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We investigate cosmological evolution in models where the effective potéf(ti®) may become negative
for some values of the fieleh. Phase portraits of such theories in the space of variald:le[ﬁ,ﬁ) have several
qualitatively new features as compared with phase portraits in the theories\Vuih>0. Cosmological
evolution in models with potentials with a “stable” minimum ®{ ¢) <0 is similar in some respects to the
evolution in models with potentials unbounded from below. Instead of reaching an AdS regime dominated by
the negative vacuum energy, the universe reaches a turning point where its energy density vanishes, and then
it contracts to a singularity with properties that are practically independevif #j. We apply our methods to
investigation of the recently proposed cyclic universe scenario. We show that in addition to the singularity
problem there are other problems that need to be resolved in order to realize a cyclic regime in this scenario.
We propose several modifications of this scenario and conclude that the best way to improve it is to add a usual
stage of inflation after the singularity and use that inflationary stage to generate perturbations in the standard
way.
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[. INTRODUCTION behavior in a large class of theories with negative potentials
and explain why the universe in these theories stops expand-
Since the invention of inflationary cosmolo§¥-5], the ing and eventually collapses.

theory of the evolution of scalar fields in an expanding uni- Another reason to study theories with negative potentials
verse has been investigated quite extensively, both at thé provided by the investigation of cosmology N~=2,4,8
classical and the quantum level. While many features of scadauged supergravity. Recently it was found that in all known
lar field cosmology are well understood, the overall pictureversions of these theories potentials with extrema/@p)
remains somewhat incomplete. In this paper we will extend™0 are unbounded from below. Despite this fact, such mod-
the investigation of scalar field cosmology to models with€ls can, unqier certain cqndmons, describe the present stage
negative effective potentials. We are also going to bring to°f acceleration of the univer€,8]. , ,
gether several other issues, such as the impact of radiation One more reason is related tq a formal connection with
and particle production on the onset of inflation. This will warp factor or bulk scalar dynamics in brane cosmology. It

allow us to get a better understanding of various possibilitie as recently bee_n shown that the equat|on§ for the warp fac
) . or and scalar field in brane cosmology with a scalar field
that may appear in scalar field cosmology. . L .
. otentialV(¢) are similar to the equations for the scale fac-
We are going to use a general approach based on the

: L . ; or and scalar field in 4D cosmology with the opposite po-
investigation of 3D phase portraits that show the behavior o ential — V() [9]. This reveals an interesting relation of

the scalar fieldg, its velocity ¢, and the Hubble constant c,smology with negative potentials and warp geometry with
H=a/a. We will see that the phase portraits of models withpositive potentials.
V(¢$)>0 and withV(¢)<0 are qualitatively different and Finally, cosmology with a negative potentid(¢) is the
that additional changes appear when one adds matter andfgasis of the recently proposed “cyclic universe” mo@&0]
radiation. based in part on the ekpyrotic scendrd]. However, unlike
There are several reasons to study cosmology with negan the ekpyrotic scenarifil1], the authors of10] assume, in
tive potentials. The first one is related to the cosmologicakccordance withh13], that the scalar field potenti®(¢) at
constant problem. The simplest potential used in inflationaryarge ¢ is positive and nearly constant. As a result, the uni-
cosmology isV(¢) = 3m?¢? [4]. One can add to this poten- verse experiences “superluminal expansidiniflation) that
tial a small cosmological constalfy without changing any helps to solve some of the cosmological problems. In this
features of inflation. A small positive,~10"*?° (in Planck  sense cyclic scenario, unlike the ekpyrotic scenario of Ref.
units) would be sufficient to describe the present acceleratio11], is a specific version of inflationary theory rather than an
of the universe in a de Sitter—like state. But why should  alternative to inflation{12]. Then the scalar field rolls to a
be so small and positive? What would happen ¥ 0?  minimum of its effective potential with/(¢)<O0, the uni-
Does the post-inflationary universe withy<<O behave like verse contracts to a singularity, reemerges and again enters a
anti—de Sitter space, which is so popular in M theory? stage of inflation. This scenario inherits many unsolved prob-
Rather unexpectedly, the answer to this question appeatsms of the ekpyrotic moddl13], including the singularity
to be negative: After a long stage of inflation the universeproblem[14]. The authors assume that the universe can pass
with Vo<<O cannot approach an AdS regime; instead of thathrough the singularity and that one can use perturbation
it collapseqg6—8]. In this paper we will study cosmological theory and specific matching conditions at the singularity to
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calculate density perturbations in the post-big-bang universe In Sec. V we show the phase portraits for a model where
generated by processes prior to the singulafit$]. This  the effective potential can become negative. We discuss gen-
issue is rather controversidl6]. The possibility of achieving eral properties of such models, and in particular the ways in
a cyclic regime depends on various assumptions concernirigghich they differ from the models of the previous section.

the creation of matter and the acceleration of the scalar fiel@ne of our major conclusions is that such models generically
during the big bang. enter a stage of contraction. In Sec. VI we will examine in

The idea that the big bang is not the beginning of thedetail the transition from expansion to contraction in models

universe but a point of a phase transition is quite interesting®’ this type. _
see e.g[17—23. However, the more assumptions about the Many of the features of sc_alar field cosmology that we are
singularity one needs to make, the less trustworthy are th8°iN9 to discuss are model independent. The phase portraits

conclusions. In this respect, inflationary theory provides udn Secs. IV=VI all use the simplest mOdV(¢):m2‘Z52/2 ,
with a unique possibility to construct a theory largely inde- T Vo, but in Sec. VII we discuss some other theories with
pendent of any assumptions about the initial singularity. Ac"€gative potentials. _ _

cording to this theory, the structure of the observable part of " Sec. VIll we will discuss cosmological evolution near
the universe is determined by processes at the last stages B initial and final singularities, and in particular the role of
inflation, at densities much smaller than the Planck densityParticle production and anisotropy near the singularity. -
As a result, observational data practically do not depend on N Sec. IX we will apply our methods to the investigation
the unknown initial conditions in the early universe. of the cyclic scenario. As we will see, the cyclic regime in

Since the cyclic scenario does require repeated periods dpis scenario dogs not appear automatically. One should fine-
inflation anyway, it would be nice to avoid the vulnerability tun€ the potentiaV(#) and learn how to work with the
of this scenario with respect to the unknown physics at théuPer-Planckian potential¥(¢)|>1. One should also intro-
singularity by placing the stage of inflation before the stageluce superheavy particles with specific properties, study
of large scale structure formation rather than after it. their production at the singularity, and make sure that they do

In order to achieve this goal we will examine the condi- no'g affect the presept stage of the evolut!on of the universe.
tions that are necessary for the existence of the cyclic regim&nis adds new “epicycles” to this scenario, making it even
in the model of Ref[10] and then check whether the model More specula_tlve. We discuss several possible mo_d|f|cat|ons
can be modified in a way that would not require various_Of this scenario and conclupie th_at the best way to improve it
speculations about the behavior of matter, the scalar fieldS t0 @dd a usual stage of inflation before the stage of large
and density perturbations near the singularity. scale structure formgtlon. Thl_s modification 'resolves'many

Our paper will thus consist of two parts. The first part will Problems of the original version of the cyclic scenario. In
contain a general study of scalar field cosmology with posi_thls_modlfled form of the_ cyclic scenario, inflation is once
tive and negative potentials. The second part will be devote@dain the source of density perturbations as well as the reso-
to a more speculative subject, it will include application of lution of the cosmological problems such as homogeneity
our general results to the cyclic scenario. and flatness. _ _ _ _

In Sec. Il we will describe several basic regimes that are S€ction X summarizes our main conclusions concerning
possible in scalar field cosmology: the universe can be domicoSmology with negative potentials and cyclic universe.
nated by potential energy, by kinetic energy, by the energy
density of an oscillating scalar field, or by matter or radia- Il. FOUR BASIC REGIMES IN SCALAR FIELD
tion. The discussion of these four distinct regimes will help COSMOLOGY
us to understand the phase portraits of the universe that we . _1_2,2
are going to draw in the subsequent sections. A. Atoy model with V() =2m"¢"+Vo

Section Il will describe the use of phase portraits for ~We will study the behavior of a homogeneous scalar field
studying cosmological evolution. We will write the evolution in & Friedmann universe with the metric
equations for the field and scale factor in the form of three 5
first order equations plus one time dependent constraint. The ds’=—dt*+a (t)dé’ @
solutions to these equations can then be represented as traF1 _ v & . .
jectories in phase space, clearly showing the possible way¥ ereds;= ¥ijdx'dx’ is the metric of a 3D space with con-
the universe can evolve in different situations. Finally, byStant curvaturek=0,=1. o
using a Poincareprojection we can map the entire phase " this paper we will use a system of units in whibh,
space onto a finite sphere, thus allowing the complete set of 1 Where M,=(87G) '~2><.101 GeV. The Fried-
possible trajectories to be easily seen. mann.equatlon for a scalar field with potential energy density

In Sec. IV we will apply these methods to models with V(@) is
positive definite potentials. Such potentials have been exten- :
sively studied before with the use of phase portriit,25. H2— ( a
We study them here partly to introduce the methods we are
using and to provide a point of comparison for the negative
potentials of the following section. We also present someHere p is the total energy density ang, is the density of
new results concerning the effects of matter and radiation omatter with equation of statp,= ap,. For nonrelativistic
the development of inflation. mattera=0, while for radiatione=1/3.

2

-3 2

_1 k_l :I..2 v
=3P~ 2= 3|3 V() Fpa
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The evolution ofH is given by a combination of the Ein- a\?2 m2¢?
tei fi 2| —| = —
stein equations H (a 3 + 3 (9)
: 1 k 1., k .
H==Z(p+tp)+ z=—5(@ Fpl+a)+ 5. () a.
3 o+ m?¢=0. (10

Alternatively, one can use the equation
The solutions of the equations fei(t) anda(t) for the most

a 1 1 . 1 interesting casen’¢?/2>|V,| are given by[4,27]
S S+ 3D)= SV B Zp(1+3a). () . Vol are given bY

2
The evolution of the scalar fielg follows from the Einstein H(1)= o~ \[gmt, (1D
equations,
o $5— ¢ (1)
$+3H¢p+V ,=0. (5) a(t)=aoexp(oT : (12)

We shall study the basic properties of a 4D scalar field.l.

X ; . -These solutions, which describe inflationary expansion, are
cosmology using as an example the simplest harmonic oscil- -y o i )
lator potential valid only for ¢“/2<V(¢), which implies that inflation ends

at
V(¢):Em2¢2+V (6) |pe| ~ 1 13
2 0 ¢e| . ( )

In this paper we will assume that?>|V,|, in which case
m2¢2/2>|V,| is always satisfied during inflation.

Note that the same solution is valid if one reverses the
»time arrow,t— —t, in which case it describes a quasiexpo-
nential contraction of the univergdeflatiorn).

(For investigation of 5D brane cosmology with similar po-
tentials se¢26] and references therejrSurprisingly, we will
find that cosmology with the potentiéb) with V<O shares
some common features with the cosmology of the “inverse
harmonic oscillator potential

1 C. The kinetic regime: Energy density dominated by¢?/2
V()= 5mg?— V. @ e TGS, FReTay SR e
2 Another important regime occurs when the energy density

. . N 2 . < - 2
In particular, the expansion of the universe in theories with'S dominated by$®/2. In this caseV(¢).p,<¢2 and

V<0 always turns into cosmological contraction. |¢],I13H$|>m?¢. This corresponds to the “stiff” equation
Constructing phase portraits is a powerful method for in-of state

vestigating the dynamics of the scale factor or scalar field _
system(3)—(5). Before we look at the phase portraits for P=p. (14)
various values o¥ in this model, it will be useful to discuss
some of their features. For the remainder of this section we
will considerk=0, i.e. flat universes. While this case will be

H2—(

he equations foa and ¢ are

the main focus of our discussion throughout the paper, we
will in several cases refer to the extension of our results to
open or closed universes as well. )

There are four basic regimes that we may encounter: the ¢

a
universe can be dominated by the potential energy density 32‘35- (16)

V(¢), by the kinetic energy density?/2, by the energy
density of an oscillating scalar field, in which casé¢) The solutions can be written as follows:

~ 22, or by matter or radiatiop,, .

a(t)=t", (17

B. The inflationary regime: Energy density dominated

2t ¢* 1
by V(¢) ¢=¢ot\[§lnT°; > ~ 32 (18

Inflation occurs when the energy density is dominated by

V(¢). In this case¢?/2,0,<V(¢) and [¢|<|3H4|. This  These solutions can describe an expanding universe or a uni-
corresponds to the vacuum-like equation of state verse collapsing towards a singularity.

p=— ®) During the expansion of the universe, the inflationary re-
P gime V(¢)>¢%/2 represents a stable intermediate

The equations foa and ¢ in this regime have the following asymptotic attractor. Even if a flat universe begins in a state
form: with ¢?/2>V(¢), it typically rapidly switches to an infla-
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FIG. 1. Evolution of the scalar field and the scale factor in the mddel) = (m?/2) $2+ V, with Vo>0. In the beginning we have a
stage of inflation with the field linearly decreasing ap>1. At this stage the equation of statepiss —p. Then the field enters a stage of
oscillations with a gradually decreasing amplitude of the fipi€p. When the energy of the oscillations becomes smaller ¥arthe
universe enters a second stage of inflation.

tionary regime withV(¢)> ¢%/2 [24,25,28. This occurs be- 2 2

cause during the expansion of the universe witf/2 $(t)~2 Tmtsinmt~ —\/—N sinmt.  (21)

>V/(¢), the value of the kinetic energy drops down like?, 3 ™3

whereas the field changes only logarithmically. Therefore forHeret is the time after the end of inflation arid is the

all power-law potgntials, the value &f( ) decrease; much number of oscillations.

more slowly thang?/2. When it becomes greater tha/2, It is amazing that this simple model wit,>0 can de-

inflation begins. . _ scribe not only chaotic inflation in the early univefdg and
During the collapse of the universe, the opposite 0cCUrsihe stage of self-reproduction of the univef8€], but also

V(¢) grows only logarithmically, wherea#?/2 diverges as the present stage of inflation or acceleration. Indeed, when

t~2, wheret is the time remaining before the big crunch the amplitude becomes very small the tevigwill become

singularity. This means that the regingé/2>V(¢) generi-  important, and the universe enters a second stage of inflation
cally occurs at the stage of collapse. In this regime one cawith _H2=V_o/3. The amplitude of oscillations of the field
neglectV(¢) in the investigation of the singularity &t-0. in this regime falls down exponentially. In particular, for

m?>H? the amplitude decreasesas®"". The evolution of
the scalar field and the scale factor in the theory wWith
>0 is shown in Fig. 1.
Note that in the casen®<V,/3 the stages of inflation at
Now let us assume that the fielfl oscillates nea=0 large ¢ and at smallp overlap. However, iim?>V,/3 (V,
with frequency much greater tha, and that the average =10 '?°in Planck units, as suggested by the observational
value ofV(¢) during these oscillations is much greater thandata, these two stages occur separately, see Fig. 1. In this

Vo=V(0). Inthis case one can neglect the terid @ in Eq. ~ ase we have a stage of self-reproduction of inflationary uni-

D. The oscillatory regime: Evolution determined by the energy
density of an oscillating scalar field

(5), so that in the first approximation one simply has verse at very large (at ¢>m~*?>1), then a regular stage
of inflation without self-reproduction at smallér. This stage
d+m’p=0 (19 ends aip=1, and the field begins to oscillate. Eventually we
have a late-time stage of inflation when the fig¢ldelaxes at
and ¢=0.

If one considers the model witi;<0, a dramatic change

occurs when the energy density of oscillatigasd matter

¢=P sinmt. (200  gradually decreases and becomes comparable \fg. Ac-
cording to Egs.(2) and (3), the expansion of the universe

Here @ is the amplitude of the oscillation. The pressyre slows down at that time, and eventually the universe begins

= ¢?/2—V(¢) produced by these oscillations is given by collapsing; see Fig. 2.

212 2c0s In it tak When the universe contracts, the amplitude of oscillations
(T“ .) Cos 4nt, So I one takes an average over many OS'grows asa” %2, However, this process does not continue too
cillations, the pressure vanishgss=0. The universe in this

regime expands a@s~t23. Since the total energy of pressure- long. Indeed, let us compargddb andm*¢ in this regime. If

less matter is conserved, the amplitude of the oscillation@N€ €an neglecy, (and this is always the case for a suffi-
decreasesp(t)~a 32~t~1. ciently large®), one hasH~m®/\/6 and ¢~me. There-

The regime of oscillations usually begins after the end offore one ha$3H ¢|>|m?¢| for ¢>1, so instead of Eq20)
inflation, atp=<1. As long as one can negledt, the field one should use Eq.l6). Thus, during the collapse of the
oscillations after inflation approach the following asymptotic universe the stage of oscillations ends and the regime domi-
regime[29]: nated by kinetic energy begins at
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FIG. 2. Evolution of the scalar field and the scale factor in the mdel) = (m?/2) 2+ V, with V,<<0. In the beginning we have a
stage of inflation with the field linearly decreasing ap>1. At this stage the equation of statepiss —p. Then the field enters a stage of
oscillations with a gradually decreasing amplitude of the fipld;p. When the energy of the oscillations becomes equi¥gh the universe
stops expanding and begins to contract. At this stage the amplitude of oscillations grows. When it becomes gré€xte) thizefield stops
oscillating, the energy density is dominated by the kinetic energy of the scalardteldl, and the universe collapses.

|p|~1. (22) E. Evolution determined by .'[hl_i’ energy density
of matter or radiation

Note that| by|~| be|, See Eq(13). The first models of inflation were based on the assump-

We will study the switch from expansion to contraction in tion that the ur.1i.ve-rse fr.om t.he very beginning was in a state
a flat universe in a much more detailed way in Sec. v of therma] equilibrium; inflation began when the temperature
However, we would like to make here some comments con®f the universe became much smaller than the Planck tem-
cerning this process. peratureT~M, [2,3]. Later it was found that this assump-

The general textbook wisdom is that open and flat unition is not necessary, and in many models inflation may start
verses expand forever, whereas closed universes eventuaifpmediately after the big barig]. In this case the existence
collapse. This lore was based on investigation of universegf matter prior to inflation becomes less important, and
with vanishing cosmological constants. A closed universesometimes it even hampers the development of infld@ath
with a sufficiently large positive cosmological constant mayTherefore many works on initial conditions for inflation ne-
expand forever, whereas open and flat universes with a negglect the possible impact of matter on the motion of the
tive cosmological constant eventually collapse. scalar field and concentrate on finding self-consistent cosmo-

One of the well-known solutions of this type is an openlogical solutions describing scalar fields in otherwise empty
universe with a negative vacuum eneidy. There is a solu-  universes. This is the simplest approach, especially in cases
tion to the Friedmann equatl'dﬁzl—a ZZVO./:_” for Vo<O:  \yhere $2/2<V(¢) and inflation begins immediately after
a(t)=V3/|Vo| siny|Vo|/3t. This is a specific section of he big bang.
anti—de Sitter space, which is popular in M theory and brane owever, in some cases the scalar field initially may have
cosmology. Th|§ universe hfas a cpordlnate §|ngular|ty at large kinetic energy2/2-\/(¢). Moreover, one may ex-
=m\3/Vo|. Naively, one ml_ght th.|nk.that th's.'s exactly pect creation of relativistic or nonrelativistic particles near
what we have found in our investigation of universes Wlththe singularity. Note that the existence of even a small

V<0, namely that when the energy density of matter in YL mount of matter may have an important effect on the mo-

expanding uni.verse decreases_ and the tOt"’.ll energy densg%n of the field. Indeed, the kinetic energy of the scalar field
becomes dominated by a negative cosmological constant, ou 2/2 in the regime?/2>V(¢) decreases aa~. Mean

universe reaches an AdS regime dominated by a negative, ' 4 -
g y g while, the density of radiation decreasesaa$ and the den-

cosmological constant. . Y _
However. this is not the case. We discuss here a flat unSity of nonrelativistic matter decreasesais’. Therefore the

verse regime, which appears after a long stage of inflation. If€r9y density of matter eventually becomes greater than
this case(unless one considers open inflation models with®?/2. As we will see, once it occurs, the field rapidly slows
0 <1) the termk/a? with k=+1,0 can be omitted in the down or even completely freezes. This effect may provide
general Friedmann equation. The Friedmann equakidn good initial conditions for a subsequent stage of inflation
= p/3 describing a flat universe does not have any solution31- ' o '

with p(#)<0. Once the universe approaches the turning Indeed, let us assume that in the beginning the figld
point where the total energy density vanishes it begins colmoves very fast, so thdBH¢|>|V, s/=|m?¢|. Suppose,
lapsing, and the total energy density becomes positive agaimowever, that at some moment the energy density of the
[6—8]. Thus the standard inflationary predictiéh=1 im-  universe becomes dominated by matter with the equation of
plies that we cannot live in AdS space dominated by a negastatep,= ap, . In this regime one can represent the cosmo-
tive cosmological constar?,8]. logical evolution in the following forn{27]:
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FIG. 3. Phase portrait for the theo(¢) = 3m?$2+V, with

V>0 in rescaled coordinatesﬁ(¢,H). The branches describing
stages of expansion and contractiapper and lower parts of the

hyperboloid are disconnected.

a(t) -3(1+a)

)

pa:pa(tO)

t | 231+ a)

a(t)=ag &

2
-~ 3(1+a)t’

P N R A
¢:¢o§3:¢oT :

H

(23

This regime has a very interesting feature: Even if it contin-

ues for an indefinitely long time, the change of the field
during this time remains quite limited. Indeed,

w21\ 2 14
A¢$ J;O d)dt: d)oﬁo(T) dtz _1_a ¢0t0.
(24)

If to is the very beginning of matter dominationp3/2
~p.), thengoto~2/\/3(1+ a)=0(1). Therefore

Agp=1 (25

PHYSICAL REVIEW D66, 023507 (2002

Expanding Universe

R1

SZ(I)

R2

FIG. 4. Projection of the upper branch of the full phase portrait
for the theoryV(¢) = 2m2¢2+V, with V,>0 in rescaled coordi-

nates ¢, ).

begins atj ¢|>1, then it can move only b ¢=<1. There-
fore in theories with flat potentials the field always remains
frozen at|¢|>1.

The field begins moving again only when the Hubble con-

stant decreases an8H ¢| becomes comparable o, ol-

But in this case the condition8¢~|V,,| automatically
leads to inflation in the theomp?$2/2+ V,, for |Vo| <m? and
d>1.

This means that even a small amount of matter or radia-
tion may increase the chances of reaching a stage of infla-
tion, see[31] and Fig. 5 in Sec. V. Indeed, consider any
theory withV(¢)~ ¢". Suppose in the beginning we had a

kinetic energy dominated regimg?/2s>p,, V() starting at
¢>1. Then the fieldp would change very slowly, whereas

¢2/2 would rapidly drop down until it became comparable
either toV(¢) or to p, . If at that momentV(¢)>p,, in-
flation would begin immediately. But even in the most unfa-
vorable cas&/(¢)<p, inflation would begin eventually. In-
deed, at$>1 one has the double inequalityn®=\V"
<V(¢)<p,~H?. Therefore the Hubble constant is much
greater than the effective scalar field mass. In this case the
field practically does not move until the desirable regime
V(¢)>p, is reached and inflation begins.

Ill. PHASE PORTRAITS AND COSMOLOGICAL
EVOLUTION

Having discussed some important limiting regimes in sca-
lar field cosmology, we are now ready to investigate the
complete evolution of a Friedmann universe with a scalar
field. Later we will discuss the effects of adding matter to

in Planck unitsi.e. A¢=M ). This means, in particular, that this system, but for now we restrict ourselves to a system
a free field¢ in a matter dominated universe cannot move bywith three independent variables, ¢, andH. To study this

more thanO(M,).

system we find it most convenient to rewrite the evolution

This simple result has important implications. In particu- equations fora and ¢» as a set of three coupled, first-order,
lar, if the motion of the field in a matter-dominated universedifferential equations:
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do . critical points for a given model depends strongly \@nthe

TR (260 structure of the infinite critical points is very similar across a
wide range of potentials. S¢6] for recent discussion.

dg :

d_(f: —3H ¢—V’¢ (27 IV. COSMOLOGY WITH A NON-NEGATIVE POTENTIAL

As a simple example we consider the modélkp) =V,
dH 1 +1im?¢? discussed in Sec. Il A. By rescaling the field and

42 2
dt §(‘75 —V)—-H (28 time variables the mass can be eliminated from the equa-
tions, so for simplicity we simply seh=1 in what follows.
plus the constraint equation Thus the evolution and constraint equations become
1., 1 k do .
2 T 42 TN\j— _ __ P
H 6¢ 3V =z (29 T ¢ (31
All solutions to these three equations can be represented do .
as trajectories in the 3D phase spacebofs, andH. Simply gi- 3eH-¢ (32
looking at plots showing a number of these trajectories can
help give some intuition for the cosmology of a particular dH 1 1 1
model(as defined by the potenti®l). There are a number of ——=— — %+ — p*+ = Vy—H? (33
ways to get more information out of the phase portraits, how- dt 3 6 3
ever.
One important step is to determine all of the critical 2 2 2 _ h
points, i.e. the points for which the derivatives of all three OH"= ¢"= ¢"=2Vo=—62z. (34

phase variables vanish. There are finite and infinite critical
points. Every trajectory must begin and end at these critical The hypersurface representing a flat universe is given by

points. settingk=0 in the constraint equation, which gives

To find infinite critical points and visualize the flow of _
trajectories at infinity, a useful trick is to do a Poincanap- 6H?— ¢p?— p?=2V,. (35)
ping

The surface defined by this equation is a hyperboloid. For
X positive definite potential¥,>0 it is a hyperboloid of two
1+r’ (30 sheets, meaning the two branchesHat0 and H<O0 are
disconnected. FoNy=0 this hyperboloid reduces to a

where x is any of (¢, ¢, H) andr?=¢2+ ¢?>+H?2 The double cone. - _ _
interior of the unit spher@zp+¢§,+H§=1 maps to the in- There are two finite critical points for this system ét

finite phase space af, ¢, andH, so by plotting trajectories ~ ¢=0. H== VVo/3. ForVy=0 these two points reduce to

in these new coordinates the entire phase space can be cadl ingle finite critical point at the origin. To find the infinite

visualized. At times in this paper we will plot a 2D phaseC tical points we first rewrite the evolution equations in
. . . . terms of the Poincareariables and then set their derivatives
portrait, e.g. in the variable$ and ¢ only. In these cases we

, : equal to zero. This yields eight points.
use a 2D Poincarmapping where ?= ¢°+ ¢*. Figure 3 shows the phase space for this model Wigh
With the Poincaremapping it is possible to identify a set >0 along with a sample of trajectories fke=0. The hyper-
of infinite critical points, namely those that occur on theholoid along which all of these trajectories lie represents a
bounding spherap3+ ¢2+H2=1. These points represent flat universe. The upper branch corresponds to expansion and
the possible starting and ending points for all trajectories thathe lower one to contraction. The fact that the two branches
go off to infinity in the usual coordinates. are disconnected means that in a flat universe in this model
Because no two trajectories can ever cross in phase spa@xpansion can never reverse and become contraction. Note
it is easy to define the behavior of a system whose phasthat this conclusion is unchanged for the c&ge=0. In that
portrait is two dimensional. Fortunately, for the cosmologicalcase the hyperboloid becomes a double cone and the two
systems we are considering we can identify a 2D surface thdiranches touch at a single point. Since that point is a critical
separates different regions of the 3D phase space. For the flabint, however, no trajectories can pass from one branch of
universek=0 the constraint equatiof29) defines a 2D sur- the cone to the other. The lower branch corresponds to the
face. All trajectories in this case are located at this surfaceypper branch with time reversal> —t. The upper branch of
i.e. the phase portrait for the flat universe is two dimensionalthe flat universe hyperboloid is shown projected into a 2D
This surface in turn divides the phase space into three sepglot in Fig. 4. This plot is very similar to the one shown in
rate regions(including the surface itselfrepresenting the [24] for this model withV,=0. Note that the 2D plot is not
possible types of curvature. No trajectory can pass from ona direct “shadow” of the 3D plot since it uses the 2D rather
of these regions to another. Although the location of the finitehan the 3D Poincarenapping; see Sec. lll. Effectively the

Xp=
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(i) whereN is the number of oscillations, see Eg1). Although

particle production is not included in these phase portraits,
\\

ing into other forms of matter, thus finishing the evolution in
the fourth regime, matter and/or radiation domination. The
contracting branch is a mirror image of the expanding one,
with the same three regimes occurring in the opposite order,
\ finally ending with a big crunch singularity at the attractor
\ pointsA; andA,.

this evolution will typically end with the scalar field decay-

"“’(’Wf(‘f\\ ‘ ‘} q) For an open or closed universe the trajectories would lie
‘\ \\\JJJ}J}J}},}’”” in the interior or exterior of the hyperboloid, respectively
‘ \ \ [24]. For an open universe nearly all trajectories would as-
\ \ ymptotically approach the separatrices on the flat universe
hypersurface. This tendency reflects the fact that for most
initial conditions inflation will occur and drive the universe

towards flatness. Once this has occurred the trajectories spi-
ral in towards the focus at the bottom of the hyperboloid. For
a closed universe there are also many trajectories that rapidly
approach these separatrices, but there is also a class of tra-
Poincaremapping. The thick lines show trajectories describing thejectorlt_as that moves from the repu_lswe critical points tp the
universe without radiation. The scalar field has half Planck densitPtiractive ones without ever passing near the ﬂ"’,‘t universe
at the beginning of the simulations. The thin lines show trajectoried!YPersurface. These trajectories reflect closed universes that
where an equal amount of energy in radiation was added to thgollapse rapidly before inflation has a chance to occur.
system. As we see, in the presence of radiation the velocity of the This conclusion becomes even more apparent if one takes

scalar field rapidly decreases, which usually leads to the onset dito account matter or radiatidi31]. As we have argued in
inflation. Sec. Il E, the existence of matter rapidly freezes the motion

of the scalar field. Therefore if the fielgl was initially large
upper branch of the hyperboloid is stretched out onto theind had a large velocity such that>1, ¢2/2>V(¢), then
circle rather than vertically projected down to it. From herethe presence of matter would increase the probability of in-
on we will refer to such 2D portraits as projections of the 3Dfjation. This can be confirmed by comparing the phase por-
ones. traits of the universe with and without radiation. Although
For an expanding universe there are four infinite criticalthe phase portrait with radiation is three dimensional, it is

points, two repulsors labeleR; and R, and two saddle  qhyenjent to make its projection to thes,$) plane; see
points labeleds; andS,. All trajectories begin aRy, R, and gy 5

wind towards the focus at the center. The separatrices ema-"|,, the second and fourth quadrants of this figure the field

nating fromS, andsS, represent attractor trajectori@sot 10 garts out moving towards the minimum. The presence of
be confused with attractor critical poiptsilong these tra- o qiation slows the field down, causing it to move more

jectories the universe experiences inflatigft% ¢?) until it quickly towards the inflationary separatrix trajectory. In the
nears the center and begins winding around it, correspondinst and third quadrants where the field starts out moving
to field oscillations near the potential minimum. These sepaaway from the minimum the duration of inflation is slightly

ratrices represent a set of measure zero in the space of trgiminished by the presence of radiation, but the probability
jectories; the two shown are the only trajectories that begirf inflation is nearly unity.

at the saddle points. Nonetheless they are important because

most of t_he trajectories emanating frc_Jm the r_ep_ulsor ppints V. COSMOLOGY WITH A NEGATIVE POTENTIAL

asymptotically approach the separatrices. This is why infla-

tion is a generic feature of models such as this one, and also Now we turn to the main subject of our investigation,

why inflation erases all information about the initial condi- cosmological models with scalar field potentials that may

tions that preceded it. become negative. We will continue using the simple example
Thus a typical trajectory passes through three of the foul(¢)=Vy+ 3m?¢?, but now we will consideNVy<0. The

regimes described in Sec. Il. Near the repulsors the kinetibypersurface representing a flat universe is still defined by

energy dominates and the equation of state is sbiff,p. _

Near the main part of the separatrices the equation of state is 6H2— ¢p2— p?=2V,, (37

inflationary, p~ — p. Finally near the center the scalar field

oscillates and the equation of state is that of nonrelativistibut with Vy negative, this surface is a hyperboloid of one

matter, p<p. During the oscillations the scalar field de- sheet.

creases as Figure 6 shows the phase space for this model and sample

trajectories for a flat universe. The phase space is two dimen-

sional, but its topology is very different from that for non-

negative potentials. The infinite critical points are unchanged

FIG. 5. Phase portrait for the theol(¢)=3m?¢> without

cﬁ(t)%%sinmt, (36)
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described above, kinetic energy domination, potential energy
domination, and oscillations, and then pass back through
them in reverse order. As before, including particle produc-
tion will typically introduce a matter or radiation dominated
regime after the first stage of oscillations. Eventually, how-
ever, the matter and radiation will redshift away and the uni-
verse will begin contracting. We will examine this process in
more detall in the next section.

Aside from this “wormhole” connecting the expanding
and contracting branches this phase portrait looks a lot like
the one forVy>0 shown in Fig. 4. Note, however, that in
this case the separatrices emanating from the saddle points
S; andS, no longer spiral in to the center, but rather end up
reaching the point#\; and A,. Likewise there are separa-
trices that begin aR; andR, and end or5; andS,. In the
expanding phase their segments and segments of nearby tra-
jectories represent the rare cases that manage to avoid infla-
tion. In the contracting phase they become the marginal tra-
jectories separating those that end at positive and negative
The number of windingsi.e. field oscillation$ can be esti-
mated by settingn®$2/2=|V,| and using Eq(36) to give

m
N~ .
FIG. 6. Phase portrait for the theol()=3m2¢?+V, for 6| Vy|

V<0. The branches describing stages of expansion and contrac-
tion (upper and lower parts of the hyperbolpare connected by a (This number of windings can be used to determine which
throat. repulsors and attractors are connected to which saddle points,
e.g. whether the separatrix that beginsRatends atS; or
because the finite terM, has no effect at infinity, but there S;.)
are no finite critical points. Thus all trajectories begin at The phase portraits shown above were constructed in a
infinity with H>0 and end at infinity wittH<0. This is  way symmetric with respect to time reversat; —t. This is
possible because the regions corresponding to expansion aadegitimate approach, since our equations allow all of the
contraction are now connected. This property is valid for allsolutions shown in the previous figures. However, one can
types of curvature, i.e. for open, flat or closed universes. obtain some additional information if, for example, one con-
To show a 2D projection of the flat universe hypersurfacesiders trajectories equally distributed with respect to the ini-
for this model, we have to plot both the expanding and contial value of the field¢ at the Planck time and follows their
tracting branches, as depicted on Fig. 7. Trajectories in thevolution from the region wittH>0 to the region withH
expanding universe region spiral in towards the center. Wher<O0.
they touch the inner circle, the “throat” of the hyperboloid, If we do so, the phase portrait shown in Fig. 6 starts
they pass into the contracting universe region. There thelooking somewhat different. Almost no trajectories begin-
spiral back out to infinity, i.e. the big crunch. Thus typical ning in the upper part of the hyperboloid are seen in its lower
trajectories in this scenario pass through the three regimegsart, and those few that can be seen there are positioned very

(39

Expanding Universe Contracting Universe

R1 Al

FIG. 7. Left: (¢, ) projection
of theH>0 branch. Right: ¢, ¢)
projection of the H<0 branch.
Trajectories from the left panel
continue on the right panel.

Sl 2

R2 A2
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trajectories originating ati>0 and homogeneously distrib-
uted with respect to the field at the Planck density are
repelled from the lines going froiR1 to S3 and fromR2 to
$4, and tend to merge with the lines going frdt to A2
and fromS2 to Al.

This effect is especially apparent in the 2D phase portrait,
where we do not make the Poincamapping, see Fig. 9.
Most of the trajectories coming from the panel wk>0
have merged with the separatrix on the panel corresponding
to H<O.

An important(and obvioug feature of the 3D phase por-
traits Figs. 6 and 8 is that the separatrices, as well as other
trajectories, never intersect in 3D. This is a trivial conse-
quence of the fact that we are solving a system of 3 first

order equations for 3 variablegt, ¢ and H. One of the
implications of this fact is that a bunch of trajectories in the
immediate vicinity of the lines going fronR1l to S3 and
from R2 to S4 never reach the inflationary regime described
by the inflationary separatrices going fro81 to A2 and
from S2 to ALl. Only the trajectories that are sufficiently far
away from the lines going froR1 to S3 and fromR2 to $4
can enter the stage of inflation.

This observation will be important for us when we de-
FIG. 8. A different version of the phase portrait for the theory scribe the cyclic scenar{d0]; see Sec. IX. In this regime the
V(¢)= 3 m2p?+V, for Vo<0. We begin with the trajectories boldface inflationary separatrices reach the singularity and
evenly distributed with respect to the initial valuesgin the early  are supposed to bounce back. In the language of the phase
universe(upper part of the hyperboloicand see what happens to portraits this bouncing back implies that the end of the line

them in the lower part. These trajectories are concentrated near tigoing from S1 to A2 becomes the beginning of the line
boldface separatrices and repulsed from the shaded ones. going fromR1 to S3. But in this case the universe cannot
attain the inflationary regime, since the trajectories close to
close to the separatrices going fr®fh to A2, and fromS2  the line going fromR1 to S3 never switch to the vicinity of
to Al; see Fig. 8. No trajectories are seen near the linethe line going fromSl to A2. Thus the cyclic regime is
going fromR1 to S3 and fromR2 to S4. This might seem possible only if bouncing from the singularity shifts the tra-
surprising because these lines are solutions of the equatioigctory to the right from the shaded separatrix. From Fig. 9 it
of motion, so there must be other solutions nearby. Indeets obvious that this shift may happen either due to an in-
we have seen them in Fig. 7. However, the lines going frontrease ofp or due to an increase of the fieltl
S1 to A2 and fromS2 to Al are strong attractors in the  The evolution of this system in an open or closed universe
regimeH <0, whereas the lines going froR1 to S3 and is not very different from the flat universe evolution, al-
from R2 to S4 are strong repulsors. Therefore most of thethough the phase space is three dimensional. Because of the

Expanding Universe Contracting Universe

FIG. 9. As in the previous fig-
ure, we begin with the trajectories
evenly distributed with respect to
the initial values of¢ in the early
universe. However, now we show

q) a 2D projection of these trajecto-
ries, without Poincaremapping.
Left: (¢,$) projection of theH
>0 branch. Right: ¢,¢) projec-
tion of theH <0 branch. Trajecto-
ries from the left panel continue
on the right panel.
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structure of the trajectory flow between their ends at the in- If the Hubble constani is positive, the amplitude of the
finite critical points, all trajectories pass from expansion tofield and its total energy density decrease. If the initial am-
contraction, even for an open universe. As with>0 the  plitude of the oscillations is much greater thég, the field
trajectories for the open and closed cases will tend to asympscillates with a slowly decreasing amplitude until it ap-
totically approach the flat universe hypersurface, and morgroaches¢,. But the energy density cannot decrease too
specifically will tend to approach the inflationary separa-mych because at the moment wher V() + ¢%/2 van-
trices. As before, however, the closed universe will include

. . . NClUY8shes, the Hubble constant vanishes too, so &a6. Then
some trajectories that quickly collapse before expenencm? : , . i
inflation. he universe begins to collapse<0, and the amplitude of

It is instructive to estimate the time that the universe may€ oscillations begins to grow. Eventually this growth be-

spend in its post-inflationary expanding phase before it beS0MeS SO fast that the field stops oscillating and moves to-

gins to contract. The energy density of the oscillations of theVards¢= = . , , _

scalar field, just like the energy density of nonrelativistic 1 ne Pestway to understand this effect is to examine what

matter, decreases aspy~4/3t>. The universe begins to happens during the critical oscillation when the signaof

collapse atpcpy+Vo=0. This happens at~2/\/3[V,|. As change;. V\./e.will study. this_ process analytically, making

one could expect, this time can be greater than the presefPme simplifying approximations. _ . .

age of the universe only V| <1072 F-lrst. of all, we will assume that th_ fielgh be_gms this
This estimate remains true for a wide variety of potentialsoscillation att=0 moving with zero initial velocity from a

and for matter with any reasonable equation of state. HowPOINt ¢1~ ¢, such that 8<A ¢= ¢~ po<¢o. The initial

ever, in the theories wheM( ) has a very flat plateau or a energy density of the field isAV=V(¢;)=(m?/2)($3

local minimum, the universe may spend a very long time— ¢§)<|V(O)|. We will try to evaluate the turning point mo-

before the field¢ falls down to the minimum withV(¢) mentt, wherea=0 (i.e. H=0).

<0[7,8,10. Therefore in general the lifetime of the universe et us consider the series expansion of the Hubble param-

may be very large even in theories with a very deep minieter around the beginning of this process
mum of V(¢).

~ U TV S
VI. GOING FROM EXPANSION TO CONTRACTION H(O~Hy+Hyt+ SH o, 04 (41)
IN THE MODEL V(¢)=(m?%2) $p*+V,

Having analyzed general properties of phase portraits ivhereH; and its derivatives are takentat 0. The reason to
the theoryV(¢) = (m?/2) ¢+ V,, let us study in a more de- include the terms up te® in this series is the following.
tailed way the most interesting feature of the models withFrom the relatiorH = — 3 ¢ we find that for vanishing ini-
V<0, the switch from expansion to contraction. It is alwaysijg velocity ¢;=0 one hasH,=H,=0. The first nonvan-

ossible to study this process numerically, but sometimes, . - - , .
gne can do betteyr than I:t?hat. Y ishing ~ coefficient Hy~— ¢?~—(V'(¢1))*=-m*¢] is

It will be convenient to represeM($)=(m%2)¢2+V, negative. Note thaH,=\V(#,)/3=JAV/3. This means

in the form that at the moment
m? 1N(y) )1’6 <1mv ve
V = 2_ 42 . 39 ~ —1 —_m-1 ) 2
()= (¢*—&}) (39 | Yoy — (42

This potentllal has i m'”'g};m 2aj’>=h0, Wherg Ilt takfash 4 the Hubble parameter vanishes. Note that the first part of this
negative valueV(¢)=—(m/2)¢o. The potential vanishes equation is pretty general, whereas the second one is specific

[V(¢)=0] atp=*¢o. o to quadratic potentials.
Let us assume, in the first approximation, that the scale A ihe turning point

factor of the universe does not change much during each
oscillation of the field¢. In such a case the fielg¢ would

i imple oscillat t 3AV |1
experience a simple oscillatory maotion, ~ b —
¢C ¢O (2m2¢0) (43)
¢(t)=d cosmt, (40

These results imply that the turn occurs during the first os-
where® is the amplitude of the oscillations. In this case thecillation starting at¢, if AV=m?¢j, i.e. p3— p3=< 3. In
total energy density of the scalar field would remain con-the most interesting caskV < m2¢3 the turn occurs in the
stant,p=(m?/2) (P2 — ¢2). immediate vicinity of the poinkp, where the potential be-

This approximation works well fofb~ ¢,. For ® > ¢y, comes negative.
there are two cosmological solutions, describing either an To study the subsequent evolutiongft) anda(t), let us
expanding universe wittH=+m\/(®2— $2)/6 or a con- assume that the scale factduring the first oscillation does

tracting universe wittH=—m\/(®?— ¢02)/6. not change much. This is a reasonable assumption since
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=0 at the turning point. We will therefore take=1 during
this oscillation, anda(t)= ¢, cosmt The potential energy
density of the field is

2 42

V(¢)=AV-— L siPmt (44)
and the acceleration of the universe is given by
. a V- ¢2 AV m2¢1
a~_=—3 3 5 sirfmt. (45)

Taking into account that initiallya=a\AV/3~ JAV/3, this
yields

2

m24° m
¢1t+ %sin 2mt++AV/3.

4

. AV
a= ?t

(46)

By integrating this relation fromt=0 tot= 7/m, i.e. during
one-half of an oscillation, one finds that the conditexs 1
implies then thaip,~ ¢o<1, i.e. pg<M,.

Now we are going to find how the energy dengitpf the
field ¢ changes during the time/m when the field$ moves
from ¢, to — ¢,. In order to do this, we will represent the

scalar field equatioh+ 3H éﬁ: —V'(¢) in the form

d(V+ ¢2/2)

2
at —3H ¢

(47)

Thus in order to find the total change of the energy density of
the scalar field during some time one should integrate

—3H¢%

Ap=A(V+¢?2)= —3ft H ¢2dt.

to

(48)

PHYSICAL REVIEW D66, 023507 (2002

Note that forAV<m?¢j the last term is much smaller
than the first one, so one finds, in the first approximation,
that the field¢p coming to the point— ¢, acquires kinetic
energy

¢? 37? 375
and velocity
. 37 5
P~ Tm%' (53

This velocity continues to grow during subsequent oscilla-
tions and eventually the scalar fielgland the scale facta
blow up, as shown in Fig. 2.

So far we have studied an expanding universe that stops
its expansion and collapses. But what if it was collapsing at
the beginning of the oscillation? Suppose the scalar field was
moving very slowly until it reached the poirk;. Then it
started falling down, just as in the case considered above.
However, this time we will assume that the universe was not

expanding but collapsing. This corresponds to the chaice
= —/AV/3 at the beginning of the process.

In this case the universe will continue collapsing with
ever growing speed. The evolution of the fiefd can be
studied by the same methods as the ones used above. The
main difference will be that the fiel¢p passing through the
point ¢=— ¢~ ¢ Will have kinetic energy

¢ wv

2 _Ap+ 0

——m2¢g+ m¢é. (54)

16
The kinetic energy of the fieleh at = — ¢ differs from
that at¢p=— ¢, by AV. However, forAV<m?¢j this dif-
ference is much smaller than each of the terms in E5f),
(54). Thus these two equations with the above-mentioned
accuracy give the kinetic energy of the fiefdnot only at

Using this equation, one can find the change of the energy,— — 4. put also atp=— ¢,.

density of the fieldy during the timez/m when the fieldg
moves frome, to — ¢p4:

2
ar
mgi— AV

m\3AV

2

Ap- =g m¢1

(49

In the most interesting casg, ~ ¢, one can neglect the last
term in this equation and replaeg by ¢q:

M

4

Ap_=—gm me5. (50)
Thus, if the initial kinetic energy of the field is equal to zero
at the beginning of the oscillation &= ¢4, at the moment
when the fields will reach the point— ¢, its kinetic energy

will be positive,

372
&M 25—

3AV
2

('1)2
2

=Ap_= me3. (52)

This discussion, as well as the difference betwégn
andAp . , will play an important role in our investigation of
the cyclic universe scenar{d0]. As we will see, the cyclic
regime is possible only if the fielg, after bouncing from the
singularity, approaches the poinrt¢, with energy density
greater thamAp, , which in its turn is greater thahp_,
which is the energy of this field at the pointg on its way
towards the singularity. Thus one needs this field to bounce
from the singularity with an increased energy, and one
should check that the possible source of this additional en-
ergy does not create problems for the scenario. In fact, we
will see that with an account taken of particle production, the
required energy increase can be much greater than the differ-
ence betweerhp, andAp_

VIl. OTHER MODELS WITH V(¢)<O0

Until now we have studied only one simple model with a
quadratic potential. However, many features of models with
negative potentials are model-independent. Consider, for ex-
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FIG. 10. Evolution of the scalar field and scale factor in the mateh) =Vo— m?¢2/2.

ample, the model with the “inverted potentiaV(¢) =V,
—m?¢2/2 with V,>0. This is the simplest example of a

Herem?=\v? and the pointp=uv corresponds to the mini-
mum of V(¢) with symmetry breaking. The potentisl( ¢)

potential unbounded from below. The evolution of the scalabecomes equal tv,<0 in the minimum ofV(¢) at ¢=v.

field and scale factor in this model is shown in Fig. 10. AsAs we see in Fig. 11, the scalar field in this case experiences
we see, in the beginning the universe experiences a stage gfstage of oscillations near the minimum of the effective
inflation when the scalar field slowly rolls from the top of the potential withV/(¢)=V,<O0, but then it jumps off the mini-

effective potential(We considered a model withlp>m?.)

mum and blows up because of the “negative friction” in the

Later on, inflation ends and the speed of the field increasegyapsing universe. For most model parameters and initial
If one neglects the effects of the expansion of the universe, El’.tonditions, if the field originally moves towards the mini-

large ¢ one hasg?=2(Vy—V(¢)). Therefore

é_l o 2
5—§(V(¢)—¢ )—V(¢)—§Vo- (59

At large ¢ the universe starts moving with ever growing
negative acceleration. If one takes into account the expansi

on

of the universeg$? becomes even smaller, and the decelera
tion is even greater. As a result, the expansion slows dow

mum with ¢= +uv it will blow up in the direction¢p— —o0
andvice versaThe reason is that at the initial stages of the
development of the instability the field is most efficiently
accelerated by the negative friction if for a while it moves in
a relatively flat direction, i.e. from one minimum to another,
instead of directly moving upwards].

When the field accelerates enough it enters the regime

I;{)Z>V(¢) and continues growing with a speed practically

and the universe starts contracting. At this stage the “frictiorindependent ok/(): ¢~Int, ¢~t~*, see Eq(18). So for

term” 3H¢ in the equation of motion of the scalar field
becomes negative, which causes the fiéldo grow and
leads to a rapid collapse of the universe.

all potentialsV(¢) growing at large¢ no faster than some

power of ¢ one hasp?/2 growing much faster thavi(¢) (a
power law singularity versus a logarithmic singulayityhis

Another example is the standard potential used for théneans that one can indeed neglét) in the investigation
description of spontaneous symmetry breaking, with the adof the singularity, virtually independently of the choice of the

dition of a negative cosmological constarg<<0:

A
V()= 7 (d*=v%)*+V,

1 m? 1
T2 424 ghy T2 2
2m¢>+402¢> +4mv + V.

(56)

10000 20000 30000 400

potential. Thus we see that from the point of view of the
singular behavior of the fielé(t) and the scale factopo-
tentials having a global minimum with(\») <0 are as dan-
gerous as potentials unbounded from below.

Since a small modification of the potentiahifting the
minimum of V(¢) towardsV(¢)<0] may lead to a change
of regime from expansion to contraction, one may wonder

120

a

100

80

t

10000 20000 30000 40000

FIG. 11. Evolution of the scalar field and the scale factor in the muded) = (\/4) (¢ —v?)%+V,, with V(<O0.
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whether some other modification &f(¢) can switch the comes quite differena~t2, ¢~t=12[25].
regime of contraction back to expansion. The answer follows It is even more important to consider the effects of par-

from the equatiod = — 3 (p+ p). This equation implies that ticle production. If one ignores quantum effects, one typi-

H<0 because+p=0 in accordance with the null energy cally finds Fhe cur\./a_tureR~t*2 in a collapsi.ng universe.
condition. This means, in particular, that if the universesc"’“fr’\r particles ”.".”'ma”y coupl_ed to gravity, as well as
switches from expansion to contraction, it cannot later returrgravitons and helicity 1/2 gravitinog33], are not confor-

to the regime of expansion. The only possible exceptior{nally _invar_iant; their f_requencies thus expe_rience rapid
would be if the universe were to pass through a stage o onadiabatic changes induced by the changing curvature.

super-Planckian density in which the Einstein equations wer hese phanggs lead to pa”ig'e prociljzction due to nanadiaba-
invalid. ticity with typical momentak“~R~t™“. The total energy-

momentum tensor of such particles produced at a tiafeer
(or beforg the singularity isT ,,~O(k*)~R*~t~* [34,35.
Comparing the density of produced particles with the classi-

For example, the hypersurface representing a flat universe iy | matter or rad|at[on density of the universe-t ?, one
the theoryV(¢)=V,—m2¢2/2 is given by the constraint inds tha}t the depsny of created particles produced at the
equation Plan(_:k 'g|met~1 is of the same order as the total energy
density in the universe.

The main point of this discussion is that particle produc-
tion near a cosmological singularity can be extremely effi-
) , ) o i _cient. Generically one expects that when the universe
This equation describes a hyperboloid ]USt2|Ikze the fla_t Uni-emerges from or approaches a singularity and its density is
verse hypersurface of the thed$) =Vo+m“$%/2. Inthis (55610 the Planck density, the density of produced particles

case, however, the axis of the hyperboloid is in #helirec-  should be comparable to the total energy density of the uni-
tion rather than theéd direction. Moreover, the hyperboloid verse.

for this model has two sheets fdfy<O and one sheet for  This is a pretty general conclusion. For example, in brane
V>0, which is the reverse of the situation fo(¢$)=V,  cosmology a similar effect of particle production may occur
+m?¢?/2. The different orientation of the hyperboloid even thoughR=0 in 4D. Indeed, the change of distance
means, for example, that for the theory unbounded from bebetween branes leads to a nonadiabatic change of the spec-
low all trajectories end in a big crunch singularity, regardlessrum of Kaluza-Klein modes and thus to particle production;

Even though many properties of the theories with nega
tive potentials are model-independent, the topology of thei
phase portraits depends on the choice of the poteviial).

$?=6H2+mPp?—2V,. (57)

of the signs ofVy andk. one may call it a time-dependent Casimir effect. Note that
this effect exists even in theories with unbroken supersym-

VIll. APPROACH TO THE SINGULARITY, QUANTUM metry[36]. o ,
CORRECTIONS. AND PARTICLE PRODUCTION This observation has many implications. In particular, one

can no longer expect that matt@r a scalar fieldd has the

Talking about the dynamics of the cosmological scalarequation of statgp=p near the singularity. Even if the uni-
field, until now we have remained in the realm of classicalverse around the Planck time was dominated by matter with
physics. We ignored possible quantum effects, and in particus=p, the creation of particles would immediately change the
lar the effects of particle production. These effects may leagituation. And even if the density of created particles initially
to some important qualitative changes of the phase portraitsvas somewhat smaller than the energy density of matter with
however, especially near the singularity. p= p, this situation would rapidly change. The density of the

First of all, near the singularity one may need to take intocomponent of matter witlp=p decreases as ®, whereas
account quantum corrections to the effective action of genthe energy density of radiation and nonrelativistic particles
eral relativity. Even ignoring possible effects related to brangjecrease aa 4 anda 3 respectively. Therefore the energy
cosmology or M theory, one may need to add to the effectivejensity of such particles soon becomes greater than the en-
action terms proportional &, R,,,R*", etc. ergy density of the matter component with= p. Once this

An important example of such a theory is given by ahappens the scalar field immediately freezes. It loses its ini-
combination of scalar field theory and the Starobinskytial kinetic energy and begins moving very slowly. As we
model, where the effective Lagrangian has additional termgjready discussed, this provides perfect initial conditions for
~R? [25]. Whereas this addition is not very significant at inflation. This result also has important implications for the
low energies, it completely changes the behavior of theyclic universe scenaripl0].
theory near the singularity.

For example, in the absence of this term the generic re- IX. CYCLIC UNIVERSE

gime for a scalar field approaching the singularity¢i&/2

>V(¢), which corresponds to the equation of state p. A. The basic scenario

This regime was recently discussed 82] in the context of Until now we have studied the evolution of the universe
string cosmology. As we have seen, in this caset'®, ¢  and classified new possibilities that appear in scalar theories
~Int. with negative potentials. This problem is very interesting. Its

However, if one adds the teriR?, the most general re- investigation has already brought us to an important realiza-
gime for theories where the potential is not too steep betion: We cannot live in anti—de Sitter space dominated by a
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negative cosmological constant, not because the negative VvV
cosmological constant is forbidden, but because a universe
dominated by negative vacuum energy cannot appear after a
long stage of inflatiori6—8]. Another interesting realization

is that the available observational data can tell us nothing
about the future of the universe: we may live in a stage of a
nearly constant de Sitter—like inflationary acceleration, but it
may end with a global collapd&87-39,7,8.

A common feature of cosmological evolution in models
with negative potentials is that it begins in a singulaatyd
ends in a singularityeven if the universe is not closed. This
was not the case for the theories whif{4$) >0, where the
universe may continue expanding forever and never end in fum of the potential may occur at any value¢®f in this section

singularity even if it is closed. _ for simplicity we will assume that it occurs at=0; we will con-
This naturally brought back old speculations about thegiger 4 more general situation later.

oscillating, or cyclic, evolution of the universe; see ¢y —
23,10. The universe may be created in a singularity, then—107°° in Planck units. Therefore it is difficult to avoid
collapse and reemerge again. inflation in this model: Even a miniscule positive contribu-
There is a certain intellectual attractiveness in this ideation to V(¢) of the order 10°° would lead to a stage of
However, during the past 20 years this idea has lost some @xponential expansion of the universe at ladyg13]. Also,
its initial appeal. Indeed, if there was a stage of inflation aftelin [44] it was shown that in the context of the effective 4D
the singularity, then the initial conditions producing our uni-theory used in[11] the universe can only collapse. This
verse are nearly irrelevant for the investigation of the forma-means that the ekpyrotic scenario suffers from the cosmo-
tion of large-scale structure in the observable part of théogical singularity problem. This problem has been analyzed
universe. Moreover, inflation in many of its simplest versionsin [14], but so far it remains unresolved.
is eternal[30,40. This fact may not solve the singularity In the cyclic universe scenario the authors assume, in ac-
problem[41], but it puts the origin of our part of the universe cordance with the suggestion of REE3], thatV(¢) is posi-
indefinitely far away in the pa$d2]. tive at large¢, and therefore the universe experiences a stage
Recently Steinhardt and Turok proposed a version of inof inflation. This stage provides the solution to the major
flationary theory where the stage of inflation occafser  cosmological problems. However, it is assumed that this is
formation of the large scale structure of the universe andn extremely low-scale inflation associated with the present
perturbations responsible for the formation of the structure ostage of acceleration of the universe in a state With)
the universe are producdzkforethe singularity, during the ~10" %% Inflationary perturbations produced at this stage
previous cycle of the universe evolutiphO]. In this scenario  have wavelengths comparable to the present size of the ho-
inflation does not protect us from all uncertainties associateéizon, so they cannot be responsible for galaxy formation.
with the physical processes occurring around the big bang. Therefore it is assumed that the desired perturbations of
On the contrary, in order to describe our universe in thisthe scalar field are produced after inflation, by the same ta-
scenario one must know exactly what happens with smalthyonic mechanism as in the ekpyrotic scenfib,13,43.
perturbations of the metric when they pass through the sinthe effective potential of the scalar field in the cyclic sce-
gularity. nario has the shape shown in Fig. 12. Inflation occurs at large
The cyclic scenarig10] is a modified version of the ek- ¢. Once the field rolls down to the region whevée)<O0,
pyrotic scenarid11]. It is based on the idea that we live on the universe begins to collapse. At that time perturbations of
one of two branes whose separation can be parametrized bytise scalar field are generated. The speed of the field in a
scalar fielde. It is assumed that one can describe the braneollapsing universe grows. It reaches the plateaupat
interaction by an effective 4D theory with the effective po- —« where, according t¢10], the potential vanishes. The
tential V(¢) having a minimum a¥(¢)<0. In the original  universe enters the regime where its energy density is domi-
version of the ekpyrotic scenario it was assumed W{at) is nated by the kinetic energy of the scalar field, and it evolves
always negative, but it vanishes#t=0 and atp—<. [t was  towards the singularity in accordance with E¢7), (18).
claimed that one of the main advantages of the ekpyrotic Usually, this would be considered the end of the evolution
scenario was the absence of a cosmological singularity angf the universe. However, in the cyclic scenario it is assumed
the possibility to solve the major cosmological problemsthat the universe goes through the singularity and reappears
without the help of inflation, which was called “superlumi- again. When it appears, in the first approximation it looks
nal expansion.” exactly as it was before, and the scalar field moves back
However, later it was found that it is difficult to solve the exactly by the same trajectory by which it reached the sin-
cosmological problems in the ekpyrotic scenario without usgularity [14].
ing inflation[13]. Moreover, perturbations of the fielfl that This is not a desirable cyclic regime. Therefore it is as-
could be responsible for large scale structure formation irsumed in[10] that the value of kinetic energy of the fietl
this scenario are generated due to tachyonic instaljii®)  increasesafter the bounce from the singularity. This increase
at the time whenV(¢) was supposed to be smaller than is supposed to appear as a result of particle production at the

—— 0

FIG. 12. Scalar field potential in the cyclic scenario. The mini-
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moment of the brane collisiofeven though one could argue must be greater thai~10% in Planck units, which consti-
that usually particle production leads to an opposite effect tutes the usual flatness problem. The total entropy of a hot
If the increase of the kinetic energy is large enough, the fieldiniverse that may survive until the beginning of inflation at
¢ rapidly rolls over the minimum o¥/(¢) in a state with a  V~10 2% should be greater than ¥pwhich is the entropy
positive total energy density, and continues its motioat problem[27]. An estimate of the probability of quantum cre-
>0. The kinetic energy of the field decreases faster than thgtion of such a universe “from nothing” givegwefls\
energy of matter produced at the singularity. At some mo-— exp(—24m/V)~e 120 [46].

ment the energy of matter begins to dominate. Eventually  There are some other unsolved problems related to this
few billion years after the big bangalaxies form. Then the  {heqry, such as the origin of the potenti&l¢) [13] and the
energy density of ordinary matter becomes smaller thagp gescription of the process of brane motion and collision
V(¢) and the present stage of inflati¢acceleration of the 44 47 In particular, the cyclic scenario assumes that the

unlxerse startsﬂ?gam. : f the ek " . t distance between the branes is not stabilized. Thus one
alteri;\:s/esig’inf:;t\i/(;arzsél?ln rcr)mree ;a%rec; 'if ;an\?élro ': neocif?cr\‘/vould need to find some other mechanism that would ensure
. . . y ) . y sp that the effective gravitational constant, as well as other pa-
version of inflationary theory. The major cosmological prob- meters depending on the fiegdl(i.e. on the brane separa-
lems are supposed to be solved due to exponential expansi{)% P g on he T - P
fion), does not change in time too fast. This is one of the

in a vacuum-like state, even though the mechanism of pro hy it i ' hat th »
duction of density perturbations in this scenario is nonstand€2Sons why it is usually assumed that the branes imor
Witten theory must be stabilized.

ard. Let us remember that Guth’s first paper on inflafidh _ !
was greeted with so much enthusiasm precisely because it e will not discuss these problems here. Instead of that,
proposed a solution to the homogeneity, isotropy, flatnes¥e Will concentrate on the phenomenological description of
and horizon problems, even though it did not address th®ossible cycles using the effective 4D description of this sce-
formation of large scale structure. The Starobinsky modenario. This will allow us to find out whether the cyclic re-
that was proposed a year earl[@] could account for large gime is indeed a natural feature of the scenario proposed in
scale structure and the observed CMB anisotiie}s}, but it ~ [10].
did not attract as much attention because it did not empha- For the remainder of this section we will analyze this
size the possibility of solving these initial condition prob- scenario using the tools developed in the earlier sections of
lems. the paper. In Sec. IX B we will describe the phase portrait of
In fact, the stage of acceleration of the universe in thehe cyclic scenario. In Sec. IX C we will consider the condi-
cyclic model iseternal inflation Indeed, the main criterion tjons that must be satisfied at the bounce in order for the
for the process of self-reproduction of the inflationary uni-cyclic regime to occur. In Sec. IXD we will analyze the
verse to occur is that the amplitude of inflationary perturbagtion of the field as it returns from the singularity and show
tions 5¢~H~V should be greater than the chanyé of  that the conditions described in Sec. IX C are difficult to
the classical value of the fielg during the timeH 1 A¢  realize self-consistently without invoking super-Planckian
~V'/V [30,40,42. For the potential/(¢) used in the cyclic  potentials, even in the vicinity of the minimum. Following
model one hagi¢=const in the limit¢—, whereasAé  he authors of 10] we will consider such super-Planckian
—0 in this limit. Thus the Un-lverse -at _Iargﬁ enters the otentials in Sec. IX E. Aside from the problem of app|y|ng
stage .Ol.c it self-reproductllon, quite independently of t.h e effective 4D theory at such high energies, we will find
possibility to go through the .smgulanty. and reappear agalfy, ; there are still other problems in such realizations of the
In other words, the universe in the cyclic scenario is not JUStscenario. In Secs. IXF and IX G we will propose some

a chain of eternal repetition, but a growing self-reproducin A . .
inflationary fractal of the type discussed[i80,40,42 ?Zd;fr'gsltgmnz ?;tsh; dcﬁ]’g'r'g scenario that may resolve some of

It is remarkable that quantum effects and the mechanis
of self-reproduction may work even at the present stage
when the wavelength of inflationary fluctuations is greater B. Phase portrait of the cyclic universe
than the size of the observable part of the universe and the The phase space of the cyclic scenario is the usual 3D

square of their amplitude is as small as 18 in Planck space ¢, ¢,H). If one does not take into account matter and

units. The reason why it may work is that the curvature Ofradiation, the phase portrait of the scenario forms a 2D sur-

the effective potential at large is even much smaller. . . A . -
One may wonder, however, whether this version of infla_face in 3D space. It is shown in Fig. 13 without the Poincare

tionary theory is good enough to solve all major cosmologi—'ﬁn""ppmg'(If one add; radiation, Fhe flc_)w of trajectorigs be-
cal problems. Indeed, inflation in this scenario may occuiOMes three dimensionallhe trajectories corresponding to
only at a density 120 orders of magnitude smaller than thdlifferent initial values of¢ and ¢ start at largeH, i.e. in the
Planck density. If, for example, one considers a closed uniupper part of Fig. 13. The trajectories beginning at large
verse filled with matter and a scalar field with the potentialpositive ¢ reach the separatrix going from the point S1 to the
used in the cyclic model, it will typically collapse within the point A. Its upper part I>0) corresponds to inflation.
Planck timet~1, so it will not survive until the beginning of These trajectories follow the separatrix towards the throat of
inflation in this model att~10°°. For consistency of this the phase portrait ai=0, and then all of them move to-
scenario, the overall size of the universe at the Planck timgards the singularity. The trajectories beginning at large
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face separatrix and the trajectories to the left of the boldface
separatrix.

One could think that the shaded separatrix separates infla-
tionary trajectories from the trajectories that fall to the sin-
gularity without reaching the stage of inflation. However, it
is not so. As we already discussed in Sec. V, the trajectories
that reach the stage of inflation are at a finite distance to the
right away from the line connecting points R and 2. at

greater values o and ¢).

The (¢, ) projection of the phase portrait for the cyclic
scenario is shown in Fig. 14, also without the Poinaasp-
ping. An interesting feature of the right panel of Fig. 14 is
the apparent absence of any trajectories near the shaded line
(the right separatrix at the right panelThis might seem
surprising because this line is a solution of the equations of
motion, so there must be other solutions nearby. The reason
is that the deflationary universe regime described by this line

FIG. 13. The 3D phase portrait for the cyclic scenario. All tra- IS @ strong repulsor, just opposite to the fact that the infla-
jectories(lines) begin atH>0 and end in a singularity a1 <0. tionary boldface line aH>0 (the right separatrix at the left

pane) is a strong attractor. As a result, the density of trajec-
negativeg fall from the singularity at large positivid to the  tories near the shaded lineldt< 0 is very small; that is why

singularity at large negativil without entering the stage of they do not show up in Fig. 14. We discussed a similar issue
inflation. in Sec. V.

As we see, all trajectories beginning ldt>0 end up in

If one flips ¢— — ¢ andH— —H, which corresponds to

time reversal, the separatrix connecting points S1 and A bet-he singularity atHf’_oo' In the cyclic scenario It IS as-
comes the separatrix connecting points R and S2. In thgumed that the universe goes through the singularity and

lower part of the figurdat negativeH) this line corresponds re-appears again. When this happens, all trajectories dvith
to the stage of deflatiofexponential contraction of the uni- <0, $<<0 andH<O0 in the left lower part of the right panel
verse, which is a time reversal of inflatioiThese two sepa- in Fig. 14 suddenly reappears in the right upper corner of the
ratrices divide all trajectories into three topologically discon-left panel of Fig. 14, describing the trajectories starting at
nected parts: the trajectories to the right of the shaded <0, ¢>0 andH>0. If one ignores particle production at
separatrix, the trajectories between the shaded and the bolthe singularity, the boldface separatrix on the right panel be-

Expanding Universe Contracting Universe

¢ ¢

FIG. 14. The 2D phase portrait for the cyclic scenario. All trajectories begin at the bounding box of the lefthhar@El &nd end at the
bounding box of the right paneH<0).
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result of this flip, the fieldp, which previously was running (59
down along the boldface separatrix towards the singularity in
Fig. 13, eventually returns exactly to the same placebat
>0 where it was in the very beginning of the process. How-
ever, it returns back not at the stage of exponential expansion 2 1
but at the stage of exponential contraction, following the d—p= \ﬁ|n\/§t, —
shaded separatrix in Fig. 13. 3
Exponential contraction is not a desirable regime. In order U6e1/3
to reach the cyclic inflationary regime, some of the trajecto- a=3""t", (60)
ries to the left of the boldface separatrix after the singularity . . L
should jump sufficiently far away to the right of the shadedWNich in turn implies
separatrix. As we already mentioned, Rdf0] assumes that
this jump may occur due to an increase in the energy of the b= =
scalar field bouncing back from the singularity. This increase a
in energy is supposed to happen due to particle production. _
Only if this jump is sufficiently large can these trajectories One can also represent our results in terms of the confor-
reach the inflationary separatrix going from S1 to A. Thenmal timer, wheredt=adr. In this cas¢=(273>%%2 and
inflation begins, the field rolls to the minimum &f(¢)
again, and everything repeats. L \/EI E
b= dp= > n \/5

comes the shaded line at the left paftehe reversal As a 1

Settinga(t,) =1 we can write our solution as

2 3t

¢—dp=16Ina. (61)

(62
C. Moving towards the minimum of V(¢)

To study the potential shown in Fig. 12 we will assume The Planck timetpz_l/\/§ corresponds top,= V312,
that near the minimum it can be represented m&/2) (2 The cyclic scenario requires that the universe bounce back
_ ¢S)- At ¢= ¢, we will take it to be flat withv~10~12 from the singularity and the field move back frofnv to ¢.
and até< ¢, we will take V=0. The results of a numerical Depending on how much kinetic energy the field has at this

investigation for more complicated potentials are very simi-PoInt t_hree regimes are then possible:
lar to the ones obtained for this simple model. However, in (1) ¢/2<Ap_ at = — ¢,. This is the regime that would
this model one can study everything analytically using thebe reached if the bounce were perfectly symmériavhich
results obtained in Sec. VI. Indeed, we know how the fieldcase ¢?/2=Ap_). The universe starts collapsing at
moves atp< — ¢g, whenV(¢$) =0, and we also know how < ¢,.. The field overshoots the poigi= ¢, and moves with
it behaves in the quadratic potential, when it moves fromever growing speed towards= + . There is a small bunch
— ¢ t0 ¢p. The only thing that we need to do is to patch of trajectories such that the scalar field evolves very slowly,
these two regimes together. the equation of state ip= —p, and the universeontracts
At the initial stage the scalar field moves extremelyexponentially. Eventually, however, the kinetic energy of the
slowly at ¢> ¢ and the universe inflates. Once it reachesfield ¢ dominates and the collapse becomes power law with
¢~ ¢ it falls down, V(¢) becomes negative, and the uni- p=p.
verse begins to contract. To describe this process one can useThis regime is represented by the trajectories to the left of
the theory developed in the first part of this paper. The conthe shaded separatrix in the upper part of the left panel in
traction begins ath= ¢. (42). The scalar field reaches= Fig. 14.
— ¢o with energyAp_ given by Eq.(49). (2) Ap_<P?2<Ap, at ¢=— . The universe starts
Subsequently, the fiel¢ moves towardgp=— and the  collapsing atp> .. The field does not have enough energy
singularity develops in accordance with Ej8). To describe g reach the pointp= &0, SO it returns back to negative,
this motion one should takg=1/\y3Ap_ in Eq. (18) and  the field moves with ever growing speed ¢o= —, and a

replaced, by — ¢o: singularity develops.
5 2 1 This regime is represented by a small bunch of trajecto-
_ /4 ¢ _ L ries to the right of the shaded separatrix in the upper part of
¢+ do= \[3|n 38p-t, 2 3t* 58 ihe left panel in Fig. 14.

(3) ¢?12=Ap, at ¢=— ¢o. The universe continues ex-
In this solutiong= — ¢ att=t,. panding and the fielgp becomes greater tha,. It contin-

Let us use this equation to find the value of the figldt  ues growing and gradually slows down. As a result, inflation
the Planck time when the energy density becomes 1 imegins. Then the field very slowly decreases, falls into the
Planck units and one can no longer study this regime withiminimum of V(¢), the universe collapses and the field
the context of general relativity. This happeng at 1/y3in  moves togp=—. This is the regime required by the cyclic
Planck units. Therefore the scale factor of the univease scenario.

~t13 decreases by a factor (Ap_)Y/® from the beginning This regime is represented by trajectories starting suffi-
of the process a#h= — ¢, until the density become®(1). ciently far from the shaded separatrix, to the right of it in the
The scalar fieldp at that time is given by upper part of the left panel in Fig. 14.
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a|? 1f@as al
al T3l2 @ P (9

The last of these regimes requires additional explanation.
Let us remember how we derived the expressionXpr, :
We considered the fielg slowly rolling from ¢= ¢ during
the stage of contraction and found that it arrived at the poin
¢=— ¢o with kinetic energyAp. . If we reverse the time
evolution of the universe, we will see the scalar field rolling
down from ¢= — ¢y and arriving at the poingp= ¢ with a
nearly vanishing speeduring the stage of expansiol the
initial kinetic energy of the field is greater thakp, , it
reaches the pointh= ¢, with a nonvanishing speed an
moves further onto the plateau where the energy density
the field ¢ becomes constant, and inflation begins.

As we have seen in Sec. VI, the difference betwAen
andAp_ is extremely small:

here ¢, is the velocity of the field at some momemnt a; is
the scale factor of the universe at that moment, gni the
density of radiation at that time. This equation reflects the
fact that the kinetic energy of the field decreaseaa$and
radiation energy decreases as* during the expansion of
d the universe. Note that here we are considering processes at
gfub-Planckian energies where the usual Friedmann cosmol-
ogy is supposed to be valid.

It is convenient to write this equation in terms of the
conformal timer, wheredt=adr:

2
Ay
Sp=Ap,—Ap_=m3AVmMe3. (63) (@)=_2+B, (65)

Here AV has the meaning of the height of the effective po-Wherea’ =da/dr=aa, A’= ¢7aj/6 andB=p{a/3.

tential at¢> ¢y in our caseAV~ 1012 Thus one might Taking a(0)=0 (at the singularity, the solution of this
expect that it is pretty easy to jump from the trajectory with €quation Is
energyAp_ to the desirable trajectory with energy greater
thanAp. , as in casd3).

In reality, however, the required jump in kinetic energy
becomes much larger when one takes into account quantu
effects. As the fieldp moves through the minimum from

a’=2A7r+B7. (66)

For definiteness, we will normalize our solution at the
fine ti=t,, when ¢?2=1 anda;=1. ThenA?=1/3, B

r

— ¢ 10 ¢, its mass changes from 0 tm and back to 0 =pp/3, and
again, all within a timeD(m™1) (half of an oscillation, see ;
Fig. 16. This nonadiabatic changkm/At~m?, will lead to azziTJr &Tz_ (67)
the production of¢ particles with energy densitp(m®*) J3 3
[29]. Therefore the field¢ loses an amount of energy _
O(m*), which makes it less likely to reacth, while the Then, using equatio’ = ¢;a’/a?= \6A/a?, one finds
universe is still expanding(The production of¢ particles
during this very short time interval appears in addition to the ~ 3 27
process of particle creation near the singularity discussed in b= bp= \[5'” r +C;
Sec. VIII) Thus in order to realize the cyclic scenario the V3| 1+ &7)
kinetic energy density of the fiele at the point— ¢y must 23
be greater thahp, by O(m*), which is much greater than
AV. a

One may wonder where the field gets this boost in kinetic =6l o +Cr (68)
energy. Usually one would expect that the field after a 1+ ——7
bounce can only lose energy due to particle production. 2\3

However, in[10] it is assumed that it can actually gain en- -~ . .

ergy as a result of particle production during the brane colHere ¢, is the value of the scalar field at the time when
lision (i.e. in the singularity. It is not quite clear whether this $%/2=1 after the bounce. The constant of integrat®nis
can indeed happen, see e[d¢7] where it is claimed that supposed to vanish in the absence of radiation, i.e.p[pr
particles can be created during the brane collision only if—q | this case'&p:d;p, and our solution68) coincides
they have negative energy density. We are not going to disgjith the solution presented in E¢62). This means that in

Cuss this issue here. Instead of that, we will follow the.asThe absence of radiation the fiefelastically bounces from
sumptions of10] and check what happens to the scalar fieldi,o singularity, in accordance wifii4].

¢ if the universe after the bounce contains some matter or gne can find the consta, for any givenp[) from the

radiation. . ~ . .
adiatio condition that$= ¢, at ¢*/2=1 anda=1. In particular, for

ph<1 one hasC,~p(1/3/2,2).
D. A scalar field with a vanishing potential in the presence Equation (68) implies that atp:)7>2\/§ the field stops
of radiation moving. Therefore we will assume thaljr<1 at < — ¢
Let us consider the motion of the field from —o to  This leads to a strong constraint pf:
— ¢ in the presence of radiation. The Friedmann equation ) s
describing this process can be written as follows: pp=(Api)™". (69)
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If one takes, for definitenesg,~0.1M,, m?¢3~10" %, as \%4

in the original version of the ekpyrotic scenafibl], one 0 30 20 10 10 (l)
finds that the cyclic scenario with these parameters canno

work unless the energy density of radiation at the Planck \ (

time is less than 10° in Planck units. In general the density

of gravitationally produced particles isH*, which isO(1) »
at the Planck time, so it is not clear how particle production
could be so strongly suppressed.

Suppose, however, that for whatever reason one can in
deed havep,<(Ap, )™ In this casep,7<1 and Eq.(68) 2
can be represented in the following form: u

3 -3
T— E . (70)
FIG. 15. An example of cyclic scenario potential used in Ref.
[10].

r

5= )
¢—dp=161na %

With our normalization ofa one has
E. Super-Planckian potentials for the cyclic scenario

1.
§¢2=a*6. (71 Let us now consider a potential proposed by the authors
of the cyclic scenari$10]:

As we already discussed, if we want the field to movepto V(p)=V, (1—e %) F(¢). (74
> ¢ during the stage of expansion of the universe, its ki-
netic energy$?/2 must be greater thahp, at ¢p=— ¢y. If In the particular example studied in the last paper of Ref.
we assume that the field has sub-Planckian energy as [i10] one hasF(gb)ze*e*w, V=101 ¢=10, and y
moves through the minimum, i.e. thap , <1, then ~1/8. This potential is shown in Fig. 15. This potential has
the same structure as the potential shown in the Fig. 12, but
~ 1 ; 3 s the scales and the position of the minimum are determined
$p>— ot %'”Amﬂ’p ﬁ(Am) - (72 py the parameters given [110]. At ¢=0 this potential van-
ishes. It approaches its asymptotic vaMg=10"'%" at ¢
=1. Inflation in this scenario is possible &=1. At ¢
=15 one ha®/*?=V’ and the universe enters the process of

eternal inflation[40,30. The potential has a minimum &t
Do b p" 3 (Ap.) Yoy 1 Aps ~ —36; the value of the potential in this minimum &,
P~ PP\ \/— +

Comparison with Eq(59) gives the following condition:

—In—. (73

\/g Ap_ ~—3.

Let us try to understand the origin of the parameters

In general, it could happen that after bouncing from the sin-_, 10, y~1/8 used i 10]. According to[15], the amplitude

1 n . . in thi i0in the limiit 1
gularity the field ¢ appears at the Planck density ﬁF) of density perturbations in this scenario in the liwit 1 can

= ) ~ be estimated as
# ¢y, S0 thatg,— ¢p=0(py,) [10]. However, our investi-
gation shows that the cyclic scenario wiltp, <1 could Sp
o~ . —~105/-Vv, ¢ (75
work only if ¢,—¢,>pp. P s
This means that the cyclic scenario can work only if a

yery small amount of _radlatlon can produce_a major Chang@vherevj is approximately equal to the value of the potential
in the state of the field$ at the Planck time:¢y—d¢y,  in its minimumV,y, and £ is the efficiency with which ra-
=pp(Ap,) 1 Second, the amount of radiation at the giation is produced at the singularity; it is assumed that
Planck time must be very smafi,<(Ap, )" This may be  <1. This suggests that in order to be consistent with obser-
a real problem if, as we expect, quantum effects at Planckiapational data §p/p~10~%) one should have- V;>1. This
densities create particles with densﬁt&: O(1). means one must rely on calculations using the equations of
These problems are less serious in models with =1,  general relativity atV(¢)|>1.
i.e. if the field ¢ acquires super-Planckian energy even be- The authors of 15] have warned the readers that their
fore it reaches the plateau @&t — ¢o. Such models are sus- results are very preliminary and many authors do not agree
pect because the usual 4D approach based on general relgith their derivation of the amplitude of density perturba-
tivity becomes unreliable at super-Planckian densities. Itions[16]. Therefore it may happen that the correct equation
appears that such models are necessary for the cyclic modébr perturbations in the cyclic scenario as well as the expres-
however, and in at least one of their papers the authors dfion forV(¢) will be quite different. Here we will simply try
[10] invoke such a model. We therefore consider such poterto understand the values of the parameters us¢ddhand
tials here. check the consequences of the potential they suggested.
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The spectrum of density perturbations obtained1i] is m2
not blue, as irf11], but red, like in the pyrotechnic scenario
[13] and in the simplest versions of chaotic inflation. The
spectral index i:i~ 1— 4/c?. Observational data suggest that
n=0.93+0.1, which implies that=5. If one takesc>5,
andV;>1, one finds that the curvature of the effective po- 2
tential in its minimum becomes much greater than 1.

Once one take¥~ — 3 in the minimum of the potential  *

with c=10[10], the parametey can be determined numeri- (l)
cally: y=0.1226. It would be hard to provide explanation of © -38 3 -36 - -34 -32
the numerical value of this parameter. Meanwhile if one \/
takes y=1/8=0.125, one finds/~—3x10"2 in the mini-

mum of the potential. This would redu@p/p by a factor of
30. Thus, in order to have density perturbations with a cor-
rect magnitude one should fine-tune the valueyef0.1226
with accuracy better than 1%.

Figure 16 shows the effective mass of the fi¢gldAs we
see,|m?|=|V"|=1 in the vicinity of the minimum of the
effective potential. A numerical investigation of the motion
of the field moving from¢ >0 in a theory with this potential
shows that its kinetic energy at the moment wheneaches
the minimum of the effective potential ®(10?). When the
field approacheg~ — 39, where the effective potential be-
comes flat, the kinetic energy of the fiejlbecomes~ 10°,

FIG. 16. Effective mass squared®=V" of the scalar field in
the vicinity of the minimum ofV(¢) in the cyclic scenario.

at the singularity. These particles contribute to the equation
of motion for the field¢ by effectively increasing its poten-
tial energy densityf10]. They may push the field towards
positive values of the fields despite the effects described
above. However, this would add an additional epicycle to a
scenario that is already quite speculative. Indeed, one would
need to produce a sufficiently large number of such particles
, S ek U - and make sure that massive particles decouple from the sca-
i.e. a million times greater than the Planck density. lar field at the present epoch. The last condition is necessary

Even if we continue to trust our calculations in such a, ayoid a rapid change of the coupling constants related to
regime, there are still problems. First of all, there is a dis+ha prane separation described by the fiéld

tance A¢>30 from the point$~—30 where the field One may try to improve the situation by altering the shape
emerges from the deep minimum of its effective potentlz?\l 10t the potential. First of all, the original argument [dfO]
the region¢>1, where inflation in this theory may begin. a5 that the functiorr () appears because at small values

Let us assume that the kinetic energy of the field is smalleg; 1o string couplingg, nonperturbative effects should be
than the Planck energy @i~ — 30, since otherwise we just db ¢ g, 1162 h b
cannot trust our analysis at all. This assumption is in accorSUPPressed by a factoe or & =%, or perhaps by

_872/g% . .
dance with[10]. Indeed, according to the estimates made ine” 8™ %. In the case of type I1Aor heterotig string theory
[10], $,— do~IN[Hs(0u/Hs(in)]<ini<1. In this model in d=10 the string coupling igs=e~ ¢ [14]. Thus one could
a¢p¢p [5()5()]23 . h
b.~—34, so0 indeed one expedis, < — 33 expect the suppression function to be one of the three pro-
p ! &y% .

—_e v —e 279

As we discussed in Sec. IX D, we expect that gravita-P0S€d zty_/pfs:F(¢)~e 7, F(¢)~e® 7, or F(¢)
tional particle production will create particles with density ~e 87® ", with y=1 rather than withy=0.1226.
O(1) at the Planck time. Independently of gravitational pro- It is possible to have/ ;= —3, as in[10], for y=1, but
duction, however, there should be productiondoparticles  only if one takesc=81.56. The value ot must be fine-
with densityO(m?*) due to the nonadiabatic change of the tuned: a change inof 1% results in a change &f,;, by two
effective mass of the field moving frorp=—39 to ¢> orders of magnitude. In accordance with5], this would
—32, see Fig. 16. In this mod&@(m*)=0(1). Thus, when lead to an order of magnitude change in the amplitude of
the field reaches the relatively flat region ét-—32, its  density perturbations.
motion produces ultrarelativistic particle$ with super- With these parameters, however, the curvature of the ef-
Planckian energy density. These particles, just like usual rafective potential in its minimum becomes two orders of mag-
diation, immediately freeze the motion of the fie}d One  hitude greater than the Planck mass squared, so all calcula-
can show that in this scenario the fiefdcan reach the in- tions in such models in the context of the effective 4D theory
flationary regime aip>0 (which is necessary for the con- are unreliable. In potentials Witﬁ(¢)~e*e_2y¢ or F(¢)
sistency of the cyclic scenalionly if at ¢~ —32(i.e. atthe 87" the curvature in the minimum withV(¢)|
flat part of the potentialthe kinetic energy density of the =((1) becomes much greater still.
field ¢ is 12 orders of magnitude greater than (Réanckian
energy density of the produced particles. The effective 4D
description in terms of the scalar field and its effective
potential V(¢) is inapplicable for the description of such  Various modifications to the cyclic scenario are possible.
processes. For example, instead of the asymmetric potential shown in

This problem is not unresolvable. For example, one mayigs. 12 and 15, one may consider a symmetric potential, as
consider effects related to non-relativistic particles producedh Fig. 17.

F. Bicycling scenario
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FIG. 17. Symmetric scalar field potential in the new cyclic sce- FIG. 18. Scalar field potential in the cyclic scenario incorporat-
nario. At large values of¢| one hasv(¢$)~V,~10"12°and there  ing a stage of chaotic inflation. Inflationary perturbations are gen-
is a minimum at¢$=0. erated and the large-scale structure of the universe is produced at

$<0.

In the beginning, the scalar field is large and positive and
it slowly moves towards the minimum. When it falls to the ~ An advantage of this scenario is that it may work even if
minimum the universe begins to contract and the field isa lot of radiation is produced at the singularity and the field
rapidly accelerated towards the singularity/st —. Aswe ¢ rapidly loses its kinetic energy. However, if in order to
already mentioned, the structure of the singularity is not senhave density perturbations of a sufficiently large magnitude
sitive to the existence of the potential, especially if it is asone needs to have a potential with a super-Planckian depth
small asV,~ 10 *?° Suppose in the vicinity of its minimum V(¢)<—1, as in[10,15, then this scenario has the same
the potential is approximately quadrati®/(¢)~m?(¢>  problem as the scenario considered in the previous section.
- ¢>S)/2. If o<1 andm<1, then according to Ed59) the  The kinetic energy of the fiel¢p becomes greater than the

kinetic energy of the fieldp reaches the Planck value at ~ Planck density as soon as it rolls to the minimum/g). It
becomes even much greater when the field rolls out of the

1 2 ) minimum, and the 4D description fails.
bp=— o+ g'n Ap_~ §|n(m¢o)- (76)

G. Cycles with inflationary density perturbations
For definiteness, suppose that~\Vo~10"% and ¢,

—0(1). Then we would not even know that such a mini- As we see, one of the main difficulties of the cyclic sce-

mum existg(the field would not move thejaintil the energy nario is related to the non-inflationary mechanism of genera-
tion of density perturbations. It requires a very specific and

density of matter dropped below its present density'#® .. o ; :
In this case the kinetic energy of the field moving towardsﬂcme'tunGd potential; sefd3] and discussion above. Accord-

6= == would reachth Planck value 8, 112 Atnat 19 0115 S peteie musthave & super iacion dept,
time the scale factor of the universe would decrease by | h y h P ng p f thi y h
factor of ApY6—1020, lonal methods. Moreover, the very existence of this mecha-

. nism of generation of density perturbations remains contro-
Now let us assume, as {i1.0], that the field¢p bounces 9 yp

. . .. versial[16].
from the singularity and moves back. Its energy density This problem can be avoided if we consider a potential

drops down to the Planck energy densitydat~¢,~10°.  that grows at largés|, such as the one shown in Fig. 18. The
During its subsequent evolution the kinetic energy of thefie|d begins to move from large positivg, falls to the mini-
field rapidly drops down because of radiation. Even if theq,ym of V(¢), and moves with ever growing speed top.
density of radiation at the time whep= ¢, were as small as If, for example, the potential grows like" at a sufficiently
103, it would eventually begin to dominate because itslarge negativep, it does not affect the motion of the fielfl
relative contribution grows a&?, i.e. up to 16° times before  towards the singularity. However, when the fiefdbounces
it reaches— ¢,. back, it immediately loses its velocity due to the impact of
Therefore the fieldp freezes at large negativg. At this  radiation created at the singularity. Therefore it slows down
stage the energy density is dominated by particles produceahd enters a stage of inflatioAt this stage all good and bad
near the singularity and density perturbations prepared dumemory about the previous life of the universe and processes
ing the previous cycle lead to structure formation. Then theat the singularity are erased and new density fluctuations are
universe cools down while the field is still large and negativeproduced. All particles produced at the singularity become
and the late-time stage of inflation begins. During this stageliluted, but new ones are produced at the end of inflation due
the field slowly slides towards the minimum of the effective to gravitational effect$48] or by the mechanism of instant
potential and then rolls towards the singularity ét— . preheatind49,50. These new particles constitute the matter
When it bounces from the singularity, a new stage of infla-contents of the observable universe.
tion begins. The universe in this scenario enters a cyclic Gradually the density of ordinary matter decreases, and
regime with twice as many cycles as in the original cyclicthe energy density of the universe becomes determined by
scenario of Ref[10]. One may call it thévicycling scenario  V(¢)=~V,. The universe enters a stage of low energy infla-
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FIG. 19. Scalar field potential in the cyclic scenario incorporat-  FIG. 20. The scalar field potential that appears after the step-by-
ing a stage of chaotic inflation. Inflationary perturbations are genstep simplification of the cyclic scenario.
erated and the large-scale structure of the universe is produced both
at $<0 and at¢>0. near the singularity. This allows us to remove the remaining
epicycles of this model. Indeed, the main source of all the
tion (quintessende which may result in a regime of self- problems in this model is the existence of the minimum of
reproduction ifV(¢) is flat enough. In those exponentially the effective potential withV(¢$)<0. Once one cuts this
large domains of the universe where the field eventually fallgninimum off, the potential becomes extremely simple, see
down to the minimum ofV(¢), it continues rolling tog Fig. 20, and all problems mentioned above disappear. In par-
=00, bounces back after the Singu|arity, slows down due tdiCUlar, one may use the Simplest harmonic oscillator poten-
radiation, experiences low-energy inflation, and rolls downfial (m?/2)$*+ Vg with Vo~ 10 *?° considered in the begin-
to the minimum ofV(¢) again. ning of our paper. This theory describes an eternally self-
In this model of the oscillating universe one can havereproducing chaotic inflationary universe, as well as the late
large scale structure formation due to inflationary perturbastage of accelerated expansiénflation) of the universe
tions without any need to rely on controversial assumptionglriven by the vacuum energy,>0.
about the behavior of perturbations passing through the sin-
gularity. Also, one no longer needs to have potentials with X. CONCLUSIONS
|[V(¢)|>1. However, in this model inflationary perturbations Th . | of K ‘ |
are generated only every second time after the universe e main goal of our work was to perform a genera
passes the singularitat <0, but not at<0). The model |nvest|gat|o_n of scalar field cosmology in theories with nega-
can be made even better by making the potential rise both :S'tv € potent.lals.. We have founq that the phase portraits of
$—= and at¢— —; see Fig. 19. In this case the stage of such theories in the SD spaceé (p,H) ha\(e d!fferent geom-
high-energy inflation and large-scale structure formation oc€try as compared with phase portraits in theories with
curs each time after the universe goes through the singularity (#)=0. In theories withV(¢#)>0 the phase portraits for
Thus we see that it is possible to propose a scenario d Lat_ universes are divided into two dlsconnected parts de-
scribing an oscillating inflationary universe without making Scribing expanding and contracting universes<0 andH
any assumptions about the behavior of non-inflationary per=-0). Meanwhile in theories witlV(¢)<0 these two parts
turbations near the singularity. Another important advantag®ecome connected. The trajectories moving towarde)
of this scenario is that inflationary cycles may begin in a<0 simultaneously move from the parts of the phase portrait
universe with initial size as small @(1) in units of the ~With H>0 towards the parts withi<0. Once the universe
Planck length, just as in the standard chaotic scerf@fio Pegins to contract, it never returns to the stage of expansion
Still, in many other respects this scenario is almost as comuntil it reaches the singularity.
plicated as the cyclic scenario of R¢L0]. The theory of This does not mean that theories with negative potentials
reheating of the universe in this model, just as[1@], is should be banned from consideration. In some cases the sca-
rather unconventional. Gravitational particle production,lar field may be trapped in a metastable minimum, or it may
which is the only source of matter in this scenario, mayroll towardsV(¢)<0 extremely slowly. However, it is quite
dramatically overproduce gravitinos and moduli fieldsinteresting that with an account taken of general relativity
[48,50. To avoid this problem one would need to use thepotentials that have minima & ¢) <0 can be as dangerous
mechanism of instant preheatifg9,50. In order to com- as potentials unbounded from below.
bine the stage of chaotic inflation and the stage of low-scale A general feature of all trajectories bringing the universe
inflation (quintessen@e’[he potentia| must be rather Comp”- towards the Singularity is that in all theories with power—law
cated. To avoid this complication one may need to considepotentials the kinetic energy?/2 becomes much greater
two-field models of the type of hybrid inflation. thanV(¢) near the singularity. This means that the descrip-
The main problem of this model is that one still must tion of the singularity is nearly model independent, at least at
assume that somehow the universe can go through the sithe classical level. In particular, the equation of state of the
gularity. But now this assumption is no longer required foruniverse approaching the singularity typicallyds: p.
the success of the scenario since the large scale structure of However, this conclusion can be altered with an account
the universe in this scenario does not depend on processtsken of quantum effects, including particle production near
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the singularity. Typically particle production near the singu- Note added in proof

larity is so efficient that it turns off the regime=p when a Two months after this paper was submitted to Phys. Rev.
contracting universe approaches the Planck density. The ep, the authors of the cyclic scenario issued a new paper on
fects related to particle production are especially significanthis scenarig51]. This new paper, which is supposed to be a
in an expanding universe as they tend to completely elimisummary of the state of the cyclic universe model, omitted
nate the stage with=p. any mention of the criticisms of the ekpyrotic or cyclic sce-
In addition to the general study of cosmology with nega-nario in our paper and in the papers of other authors
tive potentials, we performed an investigation of a possibility[13,16,44. It was claimed iff51] that the cyclic scenario “is
that our universe may experience repeated cycles of inflatioable to reproduce all of the successful predictions of the con-
and contractiof10]. For a complete study of this scenario sensus modéinflationary cosmologywith the same exquis-
one would need to resolve the singularity problem, as well age detail.” They continued by saying that “All of the differ-
several other problems discussed[18,44,16,47. In addi- ences between the two paradigms harken back to the
tion, as we show in this paper, the parameters of the effectivdisparate assumptions about whether there is a ‘beginning’ or
potentials used in the cyclic scenario must be fine-tuned witmot.” Then they said that “if the big bang were not a begin-
accuracy better than 1%. This scenario, as propos¢tidlp  ning, but rather, a transition from a pre-existing contracting
requires investigation of an effective potentM(¢) of a  phase, then the inflationary mechanism would fail.”
super-Planckian depthy(¢)|>1, and of a scalar field with We disagree with these claims. As explained in our paper,
mass greater than the Planck mass. Even if all of these prolthe original version of the cyclic scenafib0] does not have
lems could be resolved in the context of a more generalirmly established theoretical predictions and it suffers from
approach, the existence of a cyclic regime in the model ofmnany unsolved problems. This scenario is not a real alterna-
Ref. [10] would require additional assumptions. We havetive to inflation because it assumes that the universe passes
shown that ultrarelativistic particles produced near the singuthrough an infinite number of stages of inflation. If one as-
larity, as well as scalar particles created when the field fallsumes, followind 10,51], that the universe can pass through
down to the minimum of the effective potential, tend to haltthe singularity, then it is very easy to add a standard stage of
the motion of the classical fielgh, which prevents inflation- chaotic inflation to the beginning of each cycle. This has
ary cycles from occurring. One way to address this problenbeen demonstrated in Sec. VIII G of our paper. Instead of
is to study quantum creation of supermassive particles witliailing [51], the standard inflationary mechanism resolves
specific interactions with the scalar field. However, thismany of the problems of the cyclic scenario. Therefore we
would add new “epicycles” to a scenario that is already veryare not debating whether inflationary theory is better than the
complicated. models of a noninflationary cyclic universe, because all ver-
We proposed several modifications to the cyclic scenarisions of the cyclic universe scenario use an infinite number
of Ref.[10] that could make it more realistic and less depen-of stages of inflation. We are just comparing different ver-
dent on the unsolved singularity problem. In particular, if onesions of inflationary theory. Some of these versions, dis-
assumes that the potentidl ¢) slowly grows at largd ¢| cussed in Sec. VIII G, admit the existence of a cyclic regime
then the universe may still enter a regime of eternal oscillacombined with chaotic inflation and do not lead to any prob-
tions, but the singularity will be separated from the stage ofems with the generation of metric perturbations. Meanwhile
large scale structure formation by a stage of chaotic inflationsome other models, such as the original version of the cyclic
This scenario allows us to combine attractive features of thecenarid51], are very problematic and require modifications
oscillating universe modgll7—21] and chaotic inflatiori4]. as described in Sec. VIl of our paper.
An important advantage qf this model is tha§ it does not need ACKNOWLEDGMENTS
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