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Quenched lattice QCD at finite isospin density and related theories
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We study quenched QCD at finite chemical potentialfor the third component of isospin and quenched
two-color QCD at finite chemical potential for quark number. In contrast with the quenched approximation
to QCD at finite quark-number chemical potential, the quenched approximations to these theories behave
similarly to the full theories. The reason is that these theories have real positive fermion determinants. In both
of these theories there is some critical chemical potential above which the charge coupled to the chemical
potential is spontaneously broken. In each case, the transition appears to be second order. We study the scaling
properties near the critical point using scaling functions suggested by efféckiral) Lagrangians and find
evidence for scaling with mean-field critical exponents in each case. The subtleties associated with observing
the critical scaling of these theories are discussed.
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[. INTRODUCTION finite quark/baryon-number density but which have real posi-
tive fermion determinants. One such model is 2-color QCD

The Relativistic Heavy lon Collider (RHIC) at at finite quark-number chemical potentigk). This theory
Brookhaven and the CERN heavy-ion program give us thexhibits diquark condensation far sufficiently large[4—9].
possibility of producing hadronic matter at high temperature€ffective Lagrangians and chiral perturbation theory analy-
and finite baryon number density. Cold nuclear matter—ses of this theory display similar behavior, and give quanti-
hadronic matter at finite baryon number density—exists irtative predictions for the nature of this transition and the
neutron stars. In addition, the bulk properties of large nucleequation of state in the neighborhood of this critical point
should be well described as nuclear matter. Because of Co(i20,11]. These predictions have been validated in the strong
lomb interactions, nuclear matter is not only at finite baryon-coupling limit of 2-color QCD at finitew by Aloisio et al.
number density but also finif@egative isospin (3) density.  [8]. Formation of such condensates has been suggested for
Finally, it has been suggested that sufficiently dense nucled®CD at large enoughe [12—16. There is, of course, one
matter will also have finite strangeness density. It is thereforerucial difference. The condensate for 2-color QCD is a color
of interest to study QCD at finite baryon-number, isospin andsinglet, the symmetry breaking is realized in the Goldstone
strangeness densities both at zero and finite temperature. mode and this theory exhibits superfluidity. For true, 3-color

Such finite densities are achieved by introducing a chemiQCD, the condensate is, of necessity, colored, the symmetry
cal potential for the relevant charge operator. Unfortunatelybreaking is realized in the Higgs mode and this theory ex-
the introduction of a finite chemical potential for quark or hibits color superconductivity.
baryon number leads to a complex fermion determinant The quenched approximation, i.e. the approximation of
which precludes the use of standard simulation methodsetting the fermion determinant to unity, has proved useful
based on importance sampling. Introducing a chemical pofor calculating hadron spectra and matrix elements. At finite
tential w, for the third componentlg) of isospin leaves the temperatures it shows the deconfinement transition at which
determinant real and non-negative. Adding the additionathiral symmetry is restored, as does the full theory. However,
(smal) 15 breaking term needed to observe spontaneous isosince the order of this transition and the equation of state are
pin breaking on a finitélattice) volume makes this determi- flavor dependent, it yields no useful information on these
nant strictly positive and simulations possible. Effective La-issues. Where it can be used, its principal advantage is that it
grangian analyses of this theory have indicated that it shoulteduces the computing requirements by several orders of
undergo a phase transition at=m,, to a state wheré; is  magnitude. For QCD at finite quark-number chemical poten-
spontaneously broken by a charged pion condensate with dial, the quenched approximation was even more appealing,
accompanying Goldstone mod&]. We are currently per- since it avoids the problem of the complex fermion determi-
forming simulations of this theorj2,3]. Adding, in addition, nant. Unfortunately, it was soon discovered that it does not
a finite chemical potentialy() for strangeness again makes produce the correct physi¢$7—-19. Whereas it is believed
the fermion determinant complex. In this case, howeverthat asu is increased, the first phase transition should occur
there are related theories with real positive fermion determifor x~my/3, the quenched theory showed a transition for
nants which mimic the correct physics for smal [2]. pm~m_/2. This was realized to indicate that the quenched

Until we have a satisfactory way of dealing with finite theory should be considered as the zero-flavor limit of a
baryon-number density, it is of interest to study modelstheory with an equal number of quark flavors with quark-
which exhibit some of the anticipated properties of QCD atnumber +1 and with quark-number-1, rather than of a
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theory where all the quarks have quark numbet. This _ -
was implicit in this early wor{17—19, and was made ex- Sf:S%S IX[D(7am) +m]x+iNexTax] (1)
plicit in terms of random matrix models by Stephan@@].

Since QCD at finite isospin chemical potential has equaivhereld () is the standard stagger@dwith links in the +t
numbers of quarks withs=+3 and withI3=—3, it thus  direction multiplied bye”?* and those in the-t direction
should be expected to admit a sensible quenched approximenultiplied by e~ “2#_ The explicit symmetry breaking term

tion. What one immediately realizes is that earlier studies of)\E;sz' the lattice equivalent df)\nystlp, is in a direc-
quenched QCD at finite quark-number chemical potentiation in which thel ; symmetry is expected to break sponta-
[17-19,2] can now be reinterpreted as studies of quenchedéeously foru, sufficiently large. This term is necessary in
QCD at finite isospin chemical potential. order to observe spontaneous symmetry breaking from a fi-
Now, however, we can include an explidi§ violating nite lattice. We will be interested in the limit—0. We will
interaction which makes the Dirac operator positive definitepresent a detailed discussion of the symmetries of this theory

(rather than positive semi-definjtgiving better convergence in a forthcoming paper on our simulations with dynamical
for our inversion algorithm, and allowing us to measure thequarks. The Dirac operator

| -breaking pion condensate directly. Similarly, in 2-color
QCD, since quarks and antiquarks belong to the same repre- D(w)+m Ne

sentation the fundamental of SU(2)coior it too should M= e B(—p+m )
have a sensible quenched approximation. In fact, we see, it is

the same property that gives these theories real positive fefas determinant

mion determinants that allows quenched approximations.

This is not surprising, since all a positive fermion determi- detM=def AT A+\?] 3
nant does is to reweight the contributions. This contrasts with )

a determinant where the sign of the real part changes an{here we have defined

contributions from different configurations cdand in the .

case of QCD at finitg: mush cancel. A=D(p)+m. )

Once one has determined that each of these theories UVe note that this determinant is positive for 0, as prom-

dergoes a second order transition to a state characterized by, d. Observables we measure include the chiral condensate
condensate which spontaneously breaks the charge couple

to the c_hemlcal potential, it is useful to examine the sqalmg (o) (xx), (5)
properties of the order parameter and certain composite op-

erators in the vicinity of the critical point and to obtain the the charged pion condensate

critical exponents. This allows one to write down an equation

of state for the system. Such equations of state are important i(PysTot) i (xeTox) (6)
for modeling neutron stars. Of course there one needs to

work at finite baryon-number chemical potential as well. Ef-and the isospin density

fective Lagrangians and chiral perturbation theory through

1-loop suggest that we should see mean field scaling near .3_1 ﬂ_Sf )
this critical point[1,10,11. o=y \ o |

We have measured the pion condensates, chiral conden-
sates and isospin densities as functions of isospin chemical The quark action for 2-color QCD with one staggered
potential (1,) and the explicit isospin breaking paramexer quark is
on 123>2<24 and 16 queénched QCD gauge configurations at 1
B=6/g°=5.7, and on 8 quenched gauge configurations at _ n - T T
B=5.5. Both show evidence for the expected mean-field S S%S[X[D(M)+m]x+ ZA[X T2XTXT2X ]] ®
scaling. In addition we have measured the diquark conden-
sate, chiral condensate and quark-number density on a set WhereD(u) is the normal staggered covariant finite differ-
8* and 12 quenched 2-color QCD configurations with ~ €nce operator withw introduced by multiplying the links in
:4/92:2_0_ Here mean-field Sca”ng is again favored. the +t direction bye" and those in the-t direction bye”‘.

In Sec. Il we present our actions and their relevant symThe superscripT stands for transposition. The term propor-
metries. Section Ill describes our simulations and resultstional to X explicitly breaks quark-number symmetry, and
Critical scaling analyses are presented in Sec. IV. Discusagain we shall be interested in the limit-0. The symme-
sions and conclusions are presented in Sec. V. tries of this action and the positivity of the determinant and

Pfaffian have been discussed extensively in previous work
on dynamical quark simulations and will not be repeated

II. ACTIONS AND SYMMETRIES here[4-7]. _ ,
The observables we measure include the chiral conden-

The staggered fermion part of the action for lattice QCDsate
with degenerat& andd quarks at a finite chemical potential

w, for isospin (3) is o) =(ww), 9
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the diguark condensate SU(3) quenched =5.7 m=0.025 12°x24 lattice
(x"2x) (10) i ]
1.00 - i
and the quark-number density i ]
A 075 -
. 1]05 K [ ]
]Ozv < (?—> . (11 2 [ i
M |3~ 0.50 — 5 i
” i Yo —— A=0.0000 ]
lll. QUENCHED SIMULATIONS AT FINITE CHEMICAL 0.25} SN o
POTENTIALS A O —— A=0.0075 = ]
A. Quenched QCD at finite isospin chemical potential 000— el b Ly
00 05 1.0 15 20
We have calculated quark propagators at a finite chemical o Hy
potential u, for the third componentl s, of isospin from a
noisy source on an ensemble off¥24 and 18 quenched SU(S] et -5 H-0028 1o 18tHies
gauge field configurations g8=5.7 and on 8 quenched Odr 6 —— X=0.000825
gauge field configurations #t=5.5. From these propagators [ O —— x=0.001250
we obtained stochastic estimators for the pion condensate, 03[0 —— A=0.001875 ]
the chiral condensate and the isospin density as functions of T A —— A=0.002000 2
wm, and thel 5 breaking parametex. We chosen <<m, since s
we are interested in the limk—0. S ozl 7 4
Let us first consider thg8=5.7 calculations. We gener- |§ I e ]
ated 1008=5.7 12x 24 equilibrated configurations sepa- = i /] ]
rated by 1000 sweeps consisting of 9 overrelaxation sweeps 0.1 “r/ -
followed by 1 10-hit metropolis sweep repeated 100 times, I /] ]
which appeared to generate relatively independent configu- | |

rations. On each of these configurations we obtained a sto- 0.0 L=

chastic estimate of(yer,x),(xx) and j3 using a single b Ly
noisy source, form=0.025, A =0.0025,0.005,0.007%and
A=0 for w;<wmc) and u,;=0.0,0.1,0.2,0.3,0.35,0.4,0.45,  FIG. 1. (a) Charged pion condensatérys i) =i(xerox), as
0.5,0.55,0.6,0.7,0.8,0.9,1.0,1.2,1.6,1.8,2.0,2.1. The fact thatfunction ofy,, on a 13X 24 lattice with3=5.7 and quark mass
we used the same set of configurations and noise vectors for=0.025. The curves are the predictions from the fits to tife 16
each value of andu, means that all our “data” points are “data.” (b) Charged pion condensate on a’ léttice. The solid
strongly correlated. We also measured the pion mags at lines superimposed on our measurements are the scaling fits de-
=\=0 using a wall source, on these configurations gaugé&cribed in Sec. IV.
fixed to Coulomb gauge. We obtained,=0.4411). Runs
at A =0.0025 were performed on arf &ttice at selecteg, is immediately clear is that the condensate is small for small
values to check that finite size effects were not too large. u«,. At u,=0, the condensate vanishes &s-0. Aloisio
From these 12x 24 measurements we determined that theet al. [8] have shown that this vanishing of the condensate
neighborhood ofx; = 0.45 was of particular interest. We then extends to small but finitg,, . We have performed various
increased our spatial volume and performed simulations on extrapolations to.=0—linear, linear plus cubic, linear plus
16* lattice, again a3=5.7 andm=0.025, to allow us to run quadratic—all of which are based on the predictions of par-
at smaller\. Here we generated our quenched configurationsgially conserved current analyses and their implementations
and performed our measurements of the condensates aittleffective(chiral) Lagrangian models. These extrapolations
isospin density using the same hybrid molecular-dynamicsuggest that this condensate vanishes out to at least
code that we use for simulations with dynamical quarks. This=0.4. (the A=0 measurements are trivially zero and do not
meant that we used an independent set of configurations fanter into this discussionMore importantly, these extrapo-
each value ofA and u,. 100 independent configurations lation schemes, and those based on power law scaliRgas
separated by 10 molecular-dynamics time units were genewould be expected fog, at a critical value, indicate that it is
ated for each\ and w,. (With no fermions in the updating, highly probable that this condensate remains finite. asO
10 time units were adequate to decorrelate configurationsn the infinite volume limit foru,=0.5. This indicates that
The time increment for updating wak=0.1 which is ad- there is a phase transition far=0 at someu,= u. with
equate without light fermions in the updatingMe chose 0.4<u,=<0.5, below which the pion condensate is zero and
A=0.000625,0.00125,0.001875,0.0025, and ugge-0.2, above which there is a non-zero charged pion condensate
0.25,0.3,0.35,0.375,0.4,0.425,0.45,0.475,0.5,0.525,0.55,0.%&hich breaksl; spontaneously with associated Goldstone
0.65,0.7 to adequately cover the region of interest. pions. Since there is no abrupt jumpat= ., this suggests
The charged pion condensates are shown in Fig. 1. Whahat the phase transition is second order. This condensate
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SU(3) quenched f=5.7 m=0.025 SU(3) quenched =5.5 m=0.025 8* lattice
“s{gg% B 1.00 - B
= * —= A=0.001250 ]
0.3 ) X —— A=0.002500"] A owsl ]
A i 0 —— A=0.005000 1 - ]
e [ 0 —— A=0.007500 ] o ]
SR 7] IS 050 .
r Sl > A 0000 X
i \ ] i X —— A=0.0025 .
0.1} . 0255"f] © —— A=0.0050 -
I ] o O —— A=0.0075
oo —+—+—+——t— i L 0.00"‘il""l""l""|‘§<
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My d M
FIG. 2. The chiral condensatéys)=(xx), at B=5.7 andm SU(3) quenched =5.5 m=0.025 8* lattice
=0.025 as a function g, . The curves are the predictions from the
fits to the pion condensate. ]
1.00 - -
increases monotonically up ta,=1.6 after which it falls 1
rather rapidly approaching zero by,~2.0. This fall is 4 0751 .
clearly a saturation effect, a conclusion that becomes even & ]
more compelling when we look ag. |§ —_— B
Figure 2 shows the chiral condensate as a functiop,of & S A=0.0000 ]
for both the 18x24 and 16 simulations atB=5.7m X —— A=0.0025 1
=0.025. We see that it remains approximately constant at its 0.25 0 ;fg-ggig 7]
w=0 values foru,; < u., above which it commences its de- , e ]
scent towards zero. What is also clear when looking at the V53] SO PP I PP T

0.0 0.5 1.0 1.5 2.0

plots of chiral and pion condensates, is that the expectation
b My

from tree level chiral perturbation theory that the condensate
merely rotates from the chiral symmetry breaking to the isos- g 4. (a) Charged pion condensate as a functionugfand
pin breaking direction has at best a rather limited range of, an & Jattice with 8=5.5 andm=0.025. The solid lines are the

validity._ ) o o ) sigma-model fits described in Sec. () The same “data” with fits
The isospin density is presented in Fig. 3. The main feato the tricritical scaling function superimposed.

tures are its slow rise from zero aboyg, followed by a

more rapid rise at largew, , finally flattening out at its satu- || The value 3 arises fromt for each of 3 colors and 2

ration value of 3 foru,;=2.0. Note that th_e sz_aturation ve_llue staggered “flavors” & 8 continuum flavorson each site, the

is 3 because we have chosen to normalize it to 8 continuuaximum allowed by Fermi statisticéFor contrast the con-

flavors, the number associated with the action given in Seyensates have been normalized to 4 flavors for comparison
with those reported in finite temperature simulatipns.

SU(3) quenched $=5.7 m=0.025 We now turn to the consideration of our simulations and
3F e = measurements at stronger couplipgs 5.5, which were per-
i . . formed on an 8 lattice. Again we chosen=0.025 in lattice
% __ x\=0.001250 ] units. Here we followed the same procedure as for ghe
— =5.7, 16 simulations, using the same hybrid molecular-
B[ X —— A=0.002500 N dynamics code as used for our dynamical simulations. We

O —— A=0.005000

5s [0 —— A=0.007500 s _ used A =0.0025,0.005,0.007Fand A=0 for u<pc) in

lattice units. Our chosen u, (in lattice unitg
were 0.0,0.1,0.2,0.3,0.35,0.4,0.45,0.5,0.6,0.7,0.8,0.9,1.0,1.2,
1.4,1.6,1.8,2.0,2.2. We checked for finite size effects, by re-
peating these simulations on a“*lRttice for selectedu,
values (0.3,0.4,0.5,0.6,0.8 and 1.0), wkhk-0.0025 where
such effects are expected to be largest, again analyzing 100
configurations for eachu,. For eachu, the difference be-
tween the 8 and 12 measurements was within 2 standard
FIG. 3. Isospin density g8=5.7 andm=0.025 as a function of ~deviations of zero.
;- The curves are from the scaling fits to the pion condensate, and Thel 3-breaking charged pion condensate is plotted in Fig.
are described in Sec. IV. 4 as a function ofu,, for the A values mentioned above.

0.0 0.5 1.0 1.5 2.0
M1
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SU(3) quenched §=5.5 m=0.025 8* lattice SU(3) quenched f=5.5 m=0.025 8* lattice
. ; y 3F ; ]
L ! 2T L \ ) "
100 X —— A=0.0025 _] L X —— A=0.0025
i O —— A=0.0050 1 L O —— A=0.0050
_ 0 —— A=0.0075 b O —— A=0.0075
0.75 &= i . n
AN
$‘ - Mo
IS [ 28
V. 0501
0.25F
0.00 b
0.
FIG. 5. The chiral condensate as a functiorugffor quenched FIG. 6. The isospin density as a function @f for quenched
QCD atB=5.5 andm=0.025. The solid lines are fits derived from QCD atB=5.5 andm=0.025. The solid lines are fits derived from
the scaling analyses of Sec. IV. the scaling analyses of Sec. IV.

interest. Since the 8“data” showed evidence of finite size
effects, we repeated these simulations on ‘alagice. From
these noisy quark propagators we obtained stochastic estima-
tors for the diquark condensate, the chiral condensate and the
quark-number density, each normalized to 4 continuum fla-
vors (1 staggered quark field

Figure 7 shows the diquark condensate as a functiqu of
for each of the considerex values. Foru<0.15 it is clear

Superficially, this graph appears similar to Fig. 1. Again, we
note that any reasonable extrapolation\te 0 would sug-
gest that, in this limit, the condensate vanishesfp0.3,
while it clearly does not fop,=0.5, which strongly suggests
that there is a phase transitiongt= u. with . lying in the
range 0.3—0.5(We have not performed such extrapolations
since at largej, values, statistical fluctuations lead to incor-

t i f th tes f iff hich : -
rect ordering of the condensates for differens, whic that any reasonable extrapolation =0 from finite \

would produce unphysical extrapolation$lowever, what Id vield estimat | A for th d te in thi
one notices on closer inspection is that the transition is som vould yield esumates close to zero for the condensate in this
what steeper than that f@=5.7. We will return to this point |m|_t. For u=0.25, the extrapolated condensate clearly re-
in the next section. Saturation again sets in fqra little mains greater than zero far—0. Thus we deduce that there

above 2.0 is a phase transition at= u. from the normal state to one in

The chiral condensate shown in Fig. 5 behaves very simi\-NhiCh quark number is broken spontaneously by a diquark

larly to that at3=5.7. The main reason for presenting it here condensate, for some; between 0.15 and 0.25. Such a sym-

is to display the scaling predictions of Sec. IV. We note metry breaking would be accompanied by a diquark Gold-
however, that its value is 0.764(7) &t =0, so again it 'stone boson. The reason we have not performed an extrapo-

is at most over a limited range of, that the condensate lation in N\ is clear when one looks at the behavior of the
simply rotates from the chiral towards the isospin-breakingc i ) . .
direction. However, the violations are less severe thag at note that this condensate increases monotonically withp
=5.7. The isospin density also behaves very similarly to tha%
at weaker couplings, rising steadily from zero @sis in-
creased pagi. and eventually saturating at 3. This is plotted
in Fig. 6 again, primarily to show the scaling predictions
described in the next section.

o u~0.7 after which it falls due to saturation effects. Quali-
atively this curve is very similar to the corresponding curve
with dynamical quarks. It is also very similar to the curve for
QCD at finite isospin chemical potential gt 5.5 especially
when one observes that we should equatavith 2. As in
that case, the condensate increases relatively rapidly ias
increased beyong.. (This will be made quantitative in the
next section. We note that the. =0.0025 measurements on
We calculated the quark propagators for fundamentathe 8" lattice show signs of finite size effects for larger
staggered quarks at finite chemical potentiarom a single  values, which is why we repeated these simulations orf'a 12
noisy source for each of a set of quenchedB\dauge field lattice where these effects have been considerably reduced.
configurations aj3=2.0. These configurations were gener- In Fig. 8 we show the chiral condensates as functions of
ated using the hybrid molecular-dynamics code of our dy-u for the 4\ values given abovéand\ =0 for u<0.2).(We
namical quark simulations. We generated 100 such indepemresent only the 12“data” since there is little difference
dent gauge configurations spaced by 10 molecular-dynamidsetween the 2 lattice sized=or u< u. this graph is consis-
time units for eachu and\ value. Our simulations usedt  tent with the expectation that the—0 limit should bex
=0.1 for the updating. We used\=0.0025,0.005, independent. Ay is increased beyong., the condensate
0.0075,0.01 (and zero for u<ug), for u falls. This agrees with the expectation that the condensate is
=0.0,0.1,0.15,0.175,0.2,0.21,0.225,0.25,0.3,0.4,0.5,0.6,0. Fotating from the chiral to the diquark direction in this re-
0.8,0.9,0.95,1.0,1.1, which adequately covered the range gfion. One notes, however, that this is not a simple rotation

B. 2-color QCD at finite quark-number chemical potential
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SU(2) quenched f=2.0 m=0.025 8* lattice SU(2) quenched $=2.0 m=0.025 12* lattice
0.8T r :
2.0 s
1 C X ——— A=0.0025 ]
0.6 B i - 0 ——— X=0.0050
el % 1 5 [ O ——— A=0.0075 o ]
A ! % ——— A=0.0100
i
$c\‘z i % =
04 - 2
e I
[ A=0.0025 ]
. O — A=0.0050 .
O — A=0.0075 o]
- % — A=0.0100
0.0 essdepio Lo il 1L 8 |
00 02 04 06 08 1.0 00 02 04 06 08 1.0
a I "
SU(2) quenched $=2.0 m=0.025 12* lattice FIG. 9. Quark-number densify, as a function ofu and\ on a
0.8 12* lattice atB=2.0. The curve is the prediction from Sec. IV.
I L ] of u for each of the considerex! values mentioned above.
0.6 " ] (Again, because the finite size effects are small, we present
A only the 12 “data.”) We see thaj, is consistent with zero
e L for small i, and rises slowly from zero aboye.. The rise
! 7] becomes more rapid fr=0.6. The density finally saturates
v § ] at 2—2 colors of staggered fermions per site—due to Fermi
0.2k A=0.0025 - ] statistics, a finite lattice spacing effect. Note that there is
’ O — A=0.0050 1 little if any N dependence. This behavior is very similar to
' L= a=li0io ] that of j3 for our quenched QCD at finitg, , except that
. % — A=0.0100 ] . . . .
ool b el 1 & there the saturation value is 3 rather than 2 since this number
00 02 04 06 08 1.0 merely counts colors. Again we note the similarity of these
b M quenched results to those obtained with dynamical quarks.

The qualitative behavior of all the “data” presented in
this section is in agreement with what is predicted from ef-
fective Lagrangians using the methods of chiral perturbation
theory. We have noted that the condensate does not simply

since the magnitude of the condensate also increasesuwith rotate frqm the cr_\iralldirectipn into the quarl§ _number or
isospin violating direction which was the prediction of tree

for larger « values until saturation effects appear. The gen-

eral appearance of this curve is similar to those with dynami!evel chiral perturbation theorpd, 10], but rather rotates and

cal quarks and to those for QCD at finite isospin density. increases in magnitude. Such behavior is seen when the chi-

The quark-number density is shown in Fid. 9 as a functio al pe_rturbation theory in_cludes next-to-leading order terms
d y 9 r|{nclud|ng 1-loop contributionfl1]. Of course, the one effect

that effective Lagrangians cannot see is saturation, since they
do not describe the underlying fermions of the theory. How-

FIG. 7. The diquark condensate for quenched 2-color QCD as
function of u and\ at 8=2.0(a) on an & lattice and(b) on a 12
lattice. The curves are the scaling fits described in Sec. IV.

SU(2) quenched =2.0 m=0.025 12* lattice

0.8 _ > OF 1 =0 !
i ] ever, as we have pointed out, saturation is a finite lattice
X ——— A=0.0025 spacing effect, and is thus of limited interest.
i - 0 ——— A=0.0050 ]
=L O ——— A=0.0075

¥ ——— A=0.0100 | IV. CRITICAL SCALING AND THE EQUATION OF STATE

Analyses of effective Lagrangians using the methods of
chiral perturbation theory give predictions for the critical ex-
ponents and the scaling of the order paranistefose to the
critical point ., both for 2-color QCD at finitew and for
QCD at finite u, . Clearly the tree level analyses will give
mean-field scaling with critical exponengs,=3 and §=3
[1,10]. More recent analyses have extended these results to
next-to-leading order including 1-loop corrections for
2-color QCD, and find that the critical indices remain at their

FIG. 8. Chiral condensate as a functiongofand, for 2-color ~ mean-field valuegl1]. However, the tree-level result that the
QCD at finite chemical potential for quark number on 4 lettice.  magnitude of the total condensate is independent ahd\

The solid lines are the fits given in Sec. IV. no longer holds. One can thus speculate that scaling with

<>

‘0.0 02 04 06 0.8 1.0
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mean-field exponents holds to all orders. The effective Laand

grangian for QCD at finiteu, is so similar as to lead to the

expectation that this theory also has mean field behavior
through next-to-leading order and perhaps to all orders.

Simulations of 2-color QCD at finite. in the strong cou-
pling limit [8] also indicate mean-field scaling with a scaling
function consistent with that of lowest order tree-level effec
tive Lagrangian predictions.

The two critical exponents relevant to the scaling of theR_Iaced withys, . The main deficiency with this form is that it

charged pion condensate—the order parameter for the tra
sition we are considering—ar@,, and 6 defined as follows.
At m=0,

i(4ysToth)—CONSE g — pac) Pm (12
asu,— pc+ (and vanishes fop<pu.). For u,= u,
i(ysToth)—constm™? (13

asm—0+. The mean-field values of these 2 exponents ar
Bm=3 and 6=3. Analogous definitions hold for 2-color
QCD.

We shall be considering 4 different forms for the scaling
function, i.e. for the equation of state, the first 3 of which

exhibit mean-field scaling. Indeed, sufficiently close to the

critical point they give identical scaling functions for the

1
jo=2au 1—;). (21

Note that the equivalent form for QCD at finigg, has an
extra factor of 2 in the equation fg§ because of our nor-
malization. Otherwise the forms are identical with re-

requires that the magnitude of the condensate,

V(xTm2x)%+ (xx)? to be constant independent afand\.
This is not even true in next-to-leading order chiral pertur-
bation theonyf11] and has at best a limited range of validity
in our simulations.

To allow the norm of the condensate to increase with
and possiblyx, we consider a second form for the equation
of state which is derived from an effective Lagrangian of the
linear sigma model type. This is obtained by extracting the

®alues ofR and & which minimize the effective potential

1 1
_RA-C
4R 2

&

1
aR’— Eb,uzsinz(a) —cmRcoq a)

order parameter. Our later discussions will make it clear whyin terms of which
in practical applications, it is important to have a more de-

tailed knowledge of the scaling function.

The first form for the equation of state is that suggested

by the lowest order tree-level analysis of the effective

Lagrangians of{1,10], which are of the non-linear sigma
model form. It derives from the value of the parameter
which minimizes the effective potential

E=—au’sir(a)—bmcoga)—brsin(a) (14
in terms of which
(x"2x)=bsin(a) (15
(xx)=bcoga) (16)
and
jo=2ausir(a). 17
b is given in terms ofu. anda, namely
b= %aﬂi (18)

and the scaling forms of the observablesXer 0, expressed
in terms of the scaling variable= u/u., are

[ 1
(xTr2x)=b\/1-—
X

_ 1
<XX>=b;

(19

(20

—cARsin(a) (22)
(X"72x)=CRsin() (23
(xx)=cRcoga) (24)
and
jo=buR?sir?(a). (25)
c is given in terms ofu. by
bu?
C=W° a+bu?. (26)
When\ =0 we obtain the scaling forms
T 2,2 2 1
(X' m2x)=C\/a+bucx —(a+buc); (27)
— 1
(xx)=cva+ b#ﬁ; (29)
and
; 2,2 2 1
jo=bu|a+bucx —(a+bﬂ~c)g : (29)

Again j3 has an extra factor of 2 for QCD at finije, .

Next we consider the simplest mean-field equation of
state[22] which considers only the scaling of the order pa-
rameter(diquark or charged pion condensatear the tran-
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sition and does not even attempt to address chiral symmettyie condensate is only approximately constant over a limited

breaking. This is given in terms @b which minimizes the
effective potential

1,1 2
E=7¢ "~ salu—pud)p"—bA &. (30)
In terms of ¢,
(x'T2x)=b¢ (31)
and
1,
Jo=5a¢% (32

Once agairjg has an extra factor of 2 for QCD at finije, .
When \=0 we find the simple scaling relations fqi

> et

(xTraxy=bva(u—uc) (33
and
1
Jo=5a%(1— po). (34)

Finally we consider the simplest tricritical equation of

state[23]. This is given in terms ofp which minimizes the
effective potential:

1 1
&= 5956— Ea(ﬂ—ﬂc)d’z—b?\sﬁ- (39
In terms of ¢,
(x"r2x)=b (36)
and
1
Jo=§a¢>2- (37)

Once agairjg has an extra factor of 2 for QCD at finije, .
When A=0 we find the simple scaling relations fqi

> et

(x"Tox)=bla(u— )] (39
and
1
Jo=zavalu—ue). (39

We start by considering quenched QCD at finiteat 8

range ofu,. The departure of the masa from its input
value is presumably also a reflection of this. We then fit our
pion condensate “data” to the form suggested by the linear
sigma-model effective LagrangiaiEgs. (22), (23)]. With

this form, our fits constrain the mass parameterio be so
close to the input mass that we choose tanset0.025 in our

fits. We then obtain an excellent fit over to the pion conden-
sate over the range QDu;<1.4 with u.=0.4192),a
=0.4147),b=0.242(4) and a confidence level of 92%. We
have superimposed these fits on the graphs of our “data” in
Fig. 4a. These fits give predictions for the chiral condensate
and isospin densitlEqgs.(24), (25)] which we have included

in the plots of our measurements of these quantities in Figs.
5, 6. The predicted chiral condensate is clearly in good
agreement with our measurements. The predicted isospin
density is in good agreement with measurements up,to
~1.0. Note that the isospin density has been predicted to be
proportional to,u,?’ at largeu, [1] so that the predictions of
Eq. (25 are guaranteed to break down, even if we did not
have the effects of saturation.

As we noted in Sec. Ill, the transition appeared signifi-
cantly steeper than at weaker coupling. For this reason we try
fitting our “data” for the pion condensate to the tricritical
scaling form of Eq(36). Provided we keep t@,= u. we are
able to obtain good fits to this form. Our best fit, over the
region 0.45< u,;<1.0 hasu.=0.420(13)a=0.27(3) andb
=1.44(4) and a confidence level of 60%. We show this fit in
Fig. 4b. Except for the fact that this scaling form cannot fit
the low w, regime, it provides a good fit to the pion conden-
sate. However, the tricritical equation of state also gives a
prediction for the scaling of the isospin density—E37),
(39). This square-root scaling is in clear disagreement with
the observed behavior of Fig. 6. For this reason the linear
sigma-model equation of state with its mean-field critical
exponents is preferred.

Let us now turn our attention to our simulations of 2-color
QCD at finite. First let us consider fits to our*8neasure-
ments. Here we again note that our fits to the non-linear
sigma model scaling form can only be made over a some-
what limited domain ofx. This can be extended by using the
linear sigma model scaling forms, but only when we neglect
the A =0.0025 measurements which show clear signs of fi-
nite size effects at large w. Fitting the X\
=0.005,0.0075,0.01 “data” we obtained a fit over the range
0<pu<0.7 with u.=0.2091),a=0.4059),b=0.71(2) and
a 77% confidence level. To reduce the finite size errors, es-
pecially atA =0.0025, we repeated these simulations on a
12* lattice. Here our best fit, obtained using alk #alues
and fitting over the range VBu=<0.4, gave pu.
=0.20664),a=0.405(9) andb=0.73(1) at a confidence

=5.5. We first fit our measurements of the pion condensatéevel of 10% (y?/dof=1.3). Although we have reduced our

to the form suggested by the non-linear sigma-model effecfinite size effects by going to a larger lattice, we have also
tive LagrangiarfEgs.(14), (15)]. The quark mass is treated reduced the statistical errors, making the remaining finite
as a fitting parameter. Here we find a good fit over the rangeize effects more important. We suspect that this is at least

O0=u,<0.7, and all 3\ values with u.=0.4242),a

part of the reason that we have obtained a worse fit on the

=0.0618(8) andn=0.0267(2) with a confidence level of larger lattice. These fits for the pion condensate are shown in
61%. The range limitation is due to the fact that the norm ofFig. 7. The predictions for the chiral condensate and quark-
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number density which these fits provide are superimposed orange 0.45-u,<0.7 for the 3 larger\ values givesu.

the plots of measured values for the* 1&ttice in Figs. 8, 9. =0.4284),a=0.361),b=1.233), with y?dof=3.9, so

It is clear that the prediction for the chiral condensate prothe sigma model fit is preferred. The ability to probe to

vides good fits to the “data.” The predicted quark-numbersmaller\ values indicates that the higher value @f re-

density is also a good fit to the “data” foi,<0.4. quired by the sigma model fit is more probable. In addition,
We also examined fitting our diquark condensate meawe note that the simple mean-field fit predicts an isospin

surements on the larger (42lattice to a tricritical scaling density which is inconsistent with our measurements.

form [Eq. (36)], limiting ourselves tou= u.. Fitting over The effective Lagrangian approach seeks to give a

the range 0.2%& 4 <0.4 and using all # values we obtained uniform description of both chiral symmetry breaking

a fit with u.=0.2072),a=0.546(7) andb=1.336). How-  and isospin(or quark-number breaking. Thus we should

ever, y?/dof=3.9 for this fit (confidence level 10 ’%). only expect physics to be insensitive to the details of

Hence the linear sigma-model fits of the previous paragrapthe effective Lagrangian or effective potential when

are preferred. the quark mass is small enough that the oraeror
Finally we turn to the consideration of th@=5.7  equivalently ordem? corrections are small. One measure

quenched QCD simulations at finite, . After producing of this is how much the chiral condensatgy) at the
‘data” over the range 6w ;<21 for N  quark mass we use differs from its zero mass value. At

simulations on a 16lattice over the range 0=2u,<0.7 at — _ B :
\=0.000625,0.00125,0.001875,0.0025 to probe the transi- 0-/84(7) and{y4)(m=0.05)=0.83¢5), so the differ-

tion more closely. Not surprisingly, considering that the normn¢€ 18 ~10% which should be small enough. At
of the condensate grows rapidly in the broken symmetry3=5.7, (#4)(m=0.00625)=0.2883), (y4)(m=0.0125)
phase, fits to the non-linear sigma model scaling proved=0.3232), (#)(m=0.025)=0.386(2) and (¢¢)(m
fruitless. We fit our 16 measurements the linear sigma =0.05)=0.4942), so the diference is~50% and the de-
model equation of state, treating the quark mass as a fittintpiled form of the effective potential might be expected to be
parameter. We exclude the=0.000625 measurements from important. We believe that this is for this reason why the
our fits since they show clear finite size effects at lajger ~ simple ansatz for the effective potential or equation of state
Our “best” fit to the A =0.00125,0.001875,0.0025 measure-works so well at3=5.5 but shows limitations g8=>5.7.
ments gives w.=0.450(7),a=7.001),b=0.26§7),m We end this section with a discussion of the behavior of
=0.0212(4) withy?/dof=1.7 and a confidence level of only different variables which describe the scaling in terms of
0.3%. This indicates that while the linear sigma model equax(u,). For convenience we express them in termsxof
tion of state remains a good guide to the critical behavior=u/we(u/1c). The simplest isk—1 which is the scaling
guenched QCD at finitg,, at 8=5.7, the data is beginning Vvariable of the simplest mean-field equation of state. The
to show small, but non-negligible departures from thisnext, 2(1—1/x%), is that of the non-linear sigma modgr
simple form. We have superimposed these fits on the “datathe linear sigma model in the limd— ). The third, £ (x?
of Fig. 1 to indicate that they are a good qualitative fit to the— 1/x*) is that for the linear sigma model in the limit as
data, even on the £X 24 lattice with its largeh values. We —0. This third form gives a reasonable description of the
note also that the predicteg, is close to the measured pion scaling of 3=5.7 “data” on the 12X 24 lattice, in the or-
massm,.=0.441(1). Becausem+ 0.025 in these fits, we do dered {u,=u.) phase. All 3 scaling variables behave iden-
not expect the predictions for the chiral condensate to béically asx—1, however, a poor choice leads to a severely
good. In fact, what we see is that the fits are suppressecurtailed scaling windowx—1 andz(1—1/x*) already dif-
relative to the data roughly in the ratio of the fitted mass tofer by ~10% atx=1.04. x—1 and & (x*— 1/x*) differ by
the input mass (0.025), as shown in Fig. 2. Next we plot the~10% atx=1.08. Thus, for practical reasons, we should
values ofj3 predicted using Eq25) to compare with mea- make a wise choice of scaling variables.
surements in Fig. 3. We see that there is good agreement out However, we have noted apparent mean-field scaling of
to u;=1.0. Finally, we fit the pion condensate @t=0.45, our 8=5.7 pion condensate in the ordered phase both in
which is very close tqu., to the scaling form of Eq(13). terms of the simplest mean-field scaling forms where the
For this we use the measured values on thelaglice at\ scaling variable isx—1, and in terms of the linear sigma
=0.000625,0.00125,0.001875,0.0025 and those from theodel form where the scaling variable is approximately
128 24 lattice at\ =0.005,0.0075. From this we obtain  &(x?—1/x*), out tox~1.8. Only by examining the scaling
=3.25(7) with a confidence level of 27%. Dropping the 2 very close to the transition and including < u. measure-
largest\ values givess=2.88(16) with an 85% confidence ments in the fit, were we able to determine that the linear
level. These fits are in good agreement with the mean fielg¢igma model form gave the better description of the transi-
value 6=3. tion. The reason for this is thgt(x>— 1/x*) has a point of
On the 13X 24 lattice it is impossible to distinguish scal- inflection atx=%8/10=1.467 ..., atwhich it is again linear
ing of the pion condensate with the linear sigma model formin x. In the neighborhood of this point of inflectioh(x?
of Eq. (23) from that of the simple mean-field analysis of Eq. — 1/x*) x— X, Wherex,= (5/8)3/10=0.917 . . ., sothis de-
(31). However, on the 1Blattice where we probe closer to fines anothetarger region wheret (x?—1/x*) is linear inx,
the transition, a fit to the simple mean-field form over theand the linear approximation has an intercept not too far
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from the true critical point. It is this linearity, which gives us (the charged pion condensatéor QCD at finite w,, and
an (apparent extended scaling regime. Over the region(y"r,x) (the diquark condensatéor 2-color QCD at finite
where the scaling variable is approximately lineaxjrwe 4 and saw evidence that the mean field equation of state was
will observe scaling with the correct exponerg,,. Of the correct one in the neighborhood of the critical point. This
course, the coefficient of this apparent scaling form will dif- required using scaling forms implied by effective Lagrangian
fer from the correct coefficient. analyses, in order to use scaling variables which maximize
It is instructive to also look at the properties g{1  the scaling window and make scaling analyses practical. Be-
—1/x*) as a function ok. It clearly does not have a point of cause of this sensitivity to the choice of scaling variables,
inflection, however, its square has a point of inflectiorxat these conclusions cannot be considered conclugineact,
=1/9/5=1.18 . .. about which it too becomes linear. This for QCD at3=5.5 it was necessary to examine the scaling
linear approximation has its intercept ap=(9/10)3/9/5  of the isospin density to differentiate between mean-field and
=1.0£ ... ,which is again near to the critical point. Since it tricritical scaling) In the quenched theory, it might be fea-
is the square of the scaling variable that has this point osible to extend these simulations to much larger lattices and
inflection, this leads to apparent scaling with a critical expo-much smaller\ values, enabling one to probe sufficiently
nent, B, of half the true value. In the case of a mean-fieldclose to the critical point to be insensitive to the choice of
critical point this pseudo-exponent will Be which is 3, for  scaling variables. However, here one runs the risk of being
a tricritical point. If we restrict ourselves to the ordered frustrated by the pathologies of quenchii2f]. For the dy-
phase, it is possible to fit the order parameter for QCD anhamical theories the expeng® computing resourcgsof
finite w; at 8=5.5 and that for 2-color QCD at finite at ~ simulating on large lattices with very smallvalues is pro-
B=2.0 on the smaller (§ lattice to a tricritical scaling hibitive. We have noted that even by couplings as small as
form—Eq. (35). Hence one should be suspicious if an orderthat at3=5.7, the simple scaling forms suggested by effec-
parameter scales with a critical exponent which is half oftive Lagrangian analyses are barely adequate at the quark

what one expects. mass we useni=0.025 in lattice units and a better choice
is desirable and probably essential at weaker couplings.
V. DISCUSSION AND CONCLUSIONS While it is easy enough to produce variant forms of the ef-

) ) ) . ) . fective potential and the equations of state they imply, one

Gauge theories with ferm_lons at finite _c_hemlcal_potenUaIneedS a form which improves the fits, without introducing
for a conserved charge, which have positive fermion deteryog many extra parameters and preferably one motivated by
minants, haye sensible quenched approximations. Th'éhysics or chiral perturbation theory.
contrasts with QCD at a finite chemical potential for " ‘on examining the detailed properties of proposed scaling
baryon/quark number, where the quenched limit is really the 5 iaples, we have found that a certain class has a point of
quenched limit for QCD with equal numbers of quarks withjnfiection, when expressed in terms of the simplest scaling
quark-numbert 1 and not that for QCD with all quarks hav- ysariaple. This leads to an extended region of apparent scaling
ing quark-numbert+ 1. _ ~_ which is a precursor of true scaling. In dynamical theories

We have studied the quenched versions of QCD at finitgyhere one cannot probe the true scaling window, this might
chemical potential £,) for isospin, and of 2-color QCD at pe the best indicator we have of the nature of critical scaling.
finite chemical potential ) for quark number. We included However, as we have noted, certain other proposed scaling
an explicit symmetry breaking term with strengthin each  yariables which lack such a point of inflection, have squares
case. What we find is that for—0 this symmetry—; for  which do have such a point of inflection, leading to apparent
QCD at finitew, , quark-number for 2-color QCD—is unbro- scaling with a critical index8,,, which is half of the true
ken for smallu(w,). In each case there is a critical value for yalue, potentially leading one to erroneous conclusions.
My or u (uc say, above which a condensate forms which  Once the fit to the pion or diquark condensate provides
breaks the relevant symmetry spontaneously. In our QCD ahe parameters for the appropriate effective potential, this
finite 4, measurements g8=5.7 on a 19x 24 lattice, we  provides a prediction for the isospin or quark-number den-
also measured the pion masgqt=\=0, and found it to be  sity. These predictions are in good agreement with our direct
close to our estimates far. as expected. In QCD at fini{e,  measurements of these “charge” densities within the scaling
this is a charged pion condensate while for 2-color QCD it isvindow. In addition, the effective potential provides a pre-
a diquark condensate. This is precisely the behavior expectegiction of the chiral condensate. For quenched QCD at finite
and seen for the fullunquenchedtheories. The transition ,, at 3=5.5 and quenched 2-color QCD at finite at 3
appears to be second order as was observed and expected-i 0, where the fits require a quark massn good agree-
the full theories. For highu,(u), saturation effects due to ment with the input valuer=0.025), the predicted chiral
Fermi statistics drive the condensates to zero which is alseondensates are in good agreement with the measured val-
observed for the full theories and is a finite lattice spacingues. In quenched QCD at finitg, at 8=5.7, where the fits
effect. Thus these quenched theories are useful to StUdy Sin?@quirem to be appreciab|y lower than the input value, the
they require far less computing time than the full theories—predictions for the corresponding chiral condensate are simi-
these studies were performed on 400 MHz PC’s supplefarly lower. This we tentatively attribute to the fact that the
mented with a few days running on an IBM SP whereas theéigher order terms in a chiral expansi@xpansion in pow-
full theories require many months of IBM SP ru_nning. ers ofm) are large af3=5.7m=0.025. Where the predic-

We studied the scaling of the order parameit@ys 7o) tions from our proposed equation of state are in good agree-
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ment with measurements, they support our claim that there iwith pion and kaon condensates are separated by a first order

a critical point atu(w;) = u., A=0, with mean field expo- phase transition. Here the quenched approximation will

nents. make it easy to study the phase structure of the plane defined
We have just completed further simulations of 2-colorby the 2 chemical potentials.

QCD at finite quark-number chemical potential with dynami-
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