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Vector manifestation and fate of vector mesons in dense matter
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We describe the in-medium properties of hadrons in dense matter near chiral restoration using a Wilsonian
matching to QCD of an effective field theory with hidden local symmetry at the chiral citofi/e find that
chiral symmetry is restored in vector manifestation in the manner of Harada and Yamawaki at a critical matter
densityn.. We express the critical density in terms of QCD correlators in dense matter at the matching scale.
In a manner completely analogous to what happens at the ciicahd at the critical temperatufg,, the
vector meson mass is found to vanighthe chiral limiy at chiral restoration. This result provides support for
the Brown-Rho scaling predicted a decade ago.

DOI: 10.1103/PhysRevD.66.016003 PACS nunf$er11.30.Rd

Following recent developments on hidden local symmetryson mass(based on a systematic chiral perturbation with
[1] and color-flavor locking2] in the hadronic sector, Brown HLS[10-13), then flow comes out to be unique with a fixed
and Rho proposef3,4] that the vector manifestatiofyYM) point [7]. This implies that the different flows typically
scenario of Harada and YamawdKli] for the realization of present in all effective field theories, even if consistent with
chiral symmetry in strongly interacting systems which wasthe symmetries of QCD, may not correctly represent QCD
shown to be valid for large number of flavdxs should also  dynamics unless théare parameters of the effective La-
be applicable to high-densitpr high-temperatujehadronic  grangian are matched at an appropriate scale,/sgy,with
matter relevant to the interior of compact stéssrelativistic ~ QCD. Most remarkably, though, when the HLS theory is
heavy-ion processgand that, as a consequence, the scalingnatched with QCD, Wilsonian renormalization group equa-
behavior of vector mesons in medium proposed by Brownjons (RGES show that the magsarameter M, of the vector
and Rho[5] near a chiral restoration critical density (or  meson and the hidden gauge couplpayameter gdo flow
temperatu_ré’c) f(_)llows from th_e \_/M. That th_e_ VeCtor meson g zero, together with the pion decay constantgoing to
mass vanishes in the chiral limit at the critical temperature;erq at the chiral restoration point, realizing what is referred
T¢ in accordance with the VM mode was recently shown 0 45 the vector manifestation, and consequently the vector

hold by Harada and Sasal6]. In this paper, we supply the meson pole mass which is given in terms of the parameters

arguments fo suggest that the same phenomenon accurs I\Wp andg vanishes at the critical point with decoupling of the
density, namely, that, at=n_, the vector meson mass van-

. ’ AT multiplet of vector mesons. This has been shown to be what
ishes in the chiral limit.

— NIC.— — — ~
We begin by giving a brief summary of the key argumentshaloloens aN¢=N¢~5 for T=0 [1] andT=T,~250 MeV

as to how VM figures in the properties of hadrons in me-for N¢=3 6] )
dium. To set up the arguments for the density problem, we con-

To study how hadrons behave in a deriset) medium sider a system of hadrons in thg background_of a filled Fermi
starting from normal conditions, one resorts to effective fieldS€@. For the moment, we consider the Fermi sea as merely a
theories with Lagrangians that have the assumed symmetRackground sidestepping the question of how the Fermi
properties of QCD. Such Lagrangians are constructed so & is formed from a theory defined in a matter-free vacuum.
to describe low-energy interactions of hadrons in a mediumlmagine that mesons—the pion and heneson—are intro-
free vacuum. As one increases the denditynperaturg that ~ duced in HLS theory8,9] with a cutoff set at the scale, say,
is, as the scale is changed, the flow of the given theory is noh - Since we are dealing with dense fermionic matter, we
unique even though the Symmetries remain unchanged_ A\g"l need to |ntr0du(.:e the degr.ees Of freedom aSS.OC|ated W|th
shown by Harada and Yamawak?], the effective field baryons or alternatively constituent quares quasiquarks
theory with hidden local symmetrfHLS) [8,9] can flow to At low density, sayn<n, with n being some density greater
two or more different fixed points depending upon how thethanng, the precise value of which cannot be pinned down at
parametersof the Lagrangian are dialed. It turns out that if present, we may choose to put the cutdff below the
the bare parameters of the Lagrangian are matched in thewucleon massmy~1 GeV but above thep mass m,
manner of Wilson to QCD at the chiral scale,~4xf, =770 MeV and integrate out all the baryons. In this case,
(wheref . is the pion decay constaribove the vector me- thebare parameters of the HLS Lagrangian will depend upon
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the densityn (or equivalently the Fermi momenturmg) K f_ T )
since the baryons that are integrated out carry information “ﬁ =(Duér-Er+ D EL-£)/(20). 2
about the baryon density through their interactions in the full
theory with the baryons within the Fermi sea. Once the bary-
ons are integrated out, we will then be left with the standarq:
HLS Lagrangian theory with the Nambu-Goldsto¢G)
and gauge boson fields ongxcept that the bare parameters
of the effective Lagrangian will be density dependdnt
should be noticed thahe cutoff can also be density depen-
dent However, in general, the density dependence of th
cutoff is not related to those of the bare parameters by ths\’

BGES'.F,,OrT>O andn=0 this dlffere_nce appears from the theory. To determine thbare parameters, we set the match-
intrinsic” temperature dependence introduced in R§],

. . . ing scale atA~A, , below which only the HLS degrees of
\r,gt]ilgrr: ;v(;aiitessentlal for the VM to occur at the chiral rE’Sto'freedom are present, and extend the Wilsonian matching

T - ) ] [12], which was originally proposed fof =n=0 in Ref.

As density increases beyond the fermions will, how-  [12] and extended to nonzero temperature in K6, to
ever, start figuring explicitly, that is, the fermion field will bé nonzero density. We match the axial-vector and vector cur-
present below the cutofk (n>n). The reason is that as the rent correlators in the HLS with those derived in the operator
density approaches the chiral restoration point, the constitysroduct expansiotOPE for QCD at nonzero density. The
ent quark(called the quasiquaylpicture—which seems to be correlators in the HLS around the matching scalt=A
viable even in matter-free spagB4]l—becomes more appro- (where M is the renormalization scdieare well described
priate[4] and the quasiquark mass drops rapidly, ultimatelyby the same forms as those B&n=0 [12] with the bare
vanishing(in the chiral limi at the critical point. This pic- parameters having the “intrinsic” density dependence
ture has been advocated by several authors in a related con-
text[15].

As stated above, the three parameters of the Lagrangian
- Fo (0ra), andg will depend on density. Since Lorentz
invariance is broken, a distinction has to be made between
the temporal and spatial components of the constants in Eq.
(2). We will ignore the difference for the moment. This will
be justified below and, in more detail, in Appendix A. For the
oment continuing with Eq(l), we need to match Ed1)
ith QCD to define thebare Lagrangian for the effective

We now describe in some detail how the above scenario H(HLS)(QZ)_FET(A;”) 22, (An)
takes place. As a simple albeit unrealistic case in dense mat- A - Q2 23T
ter, consider the fermionic degrees of freedom to be baryons
with a mass scale above the cutoff for all densities up to the
chiral restoration density. In this case we can integrate out Fi(A;n)[l—ZgZ(A;n)zg(A;n)]
the baryons and take, as [ib,6,7], the standard HLS model n{oQ? = e >
based on theS yopa< Hiocal SYmmetry, whereG=SU(N¢), ML(A)+Q
X SU(Ny)g is the global chiral symmetry and =SU(N;) —22z,(A:n), 3)

is the HLS. When the kinetic term of gauge boson$i@f 5
is ignored, the HLS model is reduced to the nonlinear sigma ) ) ) _
model based oiG/H, with GgopaX Hioeal broken down to  whereMi(A;n)=g°(A;n)F;(A;n) is the barep mass, and
the diagonal sum which is the flavor symmettyof G/H. In ~ Z125(A;n) are the bare coefficient parameters of the relevant
the HLS model the basic quantities are the gauge bosor@(p*) terms[11,12, all at M= A. Since the Lorentz non-
pﬂ=piTa of the HLS and two SUY;)-matrix valued vari- invariant terms in the current correlators by the OPE are
ables & and &. They are parametrized asf z  Suppressed by some powersfi® (see, e.g., Ref17)), we
=¢l7Foe™i7Fr \where w= 2T, denote the pseudoscalar ¢an ignore them from both the hadronic and QCD sectors.
Nambu-Goldstone bosons associated with the spontaneo{i8e€ Appendix A for the justification for the hadronic segtor.
breaking ofG ando = T, the NG bosons absorbed into the Matching the above correlators with those by the OPE in the
HLS gauge bosonp, which are identified with the vector Same way as was done fdr=n=0 [12], we determine the
mesonleﬂ_ and F(r are relevant decay Constantsy and thebare parameters that include what we shall call “intrinsic”
parametea is defined am=F2/F2 . & andég transform as density dependence, which are then converted into those of
v the on-shell parameters through the Wilsonian RGE$2).
ELR()—h()ELROT] . Where h(x) e Hioar and g g e ST
& Ggiopa- The covariant derivatives of, g are defined by As a result, the parameters appearing in the hadronic density

_ ; ; e : corrections have intrinsic density dependence.

= - + - . oo
F[J)IggémZﬁfLEgngbkgl_c\lfvhearlgg izlmian{swggu;heecgeu- Now, to study the chiral restoration in dense matter, we
pling, andz an'dRﬂ der;:o’te the external gauge fields gaug_assume that we can do in the fermionless theory the Wilso-

, “ " ; . » . _ .
ing the Ggopa Symmetry. The HLS Lagrangian is given by nian matching at the critical density. for Ny=3 assuming
[8,9]

We reserveu for the chemical potential.

L=F2t[ &M(}/ﬂ + Fitf[&u#&n‘] + Lyin(p,), (1) “Note that at the level of theare Lagrangian there is no vector—
axial-vector mixing as discussed for hot matter by Dey, Eletsky, and
loffe [16]. At the matching scale, there are no loop corrections.

where Ly;,(p,) denotes the kinetic term gf,, and Mixing occurs through hadronic loops when decimation is done.
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that(Eq) approaches Qcontinuously for n—n,.3 Then, the 0 account for the fermionic degrees of freedom below the
axial-vector and vector current correlators given by OPE inscaleM= A (u) for a givenu >, we may introduce either
the QCD sector approach each other, and will agree;at light baryons with a running mass that drops with increasing
Then through the Wilsonian matching we require that thedensity or, more appropriately, constituent quarks with
correlators in Eq(3) agree with each other. As in the case of masses scaling with density as suggested by Riska and
largeN; [1] and in the case of ~ T, [6], this agreement can Brown [15]. We adopt the latter in this paper.

be satisfied also in dense matter if the following conditions We introduce the quasiquark fielg below the scale

are met. A(w) for = into the Lagrangian. A chiral Lagrangian for
7 with the constituent quarkguasiquarkwas given in Ref.
[20]. In Ref.[9] the quasiquark field, say, is introduced
into the HLS Lagrangian in such a way that it transforms
Z1(Ain) = Z(Ain)—4n 0. (4)  homogeneously under the HLSt—h(x)- ¢ where h(x)
) ) N ) - eHjgca- Here we extend the Lagrangian of RE8] to a
We show in Appendix A that these conditions remain valid—general one with which we can perform a systematic deriva-
with a suitable in-medium extension—when the breaking ofjye expansion. Since we are considering the model near the
Lorentz symmetry in the medium is taken into account in theghjral phase transition point where the quasiquark mass is
bare Lagrangian. _ expected to become small, we assi@fp) to the constituent
Next we need to _conqder how these parameters flow a8uark (quasiquark massm,. Furthermore, we assigf(p)
the scale parameter is varied. The flows are obtained by solyg the chemical potentigk or the Fermi momentur®;, as
ing the RGE's for the parameters. The RGESs for the paramye consider that the cutoff is larger than even near the
eters of the HLS theory as the scald is varied were de- pnhase transition point. Using this counting scheme we can
rived in Refs. [19,1,7 with the effect of quadratic make a systematic expansion in the HLS with the quasiquark
divergences included. These equations describe the flow Gfciuded. We should note that this counting scheme is differ-
the parameters for a dense system fdixad chemical po-  gnt from the one in the model for the and baryons given in
tential ® (or der_15|tyn) 4 They show thaa=1, g=0, and Ref. [21], where the baryon mass is counted(®gl). The
X=1 with X defined by leading order Lagrangian including one quasiquark field and
one antiquasiquark field is counted @$p) and given by

9(AiM) =4 0, a(Ain)—,_n 1,

Ny M2
= 5) — . — ~
2(47)% F2(M) ( 8Lo1y= ) (ID ¥+ wy®—mg) () + p ) [ Ky e)u(X)
are fixed points. Thus gi= u., given the bare parameters +Nysyha, () 1P(X) (6)

(4) at the matching scald, both g anda flow to the fixed ]
point. The RGEs given in Ref§19,1,7 then imply that at WhereD 4=(d,—igp,)¥ andx and\ are constants to be
4= fic, g=0 anda=1 remain unchanged a#! is varied. specified later. At o_ne-l_oop I_evel the Lagrangléﬁj gener-
Now what abou€ (M), which cannot be fixed by requiring ates theO(p*) contr!butlons including hadr_onlc dense-lopp
only the agreement between the vector and axial-vector Cufe_ffects as well as _dlvergent effects. The divergent contribu-
rent correlators? As we will discuss in more detail later, intions are renormalized by the parameters, and thus the RGEs
the absence of the hadronic dense-loop correctiopsht  for three leading order parametdts , a, andg [and param-
=0;u.)=0 is obtained from the fact that=1 is a fixed ©ters of theO(_p“) Lagrang|a|j\ are modified from thos_e
point and corresponds to the pion decay consfaiu.) without a qugsquark field. In addition, we _need to con55|der
=0. Thus the chiral transition at high density will coincide the renormalization group flow for the quasiquark mags
with the VM Calculating one-loop contributions for RGE’s ifv{ for a

As stated, as density is raised—and in particular near thgiven u, we find
critical density on which we will focus—we expect the fer- 4E2 5
mionic degrees of freedom to figure explicitly below the cut- w my
off at which the Wilsonian matching is effected. In principle, MW: C[3a’g’F7+2(2-a)M?] - 2_772)‘2NC’

2
3We are assuming that the transition is not strongly first order. The Md_/\a/l: —C(a—1)|3a(1+a)g®—(3a—1) M_z

quasiquark degrees of freedom introduced later make sense only d p
within the same hypothesis. There is nothing at present that invali-

dates our assumption, but if the transition were proven to be A2 mé

strongly first order, some of the arguments used in this paper might +ta— — N,

2 2
need qualification. We note that, in the presence of the current quark 2m” F4
mass, the quark condensate is believed to decrease rapidly but con-
tinuously around the “phase transition” poifit8].
“We are using density and chemical potential interchangeably. 5The constants and\ will also run such that, ate= ., K=\
In the case of nearly massless quasiquarks near chiral restoratios,1 while, atu<u., k#\. The running will be small near., so

u~Pc. we will ignore their running here.
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dg? 87-a* , N. |, 5
M- 59 29 (1-x)%,
d—m“=—ﬂ[(c —C,)M?2—mi(C,—-C,)
dM 8772 w (o8 q m ag.
+M?2C,—4C,], 7
whereC=N;/[2(4m)?] and
[ N2NF-1
"\F,] 2N
| K 2Nf2—1
Co= F,/ 2N;’
NZ—1
—~N2(1 _ 2
C,=0g%(1—«) 2N,

For x> at which the quasiquarks enter, the cutoff will
be different from that without. However the matching condi-
tions (4) will remain the same. Now Eq(7) shows that
(9,2)=(0,1) is a fixed point only whem,=0. Sincem,
=0 itself is a fixed point of the RGE fomy, (g,a,mg)
=(0,1,0) is a fixed point of the coupled RGEs fgra, and
mg. Furthermore, and most importantly,=1 becomes the
fixed point of the RGE for X7]. This means that at the fixed
point, F _(0)=0 [see Eq(5)]. What does this mean in dense
matter? To see what this means, we note thaflferu=0,
this F.(0)=0 condition is satisfied for a given number of
flavors N§'~5 through the Wilsonian matchind]. For N;
=3, u=0, andT#0, this condition is never satisfied due to
thermal hadronic correctioni§]. Remarkably, as we show in
Appendix B, forNy=3, T=0, andu= u., it turns out that
dense hadronic corrections vanish up®p®) corrections.
Therefore the fixed poink=1 [i.e.,F(0)=0] does indeed
signal chiral restoration at the critical density.

near the critical poiniu.. This problem can be easily ad-

dressed with the machinery developed above. To do this WE,

define, following[6], the “on-shell” quantities
Fr=F(M=0;u),
g=gM=M,(un);u),
a=a(M=M,(u);p), (€S)
whereMp is determined from the “on-shell condition”
MZ=M2(u)=a(M=M ,(n);um)
XGAM=M ,(1); W)FLM=M ()i ). (9)

Then, the parametéW , in this paper is renormalized in such
a way that it becomes the pole massuat 0.

We first look at the “on-shell” pion decay constahj . At
m=puc, itis given by

PHYSICAL REVIEW D 66, 016003 (2002

falue)=f(M=0uc)=F(0;uc)+A(uc) (10

whereA is the dense hadronic contribution arising from fer-
mion loops involving Eq(6). As we shall show explicitly in
Appendix B, up toO(p®) in the power countingA (u.)
=0 at the fixed point§,a,my)=(0,1,0). Thus

fa(pe) =FL(0;uc)=0. (11
Since

Ny

A2 12
2(4m)?2 12

F2(05u0) =F2(Ape) —

and at the matching scale, FfT(A;,uc) is given by a QCD
correlator atu= u., p. can be computed from

N
Frhino= o 4;)2A2. (13

Note that in free space this is the equation that determines
N{~5 [1]. In order for this equation to have a solution at the
critical density, it is necessary tha®2(A;uc)/F2(A;0)
~3/5. We do not have at present a reliable estimate of the
density dependence of the QCD correlator to verify this con-
dition but a decrease &f, of this order in the medium looks
quite reasonable.

Next we compute thg pole mass negi.. The details of
the calculation are given in Appendix C. Here we just quote
the result. With the inclusion of the fermionic dense loop
terms, the pole mass, fod ,,m <P, is of the form

MA(w)=M>(u)+9°G(u), (14)
(0= L (1 02 NNy + 15
(n)= o2 3( K) o(NfCy1tCy2) |- (15

At u=puc, we haveg=0 anda=1 so thatM ,(u)=0 and
since G(u¢) is nonsingulam,=0. Thus the fate of the
Meson at the critical density is the same as that at the critical
temperature. This is our main result. It is nofdd that al-
ough the conditions fog(A;n) and a(A;n) in Eq. (4)
coincided with Georgi’s vector limi{22],° the VM should be
distinguished from Georgi's vector realizatip?22].

So far we have focused on the critical density at which the
Wilsonian matching clearly determings-0 anda=1, with-
out knowing much about the details of the current correla-
tors. Here we consider how the parameters flow as functions
of the chemical potentiak. In the low-density region, we
expect that the “intrinsic” density dependence of the bare
parameters is small. If we ignore the intrinsic density effect,
we may then resort to the Morley-Kisling&viK) theorem 2

81t was suggested if23] that the Georgi vector limit was relevant
to chiral restoration. Here we note that the chiral transition involves
both the vector limit and the vanishing of the pion decay constant.
A nonzero pion decay constant with the vector limit is not consis-
tent with low-energy theorems.
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[24] (sketched and referred to for definiteness as the “MKwhere the first term on the right-hand side reproduces Eq.
theorem” in Appendix D, which states that, given a RGE in (16) and the second term appears due to the “intrinsic” den-
terms of M, one can simply trade i for M for dimen-  sity dependence. Note thgt=0 is a fixed point when the
sionless quantities and for dimensionful quantities with suit-second term is neglectdchis follows from Eq.(16)], and

able calculable additional terms. The results are the presence of the second term matie0 be no longer the
4F?2 fixed point of Eq.(17).8 The second term can be determined
T 2F24Cl3a202F2+2(2—a 2 from QCD through Wllson|an matching. However, we do not
® du wt Cl3a%g F o+ 2( M7 presently have a reliable estimate of fla@lependence of the
) QCD correlators. Analyzing the. dependence away from
—&)\ZN the critical density in detail requires a lot more work, so we
o2 e relegate this issue to a later publication.
The Wilsonian matching of the correlators at=A, al-
da u? lows one to see how the mass scales very near the critical
By C(a—1)|3a(1+a)g®—(3a—1) —y density(or temperature For this purpose, it suffices to look
K Fo at the intrinsic density dependenceMf, . We find that close
2 2 o u
a)\_ % N ’ _
2m2 F2 ° (qa(p))?
4 M2A ) ~— . (18)
2 2 Fo(A ) A
dg C87—a ay N, 41— )2
-2 _° —x)?,
Hdu 6 ¢ 529 which implies that
dmg Mg m, (qa)*
——'=—my— —[(C,—C,)u?>—mZ(C,—C, e 19
W= M g sl ) 2 —mi( ) ™ o (19

2
+MC,—4C,], (16 Here the star denotes density dependence. Note thdi8q.

is consistent with the “Nambu scaling” or more generally

where F ., a g, etc., are understood &, (M=p;u),  \ith sigma-model scaling. How this scaling fares with nature
a(M=pu; 1), g(M=pu;u), and so on. is discussed if4].

It should be stressed that the MK theorem presumably g fo|10wing observations can be drawn from this work.

applies in the given form to “fundamental theories” such as 1,0 parametersof Brown-Rho (BR) scaling Lagrangian
QED but not without modifications to effective theories such[5] can be identified with those of the HLS Lagrangian that

,a,my) =(0,1,0) with increasing density. An

interesting question arises here: How is the BR scaling which

hadronic variables figure. Consequently, we do not expeq re|ated to Landau Fermi liquid interaction at normal matter

Eq. (16) to apply in the vicinity ofu. . Specifically, near the  yensity (reviewed in[4]) interpreted in terms of the HLS
critical point, the “intrinsic” density dependence of the bare 2

theory will become indispensable and the naive application
of Eqg. (16) should break down. One can see this clearly in
the following example. The conditiog(M = u¢;ue) =0
that follows from the matching conditio(8) would imply,
when Eq.(16) is naively applied, thag(x)=0 for all w.  yacyum.” This is the Lorentz-invariant piece of the mass.

T_his_is obvio_usly incorrect Near the criti_cal density the “in-  1pe physical pole mass should also contain the dense loop
trinsic” density dependence should be included in the RGE g ractions that take into account the veloaity 1.

Noting that Eq.(16) is for, e.g.,g(M= u;u), we can write The “intrinsic” density dependence that is governed by

down the RGE forg corrected by the *intrinsic” density e \wilsonian matching with QCD and the VM fixed points,
dependence as as in the case of the “intrinsic” temperature dependence dis-

It seems plausible that the density-dependent vector me-
son mass that arises via a Higgs mechanism in the color-
flavor locking discussed ifi3,4] refers toM ,(u), namely,
the part that reflects what was interpreted 4t as “sliding

d 9 cussed by Harada and SasHkj, is mostly if not completely
Mag(M;M)ZMWg(M;M)’ missing in most of the model des_crlptlons publlshed in the
M=p literature. For instance, the prescription of replacing by
P my, near chiral restoration in the Rapp-Wambach approach as
+pu——g(M;u) , (170 described i26,27—which seemedd hocat the time those
Iy M=p papers were written—reflects what is lacking in the Rapp-

"The RGEs(16) were recently studied if25] with the nucleons 8The conditiong( . ; 1c) =0 follows from the fixed point of the
incorporated as explicit fermionic degrees of freedom. RGE in M, but it is not a fixed point of the RGE ip.

016003-5



MASAYASU HARADA, YOUNGMAN KIM, AND MANNQUE RHO PHYSICAL REVIEW D 66, 016003 (2002

Wambach formulation near chiral restoration and may be jus-
tified by the “sliding vacuum” effect. Pr'=gf

The notion of density dependence of the cutoff and the
Morley-Kislinger procedure invoked here in the low-density
region imply that the cutoff used in effective field theories
should drop as density is increased. This supports the early
suggestion of Adami and Browi28] that the cutoff in the
in-medium Nambu-Jona-LasiniéNJL) model should be X (gPr—uPu”),
density dependent.

To summarize, we have shown that the vector manifesta- Py _( wv _) _pur
tion is realized in dense matter at the chiral restoration with L p2 T
the vector meson mass, going to zero in the chiral limit.

Thus the VM isuniversalin the sense that it occurs bif

for T=u=0, atT, for Ny<Ng and =0, and atu. for T =
=0 andN;<Ng{. This scenario is characterized by the com-

mon feature that, at the chiral transition, the longitudinal

component of thep meson joins the pion into a degenerate X
multiplet, a scenario which differs from the standard sigma-

model scenario. Since the gauge coupling congasto go

to zero near the critical point, the dropping-mass vector me- 1
son will become sharper with vanishing width as suggested 2p
in [1], a phenomenon that cannot be accessed by a strong-

coupling theory valid at low density that involves an expand- s pPp”
ing width [29]. +pHugl 07— o2
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|5i|5j> ,
0l p2 J

(A1)

where p#=(p,,p) is the four-momentum ang=|p|. The
rest frame of the medium is indicated by

APPENDIX A: EFFECTS OF LORENTZ SYMMETRY The polarization tensors satisfy the following identiti&§):

BREAKING

P4'Pr,,=2, g,,PL"=—2, u,PL’=0,

The discussion in the main text was made without explicit

consideration of the effect of Lorentz symmetry breaking , , , 52
inherent in a dense medium. In this appendix, we examine if PEPL.=1 9,,PL"=-1, u,u,Pf=—,
and how the Lorentz symmetry breaking affects the condi- P
tions (4) at n,. Modulo the intrinsic density dependence of PE'Pc,,=—1, 0,,PL'=0,

the bare parameters, we obtain the general conditions—

which are an extension of the conditions in Hg) to a .
; : : : o Y PoP

system without Lorentz invariance—by simply requiring that u,u,Pg’=— 2—2_

the axial-vector and vector current correlators in the HLS p

agree, Gyfy.5)=GaffLs)» at ng without considering the

matching to OPE in QCD. A more complete analysis that 2. Axial-vector correlator

includes the matching to OPE in QCD with Lorentz symme-

try breaking which is needed to describe processes awa

from the critical point will be reported elsewhere.

(A3)

As argued in Sec. 5 of Refl8], the vector correlator
eceives at the chiral restoration point an important contribu-
tion from quasiquark loop diagrams. Such a contribution
cannot in general be expressed by a local effective Lagrang-
ian in which quasiquarks are absent. In the present work, we

We start by summarizing the polarization tensors usedre considering the HLS model that includes the quasiquarks
here and also in the succeeding appendixes. In hot and/as explicit degrees of freedom near the critical point. There-
dense matter, the polarization tensors are no longer restrictédre we consider it reasonable to assume thatbére HLS
to be Lorentz covariant, but should K¥3) covariant. Thus theory we are concerned with can be expressed mcal
we need four independent symmet@¢3) tensors. Here we Lagrangian with the nonlocal quasiquark contribution ap-
adopt the following form 30]: pearing at the later stage of Wilsonian decimation.

1. Polarization tensors
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The bare HLS Lagrangian in hot and/or dense matter is_~_~_- — — — A~
generally expected to include the effect of Lorentz noninvari-

ance. The Lagrangian density valid @(p*) relevant to the
axial-vector current correlator can be written as

‘C(A) = |:(I:Err,l?tare)zl“lp-u vt FErr,barJ:ir,bare(g,uv
—u,u,) et el 1+ 225 pad Ual,p
+23 pard Opalup— 2U,U,0, ) Tt AR AP,
(A4)

whereF., ;. .andF;

rest frame of the medium is specified by as in Eq.(A2).

The parameterx'gyba,eandz}barecorrespond in medium to the

vacuum parameter, pa [11,12 at T=x=0, and A*" is
defined by

A= S[ERR e €L, €, (A5)

N =

whereR ,, and L, are the field-strength tensors of the ex-

ternal gauge field® , and L, :
L,,=0,L,—3,L,—i[L,,L,],

Ruv=9,R,—3,R,—i[R,,R,]. (AB)
Note that in the bare theor&f is expanded as
- d,m
afl=Ar+— +oe (A7)
,bare

where A, =(R,—L,)/2.
We define the axial-vector current correla®”(p) by

[ atxeP(olT 8, (092,0)|0)= 5G"(p). (A®

and decompose it into
GR"(P)=PL"Gx(P)+P¥"GA(P). (A9)

It follows from the bare HLS Lagrangian, EGA4), and Fig.
1 that

T4 ud X
A,ZbarIZA,ba_r(za +[(Ft77
—[Po—vhard”]
+ Ftﬂn,barffr,barégﬂy_u#uy)]
- 22'2_,barepzpllfv_ 2(25,barep(%_ Z-2r,barepz) PT",

(A10)

GA(HLs)(P) = ’bare)zu"u”

Where v is the bare pion velocity related !, ., and
S

,bare by

s
2 ' mbare
Ubare

. (A11)
7, bare

- bare d€NOtE theébare parameters associ-
ated with the temporal and spatial pion decay constants. T

PHYSICAL REVIEW D56, 016003 (2002

\/\/\></\/\¢

FIG. 1. Tree-level contributions to the axial-vecteecto) cur-
rent correlator. The dashed line denotes the pion for the axial-vector
correlator or thep meson for the vector correlator.

and

T‘K,barez [ Ftrr,baréjp.ua"' Fir,barég,ua_ u,uua)] pa-

(A12)

To obtain theP{*” andP#” terms in Eq(A10), we have used

e following identities:

(u-p)gH”+ p2uru’—(u-p)(u“p”+p u’)

=—p’P{"—poPT"
=(p°g*"—p"p")—p?P{". (A13)

Now, by using the identities EqA3), we obtain from Eqg.
(A9) and Eq.(A10),

2r-t S
p Fﬂ—,baré:w,bare

— Al4d
_[p(z)_vkz)arepz] ( )

G,I’:\(HLS)(p): - 2p22|§,bare

GX(HLS)( p) == Ftw,bartffr,bare_ 2( pgz'ﬁ,bare_ pzzg,bars)'
(A15)

3. Vector correlator

The bare Lagrangian density valid ©@(p*) relevant to
the vector correlator is

’C(V) = [(Ftr,bare)zu,uuv—’— Ftr,barfi,bare(g,uv_ u;/,uu)]
X tr[ &ﬁl&\]\}] + [Zzli,baréj,uuag vﬁ+ ZI,bar(-,(g,uag v
- ZUMUQQVB)]U[]A}MVT}Q'B] + [zzlé,baré‘luuagvﬁ

+ Zg,barégﬂagyﬁ_ ZUMuagvﬁ)]tr[VlLvi\/aﬁ]

1
T Ulalup
9L bare
! B
— o (Gualup— 2U,U.,p) | UV VA,
2gT,bare
(A16)
where V" is defined by
y 1 t t
VMVE E[gRRMV§R+ §LLMV§L]' (A17)

F' bae@ndF;, . .denote the bare parameters associated with
the temporal and spatial components of the decay constants
of the o (i.e., the longitudinap). We define the matter ex-
tension of the parameteras
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Ft bare ? F; bare ? 1
al=| =~ , as=|—- : (A18) Gy(hLs)=
( I:tvr,bar ff,bar vs) I—I\S/(HI\_/_H\S/)_(H\C/)Z/Z
zl bareandzl bl_arem Eq. (A16) correspond in medium t®; pare V(HV” vn) +H°HV”(HV” vn)
andz3 bare Z3 bareto 23 bares andgL bare andgT bare to Opare:

Let us first obtain a general form of the vector current 1 Su iC 2 L s
correlatorG{;”, defined in an analogous way @4" in Eq. n E(HV_Hv)(HVH) + (I —1p),
(A8). By using the vector meson propagatbr,,,, the V-V
two-point functionII,; and the)-V two-point functionIT, e 1
we can expres&{"” in HLS theory as V(HLS) H\S/(HL_H\S/)_(H\C/)Z/Z

G (his)=TI{ 11D o gIIGH+ITf" (A19) X[~ HC{(H 2= TG Ly — (1) %2}

The vector meson propagatoD ,, is related to theV-V

two-point functionlI{"” by

i(D™hrr=T14".

It is convenient to decompodd{;” into the following four

independent pieces:

I1{"=g#*TIy+ P{TLy + P4 TL + PETIY

in terms of which the vector meson propagator is given by

VH(HVH I5)
= (Iy =TI TG, I ]+ 1T
(A20) G0 !
TRy - 115) - (119)212

TI5(I1Y \\)2/2 (I~

X [T,

I15) (T15)) 2]+ ITP.

(A25)

(A21)
The requwement for the current conservation is @3EHL3)

and GV(HLS) vanish. We can easily see that

GV(HLS):CV(HLS):O' (A26)
I3 . . -
—iD#r=P SV = +PY —— when the following conditions are satisfigd:
(Hv v)_(Hv)2/2 =11y S_17S_ S
Iy=Ip=—TIy,
v 1_[\C/ HC:HC: _HC
P s —cx v=1 vl (A27)
Hy(I1y—119) — (11y) 12
- Then, Gyys) and Gy s) can be rewritten as
pLv vV . (A22) — (I +II5)2
S/l 17Sy_ /11C\2 V| \%
HV(HV HV) (HV) 12 \1;(HLS) W H” H\S/n
\Y \%
Similarly toI1{;", the two-point functiondl,, andII; can be 1
decomposed as GYhis)=
Y Iy 1)~ (115) 212
VH _g,u HVH+ P'U'VHV”‘F PTVHV”+ PC HVH s < . s
I5(Iy +11Y)
II{= g TP+ PPV II+ PYTL + PEUIIT .
A23 1
(A23) - E(HS)Z(H\L,+11\5,+ 211y)) |+ (I}~ II).
With Egs.(A22) and (A23), G{ s reads (A28)
Glthis) = P¥ Glnis)+ PE Gy Now, using the bare LagrangidA16), we find (here and
b D below, the subscript “bare” is omitted to simplify writing
+PE'GVs T P Gyhisy),  (A24) -

2

2
Po
M5 =11= — 115, = o2 (P~ (F A}

%Two conditions in Eq(A27) are actually satisfied by the contri-
butions obtained from the bare Lagrangian in EAL6).
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2rt s
pop pFLFS
ny=If=~IIy= \/— o~ Fo), = — 2p%Z;
—[po— (FZ/F)p7]
(A29) ;
FUFS(1-2g22%)
and = . 9% - —2p%z;,  (A33)
—[p§—(F3/F,)p*—M7]
= p°p L FL(FL—F3 )+p—2 —FLFS—2(p3z5—p’Z]
L —
, , - _ FFoIpS—(9i/gt)p? — 207 (p5z5— p°23)]
H$=p—gFfT(FET—F )+@—p—2, ~[p5—(gf/gh)p*~M{]
p L 97 — 1
. —2(p§zi—p°z1). (A34)
Po+ P’
Iy=— ———F,(F,—F5)—p’z, Now, we see that the above equalities are satisfied for any
values ofpy and p around the matching scale only if the
p2 following conditions are met:
)=~ 5 FL(FL—F5) — (P§zs—p’2d), ()2 es)2
t ! s !
P3P T o
L__ t S 2L
HH_ p F (F F(r)_zp le gL O' gT:O'
=277, zy=12]. (A35)

T_ pO t T
= p2 F o(Fo=F3)=2(pGzi—p2)). These conditions are the Lorentz-noninvariant version of the
(A30) vector manifestation conditions, E¢4), discussed in the

main text.
Finally, the results are

APPENDIX B: PION DECAY CONSTANT
p?F! FS(1—2g7z5)

GyhLs)= P2 (FSIFLpe— M7 —2p%z;+0(p%), In this appendix, we show how the dense hadronic correc-
po tions to the pion decay constant vanishuat u. . In this and

FtEs the next appendixes we neglect possible effects of Lorentz

G\T/(HLS): Ll symmetry breaking in the bare theory of the HLS: We as-
—[p3—(g?/g?)p?—M2] sume that the bare HLS Lagrangian possesses the Lorentz

o invariance and that the dominant effects of Lorentz symme-

x[pé (gL/gT)p —29L(poz3 pzzg)] try breaking come from the quasiquark dense-loop correc-

tion. The relevant Lagrangian involving quasiquark fields at

—2(phzs—p?zy) + O(pY), (A31)  O(p) is given in Eq.(6). Here we also include the following

O(p?) Lagrangian:
in which we have dropped terms proportional f545)? and _ o o
(p2z5—p?z3)%, which are of higher order in the present OLqem=icmtlaL yal ]+ Caray yalt i
countlng scheme, together with othé(p*) terms that re- - ~ Y
quire O(p®) Lagrangian density. In the above expressions Tl sy vl (B1)

M, is the bare mass at rest frame: where thec’s are constants of mass dimensierl !° The

MZ—gLF FS. (A32) (Q(pz) Lagra_ngian in Eq(B1) geperates the(p®) correc-
tions to the first term of the leading order HLS Lagrangian in
Eqg. (1) at one loop. Since the relevant diagrams are tadpoles,
all the divergent corrections are proportionahtg. Then the
RGE forF, is not changed at the critical density wheng
vanishes.

Our convention and notation in this and succeeding ap-

pendixes arep”=(po,p), P=[pl, ww(p)=VM?+p* in
At the chiral phase transition point, the axial-vector and

vector current correlators must agree with each other————

Gk(H_LS_):GI\_/(HLS) and GaHLs)=GV(HLs)- Imposing this  1%For Ny=2, thec, term andc,, term are not independent. We
condition, we obtain can set, e.g¢a,=0 without loss of generality.

It should be noticed that, in the rest fran@v(HLS) is equal
to GV (HLs)» and that both the longitudinal and transverse
modes of the vector meson have the same bare mass.

4. The equality G ;. s)=GAfhiLs) at Ne
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free space,w(p)=wo(p)=p, and for the pion (p)
=wo(p)=v(p)p wherev(p) is the pion velocity. The rest
frame of the medium will be indicated hy*‘=(1,6) as in
Eq. (A2).
In terms of the axial-vector-axial-vector two-point func- 16 2 The hadronic denséoop) corrections to the vector-
tions I11"”, the temporal and spatial components of the pionector or axial-vector-axial-vector two-point functions. The solid

decay constant are given by lines denote quasiquarks.
o _ L u It (Po.p)P, .
T F Po bo= vz=1—E[Htﬁ(w.p)+2Htf(w.p)+ﬂis(w. )]
v - ! (B?)
fs—l _pa(ga,u_uau,u,)nf (p01p)pv B2 _
”_’E 52 _ (B2) In this expression, we have replacedby w, since the dif-

Po=@ ference is of higher order.
_ Substituting Eq(B5) into Eq.(B2), we obtain
where F is the = wave function renormalization constant.

According to the analysis of R€21] in dense matter, this [ftw]Zz HT(Z),H) + Enis(z,,a)
is nothing butf : v Po=
F=f'. (B3) =F2+ Y w,p) +IT'(w,p) + O(p*),
(B8)
We wish to compute théﬁ;s in HLS including the quasiquark . o~ — -
terms. In HLS, the correlator tensors are ot = vl w,p)— T3 w,p)]p,-a
[1£"(po,p) = g""F2 +22,(g*"p°~ p*p") =F2~II%w,p) - IT5Yw,p) + O(p*).
_ - (B9)
+Hi“)( pOlp)i (84)

This expression is consistent with the relatioh=f3/f" .

whereIT**(py,p) denotes the hadronic dense/thermal cor- To compute Eqs(B8) and(B9), we need to compute had-

rections we are interested in. On shell for the pion, we havéonic dense fluctuatiofioop) terms given in Fig. 2 with Egs.
(6) and(B1). The results are

M (w,p)=F2—2z,p+ " (w,p), _ _ B
N ? . Htf(l)(po,p)=—)\ZNC[ZAO—(4m§+p2)Bo(po,p)

+§tt(p015)]1
s T N _ 2 _ 2.2 0 TISS T A) — — R — —
Te,p)=~Fr=2z07p + 11 X w,p), ©5 1% 1)(Po.P) = = AN PoPBo(Po.P) +B™(po.P) .
where I13%1)(Po ,5)=>\2Nc[2Ko—(4m§—p§)§o(po,5)
- v - _§53(p 15)]1

I1(po.P)=u,I1#"(Po,P)U,, B ° B

1 Hit(z)(po,p): —4Nc(NfCa1tCa2)MgAg,

ts = _ v - _ a —

I17(Po.P) EuMIL (Po:P)(Gra—Uyla)P 1% 5,(Po,P) =0,

1 R IT3%2)(Po .P) =4N(N{Ca1+ Caz) MGAo, (B10)

==P“(Jap— UaU ) (po.pP)U,
p P Gan w11 PP where the subscripin) with n=1,2 represents the contribu-
SR tion from theO(p") Lagrangian and
=1I7(po.p),
A= f d' Ap(K)
SS N 1 a v - o i(277-)4 0 ,
HL(po,p)Eﬁp (Gap = UaU )L (Po,P)
4
(G i) PP, =6 Bo(po.p)= | - ol et0ae(p)
andv denotes the pion velocity in a dense medium: +Ap(k—p)As(k)],
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Thus at the fixed point d,a,my)=(0,1,0), the hadronic
B*"(pg,p)= f 2(2k=p)*(2k—=p)” dense-loop corrections vanish. This means that we have no
1(2) contributions tof'* from dense-loop terms at the critical
X[Ap(K)Ar(k—p) point. Similarly there are no hadronic dense-loop corrections
° F to the pion velocity, so we recover=1 at the critical point.
+Ap(k=p)Ar(K)]. (B11)
Here Ap(k) andAg(k) are given by APPENDIX C: VECTOR MESON MASS
_ _ _ In this appendix, we give details of the derivation of Eq.
Ap(k)=i = (ko= o, (K)) 0(Pe—k), (14) which represents the hadronic dense corrections to the
@mq vector meson mass. The relevant piece of Lagrangian that is
1 additional to Eq.(6) is of O(p?) and has the form
Ap(k)Em, (B12) _ A ~ -
q € 5£Q(2V): w{CVltr[a“,uam + Cvza”’ua’m}l[f
with P being the Fermi momentum of the quasiquark. Now - . n W o
an explicit calculation gives Fcvsl @y aplly" Y19, €Y
Y- i Pw —mZInPF+wF wherecy,, Cyy, andcy; are constants of mass dimension
0 4m2| PR T q — 1. The tadpole diagrams from the Lagrangian in Ez{l)
o generate th€(p®) corrections to the second term in Ed).
Bo(p,p)=0, The divergent corrections which are proportional 1y,
modify the RGE forF ., and thusa. At the critical density

Pe+ o these corrections vanish sinog—0 for u— s
From the Lagrangian in Eqg6) and (Cl) the vector-
vector two-point functio1{;” gets the contributions

Bt(pp)=——| —P 2|
p.p)= FOETMgIN
7T

wg+P
powes2

wg— P’ 1
1" p) = Fg*"— — (g""p?~ p*p"), (C2
@s<po,a>=%[§s—s—tt<po,a>], ’
o 02\ p Titsy(P)= = (1= K)?[(g*"P~ P*P")Bo(Po, P)
B*(po.p)=—|1+= Bs+ p_Btt(po P, + 2947+ B (po.p)]. (C3)
B Bk (g, p) = — 2Ag. (813 [140)(Po.P) =2NeG* " (NiCys + Cyo) (—2Ag).  (C4)

Substituting Eq.(B10) with Eq. (B13) into Eqgs.(B8) and  As before, the subscrigh) for n=1,2 represents the contri-
(B9), we find that there are no hadronic dense loop contribubution from theO(p") Lagrangian.
tions atO(p*) from the O(p) Lagrangian(6): Let us define the vector meson mass through the general
5 TR =TT - (5 B+ T (B3l = 0 form of the vector meson propagator at one-loop level. In
wlf=1"= L(l)(p'p) r(P.p)=0, HLS at one-loop levellT1#*(py,p), which is related to the

5(1)“ 1= l(l) p p) HL(l)(p p) 0. inverse propagator as in EGA20), can be written as
(B14)
As for contributions at)(p°®) from Eq.(B1), the results are H(,“’(po,f))z F2gHr— é(gﬂvpz_ pupy)+ﬁ<jv(po,5),
82\ F512= —4Ng(N¢Cas +Ca2) MgA, (B15) (C5)
Sy 1 F51= = 4Nc(NsCpy + CAZ)quO- (B16)

whereﬁﬁ”(po,ﬁ) denotes the hadronic dense/thermal cor-
rections. Then the components in E421) take the follow-
ing form:

In the small mass limitm,<Pg, the corrections in Egs.
(B15) and (B16) vary as

2
myPE

S F112= 82 FF5] —— Ne(NiCar+Cpz)——- u _
my<Pg 2m? For N;=2, thecy; term andc,,, term are not independent. We
(B17) can set, e.g¢,,=0 without loss of generality.
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15(po 'H):Fz'*‘ﬁ\s/(po D) By using the formulas at rest
_ 1 _ o §T(p015=0)=§|_(p0'5=0)
Hb(po;p)=;p2+ﬂv(po: ), 2 plodm?
=3Bst 5 Bo(Po,p=0)  (C1D
— 1 _
T A — 2 TTL .
Hv(po.p)—?p +113(po;p), and
- — — 3L A
[1§(Po;P)=I15(Po; ). (Co) go(poygzo)zlf dk 0Pk L
2} (2m)° o (k) pi—dei(k)+ie

Since theHS(po ;H) part does not includ€(1) contribu-

tions, we can negledﬂS(po;H) in the denominator of the 1
propagator in Eq(A22). Then the propagator of the field,

Petowrp 1 [4mi—pi—ie
—In + E — S
My —po—ie€

Ta 2
is expressed as 8w
1 wF\/4m§_p(2)_iE+PF\/_p(2)_ie
—iD#Y =P — X In o |’
p?/g%—F2+[ITY(po;P) —I13(po:P)] ©p\4mg—po—ie—Pry—poie
. (C12
P s =T — =5 — we obtain the corrections to the vector meson pole mass as
P9°—Fo+[My(pPo;p) —TIy(Po;p)] 2 o
. S()MpL= S()Myr
v Hv(PosP) 4 pur 1 > B
CF2(pAg2-F2) P F2+113(poip) = 592(1—K)2[Bs—(Mﬁ+2m§)
(C7) s
X ReBy(po=M,,0)]. (C13
The vector meson pole mass obtained from the pole of the o _
longitudinal propagator at its rest frame is When we takeM ,,m,<P¢ limit, the above expression be-
_ comes
mj — M7=~ g’ReILy(po=M,:p=0) ) o,
s . 5(1)mp|_|Mp my<Pe = 5(1)mpT|Mp my<Pg
—II5(po=M,;p=0)], (C8) ,
g
whereM ,=gF, is the tree-level mass, and Re denotes the = g(l—K)ZF’%- (C19

real part. Herem,, is replaced by, in the loop corrections,
since the difference is of higher order. When one uses th
transverse component, on the other hand, the vector mes
pole mass is given by

Rlext, let us include the higher order correctip@(p®)].
#'om the corrections summarized in EG4), we obtain

J— _S — _ J—
miT_ |v|’2): - nge[ﬁ;r,(poz M,;p=0) 1Y2)(Po,P) = 2Nc(N¢Cy1+Cy2)Bs,

— — 7C N 77l T T N —
—IY(po=M,;p=0)]. (C9) 115(2)(Po,P) =11y (2)(Po,P) = Ily(2)(Po, P) (—C%S)

Consider now th 4) correction summarized in Eq. .
a(p") g Then, the corrections to the vector meson pole masses are

(C3). Decomposing it into four components as in E421),
we get

ﬁ\S/(l)(po .p)=0,

I—_I\(;(l)(po :H) =0,

ﬁl\7(1)(po E)

S(2)M5L = 8(2)Mr=9"2Nc(NiCy1 +Cy2)Bs.  (C16
In the M, ,my<Pg limit, this expression is reduced to
2 _ 2
5(2)mpL| M, my<Pe™ 5(2)mpT| M, mg<Pg

2

9 2
_ - _ — = ——N¢(N¢Cy1+Cyo) PE.
= — (1~ k)’ —p®Bo(Po.P) +BL(Po.P)], 2q2 O TV TVEE
= (C17)
y(1)(Po.P) _ o
o o o Note that up ta?(p®) corrections the longitudinal and trans-
= —(1—K)z[—pZBO(pO,p)JrBT(pO,p)]. verse pole masses are the same. This is the reason for the

(C10 Lorentz invariant structure of the mass in Eq(14).
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APPENDIX D: MK THEOREM In the low-density region we expect that the “intrinsic” den-

. . ._sity dependence of the bare theory is small, and thus we
In this appendix we sketch how to go from the RGEs N froduce the following ansatz:

M to the RGEs inu [24]. As noted in the text, the reasoning
is applicable to fundamental theories such as QED or QCD
(in the weak-coupling sectgrbut not without modifications
to effective theories such as HLS except perhaps for low
temperature or low density. -
Denote the renormalized thermodynamic potentialThen )y satisfies
Qr(h?FR .mf, 1, M) whereh; stands generically foh,
=g, hy,=a, and hs;=\ [that is, Q(h;) stands for d d
Q(hy,h,,h3)], 1 is the chemical potential, and1 is the Mﬁ—Z ﬁ(hi(ﬂ))m
renormalization scale parameter. The RG invariance condi-
tion that M(d/d M)Qg=0 gives

Qr(hFRme, u, M) = Qp(h R mE, u, M),
(D5)

0
+mg(p)(1+ Ym)m

J R J R J R J
Mg TR )ﬁ_mqymﬁ_':”fﬁ 3
' a T +F(w)[1+ 7f(M)](9F—(M)

X Q(hf FR MR, u, M) =0, (D1)
ohR
Ry_ g1 where
ahi(pw)
_ L, 0m p g = Bihi(w),
Ym™ mt oM’
amg(p)
L 02 g L () Img ),
Since the thermodynamic potenti@r pressurehas a mass MaF’T_('“): —[1+ (N (w)F (),
dimension 4, it should satisfy the identity I i ©7
M A S =L,
—_— —_— m —_— —_—
oM Hau R T oRR with the conditions
X Qr(hFR MG, u, M) =400 FR MG, p, M), ()] = pe= R, (D9)
(D3)
By combining Eqs(D1) and(D3), we can obtain \(,avtec.hFar\cljernf(I)Er?:s(D6) and(D7), Egs.(16) follow. For instance,
J J J
po—= 2 BhR—z+mi(L+ yep)— oF2 1 F?
all’ ! (9h| a ﬁmq M—:—Z 2 1-—2—M—
I T2FLT du
+FR(1+ )1—4 m?
m TR = —2F2+C[3a%0?F2 +2(2-2) 2] 55\ *N,.
X Qg(hR FR,mf,u,M)=0. (D4) (DY)
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