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Quenched lattice QCD at finite isospin density and related theories
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We study quenched QCD at finite chemical potentialm I for the third component of isospin and quenched
two-color QCD at finite chemical potentialm for quark number. In contrast with the quenched approximation
to QCD at finite quark-number chemical potential, the quenched approximations to these theories behave
similarly to the full theories. The reason is that these theories have real positive fermion determinants. In both
of these theories there is some critical chemical potential above which the charge coupled to the chemical
potential is spontaneously broken. In each case, the transition appears to be second order. We study the scaling
properties near the critical point using scaling functions suggested by effective~chiral! Lagrangians and find
evidence for scaling with mean-field critical exponents in each case. The subtleties associated with observing
the critical scaling of these theories are discussed.
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I. INTRODUCTION

The Relativistic Heavy Ion Collider ~RHIC! at
Brookhaven and the CERN heavy-ion program give us
possibility of producing hadronic matter at high temperatu
and finite baryon number density. Cold nuclear matte
hadronic matter at finite baryon number density—exists
neutron stars. In addition, the bulk properties of large nu
should be well described as nuclear matter. Because of C
lomb interactions, nuclear matter is not only at finite baryo
number density but also finite~negative! isospin (I 3) density.
Finally, it has been suggested that sufficiently dense nuc
matter will also have finite strangeness density. It is theref
of interest to study QCD at finite baryon-number, isospin a
strangeness densities both at zero and finite temperature

Such finite densities are achieved by introducing a che
cal potential for the relevant charge operator. Unfortunat
the introduction of a finite chemical potential for quark
baryon number leads to a complex fermion determin
which precludes the use of standard simulation meth
based on importance sampling. Introducing a chemical
tential m I for the third component (I 3) of isospin leaves the
determinant real and non-negative. Adding the additio
~small! I 3 breaking term needed to observe spontaneous i
pin breaking on a finite~lattice! volume makes this determi
nant strictly positive and simulations possible. Effective L
grangian analyses of this theory have indicated that it sho
undergo a phase transition atm I5mp to a state whereI 3 is
spontaneously broken by a charged pion condensate wit
accompanying Goldstone mode@1#. We are currently per-
forming simulations of this theory@2,3#. Adding, in addition,
a finite chemical potential (ms) for strangeness again make
the fermion determinant complex. In this case, howev
there are related theories with real positive fermion deter
nants which mimic the correct physics for smallms @2#.

Until we have a satisfactory way of dealing with fini
baryon-number density, it is of interest to study mod
which exhibit some of the anticipated properties of QCD
0556-2821/2002/66~1!/014508~11!/$20.00 66 0145
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finite quark/baryon-number density but which have real po
tive fermion determinants. One such model is 2-color QC
at finite quark-number chemical potential (m). This theory
exhibits diquark condensation form sufficiently large@4–9#.
Effective Lagrangians and chiral perturbation theory ana
ses of this theory display similar behavior, and give quan
tative predictions for the nature of this transition and t
equation of state in the neighborhood of this critical po
@10,11#. These predictions have been validated in the stro
coupling limit of 2-color QCD at finitem by Aloisio et al.
@8#. Formation of such condensates has been suggeste
QCD at large enoughm @12–16#. There is, of course, one
crucial difference. The condensate for 2-color QCD is a co
singlet, the symmetry breaking is realized in the Goldsto
mode and this theory exhibits superfluidity. For true, 3-co
QCD, the condensate is, of necessity, colored, the symm
breaking is realized in the Higgs mode and this theory
hibits color superconductivity.

The quenched approximation, i.e. the approximation
setting the fermion determinant to unity, has proved use
for calculating hadron spectra and matrix elements. At fin
temperatures it shows the deconfinement transition at wh
chiral symmetry is restored, as does the full theory. Howev
since the order of this transition and the equation of state
flavor dependent, it yields no useful information on the
issues. Where it can be used, its principal advantage is th
reduces the computing requirements by several orders
magnitude. For QCD at finite quark-number chemical pot
tial, the quenched approximation was even more appea
since it avoids the problem of the complex fermion determ
nant. Unfortunately, it was soon discovered that it does
produce the correct physics@17–19#. Whereas it is believed
that asm is increased, the first phase transition should oc
for m;mN/3, the quenched theory showed a transition
m'mp/2. This was realized to indicate that the quench
theory should be considered as the zero-flavor limit o
theory with an equal number of quark flavors with quar
number11 and with quark-number21, rather than of a
©2002 The American Physical Society08-1
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theory where all the quarks have quark number11. This
was implicit in this early work@17–19#, and was made ex
plicit in terms of random matrix models by Stephanov@20#.

Since QCD at finite isospin chemical potential has eq
numbers of quarks withI 351 1

2 and with I 352 1
2 , it thus

should be expected to admit a sensible quenched approx
tion. What one immediately realizes is that earlier studies
quenched QCD at finite quark-number chemical poten
@17–19,21# can now be reinterpreted as studies of quenc
QCD at finite isospin chemical potential.

Now, however, we can include an explicitI 3 violating
interaction which makes the Dirac operator positive defin
~rather than positive semi-definite! giving better convergence
for our inversion algorithm, and allowing us to measure
I 3-breaking pion condensate directly. Similarly, in 2-col
QCD, since quarks and antiquarks belong to the same re
sentation~the fundamental! of SU(2)color , it too should
have a sensible quenched approximation. In fact, we see,
the same property that gives these theories real positive
mion determinants that allows quenched approximatio
This is not surprising, since all a positive fermion determ
nant does is to reweight the contributions. This contrasts w
a determinant where the sign of the real part changes
contributions from different configurations can~and in the
case of QCD at finitem must! cancel.

Once one has determined that each of these theories
dergoes a second order transition to a state characterized
condensate which spontaneously breaks the charge cou
to the chemical potential, it is useful to examine the scal
properties of the order parameter and certain composite
erators in the vicinity of the critical point and to obtain th
critical exponents. This allows one to write down an equat
of state for the system. Such equations of state are impo
for modeling neutron stars. Of course there one need
work at finite baryon-number chemical potential as well. E
fective Lagrangians and chiral perturbation theory throu
1-loop suggest that we should see mean field scaling
this critical point@1,10,11#.

We have measured the pion condensates, chiral con
sates and isospin densities as functions of isospin chem
potential (m I) and the explicit isospin breaking parameterl
on 123324 and 164 quenched QCD gauge configurations
b56/g255.7, and on 84 quenched gauge configurations
b55.5. Both show evidence for the expected mean-fi
scaling. In addition we have measured the diquark cond
sate, chiral condensate and quark-number density on a s
84 and 124 quenched 2-color QCD configurations withb
54/g252.0. Here mean-field scaling is again favored.

In Sec. II we present our actions and their relevant sy
metries. Section III describes our simulations and resu
Critical scaling analyses are presented in Sec. IV. Disc
sions and conclusions are presented in Sec. V.

II. ACTIONS AND SYMMETRIES

The staggered fermion part of the action for lattice QC
with degenerateu andd quarks at a finite chemical potentia
m I for isospin (I 3) is
01450
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Sf5 (
sites

†x̄@D” ~t3m I !1m#x1 ilex̄t2x‡ ~1!

whereD” (m) is the standard staggeredD” with links in the1t
direction multiplied bye(1/2)m and those in the2t direction
multiplied by e2(1/2)m. The explicit symmetry breaking term
ilex̄t2x, the lattice equivalent ofilc̄g5t2c, is in a direc-
tion in which theI 3 symmetry is expected to break spont
neously form I sufficiently large. This term is necessary
order to observe spontaneous symmetry breaking from a
nite lattice. We will be interested in the limitl→0. We will
present a detailed discussion of the symmetries of this the
in a forthcoming paper on our simulations with dynamic
quarks. The Dirac operator

M5FD” ~m I !1m le

2le D” ~2m I !1mG ~2!

has determinant

detM5det@A †A1l2# ~3!

where we have defined

A[D” ~m I !1m. ~4!

We note that this determinant is positive forlÞ0, as prom-
ised. Observables we measure include the chiral conden

^c̄c&⇔^x̄x&, ~5!

the charged pion condensate

i ^c̄g5t2c&⇔ i ^x̄et2x& ~6!

and the isospin density

j 0
35

1

V K ]Sf

]m I
L . ~7!

The quark action for 2-color QCD with one stagger
quark is

Sf5 (
sites

H x̄@D” ~m!1m#x1
1

2
l@xTt2x1x̄t2x̄T#J ~8!

whereD” (m) is the normal staggered covariant finite diffe
ence operator withm introduced by multiplying the links in
the1t direction byem and those in the2t direction bye2m.
The superscriptT stands for transposition. The term propo
tional to l explicitly breaks quark-number symmetry, an
again we shall be interested in the limitl→0. The symme-
tries of this action and the positivity of the determinant a
Pfaffian have been discussed extensively in previous w
on dynamical quark simulations and will not be repea
here@4–7#.

The observables we measure include the chiral cond
sate

^x̄x&5^c̄c&, ~9!
8-2
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QUENCHED LATTICE QCD AT FINITE ISOSPIN . . . PHYSICAL REVIEW D66, 014508 ~2002!
the diquark condensate

^xTt2x& ~10!

and the quark-number density

j 05
1

V K ]Sf

]m L . ~11!

III. QUENCHED SIMULATIONS AT FINITE CHEMICAL
POTENTIALS

A. Quenched QCD at finite isospin chemical potential

We have calculated quark propagators at a finite chem
potentialm I for the third component,I 3, of isospin from a
noisy source on an ensemble of 123324 and 164 quenched
gauge field configurations atb55.7 and on 84 quenched
gauge field configurations atb55.5. From these propagato
we obtained stochastic estimators for the pion condens
the chiral condensate and the isospin density as function
m I and theI 3 breaking parameterl. We chosel,,m, since
we are interested in the limitl→0.

Let us first consider theb55.7 calculations. We gener
ated 100b55.7 123324 equilibrated configurations sep
rated by 1000 sweeps consisting of 9 overrelaxation swe
followed by 1 10-hit metropolis sweep repeated 100 tim
which appeared to generate relatively independent confi
rations. On each of these configurations we obtained a
chastic estimate ofi ^x̄et2x&,^x̄x& and j 0

3 using a single
noisy source, form50.025, l50.0025,0.005,0.0075~and
l50 for m I,mc) and m I50.0,0.1,0.2,0.3,0.35,0.4,0.45
0.5,0.55,0.6,0.7,0.8,0.9,1.0,1.2,1.6,1.8,2.0,2.1. The fact
we used the same set of configurations and noise vector
each value ofl andm I means that all our ‘‘data’’ points are
strongly correlated. We also measured the pion mass am
5l50 using a wall source, on these configurations ga
fixed to Coulomb gauge. We obtainedmp50.441(1). Runs
at l50.0025 were performed on an 84 lattice at selectedm I
values to check that finite size effects were not too large

From these 123324 measurements we determined that
neighborhood ofm I50.45 was of particular interest. We the
increased our spatial volume and performed simulations o
164 lattice, again atb55.7 andm50.025, to allow us to run
at smallerl. Here we generated our quenched configurati
and performed our measurements of the condensates
isospin density using the same hybrid molecular-dynam
code that we use for simulations with dynamical quarks. T
meant that we used an independent set of configurations
each value ofl and m I . 100 independent configuration
separated by 10 molecular-dynamics time units were ge
ated for eachl andm I . ~With no fermions in the updating
10 time units were adequate to decorrelate configuratio
The time increment for updating wasdt50.1 which is ad-
equate without light fermions in the updating.! We chose
l50.000625,0.00125,0.001875,0.0025, and usedm I50.2,
0.25,0.3,0.35,0.375,0.4,0.425,0.45,0.475,0.5,0.525,0.55
0.65,0.7 to adequately cover the region of interest.

The charged pion condensates are shown in Fig. 1. W
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is immediately clear is that the condensate is small for sm
m I . At m I50, the condensate vanishes asl→0. Aloisio
et al. @8# have shown that this vanishing of the condens
extends to small but finitem I . We have performed variou
extrapolations tol50—linear, linear plus cubic, linear plu
quadratic—all of which are based on the predictions of p
tially conserved current analyses and their implementati
in effective~chiral! Lagrangian models. These extrapolatio
suggest that this condensate vanishes out to at leasm I
'0.4. ~the l50 measurements are trivially zero and do n
enter into this discussion!. More importantly, these extrapo
lation schemes, and those based on power law scaling inl as
would be expected form I at a critical value, indicate that it is
highly probable that this condensate remains finite asl→0
in the infinite volume limit form I*0.5. This indicates tha
there is a phase transition forl50 at somem I5mc with
0.4&m I&0.5, below which the pion condensate is zero a
above which there is a non-zero charged pion conden
which breaksI 3 spontaneously with associated Goldsto
pions. Since there is no abrupt jump atm I5mc , this suggests
that the phase transition is second order. This conden

FIG. 1. ~a! Charged pion condensate,i ^c̄g5t2c&5 i ^x̄et2x&, as
a function ofm I , on a 123324 lattice withb55.7 and quark mass
m50.025. The curves are the predictions from the fits to the4

‘‘data.’’ ~b! Charged pion condensate on a 164 lattice. The solid
lines superimposed on our measurements are the scaling fits
scribed in Sec. IV.
8-3
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increases monotonically up tom I*1.6 after which it falls
rather rapidly approaching zero bym I'2.0. This fall is
clearly a saturation effect, a conclusion that becomes e
more compelling when we look atj 0

3.
Figure 2 shows the chiral condensate as a function ofm I

for both the 123324 and 164 simulations atb55.7,m
50.025. We see that it remains approximately constant a
m50 values form I,mc , above which it commences its de
scent towards zero. What is also clear when looking at
plots of chiral and pion condensates, is that the expecta
from tree level chiral perturbation theory that the condens
merely rotates from the chiral symmetry breaking to the is
pin breaking direction has at best a rather limited range
validity.

The isospin density is presented in Fig. 3. The main f
tures are its slow rise from zero abovemc , followed by a
more rapid rise at largerm I , finally flattening out at its satu
ration value of 3 form I*2.0. Note that the saturation valu
is 3 because we have chosen to normalize it to 8 continu
flavors, the number associated with the action given in S

FIG. 2. The chiral condensate,^c̄c&5^x̄x&, at b55.7 andm
50.025 as a function ofm I . The curves are the predictions from th
fits to the pion condensate.

FIG. 3. Isospin density atb55.7 andm50.025 as a function of
m I . The curves are from the scaling fits to the pion condensate,
are described in Sec. IV.
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II. The value 3 arises from1
2 for each of 3 colors and 2

staggered ‘‘flavors’’ (58 continuum flavors! on each site, the
maximum allowed by Fermi statistics.~For contrast the con-
densates have been normalized to 4 flavors for compar
with those reported in finite temperature simulations.!

We now turn to the consideration of our simulations a
measurements at stronger coupling,b55.5, which were per-
formed on an 84 lattice. Again we chosem50.025 in lattice
units. Here we followed the same procedure as for theb
55.7, 164 simulations, using the same hybrid molecula
dynamics code as used for our dynamical simulations.
used l50.0025,0.005,0.0075~and l50 for m I,mc) in
lattice units. Our chosen m I ~in lattice units!
were 0.0,0.1,0.2,0.3,0.35,0.4,0.45,0.5,0.6,0.7,0.8,0.9,1.0
1.4,1.6,1.8,2.0,2.2. We checked for finite size effects, by
peating these simulations on a 124 lattice for selectedm I
values (0.3,0.4,0.5,0.6,0.8 and 1.0), withl50.0025 where
such effects are expected to be largest, again analyzing
configurations for eachm I . For eachm I the difference be-
tween the 84 and 124 measurements was within 2 standa
deviations of zero.

The I 3-breaking charged pion condensate is plotted in F
4 as a function ofm I , for the l values mentioned above

nd

FIG. 4. ~a! Charged pion condensate as a function ofm I andl
on an 84 lattice with b55.5 andm50.025. The solid lines are the
sigma-model fits described in Sec. IV.~b! The same ‘‘data’’ with fits
to the tricritical scaling function superimposed.
8-4
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QUENCHED LATTICE QCD AT FINITE ISOSPIN . . . PHYSICAL REVIEW D66, 014508 ~2002!
Superficially, this graph appears similar to Fig. 1. Again,
note that any reasonable extrapolation tol50 would sug-
gest that, in this limit, the condensate vanishes form I<0.3,
while it clearly does not form I>0.5, which strongly suggest
that there is a phase transition atm I5mc with mc lying in the
range 0.3–0.5.~We have not performed such extrapolatio
since at largerm I values, statistical fluctuations lead to inco
rect ordering of the condensates for differentls, which
would produce unphysical extrapolations.! However, what
one notices on closer inspection is that the transition is so
what steeper than that forb55.7. We will return to this point
in the next section. Saturation again sets in form I a little
above 2.0.

The chiral condensate shown in Fig. 5 behaves very s
larly to that atb55.7. The main reason for presenting it he
is to display the scaling predictions of Sec. IV. We no
however, that its value is 0.764(7) atl5m I50, so again it
is at most over a limited range ofm I that the condensat
simply rotates from the chiral towards the isospin-break
direction. However, the violations are less severe than ab
55.7. The isospin density also behaves very similarly to t
at weaker couplings, rising steadily from zero asm I is in-
creased pastmc and eventually saturating at 3. This is plotte
in Fig. 6 again, primarily to show the scaling predictio
described in the next section.

B. 2-color QCD at finite quark-number chemical potential

We calculated the quark propagators for fundamen
staggered quarks at finite chemical potentialm from a single
noisy source for each of a set of quenched SU~2! gauge field
configurations atb52.0. These configurations were gene
ated using the hybrid molecular-dynamics code of our
namical quark simulations. We generated 100 such indep
dent gauge configurations spaced by 10 molecular-dynam
time units for eachm andl value. Our simulations useddt
50.1 for the updating. We usedl50.0025,0.005,
0.0075,0.01 ~and zero for m,mc), for m
50.0,0.1,0.15,0.175,0.2,0.21,0.225,0.25,0.3,0.4,0.5,0.6
0.8,0.9,0.95,1.0,1.1, which adequately covered the rang

FIG. 5. The chiral condensate as a function ofm I for quenched
QCD atb55.5 andm50.025. The solid lines are fits derived from
the scaling analyses of Sec. IV.
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interest. Since the 84 ‘‘data’’ showed evidence of finite size
effects, we repeated these simulations on a 124 lattice. From
these noisy quark propagators we obtained stochastic est
tors for the diquark condensate, the chiral condensate and
quark-number density, each normalized to 4 continuum
vors ~1 staggered quark field!.

Figure 7 shows the diquark condensate as a function om
for each of the consideredl values. Form<0.15 it is clear
that any reasonable extrapolation tol50 from finite l
would yield estimates close to zero for the condensate in
limit. For m>0.25, the extrapolated condensate clearly
mains greater than zero forl→0. Thus we deduce that ther
is a phase transition atm5mc from the normal state to one in
which quark number is broken spontaneously by a diqu
condensate, for somemc between 0.15 and 0.25. Such a sym
metry breaking would be accompanied by a diquark Go
stone boson. The reason we have not performed an extr
lation in l is clear when one looks at the behavior of t
condensate atl50.0025 relative to the higher lambdas. W
note that this condensate increases monotonically withm up
to m;0.7 after which it falls due to saturation effects. Qua
tatively this curve is very similar to the corresponding cur
with dynamical quarks. It is also very similar to the curve f
QCD at finite isospin chemical potential atb55.5 especially
when one observes that we should equatem I with 2m. As in
that case, the condensate increases relatively rapidly asm is
increased beyondmc . ~This will be made quantitative in the
next section.! We note that thel50.0025 measurements o
the 84 lattice show signs of finite size effects for largerm
values, which is why we repeated these simulations on a4

lattice where these effects have been considerably reduc
In Fig. 8 we show the chiral condensates as functions

m for the 4l values given above~andl50 for m<0.2).~We
present only the 124 ‘‘data’’ since there is little difference
between the 2 lattice sizes.! For m,mc this graph is consis-
tent with the expectation that thel→0 limit should bem
independent. Asm is increased beyondmc , the condensate
falls. This agrees with the expectation that the condensa
rotating from the chiral to the diquark direction in this r
gion. One notes, however, that this is not a simple rotat

FIG. 6. The isospin density as a function ofm I for quenched
QCD atb55.5 andm50.025. The solid lines are fits derived from
the scaling analyses of Sec. IV.
8-5
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J. B. KOGUT AND D. K. SINCLAIR PHYSICAL REVIEW D66, 014508 ~2002!
since the magnitude of the condensate also increases wm
for largerm values until saturation effects appear. The ge
eral appearance of this curve is similar to those with dyna
cal quarks and to those for QCD at finite isospin density

The quark-number density is shown in Fig. 9 as a funct

FIG. 7. The diquark condensate for quenched 2-color QCD
function ofm andl at b52.0 ~a! on an 84 lattice and~b! on a 124

lattice. The curves are the scaling fits described in Sec. IV.

FIG. 8. Chiral condensate as a function ofm andl, for 2-color
QCD at finite chemical potential for quark number on a 124 lattice.
The solid lines are the fits given in Sec. IV.
01450
-
i-

n

of m for each of the consideredl values mentioned above
~Again, because the finite size effects are small, we pre
only the 124 ‘‘data.’’ ! We see thatj 0 is consistent with zero
for small m, and rises slowly from zero abovemc . The rise
becomes more rapid form*0.6. The density finally saturate
at 2—2 colors of staggered fermions per site—due to Fe
statistics, a finite lattice spacing effect. Note that there
little if any l dependence. This behavior is very similar
that of j 0

3 for our quenched QCD at finitem I , except that
there the saturation value is 3 rather than 2 since this num
merely counts colors. Again we note the similarity of the
quenched results to those obtained with dynamical quark

The qualitative behavior of all the ‘‘data’’ presented
this section is in agreement with what is predicted from
fective Lagrangians using the methods of chiral perturbat
theory. We have noted that the condensate does not sim
rotate from the chiral direction into the quark number
isospin violating direction which was the prediction of tre
level chiral perturbation theory@1,10#, but rather rotates and
increases in magnitude. Such behavior is seen when the
ral perturbation theory includes next-to-leading order ter
including 1-loop contributions@11#. Of course, the one effec
that effective Lagrangians cannot see is saturation, since
do not describe the underlying fermions of the theory. Ho
ever, as we have pointed out, saturation is a finite lat
spacing effect, and is thus of limited interest.

IV. CRITICAL SCALING AND THE EQUATION OF STATE

Analyses of effective Lagrangians using the methods
chiral perturbation theory give predictions for the critical e
ponents and the scaling of the order parameter~s! close to the
critical point mc , both for 2-color QCD at finitem and for
QCD at finitem I . Clearly the tree level analyses will giv
mean-field scaling with critical exponentsbm5 1

2 and d53
@1,10#. More recent analyses have extended these resul
next-to-leading order including 1-loop corrections f
2-color QCD, and find that the critical indices remain at th
mean-field values@11#. However, the tree-level result that th
magnitude of the total condensate is independent ofm andl
no longer holds. One can thus speculate that scaling w

a

FIG. 9. Quark-number densityj 0 as a function ofm andl on a
124 lattice atb52.0. The curve is the prediction from Sec. IV.
8-6
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QUENCHED LATTICE QCD AT FINITE ISOSPIN . . . PHYSICAL REVIEW D66, 014508 ~2002!
mean-field exponents holds to all orders. The effective
grangian for QCD at finitem I is so similar as to lead to th
expectation that this theory also has mean field beha
through next-to-leading order and perhaps to all orde
Simulations of 2-color QCD at finitem in the strong cou-
pling limit @8# also indicate mean-field scaling with a scalin
function consistent with that of lowest order tree-level effe
tive Lagrangian predictions.

The two critical exponents relevant to the scaling of t
charged pion condensate—the order parameter for the
sition we are considering—arebm andd defined as follows.
At m50,

i ^c̄g5t2c&→const~m I2mc!
bm ~12!

asm I→mc1 ~and vanishes form I<mc). For m I5mc ,

i ^c̄g5t2c&→constm1/d ~13!

asm→01. The mean-field values of these 2 exponents
bm5 1

2 and d53. Analogous definitions hold for 2-colo
QCD.

We shall be considering 4 different forms for the scali
function, i.e. for the equation of state, the first 3 of whi
exhibit mean-field scaling. Indeed, sufficiently close to t
critical point they give identical scaling functions for th
order parameter. Our later discussions will make it clear w
in practical applications, it is important to have a more d
tailed knowledge of the scaling function.

The first form for the equation of state is that sugges
by the lowest order tree-level analysis of the effect
Lagrangians of@1,10#, which are of the non-linear sigm
model form. It derives from the value of the parametera
which minimizes the effective potential

E52am2sin2~a!2bmcos~a!2bl sin~a! ~14!

in terms of which

^xTt2x&5b sin~a! ~15!

^x̄x&5b cos~a! ~16!

and

j 052am sin2~a!. ~17!

b is given in terms ofmc anda, namely

b5
2

m
amc

2 ~18!

and the scaling forms of the observables forl50, expressed
in terms of the scaling variablex5m/mc , are

^xTt2x&5bA12
1

x4
~19!

^x̄x&5b
1

x2
~20!
01450
-

or
s.

-

n-

e

y,
-

d

and

j 052amS 12
1

x4D . ~21!

Note that the equivalent form for QCD at finitem I has an
extra factor of 2 in the equation forj 0

3 because of our nor-
malization. Otherwise the forms are identical withm re-
placed withm I . The main deficiency with this form is that i
requires that the magnitude of the condensa
A^xTt2x&21^x̄x&2 to be constant independent ofm andl.
This is not even true in next-to-leading order chiral pert
bation theory@11# and has at best a limited range of validi
in our simulations.

To allow the norm of the condensate to increase withm
and possiblyl, we consider a second form for the equati
of state which is derived from an effective Lagrangian of t
linear sigma model type. This is obtained by extracting
values ofR anda which minimize the effective potential

E5
1

4
R42

1

2
aR22

1

2
bm2sin2~a!2cmRcos~a!

2clR sin~a! ~22!

in terms of which

^xTt2x&5cRsin~a! ~23!

^x̄x&5cRcos~a! ~24!

and

j 05bmR2sin2~a!. ~25!

c is given in terms ofmc by

c5
bmc

2

m
Aa1bmc

2. ~26!

Whenl50 we obtain the scaling forms

^xTt2x&5cAa1bmc
2x22~a1bmc

2!
1

x4
~27!

^x̄x&5cAa1bmc
2 1

x2
~28!

and

j 05bmFa1bmc
2x22~a1bmc

2!
1

x4G . ~29!

Again j 0
3 has an extra factor of 2 for QCD at finitem I .

Next we consider the simplest mean-field equation
state@22# which considers only the scaling of the order p
rameter~diquark or charged pion condensate! near the tran-
8-7
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sition and does not even attempt to address chiral symm
breaking. This is given in terms off which minimizes the
effective potential

E5
1

4
f42

1

2
a~m2mc!f

22b l f. ~30!

In terms off,

^xTt2x&5bf ~31!

and

j 05
1

2
af2. ~32!

Once againj 0
3 has an extra factor of 2 for QCD at finitem I .

When l50 we find the simple scaling relations form
.mc :

^xTt2x&5bAa~m2mc! ~33!

and

j 05
1

2
a2~m2mc!. ~34!

Finally we consider the simplest tricritical equation
state@23#. This is given in terms off which minimizes the
effective potential:

E5
1

6
f62

1

2
a~m2mc!f

22blf. ~35!

In terms off,

^xTt2x&5bf ~36!

and

j 05
1

2
af2. ~37!

Once againj 0
3 has an extra factor of 2 for QCD at finitem I .

When l50 we find the simple scaling relations form
.mc :

^xTt2x&5b@a~m2mc!#
1/4 ~38!

and

j 05
1

2
aAa~m2mc!. ~39!

We start by considering quenched QCD at finitem I at b
55.5. We first fit our measurements of the pion condens
to the form suggested by the non-linear sigma-model ef
tive Lagrangian@Eqs.~14!, ~15!#. The quark mass is treate
as a fitting parameter. Here we find a good fit over the ra
0<m I<0.7, and all 3 l values with mc50.422(2),a
50.0618(8) andm50.0267(2) with a confidence level o
61%. The range limitation is due to the fact that the norm
01450
try

te
c-

e

f

the condensate is only approximately constant over a lim
range ofm I . The departure of the massm from its input
value is presumably also a reflection of this. We then fit o
pion condensate ‘‘data’’ to the form suggested by the lin
sigma-model effective Lagrangian@Eqs. ~22!, ~23!#. With
this form, our fits constrain the mass parameter,m, to be so
close to the input mass that we choose to setm50.025 in our
fits. We then obtain an excellent fit over to the pion conde
sate over the range 0<m I<1.4 with mc50.419(2),a
50.412(7),b50.242(4) and a confidence level of 92%. W
have superimposed these fits on the graphs of our ‘‘data
Fig. 4a. These fits give predictions for the chiral condens
and isospin density@Eqs.~24!, ~25!# which we have included
in the plots of our measurements of these quantities in F
5, 6. The predicted chiral condensate is clearly in go
agreement with our measurements. The predicted iso
density is in good agreement with measurements up tom I

'1.0. Note that the isospin density has been predicted to
proportional tom I

3 at largem I @1# so that the predictions o
Eq. ~25! are guaranteed to break down, even if we did n
have the effects of saturation.

As we noted in Sec. III, the transition appeared sign
cantly steeper than at weaker coupling. For this reason we
fitting our ‘‘data’’ for the pion condensate to the tricritica
scaling form of Eq.~36!. Provided we keep tom I*mc we are
able to obtain good fits to this form. Our best fit, over t
region 0.45<m I<1.0 hasmc50.420(13),a50.27(3) andb
51.44(4) and a confidence level of 60%. We show this fit
Fig. 4b. Except for the fact that this scaling form cannot
the lowm I regime, it provides a good fit to the pion conde
sate. However, the tricritical equation of state also give
prediction for the scaling of the isospin density—Eqs.~37!,
~39!. This square-root scaling is in clear disagreement w
the observed behavior of Fig. 6. For this reason the lin
sigma-model equation of state with its mean-field critic
exponents is preferred.

Let us now turn our attention to our simulations of 2-col
QCD at finitem. First let us consider fits to our 84 measure-
ments. Here we again note that our fits to the non-lin
sigma model scaling form can only be made over a som
what limited domain ofm. This can be extended by using th
linear sigma model scaling forms, but only when we negl
the l50.0025 measurements which show clear signs of
nite size effects at large m. Fitting the l
50.005,0.0075,0.01 ‘‘data’’ we obtained a fit over the ran
0<m<0.7 withmc50.209(1),a50.405(9),b50.71(2) and
a 77% confidence level. To reduce the finite size errors,
pecially at l50.0025, we repeated these simulations on
124 lattice. Here our best fit, obtained using all 4l values
and fitting over the range 0<m<0.4, gave mc
50.2066(4),a50.405(9) andb50.73(1) at a confidence
level of 10%(x2/dof51.3). Although we have reduced ou
finite size effects by going to a larger lattice, we have a
reduced the statistical errors, making the remaining fin
size effects more important. We suspect that this is at le
part of the reason that we have obtained a worse fit on
larger lattice. These fits for the pion condensate are show
Fig. 7. The predictions for the chiral condensate and qua
8-8
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number density which these fits provide are superimpose
the plots of measured values for the 124 lattice in Figs. 8, 9.
It is clear that the prediction for the chiral condensate p
vides good fits to the ‘‘data.’’ The predicted quark-numb
density is also a good fit to the ‘‘data’’ form I<0.4.

We also examined fitting our diquark condensate m
surements on the larger (124) lattice to a tricritical scaling
form @Eq. ~36!#, limiting ourselves tom*mc . Fitting over
the range 0.21<m<0.4 and using all 4l values we obtained
a fit with mc50.207(2),a50.546(7) andb51.33(6). How-
ever,x2/dof53.9 for this fit ~confidence level 331027%).
Hence the linear sigma-model fits of the previous paragr
are preferred.

Finally we turn to the consideration of theb55.7
quenched QCD simulations at finitem I . After producing
‘‘data’’ over the range 0<m I<2.1 for l
50.0025,0.005,0.0075 on a 123324 lattice, we performed
simulations on a 164 lattice over the range 0.2<m I<0.7 at
l50.000625,0.00125,0.001875,0.0025 to probe the tra
tion more closely. Not surprisingly, considering that the no
of the condensate grows rapidly in the broken symme
phase, fits to the non-linear sigma model scaling pro
fruitless. We fit our 164 measurements the linear sigm
model equation of state, treating the quark mass as a fit
parameter. We exclude thel50.000625 measurements fro
our fits since they show clear finite size effects at largerm I .
Our ‘‘best’’ fit to the l50.00125,0.001875,0.0025 measur
ments gives mc50.4500(7),a57.00(1),b50.266(7),m
50.0212(4) withx2/dof51.7 and a confidence level of onl
0.3%. This indicates that while the linear sigma model eq
tion of state remains a good guide to the critical behav
quenched QCD at finitem I at b55.7, the data is beginning
to show small, but non-negligible departures from th
simple form. We have superimposed these fits on the ‘‘da
of Fig. 1 to indicate that they are a good qualitative fit to t
data, even on the 123324 lattice with its largerl values. We
note also that the predictedmc is close to the measured pio
massmp50.441(1). BecausemÞ0.025 in these fits, we do
not expect the predictions for the chiral condensate to
good. In fact, what we see is that the fits are suppres
relative to the data roughly in the ratio of the fitted mass
the input mass (0.025), as shown in Fig. 2. Next we plot
values of j 0

3 predicted using Eq.~25! to compare with mea-
surements in Fig. 3. We see that there is good agreemen
to m I51.0. Finally, we fit the pion condensate atm I50.45,
which is very close tomc , to the scaling form of Eq.~13!.
For this we use the measured values on the 164 lattice atl
50.000625,0.00125,0.001875,0.0025 and those from
123324 lattice atl50.005,0.0075. From this we obtaind
53.25(7) with a confidence level of 27%. Dropping the
largestl values givesd52.88(16) with an 85% confidenc
level. These fits are in good agreement with the mean fi
valued53.

On the 123324 lattice it is impossible to distinguish sca
ing of the pion condensate with the linear sigma model fo
of Eq. ~23! from that of the simple mean-field analysis of E
~31!. However, on the 164 lattice where we probe closer t
the transition, a fit to the simple mean-field form over t
01450
on
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range 0.45<m I<0.7 for the 3 largerl values givesmc

50.428(4),a50.36(1),b51.23(3), with x2/dof53.9, so
the sigma model fit is preferred. The ability to probe
smaller l values indicates that the higher value ofmc re-
quired by the sigma model fit is more probable. In additio
we note that the simple mean-field fit predicts an isos
density which is inconsistent with our measurements.

The effective Lagrangian approach seeks to give
uniform description of both chiral symmetry breakin
and isospin~or quark-number! breaking. Thus we should
only expect physics to be insensitive to the details
the effective Lagrangian or effective potential whe
the quark mass is small enough that the orderm or
equivalently ordermp

2 corrections are small. One measu

of this is how much the chiral condensate^c̄c& at the
quark mass we use differs from its zero mass value.

b55.5, ^c̄c&(m50.0125)50.729(11), ^c̄c&(m50.025)

50.764(7) and^c̄c&(m50.05)50.838(5), so the differ-
ence is ;10% which should be small enough. A
b55.7, ^c̄c&(m50.00625)50.288(3), ^c̄c&(m50.0125)
50.323(2), ^c̄c&(m50.025)50.386(2) and ^c̄c&(m
50.05)50.494(2), so the difference is;50% and the de-
tailed form of the effective potential might be expected to
important. We believe that this is for this reason why t
simple ansatz for the effective potential or equation of st
works so well atb55.5 but shows limitations atb55.7.

We end this section with a discussion of the behavior
different variables which describe the scaling in terms
m(m I). For convenience we express them in terms ofx
5m/mc(m I /mc). The simplest isx21 which is the scaling
variable of the simplest mean-field equation of state. T
next, 1

4 (121/x4), is that of the non-linear sigma model~or
the linear sigma model in the limita→`). The third, 1

6 (x2

21/x4) is that for the linear sigma model in the limit asa
→0. This third form gives a reasonable description of t
scaling ofb55.7 ‘‘data’’ on the 123324 lattice, in the or-
dered (m I>mc) phase. All 3 scaling variables behave ide
tically as x→1, however, a poor choice leads to a sever
curtailed scaling window.x21 and 1

4 (121/x4) already dif-
fer by ;10% at x51.04. x21 and 1

6 (x221/x4) differ by
;10% at x51.08. Thus, for practical reasons, we shou
make a wise choice of scaling variables.

However, we have noted apparent mean-field scaling
our b55.7 pion condensate in the ordered phase both
terms of the simplest mean-field scaling forms where
scaling variable isx21, and in terms of the linear sigm
model form where the scaling variable is approximate
1
6 (x221/x4), out to x;1.8. Only by examining the scaling
very close to the transition and includingm I,mc measure-
ments in the fit, were we able to determine that the lin
sigma model form gave the better description of the tran
tion. The reason for this is that16 (x221/x4) has a point of
inflection atx5A6 1051.467 . . . , atwhich it is again linear
in x. In the neighborhood of this point of inflection16 (x2

21/x4)}x2x0, wherex05(5/8)A6 1050.917 . . . , sothis de-
fines anotherlarger region where1

6 (x221/x4) is linear inx,
and the linear approximation has an intercept not too
8-9
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from the true critical point. It is this linearity, which gives u
an ~apparent! extended scaling regime. Over the regi
where the scaling variable is approximately linear inx, we
will observe scaling with the correct exponent,bm . Of
course, the coefficient of this apparent scaling form will d
fer from the correct coefficient.

It is instructive to also look at the properties of1
4 (1

21/x4) as a function ofx. It clearly does not have a point o
inflection, however, its square has a point of inflection ax
5A4 9/551.158 . . . about which it too becomes linear. Th
linear approximation has its intercept atx05(9/10)A4 9/5
51.042 . . . ,which is again near to the critical point. Since
is the square of the scaling variable that has this poin
inflection, this leads to apparent scaling with a critical exp
nent,bm of half the true value. In the case of a mean-fie
critical point this pseudo-exponent will be14 , which isbm for
a tricritical point. If we restrict ourselves to the ordere
phase, it is possible to fit the order parameter for QCD
finite m I at b55.5 and that for 2-color QCD at finitem at
b52.0 on the smaller (84) lattice to a tricritical scaling
form—Eq. ~35!. Hence one should be suspicious if an ord
parameter scales with a critical exponent which is half
what one expects.

V. DISCUSSION AND CONCLUSIONS

Gauge theories with fermions at finite chemical poten
for a conserved charge, which have positive fermion de
minants, have sensible quenched approximations. T
contrasts with QCD at a finite chemical potential f
baryon/quark number, where the quenched limit is really
quenched limit for QCD with equal numbers of quarks w
quark-number61 and not that for QCD with all quarks hav
ing quark-number11.

We have studied the quenched versions of QCD at fi
chemical potential (m I) for isospin, and of 2-color QCD a
finite chemical potential (m) for quark number. We included
an explicit symmetry breaking term with strengthl in each
case. What we find is that forl→0 this symmetry—I 3 for
QCD at finitem I , quark-number for 2-color QCD—is unbro
ken for smallm(m I). In each case there is a critical value f
m I or m (mc say!, above which a condensate forms whi
breaks the relevant symmetry spontaneously. In our QCD
finite m I measurements atb55.7 on a 123324 lattice, we
also measured the pion mass atm I5l50, and found it to be
close to our estimates formc as expected. In QCD at finitem I
this is a charged pion condensate while for 2-color QCD i
a diquark condensate. This is precisely the behavior expe
and seen for the full~unquenched! theories. The transition
appears to be second order as was observed and expec
the full theories. For highm I(m), saturation effects due to
Fermi statistics drive the condensates to zero which is
observed for the full theories and is a finite lattice spac
effect. Thus these quenched theories are useful to study s
they require far less computing time than the full theories
these studies were performed on 400 MHz PC’s sup
mented with a few days running on an IBM SP whereas
full theories require many months of IBM SP running.

We studied the scaling of the order parameter,i ^c̄g5t2c&
01450
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~the charged pion condensate!, for QCD at finite m I , and
^xTt2x& ~the diquark condensate! for 2-color QCD at finite
m and saw evidence that the mean field equation of state
the correct one in the neighborhood of the critical point. T
required using scaling forms implied by effective Lagrangi
analyses, in order to use scaling variables which maxim
the scaling window and make scaling analyses practical.
cause of this sensitivity to the choice of scaling variabl
these conclusions cannot be considered conclusive.~In fact,
for QCD atb55.5 it was necessary to examine the scali
of the isospin density to differentiate between mean-field a
tricritical scaling.! In the quenched theory, it might be fea
sible to extend these simulations to much larger lattices
much smallerl values, enabling one to probe sufficient
close to the critical point to be insensitive to the choice
scaling variables. However, here one runs the risk of be
frustrated by the pathologies of quenching@24#. For the dy-
namical theories the expense~in computing resources! of
simulating on large lattices with very smalll values is pro-
hibitive. We have noted that even by couplings as small
that atb55.7, the simple scaling forms suggested by effe
tive Lagrangian analyses are barely adequate at the q
mass we use (m50.025 in lattice units!, and a better choice
is desirable and probably essential at weaker couplin
While it is easy enough to produce variant forms of the
fective potential and the equations of state they imply, o
needs a form which improves the fits, without introduci
too many extra parameters and preferably one motivated
physics or chiral perturbation theory.

On examining the detailed properties of proposed sca
variables, we have found that a certain class has a poin
inflection, when expressed in terms of the simplest sca
variable. This leads to an extended region of apparent sca
which is a precursor of true scaling. In dynamical theor
where one cannot probe the true scaling window, this mi
be the best indicator we have of the nature of critical scali
However, as we have noted, certain other proposed sca
variables which lack such a point of inflection, have squa
which do have such a point of inflection, leading to appare
scaling with a critical indexbm which is half of the true
value, potentially leading one to erroneous conclusions.

Once the fit to the pion or diquark condensate provid
the parameters for the appropriate effective potential,
provides a prediction for the isospin or quark-number d
sity. These predictions are in good agreement with our dir
measurements of these ‘‘charge’’ densities within the sca
window. In addition, the effective potential provides a pr
diction of the chiral condensate. For quenched QCD at fin
m I at b55.5 and quenched 2-color QCD at finitem at b
52.0, where the fits require a quark massm in good agree-
ment with the input value (m50.025), the predicted chira
condensates are in good agreement with the measured
ues. In quenched QCD at finitem I at b55.7, where the fits
requirem to be appreciably lower than the input value, t
predictions for the corresponding chiral condensate are s
larly lower. This we tentatively attribute to the fact that th
higher order terms in a chiral expansion~expansion in pow-
ers of m) are large atb55.7,m50.025. Where the predic
tions from our proposed equation of state are in good ag
8-10
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ment with measurements, they support our claim that ther
a critical point atm(m I)5mc , l50, with mean field expo-
nents.

We have just completed further simulations of 2-co
QCD at finite quark-number chemical potential with dynam
cal quarks which examine the critical scaling at the transit
from the normal phase to the diquark-condensed phas
which we also see evidence for mean-field scaling@25#. In
addition, we are performing simulations of QCD at fini
chemical potential for isospin(I 3) @2,3# and see evidence fo
mean field scaling@3#.

We are extending the work of this paper to include
strange quark with its own chemical potential. This work w
study the competition between charged pion and kaon c
densation as the 2 chemical potentials are varied inde
dently. Chiral perturbation theory predicts that the pha
-

n

n

,

.
B
,

ys

01450
is

r
-
n
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n-
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with pion and kaon condensates are separated by a first o
phase transition. Here the quenched approximation
make it easy to study the phase structure of the plane defi
by the 2 chemical potentials.
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