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We investigate aiD(a) improved quark action on anisotropic lattices as a potential framework for heavy
quark physics, which may enable high precision computations of hadronic matrix elements for heavy-light
mesons. The relativity relations of heavy-light mesons as well as of heavy quarkonium are examined on a
guenched lattice with a spatial lattice cutaﬁlz 1.6 GeV and drenormalizeglanisotropyé=4. We find that
the corresponding bare anisotropy parameter, once tuned for the massless quark, describes both heavy-heavy
and heavy-light mesons within 2% accuracy for a quark n#|ss,<0.8, a range which covers the charm
quark. This bare anisotropy parameter also successfully describes the heavy-light mesons alone even in the
quark mass regioa,mg= 1.2 within the same accuracy. Beyond this region, the discretization effects seem to
grow gradually. The renormalized anisotrofyurns out to be roughly equal to the factor stretching the quark
mass region in which the parameters in the action are applicable for heavy-light systems with well controlled
systematic errors.
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I. INTRODUCTION perform due to the strong mass dependence. More precise
measurements below 10% uncertainty of the weak matrix
Recent progress in experimental heavy flavor physics exelements for the heavy-light mesons are therefore hardly pos-
ploring the effect of new physics calls for adequately precisesible.
theoretical predictions within the standard model. However, (2) Relativistic frameworkThe most straightforward ap-
model independent calculations of hadronic matrix elementproach is to use th®(a) improved Wilson action in a natu-
are difficult because of the nonperturbative nature of QCDral way for the lighter ones among the heavy quarks, and to
Lattice QCD simulation is the most promising approach, inextrapolate the results inr/according to the heavy quark
which the systematic uncertainties can be reduced systematifective theory. Since the theory has a sound continuum
cally [1]. The ultimate goal of the present paper is to con-limit, the discretization errors can be removed by an extrapo-
struct a framework for lattice calculations of hadronic matrixlation. The perturbative errors can also be avoided by em-
elements on a few percent accuracy level, which would begloying nonperturbative renormalization. In practice, how-
adequate to the experiments in progress. For example, thever, lattice artifacts 0@((amQ)2) give dominant error§6]
accuracy requested from the CLEO-c experinj@itas well  so that high precision results will remain difficult to achieve
as from theB factories[3,4] is about 2%. This paper pro- for the next few years, even within the quenched approxima-
poses a projectand starts to systematically pursug tihat  tion. Brute force improvement by using finer and larger lat-
aims to achieve this accuracy by taking advantage of théices will quickly increase the simulation cost. Therefore, this
anisotropic formulation of lattice QCD. way is not a feasible solution for the calculation of matrix
In lattice calculations of heavy quark systems such as meelements.
sons containing charm or bottom quarks, one needs to con- (3) Fermilab approachThe Fermilab approach links the
trol the large discretization error @[ (amy)"]. Extensive  above two approach¢g,8]. In the heavy quark mass region,
studies in various approaches have already achieved remarthe O(a) improved Wilson action with asymmetric param-
able progress in understanding heavy quark systems. Hoveters is reinterpreted as an effective theoretical description
ever, for several reasons it still seems difficult to reach thgust like the nonrelativistic QCD action. Since the action re-
necessary systematic accuracy with the current techniqueduces to the convention&(a) improved Wilson action for
Let us recall the previous approaches which fall into threesmall masseamy<1, it has in principle a smooth con-
groups and point out their respective advantages and disatihuum limit. The disadvantage is that it is not known how to
vantages from the point of view of a high precision study ofextrapolate the results obtained on lattices watin,>1,
matrix elements for heavy flavor physics. which is currently unavoidable, in particular for systems con-
(1) Effective theoriesThis approach uses descriptions of taining a b-quark. To cover such a quark mass region, a
the heavy quark degrees of freedom based on heavy quarkass-dependent tuning of parameters in the action is abso-
effective theory using nonrelativistic QC[®]. The advan- lutely required for proper improvement, although a system-
tage is that it is possible to remove the mass-dependent eatic tuning prescription beyond perturbation theory is still
rors at the tree or one-loop level. However, since this theoryepresenting a theoretical challenfg. Therefore, precise
does not have a well-defined continuum limit, one cannotalculations below 10% uncertainty for the weak matrix el-
remove the discretization errors by extrapolating the resultements of the heavy-light mesons are hampered by lack of
obtained on lattices with finite spacings. Another disadvannecessary ingredients.
tage is that the nonperturbative renormalization is difficult to These observations are based on currently available tech-
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niques and computational resources. Future progress withipersion relation as obtained in Rgfl3]. We observe the
the three approaches is not excluded. However, for the timeass dependence of the renormalized anisotropy in order to
being it is desirable to develop an alternative framework forprobe the breaking of relativity for heavy quarks. We also
heavy quark systems which is characterized by the followingbserve how the inconsistency among the binding energies
features(i) The continuum limit can be takefij) a system- Of heavy-heavy, heavy-light and light-light mesais}, 19
atic improvement program, such as the nonperturbativ@rows as a function of mass. The last part of this section
renormalization techniquElQ], can be applied not only to discusses the hyperfine splitting of the heavy-light meson. In
the parameters in the action but also to the operatirsa  Sec. V we summarize the results of our simulations and
modest size of computational cost is sufficient for the syssketch the perspectives for further development of the pro-
tematic computation of matrix elements. posed framework.

The anisotropic lattice, on which the temporal lattice
spacinga, is finer than the spatial one,,, is a good candi- Il. FORMULATION
date to provide such a framewofk1,12. Our whole pro-
gram basically follows the Fermilab approach, however for-
mulated on the anisotropic lattice. In particular, the large We adopt the followingd(a) improved Wilson quark ac-
temporal momentum cutoff is expected to drastically ameliotion in the hopping parameter forfi2,16]:
rate the above problems. The most crucial one is that the
mass dependence of the parameters in the action may be- N
come so mild in the region of practical interest that one can S¢ )(Ey YOORXY)(y), @
adopt theO(a) improving clover coefficients determined by

A. Quark action

the nonperturbative renormalization technique. On the other K(X,y)= 8y y— &,[(1— y4)U4(X)Sxsay

hand, the standard size of the spatial lattice spacing helps to )

keep the total computational cost modest. Therefore, the ex- +(1+ y,)UL(x—2) Ox—ayl

trapolation of the simulation results to the continuum limit

may be possible while the systematic uncertainties can be —KUE [(r=y)Ui(X) 811y
|

kept under control. Whether these promises practically will
be satisfied should be examined numerically, as well as in

perturbation theory. +(r+y)Uf(x=1) 8,7 ]
Our form of the quark action on an anisotropic lattice has
been founded in Ref§12,13, where perturbative results for — KUCEZi 04iF4i(X) Sy

light and heavy quarks have been presented and simulation

results for light quark systems have been reported. In this

paper we focus on systems that include heavy quarks and —fKUCBE oiiFij(X) ey, 2)
study the mass dependence of the breaking of relativity in i>]

order to understand the mass range for which a consistent ) .
description is possible. This analysis confirms that the aniso¥here «, and «, are the spatial and temporal hopping pa-
tropic lattice formulation is applicable for heavy quark sys-fameters which are related to the bare quark mass and bare
tems with the expected advantages. We have investigatedisotropy as given below. The parameteis the spatial
heavy-heavy and heavy-light mesons on a quenched latticd/ilson coefficient, and the parameters and cg are the
with a (renormalizedl anisotropyé=4 and a spatial lattice respective clover coefficients for ti&(a) improvement. Al-
spacinga, *=1.6 GeV. The heavy quark mass has been varthough the explicit Lorentz symmetry is not manifest due to

ied from the charm quark mass up to about 6 GeV to examthe anisotropy in lattice units, it can be restored in principle
ine the applicability over that mass range. for physical observables in physical units at long distances

This paper is organized as follows. In Sec. I, we firstUpP to €errors of0(a’) by properly tuningk,/«,, r, ce and
recall our quark action, which has been discussed in detail ifs for @ given, . The action is constructed in accord with
Ref.[12]. Then we formulate our conjecture concerning thethe Fermilab approacfv] and hence applicable to an arbi-
lattice spacing dependence of the anisotropy parameter t§@ry quark mass, although a mass-dependent tuning of pa-
ward the continuum limit and discuss the advantage of thé2Meters is difficult beyond perturbation theory. This may be
anisotropic lattice compared to the isotropic one. In Sec. llcircumvented by taking . “>mg, with which the mass de-
we observe the tree-level expectation of the mass depemendence of parameters are expected to be small so that the
dence of theO(a?) terms in the quark dispersion relation ©(a) Symanzik improvement program for the heavy quark
and study how the anisotropy parameter or the breaking ofan be applied. To check whether this expectation really
relativity behave as functions of the heavy quark mass. Sedolds true or not is the main subject of this paper.
tion IV describes the results of our numerical simulation. We In the present study, we vary only two parametegsand
compute the heavy-light and heavy-heavy meson spectra ari¢h With fixed other parameters. We put the Wilson parameter
dispersion relations with two sets of heavy quark parameter@s r =1/¢ and take the clover coefficients equal to the
In one set(Set ), the bare anisotropy is set to the value for tadpole-improved tree-level valuesg=1/u,u?, and cg
the massless quark. The other ¢t I)) adopts the result of =1/u3. The tadpole improvemertl7] is achieved by re-
the mass-dependent tuning using the heavy-heavy meson disealing the link variable a®J;(x)—U;(x)/u, and U,(x)
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—U,(¥)/u., with the mean-field values of the spatial and | i ' 7
temporal link variables,l, andu,, respectively. The defini- Soimepi iate S/
tions of the mean-field values are given in Sec. V. Instead of heavy-light calibration
K, and k., we introducex and ye(=1/{) as ---- heavy-heavy calibration /
! 2(yg+3r—4)=2 +4
—= - r—4)=2(mgyyga ,
PEPET (ve ) (Moye )
)
ve=1l{=k U lk,U,.
The former controls the bare quark mass and the latter cor- £*(m) ~ *(m=0) N
responds to the bare anisotropy.
0.8 :
B. Mass dependence of anisotropy parameter g o [GeV]
On an anisotropic lattice, one must tune the parameters so
that the hadronic states satisfy the relativistic dispersion re- Anisotropic lattice (E=4)
lations. In general, the lattice dispersion relation for arbitrary . o
values of¢ is described in lattice units as = heawy-light callbration
----heavy-heavy calibration
E%(p)=m*+p? &+ 0(p?). 4 52 y
E
In the above expression the eneigynd the rest mass are o Jptad
in temporal lattice units while the momentums in spatial E _m
units. The parametefr introduced in this equation charac- N I E L
terizes the anisotropy of the quark fields. The difference be- |
tween the quark field anisotrop§¢ and the gauge field an- ¢*(m) ~ {*(m=0) T
isotropy ¢ probes the breaking of relativity. Therefore, the ¢S
calibration is nothing but the tuning ¢{= 1/y) for a given 08 ,
k SO thatée equalsé and hence the relativistic dispersion ~o 1

1
relations are satisfied. Let us call the tuned parameter as 4, [GeV"]

{*(=1/y§'). {* depends 9” the quark mass and cap In g(-_?n- FIG. 1. The conjectured lattice spacing dependence of the an-
era_l be d|fferent_ f_rom un_lty even for_ the case of IsotropiCisatropy parameter for a fixed quark mass for isotrofép) and
lattice. The relativity relation automatically enforces that theanisotropic(bottom lattices. Horizontal lines with arrows roughly
rest and kinetic masses are equal to each other. In this sensgpresent the regiom,<a'"!, while vertical thick lines correspond
our calibration procedure of anisotropic lattice action is ato a"™  above which the*'s determined from heavy-heavy and
natural generalization of the Fermilab approach. heavy-light mesons are no longer equal. In this figure a heavy quark
Now we consider the tuning of the anisotropy parametefvith roughly the charm quark mass is considered as an example.
{=1/yg, either on an isotropic or anisotropic lattice, for a
fixed physical quark mass. It can be tuned using the diSpelbrderO((aTmQ)2)=O((aamQ/§)2). Demanding that these
sion relation of either a heavy-heavy or a heavy-light mesonjiscrepancies are bounded by the required accuracies, we
in a mass-dependent way. Alternatively, one could also adobtain
the value tuned for the light-light mesons neglecting the

mass dependence. In principle, these procedures of calibra- af‘,h'h'~\/eaccl(amQ),

tion can give different results due to the discretization errors. (5)
i i I hl-11 1

What weh\é\_/ﬂuld like to know at this stage (&) the lattice al'~ el .. &lmg,.

spacinga, ' above which the calibrated parametéfsus-
ing the dispersion relations of heavy-heavy and heavy-light Figure 1 depicts the expected behavior of the tuned an-
mesons start to differ from each other by more than a certaiisotropy parametet* for isotropic (¢=1) and anisotropic
accuracye,.. (say, 2%, and (2) the lattice spacinga[‘,"” (é=4) lattices. The tuned anisotropy normalized by the
above which the calibrated parametéts coming from the value in the massless limit is displayed for a fixed physical
dispersion relations of heavy-light and light-light mesonsquark mass around the charm quark mass as an example. In
start to be different by more than a certain accuragy,. the case of an isotropic lattice, as shown in the top panel of
Naively speaking, the difference betwegh's derived  Fig. 1,a)"'<a)™" is expected to hold. In this case, for a
from heavy-heavy and heavy-light mesons originates fronsufficiently small lattice spacing,<af "', both the heavy-
the O((a,p)?) effects, wherep is the typical quark momen- heavy and heavy-light mesons can be successfully described
tum in a heavy-heavy mesop~amq. On the other hand, by fixing the anisotropy parameter to its value in the mass-
the deviation of¢* originating from heavy-light mesons less limit. For a coarser lattice spacia§ ™' <a,<a™", a

from the /* based on light-light mesons is due to effects of mass-dependent tuning, as in the Fermilab approach, is nec-
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essary. In the result, the simultaneous description of botlgquark mass, we will study the mass dependence with a fixed
heavy-heavyand heavy-light mesons is possible. For an evenlattice spacing. This means to specify in which of the regions
coarser lattice spacimg]™"'<a,,, a simultaneous, consistent considered above the presentis located for a given value

description of heavy-heavy and heavy-light mesons is n®f the quark mass. This question is discussed in more detail

longer warranted, due to the severe discretization effect ba¥ithin the tree level analysis in the next section before we
coming manifest in the heavy quarkonia. turn to the results of numerical simulations in Sec. IV.

Now let us turn to the anisotropic lattice case with 4.
The expected mass dependence dfis schematically rep- . EXPECTATION FROM TREE LEVEL ANALYSIS

resented in the bottom panel of Fig. 1. As it is obvious in Eq. In this section we review the tree level analysis of the
(5) and will be studied in the following sections, the lattice heavy quark action in the Fermilab formulation. In the fol-
anisotropy does not improve the situation for heavy-heavyowing, we express the energy and the momenta in physical
meson states. Therefoad™"' remains roughly the same size |nits so that the dependence on the lattice spacingsida,

as in the isotropic lattice case. On the other hand, as one c3@ explicitly shown. The dispersion relation of the heavy

will demonstratea”™! is expected to increase fg—4, and

ah™<a"! occasionally holds. This latter situation is par- cosh{a,E)

ticularly likely for quarks with not very large mass, and is

expected to apply for masses up to the bottom quark mass

region. In this case, for sufficiently small lattice spacmg

<a"™™' poth heavy-heavy and heavy-light mesons can be ~1%

successfully described by fixing the anisotropy parameter to 2

its value in the massless limit. For a coarser lattice spacing

an™'<a <a"™' a consistent description of heavy-heavy (6)

and heavy-light mesons is no longer possible. Nevertheless _

the heavy-light meson is successfully described with the anwhere my=a,my. This leads to the following dispersion

isotropy parameter tuned in the massless limit. Finally for arrelation:

even coarser lattice spaciad'''<a, , the genuine Fermilab

approach, a mass-dependent tuning aé indispensable in ) )

order to describe the heavy-light mesons. E*=M1+
In the range of lattice spacing,<a"™", if we abandon F @

the description of heavy quarkonia and content ourselves

with the heavy-light systems, we can successfully work withyhere M is the pole mass,

the value of{ tuned in the massless limit. This is the most

important case for our approach to be applied, since in this M1=Iog(1+ﬁo)a_1, @)

mass region the mass dependence of other parameters in the T

action, for instancee andcg, is also expected to be small, 5n4 the anisotropy of the quark field at the tree level is

and hence the result of tuning at the massless limit is also

considered to be valid. In order to tune the clover coefficients ( gtree) 2

2

+722) sirf(a,p;)

Mo+ 2r gz siré(a,p;/2)

1+mg+2r{>, sinz(a(,piIZ)}

tree

tree\ 2
—) p2+Ala§(p2)2+Aza§2i Pt

2

for the case of massless quarks, it may be possible to apply _ 2¢ 4 rg’_
the nonperturbative renormalization technid @8], which is mo(2+mg) 1+mg
currently the most efficient procedure beyond perturbation
theory to remove thé@(a) effect. The most advantageous The third and fourth terms in Eq7) represent th©((ap)?)
feature of the anisotropic lattice is that this regirial ' is  errors, whereA; andA, are given as
expected to be enlarged by a facfoss suggested by E¢p).
In the result, this would cover the heavy quark mass region &2
being of practical interest. Therefore the anisotropic lattice is A= 4
a preferable framework for the description of heavy-light
systems, which possesses the attractive featiye@i), and
(i) mentioned in the Introduction. Also for heavy-heavy
systems, it would be important to study quantitatively from
which mass of the heavy quark the action would be doomed 5.
to fail to produce a correct description. n r<

The following sections are dedicated to a study to what (1+mp)2
extent these expectations are true. Using &g a similar
expectation can be deduced concerning the heavy quark 2 202 (e
mass dependence with a fixed lattice spacing. In this paper A= — Zlog(1+my)| = R |
we work at only one lattice spacing. Therefore, instead of 3 mg(2+mg)  4(1+my)
studying the lattice spacing dependence with a fixed heavy (11

=log(1+mg) &

.9

tree
F

272 2 _
d + re —log(1+mg)

mo(2+my)  1+m,

8r* . AP ¢+2r(1+mp)]
mg(2+mg)® m2(2+mg)?

(10
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4.0 T T J L
— =4 ——— &=1, massless
—— =1 —— &=4, massless
x —-=—-= &=1, Fermilab
3.0 4 —— &=4, Fermilab
/ = i
/ L
2 e e
/ - - B -
Sh20 | s - < s
/
e
7
//
e
1.0 f=—= 7
-0.5 : " L
0.0 . : L 0.0 1.0 2.0 3.0 4.0
0.0 1.0 2.0 3.0 4.0 a_ M2
ac Mz

FIG. 4. The kinetic mass dependence of B§ap)?) coeffi-
cientA; in the dispersion relatiofv). “Massless” denotes the result
of tuning of ¢ in the massless limit. “Fermilab” denotes the result
of mass-dependent tuning ¢fby requiringég = ¢.

FIG. 2. The mass dependence&f tuned at the tree level for
the isotropic lattice and anisotropic lattice wi¢k-4. The horizon-
tal axis is the kinetic quark mass in spatial lattice units.

The above coefficients are derived using Me, M, My trivially equals . Without explicit tuning, the mass depen-
andw, defined in Ref[7], now extended to anisotropic lat- dence of¢; is drastically reduced in the case®&# 4. This is
tice by replacing certain parameters as explained in Refynderstandable since the deviationéaf/¢ from unity is an

[12]. O(a,mg) error. In Fig. 4 one can see that the coefficiant
: ; Q) ="" . .
Figure 2 shows the mass dependencg tfned by requir-  whose deviation from zero signals tia?) effect, is also

ing = ¢, both on the isotropic lattice and on the anisotropicdrastically reduced on the anisotropic lattice, either with or
lattice with §=4. In the latter case, it is clear that the masswithout mass-dependent tuning 6f On the other hand, the
dependence is drastically reduced so that taking the value Q_f)(aZ) error fromA, is not reduced but has become some-
{ at the massless limit is a good approximation over a widgyvhat worse on the anisotropic lattice as is seen in Fig. 5.
range of quark mass, in contrast to the case of the isotropiowever, the coefficiem, is not larger than the value at the
lattice. massless limit. As a general feature for all of the quantities
In the fO”OWing let us consider either the case with maSS'gFlg, Al and A2! the mass dependences are drastica”y re-
dependent tuning of (denoted by “Fermilab”in the figurés  duced on the anisotropic lattice. On the other hand, mass-
or with the { at the massless limit'massless’). Figure 3 dependent tuning af on an isotropic lattice does not reduce
shows the breaking of the relativity relatiof,/ ¢, according  the coefficientsA; andA,, while it completely removes the
to Eq.(9). The kinetic mas#/, of quark is related tdr /& as  discrepancy betweei- and &. In order to reduce these
M,=M,&Z/£2. For { tuned in a mass dependence wéy, breaking of relativity one has to introduce higher order
terms, as is pointed out in Rf7].

1.50 ' ' . P From these results one can predict the following system-
—=—= &=1, massless ,,/’ atic errors in the description of heavy quark systems. In
—— &=4, massless PR
/// T T
P ——— &=1, massless
1.25 - /// | —— &=4, massless
’ Vi —-—- &=1, Fermilab
/// —— &=4, Fermilab
&2 ~ 0.0 - .
WP // ’
/’/ ‘N
1.00 =< . <
0.75 ' ' :
0.0 1.0 2.0 3.0 4.0
a, M, %0 10 2.0 30 40
ac M2

FIG. 3. The kinetic mass dependenceépf/ ¢ at the tree level.
We do not show the result of mass-dependent tuning since
&el1€é=1 is satisfied by definition.

FIG. 5. The kinetic mass dependence of Bgap)?) coeffi-
cientA, in the dispersion relatiofi7).
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TABLE I. Quark parameters and the result of calibration. The resulife0.1100, 0.1020, and 0.0930
are taken from Ref[13]. The number of configurations is 200 for each value of the hopping parameter,
except fork=0.1100 for which the simulation is carried out with 300 configurations.

K Mo input g yE (P9 yEW vE 8¥E

0.1100 0.1437 3.90,4.00 3.94%8) 3.94636) 3.94629) -0.00120)
0.1020 0.2328 3.90,4.00 3.928) 3.84734) 3.84729) 0.001(15)
0.0930 0.3514 3.70,3.80 3.693) 3.68729) 3.68825) 0.00011)
0.0840 0.4954 3.39,3.48 3.42D) 3.46223) 3.46721) 0.009760)
0.0760 0.6521 3.04,3.15 3.208) 3.19123) 3.19921) 0.013945)
0.0700 0.7930 2.85,2.95 2.908) 2.93223) 2.93923) 0.013452)
0.0630 0.9914 2.50,2.60 2.522) 2.56124) 2.57323) 0.023735)

heavy-light systems, the heavy quarks have momenta typplied. Section IV B treats the heavy-light meson spectrum,

cally of the hadronic scale) ocp=200-500 MeV. Then and we observe in particular how the hyperfine splitting be-

the O((ap)?) errors are well under control even for large haves with the meson kinetic mass.

a,M,, if one keepa;1>AQCD. While the largest error

originates fromA,, it is of the same order as that in the light A. Calibration in heavy quark region

quark systems. For the heavy-heavy system, the situation is , ) o ,

quite different. In this case the heavy quark momenta are N€ Simulation parameters used in this paper are forming

typically p~amq. The O((ap)?) errors are expected to be the second set in Ref13]: the quenched anisotropic lattice

as large af\,(aa mQ)2 A(aa mQ)Z. Again, A, gives the of the size 18x 128 generated with the standard plaquette

largest contribution, but the size of the error is actually out ofd@uge action with§, yg) =(5.95,3.1586), which correspond

control whena,my, is large. to the renormalized anisotropy=4 [18], and the spatial
To summarize, the anisotropic lattice largely reduces thdattice cutoffa,*=1.623(9) GeV is fixed by reference to

discretization effects represented &y/é—1 andA,, while  the hadronic radius, [19]. The mean-field values in the

it does not improve thAZ For the heavy_“ght systems] this qual’k action are set to the mean values of link variables in

suffices for computations with discretization effects kept unthe Landau gaugey,=0.7917 andi,=0.9891. .

der control. On the other hand, whenM, is of order of In Ref. [13] the optimum bare anisotropyg is deter-

unity, the anisotropic lattice does not improve the situationmined using the dispersion relation of mesons with degener-

for heavy quarkonia because of the severe effechpin  ate quark masses, and the resultant valuegofare well

these systems. Although, by mass-dependent tuniggarie  represented by a linear function

is able to remove the deviation g from &, a { parameter

simply tuned to the massless quark case also provides a good i i 2 _i E 3 i 12
approximation as long as,my<1. This is the biggest ad- ¥ = %o Loy, Ma=2¢ % Ke)'

vantage of the anisotropic lattice approach compared with
the isotropic Fermilab approach, where the mass dependenc
of the parameter is much stronger. These observations are
accord with our conjecture formulated in Sec. II.

ere for the present latticg = 0.249(8), {,=0.189(15),
and k.=0.125926).

In this paper we use seven valuesofor heavy quark
(kp) covering the mass of 1-6 GeV. Three of them have
IV. NUMERICAL SIMULATION already been analyzed in R¢1L3]. We start with the calibra-

ion for the remaining four values of in the heavy quark

In this section we describe the numerical examination Oﬁegion in the same manner as in RE3]. The values ofi

the ideas outlined in the previous sections. For this purpoSqyse 4re fisted in Table | together with the result of calibra-
we perform simulations with two series of heavy quark pa-

. : tion. The second column is the naive estimate of bare quark
rameters. In set | the anisotropy parameter is set to the val

t the chiral limit. v —0). iust th lied f Yass according to Eq12). For the heaviest casen, is
at the chiral limit, yz (my=0), just the same as applied for almost unity in temporal lattice units, and therefore the

light quarks. In set Il the fully tuned anisotropy parametery o ying of relativity might already become visible. Here we

. . . (
¥r is adopted as obtained using heavy-heavy mesons. Thigyice that for the heavier quark masses the differencgtof
calibration is done in Sec. IVA. For the heavy-heavy andf((er pseudoscalar and vector mesons

heavy-light mesons, the rest and kinetic masses are obtaine
with two ;ets of paramgtgrs. Two qu.ant'ltles are used to probe Sy = ()5 (S 13

the breaking of relativity: the fermionic anisotrogy for YFT YR YF

heavy-heavy and heavy-light mesons, and the inconsistency

among the binding energies of heavy-heavy, heavy-light, ané sizable beyond the statistical fluctuations. This can be un-
light-light mesons. The behavior of these quantities allows uslerstood as a warning that the quarkonium system is not
to overlook the regions in which our framework can be ap-properly described within the present framework at this lat-

014509-6



HEAVY QUARK ACTION ON ANISOTROPIC LATTICES PHYSICAL REVIEW D66, 014509 (2002

:a;l, the above result just shows that the quark mass de-
pendence of 3/t is still tractable at this mass region. Al-
though we found a difference betweésis in the linear fits
with the present data and with the old subset of data, two fits

® data
O data (previousg
— fit: linear in m,

035 | --- fit: quadraticin m, 1 show no significant difference in the lighter quark mass re-
gion.
&
= 030 [ i
B. Breaking of relativity
025 | ] In this section we compute the heavy-heavy and heavy-
light meson spectra and the dispersion relations using two
sets of heavy quark parameters. For the first one, set I, the
0.00 L . . . . . . . . bare anisotropy is set to the value gf in the chiral limit
8.0 10.0 12.0 14.0 16.0 obtained in Ref[13], namelyyz=4.016 at3=5.95, for all
1 quark masses. The second one, set Il, adopts the results of

FIG. 6. The result of calibration in the heavy quark mass regionsec' IVA of mass-dependent calibration. We use the same

(filled circles, together with the previous result in R§L3]. The ~ NOPPINg parameter values, for the heavy quark as given in
fits are performed with all available data, including previous resultsS€C. IV A. For the light quark, we use the single valie
=0.1235. The value of at thisk, is set to the value in the
tice spacing. This problem will again be discussed later irchiral limit, the same as in the case of light hadron spectros-
terms of the fermionic anisotropies for heavy-heavy andcopy treated in Refi13]. We regard that ak = «; the quark
heavy-light mesons. mass is sufficiently light for our present purposes, and we do
Figure 6 shows the result of calibration. The result is wellnot extrapolate the results to the chiral limit. The numbers of

fitted to a linear form ”1']']5 or a quadratic form irmq’ in configurations used are 200 and 500 for heavy-heavy and

spite of large quark mass. The fits, including previous data ifeavy-light meson masses, respectively.
Ref.[13], result in The lowest pseudoscalar and vector meson masses are

listed in Tables Il and lll for heavy-heavy and heavy-light
) mesons, respectively. In these tables we also list the results
linear: {,=0.251Q6), {,=0.143726),  (14)  of & for each meson channel, and the difference between
them, 8¢r= &) — £P9 | If the anisotropic lattice action does
Ce e _ not describe the quarks inside mesons in a way respecting
quadratic: £p=0.247312), £,=0.026772), the relativity relation, the breaking of relativity appears in
the dispersion relations of the respective mesons. Therefore
[,=0.115181). (15) the deviation of fermionic anisotrop§ from ¢ signals the
breaking effect of relativity. In the following, we first discuss
In both cases the values ¢§ are close to the value at the the result ofé: for set | parameters, namely witj tuned
mean-field tree levek'=0.25. Since there is no guarantee for the massless limit, and then briefly summarize the result
that the small quark mass dependence persists umgto for set Il parameters.

TABLE Il. Heavy-heavy meson spectrum for set | and set Il parameters obtained with 200 configurations.

Kn YF Mps my My—Mps S & & ¢

Set! 01100 4.016 0.424683) 0.4375%33) 0.0128818) 4.06934) 4.06846) -0.00124)
0.1020 4.016 0.584095) 0.5935834) 0.0094913) 4.14827) 4.14335 -0.00516)
0.0930 4.016 0.769424) 0.7769231) 0.0074510) 4.29222) 4.29428) 0.00210)
0.0840 4.016 0.967485 0.9735831) 0.0061%8) 4.52724) 4.53729) 0.01q 8)
0.0760 4.016 1.158927) 1.1641133) 0.005178) 4.82130) 4.83935 0.01§10)
0.0700 4.016 1.314537) 1.3189631) 0.004437) 5.14633) 5.18738) 0.041 8)
0.0630 4.016 1.512627) 1.5161731) 0.0035%5) 5.65039) 5.72643) 0.076 7)

Setll 01100 3.946 0.429423) 0.4424833) 0.0130618) 4.00529) 4.00341) -0.00222)
0.1020 3.847 0.601725 0.6114633) 0.0097%14) 4.00224) 4.00G32 -0.00314)
0.0930 3.688 0.8179Z4) 0.8257431) 0.0077710) 3.99519) 4.00024) 0.00% 9)
0.0840 3.467 1.075125) 1.0816730) 0.0065%7) 3.99618) 4.00522 0.009 6)
0.0760 3.199 1.359396) 1.3650931) 0.005717) 4.00322) 4.01126) 0.01Q 6)
0.0700 2.939 1.626527) 1.6316431) 0.00514 6) 3.99323) 4.00926) 0.01§ 5)
0.0630 2.573 2.021028) 2.0255031) 0.004495) 3.98823) 4.01326) 0.025 4)
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TABLE Ill. Heavy-light meson spectrum for set | and set Il parameters obtained with 500 configurations.

n Mes my m-mps 9 &) d -

Set|  0.1100 0.291G87) 0.3099751) 0.0188939) 3.98536) 4.00649)  0.02044)
0.1020 0.377080) 0.3910650) 0.0140134) 3.99439 4.03151)  0.03642)
0.0930 0.475986) 0.4864357) 0.0104836) 4.03251) 4.10173)  0.07055)
0.0840 0.5812@6) 0.5812346) 0.0080%43) 4.08873) 4.21(11)  0.11977)
0.0760 0.6827%5 0.6891681) 0.0063844) 4.14899  4.3015  0.14787)
0.0700 0.765464) 0.7707989 0.0053445  4.2113)  4.3818  0.17399)
0.0630 0.8708(F8)  0.875110) 0.0043047) 4.3018) 45125  0.21(12)

Setll 01100 0.293227) 0.3122952 0.0190639) 3.95236) 3.97048)  0.01844)
0.1020 0.3852@0) 0.3996150) 0.0143%34) 3.90537) 3.93649)  0.03140)
0.0930 0.4988@5 0.5099057) 0.0110137) 3.84646) 3.90466)  0.05851)
0.0840 0.6325@10) 0.6413%60) 0.0087736) 3.75754) 3.82976)  0.07154)
0.0760 0.7791@9 0.7864775 0.0072943 3.66673) 3.7711)  0.10871)
0.0700 0.9160%4) 0.9224680) 0.0063744) 3.57184) 3.6912  0.11873
0.0630 1.1174®2) 1.1229487) 0.0054445  3.4510) 3.5914)  0.13077)

Figure 7 displays the heavy quark mass dependenég of ’ ’ ’ ’ ’

for set I. The horizontal axis is the bare quark magsin p=5.95 PS

temporal lattice units. The behaviors &f's are well in ac- 14| 0 heavy-heavy (Set-I) o .
cord with the expectation in Sec. Il. For quantitative discus- A heavy-light (Set-)

sion, let us consider the case where the required accuracies — treelevel -

which define thea(hrh'hI and ag"” are 2%, namelye,

= €,c.=0.02. Theér's from the heavy-heavy and heavy- 12 F o 7
light mesons disagree beyond this accuracyngt>0.2 :\Jﬁ

(a;mg>0.8). Therefore, one must keep,<0.2 to avoid

large systematic uncertainty in the heavy quarkonia. In con-

trast to this, thete from the heavy-light mesons are rather 1.0
close toé, and yé(mq=0) can be applied up tong=0.3

within the presently required accuracy. For quark mass larger

than this value, the discrepancy betwegsis from the pseu-

0.8 1 1 1 1 1

doscalar and vector mesons gradually grows beyond the sta- 0.0 0.2 0.4 0.6 0.8 10
tistical error. This signals the growth of systematic error. In m,
the region ofm,<0.3 this effect is sufficiently small. . . . . .
For the charm quark mass, the present lattice spaging (=595 V
is already safely smaller thaaj!™" so that theyg tuned for 14} o heavy_heavy (Setl) = 1
massless quark is applicable to the charmed hadron systems. A heavy-light (Set-Iy
In contrast to this, for the bottom quark mass this is not the — tree level o
case, and one needs a finer lattice spacing or a larger anisot-
ropy &. The present lattice would be also sufficient for the 1.2

charmonium states, since the regiomg<<0.2 also covers the
charm quark mass. Another striking feature is that the ob-
servedée’s for heavy-light mesons are close to the tree level
expectation. This implies that the deviation&ffrom & may 1.0
be largely removed by &ee level tuningof y:. Such an
approach would work for the spectroscopy of hadrons con-
taining a single bottom quark. This procedure is a good al-
ternative to the mass-dependent calibration using a heavy- 0.8 L L L . L
. : L . 0.0 0.2 0.4 0.6 0.8 1.0
light meson, since the statistical error&f from heavy-light
mesons rapidly grows with the heavy quark mass.
Now we summarize the result for the set Il. The heavy- FiG. 7. Fermionic anisotropy determined nonperturbatively
heavy meson satisfies the relativity relation by definition.from the dispersion relations of heavy-heavy and heavy-light me-
However, the heavy-light meson dispersion relation violatesons. The top and bottom panels show the results for the pseudo-
the relativity relation so thagr/¢ deviates from unity to- scalar and vector channels, respectively. The solid lines represent
wards a smaller value with increasing heavy quark masghe tree level values according to H§).

&8
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0.2
p=5.95 B=5.95 heavy-light meson =
0.0 p--------- § o Tt Ny o Set-l
L % i % 010 F @ Set-ll 2 J
O]
-02 | §E § E o
~ o Set-I %- ld;'
04} ® Set-ll 4 ® &
k=
% 0.05 | Rl _
o
z X3
06 F 4 @@'
-08 | 4
1 1 1 1 0.00 1 1 1 1 1
0 1 2 3 4 0.0 0.1 0.2 0.3 0.4 0.5
1
a;My, 1M, [GeV™]

FIG. 8. The inconsistency among the binding energies of heavy- FIG. 9. The hyperfine splitting of heavy-light meson versus the
heavy, heavy-light and light-light mesons. The horizontal axis is ininverse of the heavy-light meson kinetic mass. The physical scale is
spatial lattice units. set by the hadronic radiug. The error in 1M, is the systematic

one estimated from the discrepancyé&fs from pseudoscalar and

This implies that the mass-dependent tuning cannot absoi§¢tor mesons.
the discrepancy between ti§e’s from the heavy-heavy and
heavy-light meson systems. For the quark massipf 0.2, either the heavy-heavy or heavy-light system. Therefdee
the result for set Il are consistent with the result for set I. Ina kind of universal quantity to signal the failure in a consis-
this region the heavy-heavy meson can be successfully déent description of heavy quarkonium systems. The values of
scribed, and therefore the result of calibration performed rapidly deviate from zero for any heavy quark mass larger
with heavy-heavy mesons remains also valid. than our lightest one. This is consistent with the above ob-
We now observe the inconsistency among the binding enservations concerninge .
ergies of heavy-heavy, heavy-light, and light-light mesons Our results indicate that fa,my>0.2 the present action
discussed in Ref$14,15. The inconsistency is measured by cannot be applied to describe the dynamics of heavy quarko-
nium, even with the aid of reinterpretation of the meson
masses. Thus we have to abandon the attempt to apply the
20Mpi— (dMpn+ M) (16) present framework to quarkonia in this quark mass regpigr{ or
2Myp ’ we have to improve the action by incorporating higher order
correction terms. Therefore in the remaining part of this sec-
where SM=M,—M,, M; and M, are the rest and kinetic tion we focus on the heavy-light meson spectrum.
masses of the meson, respectively. The subschptshl,
and Il represent the quark contents of each medorfof
heavy and for light quarks. We neglect the last term in the
numerator since the calibration of the light quark mass re- Now we turn our attention to the heavy-light meson sec-
gion requires thaM |, vanishes. Since the rest and kinetic tor, which is our main interest. According to the heavy quark
guark masses cancel in each kind of mass, nonvanighingexpansion, the spin flipping interaction of a heavy quark in
represents the inconsistency in the binding energy, namelthe heavy-light systems is @(1/mg), and hence the hyper-
the dynamical effect. The anomalous behaviorl ah the  fine splitting of mesons is proportional to the inverse of the
large kinetic mass region was first reported in R&#] for  meson mass in leading order. In heavy-light systems, the
the O(a) improved quark action on isotropic lattice. It has large mass of the heavy quark is not important for the dy-
been pointed out in Refl5] that this behavior originates namics. Employing the Fermilab formulation, this circum-
from theO((ap)?) discretization effect in the heavy quarko- stance is taken into account and the correct heavy quark ex-
nium system, and an estimate of the sizé with the help of  pansion is in terms of kinetic mad¥]. Therefore, the
a potential model analysis has been given. The resultlwas hyperfine splitting, which is measured as the difference of
=—0.5 ataM,,,;=3.2, which is in good agreement with the rest masses, is expected to be reciprocally proportional to the
result in[14]. kinetic meson mass. If this is the case, set | and set Il should
Figure 8 displays the results offor set | and Il for the show a similar behavior, up to th@(a?) systematic uncer-
pseudoscalar channel. The behaviorl a6 quite similar to tainty.
that in Refs.[14,15, as is expected because it originates The hyperfine splittingn,—mps is displayed in Fig. 9.
from theO((a,p)?) error and therefore cannot be improved The horizontal axis shows the inverse of the spin-averaged
by the anisotropy. The behavior bffor the two sets is very kinetic meson mass in physical unii§ lattice units are de-
similar to each other. This means that the inconsistency carfined via the hadronic radiusy). Since the most serious
not be eliminated by tuning the anisotropy parameter withuncertainty in the kinetic mass stems from the systematic

C. Heavy-light meson spectrum
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uncertainty inég, we estimate this error as (c) Fora,mg>0.3, the breaking of relativity in the heavy-
light mesons seems to grow as a function of the heavy quark
mass. This is witnessed by the discrepancy©$ from the
pseudoscalar and vector mesons, although the present statis-
where 5¢¢= £ — £F9. Hence it does not include the sta- tics is not sufficient to give a quantitative estimate of this
tistical errors ofée and M. On the other hand, the error effect. In the scaling of hyperfine splitting, we also found a
associated with the hyperfine splitting is the statistical onegyq)| discrepancy with the expectations from the heavy
Although the da_\ta show a linear dependence ir_1 th_e heavy 4rk expansion, which can be considered (a2 sys-
quark mass region, there appears a small negative INterceplmatic effect. It is important to quantify these effects and to

We consider this small discrepancy with the heavy quarkS.tudy how they vanish towards the continuum limit, as

expansion as a result of the breaking of relativity in the me- . . - . . )
sog dispersion relation, an effect of grdb(az). Fo);afixed preparation for future high precision computations in this

. . : C approach.
physical quark mass, this effect is expected to vanish linearly p?Ne conclude that the anisotropic lattice quark action ac-

. 2 . . . _
in a“ towards the continuum limit. The results for the param wally possesses the featur@siii) required for high preci-

eter sets, set | and set I, clearly show a similar _behawor, aN€ion calculations of heavy-light matrix elements which have
therefore the above interpretation of the Fermilab formula;

tion is correct Up to the violation of relativity represented b been listed in the Introduction. Among the above results it is
s For am rp ntitative analvsi rgy hp ; ntiythe small mass dependence of the anisotropy parameter, in

gF'. or a more zqua ative analysis, one has fo qua 1Eyparticular, which is very encouraging for further develop-
the size of theD(a®) systematic errors and needs to inspect

how thev di N ds th " imit. This is b ment of the framework based on the anisotropic lattice for-
ow they disappear towards the continuum imit. ThiS IS b€y, 1ation. One of the promising strategies is to calibrate the
yond the scope of this paper.

parameters in the action at the massless limit, including the
clover coefficients, using nonperturbative renormalization
V. CONCLUSION techniqug11], and to use them for all masses. The result of

. . . N this paper suggests that these parameters with improved ac-
.In this paper we have mv_estlgated the applicability of theCuracy should be applicable to the quark mass region,
anisotropic lattice quark action in the heavy quark mass €203, while a numerical confirmation is necessary. This

. . . _1~
gion, for quenched lattice QCD with,"=1.6 GeV and a 4,3tk mass region is already sufficient to describe Bhe
renormalized anisotropy=4. The intended effect of anisot- \1,as0n systems with the present lattice size.

ropy is to extend the region in which the parameters in the |t one wants to treaB meson systems, the heavy quark

action, if they are tuned for massless quarks, are applicablg, ;g is large,mo>0.3, in which case the mass-dependent
to high precision computations of heavy-light matrix €le-gqors cannot be neglected anymore. However, since the
ments. In order to check this feature, we have measured the <o dependence is small, it can be interpreted a3(af)
heavy-heavy and heavy-light meson masses and dispersifor and can be removed by taking the continuum limit.

relations which enables us to monitor the breaking of rela'AIternativer, one can also apply the genuine Fermilab ap-
tivity. The calculation has been carried out for two sets of,.oo-h for the bottom quark. In this case, the mass depen-
parameters, set | and set Il. Set | adopts the values at thg,ces of the renormalization coefficients are the source of
massless limit, while in set Il the bare anisotropy is tunedsystematic errors. Nevertheless, as long as one obtains such
using the heavy-heavy mesons. Our main results are SUMM@aetficients in a nonperturbative way first in the massless
rized in the following. , limit and then uses one-loop perturbation theory only to
(@ In the quark mass region,my<0.2, the observed ompte the mass-dependent corrections, the perturbative er-
fermionic anisotropieste’s are consistent for heavy-heavy yor can pe much better controlled in the anisotropic case
and heavy-light mesons within 2% accuracy for both set l.ompared to the Fermilab approach used on the isotropic

and set Il parameters. This.implies that the propo;ed fram8aitice. The nice agreement between the obsetyeand the
work is applicable to both kinds of systems even without theyee |evel expectation suggests that this idea is promising in
tuning of the anisotropy parameter. Beyond this region, thene pottom quark mass region, too.

action fails to describe the heavy quarkonium states cor-
rectly. This could have been expected from the tree level
analysis of the quark dispersion relation.

(b) The mass dependence of the renormalized anisotropy
& for the heavy-light mesons witlE at the massless limit We thank T. Umeda for useful discussions and E.-M. II-
(set ) is so small that one can exploit the parameters obgenfritz for correcting our English. The simulation was done
tained by massless tuning in the regionagy<0.3 with  on the NEC SX-5 at the Research Center for Nuclear Phys-
less than 2% errors. This result is particularly important forics, Osaka University, and the Hitachi SR8000 at K&Kgh
our strategy, because it implies that the parameters tuned Bhergy Accelerator Research OrganizatioH.M. is sup-
the massless limit are directly applicable for this mass reported by the Japan Society for the Promotion of Science for
gion, which already covers the case of the charm quark wittvoung Scientists. T.O. is supported by the Grant-in-Aid of
a lattice of the present size. This strategy can be extended the Ministry of Education No. 12640279. A.S. is supported
the bottom quark with the development of computational reby the center-of-excellendeCOE) program at the Research
sources in the coming decade. Center for Nuclear Physics, Osaka University.
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