be considered the end of the evolut
of the universe. However, in the cyclic scenario it is assum
that the universe goes through the singularity and reapp
again. When it appears, in the first approximation it loo
exactly as it was before, and the scalar field moves b
exactly by the same trajectory by which it reached the s
gularity @14#.

This is not a desirable cyclic regime. Therefore it is a
sumed in@10# that the value of kinetic energy of the fieldf
increasesafter the bounce from the singularity. This increa
is supposed to appear as a result of particle production a

FIG. 12. Scalar field potential in the cyclic scenario. The mi
mum of the potential may occur at any value off; in this section
for simplicity we will assume that it occurs atf50; we will con-
sider a more general situation later.
7-15
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FELDER, FROLOV, KOFMAN, AND LINDE PHYSICAL REVIEW D66, 023507 ~2002!
moment of the brane collision~even though one could argu
that usually particle production leads to an opposite effe!.
If the increase of the kinetic energy is large enough, the fi
f rapidly rolls over the minimum ofV(f) in a state with a
positive total energy density, and continues its motion af
.0. The kinetic energy of the field decreases faster than
energy of matter produced at the singularity. At some m
ment the energy of matter begins to dominate. Eventuall~a
few billion years after the big bang! galaxies form. Then the
energy density of ordinary matter becomes smaller t
V(f) and the present stage of inflation~acceleration of the
universe! starts again.

As we see, this version of the ekpyrotic scenario is not
alternative to inflation anymore. Rather it is a very spec
version of inflationary theory. The major cosmological pro
lems are supposed to be solved due to exponential expan
in a vacuum-like state, even though the mechanism of p
duction of density perturbations in this scenario is nonsta
ard. Let us remember that Guth’s first paper on inflation@2#
was greeted with so much enthusiasm precisely becau
proposed a solution to the homogeneity, isotropy, flatn
and horizon problems, even though it did not address
formation of large scale structure. The Starobinsky mo
that was proposed a year earlier@1# could account for large
scale structure and the observed CMB anisotropy@45#, but it
did not attract as much attention because it did not emp
size the possibility of solving these initial condition pro
lems.

In fact, the stage of acceleration of the universe in
cyclic model iseternal inflation. Indeed, the main criterion
for the process of self-reproduction of the inflationary u
verse to occur is that the amplitude of inflationary pertur
tions df;H;AV should be greater than the changeDf of
the classical value of the fieldf during the timeH21: Df
;V8/V @30,40,42#. For the potentialV(f) used in the cyclic
model one hasdf5const in the limitf→`, whereasDf
→0 in this limit. Thus the universe at largef enters the
stage of eternal self-reproduction, quite independently of
possibility to go through the singularity and reappear aga
In other words, the universe in the cyclic scenario is not j
a chain of eternal repetition, but a growing self-reproduc
inflationary fractal of the type discussed in@30,40,42#.

It is remarkable that quantum effects and the mechan
of self-reproduction may work even at the present st
when the wavelength of inflationary fluctuations is grea
than the size of the observable part of the universe and
square of their amplitude is as small as 102120 in Planck
units. The reason why it may work is that the curvature
the effective potential at largef is even much smaller.

One may wonder, however, whether this version of infl
tionary theory is good enough to solve all major cosmolo
cal problems. Indeed, inflation in this scenario may oc
only at a density 120 orders of magnitude smaller than
Planck density. If, for example, one considers a closed u
verse filled with matter and a scalar field with the poten
used in the cyclic model, it will typically collapse within th
Planck timet;1, so it will not survive until the beginning o
inflation in this model att;1060. For consistency of this
scenario, the overall size of the universe at the Planck t
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must be greater thanl;1030 in Planck units, which consti-
tutes the usual flatness problem. The total entropy of a
universe that may survive until the beginning of inflation
V;102120 should be greater than 1090, which is the entropy
problem@27#. An estimate of the probability of quantum cre
ation of such a universe ‘‘from nothing’’ givesP;e2uSu

;exp(224p/V);e2120 @46#.
There are some other unsolved problems related to

theory, such as the origin of the potentialV(f) @13# and the
5D description of the process of brane motion and collis
@44,47#. In particular, the cyclic scenario assumes that
distance between the branes is not stabilized. Thus
would need to find some other mechanism that would ens
that the effective gravitational constant, as well as other
rameters depending on the fieldf ~i.e. on the brane separa
tion!, does not change in time too fast. This is one of t
reasons why it is usually assumed that the branes in Hor˘ava-
Witten theory must be stabilized.

We will not discuss these problems here. Instead of th
we will concentrate on the phenomenological description
possible cycles using the effective 4D description of this s
nario. This will allow us to find out whether the cyclic re
gime is indeed a natural feature of the scenario propose
@10#.

For the remainder of this section we will analyze th
scenario using the tools developed in the earlier section
the paper. In Sec. IX B we will describe the phase portrait
the cyclic scenario. In Sec. IX C we will consider the cond
tions that must be satisfied at the bounce in order for
cyclic regime to occur. In Sec. IX D we will analyze th
motion of the field as it returns from the singularity and sho
that the conditions described in Sec. IX C are difficult
realize self-consistently without invoking super-Plancki
potentials, even in the vicinity of the minimum. Followin
the authors of@10# we will consider such super-Planckia
potentials in Sec. IX E. Aside from the problem of applyin
the effective 4D theory at such high energies, we will fi
that there are still other problems in such realizations of
scenario. In Secs. IX F and IX G we will propose som
modifications of the cyclic scenario that may resolve some
the problems raised here.

B. Phase portrait of the cyclic universe

The phase space of the cyclic scenario is the usual

space (f,ḟ,H). If one does not take into account matter a
radiation, the phase portrait of the scenario forms a 2D s
face in 3D space. It is shown in Fig. 13 without the Poinca´
mapping.~If one adds radiation, the flow of trajectories b
comes three dimensional.! The trajectories corresponding t

different initial values off andḟ start at largeH, i.e. in the
upper part of Fig. 13. The trajectories beginning at lar
positivef reach the separatrix going from the point S1 to t
point A. Its upper part (H.0) corresponds to inflation
These trajectories follow the separatrix towards the throa
the phase portrait atH50, and then all of them move to
wards the singularity. The trajectories beginning at la
7-16
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COSMOLOGY WITH NEGATIVE POTENTIALS PHYSICAL REVIEW D66, 023507 ~2002!
negativef fall from the singularity at large positiveH to the
singularity at large negativeH without entering the stage o
inflation.

If one flips ḟ→2ḟ andH→2H, which corresponds to
time reversal, the separatrix connecting points S1 and A
comes the separatrix connecting points R and S2. In
lower part of the figure~at negativeH) this line corresponds
to the stage of deflation~exponential contraction of the un
verse, which is a time reversal of inflation!. These two sepa
ratrices divide all trajectories into three topologically disco
nected parts: the trajectories to the right of the sha
separatrix, the trajectories between the shaded and the b

FIG. 13. The 3D phase portrait for the cyclic scenario. All tr
jectories~lines! begin atH.0 and end in a singularity atH,0.
02350
e-
e

-
d
ld-

face separatrix and the trajectories to the left of the boldf
separatrix.

One could think that the shaded separatrix separates i
tionary trajectories from the trajectories that fall to the s
gularity without reaching the stage of inflation. However,
is not so. As we already discussed in Sec. V, the trajecto
that reach the stage of inflation are at a finite distance to
right away from the line connecting points R and S2~i.e. at

greater values off and ḟ).

The (f,ḟ) projection of the phase portrait for the cycl
scenario is shown in Fig. 14, also without the Poincare´ map-
ping. An interesting feature of the right panel of Fig. 14
the apparent absence of any trajectories near the shaded
~the right separatrix at the right panel!. This might seem
surprising because this line is a solution of the equations
motion, so there must be other solutions nearby. The rea
is that the deflationary universe regime described by this
is a strong repulsor, just opposite to the fact that the in
tionary boldface line atH.0 ~the right separatrix at the lef
panel! is a strong attractor. As a result, the density of traje
tories near the shaded line atH,0 is very small; that is why
they do not show up in Fig. 14. We discussed a similar is
in Sec. V.

As we see, all trajectories beginning atH.0 end up in
the singularity atH→2`. In the cyclic scenario it is as
sumed that the universe goes through the singularity
re-appears again. When this happens, all trajectories witf

,0, ḟ,0 andH,0 in the left lower part of the right pane
in Fig. 14 suddenly reappears in the right upper corner of
left panel of Fig. 14, describing the trajectories starting
f,0, ḟ.0 andH.0. If one ignores particle production a
the singularity, the boldface separatrix on the right panel
FIG. 14. The 2D phase portrait for the cyclic scenario. All trajectories begin at the bounding box of the left panel (H.0) and end at the
bounding box of the right panel (H,0).
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FELDER, FROLOV, KOFMAN, AND LINDE PHYSICAL REVIEW D66, 023507 ~2002!
comes the shaded line at the left panel~time reversal!. As a
result of this flip, the fieldf, which previously was running
down along the boldface separatrix towards the singularit
Fig. 13, eventually returns exactly to the same place af
.0 where it was in the very beginning of the process. Ho
ever, it returns back not at the stage of exponential expan
but at the stage of exponential contraction, following t
shaded separatrix in Fig. 13.

Exponential contraction is not a desirable regime. In or
to reach the cyclic inflationary regime, some of the trajec
ries to the left of the boldface separatrix after the singula
should jump sufficiently far away to the right of the shad
separatrix. As we already mentioned, Ref.@10# assumes tha
this jump may occur due to an increase in the energy of
scalar field bouncing back from the singularity. This increa
in energy is supposed to happen due to particle product
Only if this jump is sufficiently large can these trajectori
reach the inflationary separatrix going from S1 to A. Th
inflation begins, the field rolls to the minimum ofV(f)
again, and everything repeats.

C. Moving towards the minimum of V„f…

To study the potential shown in Fig. 12 we will assum
that near the minimum it can be represented as (m2/2)(f2

2f0
2). At f*f0 we will take it to be flat withV'102120

and atf,f0 we will takeV50. The results of a numerica
investigation for more complicated potentials are very sim
lar to the ones obtained for this simple model. However,
this model one can study everything analytically using
results obtained in Sec. VI. Indeed, we know how the fi
moves atf,2f0, whenV(f)50, and we also know how
it behaves in the quadratic potential, when it moves fr
2f0 to f0. The only thing that we need to do is to patc
these two regimes together.

At the initial stage the scalar field moves extreme
slowly at f.f0 and the universe inflates. Once it reach
f'f0 it falls down, V(f) becomes negative, and the un
verse begins to contract. To describe this process one ca
the theory developed in the first part of this paper. The c
traction begins atf5fc ~42!. The scalar field reachesf5
2f0 with energyDr2 given by Eq.~49!.

Subsequently, the fieldf moves towardsf52` and the
singularity develops in accordance with Eq.~18!. To describe
this motion one should taket051/A3Dr2 in Eq. ~18! and
replacef0 by 2f0:

f1f05A2

3
lnA3Dr2t,

ḟ2

2
5

1

3t2 . ~58!

In this solutionf52f0 at t5t0.
Let us use this equation to find the value of the fieldf at

the Planck time when the energy density becomes 1
Planck units and one can no longer study this regime wit
the context of general relativity. This happens attp51/A3 in
Planck units. Therefore the scale factor of the universa
;t1/3 decreases by a factor;(Dr2)1/6 from the beginning
of the process atf52f0 until the density becomesO(1).
The scalar fieldf at that time is given by
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fp52f01A1

6
ln Dr2 . ~59!

Settinga(tp)51 we can write our solution as

f2fp5A2

3
lnA3t,

ḟ2

2
5

1

3t2 ,

a531/6 t1/3, ~60!

which in turn implies

ḟ5A 2

a3, f2fp5A6 lna. ~61!

One can also represent our results in terms of the con
mal timet, wheredt5adt. In this caset5(2t325/6)3/2, and

f2fp5A3

2
ln

2t

A3
. ~62!

The Planck timetp51/A3 corresponds totp5A3/2.
The cyclic scenario requires that the universe bounce b

from the singularity and the field move back from2` to f0.
Depending on how much kinetic energy the field has at t
point three regimes are then possible:

~1! ḟ2/2<Dr2 at f52f0. This is the regime that would
be reached if the bounce were perfectly symmetric~in which
case ḟ2/25Dr2). The universe starts collapsing atf
<fc . The field overshoots the pointf5f0 and moves with
ever growing speed towardsf51`. There is a small bunch
of trajectories such that the scalar field evolves very slow
the equation of state isp52r, and the universecontracts
exponentially. Eventually, however, the kinetic energy of t
field f dominates and the collapse becomes power law w
p5r.

This regime is represented by the trajectories to the lef
the shaded separatrix in the upper part of the left pane
Fig. 14.

~2! Dr2,ḟ2/2,Dr1 at f52f0. The universe starts
collapsing atf.fc . The field does not have enough ener
to reach the pointf5f0, so it returns back to negativef,
the field moves with ever growing speed tof52`, and a
singularity develops.

This regime is represented by a small bunch of trajec
ries to the right of the shaded separatrix in the upper par
the left panel in Fig. 14.

~3! ḟ2/2*Dr1 at f52f0. The universe continues ex
panding and the fieldf becomes greater thanf0. It contin-
ues growing and gradually slows down. As a result, inflat
begins. Then the field very slowly decreases, falls into
minimum of V(f), the universe collapses and the fie
moves tof52`. This is the regime required by the cycli
scenario.

This regime is represented by trajectories starting su
ciently far from the shaded separatrix, to the right of it in t
upper part of the left panel in Fig. 14.
7-18
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COSMOLOGY WITH NEGATIVE POTENTIALS PHYSICAL REVIEW D66, 023507 ~2002!
The last of these regimes requires additional explanat
Let us remember how we derived the expression forDr1 :
We considered the fieldf slowly rolling from f5f0 during
the stage of contraction and found that it arrived at the po
f52f0 with kinetic energyDr1 . If we reverse the time
evolution of the universe, we will see the scalar field rolli
down fromf52f0 and arriving at the pointf5f0 with a
nearly vanishing speedduring the stage of expansion. If the
initial kinetic energy of the field is greater thanDr1 , it
reaches the pointf5f0 with a nonvanishing speed an
moves further onto the plateau where the energy densit
the fieldf becomes constant, and inflation begins.

As we have seen in Sec. VI, the difference betweenDr1

andDr2 is extremely small:

dr5Dr12Dr25pA3DVmf0
2 . ~63!

HereDV has the meaning of the height of the effective p
tential atf.f0; in our caseDV;102120. Thus one might
expect that it is pretty easy to jump from the trajectory w
energyDr2 to the desirable trajectory with energy grea
thanDr1 , as in case~3!.

In reality, however, the required jump in kinetic ener
becomes much larger when one takes into account quan
effects. As the fieldf moves through the minimum from
2f0 to f0 its mass changes from 0 tom and back to 0
again, all within a timeO(m21) ~half of an oscillation!, see
Fig. 16. This nonadiabatic change,Dm/Dt;m2, will lead to
the production off particles with energy densityO(m4)
@29#. Therefore the fieldf loses an amount of energ
O(m4), which makes it less likely to reachf0 while the
universe is still expanding.~The production off particles
during this very short time interval appears in addition to
process of particle creation near the singularity discusse
Sec. VIII.! Thus in order to realize the cyclic scenario t
kinetic energy density of the fieldf at the point2f0 must
be greater thanDr1 by O(m4), which is much greater than
DV.

One may wonder where the field gets this boost in kine
energy. Usually one would expect that the field after
bounce can only lose energy due to particle producti
However, in@10# it is assumed that it can actually gain e
ergy as a result of particle production during the brane c
lision ~i.e. in the singularity!. It is not quite clear whether this
can indeed happen, see e.g.@47# where it is claimed that
particles can be created during the brane collision only
they have negative energy density. We are not going to
cuss this issue here. Instead of that, we will follow the
sumptions of@10# and check what happens to the scalar fi
f if the universe after the bounce contains some matte
radiation.

D. A scalar field with a vanishing potential in the presence
of radiation

Let us consider the motion of the fieldf from 2` to
2f0 in the presence of radiation. The Friedmann equat
describing this process can be written as follows:
02350
n.

t

of
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e
in

c
a
.
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if
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n

S ȧ

a
D 2

5
1

3
S ḟ i

2

2

ai
6

a6 1r i
r
ai

4

a4D . ~64!

Hereḟ i is the velocity of the field at some momentt i , ai is
the scale factor of the universe at that moment, andr i

r is the
density of radiation at that time. This equation reflects
fact that the kinetic energy of the field decreases asa26 and
radiation energy decreases asa24 during the expansion o
the universe. Note that here we are considering process
sub-Planckian energies where the usual Friedmann cos
ogy is supposed to be valid.

It is convenient to write this equation in terms of th
conformal timet, wheredt5adt:

~a8!25
A2

a2 1B, ~65!

wherea85da/dt5aȧ, A25ḟ i
2ai

6/6 andB5r i
rai

4/3.
Taking a(0)50 ~at the singularity!, the solution of this

equation is

a252At1Bt2. ~66!

For definiteness, we will normalize our solution at th
time t i5tp , when ḟ2/251 and ai51. Then A251/3, B
5rp

r /3, and

a25
2

A3
t1

rp
r

3
t2. ~67!

Then, using equationf85ḟ iai
3/a25A6A/a2, one finds

f2f̃p5A3

2
ln

2t

A3S 11
rp

r

2A3
t D 1Cr

5A6 ln
a

11
rp

r

2A3
t

1Cr . ~68!

Here f̃p is the value of the scalar field at the time whe
ḟ2/251 after the bounce. The constant of integrationCr is
supposed to vanish in the absence of radiation, i.e. forrp

r

50. In this casef̃p5fp , and our solution~68! coincides
with the solution presented in Eq.~62!. This means that in
the absence of radiation the fieldf elastically bounces from
the singularity, in accordance with@14#.

One can find the constantCr for any givenrp
r from the

condition thatf5f̃p at ḟ2/251 anda51. In particular, for
rp

r !1 one hasCr'rp
r (A3/2A2).

Equation ~68! implies that atrp
r t.2A3 the field stops

moving. Therefore we will assume thatrp
r t!1 at f,2f0.

This leads to a strong constraint onrp
r :

rp
r &~Dr1!1/3. ~69!
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FELDER, FROLOV, KOFMAN, AND LINDE PHYSICAL REVIEW D66, 023507 ~2002!
If one takes, for definiteness,f0;0.1M p , m2f0
2;10220, as

in the original version of the ekpyrotic scenario@11#, one
finds that the cyclic scenario with these parameters can
work unless the energy density of radiation at the Pla
time is less than 1026 in Planck units. In general the densi
of gravitationally produced particles is;H4, which isO(1)
at the Planck time, so it is not clear how particle product
could be so strongly suppressed.

Suppose, however, that for whatever reason one can
deed haverp

r !(Dr1)1/3. In this caserp
r t!1 and Eq.~68!

can be represented in the following form:

f2f̃p5A6 lna2
rp

r

A2
S t2A3

2D . ~70!

With our normalization ofa one has

1

2
ḟ25a26. ~71!

As we already discussed, if we want the field to move tof
.f0 during the stage of expansion of the universe, its
netic energyḟ2/2 must be greater thanDr1 at f52f0. If
we assume that the field has sub-Planckian energy a
moves through the minimum, i.e. thatDr1!1, then

f̃p.2f01
1

A6
lnDr11rp

rA 3

2A2
~Dr1!21/3. ~72!

Comparison with Eq.~59! gives the following condition:

f̃p2fp.rp
rA 3

2A2
~Dr1!21/31

1

A6
ln

Dr1

Dr2

. ~73!

In general, it could happen that after bouncing from the s
gularity the field f appears at the Planck density atf̃p

Þfp , so thatf̃p2fp5O(rp
r ) @10#. However, our investi-

gation shows that the cyclic scenario withDr1!1 could
work only if f̃p2fp@rp

r .
This means that the cyclic scenario can work only if

very small amount of radiation can produce a major cha
in the state of the fieldf at the Planck time:f̃p2fp

*rp
r (Dr1)21/3. Second, the amount of radiation at th

Planck time must be very small,rp
r &(Dr1)1/3. This may be

a real problem if, as we expect, quantum effects at Planc
densities create particles with densityrp

r 5O(1).
These problems are less serious in models withDr1>1,

i.e. if the field f acquires super-Planckian energy even
fore it reaches the plateau atf,2f0. Such models are sus
pect because the usual 4D approach based on general
tivity becomes unreliable at super-Planckian densities
appears that such models are necessary for the cyclic m
however, and in at least one of their papers the author
@10# invoke such a model. We therefore consider such po
tials here.
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E. Super-Planckian potentials for the cyclic scenario

Let us now consider a potential proposed by the auth
of the cyclic scenario@10#:

V~f!5V0 ~12e2cf! F~f!. ~74!

In the particular example studied in the last paper of R
@10# one hasF(f)5e2e2gf

, V05102120, c510, and g
'1/8. This potential is shown in Fig. 15. This potential h
the same structure as the potential shown in the Fig. 12,
the scales and the position of the minimum are determi
by the parameters given in@10#. At f50 this potential van-
ishes. It approaches its asymptotic valueV05102120 at f
*1. Inflation in this scenario is possible atf*1. At f
*15 one hasV3/2*V8 and the universe enters the process
eternal inflation@40,30#. The potential has a minimum atf
'236; the value of the potential in this minimum isVmin
'23.

Let us try to understand the origin of the parametersc
510, g'1/8 used in@10#. According to@15#, the amplitude
of density perturbations in this scenario in the limitc@1 can
be estimated as

dr

r
;1025A2Vj j4, ~75!

whereVj is approximately equal to the value of the potent
in its minimum Vmin and j is the efficiency with which ra-
diation is produced at the singularity; it is assumed thaj
!1. This suggests that in order to be consistent with ob
vational data (dr/r;1024) one should have2Vj@1. This
means one must rely on calculations using the equation
general relativity atuV(f)u@1.

The authors of@15# have warned the readers that the
results are very preliminary and many authors do not ag
with their derivation of the amplitude of density perturb
tions @16#. Therefore it may happen that the correct equat
for perturbations in the cyclic scenario as well as the expr
sion forV(f) will be quite different. Here we will simply try
to understand the values of the parameters used in@10# and
check the consequences of the potential they suggested

FIG. 15. An example of cyclic scenario potential used in R
@10#.
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COSMOLOGY WITH NEGATIVE POTENTIALS PHYSICAL REVIEW D66, 023507 ~2002!
The spectrum of density perturbations obtained in@15# is
not blue, as in@11#, but red, like in the pyrotechnic scenar
@13# and in the simplest versions of chaotic inflation. T
spectral index isn'124/c2. Observational data suggest th
n50.9360.1, which implies thatc*5. If one takesc@5,
andVJ.1, one finds that the curvature of the effective p
tential in its minimum becomes much greater than 1.

Once one takesV;23 in the minimum of the potentia
with c510 @10#, the parameterg can be determined numer
cally: g50.1226. It would be hard to provide explanation
the numerical value of this parameter. Meanwhile if o
takesg51/850.125, one findsV;2331023 in the mini-
mum of the potential. This would reducedr/r by a factor of
30. Thus, in order to have density perturbations with a c
rect magnitude one should fine-tune the value ofg50.1226
with accuracy better than 1%.

Figure 16 shows the effective mass of the fieldf. As we
see, um2u5uV9u*1 in the vicinity of the minimum of the
effective potential. A numerical investigation of the motio
of the field moving fromf.0 in a theory with this potentia
shows that its kinetic energy at the moment whenf reaches
the minimum of the effective potential isO(102). When the
field approachesf;239, where the effective potential be
comes flat, the kinetic energy of the fieldf becomes;106,
i.e. a million times greater than the Planck density.

Even if we continue to trust our calculations in such
regime, there are still problems. First of all, there is a d
tance Df.30 from the point f'230 where the field
emerges from the deep minimum of its effective potentia
the regionf.1, where inflation in this theory may begin
Let us assume that the kinetic energy of the field is sma
than the Planck energy atf;230, since otherwise we jus
cannot trust our analysis at all. This assumption is in acc
dance with@10#. Indeed, according to the estimates made
@10#, f̃p2fp' ln@H5(out)/H5(in)#,1

2ln
4
3,1. In this model

fp'234, so indeed one expectsf̃p,233.
As we discussed in Sec. IX D, we expect that gravi

tional particle production will create particles with dens
O(1) at the Planck time. Independently of gravitational p
duction, however, there should be production off particles
with densityO(m4) due to the nonadiabatic change of t
effective mass of the field moving fromf5239 to f.
232, see Fig. 16. In this modelO(m4)*O(1). Thus, when
the field reaches the relatively flat region atf.232, its
motion produces ultrarelativistic particlesf with super-
Planckian energy density. These particles, just like usua
diation, immediately freeze the motion of the fieldf. One
can show that in this scenario the fieldf can reach the in-
flationary regime atf.0 ~which is necessary for the con
sistency of the cyclic scenario! only if at f;232 ~i.e. at the
flat part of the potential! the kinetic energy density of th
field f is 12 orders of magnitude greater than the~Planckian!
energy density of the produced particles. The effective
description in terms of the scalar fieldf and its effective
potential V(f) is inapplicable for the description of suc
processes.

This problem is not unresolvable. For example, one m
consider effects related to non-relativistic particles produ
02350
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at the singularity. These particles contribute to the equa
of motion for the fieldf by effectively increasing its poten
tial energy density@10#. They may push the field toward
positive values of the fieldf despite the effects describe
above. However, this would add an additional epicycle to
scenario that is already quite speculative. Indeed, one wo
need to produce a sufficiently large number of such partic
and make sure that massive particles decouple from the
lar field at the present epoch. The last condition is neces
to avoid a rapid change of the coupling constants relate
the brane separation described by the fieldf.

One may try to improve the situation by altering the sha
of the potential. First of all, the original argument of@10#
was that the functionF(f) appears because at small valu
of the string couplinggs nonperturbative effects should b

suppressed by a factore21/gs or e21/gs
2
, or perhaps by

e28p2/gs
2
. In the case of type IIA~or heterotic! string theory

in d510 the string coupling isgs5e2f @14#. Thus one could
expect the suppression function to be one of the three
posed types:F(f);e2e2gf

, F(f);e2e22gf
, or F(f)

;e28p2e2gf
, with g51 rather than withg50.1226.

It is possible to haveVmin523, as in@10#, for g51, but
only if one takesc581.56. The value ofc must be fine-
tuned: a change inc of 1% results in a change ofVmin by two
orders of magnitude. In accordance with@15#, this would
lead to an order of magnitude change in the amplitude
density perturbations.

With these parameters, however, the curvature of the
fective potential in its minimum becomes two orders of ma
nitude greater than the Planck mass squared, so all calc
tions in such models in the context of the effective 4D theo
are unreliable. In potentials withF(f);e2e22gf

or F(f)
;e28p2e2gf

the curvature in the minimum withuV(f)u
*O(1) becomes much greater still.

F. Bicycling scenario

Various modifications to the cyclic scenario are possib
For example, instead of the asymmetric potential shown
Figs. 12 and 15, one may consider a symmetric potentia
in Fig. 17.

FIG. 16. Effective mass squaredm25V9 of the scalar field in
the vicinity of the minimum ofV(f) in the cyclic scenario.
7-21
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FELDER, FROLOV, KOFMAN, AND LINDE PHYSICAL REVIEW D66, 023507 ~2002!
In the beginning, the scalar field is large and positive a
it slowly moves towards the minimum. When it falls to th
minimum the universe begins to contract and the field
rapidly accelerated towards the singularity atf52`. As we
already mentioned, the structure of the singularity is not s
sitive to the existence of the potential, especially if it is
small asV0;102120. Suppose in the vicinity of its minimum
the potential is approximately quadratic,V(f)'m2(f2

2f0
2)/2. If f0<1 andm!1, then according to Eq.~59! the

kinetic energy of the fieldf reaches the Planck value at

fp52f01A1

6
ln Dr2'A2

3
ln~mf0

2!. ~76!

For definiteness, suppose thatm;AV0;10260, and f0
5O(1). Then we would not even know that such a min
mum exists~the field would not move there! until the energy
density of matter dropped below its present density 102120.
In this case the kinetic energy of the field moving towar
f52` would reach the Planck value atfp;2112. At that
time the scale factor of the universe would decrease b
factor of Dr2

1/6;10220.
Now let us assume, as in@10#, that the fieldf bounces

from the singularity and moves back. Its energy dens
drops down to the Planck energy density atf̃p'fp;102.
During its subsequent evolution the kinetic energy of
field rapidly drops down because of radiation. Even if t
density of radiation at the time whenf5f̃p were as small as
10239, it would eventually begin to dominate because
relative contribution grows asa2, i.e. up to 1040 times before
it reaches2f0.

Therefore the fieldf freezes at large negativef. At this
stage the energy density is dominated by particles produ
near the singularity and density perturbations prepared
ing the previous cycle lead to structure formation. Then
universe cools down while the field is still large and negat
and the late-time stage of inflation begins. During this sta
the field slowly slides towards the minimum of the effecti
potential and then rolls towards the singularity atf→`.
When it bounces from the singularity, a new stage of infl
tion begins. The universe in this scenario enters a cy
regime with twice as many cycles as in the original cyc
scenario of Ref.@10#. One may call it thebicycling scenario.

FIG. 17. Symmetric scalar field potential in the new cyclic sc
nario. At large values ofufu one hasV(f)'V0;102120 and there
is a minimum atf50.
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An advantage of this scenario is that it may work even
a lot of radiation is produced at the singularity and the fie
f rapidly loses its kinetic energy. However, if in order
have density perturbations of a sufficiently large magnitu
one needs to have a potential with a super-Planckian d
V(f),21, as in @10,15#, then this scenario has the sam
problem as the scenario considered in the previous sec
The kinetic energy of the fieldf becomes greater than th
Planck density as soon as it rolls to the minimum ofV(f). It
becomes even much greater when the field rolls out of
minimum, and the 4D description fails.

G. Cycles with inflationary density perturbations

As we see, one of the main difficulties of the cyclic sc
nario is related to the non-inflationary mechanism of gene
tion of density perturbations. It requires a very specific a
fine-tuned potential; see@13# and discussion above. Accord
ing to @15#, this potential must have a super-Planckian dep
so one cannot study the corresponding processes by t
tional methods. Moreover, the very existence of this mec
nism of generation of density perturbations remains con
versial @16#.

This problem can be avoided if we consider a poten
that grows at largeufu, such as the one shown in Fig. 18. Th
field begins to move from large positivef, falls to the mini-
mum of V(f), and moves with ever growing speed to2f.
If, for example, the potential grows likefn at a sufficiently
large negativef, it does not affect the motion of the fieldf
towards the singularity. However, when the fieldf bounces
back, it immediately loses its velocity due to the impact
radiation created at the singularity. Therefore it slows do
and enters a stage of inflation. At this stage all good and ba
memory about the previous life of the universe and proces
at the singularity are erased and new density fluctuations
produced. All particles produced at the singularity beco
diluted, but new ones are produced at the end of inflation
to gravitational effects@48# or by the mechanism of instan
preheating@49,50#. These new particles constitute the mat
contents of the observable universe.

Gradually the density of ordinary matter decreases,
the energy density of the universe becomes determined
V(f)'V0. The universe enters a stage of low energy infl

- FIG. 18. Scalar field potential in the cyclic scenario incorpor
ing a stage of chaotic inflation. Inflationary perturbations are g
erated and the large-scale structure of the universe is produce
f,0.
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tion ~quintessence!, which may result in a regime of self
reproduction ifV(f) is flat enough. In those exponential
large domains of the universe where the field eventually f
down to the minimum ofV(f), it continues rolling tof
5`, bounces back after the singularity, slows down due
radiation, experiences low-energy inflation, and rolls do
to the minimum ofV(f) again.

In this model of the oscillating universe one can ha
large scale structure formation due to inflationary pertur
tions without any need to rely on controversial assumpti
about the behavior of perturbations passing through the
gularity. Also, one no longer needs to have potentials w
uV(f)u.1. However, in this model inflationary perturbation
are generated only every second time after the unive
passes the singularity~at f,0, but not atf,0). The model
can be made even better by making the potential rise bo
f→` and atf→2`; see Fig. 19. In this case the stage
high-energy inflation and large-scale structure formation
curs each time after the universe goes through the singula

Thus we see that it is possible to propose a scenario
scribing an oscillating inflationary universe without makin
any assumptions about the behavior of non-inflationary p
turbations near the singularity. Another important advant
of this scenario is that inflationary cycles may begin in
universe with initial size as small asO(1) in units of the
Planck length, just as in the standard chaotic scenario@4#.
Still, in many other respects this scenario is almost as c
plicated as the cyclic scenario of Ref.@10#. The theory of
reheating of the universe in this model, just as in@10#, is
rather unconventional. Gravitational particle productio
which is the only source of matter in this scenario, m
dramatically overproduce gravitinos and moduli fiel
@48,50#. To avoid this problem one would need to use t
mechanism of instant preheating@49,50#. In order to com-
bine the stage of chaotic inflation and the stage of low-sc
inflation ~quintessence! the potential must be rather compl
cated. To avoid this complication one may need to cons
two-field models of the type of hybrid inflation.

The main problem of this model is that one still mu
assume that somehow the universe can go through the
gularity. But now this assumption is no longer required
the success of the scenario since the large scale structu
the universe in this scenario does not depend on proce

FIG. 19. Scalar field potential in the cyclic scenario incorpor
ing a stage of chaotic inflation. Inflationary perturbations are g
erated and the large-scale structure of the universe is produced
at f,0 and atf.0.
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near the singularity. This allows us to remove the remain
epicycles of this model. Indeed, the main source of all
problems in this model is the existence of the minimum
the effective potential withV(f),0. Once one cuts this
minimum off, the potential becomes extremely simple, s
Fig. 20, and all problems mentioned above disappear. In
ticular, one may use the simplest harmonic oscillator pot
tial (m2/2)f21V0 with V0;102120 considered in the begin
ning of our paper. This theory describes an eternally s
reproducing chaotic inflationary universe, as well as the l
stage of accelerated expansion~inflation! of the universe
driven by the vacuum energyV0.0.

X. CONCLUSIONS

The main goal of our work was to perform a gene
investigation of scalar field cosmology in theories with neg
tive potentials. We have found that the phase portraits
such theories in the 3D space (f,ḟ,H) have different geom-
etry as compared with phase portraits in theories w
V(f)>0. In theories withV(f).0 the phase portraits fo
flat universes are divided into two disconnected parts
scribing expanding and contracting universes (H.0 andH
,0). Meanwhile in theories withV(f),0 these two parts
become connected. The trajectories moving towardsV(f)
,0 simultaneously move from the parts of the phase port
with H.0 towards the parts withH,0. Once the universe
begins to contract, it never returns to the stage of expan
until it reaches the singularity.

This does not mean that theories with negative potent
should be banned from consideration. In some cases the
lar field may be trapped in a metastable minimum, or it m
roll towardsV(f),0 extremely slowly. However, it is quite
interesting that with an account taken of general relativ
potentials that have minima atV(f),0 can be as dangerou
as potentials unbounded from below.

A general feature of all trajectories bringing the univer
towards the singularity is that in all theories with power-la
potentials the kinetic energyḟ2/2 becomes much greate
thanV(f) near the singularity. This means that the descr
tion of the singularity is nearly model independent, at leas
the classical level. In particular, the equation of state of
universe approaching the singularity typically isp5r.

However, this conclusion can be altered with an acco
taken of quantum effects, including particle production ne

-
-

oth

FIG. 20. The scalar field potential that appears after the step
step simplification of the cyclic scenario.
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the singularity. Typically particle production near the sing
larity is so efficient that it turns off the regimep5r when a
contracting universe approaches the Planck density. The
fects related to particle production are especially signific
in an expanding universe as they tend to completely eli
nate the stage withp5r.

In addition to the general study of cosmology with neg
tive potentials, we performed an investigation of a possibi
that our universe may experience repeated cycles of infla
and contraction@10#. For a complete study of this scenar
one would need to resolve the singularity problem, as wel
several other problems discussed in@13,44,16,47#. In addi-
tion, as we show in this paper, the parameters of the effec
potentials used in the cyclic scenario must be fine-tuned w
accuracy better than 1%. This scenario, as proposed in@10#,
requires investigation of an effective potentialV(f) of a
super-Planckian depth,uV(f)u.1, and of a scalar field with
mass greater than the Planck mass. Even if all of these p
lems could be resolved in the context of a more gene
approach, the existence of a cyclic regime in the mode
Ref. @10# would require additional assumptions. We ha
shown that ultrarelativistic particles produced near the sin
larity, as well as scalar particles created when the field f
down to the minimum of the effective potential, tend to h
the motion of the classical fieldf, which prevents inflation-
ary cycles from occurring. One way to address this probl
is to study quantum creation of supermassive particles w
specific interactions with the scalar field. However, th
would add new ‘‘epicycles’’ to a scenario that is already ve
complicated.

We proposed several modifications to the cyclic scena
of Ref. @10# that could make it more realistic and less depe
dent on the unsolved singularity problem. In particular, if o
assumes that the potentialV(f) slowly grows at largeufu
then the universe may still enter a regime of eternal osc
tions, but the singularity will be separated from the stage
large scale structure formation by a stage of chaotic inflat
This scenario allows us to combine attractive features of
oscillating universe model@17–21# and chaotic inflation@4#.
An important advantage of this model is that it does not n
to rely on the controversial theory of density perturbatio
passing through the cosmological singularity.

But even this model remains very complicated. For
nately, it allows for one final simplification that resolves a
of its remaining problems. If one removes the minimum
the potential atV(f),0, one returns to the usual scenario
chaotic inflation. It describes an eternally self-reproduc
inflationary universe, as well as the present stage of acc
ated expansion.
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Note added in proof

Two months after this paper was submitted to Phys. R
D, the authors of the cyclic scenario issued a new pape
this scenario@51#. This new paper, which is supposed to be
summary of the state of the cyclic universe model, omit
any mention of the criticisms of the ekpyrotic or cyclic sc
nario in our paper and in the papers of other auth
@13,16,44#. It was claimed in@51# that the cyclic scenario ‘‘is
able to reproduce all of the successful predictions of the c
sensus model~inflationary cosmology! with the same exquis-
ite detail.’’ They continued by saying that ‘‘All of the differ-
ences between the two paradigms harken back to
disparate assumptions about whether there is a ‘beginnin
not.’’ Then they said that ‘‘if the big bang were not a begi
ning, but rather, a transition from a pre-existing contract
phase, then the inflationary mechanism would fail.’’

We disagree with these claims. As explained in our pap
the original version of the cyclic scenario@10# does not have
firmly established theoretical predictions and it suffers fro
many unsolved problems. This scenario is not a real alte
tive to inflation because it assumes that the universe pa
through an infinite number of stages of inflation. If one a
sumes, following@10,51#, that the universe can pass throug
the singularity, then it is very easy to add a standard stag
chaotic inflation to the beginning of each cycle. This h
been demonstrated in Sec. VIII G of our paper. Instead
failing @51#, the standard inflationary mechanism resolv
many of the problems of the cyclic scenario. Therefore
are not debating whether inflationary theory is better than
models of a noninflationary cyclic universe, because all v
sions of the cyclic universe scenario use an infinite num
of stages of inflation. We are just comparing different v
sions of inflationary theory. Some of these versions, d
cussed in Sec. VIII G, admit the existence of a cyclic regi
combined with chaotic inflation and do not lead to any pro
lems with the generation of metric perturbations. Meanwh
some other models, such as the original version of the cy
scenario@51#, are very problematic and require modificatio
as described in Sec. VIII of our paper.
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