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Loop effects and nondecoupling property of supersymmetric QCD ingb\tHÀ
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The one-loop supersymmetric~SUSY! QCD radiative correction to thegb→tH2 cross section is calculated
in the minimal supersymmetric standard model. We find that SUSY QCD is nondecoupling if the gluino mass
and the parametersm, At , andAb are of the same order and get large. The nondecoupling contribution can be
enhanced by large tanb and therefore large corrections to the hadronic production rates at the Fermilab
Tevatron and CERN Large Hadron Collider~LHC! are expected in the large tanb limit. The fundamental
reason for such nondecoupling behavior is that some couplings in the loops are proportional to the SUSY mass
parameters.
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I. INTRODUCTION

Although the standard model~SM! is phenomenologically
successful, it is arguably an effective theory and new phy
must exist at high energy scales. Among the elementary
ticles predicted by the SM, the top quark and Higgs bos
may hold the key to new physics since they are most rela
to electroweak symmetry breaking. An intensive study of
properties of the top quark and Higgs boson will be one
the primary tasks of particle physics in the new millenniu

So far the most intensively studied new physics mode
the minimal supersymmetric standard model~MSSM! @1#.
This model predicts the existence of five Higgs bosonsH0,
h0, A0, andH6, all of which couple to the top quark. Com
pared to the couplings in the SM, the couplingtbH2 is a
completely new coupling. Studies@2# show that this coupling
is sensitive to quantum corrections and may be a good p
of the MSSM. Although this coupling could be measur
from the top quark decay processt→H1b if the charged
Higgs boson is sufficiently light, the direct production of
top quark associated with the charged Higgs boson thro
the subprocessgb→tH2 at hadron colliders will be a good
probe fortbH2 coupling@3,4#. In this work we calculate the
one-loop supersymmetric~SUSY! QCD corrections to this
process with the following motivations. First, if the charg
Higgs boson is heavy,mH1.mt1mb , as a mainH1 pro-
duction channel@5#, the processgb→tH2 will provide a
sizable cross section at the Fermilab Tevatron and CE
Large Hadron Collider~LHC!. The supersymmetric radiativ
corrections, especially the SUSY QCD corrections, to t
high energy process may be significant, as was found
other similar processes@6–10#. Second, some recent studi
0556-2821/2002/66~1!/015007~13!/$20.00 66 0150
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@8–10# showed that SUSY QCD may be nondecoupling
some processes involving Higgs bosons. As is well know
the decoupling theorem@11# states that, under certain cond
tions in a given quantum field theory with light and hea
particles, if the heavy particles are integrated out to all ord
in perturbation theory, the remaining effective action that
valid at energies much lower than the heavy particle mas
does not show any trace of these heavy particles. If SU
QCD is nondecoupling in some cases, we need a proper
derstanding and thus we need to further investigate this n
decoupling property of SUSY QCD.gb→tH2 is an ideal
process for this purpose.

This paper is organized as follows. In Sec. II we pres
the formula for the one-loop SUSY QCD corrections to t
gb→tH2 process. In Sec. III we scan the parameter spac
the MSSM to estimate the size of SUSY QCD corrections.
Sec. IV we study the decoupling behavior of SUSY QCD.
discussion of how the decoupling and nondecoupling t
place is also given. Finally, the conclusions are summari
in Sec. V.

II. CALCULATIONS

The subprocessgb→tH2 occurs through boths channel
and t channel. The tree-level amplitude is given by

M05M0
(s)1M0

(t) , ~2.1!

whereM0
(s) and M0

(t) represent the amplitudes arising fro
the s-channel diagram shown in Fig. 1~a! and thet-channel
diagram shown in Fig. 1~b!, respectively. Their amplitude
can be expressed as
©2002 The American Physical Society07-1
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M0
(s)5

iggsVtb

A2mW~ ŝ2mb
2!

ū~pt!@2h tpb
mPL12hbpb

mPR2h tg
mk”PL2hbgmk”PR#u~pb!«m~k!Ti j

a , ~2.2!

M0
(t)5

iggsVtb

A2mW~ t̂2mt
2!

ū~pt!@2h tpt
mPL12hbpt

mPR2h tg
mk”PL2hbgmk”PR#u~pb!«m~k!Ti j

a , ~2.3!

wherePR,L[(16g5)/2, andpt , pb , andk are the momenta of the outgoing top quark, the incoming bottom quark, an
incoming gluon, respectively.ŝ and t̂ are the subprocess Mandelstam variables defined byŝ5(pb1k)25(pt1pH2)2 and t̂
5(pt2k)25(pH22pb)2. Ta are the SU(3) color matrices and tanb5v2 /v1 is the ratio of the vacuum expectation values
the two Higgs doublets. The constantshb,t are defined byhb5mb tanb andh t5mt cotb.

FIG. 1. Feynman diagrams o
gb→tH2 with one-loop SUSY
QCD corrections:~a! and ~b! are
tree-level diagrams;~c!–~e! are
one-loop vertex diagrams for thes
channel;~f!–~h! are one-loop ver-
tex diagrams for thet channel;
~i!–~m! are self-energy diagrams
~n!,~o! are box diagrams.
015007-2
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The one-loop Feynman diagrams of SUSY QCD corrections are shown in Figs. 1~c!–1~o!. In our calculations we use
dimensional regularization to control all the ultraviolet divergences in the virtual loop corrections and we adopt the on
shell renormalization scheme. The renormalization condition for the coupling constantgs is similar to that for the coupling
constante in QED, i.e., the coupling of the photon~gluon! to a pair of fermions is required to recover the tree-level resul
the limit of zero momentum transfer. This condition yields

dgs

gs
52

1

2
dZ2

g , ~2.4!

where dgs and Z2
g are the renormalization constants defined bygs

0[gs1dgs and Am
0 [AZ2

gAm with gs
0 denoting the bare

coupling constant andAm
0 bare gluon fields~color index suppressed!.

Including the one-loop SUSY QCD corrections, the renormalized amplitude forgb→tH2 can be written as

Mren5M0
(s)1M0

(t)1dM , ~2.5!

wheredM represents the one-loop SUSY QCD corrections given by

dM5dMV1(s)1dMV2(s)1dMs(s)1dMbox1dMV1(t)1dMV2(t)1dMs(t). ~2.6!

HeredMV1(s), dMV2(s), anddMs(s) represent the renormalized verticesgbb̄ andtb̄H2, and the renormalized propagator in th
s-channel diagram, respectively. Similar definitions exist fordMV1(t), dMV2(t), and dMs(t) in the t-channel diagram. The
contribution of the box diagram is denoted bydMbox. EachdMl can be decomposed as

dMl5
iggs

3Ti j
a Vtb

16A2p2mW

Clū~pt!$F1
l gmPL1F2

l gmPR1F3
l pb

mPL1F4
l pb

mPR1F5
l pt

mPL1F6
l pt

mPR1F7
l gmk”PL1F8

l gmk”PR1F9
l pb

mk”PL

1F10
l pb

mk”PR1F11
l pt

mk”PL1F12
l pt

mk”PR%u~pb!«m~k!, ~2.7!

where the coefficientsCl and the form factorsFn
l are given explicitly in Appendixes A and B, respectively. We have chec

that all the ultraviolet divergences cancel as a result of the renormalizability of the MSSM.
The amplitude squared is given by

(
¯

uMrenu25(
¯

uM0
(s)1M0

(t)u212 Re(
¯

@~M0
(s)1M0

(t)!†dM #, ~2.8!

where

( uM0
(s)1M0

(t)u25
2g2gs

2uVtbu2

NCmW
2 H 1

~ ŝ2mb
2!2

@~hb
21h t

2!~pb•kpt•k12pb•kpb•pt2mb
2pt•k2mb

2pb•pt!

12mb
2mt

2~pb•k2mb
2!#1

1

~ t̂2mt
2!2

@~hb
21h t

2!~pb•kpt•k1mt
2pb•k2mt

2pb•pt!12mb
2mt

2~pt•k

2mt
2!#1

1

~ ŝ2mb
2!~ t̂2mt

2!
@~hb

21h t
2!~2pb•kpt•k12pb•kpb•pt22~pb•pt!

22mb
2pt•k1mt

2pb•k!

12mb
2mt

2~pt•k2pb•k22pb•pt!#J , ~2.9!

( ~M0
(s)1M0

(t)!†dM52
g2gs

4uVtbu2

64NCp2mW
2 (

n51

12 F 1

ŝ2mb
2

hn
(s)1

1

t̂2mt
2

hn
(t)GClFn

l . ~2.10!
Here the color factorNC53, andhn
(s) andhn

(t) can be found
in Appendix A.

The cross section for the parton processgb→tH2 is

ŝ~ ŝ!5E
t̂min

t̂max 1

16p ŝ2
S̄uMrenu2d t̂, ~2.11!
01500
with

t̂max,min5
1

2
$mt

21mH2
2

2 ŝ

6A@ ŝ2~mt1mH2!2#@ ŝ2~mt2mH2!2#%.

~2.12!
7-3
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The total hadronic cross section forpp(or pp̄)→tH2

1X can be obtained by folding the subprocess cross sec
ŝ with the parton luminosity:

s~s!5E
t0

1

dt
dL

dt
ŝ~ ŝ5st!, ~2.13!

wheret05(mt1mH2)2/s, ands is thepp(or pp̄) center-of-
mass energy squared.dL/dt is the parton luminosity given
by

dL

dt
5E

t

1dx

x
@ f g

p~x,Q! f b
p~t/x,Q!1~g↔b!#, ~2.14!

wheref b
p and f g

p are the bottom quark and gluon distributio
functions in a proton, respectively. In our numerical calcu
tion, we use the CTEQ5L parton distribution functions@12#
with Q5mt1mH2.

To show the size of the corrections, we define the rela
quantity

DSQCD5
s2s0

s0
, ~2.15!

wheres0 is the tree-level cross section.

III. NUMERICAL RESULTS

Before performing numerical calculations, we take a lo
at the relevant parameters involved.

For the SM parameters, we tookmW580.448 GeV,mZ
591.187 GeV,mt5176 GeV,mb54.5 GeV, and used the
two-loop running coupling constantas(Q).

For the SUSY parameters, apart from the charged Hi
boson mass, gluino mass, and tanb, the mass parameters o
top and bottom squarks are involved. The mass-square
trices of top and bottom squarks take the form (q5t or b)
@13#

Mq̃
2
5S mq̃L

2
mqXq

†

mqXq mq̃R

2 D , ~3.1!

where

mq̃L

2
5mQ̃

2
1mq

22mZ
2S 1

2
1eq sin2uWD cos~2b!,

mq̃R

2
5mŨ,D̃

2
1mq

21eqmZ
2 sin2uW cos~2b!, ~3.2!

Xq5H At2m cotb for q5t,

Ab2m tanb for q5b.

HeremQ̃
2 , mŨ, andmD̃

2 are soft-breaking mass terms for th

left-handed squark doubletQ̃, right-handed up squarkŨ, and
down squarkD̃, respectively.Ab (At) is the coefficient of the
01500
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trilinear termH1Q̃D̃ (H2Q̃Ũ) in soft-breaking terms andm
is the bilinear coupling of the two Higgs doublet in the s
perpotential. Thus the SUSY parameters involved in top a
bottom squark mass matrices are

mQ̃ ,mŨ ,mD̃ ,At ,Ab ,m,tanb.

The mass-square matrices are diagonalized by unitary r
tions (q5t or b)

Rq5S cosuq sinuq

2sinuq cosuq
D ~3.3!

which relates the weak eigenstates (q̃L ,q̃R) to the mass
eigenstates (q̃1 ,q̃2). Then the top and bottom squark mass
as well as the mixing angles are obtained by

mq̃1,2
5

1

2
@mq̃L

2
1mq̃R

2

6A~mq̃L

2
2mq̃R

2
!214mq

2Xq
2#,

~3.4!

tan 2uq5
2mqXq

mq̃L

2
2mq̃R

2 .

To determine the mixing angles completely, we adopt
convention in @14# which setsuq5p/4 if mq̃L

5mq̃R
and

shifts p/2 to uq if mq̃L
.mq̃R

. Thus uq lies in the range

2p/4<uq< 3
4 p.

To find the size of the one-loop SUSY QCD effects, w
performed a scan over the nine-dimensional parameter s
mQ̃ , mŨ , mD̃ , At , Ab , m, tanb, mH2, mg̃ . In scanning we
restrictedmH2, At , Ab , and m to the sub-TeV region and
required mH2.150 GeV. Other mass parameters are
sumed to be smaller than 5 TeV. In addition, we consider
following experimental constraints:~1! m.0 and a large
tanb in the range 5<tanb<50, which might be favored by
the recent muong22 measurement@15#. ~2! The CERN
e1E2 LEP and Collider Detector at Fermilab~CDF! lower
mass bounds on gluino, top and bottom squark@16#

mt̃ 1
>86.4 GeV, mb̃1

>75.0 GeV, mg̃>190 GeV.
~3.5!

The scan results are plotted in the plane ofDSQCD versus
ub in Fig. 2.

From Fig. 2 one can see that in most parameter space
mixing of bottom squarks is small while the one-loop SUS
QCD effect can be quite large. In some part of the param
space, the correction size can be larger than 20%, wh
cannot be neglected in the study of this process at the L
7-4
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IV. DECOUPLING PROPERTY OF SUSY QCD

To find out if SUSY QCD is decoupling from the proce
gb→tH2 in the large limit of SUSY mass parameters, w
fix the charged Higgs boson mass asmH25250 GeV and
consider the following scenarios.

~1! Scenario A. All squark ~collectively denoted bymS)
and gluino masses andm or A parameters are of the sam
size and much heavier than the electroweak scale, i.e.,

mS;mQ̃;mŨ;mD̃;mg̃

;m or At or Ab@MEW . ~4.1!

In this case, mixings in both the bottom and top squark s
tors reach their maximal values, i.e.,u t;6p/4, ub;6p/4.
As shown in Eqs.~A3!–~A5!, the couplingsa i j in the vertex
H2 t̃ i b̃ j are proportional to the linear combination ofm
1Abtanb and m1Atcotb. Considering that the coupling
a i j are proportional tomS asm or At,b gets as large asmS ,
and the loop scalar integral functionC0 goes to21/2mS

2 as

mS@ ŝ @see Eq.~C4! in this paper and Eq.~B8! in Ref. @9#!,
one can infer that the termsa i j Ai j

2(L,R)C0
6mg̃ which arise

from the vertex correction toH2tb do not vanish but go to a
nonzero constant, showing a clear indication ofnondecou-
pling behavior. In fact, such nondecoupling behavior w
happen as long as the gluino mass andm or A parameters are
of the same order, not necessarily degenerate. Actually, f
the expansions of the three- and four-point loop integrals
the asymptotic large mass limit in Appendix C, one can
this fact.

As illustrative examples, we plot the dependence of
SUSY QCD correction togb→tH2 on the common SUSY
parametermS in Fig. 3. From this figure one can see that t
nondecoupling behavior indeed happens. As for the dep
dence of the nondecoupling effects on tanb, it is quite in-

FIG. 2. The scatter plot in the plane ofDSQCD versusub . The
scan was performed over nine SUSY parameters.ub is in unit of p.
01500
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volved and complicated. For the parameter values chose
our numerical examples, the corrections are enhanced
tanb.

~2! Scenario B. The gluino mass andm are of the same
order~collectively denoted bymS) and get much larger than
squark masses and the electroweak scale: i.e.,

mS;mg̃;m@mQ̃;mŨ;mD̃>MEW . ~4.2!

To keep top and bottom squark masses from getting la
we can setAt.m cotb, Ab.m tanb. In this scenario, no
mixings occur in the bottom and top squark sectors. Ap
from the vertex correction discussed in scenario A, the te
such asa i j Ai j

2(L,R)D0
2mg̃ in the box contribution@see Eqs.

~B8! and ~C10!# do not vanish either since the four-poin
integral functionsD (0,1l )

2 →1/mg̃
2( l 51,2,3) whenmg̃

2
@ ŝ. So

in this case the SUSY QCD is nondecoupling. This diffe
from scenario A whereD (0,1l )→1/mg̃

4 .
Although the nondecoupling effects can arise from mo

diagrams in this case, the reason is the same as in scena
i.e., the couplingsH2 t̃ i b̃ j are proportional tom. To prove
this point fully, now let us focus our attention on the term
arising from the corrections to thegbb̄ and gg̃g̃ vertices,
which are also likely to give contributions to the nondeco
pling effects in both scenarios we discussed. First, for
ample, we consider the term

2
2

3
h tC24

1 23h t@mg̃
2
C0

222C24
2 11/2#

1
16p2

gs
2

h t2d ZR
b ~4.3!

FIG. 3. Nondecoupling behavior ofDSQCD with mQ̃5mŨ

5mD̃5mg̃5Ab5At5m5mS and for different values of tanb.
Corrections at the Tevatron withAs52 TeV ~solid lines! and at the
LHC with As514 TeV ~dashed lines! are plotted.
7-5



ou

e
ex

se

r
.

in
ar

r
e
ea
th
is

de
o
o
,
th
b

CD

ro-

tal
in

the
M,
to

in
ns

n
g

o

nde-

CD

be

sed.
o
duc-
ass
re-
lu-
CD

f
th tron

GAO, LU, XIONG, AND YANG PHYSICAL REVIEW D 66, 015007 ~2002!
in F3
1(s) . From Eqs.~B9!, ~C2!, ~C4!, ~C5!, ~C7!, and ~C8!,

we draw the conclusion that the term indeed cancels
Further, it is easy to find that all terms related toAbi

2 are zero
in the asymptotic large mass limit. This is also valid in sc
nario C and scenario D that we will study. Second, we
amine the terms such asa i j Ai j

1(L,R)D0
1mg̃

2 in Eq. ~B8!. The
asymptotic form of the functionD0

1 in the large mass limit is
always proportional to 1/mg̃

4 and different fromD0
2 , which is

proportional to 1/mg̃
2 in scenario B. So the terms do not cau

nondecoupling either.
~3! Scenario C. Only the gluino mass is very much large

than other SUSY parameters and the electroweak scale
this scenario, to simplify the calculation we assumedmS
5mQ̃5mŨ5mD̃5m5At5Ab51 TeV. As shown in Fig. 4,
the SUSY QCD decouples. The reason is that the coupl
a i j in the vertexH2 t̃ i b̃ j are fixed, and in this case a scal
function such asC0

6 is proportional to (1/mg̃
2)log(mS

2/mg̃
2)@1

1ŝ/2mg̃
2
# whenmg̃

2
@ ŝ @see Eqs.~C4!,~C12!#; thus the SUSY

QCD correction varies as (1/mg̃)log(mS
2/mg̃

2).

In this scenario, sinceŝ can be up to the large collide
beam energy squareds, not only the logarithmic dependenc
on the large mass parameter but also the large collider b
energies are responsible for the slow decoupling of
gluino, especially at the LHC, as shown in Fig. 4. This
different from the previous studies of various decays@8–10#.

~4! Scenario D. The squark masses are of the same or
~collectively denoted bymS) and very large compared t
other SUSY parameters and the electroweak scale. As sh
in Fig. 5, the SUSY QCD also decouples. In this case
decouples much faster than in scenario C where only
gluino mass gets large. This can be understood easily

FIG. 4. Behavior ofDSQCD in the largemg̃ limit with fixed
mQ̃5mŨ5mD̃5Ab5At5m51 TeV and for different values o
tanb. The solid and dashed lines correspond to corrections at
Tevatron withAs52 TeV and at the LHC withAs514 TeV, re-
spectively.
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cause in this case the couplingsa i j in the vertexH2 t̃ i b̃ j and
the mass of the gluino are both fixed, so that the SUSY Q
correction varies as;C11

1 →(1/mS
2)log(mg̃

2/mS
2).

Some remarks on the SUSY QCD correction to the p
cess ofgb→tH2 are in order.

~1! From the above analysis we find that the fundamen
reason for such nondecoupling behavior of SUSY QCD
the processgb→tH2 is that some couplings likeH2 t̃ i b̃ j are
proportional to SUSY mass parameters. This is similar to
nondecoupling property of the heavy top quark in the S
where the top quark Yukawa couplings are proportional
the top quark mass.

~2! The nondecoupling behavior shown in Fig. 3 is
agreement with previous studies of SUSY QCD correctio
in some decay processes@8,9#. In particular, the correction
DSQCD shown in this figure as a function of the commo
scalemS and tanb looks quite similar to the correspondin
corrections in the partial decay widthG(H1→tb̄), as given
in Fig. 2 of Ref.@9#. The same kinds of similarities are als
found between Fig. 4 here and Fig. 6 of Ref.@9#, and be-
tween Fig. 5 here and Fig. 7 of Ref.@9#. Although the pro-
cesses are different, the fundamental reason for such no
coupling behavior is the same.

~3! From Figs. 3–5 one sees that the size of SUSY Q
corrections can be quite large for large tanb. Note that when
one-loop effects are too large, higher level loops must also
calculated. We refer the reader to Ref.@17# where some tech-
niques of resummation for better convergence are propo

~4! As shown in Ref.@4#, the genuine QCD corrections t
this process are also sizable, which can enhance the pro
tion rate by 40% –80% when the charged Higgs boson m
and tanb vary in the ranges 180–1000 GeV and 2 –50,
spectively. It is clear that the SUSY QCD corrections eva
ated in this work are comparable in size to the genuine Q

e

FIG. 5. Behavior ofDSQCD in the large squark mass limit with
fixed mg̃5Ab5At5m51 TeV and for different values of tanb.
The solid and dashed lines correspond to corrections at the Teva
with As52 TeV and at the LHC withAs514 TeV, respectively.
7-6
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corrections. It is noticeable that the genuine QCD correcti
are always positive whereas the SUSY QCD corrections
negative in most SUSY parameter space.

V. CONCLUSIONS

In this work we evaluated SUSY QCD radiative corre
tions togb→tH2 at the Tevatron and LHC. We found that
some parameter spaces the one-loop SUSY QCD correc
can be quite large and cannot be neglected. We discuss
detail the decoupling behavior of the corrections in the la
SUSY mass limit, and found that with fixed gluino mass t
one-loop SUSY QCD corrections decouple; while nondec
pling occurs when the gluino mass andm or A parameters
both get large. The nondecoupling behavior of the SU
QCD corrections in the processgb→tH2 is similar to the
ones found in the literature for the Higgs particle and t
quark decays. We pointed out that such nondecoupling

havior arises from theH2 t̃ i b̃ j vertices, which are propor
tional to SUSY mass parameters, as stated in some prev
work @8–10#. Such large nondecoupling effects may play
important role in the indirect search for SUSY from the pr
duction of a top quark associated with a charged Higgs bo
at the Tevatron and LHC.
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APPENDIX A

Here we list the coefficientsCl , scalar functionshn
( l ) , and

vertex V(H2 t̃ i b̃ j )5 iga i j /A2mW ( i , j 51,2) needed in our
calculations.

CoefficientsCl :

CV(s)5
1

ŝ2mb
2

, CV(t)5
1

t̂2mt
2

,

Cs(s)5
1

~ ŝ2mb
2!2

, Cs(t)5
1

~ t̂2mt
2!2

,

~A1!

Cbox51.

Scalar functionshn
( l ) :
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Y

e-

us

-
n

-
.

h1
( l )54mth t~2pb•k2p( l )

•pb!

24mbhb~p( l )
•pt1pt•k!,

h3
( l )52h t~2pb•kpb•pt2mb

2pt•k

22p( l )
•pbpb•pt!

12mbmthb~pb•k22p( l )
•pb!,

h5
( l )52h t~mt

2pb•k22p( l )
•ptpb•pt!

12mbmthb~pt•k22p( l )
•pt!,

~A2!
h7

( l )54h t~p( l )
•pbpt•k2p( l )

•kpb•pt

2pb•kp( l )
•pt22pb•kpt•k!

24mbmthbp( l )
•k,

h9
( l )54mth tpb•k~pb•k2p( l )

•pb!

24mbhbp( l )
•pbpt•k,

h11
( l )54mth tpb•k~pt•k2p( l )

•pt!

24mbhbpt•kp( l )
•pt ,

h2,4,6,8,10,12
( l ) 5h1,3,5,7,9,11

( l ) ~hb↔h t!,

where the indexl represents the two channelss and t, and
p(s)5pb , p(t)5pt .

Couplings ofH2 t̃ i b̃ j : The H2 t̃ i b̃ j interaction terms can
be parametrized as

L H2 t̃ i b̃ j
5

g

A2mW

a i j ~ i , j 51,2!, ~A3!

where

a i j 5Ri1
t* Rj 1

b gLL1Ri2
t* Rj 2

b gRR1Ri1
t* Rj 2

b gLR

1Ri2
t* Rj 1

b gRL ~A4!

with

gLL52mW
2 sin 2b1mb

2 tanb1mt
2 cotb,

gRR5mbmt~ tanb1cotb!,
~A5!

gLR5mb~m1Ab tanb!,

gRL5mt~m1At cotb!.

APPENDIX B

The form factorsFn
l arise from the renormalized vertice

and propagators of thes channel andt channel, as well as
from the box diagram given as follows.

The renormalized vertices ofs channel:
7-7
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F1
V1(s)

523hb$Abi
1 mg̃pb•kC0

11Abi
2 mb@ ŝC0

11mb
2~C0

114C11
1 12C21

1 !12pb•k~C11
1 12C12

1 12C23
1 !22mg̃

2
C0

12114C24
1

1mbpb•k~C0
11C11

1 !#%1
4

3
Abi

2 hbmbC24
2 2

16p2

gs
2

h tmb~dZR
b2dZL

b!,

F3
V1(s)

5
2

3
h t$2@mb

2~C11
1 1C21

1 !1pb•k~C12
1 1C23

1 !1C24
1 #1Abi

1 mg̃mb~C0
11C11

1 !12Abi
2 @C24

1 1pb•k~C12
1 1C23

1 !#%

23h t$@mb
2~C0

212C11
2 1C21

2 !1mg̃
2
C0

222C24
2 11/2#12Abi

1 mbmg̃~C0
21C11

2 !12Abi
2 @mb

2~C0
212C11

2 1C21
2 !

2mg̃
2
C0

221/212C24
2 #%1

16p2

gs
2

h t2dZR
b ,

F7
V1(s)

5
1

3
h t~C24

1 22Abi
2 C24

1 !2
3

2
h t$mb

2~C21
2 2C0

2!12pb•k~C12
2 1C23

2 !2mg̃
2
C0

212C24
2 21/222Abi

1 mbmg̃C0
2

22Abi
2 @mb

2~C0
212C11

2 1C21
2 !12pb•k~C12

2 1C23
2 !2mg̃

2
C0

221/212C24
2 #%1

16p2

gs
2

h tdZR
b ,

~B1!

F2,4,8
V1(s)

5F1,3,7
V1(s)

~h t↔hb ,Abi
2 →2Abi

2 ,R↔L !,

F9
V1(s)

5
1

3
hb@2mb~C11

1 1C21
1 !1Abi

1 mg̃~C0
11C11

1 !12Abi
2 mb~2C12

1 12C23
1 2C11

1 2C21
1 !#23hb@mb~C11

2 1C21
2 !

1Abi
1 mg̃C11

2 12Abi
2 mb~C11

2 1C21
2 22C12

2 22C23
2 !#,

F10
V1(s)

5F9
V1(s)

~hb→h t ,Abi
2 →2Abi

2 !,

where the Feynman integrals are defined asC1[C(pb ,k,mb̃i
,mg̃ ,mg̃), C2[C(2pb ,2k,mg̃ ,mb̃i

,mb̃i
), C3[C(2pt ,

2pH2,mg̃ ,mt̃ i
,mb̃j

), and

F1
V2(s)

5
8

3
a i j Ai j

1Rpb•kC12
3 , ~B2!

F2
V2(s)

5F1
V2(s)

~R→L !,

F3
V2(s)

5
8

3
a i j @Ai j

1LmbC12
3 1Ai j

1Rmt~C11
3 2C12

3 !2mg̃Ai j
2LC0

3#2
16p2

gs
2

h tFdZR
t 1dZL

b12
dmt

mt
G , ~B3!

F7
V2(s)

52
4

3
a i j @Ai j

1LmbC12
3 1Ai j

1Rmt~C11
3 2C12

3 !2Ai j
2Lmg̃C0

3#1
16p2

gs
2

h tF1

2
dZR

t 1
1

2
dZL

b1
dmt

mt
G ,

F4,8
V2(s)

5F3,7
V2(s)S R↔L,h t→hb ,

dmt

mt
→ dmb

mb
D .

Here A(t,b) i
1 5(21)i sin 2ut,b , A(t,b) i

2 5 1
2 (21)i cos 2ut,b . Ai j are defined asAi j

1L52Ri2
t Rj 2

b , Ai j
1R52Ri1

t Rj 1
b , Ai j

2L522Ri2
t Rj 1

b ,

andAi j
2R522Ri1

t Rj 2
b .

The renormalized vertices of thet channel:

F1
V1(t)

5
4

3
Ati

2h tmtC24
4 13h t$mtpt•k~C0

51C11
5 !1Ati

1mg̃pt•kC0
52Ati

2mt@ t̂C0
51mt

2~C0
514C11

5 12C21
5 !22pt•k~C11

5 12C12
5

12C23
5 !22mg̃

2
C0

52114C24
5 #%2

16p2

gs
2

h tmt~dZR
t 2dZL

t !,
015007-8
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F5
V1(t)

5
2

3
h t$2@mt

2~C11
4 1C21

4 !2pt•k~C12
4 1C23

4 !1C24
4 #1Ati

1mg̃mt~C0
41C11

4 !12Ati
2 @2C24

4 1pt•k~C12
4 1C23

4 !#%

23h t$mt
2~C0

512C11
5 1C21

5 !1mg̃
2
C0

522C24
5 11/212Ati

1mtmg̃~C0
51C11

5 !22Ati
2 @mt

2~C0
512C11

5 1C21
5 !

2mg̃
2
C0

521/212C24
5 #%2

16p2

gs
2

h t2dZR
t ,

F7
V1(t)

5
1

3
h t~C24

4 12Ati
2C24

4 !1
3

2
h t$mt

2~C0
52C21

5 !12pt•k~C12
5 1C23

5 !1mg̃
2
C0

522C24
5 11/212Ati

1mtmg̃C0
5

22Ati
2 @mt

2~C0
512C11

5 1C21
5 !22pt•k~C12

5 1C23
5 !2mg̃

2
C0

521/212C24
5 #%1

16p2

gs
2

h tdZR
t , ~B4!

F2,6,8
V1(t)

5F1,5,7
V1(t)

~h t→hb ,Ati
2→2Ati

2 ,R↔L !,

F11
V1(t)

5
1

3
h t@mt~C11

4 1C21
4 !2Ati

1mg̃~C0
41C11

4 !22Ati
2mt~2C12

4 12C23
4 2C11

4 2C21
4 !#13h t@mt~C11

5 1C21
5 !1Ati

1mg̃C11
5

1Ati
22mt~C11

5 1C21
5 22C12

5 22C23
5 !#,

F12
V1(t)

5F11
V1(t)

~h t→hb ,Ati
2→2Abi

2 !,

where the Feynman integrals are defined asC4[C(2pt ,k,mg̃ ,mt̃ i
,mt̃ i

), C5[C(2pt ,k,mt̃ i
,mg̃ ,mg̃), C6

[C(2pb ,pH2,mg̃ ,mb̃j
,mt̃ i

), and

F1
V2(t)

52
8

3
a i j Ai j

1Rpt•kC12
6 ,

F2
V2(t)

5F1
V2(t)

~R→L !,

F5
V2(t)

5
8

3
a i j @Ai j

1Lmb~C11
6 2C12

6 !1Ai j
1RmtC12

6 2Ai j
2Lmg̃C0

6#2
16p2

gs
2

h tFdZR
t 1dZL

b12
dmt

mt
G , ~B5!

F7
V2(t)

52
4

3
a i j @Ai j

1Lmb~C11
6 2C12

6 !1Ai j
1RmtC12

6 2Ai j
2Lmg̃C0

6#1
16p2

gs
2

h tF1

2
dZR

t 1
1

2
dZL

b1
dmt

mt
G ,

F6,8
V2(t)

5F5,7
V2(t)S R↔L,h t→hb ,

dmt

mt
→ dmb

mb
D .

The renormalized propagators of thes channel:

F1
s(s)5

16p2

gs
2

hb@2mbpb•k~ŜL
b1ŜS

b!#, F3
s(s)5

16p2

gs
2

h t@2~ ŝŜL
b1mb

2ŜR
b !14mb

2ŜS
b#,

~B6!

F7
s(s)52

16p2

gs
2

h t@ ŝŜL
b1mb

2ŜR
b12mb

2ŜS
b#, F2,4,8

s(s) 5F1,3,7
s(s) ~h t↔hb ,R↔L !.

The renormalized propagators of thet channel:
015007-9
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F1
s(t)52

16p2

gs
2

h t@2mtpt•k~ŜL
t 1ŜS

t !#, F5
s(t)5

16p2

gs
2

h t@2~ t̂ ŜR
t 1mt

2ŜL
t !14mt

2ŜS
t #,

~B7!

F7
s(t)52

16p2

gs
2

h t@ t̂ ŜR
t 1mt

2ŜL
t 12mt

2ŜS
t #, F2,6,8

s(t) 5F1,5,7
s(t) ~h t→hb ,R↔L !.

The box diagram contribution:

F1
box5

1

3
a i j Ai j

1RH 9FD27
1 1

1

2
~mt

2D22
1 1mH

2 D23
1 !2pt•kD24

1 1~pt•k2pb•k!D25
1 1~pt•pb1pt•k2mt

2!D26
1

2pt•k~D12
1 2D13

1 !2
1

2
mg̃

2
D0

1G2D27
2 J ,

F3
box5

1

3
a i j $29@Ai j

1LmbD23
1 1Ai j

1Rmt~D23
1 2D26

1 !2Ai j
2Lmg̃D13

1 #1Ai j
1Lmb~D13

2 2D11
2 2D21

2 2D23
2 12D25

2 !

2Ai j
1Rmt~D13

2 1D25
2 2D23

2 !1Ai j
2Lmg̃~D0

21D11
2 2D13

2 !%,

F5
box5

1

3
a i j $9@Ai j

1Lmb~D23
1 2D26

1 !2Ai j
1Rmt~D22

1 1D23
1 22D26

1 !1Ai j
2Lmg̃~D12

1 2D13
1 !#1Ai j

1Lmb~D23
2 2D25

2 !

2Ai j
1RmtD23

2 1Ai j
2Lmg̃D13

2 %, ~B8!

F7
box52

3

2
a i j @Ai j

1LmbD13
1 1Ai j

1Rmt~D12
1 2D13

1 !2Ai j
2Lmg̃D0

1#,

F9
box5

1

3
a i j Ai j

1R$29~D23
1 2D25

1 !1D13
2 2D12

2 2D24
2 2D23

2 1D25
2 1D26

2 %,

F11
box5

1

3
a i j Ai j

1R$9@D12
1 2D13

1 1D23
1 1D24

1 2D25
1 2D26

1 #D23
2 2D26

2 %,

F2,4,6,8,10,12
box 5F1,3,5,7,9,11

box ~R↔L !,
.

v

where four-point functions are defined asD1

[D(k,2pt ,2pH2,mg̃ ,mg̃ ,mt̃ i
,mb̃j

), D2[D(2pb ,

2k,pH2,mg̃ ,mb̃j
,mb̃j

,mt̃ i
). Note that in the above formulas

we take the convention that repeated indices are summ
over.

All other form factorsFn
l not listed above vanish. Note

that the contributions from diagrams Figs. 1~i!, 1~j!, and 1~k!
just give the renormalization constantdZ2

g , which is can-
celed out bydgs due to the renormalization condition in Eq
~2.4!.

The renormalization constants appearing in the abo
form factors are given by

dZL
t 52

gs
2CF

16p2 H mtF2mt

]B1

]pt
2

2mg̃Ati
1 ]B0

]pt
2GU

p
t
25m

t
2

1~122Ati
2 !B1J ~pt

2 ,mg̃
2 ,mt̃ i

2
!,
01500
ed

e

dZL
b52

gs
2CF

16p2 H mbF2mb

]B1

]pb
2

2mg̃Abi
1 ]B0

]pb
2GU

p
b
25m

b
2

1~122Abi
2 !B1J ~pb

2 ,mg̃
2 ,mb̃i

2
!,

dZR
t 5dZL

t ~Ati
2→2Ati

2 !,
~B9!

dZR
b5dZL

b~Abi
2 →2Abi

2 !,

dmt /mt5
gs

2CF

16p2 S B12
mg̃

mt
Ati

1B0D ~pt
2 ,mg̃

2 ,mt̃ i

2
!,

dmb /mb5
gs

2CF

16p2 S B12
mg̃

mb
Abi

1 B0D ~pb
2 ,mg̃

2 ,mb̃i

2
!,
7-10
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where the color factorCF54/3, and the renormalized sel
energy contributions from quarks are as follows:

ŜS
t 5

gs
2CF

16p2

mg̃

mt
Ati

1 @B0~mt
2 ,mg̃

2 ,mt̃ i

2
!2B0~ t̂ ,mg̃

2 ,mt̃ i

2
!#,

ŜS
b5

gs
2CF

16p2

mg̃

mb
Abi

1 @B0~mb
2 ,mg̃

2 ,mb̃i

2
!2B0~ ŝ,mg̃

2 ,mb̃i

2
!#,

ŜL
t 52

gs
2CF

16p2
~122Ati

2 !B1~ t̂ ,mg̃
2 ,mt̃ i

2
!2dZL

t ,

~B10!

ŜL
b52

gs
2CF

16p2
~122Ati

2 !B1~ ŝ,mg̃
2 ,mb̃i

2
!2dZL

b ,

ŜR
t 5ŜL

t ~Ati
2→2Ati

2 !,

ŜR
b5ŜL

b~Abi
2 →2Abi

2 !.

APPENDIX C

In this appendix we give the expansions of the scalar lo
integrals in the asymptotic large mass limit. The definitio
and conventions of the Feynman loop integral functions
be found in@18#. The integrals are performed in 42e dimen-
sions and the divergent contributions are regularized byD
[(2/e)2gE1 log(4p)2log(mh

2/m0
2) with mh being the corre-

sponding mass of the heavy particle in the loops andm0 the
regularization scale.

Under the assumption ofmh
25max(mk

2)@pi•pj(i,j51,2;k
51,2,3), we consider special cases used in our calculati
For the two-point functionB1(p2,mh

2 ,ml
2), we obtain

B15
1

2 H D1
32d

2~12d!
1

2d2d2

~12d!2
logdJ 1OS p2

mh
2D

~C1!

where d5ml
2/mh

2 . Therefore, the asymptotic form can b
expressed as
01500
p
s
n

s.

B155
D

2
1

p2

12mh
2

, d→1,

D

2
1

3

4
1

p2

3mh
2

, d→0,

D

2
1

1

4
1

p2

6mh
2

, d→`.

~C2!

Note that in the cased→` mh in Eq. ~C2! should be re-
placed byml .

For the three-point functionC(0,24)(p1 ,p2 ,m1
2 ,m2

2 ,m3
2)

we expand them as follows:
Case A. mh5m1 , ml

25m2
25m3

26Dm
2 :

C05
1

mh
2 H 1

12d
1

1

~12d!2
ln d

1
p2

mh
2 F d15

4~12d!3
1

2d11

2~12d!4
ln dG

1OS Dm
2

mh
2D 1OS p4

mh
4D J ,

~C3!

C245
1

4
D1

32d

8~12d!
1

2d2d2

4~12d!2
ln d

1
p2

24mh
2 F215d2d2

~12d!3
1

6d

~12d!4
ln dG

1OS Dm
2

mh
2D 1OS p4

mh
4D

where p5p11p2. In the asymptotic large mass limit w
obtain

C055 2
1

2mh
2 F11

p2

12mh
2

1OS Dm
2

mh
2D 1OS p4

mh
4D G , d→1,

1

mh
2

ln
ml

2

mh
2 F11

p2

2mh
2

1OS Dm
2

mh
2D 1OS p4

mh
4D G , d→0.

~C4!

C2455
1

4
D1

p2

48mh
2

1OS Dm
2

mh
2D 1OS p4

mh
4D , d→1,

1

4
D1

3

8
1

p2

12mh
2

1OS Dm
2

mh
2D 1OS p4

mh
4D , d→0.

~C5!
7-11
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Case B. ml5m1 ,mh5m25m3:

C052
1

mh
2 H 1

12d
1

d

~12d!2
ln d1

p2

mh
2 F 115d

4~12d!3
1

d212d

2~12d!4
ln dG1OS p4

mh
4D J ,

~C6!

C245
1

4
D1

123d

8~12d!
2

d2

4~12d!2
ln d1

p2

24mh
2 F125d22d2

~12d!3
2

6d2

~12d!4
ln dG1OS p4

mh
4D .

The asymptotic form is given by

C055 2
1

2mh
2 F11

p2

12mh
2

1OS p4

mh
4D G , d→1,

2
1

mh
2 F11

p2

4mh
2

1OS p4

mh
4D G , d→0,

~C7!

C2455
1

4
D1

p2

48mh
2

1OS p4

mh
4D , d→1,

1

4
D1

1

8
1

p2

24mh
2

1OS p4

mh
4D , d→0.

~C8!

For the four-point functionsD0,1k(p1 ,p2 ,p3 ,m1
2 ,m2

2 ,m3
2 ,m4

2) with the assumption ofmh
25max(mk

2)@p25max(pi•pj) ( i , j
51,2,3;k51,2,3,4), we consider two special cases used in our calculations.

Case A. mh5m1 ,ml5m2:

D05
1

mh
2ml

2 H 11d

2~12d!2
1

d

~12d!3
ln d1OS D2

mh
2D 1OS p2

mh
2D J ,

~C9!

D115
1

mh
2ml

2 H 215d2d2

4~12d!3
1

3d

~12d!4
ln d1OS Dm

2

mh
2D 1OS p2

mh
2D J , D125

2

3
D11, D135

1

3
D11

whereDm
2 5max(um2

22m3
2u,um2

22m4
2u,um3

22m4
2u). In the asymptotic large mass limit we obtain

D (0,11,12,13)55 S 1

6
,
1

8
,

1

12
,

1

24D 1

mh
4 F11OS p2

mh
2D G , d→1,

S 1

2
,
1

2
,
1

3
,
1

6D 1

mh
2ml

2 F11OS p2

mh
2D G , d→0.

~C10!

Case B. mh5m15m2 , ml
25m3

25m4
26Dm

2 :
015007-12
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D052
1

mh
4 H 2

~12d!2
1

11d

~12d!3
ln d1OS Dm

2

mh
2D 1OS p2

mh
2D J ,

D115
1

mh
4 H 913d

4~12d!3
1

d222d22

2~12d!4
ln d1OS Dm

2

mh
2D 1OS p2

mh
2D J ,

~C11!

D1252
1

mh
4 H 51d

2~12d!3
1

112d

~12d!4
ln d1OS Dm

2

mh
2D 1OS p2

mh
2D J ,

D135
1

2
D12.

In the asymptotic large mass limit we obtain

D (0,11,12,13)55 S 1

6
,
1

8
,

1

12
,

1

24D 1

mh
4 F11OS D2

mh
2D 1OS p2

mh
2D G , d→1,

S 21,21,21,2
1

2D 1

mh
4

ln
ml

2

mh
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