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Relativistic magnetized star with poloidal and toroidal fields
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We study the inner magnetohydrodynamic structure of a general relativistic magnetized star, with poloidal
and toroidal fields. The star is taken to be differentially rotating, stationary, axisymmetric, and made from
perfect, infinitely conducting fluid. Strong toroidal fields of up to'@ can be created from the initial
poloidal field by a variation of the mechanism proposed by Meieal. and Klumiak and Ruderman. It is also
found that the redshifted toroidal field and the redshifted chemical potential are constants along a magnetic
surface. We prove that a spacetime containing an ideal magnetohydrodynamic fluid which flows only azimuth-
ally is circular in the sense of Carter if, and only if, the magnetic field has only poloidal or only toroidal
components. Further, we show through post Newtonian analysis that, even when this criterion is breached,
spacetime inside astrophysical compact objects where the magnetic field is less'th&@ dah be considered
circular. In both cases the metric inside the star assumes a simple form, with only one nonvanishing off
diagonal term. It is shown that imposing chemical equilibrium forces the magnetic field to assume a force-free
configuration. We derive the form of the electric 4-current in force-free relativistic magnetohydrodynamics.
The connection between both field components is then given through the vector potential and is used to rule out
some field configurations. We derive a new separability condition on the metric which shows that not every
pure fluid metric can be dressed with a frozen in, force-free field.
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[. INTRODUCTION last four decades is that ofpeloidal magnetic field which is
misaligned by a constant angle to the star's symmetry axis
A wide range of stars where general relativistic effects areand corotates with it. Most works consider a dipole field for
important is currently known. Of special importance are neusimplicity. In addition, the landmark paper by Goldreich and
tron stars, as today it is recognized that they are at the core dllian[4] demonstrated the existence of a charged magneto-
many of the most intriguing astrophysical phenomena, fromsphere around the star. This model has been successful in
gamma ray bursts to supernovae to binary mergers and puéxplaining many of the observed phenomena in neutron
sars. Since in such compact stars the gravitational bindingtars. In this paper we would like to consider a wider range
energy per particle can be about a tenth of the particle’s resif magnetic field morphology, includingoroidal compo-
mass, general relativistic effects are important. In additionnents. Toroidal fields are very well known in the nonrelativ-
the combination of high angular momentum per particle andstic electromagnetic theory of staf§]; even an ordinary
small spatial size leads the surfaces of these stars to rotatesthr such as the Sun has a toroidal fie@ddy.[6]). It is also
velocities which can reach a substantial fraction10  known that the so-called “live” pulsars model can have a
—20%) of the speed of light. Many of these phenomenaoroidal field which extends from the magnetosphere into the
(e.g. the theory of stellar pulsations and the accompanyingtar[5]. Several well established mechanisms are capable of
gravitational wavescan be explained in terms of pure gen- creating strong toroidal fields in compact stars. Perhaps the
eral relativistic hydrodynamics. However, there is an everbest known is the winding of poloidal field lines by differ-
larger class of important phenomena, foremost among whickntial rotation of the star. The first needed ingredient is high
are pulsars, which cannot be explained without includingconductivity to anchor the field lines to the fluid elements.
electromagnetic effects through general relativistic plasm&his condition is met by most astrophysical plasma and by
physics. A convenient approximation to this is magnetohy-neutron star matter. The second ingredient is strong differen-
drodynamicg§MHD), which provides a relatively simple tool tial rotation. Differential rotation can be supplied by core
for describing macroscopic continuum phenomena. Its attraczollapse during a supernova, certainly if the progenitor star
tiveness is enhanced by the high conductivity and low vishad such a rotation curve, but even if it was only mildly
cosity characterizing neutron star material, which increase itsotating[7,8]. Differential rotation can be understood on the
validity. The general relativistic version of magnetohydrody-grounds of angular momentum conservation and the small
namics may be found through the works of Lichnerowiczsize of the collapsed object. The relativistic simulations by
[1], Novikov and Thornd?2], Bekenstein and Orof8], etc. ~ Shibata and Uryy9] reveal that binary mergers of neutron
It is widely agreed that pulsars and related compact obstars can also lead to differentially rotating remnants, and
jects are rotating magnetized neutron stars. One still has talso accretion induced collapse of white dwdrt§]. Meier
determine the properties and evolution of the star’s electroet al.[11] and Wheeleket al.[12] estimated that this process
magnetic field. The model dominating the literature for thecan lead to fields of up to 10 G. Stronger fields will be
expelled from the star by magnetic buoyancy. Another
mechanism which can generate large toroidal fields is a dy-
*Electronic mail: asafo@alf.fiz.huji.ac.il namo process which sets in during the first few seconds of
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stellar collapseg[13,14. Despite all of the above, toroidal star is made up of three constituents: neutral baryons, and

fields have attracted relatively little attention in the literature,positive and negative charge carriers. We further assume all

perhaps because they were not needed for explaining thtree constituents flow together as one fluid. We denote by

fundamental pulsar phenomena. u“ the fluid bulk 4-velocity. The angular velocity of the star
Although the need for a relativistic treatment of neutronis Q =d¢/dt=u?/u'; due to the symmetries it is a function

star electrodynamics was early recognized, relatively fevof xt, x2 only. The motion of free charges induces an electric

analytic and semianalytic works exist. This is largely due tocurrentJ?; this current is a source for a magnetic field con-

the immense difficulty of simultaneously solving the Max- figuration which is symmetric about the rotation axis.

well equations and the highly nonlinear Einstein equations. The star's electromagnetic field is described by the anti-

This hurdle is overcome by two main approaches. The first isymmetric Faraday tensét,; which obeys the relativistic

to assume that the magnetic field, or alternatively the electridaxwell equations

4-current or vector potential, is known and then use it to

calculate the metric. This approach will work for weak and Flag =0 (2.9
simple fields as it requires that the pressure and density dis-
tribution do not contain high order multipoles. It was used by Faﬁ;ﬁ=4rrJ“ (2.2

Konnoet al.[15,16 to compute the deformation of neutron . . )
stars with a dipole field. Konnfll7] computed the moment where thg . ..] denotes al! the ant|§ym'metr|c permutations
of inertia of rotating stars with a dipole field. The second®f @87, “.” denotes an ordinary derivative and *;" a cova-
approach is to assume that the metric is kngusually some riant derlyatlve. The first set of equat|0ns., ER.1), dlctates-
pure fluid metri¢, and use it to solve Maxwell's equations thatF ,z is the curl of the electromagnetic vector potent|al
for the electromagnetic field. Muslimov and Hardifig8]  Aa- Fﬁgﬂ,:,Aﬁ,a_Aa,ﬁ- As we have a preferred velocity
used this method to describe general relativistic magnetdi€ld u®, it is convenient to follow the scheme developed by
spheres; Bekenstein and Orfi®] studied the interior struc- Lichnerowicz[1] and Novikov and Thorng2] and construct
ture of general relativistic fluid stars with poloidal force-free WO 4-vectors describing the electric and magnetic fields cor-
fields. Rezzolat al.[20,21] used this approach to study mis- réspondingly:
aligned rotators with a dipole field. Inclusion of a toroidal

= B
field adds one further complication: it can break down the Ea=Fapu 23
circularity of spacetimg22]. This acts to complicate the 1
metric by increasing the number of nonvanishing metric el- B =*F, uf=_—¢,  F7UP
. . . o Ba 2 Bayd ’
ements(see e.g[23]). This paper discusses ways to circum-
vent this difficulty (2.4

The purpose of this paper is to study rotating relativistic . . o . .
. X ) . ; where e is the Levita-Civita totally antisymmetric ten-
aByd
stars with mixed poloidal and toroidal fields through use Ofsor. Equafiong2.3),(2.4) can be inverted to yielff

general relativistic MHD. We present the star model and as-
fooidal felds. In Sec. 1V we obtain fhe creron for Space- Fap=Uay=UgBut capypB7. (29

: . pace
time circularity in MHD. In Sec. V we tackle the problem of By multiplying Eq. (2.4) with u® one finds the important and
circularity breakdown when the field has mixed componentsye|| known relation
and we show that a simple metric can be obtained for all
relevant cases. In Sec. VI we write down the magnetic field B,u“=0. (2.6)
components and obtain the toroidal field distribution. In Sec.
VII we demonstrate that a one-fluid model in chemical equi- We take our star to have infinite conductivity; therefore,
librium implies a force-free field; we derive the current of the electric field vanishes anywhere inside the star. This is
this field and the chemical potential distribution. In Sec. VIII the famous ideal MHD condition
we find the dependence between vector potential components
for a force-free field. Section IX shows that not every pure Fapu”=0. (2.7

fluid metric can be dressed with a force-free magnetic field,
g The magnetic field has no way of dissipating itself and is

“frozen” into the fluid, its flux through a closed loop moving
Il. STAR MODEL AND ASSUMPTIONS with fluid remaining constant with time. To these equations

. . . . . we add the general relativistic version of Ferraro’s theorem
We consider a stationary axisymmetric star which rotate?24] developed by Soderholii25]

differentially about its symmetry axis. We work in coordi-

natesx®= (t,x},x?,¢). tis the time measured by an observer B1Q ;+B%Q ,=0. (2.9
which is stationary with respect to far objects.is the azi- ' '

muthal anglex® andx? are some spatial coordinates whoseThis theorem states that magnetic field lines are tangent to
integral curves are symmetric about the star’s rotation axi$luid surfaces rotating with equal angular velocity. Otherwise
and orthogonal to one another. Our signature-@. Greek the field lines which are frozen into the fluid would be
indices run from O to 3. Latin indices run from 1 to 3. We usestretched by the differential rotation, converted into a toroi-
units withG=c=1. We assume that the fluid interior of the dal field, and thus destroy the stationarity.
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The evolution of the fluid’s 4-velocity is governed by the amplifying the field continuously. This is a very efficient

magnetic Euler equation mechanism that can generate huge toroidal fields. But the
process cannot continue perpetually. The fluid threaded with
(ptpa,= —hﬁp”g+fa (2.9 magnetic field has lower density because magnetic pressure

B2/8+ replaces some of the fluid pressure. The fluid density

Wherep is the proper energy density' induding rest mass’is usually hlgher inside the star than at the surface. When the
and the internal energp is the scalar pressure as measurednagnetic pressure is strong enough, the buoyancy force on
in the fluid's local rest framéLRF), andh?= 8+ ufu, is the magnetized fluid suffices to bouy the denser inner fluid to

the projection tensora, is the fluid’s 4-acceleratiora,  the Surface of the star and expelit.

=ua-5uﬂ- The termfa=FagJB is the Lorentz 4-force per This critical value of the toroidal field is given 2,28
unit volume acting on the fluid. The effects of gravitation are __~£05.05 3

automatically incorporated by the use of the covariant de- B=2f>%13x107 G @3

rivative in Eq.(2.9) and Egs.(2.1),(2.2. where f~0.01 is the fractional difference in density at the

origin of the floating fluid and the stellar surface, amg
lll. THE CASE FOR A TOROIDAL FIELD =p/10"® g cm 3. This give maximum values of 1®
—10' G for the toroidal fields of neutron stars. According

Vﬁe n]?w turn :.0 tfhel dSta?f s'crinagr;ett!c' f!{eld structutre.bMo?tto Wheeleret al. [12], the number of revolutions it takes a
works of magnetic TIelds Inside relatvistic compact objeCtSqia - \yith an initial poloidal fieldB, to reach this maximum

. . . . . l 2
assume that the ”.‘ag"‘e“c f'el.d IS pplmdadwmg onlyx®,x field assuming the poloidal field is wound once per revolu-
components and ignore toroidal fields completely. Many tion is

also take that field to be a dipole field due to its simplicity.

This is because solving the Einstein field equations is diffi- B,

cult enough for a pure fluid star. Adding the electromagnetic Ni~3X10% —>—
. . . , 10 G

effects needed to explain the rich phenomena in white

dwarfs, and in the various types of neutron stars, within the;nq the time it takes a protoneutron star Weh~10? G

frame of general relativity makes this already arduous taskn rotation period oP~25 ms to reach that critical field is
an almost impossible one. Only the simplest cases can usu-

ally be treated analytically. Moreover, it is well known that ti~nP~75 s. (3.3
adding a toroidal field can complicate the metric consider-

ably, adding terms which are absent for pure poloidal fieldsThis is an extremely short time scale considering the lifetime
as we shall elaborate in the next section. For now we shalbf neutron stars. It tells us that if the actual mechanism is
put this aside and concentrate on nonrelativistic considererders of magnitude less efficient, we can still get very

-1

(3.2

ations. strong toroidal fields, and as long as they are bdkwthey
Ignoring toroidal fields can be too limiting. It was shown will stay anchored within the star.
by Flowers and Rudermal26], and later by Eichlef27], Note that the critical field value is independent of the

that isolated spherical fluid stars with purely poloidal fieldsoriginal poloidal field. IfBy is less than 1% G it will sim-
extending outside the star are unstable, as the magnetic fiefdy take more revolutions to reach the critical field. This
tends to acquire a domain-like structure, similar to that of anechanism was proposed by Khiak and Rudermaf28] to
ferromagnet, to reduce the exterior magnetic energy to &e the central engine of ray bursters. Wheelegt al. [12]
minimum while leaving the magnitude of the internal field adopted it to explain asymmetric supernova initiated by jets
almost unchanged. This argument is independent of the comjected from the protoneutron star. In both processes the ex-
ductivity of the medium and stems from an energy principlepelled material provides the energy source. We, on the other
[27]. Flowers and Rudermal26] have further shown that hand, are interested in the phase where this mechanism fails
including a toroidal field can stabilize the magnetic field byand we are left with a less than critical toroidal field. After
preventing the various “magnets” from flipping as this will the material threaded with the critical field is expelled from
twist the toroidal field and increase the total magnetic energythe star, linear amplification can start all over again produc-
This argument favors a toroidal field but does not necessitating a series of ejected toroids. Whenever matter is expelled
one as there are other stabilizing mechanisms such as faste star loses enerd8]: work must be done to stretch the
enough crust crystallization which can halt the field flippingfield lines and is converted to magnetic energy of the toroidal
[26]. field. The rotating toroid also carries angular momentum

How can a toroidal field be created in a compact objectaway. In addition, as the toroid breaks out of the star, the
and how can it be maintained over time? The simplessurface magnetic field reconnects as it settles down. This
mechanism is linear amplification of the magnetic field byprocess is powered by energy and angular momentum stored
differential rotation[11,28. If the star acquires a differential in the star’s differential rotation. After the ejection of each
rotation profile during collapse and has an initial purely po-toroid, the star’s differential rotation diminishes as it is
loidal field, the rotating fluid of the star will stretch the brought closer to a uniform rotation. The process terminates
frozen-in poloidal field lines and wind them up around theeither when the star is brought to a uniform rotation or when
star thus creating a toroidal field. With each turn of the stathe magnetic poloidal field orients itself along surfaces of
the field lines are increasingly wound and stretched, thusqual angular velocit{see Ferraro’'s theorem, E@®.8)]. Ei-
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ther of these endings can leave us with a wide range odlensity inside a star is, therefore, negligible if the magnetic
toroidal fields weaker than the critical field *0G. field is smaller than 1 G, which is true for all compact
There is no lack of scenarios in which stars evolve differ-objects, including magnetars; the same is true for the mo-
ential rotation. We know the Sun exhibits a differential rota-mentum density. The Lorentz force, on the other hand, can
tion (e.g.[6]) and we expect many other stars to have such @reatly alter the metric as it causes a redistribution of the
profile prior to collapse. We would expect from consider-pressure and, therefore, the mass density and angular mo-
ations of angular momentum conservation that such a profilementum in the star. The magnetic pressure can, for instance,
would develop as different shells infall with different radial replace some of the hydrostatic pressure thus supporting the
velocity during collapse, even if the progenitor star had asame mass with less fluid pressure; this in turn allows for
uniform rotation, and would be enhanced if it existed prior tosmaller mass densities. As a result, a magnetic star can be
the collapse. The nonrelativistic simulations by Zwerger ancexpected to have a larger radius than its nonmagnetic,
Muiller [7] and Ramppet al.[8] indeed show this is the case. equally massive, counterpart. Shapiro and TeukolX§]
It was also noted by Shapifd 0] that the ratioB=E, /|E,)| used a nonrelativistic version of the virial theorem to show
of rotational to potential energy in the star can grow dramatithat for white dwarfs with extreme relativistic degeneracy,
cally during the collapse. As uniformly rotating compressiblethe maximum mass limit is expected to grow due to the
stars can only support very small values@fvithout shed- magnetic pressure by a factor of£ § where § is the ratio
ding mass(e.g.[6,29)), collapsed cores of fast rotating pro- of magnetic to gravitational energy of the star.
genitor would have to acquire some differential rotation as Another feature of the Lorentz force is that it is usually
they settle into equilibrium. Shibata and Urf@] have not spherically symmetric. The assumption of a slowly rotat-
shown through a fully relativistic simulation that binary ing star which deviates slightly from spherical symmetry is
mergers of neutron stars can result in a differentially rotatingubiquitous in analytic treatments of relativistic stars. If the
compact remnant. Lorentz force is significant, it could easily invalidate this
Another mechanism capable of generating strong toroidahssumption, giving way to more complicated patterns of
fields is the dynamo process. It was argued by several aunass, pressure and angular momentum distributions. More
thors (Duncan and ThompsofiL3], Thompson and Duncan so, the task of consistently solving the Einstein and Maxwell
[14], Wheeleret al.[12]) that during the first few seconds of equations is a formidable one, usually accomplished fully
collapse, convection ensues at different stages of the collapsmly through numerical analysite.g. see Bocqueet al.
and paves the way for the action of various dynamo pro{30]). The way around these problems is usually to assume
cesses such as the-Q or «? dynamos. Although the main that the field is of simple known fornfdipole) so the Ein-
role of these dynamos is to produce a strong poloidal fieldstein equations can be solved by multipole expangeg.
they can produce toroidal fields as a by-product. [15]), or that it is weak enough so the metric corresponds to
We conclude then that strong toroidal fields can be gena pure fluid metric, which is then used to solve the Maxwell
erated in compact stars either by linear amplification or by aquations for the fielde.g.[20]). In either case the metric is
dynamo process. This toroidal field will help in stabilizing assumed to have five nonzero coefficients: four on the diag-
the poloidal field and vice versa. As we assume the star to benal and one off-diagonag);,, responsible for frame drag-
a very good conductor, the toroidal field can be sustaineging. This form relies on a theorem originally by Papapetrou
indefinitely. We will therefore include such a field in our [31] and later by Cartef22] regarding circular spacetimes.
magnetic configuration. We now recapitulate some of the essentials of these results as
they are crucial to our analysis.
Consider an axisymmetric stationary spacetime. We can
define on this spacetime two Killing vector fields¥, the
Our next step is to determine the effects of toroidal fieldsstationary Killing vector andn®, the azimuthal Killing vec-
on the metric. Before we can go any further we must defindor. Such a spacetime is said to be circular if it satisf&#
what a toroidal 4-vector is. While in Newtonian mechanics

IV. METRIC AND CIRCULARITY

there is no difference between the covariant and contravari- k‘sTﬁ[akﬁmylzo (4.)
ant components of vectors, this is not so in relativity.
Through the scope of this work, a toroidal 4-vector will be M°T s1.Kgm,; =0. (4.2

one whose contravariant components in #ex? direction

vanish. This does not imply the vanishing of the correspondThe circularity of spacetime is a sufficient and necessary
ing covariant components: For this to happen the metrig¢ondition for the the Killing vectors to satisfy the following
components;y,0i2,941,942 Must vanish. This, in general, identities:

is not guaranteed. Similarly, we define a poloidal 4-vector as

one whose contravariatf¢ components vanish. Kiq:gKyms=0 4.3
Magnetic fields can affect the metric in two main ways:
through the magnetic energy-momentum density which en- M. sK, Mg =0. (4.4

ters Einstein’s equations, and through the Lorentz force

which acts to redistribute the mass density and hydrostatitf Egs. (4.3),(4.4) are satisfied the metric can assume a sim-
pressure throughout the star. The rest mass density of a comler form. This is best seen when the coordinates are
pact star is aboyic?~10?" erg cm 3. The magnetic energy taken along the integral curves kf,m?,
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kK*=687; Ko=0ta 45  Kkgm,=m;kzm,;=0. We finally derive that a necessary
and sufficient condition for the circularity of the energy mo-
mM*=685; My=0yq- (4.9  mentum tensor of an ideal infinitely conducting fluid carry-

ing a magnetic field is
Equations(4.3),(4.4) together with Frobenius theorem in-

dicate the existence of a family of 2-surfaces which are ev- BiBjaksm,; =0 (4.149
erywhere orthogonal to the plane of the Killing vectors

k®,m®. Choosing the remaining two coordinate$,x? so B¢Biaksm,;=0. (4.19
their integral curves reside inside these 2-surfaces makes the ) ) ) o )
metric attain the following fornj22]: There are two field configurations satisfying these equations.

The first is a purely poloidal field: this is seen by examining
d7%= gapdXPd X+ g dt? + g 44d p?+ 2g,4dtdd (4.7 Eq. (2.6), which gives us the relation between the toroidal
field components
wherea,b run from 1 to 2 and from Eqsi4.5),(4.6) g,
=k*m,,. Thus, by choosing!,x? properly one can get rid B,
of the g4, cross term and obtain a metric with five nonvan- Bi=— 0 (4.16
ishing components. Papapetrf@L] has shown that in order
for the energy tensor of a perfect fluid to satisfy the circular\we see that fo)#0, if B, vanishes so doeB; and Egs.
ity condition, Eqs.(4.1),(4.2), the 4-velocity must be purely (4.14),(4.15 are both satisfied leaving only nonvanishing po-
toroidal i.e. loidal field components. The second circular configuration is
[l Brrr] — a purely toroidal field which is automatically in the plane
urk”m»'=0. (4.8 spanned b, ,m; and, therefore, also satisfies the circular-

Carter[22] extended this result to include electromagneticIty c;ondltlon. Th_ese resul_ts can be s.u.mmarlzed. into the f.OI'
lowing theorem:A spacetime, containing a stationary axi-

fields: for the energy-momentum tensor of perfect fluid plusSymmetric purely toroidal flow of a perfect infinitely
an electromagnetic field

conducting fluid carrying a magnetic field, will be circular if,

TeB=pg*A+ (p+ p)u“u? and only if, th_e magnetic field vyil! .be either purely pol_oidal,
or purely toroidal For stars exhibiting these field configura-
+(FFR —1F7F _sg°F)/(4m), (4.9 tions a “diagonal plus one” metric can be obtained. A prob-

. - ) o ~lem arises, however, when the field is a mixed one having
a sufficient condition for circularity is for the electric poth poloidal and toroidal components. Then, Egs.
4-current to be purely toroidal (4.14),(4.15 are not satisfied and a simple metric seems to
I[*kEm?]=0 (4.10 be be)_/o.nd our reaqh. A different ap'proach is t_hen needed to
show it is still possible to reach a simple metric.

in addition to the toroidal 4-velocity. This poses a problem

because toroidal currents can sustain only poloidal fields. On V. MIXED FIELD AND CIRCULARITY
the face of it a star with a toroidal field component would
seem to require a metric more complicated than Bdg). A
partial way out is by remembering that Carter’s result relate
to a general electromagnetic field. Consider an ideal magn
tohydrodynamic flow, the energy momentum of whicti2$

As shown in the previous section although ideal MHD
allows also for pure toroidal fields to induce circular space-
%ime, mixed poloidal and toroidal fields do not. It is obvious
%hat if the fields are weak enough, the deviation from circu-
larity is negligible, but how “weak” is enough? We answer
TeB=(p+p)ucuf+pg¥ this question by turning to the post Newtonian formalism. It
is well known that the gravitational potentials and velocities
of matter in neutron stars, and all less relativistic stars make
them adequate candidates for the post Newtonian formalism.
We will adopt the formalism presented by Weinbgsg]. In
Inserting Eqs(4.5),(4.6) into Egs.(4.1),(4.2) we finally get  the post NewtoniaiPN) approximation all tensors and ten-

sor densities are obtained as a power serias ithe typical

1
+ E(2|32uauﬁ+ B2g*#-2B*BF). (4.1)

Tifakgmy =0 (4.12 Newtonian velocity in the star. Since we are considering an
Tk _o a1 axisymmetric, stationary fluid, it is sufficient to concentrate
¢laKpMy =0 (4.13 on a metric of order 1PN. In this ordey, is obtained to

The contributions to those of the first two terms in B41D, ~ orderO(v*) and all other metric components to ord@v°)

the pure fluid parts ofT,;, vanish because the fluid's or O(v?), as appropriate. Although it is more natural to for-
4-velocity in the star is purely toroidal. We are left with the mulate our problem in spherical or cylindrical coordinates,
remaining three magnetic terms. The contribution of thewe choose to work in Cartesian coordinates and transform to
Bzuauﬁ term vanishes bacauseg,k;m,;=0 from Eq.(4.8). more convenient coordinates afterwards since we wish to
The contribution of theBZgaﬁ vanishes because according deal with metric terms which converge asymptotically. We
to Egs. (4.5,4.60) giu=K.: 94e=m, and obviously choose the axis to be along the symmetry axis. In the 1PN
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approximation the metric reads

Ou=—1-2¢—2¢*—2¢ (5.1
9ij= 6= 26 (5.2
gii=¢, (5.3
where ¢ is the Newtonian gravitational potential
Ott ’
qS(x,t):—f%d?’x’ (5.4

and isO(v?) and wherex,x" are the radius 3-vectorg.is a
triplet of potentials ofO(v?), defined by

1
Tit ’
Li(x,t)y=—4 L’t)d?’x’ (5.5
[x=x'|
and ¢ is
2 2”
tt ! i ’
zﬁ(x,t)=—j TOC)+T (X 't)d3x’ (5.6)
|x—x|
and isO(v?%).

n
To compute the different potentials one must firtt, the

terms of orden whenT#” is written as a series in powers of

PHYSICAL REVIEW D 66, 023006 (2002

dx u
UiEE:J; ve=vv;, (5.19
ut is given by
2y +Uz+o_4 5.1
U=q-=1-¢+5+00". (5.19

Equation(5.12 assumes that the hydrostatic pressure is of

the same order as the typical ram pressaré, p=M/r3.
We are now equipped to assess the contribution of the
magnetic part off*”, Eq. (4.9). We will take the square of

the magnetic field®?=B*B,, to be also 00 (pv?). This will
make the calculation valid for extremely strong fields where
the magnetic pressure is a significant part of the hydrostatic
pressure. We do not have to calculate the magnetic contribu-
2
tion to T#” as these terms contribute only ¢, which is
unchanged when transforming from the Cartesian spatial co-
ordinates to more convenient ones leaving the time coordi-
0
nate unchanged. We also do not have to evalT&tas it
only affects¢ and is therefore irrelevant to off diagonal met-
ric elements. Thus, we are charged only with estimating the

1
magnetic contribution td". We use Eqgs(5.1)—(5.3) to tie
the covariant and contravariant components of the magnetic
field:

Bi=g;,B*~{iB'+ &;B/=B'+ {B". (5.1

(M/r3)u", whereM,r are the typical mass and length of the B, can be tied to the spatial field components by Egs.

problem(in our case the star’s mass and ragtius

0 2 4
TU=TUH T T L (5.7
T =TT (5.8
TI=TI+T0+ . ... (5.9

Post Newtonian hydrodynami¢32] yields for the pure fluid
n
contributions toT#” of order 1PN

0
Tt=) (5.10
1.
T'=pu; (5.1
2..
TV=pésj+pviv; (5.12
2
T'=p(v?-2¢) (5.13

wherev; is the Newtonian velocity defined by

(2.6),(5.19
B,=—Bjv;. (5.17
On the other hand we have
Bi=0:,B*=0yB'+g,B". (5.19
With Eq. (5.17) for B, we have, to lowest order,
B!'=B'v;. (5.19

We see thaB! is small relative toB' as we deal with rela-
tively low velocities and from Eq(5.16 it follows that

B;~B'. (5.20
From Eq.(5.18 we now find
B,~—B (5.21

We can now use these relations in conjunction with the
magnitude ofBZ=B“BM to find the size of the components
of B®

B'B'~B2=0(pv?) (5.22
Bi~0(Vpv) (5.23

023006-6
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Bl~0O(Vpv?). (5.29 g%=gy/A (5.31
These last three equations allow us to evaluate magnetic con- g''=1/g1 (5.32
tributions of various orders in the energy momentum tensor -
Eq. (4.9. To do this we substitute fou® from Egs. 9==1/92 (5.33
(5.14),(5.15. We must also supply the contravariant metric .
termsg®? appearing in Eq(4.9) from [32] g'=—0gi4/A (5.39

gli= 5i(1+2¢); gt=¢. (5.25 WhereA=gng¢¢—gt2¢, —0g=011020A is the determinant of
gp,v .

Following the above procedure we conclude that the lowest For further reference, the temporal component of the ve-
order magnetic contribution t@', locity can be expressed using the metgg;, (1 and by

requiring the fluid 4-velocity normalization“u,=—1
1 . S
45 (B0i—BB)=0(pv"), (5.29 U'=(—gy— 20140 - 940 M2 (539

The covariant velocity is also toroidal

1 3
leavesT't unchanged and contributes only 1. Another

simplification comes from remembering that for azimuthal
flow v,=0 and therefore/, vanishes. The Cartesian 1PN

U= (Ot + GrgQIUG Uy= (gt 0gasQUY;

metric for a magnetic star therefore acquires the form =05 u=0. (539
—1-2¢p—2¢>-2¢ 4 Ly 0 VI. THE MAGNETIC FIELD CONFIGURATION
- {x 1-2¢ O 0 The Maxwell equation Eq(2.1), Fpy,:2=0, shows that
v L 0 1-2¢ 0 ' Fis is constant throughout the star. This constant is deter-

mined to vanish by the vanishing of the azimuthal compo-
0 0 0 1_24’2 nent of the electric field at the star’s center. Thus, out of the
(5.2 six independent components of the electromagnetic tensor
F.p, One is zero as we have seen and four are determined by
the poloidal field components. Those and their contravariant
counterparts are

When such a metric is cast intx!,x?, ¢ coordinates, it
yields a “diagonal+ one” metric (of course not if the fluid
motion is other than purely rotationalhere

1
_ Loy [ PORXEXP)codd— ") ;| Fu=\—gu’B% Fi'=——u,B, (6.1)
Org= —4R(x",x )f x| d3x’. \/_—g
(5.28 1
R is the projection of the radius vector on a 2-plane passing Fio=~ J-guB?, szfgutB? (6.2
through the origin of the axes and perpendicular to the sym-
metry axis. We can now conclude that for any axisymmetric, 1
stationary, differentially rotating magnetized star made of in- Foi=— \/—_gu¢31; F2t= ugB;
finitely conducting ideal fluid, the metric can always be cast \/—_g
in a “diagonal + one” form, regardless of the magnetic con- (6.3
figuration as long as the magnetic pressure does not exceed
the typical hydrostatic pressure. For neutron star Foo_ \/—_utBl' F26_ _ iu B
~10" gcm 3, v~0.1c, and this conclusion is valid fdB 29 guE V=g e
<10% G. Thus, from now on we shall adopt the following (6.4)
metric:
The last component oF .z is determined by the toroidal
ds’= — gudt*+2g,,dtd¢ field
+0ygdd?+012(dxH 2+ gp(dx?)?  (5.29 J—gB? B
Fo—— 95 . pr__5¢ (6.5
wherex!,x? can be some two orthogonal coordinates for e.g. v ut \/—_gut
r,0 for spherical coordinates op,z for cylindrical, and . _
gﬂnu=9My(X1,X2)- It is useful to expresg®?, the reciprocal We can now determine the electric current. We use Eq.
of the metric using they,z, (2.2) and the identityr ¥ = (1/V—g) (V—gF*#) 4, which is
valid for any antisymmetric tensor, to establish the 4-current
9"'=044/A (5.30  components:
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b B

T gt teB2)am (UsBa) 2] 6.6

J¢: i u B —(u B 6
\/—_g[( tB1) 2= (UB5) 4] (6.7
1

le\/?g(\/__gFIZ)yz (68)

J2:_L(\/__g|:12)’1_ 6.9

V-9

The next step is to combine Eq$.1)—(6.5) and Eqs(6.6)—

PHYSICAL REVIEW D 66, 023006 (2002

VII. FORCE-FREE FIELD

As we have seen in the last section the magnetic field is
force-free in the toroidal direction but not automatically in
the poloidal direction, where the Lorentz force does not van-
ish. We now prove that if in addition to assuming one fluid
velocity we assume that the fluid is in chemical equilibrium,
the field must be completely force-free. This is done by es-
sentially repeating a nonrelativistic argument by Eag8&h
in relativisitc language. In chemical equilibrium the number
of neutral baryons turning into positive and negative charge
carriers equals the number of charge carriers recombining
back to form neutral baryons. Such processes can be facili-
tated, for example, by ionization and recombination for hy-
drogen and other plasmas in mildly relativistic stars ordy
and inverseB decay and similar processes for neutrons in

(6.9 and obtain the toroidal components of the Lorentz forceneutron stars and white dwarfs. We denotey w. andu,

fi=—u?[B2(\V—gF'?) ,+BY(\—-gF'?),] (6.10

f,=u[BY(V—gF'?) ,+BY(J—gF'?,].  (6.11

Bekenstein and Oro[i9] have shown that due to the sym-

the chemical potentials of the neutrals, negative charge car-
riers and positive charge carriers respectively; chemical equi-
librium then implies

metries, for any star exhibiting only toroidal flows and aln GTR u for a fluid takes the following formZ2]:

metric of the form Eq(5.29, the 4-acceleration,, takes the
much simpler form

(uh?

aa:_T(gtt,a+zgt¢,aﬂ+g¢¢,aﬂ)- (612

Inserting this expression into E42.9) and calculatinghg
explicitly we get

2

(u’)
- (P+ p) T(gtt,a+ thqﬁ,aﬂ + g¢¢,aQ)

=—Ppatfs. (6.13

Looking at the toroidal components of E@.13 we im-
mediately arrive at the conclusion thigt=f ,=0, that is, the

magnetic field is force-free in the toroidal direction. This is

the relativistic analogue of the nonrelativistic conditidn
XBp=0 (e.g.[5]) for stationary axisymmetric field MHD
configurations, wherd,,B, are the nonrelativistic poloidal

current and field. The field cannot apply any force in the
toroidal direction as this would imply a poloidal torque act-

ing on the star thus changing and violating the assumed
stationarity. Applying this to Eq96.10,(6.11) we arrive at
the equation

B2(V—gF'?) ,+BY(\—-gF'?¥,=0.  (6.14

This equation tells us tha{—gF'? is constant along the
poloidal field lines just likeQ). By replacingF? with the

explicit expression we find the distribution of the toroidal

field
B,=Kut (6.15

whereK is constant along a magnetic surfa84s).

Mn=ppTt te- (7.9
+p)
p (pnp (7.2

wheren is the proper baryon number density. Bekenstein and
Oron [3] have shown that the following dynamic relation
holds for a perfect fluid:
Pa=Np g (7.3
Inserting the above relation into Euler’s equation E29)
and settingf ,=0 we get for the neutral fluid the following
equation:
Mnag:_ﬂn,a (7.9
wherea!, denotes the 4-acceleration of the neutral fluid.
Now let us look at the Euler equation of the charge car-
rying fluid,

(pct pC)aZz:_pC,a+fa (7.9
where p.,p. are the energy density and pressure of the
charged fluid. These can be broken up into the sum of their
constituentsp= pe+pp, Pc=Pet Pp Where pe,pe,pp,Pp
are correspondingly the energy density and partial pressure
of the negative and positive charge carrying fluids. This, to-
gether with Eq.(7.2) allows us to write Eq(7.5) as

(ne/*e""npl’«p)az:_pe,a_pp,a+fa (7.6)
wheren,,n, are the proper number densities of negative and
positive charge carriers. The quasineutrality of ideal MHD

dictatesn,~n, which with the help of Eq(7.9 puts Eq.
(7.6) into the form
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. f, tion currentF =evXB. These two forces come out due to
(Ket Mp)As="Hea™ Mpat - (7.7 the existence of the small net charge density which is the
¢ source of the convection current. To those two we must add
We now use the equilibrium condition E(..1) accompanied the Lorentz force acting on the conduction currdgg,,
by the relationa’=a’ which stems from the one fluid ve- F¢on=JconXB , there is no Coulomb force associated with

locity assumption to derive for the charged fluid this current as it is not derived from a charge denstiy. Adding
all three terms together we find the total force acting on the
fa fluid
Hndg =~ Hnat (7.8
¢ F=F¢+F+Feon- (7.19

Comparing Eq(7.8) with Eq. (7.4) immediately yields
paring Eq(7.8) a. (7.4 vy The first two terms in Eq(7.14) add up toe(E+vXxB) and

f,=0; (7.9  vanish by virtue of Eq(7.13. Thus, the convection current
is always force-free because the Lorentz force acting on the

hence the field is force-free everywhere inside the star. Aluid is always countered by the Coulomb force, and we are
force-free field puts severe constraints on the possible curremgft with

and magnetic field configuration. Let us calculate the current
distribution. The curren§ should be such the,,;3#=0, F=JconXB. (7.19

meaning it is a linear combination of the eigenvector§ gf h el i f _ he fluid then i
with eigenvalue zero. One can try and solve explicitly for ' e total electromagnetic Torce acting on the fluid then Is

those eigenvectors, we use a different method. Examine th%mply th_e Lorentz force due the conduction current, and for
Lorentz forcef,=F,,J%. ReplacingF,, with Eq. (2.5 it to vanish we must choosé.,,= ¢B. However, the total
yields a ' ab B current will now beJ= ev+ ¢B as in Eq.(7.11. In nonrela-

tivistic MHD the convection current contribution to the total
f, = eaﬁy(guVB‘sJﬁ. (7.10 current can usually be ignored as-0 due to the smallness
of E as reflected by Eq.7.13. In GTR that is not so; the
However, Eq.(7.10 shows thatf, is simply the 4-volume large velocities and effects like length contraction can make
enclosed between the three vectafsB¢,J¢. It can vanish the convection current significant. Still, as it is proportional
for a givenu®,B“ only if J* resides in the plane spanned by to u®, the GTR field freezing condition, Ed2.7), makes
u® and B (which can never be parallel &" is spacelike sure it is force-free.
while u® is timelike), that is,J“ is a linear combination of The behavior of¢ can be deduced by taking the diver-
the two gence of Eq(7.12) which must vanish on account of charge
conservation. The divergence of the convection current is
J¥=eu”+¢B*. (7.1)  zero due to the symmetries and the purely toroidal nature of

. o . the velocity field. Thus we are left with the equation
e is the charge density in the LRF, as can be verified by y q

projectingJ® on the 4-velocityu®. The convection current (éB%).,=0. (7.16
eu” is sufficient to support a purely poloidal field. This can

be seen by looking at the poloidal components of the currenthis equation can be further simplified by using the relation
Egs.(6.9),(6.9). In the absence of a toroidal fiel&F{?>=0)  discovered by Bekenstein and Orfit®] for ideal MHD

these components vanish, implyige 0 for a poloidal field. "

At first glance it seems that something is wrong with Eq. (#B%);4=0. (7.17)
(7.12): In the nonrelativistic limit the spatial components of

This equation derives from the Euler equation, and ties the
the current become

dynamics of the magnetic field with that of the fluid. Thus,

J=ev+¢B (7.12 ¢
(—) B*=0. (7.18

wherev,B are the nonrelativistic fluid velocity and magnetic K

field 3-vectors. This differs from the well known relatidn . , o

= ¢B. The solution to that problem lies in the fact that the Hénceé equals the chemical potential multiplied by a func-

relativistic expressioff , ;J? accounts for all the electromag- tion which is constant over the MS. This is only partially

netic interaction both Lorentz and Coulomb. Consider a non€lPful as we have yet no knowledge of the distribution of

relativistic flow of an infinitely conducting fluid with veloc- the chemical potential itself.

ity field v. The field freezing condition then reads We now go on to determing. We start with Eq.(7.17)
and substitute foB?, the relationB?,=B“a, from Beken-
E+vXB=0 (7.13 stein and Ororf19]. After inserting Eq.(6.12 we have the
following:

whereE is the electric field 3-vector. The total electromag-

; : LY t)2
netic force acting on the fluid is the sum of the Columb force o «_

and the Lorentz force. The Coulomb force is simty 1B = 15 (Gt 2015, + G, af2)BT=0.

= €eE, to that we add the Lorentz force acting on the convec- (7.19
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We now add to the term in parenthesesy A2 , dK
+204,Q .. This is possible due to Ferraro’s theorem, Eq. A~ —ab. (8.6
(2.8). Comparing with Eq(5.36 we notice that Eq(7.19 4
has become Thus K, the function which determines the strength of the
toroidal field, is a function of the azimuthal vector potential
ﬁt) Be=0. (7.20 Ay, Whose derivative is determined by the two functions
u/ . a,D. While the form ofB,, and the emergence &f originate

from the absence of force in the toroidal direction only,
The redshifted chemical potential is therefore constant over ghich is a must for any stationary axisymmetric flow, Eq.
MS. (8.6) is true only for a fully force-free configuration configu-
ration.

VIIl. THE VECTOR POTENTIAL We now use the above results to rule out some field con-
figurations: On the face of it, the configuration characterized
y constanK throughout the star is a legitimate one. How-
ver, from EQs.(8.1),(8.2), the poloidal field components

O - j N vanish, givené# 0. According to Eq(7.11), this leaves only
which is a function of the 4-velocity and the metric. Thea toroidal current, but from Eqg6.6),(6.7) if B and B2

poloidal field, on the other hand, was determined separately(lanish so da)t andJ®. and the current vanishes as a whole
H(_)W_ever, the force-free nature of the con_ﬂgyranon remOve?eaving us with no ml’ignetic field. The only possible choicé
this independence. The demand for a vanishing Lorentz forC{aOr K that would yield a nontrivial field i& = 0 this causes

gngégn; Eﬂg fﬁ)(glsdzlb:—?owrg]reoghfehﬁefgs”ﬁg\t; (\:,\g;]lrﬁgc?éz ;r:] to vanish leaving us with with a purely poloidal field sus-
' ined by the toroidal convection current.

how isK affected by the poloidal field, and vice versa?
We start by considering Eq7.11) for a poloidal current.
As we have shown, the poloidal current appears only if a IX. CONDITIONS ON THE METRIC
toroidal field is present. On the other hand the poloidal cur- |5 many works the common procedure for determining
rent contains a term proportional to the poloidal field. Hencehe magnetic field relies on it being small, or force-free, so
it links between the two configurations. Remembering Edsits impact on the star’s metric is negligible. This way, one
(6.8),(6.9 and(6.5) and the constancy &'? along aMS we  can avoid a full solution of Einstein's equations with the full
have effect of the magnetic field. One usually takes a familiar well
known metric for a pure fluid star, and uses it in conjunction
with suitable boundary conditions to solve Maxwell's equa-
tions. Naively one might think that any metric can be dressed
with a force-free magnetic field. However, as we shall show

So far the poloidal and toroidal fields were considered a
independent entities. The toroidal field was determine
solely by the 4-velocity distribution and some functi@((2)

B?= ——K (8.1

1 now, this is not so.
Bl=—- ——K.,. (8.2) We start with a purely poloidal field of a uniformly rotat-
&N-g ing star. We choosg! to vary along the poloidal field lines

while x? is constant along them. As',x? are orthogonal, the
Bekenstein and Orofil9] have shown that by choosing an metric retains the form in Eq(5.29. In such coordinates
appropriate gauge, the poloidal component\gf the elec-  only B'+#0 and Eq.(7.17 becomes
tromagnetic vector potential can be made independent of
and ¢. From this they showed that the poloidal field is given (\/—_g,uBl),1=0. 9.0
b
g This equation can be readily integrated, and with help of Eq.
(7.20 we get
(8.3

1
2 _
= A1
utv—g 1
Bl=————
V=gh(x*)u'
(8.4

1
- —A¢’2.
uv—g whereh(x?) is an undetermined function. On the other hand

) . ~ we have Maxwell's equations for the current which for our
By comparing those last four equations and rememberingprce-free poloidal field take the form

from Eq.(7.20,(7.18 that bothu/u'=—D, & u=a where

B
9.2

B'=

D,« are constants over a MS, we find that (ugB1) 2
t__ ’
eu'= \/_g (9.3
1 —
A¢ya: —aD K,a' (85) 5
eu¢=—(Ut 1) 2 (9.4)
In other words witht and ¢ derivatives trivial NE '
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The equations for the!,x? components vanish identically as (UyBy) o
there is no toroidal field. By multiplying E¢9.3) by —Q eu'+ §Bt=f 9.9
and adding the two equations together we find 9
17 —
[(u+Quy)g11B7] ,=0. (9.9 ub+ EBO— — (uBy) 2 9.10
Using the normalization“u,= —1 to write N9
(U Qug)=— 9.6 g1 12 (9.1
t 6T T : = : '
u =
we can integrate E¢9.5) to get Again we multiply Eq.(9.9) by —Q and add it to Eq(9.10
f(xhHut to get rid of the convection current
Bl= g 9.7
1 Quy+u,)B
" _ . ' g(_QBt_;_BaS):_[(‘/’—t)llz_ (9.12
wheref(x*) is another undetermined function. Inserting Eq. v—g

(9.7) into Eq. (9.2 and writing —g explicitly we finally
have We utilize Egs.(6.15,(4.16 and(5.30—(5.34) to write

K
LZf(Xl)h(XZ). (9.9 —QBt-l-B‘[’:—m. (9.13

1
V220 (ut)?

A similar condition was found by Bekenstein and Oron
[19]. We see that only metrics that can be written in the
separated formy® and A are both functions of metric ele- _ f_K _ __1
mentg Eq. (9.8) can support force-free frozen-in poloidal Aut NE
fields. What is the origin of this condition on the metric? If
we examine the paiiquartet in the general cgsef Maxwell ; 1
equations for the currents, we find that they depend on th@Ngc_)g :;% ?iarl‘r;”r;%gc@ by using Eq.(9.13 and B~ by Eq.

metric since the current of the force-free configuration is

Inserting into Eq(9.12 and rearranging terms we have

(9.19

91131>
: .
u 2

proportional to the 4-velocity components which are deter- U2 (1 2
mined by the metric. In addition, the field is expressed by _ V7 ghe(K )'2:< 911 (9.15
Egs. (8.1),(8.2 which also contain the metric. We could 2A V—gh(x?)(u")?

2
solve these equations for the magnetic field if the metric

were known without needing Eq7.17). However, in addi- where we have useld =K (x?) from Eq.(6.15. Thus, there
tion to satisfying the equations for the current, the magnetig¢s again a separability condition on the metric. We see that if
field must also be frozen in. This ties the evolution of theK is constant over all field lines we retrieve the condition for
magnetic field to the 4-velcoity field and hence to the metricpurely poloidal fields, which coincides with the previous re-
This connection culminates into E(7..17). Thus we can find sult in Sec. VIII that it must be zero.

a magnetic field which is derived from a convection current,

but if we also want it to be part of a MHD solution the
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