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Relativistic magnetized star with poloidal and toroidal fields

Asaf Oron*
The Racah Institute of Physics, Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel

~Received 12 February 2002; published 29 July 2002!

We study the inner magnetohydrodynamic structure of a general relativistic magnetized star, with poloidal
and toroidal fields. The star is taken to be differentially rotating, stationary, axisymmetric, and made from
perfect, infinitely conducting fluid. Strong toroidal fields of up to 1017 G can be created from the initial
poloidal field by a variation of the mechanism proposed by Meieret al.and Kluźniak and Ruderman. It is also
found that the redshifted toroidal field and the redshifted chemical potential are constants along a magnetic
surface. We prove that a spacetime containing an ideal magnetohydrodynamic fluid which flows only azimuth-
ally is circular in the sense of Carter if, and only if, the magnetic field has only poloidal or only toroidal
components. Further, we show through post Newtonian analysis that, even when this criterion is breached,
spacetime inside astrophysical compact objects where the magnetic field is less than 1019 G can be considered
circular. In both cases the metric inside the star assumes a simple form, with only one nonvanishing off
diagonal term. It is shown that imposing chemical equilibrium forces the magnetic field to assume a force-free
configuration. We derive the form of the electric 4-current in force-free relativistic magnetohydrodynamics.
The connection between both field components is then given through the vector potential and is used to rule out
some field configurations. We derive a new separability condition on the metric which shows that not every
pure fluid metric can be dressed with a frozen in, force-free field.

DOI: 10.1103/PhysRevD.66.023006 PACS number~s!: 95.30.Qd, 04.40.Dg, 52.30.2q, 95.30.Sf
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I. INTRODUCTION

A wide range of stars where general relativistic effects
important is currently known. Of special importance are n
tron stars, as today it is recognized that they are at the co
many of the most intriguing astrophysical phenomena, fr
gamma ray bursts to supernovae to binary mergers and
sars. Since in such compact stars the gravitational bind
energy per particle can be about a tenth of the particle’s
mass, general relativistic effects are important. In additi
the combination of high angular momentum per particle a
small spatial size leads the surfaces of these stars to rota
velocities which can reach a substantial fraction (;10
220 %) of the speed of light. Many of these phenome
~e.g. the theory of stellar pulsations and the accompany
gravitational waves! can be explained in terms of pure ge
eral relativistic hydrodynamics. However, there is an ev
larger class of important phenomena, foremost among wh
are pulsars, which cannot be explained without includ
electromagnetic effects through general relativistic plas
physics. A convenient approximation to this is magneto
drodynamics~MHD!, which provides a relatively simple too
for describing macroscopic continuum phenomena. Its att
tiveness is enhanced by the high conductivity and low v
cosity characterizing neutron star material, which increase
validity. The general relativistic version of magnetohydrod
namics may be found through the works of Lichnerow
@1#, Novikov and Thorne@2#, Bekenstein and Oron@3#, etc.

It is widely agreed that pulsars and related compact
jects are rotating magnetized neutron stars. One still ha
determine the properties and evolution of the star’s elec
magnetic field. The model dominating the literature for t

*Electronic mail: asafo@alf.fiz.huji.ac.il
0556-2821/2002/66~2!/023006~12!/$20.00 66 0230
e
-
of

ul-
g
st
,
d
at

a
g

n
h

g
a
-

c-
-
ts
-

-
to
-

last four decades is that of apoloidal magnetic field which is
misaligned by a constant angle to the star’s symmetry a
and corotates with it. Most works consider a dipole field f
simplicity. In addition, the landmark paper by Goldreich a
Julian@4# demonstrated the existence of a charged magn
sphere around the star. This model has been successf
explaining many of the observed phenomena in neut
stars. In this paper we would like to consider a wider ran
of magnetic field morphology, includingtoroidal compo-
nents. Toroidal fields are very well known in the nonrelat
istic electromagnetic theory of stars@5#; even an ordinary
star such as the Sun has a toroidal field~e.g. @6#!. It is also
known that the so-called ‘‘live’’ pulsars model can have
toroidal field which extends from the magnetosphere into
star@5#. Several well established mechanisms are capabl
creating strong toroidal fields in compact stars. Perhaps
best known is the winding of poloidal field lines by diffe
ential rotation of the star. The first needed ingredient is h
conductivity to anchor the field lines to the fluid elemen
This condition is met by most astrophysical plasma and
neutron star matter. The second ingredient is strong differ
tial rotation. Differential rotation can be supplied by co
collapse during a supernova, certainly if the progenitor s
had such a rotation curve, but even if it was only mild
rotating@7,8#. Differential rotation can be understood on th
grounds of angular momentum conservation and the sm
size of the collapsed object. The relativistic simulations
Shibata and Uryu@9# reveal that binary mergers of neutro
stars can also lead to differentially rotating remnants, a
also accretion induced collapse of white dwarfs@10#. Meier
et al. @11# and Wheeleret al. @12# estimated that this proces
can lead to fields of up to 1017 G. Stronger fields will be
expelled from the star by magnetic buoyancy. Anoth
mechanism which can generate large toroidal fields is a
namo process which sets in during the first few seconds
©2002 The American Physical Society06-1
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stellar collapse@13,14#. Despite all of the above, toroida
fields have attracted relatively little attention in the literatu
perhaps because they were not needed for explaining
fundamental pulsar phenomena.

Although the need for a relativistic treatment of neutr
star electrodynamics was early recognized, relatively f
analytic and semianalytic works exist. This is largely due
the immense difficulty of simultaneously solving the Ma
well equations and the highly nonlinear Einstein equatio
This hurdle is overcome by two main approaches. The firs
to assume that the magnetic field, or alternatively the elec
4-current or vector potential, is known and then use it
calculate the metric. This approach will work for weak a
simple fields as it requires that the pressure and density
tribution do not contain high order multipoles. It was used
Konno et al. @15,16# to compute the deformation of neutro
stars with a dipole field. Konno@17# computed the momen
of inertia of rotating stars with a dipole field. The seco
approach is to assume that the metric is known~usually some
pure fluid metric!, and use it to solve Maxwell’s equation
for the electromagnetic field. Muslimov and Harding@18#
used this method to describe general relativistic magn
spheres; Bekenstein and Oron@19# studied the interior struc
ture of general relativistic fluid stars with poloidal force-fre
fields. Rezzolaet al. @20,21# used this approach to study mi
aligned rotators with a dipole field. Inclusion of a toroid
field adds one further complication: it can break down
circularity of spacetime@22#. This acts to complicate the
metric by increasing the number of nonvanishing metric
ements~see e.g.@23#!. This paper discusses ways to circum
vent this difficulty

The purpose of this paper is to study rotating relativis
stars with mixed poloidal and toroidal fields through use
general relativistic MHD. We present the star model and
sumptions in Sec. II. In Sec. III we justify the inclusion o
toroidal fields. In Sec. IV we obtain the criterion for spac
time circularity in MHD. In Sec. V we tackle the problem o
circularity breakdown when the field has mixed componen
and we show that a simple metric can be obtained for
relevant cases. In Sec. VI we write down the magnetic fi
components and obtain the toroidal field distribution. In S
VII we demonstrate that a one-fluid model in chemical eq
librium implies a force-free field; we derive the current
this field and the chemical potential distribution. In Sec. V
we find the dependence between vector potential compon
for a force-free field. Section IX shows that not every pu
fluid metric can be dressed with a force-free magnetic fie

II. STAR MODEL AND ASSUMPTIONS

We consider a stationary axisymmetric star which rota
differentially about its symmetry axis. We work in coord
natesxa5(t,x1,x2,f). t is the time measured by an observ
which is stationary with respect to far objects.f is the azi-
muthal angle.x1 andx2 are some spatial coordinates who
integral curves are symmetric about the star’s rotation a
and orthogonal to one another. Our signature is12. Greek
indices run from 0 to 3. Latin indices run from 1 to 3. We u
units with G5c51. We assume that the fluid interior of th
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star is made up of three constituents: neutral baryons,
positive and negative charge carriers. We further assume
three constituents flow together as one fluid. We denote
ua the fluid bulk 4-velocity. The angular velocity of the sta
is V5df/dt5uf/ut; due to the symmetries it is a functio
of x1, x2 only. The motion of free charges induces an elect
currentJa; this current is a source for a magnetic field co
figuration which is symmetric about the rotation axis.

The star’s electromagnetic field is described by the a
symmetric Faraday tensorFab which obeys the relativistic
Maxwell equations

F [ab;g]50 ~2.1!

Fab
;b54pJa ~2.2!

where the@ . . . # denotes all the antisymmetric permutatio
of abg, ‘‘,’’ denotes an ordinary derivative and ‘‘;’’ a cova
riant derivative. The first set of equations, Eq.~2.1!, dictates
that Fab is the curl of the electromagnetic vector potent
Aa , Fab5Ab,a2Aa,b . As we have a preferred velocit
field ua, it is convenient to follow the scheme developed
Lichnerowicz@1# and Novikov and Thorne@2# and construct
two 4-vectors describing the electric and magnetic fields c
respondingly:

Ea5Fabub ~2.3!

Ba5 * Fbaub[
1

2
ebagdFgdub,

~2.4!

whereeabgd is the Levita-Civita totally antisymmetric ten
sor. Equations~2.3!,~2.4! can be inverted to yieldFab

Fab5uaEb2ubEa1eabgdugBd. ~2.5!

By multiplying Eq.~2.4! with ua one finds the important and
well known relation

Baua50. ~2.6!

We take our star to have infinite conductivity; therefor
the electric field vanishes anywhere inside the star. Thi
the famous ideal MHD condition

Fabub50. ~2.7!

The magnetic field has no way of dissipating itself and
‘‘frozen’’ into the fluid, its flux through a closed loop moving
with fluid remaining constant with time. To these equatio
we add the general relativistic version of Ferraro’s theor
@24# developed by Soderholm@25#

B1V ,11B2V ,250. ~2.8!

This theorem states that magnetic field lines are tangen
fluid surfaces rotating with equal angular velocity. Otherw
the field lines which are frozen into the fluid would b
stretched by the differential rotation, converted into a tor
dal field, and thus destroy the stationarity.
6-2
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The evolution of the fluid’s 4-velocity is governed by th
magnetic Euler equation

~r1p!aa52ha
bp,b1 f a ~2.9!

where r is the proper energy density, including rest ma
and the internal energy,p is the scalar pressure as measu
in the fluid’s local rest frame~LRF!, andha

b5da
b1ubua is

the projection tensor.aa is the fluid’s 4-accelerationaa
5ua;bub. The term f a5FabJb is the Lorentz 4-force pe
unit volume acting on the fluid. The effects of gravitation a
automatically incorporated by the use of the covariant
rivative in Eq.~2.9! and Eqs.~2.1!,~2.2!.

III. THE CASE FOR A TOROIDAL FIELD

We now turn to the star’s magnetic field structure. Mo
works of magnetic fields inside relativistic compact obje
assume that the magnetic field is poloidal~having onlyx1,x2

components! and ignore toroidal fields completely. Man
also take that field to be a dipole field due to its simplici
This is because solving the Einstein field equations is d
cult enough for a pure fluid star. Adding the electromagne
effects needed to explain the rich phenomena in wh
dwarfs, and in the various types of neutron stars, within
frame of general relativity makes this already arduous t
an almost impossible one. Only the simplest cases can
ally be treated analytically. Moreover, it is well known th
adding a toroidal field can complicate the metric consid
ably, adding terms which are absent for pure poloidal fie
as we shall elaborate in the next section. For now we s
put this aside and concentrate on nonrelativistic consid
ations.

Ignoring toroidal fields can be too limiting. It was show
by Flowers and Ruderman@26#, and later by Eichler@27#,
that isolated spherical fluid stars with purely poloidal fiel
extending outside the star are unstable, as the magnetic
tends to acquire a domain-like structure, similar to that o
ferromagnet, to reduce the exterior magnetic energy t
minimum while leaving the magnitude of the internal fie
almost unchanged. This argument is independent of the
ductivity of the medium and stems from an energy princi
@27#. Flowers and Ruderman@26# have further shown tha
including a toroidal field can stabilize the magnetic field
preventing the various ‘‘magnets’’ from flipping as this w
twist the toroidal field and increase the total magnetic ene
This argument favors a toroidal field but does not necess
one as there are other stabilizing mechanisms such as
enough crust crystallization which can halt the field flippi
@26#.

How can a toroidal field be created in a compact obje
and how can it be maintained over time? The simpl
mechanism is linear amplification of the magnetic field
differential rotation@11,28#. If the star acquires a differentia
rotation profile during collapse and has an initial purely p
loidal field, the rotating fluid of the star will stretch th
frozen-in poloidal field lines and wind them up around t
star thus creating a toroidal field. With each turn of the s
the field lines are increasingly wound and stretched, t
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amplifying the field continuously. This is a very efficien
mechanism that can generate huge toroidal fields. But
process cannot continue perpetually. The fluid threaded w
magnetic field has lower density because magnetic pres
B2/8p replaces some of the fluid pressure. The fluid dens
is usually higher inside the star than at the surface. When
magnetic pressure is strong enough, the buoyancy force
the magnetized fluid suffices to bouy the denser inner fluid
the surface of the star and expel it.

This critical value of the toroidal field is given by@12,28#

Bf'2 f 0.5r13
0.531018 G ~3.1!

where f '0.01 is the fractional difference in density at th
origin of the floating fluid and the stellar surface, andr13
5r/1013 g cm23. This give maximum values of 1016

21017 G for the toroidal fields of neutron stars. Accordin
to Wheeleret al. @12#, the number of revolutions it takes
star with an initial poloidal fieldB0 to reach this maximum
field assuming the poloidal field is wound once per revo
tion is

nf'33103S B0

1012 GD 21

~3.2!

and the time it takes a protoneutron star withB0'1012 G
and rotation period ofP'25 ms to reach that critical field is

t f'nf P'75 s. ~3.3!

This is an extremely short time scale considering the lifeti
of neutron stars. It tells us that if the actual mechanism
orders of magnitude less efficient, we can still get ve
strong toroidal fields, and as long as they are belowBf , they
will stay anchored within the star.

Note that the critical field value is independent of t
original poloidal field. IfB0 is less than 1012 G it will sim-
ply take more revolutions to reach the critical field. Th
mechanism was proposed by Kluz´niak and Ruderman@28# to
be the central engine ofg ray bursters. Wheeleret al. @12#
adopted it to explain asymmetric supernova initiated by j
ejected from the protoneutron star. In both processes the
pelled material provides the energy source. We, on the o
hand, are interested in the phase where this mechanism
and we are left with a less than critical toroidal field. Aft
the material threaded with the critical field is expelled fro
the star, linear amplification can start all over again prod
ing a series of ejected toroids. Whenever matter is expe
the star loses energy@28#: work must be done to stretch th
field lines and is converted to magnetic energy of the toroi
field. The rotating toroid also carries angular momentu
away. In addition, as the toroid breaks out of the star,
surface magnetic field reconnects as it settles down. T
process is powered by energy and angular momentum st
in the star’s differential rotation. After the ejection of eac
toroid, the star’s differential rotation diminishes as it
brought closer to a uniform rotation. The process termina
either when the star is brought to a uniform rotation or wh
the magnetic poloidal field orients itself along surfaces
equal angular velocity@see Ferraro’s theorem, Eq.~2.8!#. Ei-
6-3



er
ta
h
r
fi

al

to
n
.

at
le

-
a

ry
in

id
a

f
ap
ro

ld

en
y
g

ne
r

ld
n

ics
a
ty
e

nd
tr
l,
a

s
en
rc
at
o

tic

o-
can
the
mo-

nce,
the

for
n be
tic,

ow
y,
he

lly
at-
is

he
is
of
ore
ell
lly

me

to
ell

iag-
-
ou
.
ts as

can

ary
g

im-

ASAF ORON PHYSICAL REVIEW D 66, 023006 ~2002!
ther of these endings can leave us with a wide range
toroidal fields weaker than the critical field 1017 G.

There is no lack of scenarios in which stars evolve diff
ential rotation. We know the Sun exhibits a differential ro
tion ~e.g.@6#! and we expect many other stars to have suc
profile prior to collapse. We would expect from conside
ations of angular momentum conservation that such a pro
would develop as different shells infall with different radi
velocity during collapse, even if the progenitor star had
uniform rotation, and would be enhanced if it existed prior
the collapse. The nonrelativistic simulations by Zwerger a
Müller @7# and Ramppet al. @8# indeed show this is the case
It was also noted by Shapiro@10# that the ratiob5Er /uEpu
of rotational to potential energy in the star can grow dram
cally during the collapse. As uniformly rotating compressib
stars can only support very small values ofb without shed-
ding mass~e.g. @6,29#!, collapsed cores of fast rotating pro
genitor would have to acquire some differential rotation
they settle into equilibrium. Shibata and Uryu@9# have
shown through a fully relativistic simulation that bina
mergers of neutron stars can result in a differentially rotat
compact remnant.

Another mechanism capable of generating strong toro
fields is the dynamo process. It was argued by several
thors ~Duncan and Thompson@13#, Thompson and Duncan
@14#, Wheeleret al. @12#! that during the first few seconds o
collapse, convection ensues at different stages of the coll
and paves the way for the action of various dynamo p
cesses such as thea2V or a2 dynamos. Although the main
role of these dynamos is to produce a strong poloidal fie
they can produce toroidal fields as a by-product.

We conclude then that strong toroidal fields can be g
erated in compact stars either by linear amplification or b
dynamo process. This toroidal field will help in stabilizin
the poloidal field and vice versa. As we assume the star to
a very good conductor, the toroidal field can be sustai
indefinitely. We will therefore include such a field in ou
magnetic configuration.

IV. METRIC AND CIRCULARITY

Our next step is to determine the effects of toroidal fie
on the metric. Before we can go any further we must defi
what a toroidal 4-vector is. While in Newtonian mechan
there is no difference between the covariant and contrav
ant components of vectors, this is not so in relativi
Through the scope of this work, a toroidal 4-vector will b
one whose contravariant components in thex1,x2 direction
vanish. This does not imply the vanishing of the correspo
ing covariant components: For this to happen the me
componentsgt1 ,gt2 ,gf1 ,gf2 must vanish. This, in genera
is not guaranteed. Similarly, we define a poloidal 4-vector
one whose contravariantt,f components vanish.

Magnetic fields can affect the metric in two main way
through the magnetic energy-momentum density which
ters Einstein’s equations, and through the Lorentz fo
which acts to redistribute the mass density and hydrost
pressure throughout the star. The rest mass density of a c
pact star is aboutrc2'1027 erg cm23. The magnetic energy
02300
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density inside a star is, therefore, negligible if the magne
field is smaller than 1017 G, which is true for all compact
objects, including magnetars; the same is true for the m
mentum density. The Lorentz force, on the other hand,
greatly alter the metric as it causes a redistribution of
pressure and, therefore, the mass density and angular
mentum in the star. The magnetic pressure can, for insta
replace some of the hydrostatic pressure thus supporting
same mass with less fluid pressure; this in turn allows
smaller mass densities. As a result, a magnetic star ca
expected to have a larger radius than its nonmagne
equally massive, counterpart. Shapiro and Teukolsky@29#
used a nonrelativistic version of the virial theorem to sh
that for white dwarfs with extreme relativistic degenerac
the maximum mass limit is expected to grow due to t
magnetic pressure by a factor of 11 3

2 d whered is the ratio
of magnetic to gravitational energy of the star.

Another feature of the Lorentz force is that it is usua
not spherically symmetric. The assumption of a slowly rot
ing star which deviates slightly from spherical symmetry
ubiquitous in analytic treatments of relativistic stars. If t
Lorentz force is significant, it could easily invalidate th
assumption, giving way to more complicated patterns
mass, pressure and angular momentum distributions. M
so, the task of consistently solving the Einstein and Maxw
equations is a formidable one, usually accomplished fu
only through numerical analysis~e.g. see Bocquetet al.
@30#!. The way around these problems is usually to assu
that the field is of simple known form~dipole! so the Ein-
stein equations can be solved by multipole expansion~e.g.
@15#!, or that it is weak enough so the metric corresponds
a pure fluid metric, which is then used to solve the Maxw
equations for the field~e.g.@20#!. In either case the metric is
assumed to have five nonzero coefficients: four on the d
onal and one off-diagonal,gtf , responsible for frame drag
ging. This form relies on a theorem originally by Papapetr
@31# and later by Carter@22# regarding circular spacetimes
We now recapitulate some of the essentials of these resul
they are crucial to our analysis.

Consider an axisymmetric stationary spacetime. We
define on this spacetime two Killing vector fields:ka, the
stationary Killing vector andma, the azimuthal Killing vec-
tor. Such a spacetime is said to be circular if it satisfies@22#

kdTd[akbmg]50 ~4.1!

mdTd[akbmg]50. ~4.2!

The circularity of spacetime is a sufficient and necess
condition for the the Killing vectors to satisfy the followin
identities:

k[a;bkgmd]50 ~4.3!

m[a;bkgmd]50. ~4.4!

If Eqs. ~4.3!,~4.4! are satisfied the metric can assume a s
pler form. This is best seen when the coordinatest,f are
taken along the integral curves ofka,ma,
6-4
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ka5d t
a ; ka5gta ~4.5!

ma5df
a ; ma5gfa . ~4.6!

Equations~4.3!,~4.4! together with Frobenius theorem in
dicate the existence of a family of 2-surfaces which are
erywhere orthogonal to the plane of the Killing vecto
ka,ma. Choosing the remaining two coordinatesx1,x2 so
their integral curves reside inside these 2-surfaces make
metric attain the following form@22#:

dt25gabdxadxb1gttdt21gffdf212gtfdtdf ~4.7!

where a,b run from 1 to 2 and from Eqs.~4.5!,~4.6! gtf
5kama . Thus, by choosingx1,x2 properly one can get rid
of the g12 cross term and obtain a metric with five nonva
ishing components. Papapetrou@31# has shown that in orde
for the energy tensor of a perfect fluid to satisfy the circul
ity condition, Eqs.~4.1!,~4.2!, the 4-velocity must be purely
toroidal i.e.

u[akbmg]50. ~4.8!

Carter@22# extended this result to include electromagne
fields: for the energy-momentum tensor of perfect fluid p
an electromagnetic field

Tab5pgab1~p1r!uaub

1~FagFb
g2 1

4 FgdFgdgab!/~4p!, ~4.9!

a sufficient condition for circularity is for the electri
4-current to be purely toroidal

J@akbmg#50 ~4.10!

in addition to the toroidal 4-velocity. This poses a proble
because toroidal currents can sustain only poloidal fields.
the face of it a star with a toroidal field component wou
seem to require a metric more complicated than Eq.~4.7!. A
partial way out is by remembering that Carter’s result rela
to a general electromagnetic field. Consider an ideal mag
tohydrodynamic flow, the energy momentum of which is@2#

Tab5~r1p!uaub1pgab

1
1

8p
~2B2uaub1B2gab22BaBb!. ~4.11!

Inserting Eqs.~4.5!,~4.6! into Eqs.~4.1!,~4.2! we finally get

Tt[akbmg]50 ~4.12!

Tf[akbmg]50. ~4.13!

The contributions to those of the first two terms in Eq.~4.11!,
the pure fluid parts ofTab , vanish because the fluid’
4-velocity in the star is purely toroidal. We are left with th
remaining three magnetic terms. The contribution of
B2uaub term vanishes bacauseu[akbmg]50 from Eq.~4.8!.
The contribution of theB2gab vanishes because accordin
to Eqs. ~4.5!,~4.6! gta5ka ; gfa5ma and obviously
02300
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k[akbmg]5m[akbmg]50. We finally derive that a necessar
and sufficient condition for the circularity of the energy m
mentum tensor of an ideal infinitely conducting fluid carr
ing a magnetic field is

BtB[akbmg]50 ~4.14!

BfB[akbmg]50. ~4.15!

There are two field configurations satisfying these equatio
The first is a purely poloidal field: this is seen by examini
Eq. ~2.6!, which gives us the relation between the toroid
field components

Bt52
Bf

V
. ~4.16!

We see that forVÞ0, if Bf vanishes so doesBt and Eqs.
~4.14!,~4.15! are both satisfied leaving only nonvanishing p
loidal field components. The second circular configuration
a purely toroidal field which is automatically in the plan
spanned byka ,mb and, therefore, also satisfies the circula
ity condition. These results can be summarized into the
lowing theorem:A spacetime, containing a stationary ax
symmetric purely toroidal flow of a perfect infinite
conducting fluid carrying a magnetic field, will be circular i
and only if, the magnetic field will be either purely poloida
or purely toroidal. For stars exhibiting these field configura
tions a ‘‘diagonal plus one’’ metric can be obtained. A pro
lem arises, however, when the field is a mixed one hav
both poloidal and toroidal components. Then, Eq
~4.14!,~4.15! are not satisfied and a simple metric seems
be beyond our reach. A different approach is then neede
show it is still possible to reach a simple metric.

V. MIXED FIELD AND CIRCULARITY

As shown in the previous section although ideal MH
allows also for pure toroidal fields to induce circular spac
time, mixed poloidal and toroidal fields do not. It is obviou
that if the fields are weak enough, the deviation from circ
larity is negligible, but how ‘‘weak’’ is enough? We answe
this question by turning to the post Newtonian formalism
is well known that the gravitational potentials and velociti
of matter in neutron stars, and all less relativistic stars m
them adequate candidates for the post Newtonian formal
We will adopt the formalism presented by Weinberg@32#. In
the post Newtonian~PN! approximation all tensors and ten
sor densities are obtained as a power series inv̄, the typical
Newtonian velocity in the star. Since we are considering
axisymmetric, stationary fluid, it is sufficient to concentra
on a metric of order 1PN. In this ordergtt is obtained to
orderO( v̄4) and all other metric components to orderO( v̄3)
or O( v̄2), as appropriate. Although it is more natural to fo
mulate our problem in spherical or cylindrical coordinate
we choose to work in Cartesian coordinates and transform
more convenient coordinates afterwards since we wish
deal with metric terms which converge asymptotically. W
choose thez axis to be along the symmetry axis. In the 1P
6-5
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approximation the metric reads

gtt52122f22f222c ~5.1!

gi j 5d i j 22d i j f ~5.2!

git5z i , ~5.3!

wheref is the Newtonian gravitational potential

f~x,t !52E T
0

tt~x8,t !

ux2x8u
d3x8 ~5.4!

and isO( v̄2) and wherex,x8 are the radius 3-vectors.z is a
triplet of potentials ofO( v̄3), defined by

z i~x,t !524E T
1

i t~x8,t !

ux2x8u
d3x8 ~5.5!

andc is

c~x,t !52E T
2

tt~x8,t !1T
2

i i ~x8,t !

ux2x8u
d3x8 ~5.6!

and isO( v̄4).

To compute the different potentials one must findT
n

mn, the
terms of ordern whenTmn is written as a series in powers o
(M̄ / r̄ 3) v̄n, whereM̄ , r̄ are the typical mass and length of th
problem~in our case the star’s mass and radius!:

Ttt5T
0

tt1T
2

tt1T
4

tt1 . . . ~5.7!

Tit5T
1

i t1T
3

i t1 . . . ~5.8!

Ti j 5T
2

i j 1T
4

i j 1 . . . . ~5.9!

Post Newtonian hydrodynamics@32# yields for the pure fluid

contributions toT
n

mn of order 1PN

T
0

tt5r ~5.10!

T
1

i t5rv i ~5.11!

T
2

i j 5pd i j 1rv iv j ~5.12!

T
2

tt5r~v222f! ~5.13!

wherev i is the Newtonian velocity defined by
02300
v i[
dxi

dt
5

ui

ut ; v25v iv i , ~5.14!

ut is given by

ut5
dt

dt
512f1

v2

2
1O~ v̄4!. ~5.15!

Equation~5.12! assumes that the hydrostatic pressure is
the same order as the typical ram pressurer̄ v̄2, r̄5M̄ / r̄ 3.

We are now equipped to assess the contribution of
magnetic part ofTmn, Eq. ~4.9!. We will take the square of
the magnetic fieldB25BmBm to be also ofO( r̄ v̄2). This will
make the calculation valid for extremely strong fields whe
the magnetic pressure is a significant part of the hydrost
pressure. We do not have to calculate the magnetic contr

tion to T
2

mn as these terms contribute only togtt which is
unchanged when transforming from the Cartesian spatial
ordinates to more convenient ones leaving the time coo

nate unchanged. We also do not have to evaluateT
0

tt as it
only affectsf and is therefore irrelevant to off diagonal me
ric elements. Thus, we are charged only with estimating

magnetic contribution toT
1

i t . We use Eqs.~5.1!–~5.3! to tie
the covariant and contravariant components of the magn
field:

Bi5giaBa'z iB
t1d i j B

j5Bi1z iB
t. ~5.16!

Bt can be tied to the spatial field components by E
~2.6!,~5.14!

Bt52Biv i . ~5.17!

On the other hand we have

Bt5gtaBa5gttB
t1gtiB

i . ~5.18!

With Eq. ~5.17! for Bt we have, to lowest order,

Bt5Biv i . ~5.19!

We see thatBt is small relative toBi as we deal with rela-
tively low velocities and from Eq.~5.16! it follows that

Bi'Bi . ~5.20!

From Eq.~5.18! we now find

Bt'2Bt. ~5.21!

We can now use these relations in conjunction with
magnitude ofB25BmBm to find the size of the component
of Ba

BiBi'B25O~ r̄ v̄2! ~5.22!

Bi'O~Ar̄ v̄ ! ~5.23!
6-6
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Bt'O~Ar̄ v̄2!. ~5.24!

These last three equations allow us to evaluate magnetic
tributions of various orders in the energy momentum ten
Eq. ~4.9!. To do this we substitute forua from Eqs.
~5.14!,~5.15!. We must also supply the contravariant met
termsgab appearing in Eq.~4.9! from @32#

gi j 5d i j ~112f!; git5z i . ~5.25!

Following the above procedure we conclude that the low
order magnetic contribution toTit ,

1

4p
~B2v i2BtBi !5O~ r̄ v̄3!, ~5.26!

leavesT
1

i t unchanged and contributes only toT
3

i t . Another
simplification comes from remembering that for azimuth
flow vz50 and thereforezz vanishes. The Cartesian 1P
metric for a magnetic star therefore acquires the form

gmn5S 2122f22f222c zx zy 0

zx 122f 0 0

zy 0 122f 0

0 0 0 122f

D .

~5.27!

When such a metric is cast intot,x1,x2,f coordinates, it
yields a ‘‘diagonal1 one’’ metric ~of course not if the fluid
motion is other than purely rotational! where

gtf524R~x1,x2!E rVR~x81,x82!cos~f2f8!

ux2x8u
d3x8.

~5.28!

R is the projection of the radius vector on a 2-plane pass
through the origin of the axes and perpendicular to the s
metry axis. We can now conclude that for any axisymmet
stationary, differentially rotating magnetized star made of
finitely conducting ideal fluid, the metric can always be c
in a ‘‘diagonal1 one’’ form, regardless of the magnetic co
figuration as long as the magnetic pressure does not ex
the typical hydrostatic pressure. For neutron starr̄

'1013 g cm23, v̄'0.1c, and this conclusion is valid forB
,1019 G. Thus, from now on we shall adopt the followin
metric:

ds252gttdt212gtfdtdf

1gffdf21g11~dx1!21g22~dx2!2 ~5.29!

wherex1,x2 can be some two orthogonal coordinates for e
r ,u for spherical coordinates orr,z for cylindrical, and
gmnu5gmn(x1,x2). It is useful to expressgab, the reciprocal
of the metric using thegab ,

gtt5gff /D ~5.30!
02300
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gff5gtt /D ~5.31!

g1151/g11 ~5.32!

g2251/g22 ~5.33!

gtf52gtf /D ~5.34!

whereD5gttgff2gtf
2 , 2g5g11g22D is the determinant of

gmn .
For further reference, the temporal component of the

locity can be expressed using the metricgab , V and by
requiring the fluid 4-velocity normalizationuaua521

ut5~2gtt22gtfV2gffV2!21/2. ~5.35!

The covariant velocity is also toroidal

ut5~gtt1gtfV!ut; uf5~gtf1gffV!ut;

u150; u250. ~5.36!

VI. THE MAGNETIC FIELD CONFIGURATION

The Maxwell equation Eq.~2.1!, F [ tf;a]50, shows that
Ftf is constant throughout the star. This constant is de
mined to vanish by the vanishing of the azimuthal comp
nent of the electric field at the star’s center. Thus, out of
six independent components of the electromagnetic ten
Fab , one is zero as we have seen and four are determine
the poloidal field components. Those and their contravar
counterparts are

F1t5A2gufB2; F1t52
1

A2g
ufB2 ~6.1!

F1f52A2gutB2; F1f5
1

A2g
utB2 ~6.2!

F2t52A2gufB1; F2t5
1

A2g
ufB1

~6.3!

F2f5A2gutB1; F2f52
1

A2g
utB1 .

~6.4!

The last component ofFab is determined by the toroida
field

F1252
A2gBf

ut
; F125

Bf

A2gut
. ~6.5!

We can now determine the electric current. We use
~2.2! and the identityF ;b

ab5(1/A2g)(A2gFab) ,b , which is
valid for any antisymmetric tensor, to establish the 4-curr
components:
6-7
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Jt5
1

A2g
@~ufB2! ,12~ufB1! ,2# ~6.6!

Jf5
1

A2g
@~utB1! ,22~utB2! ,1# ~6.7!

J15
1

A2g
~A2gF12! ,2 ~6.8!

J252
1

A2g
~A2gF12! ,1 . ~6.9!

The next step is to combine Eqs.~6.1!–~6.5! and Eqs.~6.6!–
~6.9! and obtain the toroidal components of the Lorentz fo

f t52uf@B2~A2gF12! ,21B1~A2gF12! ,1# ~6.10!

f f5ut@B1~A2gF12! ,21B1~A2gF12! ,1#. ~6.11!

Bekenstein and Oron@19# have shown that due to the sym
metries, for any star exhibiting only toroidal flows and
metric of the form Eq.~5.29!, the 4-accelerationaa takes the
much simpler form

aa52
~ut!2

2
~gtt,a12gtf,aV1gff,aV!. ~6.12!

Inserting this expression into Eq.~2.9! and calculatingha
b

explicitly we get

2~r1p!
~ut!2

2
~gtt,a12gtf,aV1gff,aV!

52p,a1 f a . ~6.13!

Looking at the toroidal components of Eq.~6.13! we im-
mediately arrive at the conclusion thatf t5 f f50, that is, the
magnetic field is force-free in the toroidal direction. This
the relativistic analogue of the nonrelativistic conditionJp
3Bp50 ~e.g. @5#! for stationary axisymmetric field MHD
configurations, whereJp ,Bp are the nonrelativistic poloida
current and field. The field cannot apply any force in t
toroidal direction as this would imply a poloidal torque ac
ing on the star thus changingV and violating the assume
stationarity. Applying this to Eqs.~6.10!,~6.11! we arrive at
the equation

B2~A2gF12! ,21B1~A2gF12! ,150. ~6.14!

This equation tells us thatA2gF12 is constant along the
poloidal field lines just likeV. By replacingF12 with the
explicit expression we find the distribution of the toroid
field

Bf5Kut ~6.15!

whereK is constant along a magnetic surface~MS!.
02300
e

VII. FORCE-FREE FIELD

As we have seen in the last section the magnetic field
force-free in the toroidal direction but not automatically
the poloidal direction, where the Lorentz force does not v
ish. We now prove that if in addition to assuming one flu
velocity we assume that the fluid is in chemical equilibriu
the field must be completely force-free. This is done by
sentially repeating a nonrelativistic argument by Easson@33#
in relativisitc language. In chemical equilibrium the numb
of neutral baryons turning into positive and negative cha
carriers equals the number of charge carriers recombin
back to form neutral baryons. Such processes can be fa
tated, for example, by ionization and recombination for h
drogen and other plasmas in mildly relativistic stars or byb
and inverseb decay and similar processes for neutrons
neutron stars and white dwarfs. We denote bymn , me andmp
the chemical potentials of the neutrals, negative charge
riers and positive charge carriers respectively; chemical e
librium then implies

mn5mp1me . ~7.1!

In GTR m for a fluid takes the following form@2#:

m5
~r1p!

n
~7.2!

wheren is the proper baryon number density. Bekenstein a
Oron @3# have shown that the following dynamic relatio
holds for a perfect fluid:

p,a5nm ,a . ~7.3!

Inserting the above relation into Euler’s equation Eq.~2.9!
and settingf a50 we get for the neutral fluid the following
equation:

mnaa
n52mn,a ~7.4!

whereaa
n denotes the 4-acceleration of the neutral fluid.

Now let us look at the Euler equation of the charge c
rying fluid,

~rc1pc!aa
c 52pc,a1 f a ~7.5!

where rc ,pc are the energy density and pressure of
charged fluid. These can be broken up into the sum of th
constituentsrc5re1rp , pc5pe1pp where re ,pe ,rp ,pp
are correspondingly the energy density and partial pres
of the negative and positive charge carrying fluids. This,
gether with Eq.~7.2! allows us to write Eq.~7.5! as

~neme1npmp!aa
c 52pe,a2pp,a1 f a ~7.6!

wherene ,np are the proper number densities of negative a
positive charge carriers. The quasineutrality of ideal MH
dictatesne'np which with the help of Eq.~7.3! puts Eq.
~7.6! into the form
6-8
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~me1mp!aa
c 52me,a2mp,a1

f a

ne
. ~7.7!

We now use the equilibrium condition Eq.~7.1! accompanied
by the relationaa

c 5aa
n which stems from the one fluid ve

locity assumption to derive for the charged fluid

mnaa
n52mn,a1

f a

ne
. ~7.8!

Comparing Eq.~7.8! with Eq. ~7.4! immediately yields

f a50; ~7.9!

hence the field is force-free everywhere inside the sta
force-free field puts severe constraints on the possible cur
and magnetic field configuration. Let us calculate the curr
distribution. The currentJa should be such thatFabJb50,
meaning it is a linear combination of the eigenvectors ofFab
with eigenvalue zero. One can try and solve explicitly f
those eigenvectors, we use a different method. Examine
Lorentz force f a5FabJb. ReplacingFab with Eq. ~2.5!
yields

f a5eabgdugBdJb. ~7.10!

However, Eq.~7.10! shows thatf a is simply the 4-volume
enclosed between the three vectorsua,Ba,Ja. It can vanish
for a givenua,Ba only if Ja resides in the plane spanned b
ua and Ba ~which can never be parallel asBa is spacelike
while ua is timelike!, that is,Ja is a linear combination of
the two

Ja5eua1jBa. ~7.11!

e is the charge density in the LRF, as can be verified
projectingJa on the 4-velocityua. The convection curren
eua is sufficient to support a purely poloidal field. This ca
be seen by looking at the poloidal components of the cur
Eqs. ~6.8!,~6.9!. In the absence of a toroidal field (F1250)
these components vanish, implyingj50 for a poloidal field.
At first glance it seems that something is wrong with E
~7.11!: In the nonrelativistic limit the spatial components
the current become

J5ev1jB ~7.12!

wherev,B are the nonrelativistic fluid velocity and magnet
field 3-vectors. This differs from the well known relationJ
5jB. The solution to that problem lies in the fact that t
relativistic expressionFabJb accounts for all the electromag
netic interaction both Lorentz and Coulomb. Consider a n
relativistic flow of an infinitely conducting fluid with veloc
ity field v. The field freezing condition then reads

E1v3B50 ~7.13!

whereE is the electric field 3-vector. The total electroma
netic force acting on the fluid is the sum of the Columb for
and the Lorentz force. The Coulomb force is simplyFc
5eE, to that we add the Lorentz force acting on the conv
02300
A
nt

nt

r
he

y

nt

.

-

-

tion currentFl5ev3B. These two forces come out due
the existence of the small net charge density which is
source of the convection current. To those two we must
the Lorentz force acting on the conduction currentJcon ,
Fcon5Jcon3B , there is no Coulomb force associated wi
this current as it is not derived from a charge denstiy. Add
all three terms together we find the total force acting on
fluid

F5Fc1Fl1Fcon . ~7.14!

The first two terms in Eq.~7.14! add up toe(E1v3B) and
vanish by virtue of Eq.~7.13!. Thus, the convection curren
is always force-free because the Lorentz force acting on
fluid is always countered by the Coulomb force, and we
left with

F5Jcon3B. ~7.15!

The total electromagnetic force acting on the fluid then
simply the Lorentz force due the conduction current, and
it to vanish we must chooseJcon5jB. However, the total
current will now beJ5ev1jB as in Eq.~7.11!. In nonrela-
tivistic MHD the convection current contribution to the tot
current can usually be ignored ase'0 due to the smallnes
of E as reflected by Eq.~7.13!. In GTR that is not so; the
large velocities and effects like length contraction can ma
the convection current significant. Still, as it is proportion
to ua, the GTR field freezing condition, Eq.~2.7!, makes
sure it is force-free.

The behavior ofj can be deduced by taking the dive
gence of Eq.~7.11! which must vanish on account of charg
conservation. The divergence of the convection curren
zero due to the symmetries and the purely toroidal nature
the velocity field. Thus we are left with the equation

~jBa! ;a50. ~7.16!

This equation can be further simplified by using the relat
discovered by Bekenstein and Oron@19# for ideal MHD

~mBa! ;a50. ~7.17!

This equation derives from the Euler equation, and ties
dynamics of the magnetic field with that of the fluid. Thus

S j

m D
,a

Ba50. ~7.18!

Hencej equals the chemical potential multiplied by a fun
tion which is constant over the MS. This is only partial
helpful as we have yet no knowledge of the distribution
the chemical potential itself.

We now go on to determinem. We start with Eq.~7.17!
and substitute forB;a

a the relationB;a
a 5Baaa from Beken-

stein and Oron@19#. After inserting Eq.~6.12! we have the
following:

m ,aBa2m
~ut!2

2
~gtt,a12gtf,aV1gff,aV!Ba50.

~7.19!
6-9
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We now add to the term in parentheses 2gtfV ,a
12gffV ,a . This is possible due to Ferraro’s theorem, E
~2.8!. Comparing with Eq.~5.36! we notice that Eq.~7.19!
has become

S m

utD
,a

Ba50. ~7.20!

The redshifted chemical potential is therefore constant ov
MS.

VIII. THE VECTOR POTENTIAL

So far the poloidal and toroidal fields were considered
independent entities. The toroidal field was determin
solely by the 4-velocity distribution and some functionK(V)
which is a function of the 4-velocity and the metric. Th
poloidal field, on the other hand, was determined separa
However, the force-free nature of the configuration remo
this independence. The demand for a vanishing Lorentz fo
constrains the possible form of the currents which are
sources of the fields. How are the fields now connected
how is K affected by the poloidal field, and vice versa?

We start by considering Eq.~7.11! for a poloidal current.
As we have shown, the poloidal current appears only
toroidal field is present. On the other hand the poloidal c
rent contains a term proportional to the poloidal field. Hen
it links between the two configurations. Remembering E
~6.8!,~6.9! and~6.5! and the constancy ofF12 along a MS we
have

B25
1

jA2g
K ,1 ~8.1!

B152
1

jA2g
K ,2 . ~8.2!

Bekenstein and Oron@19# have shown that by choosing a
appropriate gauge, the poloidal components ofAa , the elec-
tromagnetic vector potential can be made independentt
andf. From this they showed that the poloidal field is giv
by

B25
1

utA2g
Af,1 ~8.3!

B152
1

utA2g
Af,2 . ~8.4!

By comparing those last four equations and remembe
from Eq. ~7.20!,~7.18! that bothm/ut52D, j/m5a where
D,a are constants over a MS, we find that

Af,a5
1

2aD
K ,a . ~8.5!

In other words witht andf derivatives trivial
02300
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dK

dAf
52aD. ~8.6!

Thus K, the function which determines the strength of t
toroidal field, is a function of the azimuthal vector potent
Af , whose derivative is determined by the two functio
a,D. While the form ofBf and the emergence ofK originate
from the absence of force in the toroidal direction on
which is a must for any stationary axisymmetric flow, E
~8.6! is true only for a fully force-free configuration configu
ration.

We now use the above results to rule out some field c
figurations: On the face of it, the configuration characteriz
by constantK throughout the star is a legitimate one. How
ever, from Eqs.~8.1!,~8.2!, the poloidal field components
vanish, givenjÞ0. According to Eq.~7.11!, this leaves only
a toroidal current, but from Eqs.~6.6!,~6.7! if B1 and B2

vanish so doJt andJf, and the current vanishes as a who
leaving us with no magnetic field. The only possible cho
for K that would yield a nontrivial field isK50; this causes
j to vanish leaving us with with a purely poloidal field su
tained by the toroidal convection current.

IX. CONDITIONS ON THE METRIC

In many works the common procedure for determini
the magnetic field relies on it being small, or force-free,
its impact on the star’s metric is negligible. This way, o
can avoid a full solution of Einstein’s equations with the fu
effect of the magnetic field. One usually takes a familiar w
known metric for a pure fluid star, and uses it in conjuncti
with suitable boundary conditions to solve Maxwell’s equ
tions. Naively one might think that any metric can be dress
with a force-free magnetic field. However, as we shall sh
now, this is not so.

We start with a purely poloidal field of a uniformly rota
ing star. We choosex1 to vary along the poloidal field lines
while x2 is constant along them. Asx1,x2 are orthogonal, the
metric retains the form in Eq.~5.29!. In such coordinates
only B1Þ0 and Eq.~7.17! becomes

~A2gmB1! ,150. ~9.1!

This equation can be readily integrated, and with help of
~7.20! we get

B15
1

A2gh~x2!ut
~9.2!

whereh(x2) is an undetermined function. On the other ha
we have Maxwell’s equations for the current which for o
force-free poloidal field take the form

eut5
~ufB1! ,2

A2g
~9.3!

euf52
~utB1! ,2

A2g
. ~9.4!
6-10
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The equations for thex1,x2 components vanish identically a
there is no toroidal field. By multiplying Eq.~9.3! by 2V
and adding the two equations together we find

@~ut1Vuf!g11B
1# ,250. ~9.5!

Using the normalizationuaua521 to write

~ut1Vuf!52
1

ut , ~9.6!

we can integrate Eq.~9.5! to get

B15
f ~x1!ut

g11
~9.7!

where f (x1) is another undetermined function. Inserting E
~9.7! into Eq. ~9.2! and writing A2g explicitly we finally
have

Ag11

Ag22D~ut!2
5 f ~x1!h~x2!. ~9.8!

A similar condition was found by Bekenstein and Or
@19#. We see that only metrics that can be written in t
separated form (ut and D are both functions of metric ele
ments! Eq. ~9.8! can support force-free frozen-in poloid
fields. What is the origin of this condition on the metric?
we examine the pair~quartet in the general case! of Maxwell
equations for the currents, we find that they depend on
metric since the current of the force-free configuration
proportional to the 4-velocity components which are det
mined by the metric. In addition, the field is expressed
Eqs. ~8.1!,~8.2! which also contain the metric. We coul
solve these equations for the magnetic field if the me
were known without needing Eq.~7.17!. However, in addi-
tion to satisfying the equations for the current, the magn
field must also be frozen in. This ties the evolution of t
magnetic field to the 4-velcoity field and hence to the met
This connection culminates into Eq.~7.17!. Thus we can find
a magnetic field which is derived from a convection curre
but if we also want it to be part of a MHD solution th
underlying metric must satisfy Eq.~7.17!. This condition is
independent of Einstein’s equations.

How would Eq.~9.8! be modified if a toroidal field were
added? In this case we have three Maxwell equations~thex1

component of the equations vanishes identically!
y-

,

02300
.

e
s
r-
y

c

ic

.

t,

eut1jBt5
~ufB1! ,2

A2g
~9.9!

euf1jBf52
~utB1! ,2

A2g
~9.10!

jB15
2K ,2

A2g
. ~9.11!

Again we multiply Eq.~9.9! by 2V and add it to Eq.~9.10!
to get rid of the convection current

j~2VBt1Bf!52
@~Vuf1ut!B1# ,2

A2g
. ~9.12!

We utilize Eqs.~6.15!,~4.16! and ~5.30!–~5.34! to write

2VBt1Bf52
K

Dut . ~9.13!

Inserting into Eq.~9.12! and rearranging terms we have

2
jK

Dut 5
21

A2g
S g11B

1

ut D
,2

. ~9.14!

Now we can replacej by using Eq.~9.11! and B1 by Eq.
~9.2! and finally get

2
A2gh~x2!~K2! ,2

2D
5S g11

A2gh~x2!~ut!2D
,2

~9.15!

where we have usedK5K(x2) from Eq. ~6.15!. Thus, there
is again a separability condition on the metric. We see tha
K is constant over all field lines we retrieve the condition f
purely poloidal fields, which coincides with the previous r
sult in Sec. VIII that it must be zero.
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