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Vector manifestation and fate of vector mesons in dense matter
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We describe the in-medium properties of hadrons in dense matter near chiral restoration using a Wilsonian
matching to QCD of an effective field theory with hidden local symmetry at the chiral cutoffL. We find that
chiral symmetry is restored in vector manifestation in the manner of Harada and Yamawaki at a critical matter
densitync . We express the critical density in terms of QCD correlators in dense matter at the matching scale.
In a manner completely analogous to what happens at the criticalNf

c and at the critical temperatureTc , the
vector meson mass is found to vanish~in the chiral limit! at chiral restoration. This result provides support for
the Brown-Rho scaling predicted a decade ago.
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Following recent developments on hidden local symme
@1# and color-flavor locking@2# in the hadronic sector, Brown
and Rho proposed@3,4# that the vector manifestation~VM !
scenario of Harada and Yamawaki@1# for the realization of
chiral symmetry in strongly interacting systems which w
shown to be valid for large number of flavorsNf should also
be applicable to high-density~or high-temperature! hadronic
matter relevant to the interior of compact stars~or relativistic
heavy-ion processes! and that, as a consequence, the sca
behavior of vector mesons in medium proposed by Bro
and Rho@5# near a chiral restoration critical densitync ~or
temperatureTc) follows from the VM. That the vector meso
mass vanishes in the chiral limit at the critical temperat
Tc in accordance with the VM mode was recently shown
hold by Harada and Sasaki@6#. In this paper, we supply the
arguments to suggest that the same phenomenon occu
density, namely, that, atn5nc , the vector meson mass van
ishes in the chiral limit.

We begin by giving a brief summary of the key argume
as to how VM figures in the properties of hadrons in m
dium.

To study how hadrons behave in a dense~hot! medium
starting from normal conditions, one resorts to effective fi
theories with Lagrangians that have the assumed symm
properties of QCD. Such Lagrangians are constructed s
to describe low-energy interactions of hadrons in a mediu
free vacuum. As one increases the density~temperature!, that
is, as the scale is changed, the flow of the given theory is
unique even though the symmetries remain unchanged
shown by Harada and Yamawaki@7#, the effective field
theory with hidden local symmetry~HLS! @8,9# can flow to
two or more different fixed points depending upon how t
parametersof the Lagrangian are dialed. It turns out that
the bare parameters of the Lagrangian are matched in
manner of Wilson to QCD at the chiral scaleLx;4p f p

~where f p is the pion decay constant! above the vector me
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son mass~based on a systematic chiral perturbation w
HLS @10–13#!, then flow comes out to be unique with a fixe
point @7#. This implies that the different flows typically
present in all effective field theories, even if consistent w
the symmetries of QCD, may not correctly represent QC
dynamics unless thebare parameters of the effective La
grangian are matched at an appropriate scale, say,Lx , with
QCD. Most remarkably, though, when the HLS theory
matched with QCD, Wilsonian renormalization group equ
tions ~RGEs! show that the massparameter Mr of the vector
meson and the hidden gauge couplingparameter gdo flow
to zero, together with the pion decay constantf p going to
zero at the chiral restoration point, realizing what is referr
to as the vector manifestation, and consequently the ve
meson pole mass which is given in terms of the parame
M r andg vanishes at the critical point with decoupling of th
multiplet of vector mesons. This has been shown to be w
happens atNf5Nf

c;5 for T50 @1# andT5Tc;250 MeV
for Nf53 @6#.

To set up the arguments for the density problem, we c
sider a system of hadrons in the background of a filled Fe
sea. For the moment, we consider the Fermi sea as mer
background, sidestepping the question of how the Fer
sea is formed from a theory defined in a matter-free vacu
Imagine that mesons—the pion and ther meson—are intro-
duced in HLS theory@8,9# with a cutoff set at the scale, sa
Lx . Since we are dealing with dense fermionic matter,
will need to introduce the degrees of freedom associated w
baryons or alternatively constituent quarks~or quasiquarks!.
At low density, say,n,ñ, with ñ being some density greate
thann0, the precise value of which cannot be pinned down
present, we may choose to put the cutoffL0 below the
nucleon massmN;1 GeV but above ther mass mr

5770 MeV and integrate out all the baryons. In this ca
thebareparameters of the HLS Lagrangian will depend up
©2002 The American Physical Society03-1
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the densityn ~or equivalently the Fermi momentumPF)
since the baryons that are integrated out carry informa
about the baryon density through their interactions in the
theory with the baryons within the Fermi sea. Once the ba
ons are integrated out, we will then be left with the stand
HLS Lagrangian theory with the Nambu-Goldstone~NG!
and gauge boson fields onlyexcept that the bare paramete
of the effective Lagrangian will be density dependent. It
should be noticed thatthe cutoff can also be density depe
dent. However, in general, the density dependence of
cutoff is not related to those of the bare parameters by
RGEs. ForT.0 andn50 this difference appears from th
‘‘intrinsic’’ temperature dependence introduced in Ref.@6#,
which was essential for the VM to occur at the chiral res
ration point.

As density increases beyondñ, the fermions will, how-
ever, start figuring explicitly, that is, the fermion field will b
present below the cutoffL̃ (n.ñ). The reason is that as th
density approaches the chiral restoration point, the cons
ent quark~called the quasiquark! picture—which seems to b
viable even in matter-free space@14#—becomes more appro
priate @4# and the quasiquark mass drops rapidly, ultimat
vanishing~in the chiral limit! at the critical point. This pic-
ture has been advocated by several authors in a related
text @15#.

We now describe in some detail how the above scen
takes place. As a simple albeit unrealistic case in dense
ter, consider the fermionic degrees of freedom to be bary
with a mass scale above the cutoff for all densities up to
chiral restoration density. In this case we can integrate
the baryons and take, as in@1,6,7#, the standard HLS mode
based on theGglobal3H local symmetry, whereG5SU(Nf)L
3SU(Nf)R is the global chiral symmetry andH5SU(Nf)V
is the HLS. When the kinetic term of gauge bosons ofH local
is ignored, the HLS model is reduced to the nonlinear sig
model based onG/H, with Gglobal3H local broken down to
the diagonal sum which is the flavor symmetryH of G/H. In
the HLS model the basic quantities are the gauge bos
rm5rm

a Ta of the HLS and two SU(Nf)-matrix valued vari-
ables jL and jR. They are parametrized asjL,R
5eis/Fse7 ip/Fp, where p5paTa denote the pseudoscala
Nambu-Goldstone bosons associated with the spontan
breaking ofG ands5saTa the NG bosons absorbed into th
HLS gauge bosonsrm which are identified with the vecto
mesons.Fp and Fs are relevant decay constants, and t
parametera is defined asa[Fs

2/Fp
2 . jL andjR transform as

jL,R(x)→h(x)jL,R(x)gL,R
† , where h(x)PH local and gL,R

PGglobal. The covariant derivatives ofjL,R are defined by
DmjL5]mjL2 igrmjL1 i jLLm , and similarly with the re-
placement L↔R, Lm↔Rm , whereg is the HLS gauge cou
pling, andLm andRm denote the external gauge fields gau
ing the Gglobal symmetry. The HLS Lagrangian is given b
@8,9#

L5Fp
2 tr@â'mâ'

m#1Fs
2tr@â imâ i

m#1Lkin~rm!, ~1!

whereLkin(rm) denotes the kinetic term ofrm and
01600
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5~DmjR•jR
†7DmjL•jL

†!/~2i !. ~2!

As stated above, the three parameters of the Lagran
Fp , Fs ~or a), andg will depend on density. Since Lorent
invariance is broken, a distinction has to be made betw
the temporal and spatial components of the constants in
~1!. We will ignore the difference for the moment. This wi
be justified below and, in more detail, in Appendix A. For th
moment continuing with Eq.~1!, we need to match Eq.~1!
with QCD to define thebare Lagrangian for the effective
theory. To determine thebare parameters, we set the matc
ing scale atL'Lx , below which only the HLS degrees o
freedom are present, and extend the Wilsonian match
@12#, which was originally proposed forT5n50 in Ref.
@12# and extended to nonzero temperature in Ref.@6#, to
nonzero density. We match the axial-vector and vector c
rent correlators in the HLS with those derived in the opera
product expansion~OPE! for QCD at nonzero density. The
correlators in the HLS around the matching scaleM5L
~whereM is the renormalization scale1! are well described
by the same forms as those atT5n50 @12# with the bare
parameters having the ‘‘intrinsic’’ density dependence2

PA
(HLS)~Q2!5

Fp
2 ~L;n!

Q2
22z2~L;n!,

PV
(HLS)~Q2!5

Fs
2~L;n!@122g2~L;n!z3~L;n!#

M r
2~L;n!1Q2

22z1~L;n!, ~3!

whereM r
2(L;n)[g2(L;n)Fs

2(L;n) is the barer mass, and
z1,2,3(L;n) are the bare coefficient parameters of the relev
O(p4) terms@11,12#, all at M5L. Since the Lorentz non-
invariant terms in the current correlators by the OPE
suppressed by some powers ofn/L3 ~see, e.g., Ref.@17#!, we
can ignore them from both the hadronic and QCD secto
~See Appendix A for the justification for the hadronic secto!
Matching the above correlators with those by the OPE in
same way as was done forT5n50 @12#, we determine the
bare parameters that include what we shall call ‘‘intrinsi
density dependence, which are then converted into thos
the on-shell parameters through the Wilsonian RGEs@1,12#.
As a result, the parameters appearing in the hadronic den
corrections have intrinsic density dependence.

Now, to study the chiral restoration in dense matter,
assume that we can do in the fermionless theory the Wi
nian matching at the critical densitync for Nf53 assuming

1We reservem for the chemical potential.
2Note that at the level of thebare Lagrangian there is no vector–

axial-vector mixing as discussed for hot matter by Dey, Eletsky,
Ioffe @16#. At the matching scale, there are no loop correctio
Mixing occurs through hadronic loops when decimation is done
3-2
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that^q̄q& approaches 0~continuously! for n→nc .3 Then, the
axial-vector and vector current correlators given by OPE
the QCD sector approach each other, and will agree atnc .
Then through the Wilsonian matching we require that
correlators in Eq.~3! agree with each other. As in the case
largeNf @1# and in the case ofT;Tc @6#, this agreement can
be satisfied also in dense matter if the following conditio
are met:

g~L;n!→n→nc
0, a~L;n!→n→nc

1,

z1~L;n!2z2~L;n!→n→nc
0. ~4!

We show in Appendix A that these conditions remain valid
with a suitable in-medium extension—when the breaking
Lorentz symmetry in the medium is taken into account in
bare Lagrangian.

Next we need to consider how these parameters flow
the scale parameter is varied. The flows are obtained by s
ing the RGE’s for the parameters. The RGEs for the para
eters of the HLS theory as the scaleM is varied were de-
rived in Refs. @19,1,7# with the effect of quadratic
divergences included. These equations describe the flow
the parameters for a dense system for afixed chemical po-
tential m ~or densityn).4 They show thata51, g50, and
X51 with X defined by

X[
Nf

2~4p!2

M 2

Fp
2 ~M!

~5!

are fixed points. Thus atm5mc , given the bare parameter
~4! at the matching scaleL, both g anda flow to the fixed
point. The RGEs given in Refs.@19,1,7# then imply that at
m5mc , g50 anda51 remain unchanged asM is varied.
Now what aboutFp(M), which cannot be fixed by requiring
only the agreement between the vector and axial-vector
rent correlators? As we will discuss in more detail later,
the absence of the hadronic dense-loop correctionsFp(M
50;mc)50 is obtained from the fact thatX51 is a fixed
point and corresponds to the pion decay constantf p(mc)
50. Thus the chiral transition at high density will coincid
with the VM.

As stated, as density is raised—and in particular near
critical density on which we will focus—we expect the fe
mionic degrees of freedom to figure explicitly below the c
off at which the Wilsonian matching is effected. In principl

3We are assuming that the transition is not strongly first order.
quasiquark degrees of freedom introduced later make sense
within the same hypothesis. There is nothing at present that inv
dates our assumption, but if the transition were proven to
strongly first order, some of the arguments used in this paper m
need qualification. We note that, in the presence of the current q
mass, the quark condensate is believed to decrease rapidly but
tinuously around the ‘‘phase transition’’ point@18#.

4We are using densityn and chemical potentialm interchangeably.
In the case of nearly massless quasiquarks near chiral restora
m'PF .
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to account for the fermionic degrees of freedom below
scaleM5L(m) for a givenm.m̃, we may introduce either
light baryons with a running mass that drops with increas
density or, more appropriately, constituent quarks w
masses scaling with density as suggested by Riska
Brown @15#. We adopt the latter in this paper.

We introduce the quasiquark fieldc below the scale
L(m) for m>m̃ into the Lagrangian. A chiral Lagrangian fo
p with the constituent quark~quasiquark! was given in Ref.
@20#. In Ref. @9# the quasiquark field, sayc, is introduced
into the HLS Lagrangian in such a way that it transform
homogeneously under the HLS:c→h(x)•c where h(x)
PH local. Here we extend the Lagrangian of Ref.@9# to a
general one with which we can perform a systematic deri
tive expansion. Since we are considering the model near
chiral phase transition point where the quasiquark mas
expected to become small, we assignO(p) to the constituent
quark ~quasiquark! massmq . Furthermore, we assignO(p)
to the chemical potentialm or the Fermi momentumPF , as
we consider that the cutoff is larger thanm even near the
phase transition point. Using this counting scheme we
make a systematic expansion in the HLS with the quasiqu
included. We should note that this counting scheme is dif
ent from the one in the model for thep and baryons given in
Ref. @21#, where the baryon mass is counted asO(1). The
leading order Lagrangian including one quasiquark field a
one antiquasiquark field is counted asO(p) and given by

dLQ(1)5c̄~x!~ iD mgm1mg02mq!c~x!1c̄~x!@kgmâ im~x!

1lg5gmâ'm~x!#c~x! ~6!

whereDmc5(]m2 igrm)c andk andl are constants to be
specified later. At one-loop level the Lagrangian~6! gener-
ates theO(p4) contributions including hadronic dense-loo
effects as well as divergent effects. The divergent contri
tions are renormalized by the parameters, and thus the R
for three leading order parametersFp , a, andg @and param-
eters of theO(p4) Lagrangian# are modified from those
without a quasiquark field. In addition, we need to consid
the renormalization group flow for the quasiquark massmq .5

Calculating one-loop contributions for RGE’s inM for a
given m, we find

M
dFp

2

dM5C@3a2g2Fp
2 12~22a!M 2#2

mq
2

2p2
l2Nc ,

M da

dM52C~a21!F3a~11a!g22~3a21!
M 2

Fp
2 G

1a
l2

2p2

mq
2

Fp
2

Nc,

e
nly
li-
e
ht
rk
on-

on,

5The constantsk andl will also run such that, atm5mc , k5l
51 while, atm,mc , kÞl. The running will be small nearnc , so
we will ignore their running here.
3-3
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Mdg2

dM52C
872a2

6
g41

Nc

6p2
g4~12k!2,

Mdmq

dM52
mq

8p2
@~Cp2Cs!M 22mq

2~Cp2Cs!

1M r
2Cs24Cr#, ~7!

whereC5Nf /@2(4p)2# and

Cp[S l

Fp
D 2 Nf

221

2Nf
,

Cs[S k

Fs
D 2Nf

221

2Nf
,

Cr[g2~12k!2
Nf

221

2Nf
.

For m.m̃ at which the quasiquarks enter, the cutoff w
be different from that without. However the matching con
tions ~4! will remain the same. Now Eq.~7! shows that
(g,a)5(0,1) is a fixed point only whenmq50. Sincemq
50 itself is a fixed point of the RGE formq , (g,a,mq)
5(0,1,0) is a fixed point of the coupled RGEs forg, a, and
mq . Furthermore, and most importantly,X51 becomes the
fixed point of the RGE for X@7#. This means that at the fixe
point, Fp(0)50 @see Eq.~5!#. What does this mean in dens
matter? To see what this means, we note that forT5m50,
this Fp(0)50 condition is satisfied for a given number
flavors Nf

cr;5 through the Wilsonian matching@1#. For Nf

53, m50, andTÞ0, this condition is never satisfied due
thermal hadronic corrections@6#. Remarkably, as we show i
Appendix B, forNf53, T50, andm5mc , it turns out that
dense hadronic corrections vanish up toO(p6) corrections.
Therefore the fixed pointX51 @i.e., Fp(0)50# does indeed
signal chiral restoration at the critical density.

Let us here focus on what happens to hadrons at and
near the critical pointmc . This problem can be easily ad
dressed with the machinery developed above. To do this
define, following@6#, the ‘‘on-shell’’ quantities

Fp5Fp~M50;m!,

g5g„M5M r~m!;m…,

a5a„M5M r~m!;m…, ~8!

whereM r is determined from the ‘‘on-shell condition’’

M r
25M r

2~m!5a„M5M r~m!;m…

3g2
„M5M r~m!;m…Fp

2
„M5M r~m!;m…. ~9!

Then, the parameterM r in this paper is renormalized in suc
a way that it becomes the pole mass atm50.

We first look at the ‘‘on-shell’’ pion decay constantf p . At
m5mc , it is given by
01600
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f p~mc![ f p~M50;mc!5Fp~0;mc!1D~mc! ~10!

whereD is the dense hadronic contribution arising from fe
mion loops involving Eq.~6!. As we shall show explicitly in
Appendix B, up toO(p6) in the power counting,D(mc)
50 at the fixed point (g,a,mq)5(0,1,0). Thus

f p~mc!5Fp~0;mc!50. ~11!

Since

Fp
2 ~0;mc!5Fp

2 ~L;mc!2
Nf

2~4p!2
L2, ~12!

and at the matching scaleL, Fp
2 (L;mc) is given by a QCD

correlator atm5mc , mc can be computed from

Fp
2 ~L;mc!5

Nf

2~4p!2
L2. ~13!

Note that in free space this is the equation that determ
Nf

c;5 @1#. In order for this equation to have a solution at t
critical density, it is necessary thatFp

2 (L;mc)/Fp
2 (L;0)

;3/5. We do not have at present a reliable estimate of
density dependence of the QCD correlator to verify this c
dition but a decrease ofFp of this order in the medium looks
quite reasonable.

Next we compute ther pole mass nearmc . The details of
the calculation are given in Appendix C. Here we just quo
the result. With the inclusion of the fermionic dense lo
terms, the pole mass, forM r ,mq!PF , is of the form

mr
2~m!5M r

2~m!1g2G~m!, ~14!

G~m!5
m2

2p2 F1

3
~12k!21Nc~NfcV11cV2!G . ~15!

At m5mc , we haveg50 anda51 so thatM r(m)50 and
sinceG(mc) is nonsingularmr50. Thus the fate of ther
meson at the critical density is the same as that at the cri
temperature. This is our main result. It is noted@1# that al-
though the conditions forg(L;n) and a(L;n) in Eq. ~4!
coincided with Georgi’s vector limit@22#,6 the VM should be
distinguished from Georgi’s vector realization@22#.

So far we have focused on the critical density at which
Wilsonian matching clearly determinesg50 anda51, with-
out knowing much about the details of the current corre
tors. Here we consider how the parameters flow as functi
of the chemical potentialm. In the low-density region, we
expect that the ‘‘intrinsic’’ density dependence of the ba
parameters is small. If we ignore the intrinsic density effe
we may then resort to the Morley-Kislinger~MK ! theorem 2

6It was suggested in@23# that the Georgi vector limit was relevan
to chiral restoration. Here we note that the chiral transition involv
both the vector limit and the vanishing of the pion decay consta
A nonzero pion decay constant with the vector limit is not cons
tent with low-energy theorems.
3-4
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@24# ~sketched and referred to for definiteness as the ‘‘M
theorem’’ in Appendix D!, which states that, given a RGE i
terms ofM, one can simply trade inm for M for dimen-
sionless quantities and for dimensionful quantities with s
able calculable additional terms. The results are

m
dFp

2

dm
522Fp

2 1C@3a2g2Fp
2 12~22a!M 2#

2
mq

2

2p2
l2Nc ,

m
da

dm
52C~a21!F3a~11a!g22~3a21!

m2

Fp
2 G

1a
l2

2p2

mq
2

Fp
2

Nc ,

m
dg2

dm
52C

872a2

6
g41

Nc

6p2
g4~12k!2,

m
dmq

dm
52mq2

mq

8p2
@~Cp2Cs!m22mq

2~Cp2Cs!

1M r
2Cs24Cr#, ~16!

where Fp , a, g, etc., are understood asFp(M5m;m),
a(M5m;m), g(M5m;m), and so on.

It should be stressed that the MK theorem presuma
applies in the given form to ‘‘fundamental theories’’ such
QED but not without modifications to effective theories su
as the one we are considering. The principal reason is
there is a change of relevant degrees of freedom from ab
L, where QCD variables are relevant, to belowL, where
hadronic variables figure. Consequently, we do not exp
Eq. ~16! to apply in the vicinity ofmc . Specifically, near the
critical point, the ‘‘intrinsic’’ density dependence of the ba
theory will become indispensable and the naive applica
of Eq. ~16! should break down. One can see this clearly
the following example. The conditiong(M5mc ;mc)50
that follows from the matching condition~3! would imply,
when Eq.~16! is naively applied, thatg(m)50 for all m.
This is obviously incorrect.7 Near the critical density the ‘‘in-
trinsic’’ density dependence should be included in the RG
Noting that Eq.~16! is for, e.g.,g(M5m;m), we can write
down the RGE forg corrected by the ‘‘intrinsic’’ density
dependence as

m
d

dm
g~m;m!5M ]

]Mg~M;m!U
M5m

1m
]

]m
g~M;m!U

M5m

, ~17!

7The RGEs~16! were recently studied in@25# with the nucleons
incorporated as explicit fermionic degrees of freedom.
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where the first term on the right-hand side reproduces
~16! and the second term appears due to the ‘‘intrinsic’’ de
sity dependence. Note thatg50 is a fixed point when the
second term is neglected@this follows from Eq.~16!#, and
the presence of the second term makesg50 be no longer the
fixed point of Eq.~17!.8 The second term can be determin
from QCD through Wilsonian matching. However, we do n
presently have a reliable estimate of them dependence of the
QCD correlators. Analyzing them dependence away from
the critical density in detail requires a lot more work, so w
relegate this issue to a later publication.

The Wilsonian matching of the correlators atL5Lx al-
lows one to see how ther mass scales very near the critic
density~or temperature!. For this purpose, it suffices to loo
at the intrinsic density dependence ofM r . We find that close
to mc

M r
2~L;m!;

^q̄q~m!&2

Fp
2 ~L;m!L2

, ~18!

which implies that

mr
!

mr
;

^q̄q&!

^q̄q&
. ~19!

Here the star denotes density dependence. Note that Eq.~19!
is consistent with the ‘‘Nambu scaling’’ or more general
with sigma-model scaling. How this scaling fares with natu
is discussed in@4#.

The following observations can be drawn from this wor
The parametersof Brown-Rho ~BR! scaling Lagrangian

@5# can be identified with those of the HLS Lagrangian th
are Wilsonian matched at the matching scale and flow to
fixed point (g,a,mq)5(0,1,0) with increasing density. An
interesting question arises here: How is the BR scaling wh
is related to Landau Fermi liquid interaction at normal mat
density ~reviewed in @4#! interpreted in terms of the HLS
flow?

It seems plausible that the density-dependent vector
son mass that arises via a Higgs mechanism in the co
flavor locking discussed in@3,4# refers toM r(m), namely,
the part that reflects what was interpreted in@4# as ‘‘sliding
vacuum.’’ This is the Lorentz-invariant piece of the mas
The physical pole mass should also contain the dense
corrections that take into account the velocityvÞ1.

The ‘‘intrinsic’’ density dependence that is governed
the Wilsonian matching with QCD and the VM fixed point
as in the case of the ‘‘intrinsic’’ temperature dependence d
cussed by Harada and Sasaki@6#, is mostly if not completely
missing in most of the model descriptions published in
literature. For instance, the prescription of replacingmV by
mV

! near chiral restoration in the Rapp-Wambach approac
described in@26,27#—which seemedad hocat the time those
papers were written—reflects what is lacking in the Rap

8The conditiong(mc ;mc)50 follows from the fixed point of the
RGE in M, but it is not a fixed point of the RGE inm.
3-5
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Wambach formulation near chiral restoration and may be
tified by the ‘‘sliding vacuum’’ effect.

The notion of density dependence of the cutoff and
Morley-Kislinger procedure invoked here in the low-dens
region imply that the cutoff used in effective field theori
should drop as density is increased. This supports the e
suggestion of Adami and Brown@28# that the cutoff in the
in-medium Nambu-Jona-Lasinio~NJL! model should be
density dependent.

To summarize, we have shown that the vector manife
tion is realized in dense matter at the chiral restoration w
the vector meson massmr going to zero in the chiral limit.
Thus the VM isuniversal in the sense that it occurs atNf

c

for T5m50, at Tc for Nf,NF
c andm50, and atmc for T

50 andNf,Nf
c . This scenario is characterized by the co

mon feature that, at the chiral transition, the longitudin
component of ther meson joins the pion into a degenera
multiplet, a scenario which differs from the standard sigm
model scenario. Since the gauge coupling constantg is to go
to zero near the critical point, the dropping-mass vector m
son will become sharper with vanishing width as sugges
in @1#, a phenomenon that cannot be accessed by a str
coupling theory valid at low density that involves an expan
ing width @29#.

We are indebted to Gerry Brown for useful comments.
are also grateful for discussions with Hyun Kyu Lee a
Koichi Yamawaki. Two of us~M.H. and M.R.! acknowledge
the hospitality of the Korea Institute for Advanced Stu
where this work was done. The work of M.H. is supported
part by a Grant-in-Aid for Scientific Research~A! No.
12740144 and that of Y.K. by the BK21 project of the Mi
istry of Education.

APPENDIX A: EFFECTS OF LORENTZ SYMMETRY
BREAKING

The discussion in the main text was made without expl
consideration of the effect of Lorentz symmetry breaki
inherent in a dense medium. In this appendix, we examin
and how the Lorentz symmetry breaking affects the con
tions ~4! at nc . Modulo the intrinsic density dependence
the bare parameters, we obtain the general condition
which are an extension of the conditions in Eq.~4! to a
system without Lorentz invariance—by simply requiring th
the axial-vector and vector current correlators in the H
agree, GV(HLS)

T,L 5GA(HLS)
T,L , at nc without considering the

matching to OPE in QCD. A more complete analysis th
includes the matching to OPE in QCD with Lorentz symm
try breaking which is needed to describe processes a
from the critical point will be reported elsewhere.

1. Polarization tensors

We start by summarizing the polarization tensors u
here and also in the succeeding appendixes. In hot an
dense matter, the polarization tensors are no longer restr
to be Lorentz covariant, but should beO(3) covariant. Thus
we need four independent symmetricO(3) tensors. Here we
adopt the following form@30#:
01600
s-

e

rly

a-
h

-
l

-

-
d
g-
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e
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—

t

t
-
ay

d
/or
ed

PT
mn[gi

mS d i j 2
pW i pW j

p̄ 2 D gj
n

5~gma2umua!S 2gab2
papb

p̄2 D
3~gbn2ubun!,

PL
mn[2S gmn2

pmpn

p2 D 2PT
mn

5S gma2
pmpa

p2 D ua

p2

p̄2
ub

3S gbn2
pbpn

p2 D ,

PC
mn[

1

A2p̄
F S gma2

pmpa

p2 D uapn

1pmubS gbn2
pbpn

p2 D G
PD

mn[
pmpn

p2
, ~A1!

where pm5(p0 ,pW ) is the four-momentum andp̄[upW u. The
rest frame of the medium is indicated by

um5~1,0W !. ~A2!

The polarization tensors satisfy the following identities@30#:

PT
mnPTmn52, gmnPT

mn522, umPT
mn50,

PL
mnPLmn51, gmnPL

mn521, umunPL
mn5

p̄2

p2
,

PC
mnPCmn521, gmnPC

mn50,

umunPC
mn52A2

p0p̄

p2
. ~A3!

2. Axial-vector correlator

As argued in Sec. 5 of Ref.@18#, the vector correlator
receives at the chiral restoration point an important contri
tion from quasiquark loop diagrams. Such a contributi
cannot in general be expressed by a local effective Lagra
ian in which quasiquarks are absent. In the present work,
are considering the HLS model that includes the quasiqua
as explicit degrees of freedom near the critical point. The
fore we consider it reasonable to assume that thebare HLS
theory we are concerned with can be expressed by alocal
Lagrangian with the nonlocal quasiquark contribution a
pearing at the later stage of Wilsonian decimation.
3-6
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The bare HLS Lagrangian in hot and/or dense matte
generally expected to include the effect of Lorentz noninva
ance. The Lagrangian density valid toO(p4) relevant to the
axial-vector current correlator can be written as

L(A)5@~Fp,bare
t !2umun1Fp,bare

t Fp,bare
s ~gmn

2umun!#tr@â'
mâ'

n #1@2z2,bare
L umuagnb

1z2,bare
T ~gmagnb22umuagnb!#tr@ÂmnÂab#,

~A4!

whereFp,bare
t andFp,bare

s denote thebare parameters assoc
ated with the temporal and spatial pion decay constants.
rest frame of the medium is specified byum as in Eq.~A2!.
The parametersz2,bare

L andz2,bare
T correspond in medium to th

vacuum parameterz2,bare @11,12# at T5m50, and Âmn is
defined by

Âmn[
1

2
@jRRmnjR

†2jLLmnjL
†#, ~A5!

whereRmn andLmn are the field-strength tensors of the e
ternal gauge fieldsRm andLm :

Lmn5]mLn2]nLm2 i @Lm ,Ln#,

Rmn5]mRn2]nRm2 i @Rm ,Rn#. ~A6!

Note that in the bare theoryâ'
m is expanded as

â'
m5A m1

]mp

Fp,bare
t

1•••, ~A7!

whereAm5(Rm2Lm)/2.
We define the axial-vector current correlatorGA

mn(p) by

i E d4xeipx^0uT J5m
a ~x!J5n

b ~0!u0&5dabGA
mn~p!, ~A8!

and decompose it into

GA
mn~p!5PL

mnGA
L~p!1PT

mnGA
T~p!. ~A9!

It follows from the bare HLS Lagrangian, Eq.~A4!, and Fig.
1 that

GA(HLS)
mn ~p!5

G̃A,bare
m G̃A,bare

n

2@p0
22vbare

2 p̄2#
1@~Fp,bare

t !2umun

1Fp,bare
t Fp,bare

s ~gmn2umun!#

22z2,bare
L p2PL

mn22~z2,bare
L p0

22z2,bare
T p̄2!PT

mn ,

~A10!

wherevbare is the bare pion velocity related toFp,bare
t and

Fp,bare
s by

vbare
2 5

Fp,bare
s

Fp,bare
t

, ~A11!
01600
is
i-
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and

G̃A,bare
m [@Fp,bare

t umua1Fp,bare
s ~gma2umua!#pa.

~A12!

To obtain thePL
mn andPT

mn terms in Eq.~A10!, we have used
the following identities:

~u•p!2gmn1p2umun2~u•p!~umpn1pmun!

52p2PL
mn2p0

2PT
mn

5~p2gmn2pmpn!2 p̄2PT
mn . ~A13!

Now, by using the identities Eq.~A3!, we obtain from Eq.
~A9! and Eq.~A10!,

GA(HLS)
L ~p!5

p2Fp,bare
t Fp,bare

s

2@p0
22vbare

2 p̄2#
22p2z2,bare

L ~A14!

GA(HLS)
T ~p!52Fp,bare

t Fp,bare
s 22~p0

2z2,bare
L 2 p̄2z2,bare

T !.

~A15!

3. Vector correlator

The bare Lagrangian density valid toO(p4) relevant to
the vector correlator is

L(V)5@~Fs,bare
t !2umun1Fs,bare

t Fs,bare
s ~gmn2umun!#

3tr@â i
mâ i

n#1@2z1,bare
L umuagnb1z1,bare

T ~gmagnb

22umuagnb!#tr@ V̂mnV̂ab#1@2z3,bare
L umuagnb

1z3,bare
T ~gmagnb22umuagnb!#tr@VmnV̂ab#

1F2
1

gL,bare
2

umuagnb

2
1

2gT,bare
2 ~gmagnb22umuagnb!G tr@VmnVab#,

~A16!

whereV̂mn is defined by

V̂mn[
1

2
@jRRmnjR

†1jLLmnjL
†#. ~A17!

Fs,bare
t andFs,bare

s denote the bare parameters associated w
the temporal and spatial components of the decay const
of the s ~i.e., the longitudinalr). We define the matter ex
tension of the parametera as

FIG. 1. Tree-level contributions to the axial-vector~vector! cur-
rent correlator. The dashed line denotes the pion for the axial-ve
correlator or ther meson for the vector correlator.
3-7
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at[S Fs,bare
t

Fp,bare
t D 2

, as[S Fs,bare
s

Fp,bare
s D 2

. ~A18!

z1,bare
L andz1,bare

T in Eq. ~A16! correspond in medium toz1,bare

andz3,bare
L ; z3,bare

T to z3,bare; andgL,bareandgT,bare to gbare.
Let us first obtain a general form of the vector curre

correlatorGV
mn , defined in an analogous way toGA

mn in Eq.
~A8!. By using the vector meson propagatoriD mn , the V-V
two-point functionPVi and theV-V two-point functionP i ,
we can expressGV

mn in HLS theory as

GV(HLS)
mn 5PVi

maiD abPVi
bn1P i

mn . ~A19!

The vector meson propagatoriD mn is related to theV-V
two-point functionPV

mn by

i ~D21!mn5PV
mn . ~A20!

It is convenient to decomposePV
mn into the following four

independent pieces:

PV
mn5gmnPV

S1PL
mnPV

L1PT
mnPV

T1PC
mnPV

C , ~A21!

in terms of which the vector meson propagator is given b

2 iD mn5PL
mn

PV
S

PV
S~PV

L2PV
S!2~PV

C!2/2
1PT

mn
1

PV
T2PV

S

1PC
mn

PV
C

PV
S~PV

L2PV
S!2~PV

C!2/2

1PD
mn

PV
L2PV

S

PV
S~PV

L2PV
S!2~PV

C!2/2
. ~A22!

Similarly to PV
mn , the two-point functionsPVi andP i can be

decomposed as

PVi
mn5gmnPVi

S 1PL
mnPVi

L 1PT
mnPVi

T 1PC
mnPVi

C ,

P i
mn5gmnP i

S1PL
mnP i

L1PT
mnP i

T1PC
mnP i

C .
~A23!

With Eqs.~A22! and ~A23!, GV(HLS)
mn reads

GV(HLS)
mn 5PT

mnGV(HLS)
T 1PL

mnGV(HLS)
L

1PC
mnGV(HLS)

C 1PD
mnGV(HLS)

D , ~A24!

where

GV(HLS)
T 5

2~PVi
T 2PVi

S !2

PV
T2PV

S
1P i

T2P i
S ,
01600
t

GV(HLS)
L 5

1

PV
S~PV

L2PV
S!2~PV

C!2/2

3F2PV
S~PVi

L 2PVi
S !21PV

CPVi
C ~PVi

L 2PVi
S !

2
1

2
~PV

L2PV
S!~PVi

C !2G1~P i
L2P i

S!,

GV(HLS)
C 5

1

PV
S~PV

L2PV
S!2~PV

C!2/2

3@2PV
C$~PVi

S !22PVi
S PVi

L 2~PVi
C !2/2%

2PV
SPVi

C ~PVi
L 2PVi

S !

2~PV
L2PV

S!PVi
S PVi

C #1P i
C ,

GV(HLS)
D 5

1

PV
S~PV

L2PV
S!2~PV

C!2/2
3@PV

CPVi
S PVi

C

2PV
S~PVi

C !2/22~PV
L2PV

S!~PVi
S !2#1P i

S .

~A25!

The requirement for the current conservation is thatGV(HLS)
C

andGV(HLS)
D vanish. We can easily see that

GV(HLS)
C 5CV(HLS)

D 50, ~A26!

when the following conditions are satisfied:9

PV
S5P i

S52PVi
S ,

PV
C5P i

C52PVi
C . ~A27!

Then,GV(HLS)
T andGV(HLS)

L can be rewritten as

GV(HLS)
T 5

2~PVi
T 1PV

S!2

PV
T2PV

S
1P i

T2PV
S ,

GV(HLS)
L 5

1

PV
S~PV

L2PV
S!2~PV

C!2/2

3F2PV
S~PVi

L 1PV
S!2

2
1

2
~PV

C!2~PV
L1PV

S12PVi
L !G1~P i

L2PV
S!.

~A28!

Now, using the bare Lagrangian~A16!, we find ~here and
below, the subscript ‘‘bare’’ is omitted to simplify writing!

PV
S5P i

S52PVi
S 5

p0
2

p2
~Fs

t !22
p̄2

p2
~Fs

t Fs
s !,

9Two conditions in Eq.~A27! are actually satisfied by the contr
butions obtained from the bare Lagrangian in Eq.~A16!.
3-8
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PV
C5P i

C52PVi
C 5A2

p0p̄

p2
Fs

t ~Fs
t 2Fs

s !,

~A29!

and

PV
L5

p0
21 p̄2

p2
Fs

t ~Fs
t 2Fs

s !1
p2

gL
2

,

PV
T5

p0
2

p2
Fs

t ~Fs
t 2Fs

s !1
p0

2

gL
2

2
p̄2

gT
2

,

PVi
L 52

p0
21 p̄2

p2
Fs

t ~Fs
t 2Fs

s !2p2z3
L ,

PVi
T 52

p0
2

p2
Fs

t ~Fs
t 2Fs

s !2~p0
2z3

L2 p̄2z3
T!,

P i
L5

p0
21 p̄2

p2
Fs

t ~Fs
t 2Fs

s !22p2z1
L ,

P i
T5

p0
2

p2
Fs

t ~Fs
t 2Fs

s !22~p0
2z1

L2 p̄2z1
T!.

~A30!

Finally, the results are

GV(HLS)
L 5

p2Fs
t Fs

s ~122gL
2z3

L!

2@p0
22~Fs

s /Fs
t ! p̄22M v

2#
22p2z1

L1O~p4!,

GV(HLS)
T 5

Fs
t Fs

s

2@p0
22~gL

2/gT
2!p̄22M v

2#

3@p0
22~gL

2/gT
2!p̄222gL

2~p0
2z3

L2 p̄2z3
T!#

22~p0
2z1

L2 p̄2z1
T!1O~p4!, ~A31!

in which we have dropped terms proportional to (p2z3
L)2 and

(p0
2z3

L2 p̄2z3
T)2, which are of higher order in the prese

counting scheme, together with otherO(p4) terms that re-
quire O(p6) Lagrangian density. In the above expressio
M v is the bare mass at rest frame:

M v
2[gL

2Fs
t Fs

s . ~A32!

It should be noticed that, in the rest frame,GV(HLS)
L is equal

to GV(HLS)
T , and that both the longitudinal and transver

modes of the vector meson have the same bare mass.

4. The equality GV„HLS…

T,L ÄGA„HLS…

T,L at nc

At the chiral phase transition point, the axial-vector a
vector current correlators must agree with each oth
GA(HLS)

L 5GV(HLS)
L and GA(HLS)

T 5GV(HLS)
T . Imposing this

condition, we obtain
01600
s

r:

p2Fp
t Fp

s

2@p0
22~Fp

s /Fp
t !p̄2#

22p2z2
L

5
p2Fs

t Fs
s ~122gL

2z3
L!

2@p0
22~Fs

s /Fs
t ! p̄22ML

2#
22p2z1

L , ~A33!

2Fp
t Fp

s 22~p0
2z2

L2 p̄2z2
T!

5
Fs

t Fs
s @p0

22~gL
2/gT

2!p̄222gL
2~p0

2z3
L2 p̄2z3

T!#

2@p0
22~gL

2/gT
2! p̄22ML

2#

22~p0
2z1

L2 p̄2z1
T!. ~A34!

Now, we see that the above equalities are satisfied for
values ofp0 and p̄ around the matching scale only if th
following conditions are met:

at5S Fs
t

Fp
t D 2

51, as5S Fs
s

Fp
s D 2

51,

gL50, gT50,

z2
L5z1

L , z2
T5z1

T . ~A35!

These conditions are the Lorentz-noninvariant version of
vector manifestation conditions, Eq.~4!, discussed in the
main text.

APPENDIX B: PION DECAY CONSTANT

In this appendix, we show how the dense hadronic corr
tions to the pion decay constant vanish atm5mc . In this and
the next appendixes we neglect possible effects of Lore
symmetry breaking in the bare theory of the HLS: We a
sume that the bare HLS Lagrangian possesses the Lor
invariance and that the dominant effects of Lorentz symm
try breaking come from the quasiquark dense-loop corr
tion. The relevant Lagrangian involving quasiquark fields
O(p) is given in Eq.~6!. Here we also include the following
O(p2) Lagrangian:

dLQ(2A)5c̄$cA1tr@â'mâ'
m#1cA2â'mâ'

m%c

1c̄cA3@â'm ,â'n#@gm,gn#c, ~B1!

where thec’s are constants of mass dimension21.10 The
O(p2) Lagrangian in Eq.~B1! generates theO(p5) correc-
tions to the first term of the leading order HLS Lagrangian
Eq. ~1! at one loop. Since the relevant diagrams are tadpo
all the divergent corrections are proportional tomq . Then the
RGE for Fp is not changed at the critical density wheremq
vanishes.

Our convention and notation in this and succeeding

pendixes arepm5(p0 ,pW ), p̄[upW u, vM( p̄)[AM21 p̄2 in

10For Nf52, thecA1 term andcA2 term are not independent. W
can set, e.g.,cA250 without loss of generality.
3-9
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free space,v( p̄)[v0( p̄)5 p̄, and for the pion ṽ( p̄)
[ṽ0( p̄)5v( p̄) p̄ wherev( p̄) is the pion velocity. The res
frame of the medium will be indicated byum5(1,0W ) as in
Eq. ~A2!.

In terms of the axial-vector-axial-vector two-point fun
tions P'

mn , the temporal and spatial components of the p
decay constant are given by

f p
t 5

1

F̃

umP'
mn~p0 ,pW !pn

p0
U

p05ṽ

,

f p
s 5

1

F̃

2pa~gam2uaum!P'
mn~p0 ,pW !pn

p̄2 U
p05ṽ

, ~B2!

where F̃ is the p wave function renormalization constan
According to the analysis of Ref.@21# in dense matter, thisF̃
is nothing butf p

t :

F̃5 f p
t . ~B3!

We wish to compute thef p
t,s in HLS including the quasiquark

terms. In HLS, the correlator tensors are

P'
mn~p0 ,pW !5gmnFp

2 12z2~gmnp22pmpn!

1P̄'
mn~p0 ,pW !, ~B4!

where P̄'
mn(p0 ,pW ) denotes the hadronic dense/thermal c

rections we are interested in. On shell for the pion, we h

P'
tt~ṽ,p̄!5Fp

2 22z2p̄21P̄'
tt~ṽ,p̄!,

P'
ts~ṽ,p̄!52z2v p̄21P̄'

ts~ṽ,p̄!,

P'
ss~ṽ,p̄!52Fp

2 22z2v2p̄21P̄'
ss~ṽ,p̄!,

~B5!

where

P'
tt~p0 ,p̄![umP'

mn~p0 ,pW !un ,

P'
ts~p0 ,p̄![

1

p̄
umP'

mn~p0 ,pW !~gna2unua!pa

5
1

p̄
pa~gam2uaum!P'

mn~p0 ,pW !un

5P'
st~p0 ,p̄!,

P'
ss~p0 ,p̄![

1

p̄2
pa~gam2uaum!P'

mn~p0 ,pW !

3~gnb2unub!pb, ~B6!

andv denotes the pion velocity in a dense medium:
01600
n

-
e

v2512
1

Fp
2 @P̄'

tt~v,p̄!12P̄'
ts~v,p̄!1P̄'

ss~v,p̄!#.

~B7!

In this expression, we have replacedṽ by v, since the dif-
ference is of higher order.

Substituting Eq.~B5! into Eq. ~B2!, we obtain

@ f p
t #25FP'

tt~ṽ,p̄!1
1

v
P'

ts~ṽ,p̄!G
p05ṽ

5Fp
2 1P̄'

tt~v,p̄!1P̄'
ts~v,p̄!1O~p4!,

~B8!

f p
t f p

s 5@2vP'
ts~ṽ,p̄!2P'

ss~ṽ,p̄!#p05ṽ

5Fp
2 2P̄'

ts~v,p̄!2P̄'
ss~v,p̄!1O~p4!.

~B9!

This expression is consistent with the relationv25 f p
s / f p

t .
To compute Eqs.~B8! and~B9!, we need to compute had

ronic dense fluctuation~loop! terms given in Fig. 2 with Eqs
~6! and ~B1!. The results are

P'(1)
tt ~p0 ,p̄!52l2Nc@2Ā02~4mq

21 p̄2!B̄0~p0 ,p̄!

1B̄tt~p0 ,p̄!#,

P'(1)
ts ~p0 ,p̄!52l2Nc@p0p̄B̄0~p0 ,p̄!1B̄ts~p0 ,p̄!#,

P'(1)
ss ~p0 ,p̄!5l2Nc@2Ā02~4mq

22p0
2!B̄0~p0 ,p̄!

2B̄ss~p0 ,p̄!#,

P'(2)
tt ~p0 ,p̄!524Nc~NfcA11cA2!mqĀ0 ,

P'(2)
ts ~p0 ,p̄!50,

P'(2)
ss ~p0 ,p̄!54Nc~NfcA11cA2!mqĀ0 , ~B10!

where the subscript~n! with n51,2 represents the contribu
tion from theO(pn) Lagrangian and

Ā0[2E d4k

i ~2p!4
DD~k!,

B̄0~p0 ,p̄![E d4k

i ~2p!4
@DD~k!DF~k2p!

1DD~k2p!DF~k!#,

FIG. 2. The hadronic dense~loop! corrections to the vector-
vector or axial-vector-axial-vector two-point functions. The so
lines denote quasiquarks.
3-10



w

bu

.

no
l
ns

q.
the

at is

n

-

eral
In

or-

e

VECTOR MANIFESTATION AND FATE OF VECTOR . . . PHYSICAL REVIEW D66, 016003 ~2002!
B̄mn~p0 ,p̄![E d4k

i ~2p!4
~2k2p!m~2k2p!n

3@DD~k!DF~k2p!

1DD~k2p!DF~k!#. ~B11!

HereDD(k) andDF(k) are given by

DD~k![ i
p

vmq
~ k̄!

d~k02vmq
~ k̄!!u~PF2 k̄!,

DF~k![
1

k22mq
21 i e

, ~B12!

with PF being the Fermi momentum of the quasiquark. No
an explicit calculation gives

22Ā05
1

4p2 FPFvF2mq
2ln

PF1vF

mq
G ,

B̄0~ p̄,p̄!50,

B̄tt~ p̄,p̄!5
1

4p2 F2PFvF1mq
2ln

PF1vF

m

1PF
2 ln

vF1PF

vF2PF
G ,

B̄ts~p0 ,p̄!5
p0

p̄
@B̄S2B̄tt~p0 ,p̄!#,

B̄ss~p0 ,p̄!52S 11
p0

2

p̄2D B̄S1
p0

2

p̄2
B̄tt~p0 ,p̄!,

B̄S[
pmpn

p2
B̄mn~p0 ,p̄!522Ā0 . ~B13!

Substituting Eq.~B10! with Eq. ~B13! into Eqs. ~B8! and
~B9!, we find that there are no hadronic dense loop contri
tions atO(p4) from theO(p) Lagrangian~6!:

d (1)@ f p
t #25P̄'(1)

tt ~ p̄,p̄!1P̄'(1)
ts ~ p̄,p̄!50,

d (1)@ f p
t f p

s #52P̄'(1)
ts ~ p̄,p̄!2P̄'(1)

ss ~ p̄,p̄!50.
~B14!

As for contributions atO(p5) from Eq. ~B1!, the results are

d (2)@ f p
t #2524Nc~NfcA11cA2!mqĀ0 , ~B15!

d (2)@ f p
t f p

s #524Nc~NfcA11cA2!mqĀ0 . ~B16!

In the small mass limitmq!PF , the corrections in Eqs
~B15! and ~B16! vary as

d (2)@ f p
t #25d (2)@ f p

t f p
s # ——→

mq!PF

Nc~NfcA11cA2!
mqPF

2

2p2
.

~B17!
01600
-

Thus at the fixed point (g,a,mq)5(0,1,0), the hadronic
dense-loop corrections vanish. This means that we have
contributions to f p

t,s from dense-loop terms at the critica
point. Similarly there are no hadronic dense-loop correctio
to the pion velocity, so we recoverv51 at the critical point.

APPENDIX C: VECTOR MESON MASS

In this appendix, we give details of the derivation of E
~14! which represents the hadronic dense corrections to
vector meson mass. The relevant piece of Lagrangian th
additional to Eq.~6! is of O(p2) and has the form

dLQ(2V)5c̄$cV1tr@â imâ i
m#1cV2â imâ i

m%c

1c̄cV3@â im ,â in#@gm,gn#c, ~C1!

wherecV1 , cV2, andcV3 are constants of mass dimensio
21.11 The tadpole diagrams from the Lagrangian in Eq.~C1!
generate theO(p5) corrections to the second term in Eq.~1!.
The divergent corrections which are proportional tomq
modify the RGE forFs , and thusa. At the critical density
these corrections vanish sincemq→0 for m→mc .

From the Lagrangian in Eqs.~6! and ~C1! the vector-
vector two-point functionPV

mn gets the contributions

PV
mn(tree)~p!5Fs

2gmn2
1

g2
~gmnp22pmpn!, ~C2!

P̄V(1)
mn ~p!52~12k!2@~gmnp22pmpn!B̄0~p0 ,p̄!

12gmnĀ01B̄mn~p0 ,p̄!#, ~C3!

PV(2)
mn ~p0 ,pW !52Ncg

mn~NfcV11cV2!~22Ā0!. ~C4!

As before, the subscript~n! for n51,2 represents the contri
bution from theO(pn) Lagrangian.

Let us define the vector meson mass through the gen
form of the vector meson propagator at one-loop level.
HLS at one-loop level,PV

mn(p0 ,pW ), which is related to the
inverse propagator as in Eq.~A20!, can be written as

PV
mn~p0 ,pW !5Fs

2gmn2
1

g2
~gmnp22pmpn!1P̄V

mn~p0 ,pW !,

~C5!

where P̄V
mn(p0 ,pW ) denotes the hadronic dense/thermal c

rections. Then the components in Eq.~A21! take the follow-
ing form:

11For Nf52, thecV1 term andcV2 term are not independent. W
can set, e.g.,cV250 without loss of generality.
3-11
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PV
S~p0 ; p̄!5Fs

21P̄V
S~p0 ; p̄!,

PV
L~p0 ; p̄!5

1

g2
p21P̄V

L~p0 ; p̄!,

PV
T~p0 ; p̄!5

1

g2
p21P̄T

L~p0 ; p̄!,

PV
C~p0 ; p̄!5P̄V

C~p0 ; p̄!. ~C6!

Since thePV
C(p0 ; p̄) part does not includeO(1) contribu-

tions, we can neglectPV
C(p0 ; p̄) in the denominator of the

propagator in Eq.~A22!. Then the propagator of the fieldVm
is expressed as

2 iD mn5PL
mn

1

p2/g22Fs
21@P̄V

L~p0 ; p̄!2P̄V
S~p0 ; p̄!#

1PT
mn

1

p2/g22Fs
21@P̄V

T~p0 ; p̄!2P̄V
S~p0 ; p̄!#

1PC
mn

P̄V
C~p0 ; p̄!

Fs
2~p2/g22Fs

2 !
1PD

mn
1

Fs
21P̄V

S~p0 ; p̄!
.

~C7!

The vector meson pole mass obtained from the pole of
longitudinal propagator at its rest frame is

mrL
2 2M r

252g2Re@P̄V
L~p05M r ; p̄50!

2P̄V
S~p05M r ; p̄50!#, ~C8!

whereM r5gFs is the tree-level mass, and Re denotes
real part. Heremr is replaced byM r in the loop corrections,
since the difference is of higher order. When one uses
transverse component, on the other hand, the vector m
pole mass is given by

mrT
2 2M r

252g2Re@P̄V
T~p05M r ; p̄50!

2P̄V
S~p05M r ; p̄50!#. ~C9!

Consider now theO(p4) correction summarized in Eq
~C3!. Decomposing it into four components as in Eq.~A21!,
we get

P̄V(1)
S ~p0 ,p̄!50,

P̄V(1)
C ~p0 ,p̄!50,

P̄V(1)
L ~p0 ,p̄!

52~12k!2@2p2B̄0~p0 ,p̄!1B̄L~p0 ,p̄!#,

P̄V(1)
T ~p0 ,p̄!

52~12k!2@2p2B̄0~p0 ,p̄!1B̄T~p0 ,p̄!#.
~C10!
01600
e

e

e
on

By using the formulas at rest

B̄T~p0 ,p̄50!5B̄L~p0 ,p̄50!

5
2

3
B̄S1

p0
224mq

2

3
B̄0~p0 ,p̄50! ~C11!

and

B̄0~p0 ,p̄50!5
1

2E d3kW

~2p!3

u~PF2 k̄!

vmq
~ k̄!

1

p0
224v2~ k̄!1 i e

5
1

8p2 F2 ln
PF1vF

mq
1

1

2A4mq
22p0

22 i e

2p0
22 i e

3 ln
vFA4mq

22p0
22 i e1PFA2p0

22 i e

vFA4mq
22p0

22 i e2PFA2p0
22 i e

G ,

~C12!

we obtain the corrections to the vector meson pole mass

d (1)mrL
2 5d (1)mrT

2

5
2

3
g2~12k!2@B̄S2~M r

212mq
2!

3ReB̄0~p05M r,0!#. ~C13!

When we takeM r ,mq!PF limit, the above expression be
comes

d (1)mrL
2 uMr ,mq!PF

5d (1)mrT
2 uMr ,mq!PF

5
g2

6p2
~12k!2PF

2 . ~C14!

Next, let us include the higher order correction@O(p5)#.
From the corrections summarized in Eq.~C4!, we obtain

P̄V(2)
S ~p0 ,p̄!52Nc~NfcV11cV2!B̄S ,

P̄V(2)
C ~p0 ,p̄!5P̄V(2)

L ~p0 ,p̄!5P̄V(2)
T ~p0 ,p̄!50.

~C15!

Then, the corrections to the vector meson pole masses a

d (2)mrL
2 5d (2)mrT

2 5g22Nc~NfcV11cV2!B̄S . ~C16!

In the M r ,mq!PF limit, this expression is reduced to

d (2)mrL
2 uMr ,mq!PF

5d (2)mrT
2 uMr ,mq!PF

5
g2

2p2
Nc~NfcV11cV2!PF

2 .

~C17!

Note that up toO(p6) corrections the longitudinal and trans
verse pole masses are the same. This is the reason fo
Lorentz invariant structure of ther mass in Eq.~14!.
3-12
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APPENDIX D: MK THEOREM

In this appendix we sketch how to go from the RGEs
M to the RGEs inm @24#. As noted in the text, the reasonin
is applicable to fundamental theories such as QED or Q
~in the weak-coupling sector!, but not without modifications
to effective theories such as HLS except perhaps for
temperature or low density.

Denote the renormalized thermodynamic poten
VR(hi

R ,Fp
R ,mq

R ,m,M) where hi stands generically forh1

5g, h25a, and h35l @that is, V(hi) stands for
V(h1 ,h2 ,h3)#, m is the chemical potential, andM is the
renormalization scale parameter. The RG invariance co
tion thatM(d/dM)VR50 gives

FM ]

]M 1b~hi
R!

]

]hi
R

2mq
Rgm

]

]mq
R

2Fp
Rg f

]

]Fp
RG

3VR~hi
R ,Fp

R ,mq
R ,m,M!50, ~D1!

where

b~hi
R!5M

]hi
R

]M ,

gm52
1

mq
R
M

]mq
R

]M ,

g f52
1

Fp
R
M]Fp

]M . ~D2!

Since the thermodynamic potential~or pressure! has a mass
dimension 4, it should satisfy the identity

FM ]

]M 1m
]

]m
1mq

R ]

]mq
R

1Fp
R ]

]Fp
RG

3VR~hi
R ,Fp

R ,mq
R ,m,M!54VR~hi

R ,Fp
R ,mq

R ,m,M!.

~D3!

By combining Eqs.~D1! and ~D3!, we can obtain

Fm
]

]m
2(

i
b~hi

R!
]

]hi
R

1mq
R~11gm

q
R!

]

]mq
R

1Fp
R~11g f !

]

]Fp
R

24G
3VR~hi

R ,Fp
R ,mq

R ,m,M!50. ~D4!
y,

01600
D

w

l

i-

In the low-density region we expect that the ‘‘intrinsic’’ den
sity dependence of the bare theory is small, and thus
introduce the following ansatz:

VR~hi
R ,Fp

R ,mq
R ,m,M!5m4V̄R~hi

R ,Fp
R ,mq

R ,m,M!.
~D5!

ThenV̄R satisfies

Fm
]

]m
2(

i
b„hi~m!…

]

]hi~m!

1mq~m!~11gm!
]

]mq~m!

1Fp~m!@11g f~m!#
]

]Fp~m!G
3V̄R„hi~m!,Fp~m!,mq~m!,m,M…50, ~D6!

where

m
]hi~m!

]m
5b i„hi~m!…,

m
]mq~m!

]m
52@11gm„hi~m!…#mq~m!,

m
]Fp~m!

]m
52@11g f„hi~m!…#Fp~m!,

~D7!

with the conditions

hi~m!um5M5hi
R , ~D8!

etc. From Eqs.~D6! and~D7!, Eqs.~16! follow. For instance,
we have forFp

m
]Fp

2

]m
522Fp

2 F1-
1

2Fp
2 m

]Fp
2

]m G
522Fp

2 1C@3a2g2Fp
2 12~2-a!m2#2

mq
2

2p2l2Nc.

~D9!
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