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Nonperturbative renormalization of domain wall fermions: Quark bilinears
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We find the renormalization coefficients of the quark field and the flavor nonsinglet fermion bilinear opera-
tors for the domain wall fermion action, in the regularization indepen@®htrenormalization scheme. Our
results are from a quenched simulation, on X182 lattice, with3=6.0 and an extent in the fifth dimension
of 16. We also discuss the expected effects of the residual chiral symmetry breaking inherent in a domain wall
fermion simulation with a finite fifth dimension, and study the evidence for both explicit and spontaneous
chiral symmetry breaking effects in our numerical results. We find that the relations between different renor-
malization factors predicted by chiral symmetry are, to a good approximation, satisfied by our results and that
systematic effects due to tHéow energy spontaneous chiral symmetry breaking and zero modes can be
controlled. Our results are compared against the perturbative predictions for both their absolute value and
renormalization scale dependence.
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[. INTRODUCTION properties lead to a suppression of the possible dimension-5
Renormalization of lattice operators is an essential ingreterms in the long-distance effective Lagrangian implying that
dient needed to deduce physical results from numericallomain wall fermions define a lattice version of QCD which
simulations. In contrast with the determination of hadronicis off-shell improved ta?(a?). As we will see, these domain
masses, physical matrix elements can be determined only Vall off-shell Green’s functions show remarkably reduced
the normalization of the appropriate lattice operators can battice artifacts. A study of operator renormalization coeffi-
related to that of the corresponding continuum operatorsgients for this action is useful, both because these numbers
conventionally specified perturbatively at short distances. Irare needed for use in practical calculations of physical quan-
principle, lattice perturbation theory may be used to establishities [12] and because it provides an excellent test of the
this connection. However, lattice perturbation theory con-chiral properties of the domain wall fermion action in prac-
verges slowly and the expansion parameter, the square of thigal simulations. In fact, we find that domain wall fermions
lattice coupling evaluated at the lattice scaiga)?, de- perform quite well for nonperturbative renormalization with
creases only as an inverse power ofa)n(This makes sys- negligible contributions from explicit chiral symmetry break-
tematic improvement of perturbative results essentially im-4ing. This finding is in good agreement with recent work on
possible. This convergence may be improved whenthe chiral limit of quenched QCD with domain wall fermions
following ideas from continuum perturbation thedry], a  [12,13.
renormalized or “boosted{2] coupling rather than the bare Careful operator normalization is especially important for
coupling is used as an expansion parameter. Even so, consigie domain wall fermion method. As is reviewed in Sec.
erable arbitrariness remains, and in general it is extremelyil A, the interpolating field conventionally used to create
difficult to go beyond one loop order in such calculations. Toand destroy the physical modes is exactly localized in the
overcome these difficulties, Martinelét al. [3] have pro- fifth-dimension on the right and left walls. Since the actual
posed a promising nonperturbative renormalization procephysical modes extend somewhat into the fifth dimension,
dure. This method has been previously used to determinthe overlap between the interpolating field and the physical
renormalization coefficients for various operators using thenodes will be smaller than 1. This implies a wave function
Wilson [4—7] and staggered actioh8]. The purpose of this renormalization factorZ,) which differs from one even in
work is to study the application of this technique to thethe case of free fields. For the eigenvectors corresponding to
renormalization of the quark field and flavor nonsinglet fer-the smallest 19 Dirac eigenvalues examined in the quenched,
mion bilinear operators for the domain wall fermion action. 3=6.0 calculation of Ref[12], this overlap typically varies
Domain wall fermiong9—11] provide an action, that at between 75% and 85%. Fortunately, the nonperturbative
the expense of introducing a fifth dimension, has a low enmethods employed hef&] precisely include these effects.
ergy theory with excellent chiral properties while at the same We begin in Sec. Il with a brief summary of the main
time preserving exact flavor symmetry. These good chiralssues involved in applying the nonperturbative renormaliza-
tion method. In Sec. Ill, we give the domain wall fermion
action and discuss the Ward-Takahashi identities it obeys.
*Present address: Department of Physics, Ohio State Universitysection IV builds on this base to constrain the ways in which
Columbus, OH 43210. explicit chiral symmetry breaking terms may enter low en-
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ergy matrix elements calculated using domain wall fermionspletely fixed axial gauge. Taking these two precautions will
In Sec. V we give the details of our lattice simulations. Sec-insure that any effects of Gribov copies will be similar to
tion VI describes the renormalization of the quark propaga-other nonperturbative effects and will vanish as the compari-
tor, and in Sec. VII we introduce the quark bilinears andson with perturbation theory is done at weaker and weaker
compute their renormalization on the lattice in the regular-coupling.

ization independent scheme. After removing expected non- Numerical simulations are performed with a finite lattice
perturbative pole terms, we look for effects of explicit chiral spacing. This provides a natural condition,

symmetry breaking and find that they are negligible. In Sec.

VIII, we avail ourselves of the axial Ward-Takahashi identity

again to compute the quark wave function renormalization |p|<a, (1)
from the conserved vector and partially conserved axial-
vector currents. In Sec. IX we calculate the renormalization, o the momenta range for which a direct extraction of con-
of the nonconserved, local axial current from a ratio of its,: S ;

hadronic matrix element to the hadronic matrix element oftmuum quantities is possible.

th rtiall nserved axial current and find d agreem As the renormalization factors are determined in a non-
€ partially conserved axiaj current a good agree erf:gerturbative calculation, the contributions of propagating

with the results of Sec. VII. In Sec. X we convert the renor- o sons, and in particular pseudo-Goldstone bosons, must be

muﬂlr?t?ttiﬁsnbcodeif/filg;ﬁmzu;c;h(raerneorlrcr)?ﬁ:zriizt::t?ongr?gg '?&’r?:i?]midentiﬁed and removed. These effects may be reduced by
9 y 1ing X group g'Working at high momenta, with a natural condition for the
In Sec. Xl we discuss the calculation of the quark wave

; o absence of significant deviations being
function renormalization from the propagator.
After comparing our nonperturbative results with recent Aoco<|p| @
perturbative calculations in Sec. XlI, we end with our con- Qcp<=IPI-

clusions. The details of the exact conventions and equations

used for the perturbative running and matching are relegate§2king the last two points together suggests that this tech-
to Appendixes. nique relies on the existence of a “window” of momenta,

1
Il. NONPERTURBATIVE RENORMALIZATION Aqcp<|pl< ~ 3

In the following the method of nonperturbative renormal-

ization introduced in Ref[3] will be studied. This method for which the predictions of continuum perturbation theory
uses a renormalization scheme that is defined by a set ghould correctly describe the form of the lattice data. In prac-
conditions that mandate the renormalized values of the opfical simulations however, it has been found that the effects
erators of interest between external quark states, in a fixe@f deviations due to the violations of both these inequalities
gauge, at large virtualities. As such these conditions may bBust be taken into accouf,15,7.

expressed in any regularization schefaad so this scheme  Fortunately, near either edge of this window, the form of
is known as the regularization independéRt) schemé In  deviations from perturbative behavior may be predicted. In
particular this allows the renormalization factors to be dethe case of too low momenta, the initial corrections may be
fined in the lattice regularization, opening the way for renor-described by an expansion in terms of momentum-

malization factors to be directly calculated in numerical lat-Suppressed condensate terms by use of the operator product
tice simulations. expansionOPB. In turn, the first corrections to continuum-

While calculating renormalization factors from lattice like behavior may be taken into account in terms of an ex-
simulations neatly avoids the need to perform analytic calcupansion in the lattice spacing,
lations using lattice perturbation theory, which are both chal- Another trivial consequence of the restricted range of mo-
lenging and poorly behaved, doing so introduces several ighenta available in current lattice simulations is the need for
sues that must be considered. many phenomenological calculations to be composed of con-
Calculating the matrix elements of the operators of intertinuum perturbation theory calculations at high scales, that
est between external quark states requires a fixed gauge to BEe then run down to scales accessible on the lattice and
used. This allows for the appearance of Gribov copies, poscombined with the lattice result. As the majority of the ex-
sibly obscuring the required comparison with continuum perdsting calculations for the continuum perturbative results use
turbation theory where only the trivial copy appears. Earlief€normalization schemes that may only be defined when us-
studies[14] of the size of Gribov noise in the calculation of ing dimensional regularizatidisuch as the modified minimal
a gauge invariant normalization factor as a ratio of twosubtraction MS) schemég perturbative matching calcula-
gauge-variant amplitudes suggest this may not be an impotions between these schemes and the ones that may be de-
tant difficulty for the parameters used here. However, in fufined in the lattice regularization need to be performed.
ture work, this difficulty can be avoided by taking two steps:

(_i) Impose the_ regularization invqriant normalization condi- IIl. DOMAIN WALL FERMIONS
tion in a sufficiently small physical volume so that non-
perturbative effects are suppresséid) Begin the Landau In this section the domain wall fermion formulation, as

gauge fixing procedure from a configuration that is in a com-used in our simulations, will be reviewed.
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A. Action Vo -1 1 0 0 Vo

The domain wall fermiofDWF) method is a promising v, o -1 1 0 v,
new approach to lattice QCD introduced in Ref0], which, a| v B 0 0 -1 1 v '
at the expense of introducing an extra, discrete, non-gauge x.2 x.2
dimension, provides drastically improved chiral properties at P, 3 0 0 0o -1 W, 3

finite lattice spacing while preserving exact symmetry under
vectorial flavor rotations. This is achieved by using an action 1D
in the fifth dimension that is asymmetric between the left1t should be noted that the action in E@) is actually the
handed and right-handed components of the fermion fieldermitian conjugate of the action proposed in Re€)]. This
Denoting the fifth coordinate & with change was made for practical reasons related to compatibil-
ity with the existing Wilson operator implementation for the
$€0,... k=1, @ (toCDSP machine.g P P
In the free theory, for &Ms<2, the effect of this is to

the massless action may be written as . . o )
y produce a spectrum with one light fermionic mode, with ex-

. 1 act chiral symmetry in th&g—oe limit, and 16.4—1 heavy
Stermiod M =0)=— >, \IIX’S( — VME(VZJFV;) modes. The wave function of this light mode has its right-
s handed component concentrated on the wadak ;— 1 and

its left-handed component on the wall s&0. This light

1 : . . . -
+ —V;V;Jr Mg fermion mode may be studied by introducing an interpolat-
2 ing operator of the fornj16]
+P s —Prds ] Vys (5) Ox=PLWyxot PrRWx L -1
I — _ (12
with Ox=¥x,oPr+ Wy -1PL.
o The above considerations also naturally lead to the introduc-
Z:f [dU][dWdW Jexp — Sgaugs™ Stermion - (6)  tion of an explicit mass term to the action of the form
In Egs.(5) and(6), W\ is the fermionic fieldU ,(x) is the Stermiod M) = Stermiod M=0)+ >, meqq,  (13)
X

gauge field and

wherem; is the bare quark mass. In the free case, this leads
Syauge 8> (1_ ERe TI[UP]) (7) 0 aspectrum with one light fermion of mass
3 3 ’

Ms(2—Mg)[ms+(1—Ms)"s]. (14)

with B=6/g3 andg, is the bare lattice coupling. The projec-

. ; ) Note that in theL limit this is proportional tan; , while
tors for the left and right-handed spinors are defined as s brop !

for finite L there remains a residual mass,, that acts as
an additive renormalization ton; .
P = }(1_ ) However, the pro_perties of domain WaI_I fermions ir_1 the
2 presence of gauge fields is a much more difficult question. In
(8) particular while the form of the mass of the light mode is
1 c expected to be proportional to;+m,, the dependence of
PR:§(1+7 )- Mes ON Lg must be determined. Perturbative calculations
[17-21] have shown that the existence of the light mode is
stable to small perturbations and that this mode has all chiral
symmetry breaking proportional to; asL ;— . These stud-
ies also highlight several issues that must be considered
o _ when undertaking numerical simulations:
Vi = U0 s = © (i) The dependence of,.on L may no longer be of the
_ T simple exponential form shown in E¢L4).
V== V(=) i, (10 (i) M5 undergoes a strong additive renormalization. This
. ] o ) is understandable, as the five dimensional problem has no
and d, represents the corresponding derivative with NOgpproximate chiral symmetry to protect it.
gauge Eerm. For the case of the derivative in the fifth dimen-  |ndeed, extensive numerical studies in the quenched ap-
sion, d5 , the domain wall is implemented by giving the proximation[12,13 have shown that the dependence of
derivative hard boundaries. For example a one-dimensionah ., does not fit a single exponential in the ranigg=12
ds acting on a space with four points may be written in —48 for lattices with the same lattice spacinga (
matrix form as =0.520 GeV'l) as the results in this paper. Aog= 16, the

The notationV> has been used to denote the discrete for
ward or backward covariant derivatives:
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value used in this workm,.s was found to be~4 MeV in €, 0=s<L?2
the MS scheme at 2 GeJ2]. The strong additive renormal- €5
ization of M5 requires that an input value be chosen numeri-
cally so that a single light mode forms and that its decay inThjs leads to a Ward-Takahashi identity of the form
L is as rapid as possible. It has been found that for even

21
—€2, Lg2ss<lL,. @D

coarser lattices than used here such a choice can be made =3, (ALZDO(Xy, ... Xp))
[22,12. o
(M, T} y5a(2)O(X1, - - . Xn))
B. Lattice Ward-Takahashi identities +2(J2 0(x, X))
q 1 ¥

For the purpose of analyzing the consequences of the — i
symmetries of the action, it is convenient to introduce an =—1(Ga0(x1, - . X)), (22
extended mass ternM, with flavor structure such that the

where
mass term reads
_ _ 1 L.—1
qMTar+0rMay, (195 AZZE 25 Sg"(s— ST>
and so the mass term is invariant under a transformation of — t —a
the quark fields and the mass matkikof the form XKWt (1 7 Uy T W s
q.—Ua. W (1= 7 ) Uy T 6] (23
ar— Ur0r (16) 8a= ~ VL2 1P T Wy Lo
M—UgMU/ . + Wy L 2PRTA W L2 1 (24)

Following Ref.[16], on a finite lattice, an exact vector Ward- Therefore, in contrast to the previous case, the axial current
Takahashi identity may be derived by considering transforis not exactly conserved. This is necessary both to provide a

mations of the 5-dimensional fermion field,, such that mechanism for physical terms due to thé(1), axial
anomaly to enter the calculated amplitudes and also to allow
oYWy s=iesT?V, ¢ for explicit chiral symmetry breaking contributions at finite
(17)  Ls. The situation is analogous to that for Wilson fermions
5\/@)( =i Giax T2, [23], where the role 08z, is played by the chiral variation of

the Wilson term, except that the contributions frd@a are

where{Ta} is the set of Hermitian traceless matrices acting®XPected to tend to zero ag—c< in the present casii6].
on SU(N) flavor-space. This leads to an exact Ward- The form of the contributions frorﬁgq will be further dis-

Takahashi identity that reads cussed in the next section.
—3,(Vi(2)O(X1, - .. Xn)) IV. OPERATOR MIXING AND CHIRAL SYMMETRY
+(a[M,T21q(2)O(Xq, - - - Xp)) The major attraction of the domain wall fermion formal-
. ism is its ability to decrease the size of chiral symmetr
=—i{5%0(xq, Xn))s (18 y y y

breaking by increasing the parametey, the distance be-
tween the two four-dimensional lattice boundaries to which
the left and right chiral modes are bound. However, it is
1 _ often impractical or inefficient to choose such a large value
VZ(X):E > [Wyy,s(1t yM)U:{,MTa\IfX’S of Lg that all chiral symmetry breaking effects from mixing
s between these walls can be neglected. Thus, it is important to
characterize the effects of this chiral symmetry breaking and
in this section we will determine how it can affect the low
energy physics of lattice QCD. As we will see, this can be
one as either an expansion in the size of the wall-mixing
effects, which for simplicity we will denote by)(e™ ts)
although the exadts dependence may be different, and/or as
an expansion in the lattice spaciag
_ _ (20) This analysis is easily made by starting with the interpre-
OaAVys=—ieg Wy oT?, tation of chiral symmetry proposed by Furman and Shamir
[16]. Here one identifies the fuBU(N;), ® SU(N¢)g chiral
with symmetry of the continuum theory as the independent

where

W, (1= y U, T2 . (19)

For the case of axial transformations the analogous choice
a transformation of the form

§A‘Px,s: i ei,sTa“Px,s
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SU(Ny) rotation of the fermion fields defined on the left- and @ SUN;)g chiral symmetry. To the next ordere™ “Ls, we

right-hand halves of the five-dimensional lattice: expect phenomena which involve a single propagation be-
tweens=0 ands=Lgs—1. Thus, the matriX) should enter
V(x,5)—=U ¥(x,s), OsssLg2-1 linearly in such amplitudes.
(25 An important application of this analysis is to constrain

V(x,8)—=Ur¥(x,5), Lg2ss<Ls—1, the form of the effective continuum action which gives am-

plitudes that agree with those of the domain wall theory
through a given order in the lattice spacing. To leading order
in the lattice spacing, this effective Lagrangian has the stan-
Odard continuum form. The above analysis requires that the
mass term in this leading order effective Lagrangian must
have the form

whereU, and Uy are N¢X N; special unitary matrices be-
longing to the left and right factors ofSU(N;¢),

® SU(N¢)g. From Eq.(12) it is clear that this transformation
will act on the four-dimensional quark fields as a standar
element of the full chiral symmetry.

Of course, the transformation in E5), whose genera-

tors are given in Eq(20) and Eq.(17), cannot be an exact — -t —
symmetry of the five-dimensional theory as the derivative ZmMy iy Gl PRy pQPLY, (28)

terms in the fifth dimension, taken collectively, couple theyherec is a constant with the dimensions of mass. Here the
left and right hand walls and prevent such independent rotaje|d 4 represents a conventional continuum multiplet of
tions of this single, flve-dlmensmn_al field. However, in th_e quark fields and all quantities carry their physical dimen-
low energy sector of the theory this symmetry can be quitgijons, The first piece is the normal chiral symmetry breaking
good. The physical, chiral modes which survive at low en-ipyroguced by the input mass;. The second comes from
ergy are expected to be exponentially bound to the walls Wi“?nixing between the walls and is required by the extended
an overlap that i; suppressed lag increases. The higher symmetry of Eq.(25) and Eq.(27) to be linear in€). Thus,
energy modes which can propagate freely between the wallgis induced mass term can occur to first order in the mixing
are all far off-shell with propagators which are necessarily,etween the walls, permittinge ™ “‘/a. With the conven-
also exponentially suppressed at long distances, especialfyynal choice of Shamir), ,= 5., the second term in Eq.

for the large distances. _ (28) reduces to our usual residual mass term waiimg
In order to characterize the effects of this controlled sym-_ -3 [12].

metry breaking that comes from communication between the

walls, we will generalize somewhat the Dirac domain wall coniain a clover term induced by mixing between the walls,
fermion operator of Shamir given in EQL3). We will intro- — 544in 1o first order ire s, since it also has the permitted
duce a special-unitary, flavor matriX in the derivative term SU(N;),® SU(N/) chiral structure:

joining the four-dimensional planes=L¢/2—-1 and s

In a similar fashion the)(a) effective Lagrangian will

=L4/2. Thus, we will modify Eq(5) by adding the term aci{yo,,F ., QPryt yo, F QP Y, (29)

—_ 7&'_ . .

__ o P (OT—1)W where c;xe™ “s is O(am,g. Thus, such a term is sup-
So ; { xbgf2-1 L ) xby/2 pressed both by the lattice spacing and by the smallness of
— Mres.
TV, L 2PRQ=D) Wy o1} (26) If we extend these considerations @(a?) terms in the
effective Lagrangian, we can conclude that a four-Fermi op-

If we include the transformation of the matrX, erator of the form

Q-URQU, 27 caa2(4) (), (30

this generalized domain wall Dirac operator will now pos-wherec, is a constant, cannot occur to order®"s. Since
sess exact chiral symmetry. Note, a comparison with(E8).  this operator will become a chiral singlet only when con-
shows that) transforms “like a mass term.” tracted with two powers of the matr® or one power of)
Thus, if we examine this generalized theory that includesand one power of the mass matik of Eq. (15), the coeffi-
the chiral matrix(2, all amplitudes will become functions of cient of such an operator must contain a double suppression
Q) but will exactly obey the chiral symmetry described by c,«e~22Ls or a further factor ofm; .
Eqg. (25 and EQq.(27). Therefore, we need only understand
how the matrix(Q) will enter the low energy Green’s func- V. SIMULATION DETAILS
tions of interest to determine in a precise way the transfor-
mation properties of the chiral symmetry breaking induced In the following discussions much use will be made of the
by mixing between the walls. momentum space quark propagator in Landau gauge. The
To zeroth order ire” “Ls, the fermion degrees of freedom first step in calculating this quantity is to fix the gauge. We
will remain bound to the walls and propagation from oneimplement Landau gauge fixing by iteratively sweeping over
wall to the other can be neglected. In such circumstances, tHdl lattice sites, maximizing the functional
matrix ) which is introduced at a point mid-way between
tge walls cannot e_nter, the ar_nplltude will be independent of 2 {Tr[U#(x)+UL(x)]}. (31)
and hence naively invariant under the fuBU(N;¢)_ X
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At each lattice site we determine a gauge transformation ma- VI. THE RENORMALIZED PROPAGATOR
trix, g(x), which increases the value of E@1). The maxi-

) . Before we treat the more complicated situation of the fer-
mum is achieved when

mion bilinears it is necessary to first consider the renormal-

ization of the quark propagator. Neglecting, for the moment,
E T B(x)BT(x)] (32 potential contributions from lattice artifacts the renormalized
x quark field may be defined as

is zero, where Gred X) = Z3/700(X). (39)
1 If we similarly introduce a renormalized mass, defined by
B(x)=A(x)—AT(x)— §Tr(A—A*) (33
Mien=ZmMg, (40)
_ =t ~ o wherem, represents a generic multiplicatively renormalized
A(x)—% [UL00+Uu(x=p)] (34 bare mass, then the renormalized propagator may be written
and Srer( P, Mren) = Z¢So(P,Mp) | Mo=Myen/Zm* (41)
~ _ + Both Z, andZ,, are fixed in the RI scheme by requiring that
UuX)=g0)U,.00g (x+ ). (35 the renormalized propagator obey the Euclidean space rela-
In practice we stop when the quantity in E§2) is smaller tions
than 10°8. . 951
On this gauge-fixed configuration the quark propagator, lim — I—Tr e”(p) =1 (42)
S(x,0), from one source, denoted as 0, to all possible sinks is Myen—0 12 ap s
then calculated. A discrete Fourier transform is then per- Pk
formed over the sink positions giving, )
m!;rloumrenTr(Sren( P))p2=,2=1. (43
S(p,0)=2, exp(—ipt.x)S(x,0), (36)
X While Eq. (42) and Eq.(43) seem to give a simple and
. appealing way to calculaté, and Z,, by directly applying
with them to the lattice propagators, the effect of both lattice ar-
) tifacts and spontaneous chiral symmetry breaking must be
T

plt=="p (37) consid_ered. _ _ S _
L, * Lattice actions with explicit chiral symmetry breaking re-
quire an additive renormalization of the input mass, which
whereu is one ofx,y,z or t andn, may in principle lie in  may be taken into account for domain wall fermions by mak-
the range 6-L,—1. In practice, however, only a subset of ing the replacement
this range is used.
Unless otherwise stated all the data that will be presented Mo— Mg+ Mies, (44)

are from calculations on a 3832x 16 lattice (where the i ] )
last number refers to the extent of the lattice in the fifthin the equations above. However, the effects of lattice arti-

dimension. The simulation was performed @#=6.0 with facts on the correct definition of the renormalized and im-

2000 heatbath sweeps between every configuration and wififoved guark field are more complicated. They have been
2000 thermalization sweeps performed at the outset. In totajiudied in Ref[24] for Wilson fermions, where it is noted
142 configurations were generated. For this lattice size thH'at there are three terms that may mix with the definition at
momentum range was restricted to those momenta for whicff(2) in the lattice spacing, giving rise to an expression for
n,=0,1,2 foru=x,y,z andn,=0,1,2,3. Quark propagators the improved and renormalized quark field of
for 5 bare massesn;=0.01, 0.02, 0.03, 0.04 and 0.05 p
were calculated all usfinyl s=1.8. Gren= Zé/Z(lJF bqma){1+acq(D + Mey) + aCyif}do.
The results will often be quoted against the square of the (45)

absolute momentum, where thi; refgrs to the Euclidean inngheres may appear because the gauge is fixed. If such extra
product of the momentum defined in E@7). To be more  teyms appear then conditions must be found that allow them
specific to be subtracted from the bare quark field before(&8) and
Eq. (43) may be applied. In the context of simulations using
(ap)ZZE plattplatt (38) O(a) improved Wilson action ap3=6.0 these terms have
R been found to give significant contributions to the form of
the propagatof24]. In particularc/ was found to be large.
wherep is dimensionful. However, they all break chiral symmetry and so, following
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FIG. 1. A plot of ﬁTr(S;tlt) versus @&p)? showing that for FIG. 2. The value ofi5Tr(S™') extrapolated tom;=0 vs
moderate values ofa(p)? the effects of explicit chiral symmetry (ap)?. For moderate gp)? the extrapolated value is zero within
breaking are small. errors, showing that the residual mass is small.

A. Extracting Z, from th t
the arguments of Sec. IV, should be suppressed by a factor of Xiracting 2q from the propagator

O(am,g for simulations using domain wall fermions. As  The extraction oz, from the propagator via Eq42) is

such, studying the form of the propagator provides an excelpumerically challenging due to the need for a discrete deriva-

lent test of the chiral properties of domain wall fermions. tive to be calculated. A much simpler methf&, is to cal-
The effects of spontaneous chiral symmetry breaking or¢ulate

the form of the propagator are well knoy25,26. The most

noticeable effect is that the trace of the inverse propagator 27— i 2

picks up an extra contribution, which at lowest order in a q 12 (a )2

power expansion in b? may be described as

Tr(')’,us|an(ap)) (48)

This quantity may then be related &, by a perturbative
< > matching calculation performed in the continu(iaY].
aq On the other hand, the use &f, to determineZ, intro-
=T +Cyj——L 4 46 a
12 "(Sren(P))=Myenrt Cy= = p2 (46 duces significan®(a?) errors through the choice of how the
discretized momenta are defined. If we were to replace in Eq.

(48) the definition of the lattice momentum in E@7) by,
where, at first order in perturbation theo@y=4mas/3.  for example,

Putting Eq.(46) and Eq.(45) together, the predicted form for

the trace of the lattice quark propagator is — 1
quark propag P.=3sinp,.a, (49
as 2 . . . . .
STH(Sai(ap) =+ + <O|q>c Zo+ ZnZofam+amed ' ' '
(ap) 1.8

! 24 ... ?
+2(CNGIZq Cq)(ap) + ! (47) ﬁ @@@%@@@@ m@§ @

where terms ofd(mcyg) have been neglected.

In Fig. 1 we plot the left-hand side of E@47) versus 1
(ap)? for a variety of values fom;. As can be seen, for 08
domain wall fermions this quantity approaches a constant
value for moderately large values cff)?. Also, it is en-
couraging that while at low momenta the effects of sponta- 04
neous chiral symmetry are visible, there is no evidence to 02
suggest appreciable effects from explicit chiral symmetry
breaking. In particular, there is no evidence of a large addi-
tive mass renormalization. This is visible in Fig. 2, which
shows the result of a linear extrapolation of the data to the
point m;=0. Figure 3 shows the slope of this extrapolation,  FIG. 3. Z,Z, calculated from the slope g Tr(S™*) versusmy
which from Eq.(47) is Z,,Z,, at large @p)?. plotted as a function ofgp)2.

0.6

i
— T e T g T T

=)
<
n
-
—_
n
[N
IS
n

(ap)’
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then the resulting would differ from that given in Eq48) ~ While Eq. (56) completely defines a procedure for calculat-
by O(a®) because the trace includes an explicit factor ofing a renormalization factor for the bilinear operator of in-
P.7Y.- One can estimate the size of this error by using variterest, practically we need to be able to use a renormalization
ous definitions for the lattice momentum in the analysis. Ascondition that allows us to match to perturbative calcula-
will be shown later in Sec. XI, this uncertainty is roughly tions. In general the value ofy, o(p,p) has contributions
10-20%. In Secs. VIl and IX we introduce two methods for from intrinsically non-perturbative effectsuch as those due

computingZ, which avoid this uncertainty. to propagating pionsthat perturbative calculations do not
include. As we are interested in the value of the renormal-
VIl. ELAVOR NONSINGLET FERMION BILINEARS ization factors in the perturbative regime we either apply the

renormalization condition at a high enough momenta such

that the nonperturbative effects are suppressed, or remove
In the following the renormalization of the flavor non- such effects from the data and in the following that is what

singlet fermion bilinear operators will be considered. To sim-we will do. We will reserve the notationZ;, i

plify notation explicit quark flavorsy andd) will be used in  €{d,S,P,T,A,V} for the renormalization factors in the per-

the following equations. The most general fermion bilinearturbative regime.

may be written asiT’;d with

A. Introduction

B.Z, and Z

A (partially) conserved current that is normalized in a
gashion which is consistent with the usual Ward-Takahashi
identities will undergo no renormalization and the corre-
spondingZy will be unity. In particular, for domain wall
— R fermions and the RI renormalization scheme specified by
[ul'd]ren=Zr{ul'd]o. (5D Egs. (42 and (54) and imposed at high-momentuny,
>Aqcp, We expect

Fie{l”Y,u”Y5!'yM’y5!U,uV}! (50)

where i represents whatever indices the gamma matrice
have. The renormalized operator is defined as

The factorZr is fixed in the Rl scheme by defining the

unrenormalized, amputated vertex function Z,=7Z,=1. (57)
1 ipxg+ H the lattice thepartially) d t
o =2 gt dixae i Xt owever, on the lattice thgpartially) conserved currents are
ro(P.d) Vf d'zdx,d*xe not local and it is frequently more convenient to work with

_ _ their local counterparts. Provided that these are related by a
X{[ul'd]o(2)ug(X1)do(X2))amps  (52)  chiral transformation one still has

the corresponding renormalized, amputated vertex function Za=2y. (58
VAN This does not, however, mean thaj must equalA,,, and
Ir red P.O) = Z—qu,o(p,q) (33 several mechanisms exist for splitting them away from each
other at low energies.
and requiring that Even if there are no significant effects from explicit chiral
symmetry breaking, the effects of spontaneous chiral sym-
AFi red PP p2 .2 metry breaking must be taken into account. Consideration of

the operator product expansion, to lowest order in powers of

1 1/p?, shows thatA, and Ay may get contributions from
=—0——Ir EI Ll red P.P) =1. terms of the form
Tr(z FiFi) p2=pu?
I mrzen
(54) = (59)
p
Note, the corresponding, unrenormalized vertex amplitude is
. and
defined by
1 mren<EQ>
Ar,o:—Tr< > FiHri,()(p,p)), (55) T (60
Tr( z Fifi) I
! Since such terms, by their very nature, stem from chiral sym-
<o that metry breaking they are not constrained to emtgrand A,

with the same weight. At large momenta these terms are
7 suppressed and do not affect the extractioZ pfand Z,, .
r . . - 1
Ar p)=—Ap D). (56) If the action being used explicitly breaks chiral symmetry,
ry el P P) Zg r;.oP P) Z, andZ,, need not be equal, but their ratio will still be scale
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-0.04 —

-0.06 -

-0.08 —

0 . I . I . I : I . 1 . 1 . 1 ‘ ! ’ ! ’

(ap)’ (ap)’

FIG. 4. A plot of A,— Ay versus &p)?, showing that there is FIG. 5. A graph of%{AA+AV} versus @p)?, which up to lat-
no significant difference betweef, andZy, even for moderate tice artifacts, giveZ,/Z, andZy/Z,.
values of @p)2.

1
independent. This means that while, and A, need not L= Ze (63)
approach one another at high momenta, their ratio should
become scale independent for large enough momenta.  If the potential for explicit chiral symmetry breaking is taken

While we want to work in the chiral limit for the extrac- into account, these equalities cease to be valid, but the quan-
tion of the renormalization factors it is also worthwhile to tities Z5/Zp, ZsZ,, andZ,,Zp are expected to be scale in-
consider what the mass dependencé gfandA,, should be  dependent. However, lattice studies using both the Wilson
(especially as we wish to extract the chiral limit from dataand staggered actions have shown that the rAtidAg,
measured in finite mass simulationRequiring that the which in perturbation theory would be equal Zg/Z, and
“generalized” symmetry introduced in Eq16) is satisfied therefore might be expected to be momentum independent
constrains the mass dependence to either be of the same foup to small corrections, is strongly momentum and mass de-
as Eq.(59) (a single power of mass multiplying something pendent, with the bulk of this dependence arising frag.
that breaks chiral symmetry—and therefore by the argument is instructive to consider the source of this discrepancy
of the previous paragraph damped with momentempro-  [3,28]. We start from the continuum axial Ward-Takahashi

portional to a second or higher power of mass. In the lattefdentity which is derived by taking the axial variation of the
case any effect on our data should be negligible. quark propagator. This reads
The above considerations suggest looking at the quantity

Ap—Ay. (62) (mu+md)j dZ<U(Xl)[Uy5d](z)E(X2)>

o o _ = y5(d(x1)d(X2)) +{u(X)u(x2)) ys. (64
This is shown in Fig. 4 and, as with the case for the quark
propagator, while the effects of nonperturbative breakingMloving to momentum space gives
terms are visible at low momenta, they are damped at higher _
momenta. There is no significant signal for effects from ex- (My+Mmg){u[uysd]d)(p,p)= ys(dd)(p)+(uu)(p) s,
plicit chiral symmetry breaking, sinc&,— Ay is tending to (65
zero. At momenta of interest, there also seems to be no si
nificant splitting due to nonperturbative effects with the dif-
ference between , and A\, being less than 1% in the chiral T _
limit at (ap)?= 0.8 and smaller for momenta above this. This 2miuluysdld)(p.p)={rs,S(P)}- (66
being so, it is sensible to use the quandifA o+ A\) for the Amputating and tracing withys yields
extraction of bothZ,/Z, andZ, /Z, to increase the statisti-
cal accuracy. This is shown in Fig. 5.

Yhich in them,—my=m limit gives

1
Ap(p,p)= r(S (p). (67)

C.Zsand Zp Neglecting all lattice artifact terms except the additive mass

For a theory with chiral symmetry the RI scheme pre-renormalizationwhich is justified by the discussions in Sec.

serves the well knowiMsS relations V1), this leads to an approximate expression Agf 5, in-
cluding the first order contribution of spontaneous chiral
Zs=Zp (62)  symmetry breaking:
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15 T T T T — T T Note that this relation should be exact for domain wall fer-
! mions (with m=m;) for any value ofLs. Using Eq.(47),
B o m.=001 : and noting that both the residual mass and the renormaliza-
q —0.02 tion factors should be independentrof, gives the approxi-
m, = .
10@ % o m =003 a mate expression
’ A f =0.04 C.Z 0—,a3<aq>
, | _ q

If the mass dependence @fq), for small masses, is propor-

% tional to only positive powers of the mass, then the second

% % 1 term in Eq.(74) is almost certainly unimportant as it is sup-
EEa ®amae a pressed in exactly the region of parameter space in which we

are working: large momenta and small massgse effect

5 might be larger than naively expected, (@g]) is quadrati-

(ap) cally divergent in the lattice spacingt is necessary, how-

ever, to consider the effects of fermionic zero-modes on

(gq). Assuming a theory with chiral symmetry, the spectral

decomposition of the quark propagator leads to an expected

mm%
EFIE

0 L 1 1 1 | . 1 L
0 0.5 1 1.5 2 25

FIG. 6. Ap versus @p)? for several values af;, showing that
the 1p? pole is more pronounced for smai; .

2/ form for (Eq), on a single configuration C, of
(Mi+MedAp ja(@P,AP) = +a <qq>C Z
; | ap)=---+——-= _ -
e (ap? " —(AQ)c=Tr{(D+m)"}] (79
+ Zqu( m; + mres)a (68) Ng 1 1
vV om0
neglecting terms of[ (ap)?]. While in the absence of the =0 n (76)

condensate term this equation reduce&ge 1/Z,,, the con-
densate term, which is clearly visible in Fig. 2, gives rise towheren, is the number of fermionic zero-mode¢,is the

a pole term of the form four dimensional space-time volume and Mgare such that
o D ¢,=i\,¢,. The number of such zero modes should grow
(qq) more slowly than the volume, and so the first term in Eq.

m 14q (69) (76) will vanish in the infinite volume limit. However, for the

lattice parameters used for this simulation the effects of zero-

in Ap . Figure 6 shows the data favp ., with this effect ~mModes have been found to be noticeable in hiath) and

clearly visible, with the rise for smallap)? becoming much hadronic spectrum calculatioh$2] and so must be consid-

more pronounced as the mass decreases. ered for the present case. Comparing E&) and Eq.(76)
A similar argument may be put forward fotg. In this ~ Shows that, asn—0 for fixed momentumAs gets a large

case it is the Ward-Takahashi identity arising from a vectorcontribution from zero-modes of the form

rotation of the fields:

1 Cyz
_ _ - Emo) (77)
my—my) | dxuodl2)06)

that must be subtracted befatg/Z, may be calculated from

=(d(x1)d(X2)) = (U(X)U(Xy)). (700 Eq.(54). Figure 7 shows our data fdrg .. While the effect
of the condensate term is smaller than that Zgr, it is
Moving to momentum space, this gives noticeable for the lighter masses.
(m,—mg)(u[ud]d)(p,p)=(dd)(p)—(uu)(p), (71) D. Fitting the pole terms
o o Considering Eq(77) and moving to lattice notation, the
which in them,—mq limit tends to method for extractin@ s from A 5 becomes clear. Working at

a fixed momentumA g may be fitted to the form

o P
d]d)(p,p)=— ——S(p). 72
(ufud]d)(p,p) omS(P) (72 Cis

[amf+ O(amres)]2

Asja= +CystCag(amp)?, (78

Finally, amputating and tracing gives
1 with Z,/Zg being given byc,s. While one might naively

_ 1 omS(p) 7] (73 ~ expect the denominator in the above equation toabe
ST 12 am ' +ams, as shown in Ref.12] the residual chiral symmetry
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(ap) Power of Pole

FIG. 7. A plot of Ag, versus @p)? for several masses. The FIG. 8. This figure displays the averagé per degree of free-
mass pole can be clearly seen for small momenta and is attributabtéom for the fits used to determine the power of the mass poles in
to zero-mode effects. AgandAp, clearly showing their ™? and 1m poles, respectively.

breaking effects that appear in the pole terngm are not ~ Zp andZy, (as calculated from the trace of the inverse propa-
parametrized precisely bym,es since the singular behavior 9atoy, which is shown in Fig. 10. This product is clearly
of the pole enhances what are expected to be atlearia-  Very close to unity.
tions in the quantityam,s. One only knows that the residual
chiral symmetry breaking effects are ©{am,gy. However, E.Z:
for the pole subtractions in this paper we have used precisely
am;+amg. This is justified since the statistical errors on
our data are such that the fits are insensitive to the exa
value of Mgs.

The situation for theZp extraction is slightly more com-
plicated. Examining Eq(68) and Eq.(76), shows thatA
should have a double pole of the form

The tensor density renormalization, while sometimes ne-
&Iected in bilinear renormalization coefficient calculations, is
a quantity of use to current lattice simulatiof#9]. An ex-
traction of its value will be postponed to Sec. X, but for
completeness a plot of; is shown in Fig. 11.

VIIl. EXTRACTING Z, FROM THE EXACT WARD
IDENTITIES

Cip Cop
Ap ja= ’ ' The vector Ward-Takahashi identity of E4.8) is exact at
' 2 + - ) . T o
(amy+amey?  (am+amme) finite lattice spacing. As such, the renormalization coefficient
+CaptCap(amy)?, (79  for the conserved vector current defined in Etp), is equal

to unity. Additionally, the considerations of Sec. IV show

with c3p being equal taZ,/Zp and the quadratic mass pole

due to zero-mode effects ifgq). For simplicity, we have
again use@m; + amin the first term of the right-hand side " % % ]

2 —— . .

in Eq.(79). For practical purposes, however, the need to fit to
the quadratic term may be avoided by working witly -
=0.02. Good evidence that the above fitting forms are cor- j
rect is shown in Fig. 8. This shows the average, over all the
momenta in the range 05 ap)?< 2.0, of thex? per degree

— >
of freedom for_ a correlated fit to the above forms fof o FiedZJZ,| |
dependence with the power of the pole treated as a free pa- . q
rameter. One sees that ariLpole is favored for th&p case o Fited Zq/Z S|
while a 1m? is identified in the fit forZg. Further evidence o ZJZ,

is provided by considering the resulting values ®y/Z, i .
andZp/Z,. Figure 9 shows a comparison between the ex- e b ey
tracted values of these two quantities. As chiral symmetry % 0.5 1 15 2 2.5
would predict forZs/Z, andZp/Z,, the two quantities co- (ap)2

incide at large momenta. This provides an excellent test of
both the extraction method and the chiral properties of do- FIG. 9. A comparison oZs/Z, and Zp/Z, as extracted from
main wall fermions. This can be further seen by comparing\g and A after pole subtraction.

014504-11



T. BLUM et al. PHYSICAL REVIEW D 66, 014504 (2002

2 — T T T - - A similar equation also holds for the conserved axial current.
Because the formulas for the conserved currents contain
fermion fields at separate points on the lattice as well as
summation over als, the calculation of the matrix elements
for these operators can be very expensive. We used a random
source estimator to compute the part of the sum betvaeen
=1 tos=Ls—2. Also, instead of calculating all four com-
ponents ofA#(p) for a given momentunp, we calculate
A%(p) for momenta related t@ by interchange of its Oth
component with each of the other three. We then use the

0.5 - equality
1 Tr(y*A%(p%pt,p2,p®)=Tr(y°A%(p° p*.p?, p%))
L S B S— +Tr(7’OA?z(plvpoup2'p3))
2
(ap) +Tr(y°A%(p% " p°% p%)
FIG. 10. The producZpZ,, calculated by combiningp/Z, -I-Tr(yOA?,(ps,pl,pz,po)),
from pole subtraction with the trace of the inverse propagator. This

product is clearly unity within errors. (82

that through first order in the residual chiral symmetry break{© obtain the needed result. As the time to Fourier transform
ing the extra]‘g-,‘q in Eq. (22) can be completely absorbed into of a matrix element IS negligible N comparison with the

the additive renormalization of the mass so that the axia?alcglatlon of the _matrlx element itself, this aII_ows_us o

Ward-Takahashi identity, for low-energy physics, takes Onobtaln the result with only a quarter of the running time of

the normal, continuum form. Therefore, the renormahzatlond'reCt calculation ofA;.

factor for the axial current defined by E@3) should also be Because the volume 1632 used in the simulations is
unity to a good approximation. not symmetric, strictly speaking the above equation is not

The above facts can be used to compute the quark fielgxact, as the thirdi component of momentum is not re_tlath by
renormalizatiorZ, from Eq. (54), as applied the conserved symmetry to the first and second ones. However, this differ-

vector and axial currents. For the case of the conserved ve€NC€ IS suppressed by two powers of the lattice spacing and,
tor current Eq(54) reads in practice, the results obtained for the last three terms in Eq.

(82) all agree within statistical errors for the momenta used.

o1 We used momenta with the first three integer components no

Zq ZyzgIr(y*A%(p))=1 (80)  larger than 2 and the last component equal to O or 2. The two

exceptions were the momenta with integer components

which therefore implies (2,2,2,0) and (2,2,2,2) that were excluded since they would

require usage of momenta (0,2,2,4) and (1,2,2,4).
1 . Figure 12 shows the difference betwegncalculated us-
Zq:EgTr(VMAV(p))- (82) ing the axial and vector Ward-Takahashi identities, while
Fig. 13 shows the average. As can be seen from Fig. 12,
L - - while for low momenta the two methods give different re-
sults, this difference is damped at large momenta as would be
] expected if this effect stems from spontane¢wher than
explicit) chiral symmetry breaking. Again, this provides
strong evidence that the effects of explicit chiral symmetry
& ® breaking are negligible in these calculations.

I § m, = 0.01 |

£
mf=0.02 IX. Z, FROM HADRONIC MATRIX ELEMENTS
m, = 0.03
£

et ©
1~ Q@@gﬁ —

o o

As mentioned in Sec. VIII, to a good approximation the
axial current defined by Eq23) is conserved, and therefore
| has a renormalization coefficient equal to the identity. This
0o 7] provides a simple way to calculate the renormalization coef-
o ficient of the local axial current operatdt, , directly from
0 05 1 15 2 25 hadronic matrix element calculations. One method, that has
(ap)2 been used in Refl12], is to note that the matrix element of
any operator with the renormalized axial current is a well
FIG. 11. This is a graph of 1 versus @p)2, from whichZ will defined quantity, which will be independent of the interpo-
be extracted in Sec. X. lating operator for the axial current at distances above the

m_ = 0.04 J

> <
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0 ' T el e 5 TABLE I. Z, computed from the ratios of hadronic matrix ele-
& g e 1 ments.
-0.05— — -
% o m =002 Lg Za no. configs.
0.1 u] mf=0.04 - 12 0.75603) 56
- 1 16 0.755%3) 56
015~ . 24 0.75423) 56
L i 32 0.753%3) 72
02 - 48 0.75383) 64
0251 —
| fest in the data as added terms proportionalap)¢.
, ! , ! , ! The simplest approach to using the renormalization coef-
@ 05 : L3 ficients calculated in this paper is to take theass-pole sub-
(ap)2 tracted value for Aj(ap) as (4/Z;)(ap). However, we
need to address two significant uncertainties.
FIG. 12. The difference betweety, as extracted from the con- First, this choice assumes, without verification, that the
served axial vector and vector currents. O[(ap)?] lattice artifacts are small. We should attempt to

understand the momentum dependence of the amplitude
Ai(ap) to determine the size of th@[ (ap)?] contamination

— — and, if possible, remove it.

(Ao(t1)qysa(t2)) =Za{Ao(t1)qysa(t2)) (83) Second, most operators of interest in lattice calculations
are ultimately defined using continuum perturbation theory.
Making this connection requires the use of perturbation
theory to connect the Rl scheme and momentum scale used
here with the renormalization procedure and momentum
scale used in the original continuum definition, typically the
MS scheme. This final matching step between the normal-
ized lattice and continuum operators is done at a specific
X. RENORMALIZATION GROUP BEHAVIOR momentum scale for the renormalized lattice operator. In

The previous sections have provided an extraction of th@eneral, both the normalization of lattice operators and the
renormalization coefficients of interest taking into accountMaiching coefficients will depend on this momentum scale.

the possible effects stemming from chiral symmetry breaking! iS N0t knowna priori how many loops in perturbation

(either explicit or spontaneousin general, perturbation theory must be calculated to correctly describe the momen-
theory predicts that these coefficients may be logarithmicallfum range probed in current lattice calculations, or even if
dependent on the momentum scale. Lattice artifacts may aldgrturbation theory can describe the region we are studying.

cause the result to depend on the definition of momentum ofyoMParing the momentum behavior predicted from pertur-
the lattice. When small, these lattice artifacts will be mani-°ation theory to that of the data therefore provides an impor-
tant consistency check for the general framework of the

: ; - . , : method.
- . Our approach to comparing the known perturbative run-
L1 p—y . ning of the quantities of interest to our numerical data will be
@ Wp=ne 1 to divide the data by the predicted renormalization group
o m =004 . running, with the overall normalization set by requiring that
- 1 at the point &p)?=1 this divisor is one. If the perturbative
09 . result correctly describes the data, and the effectaqf)?
- g O 1 terms may be neglected, the result will be completely scale
08 % Egegaoi?d . independent.
r ] There are three components that are needed to calculate
07= . these quantities.
I 7 (i) The anomalous dimensions for the operators from per-
061 7 turbation theory. o
. | . | . | . (i) The ratio of ZR/ZMS must be known to perform the
035 05 ] L5 2 matching. Since the renormalization condition that deter-
(ap) mines ZR! is well defined both on the lattice and in con-
tinuum dimensional regularization this ratio may be calcu-
FIG. 13. The average &, from the conserved axial vector and lated perturbatively using the latter regularization. In general
vector currents. it can be expanded as

scale of the lattice spacing. Therefore,

for [t;—ty/a>1. A full discussion of this method and the
results are given in Refl12], but it is useful to summarize
the results here. Table | collects together valuesZgrfor
severalLg values on a8=6.0, 16x32 lattice with Mg
=1.8. The quoted errors are statistical only.
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FIG. 14. A plot showing the raw data for Aj (labeled as FIG. 15. A plot showing the raw data for A4 (labeled as

“Bare” ) and the value of W, divided by its predicted three loop “Bare” ) and the value of W divided by its predicted three loop
perturbative runnindlabeled as “SI’), such that they coincide at perturbative runninglabeled as “SI", such that they coincide at
(ap)?=1, versus momentum. The slope of the latter veram?  (ap)2=1, versus momentum. The slope of the latter veras?
may be interpreted as afi(a’) effect and is~—0.02. may be interpreted as afi(a®) effect and is~ —0.003.

ZN gradient is~ —0.02. A more compelling test of the renormal-

ization group behavior is provided by studying the data for
ZslZ,. In this case the predicted scaling behavior over the
For a consistent treatment this ratio need only be known teange of momenta studied is much larger and, as Fig. 15
one less power ofrg than the running is known. shows, the agreement between the predicted behavior and the
(iii) A lattice value forag. The value ofag affects the data is impressive(with a gradient, in this case, of
scale dependence of both the matching and running for thiss —0.003. The values forZs/Z, versus momentum used
calculation. For this work the value af was calculated at here are taken after the mass-pole has been subtracted and,
three loops using a lattice value dfgcp taken from Ref. again, the three loop results for the running are taken from
[30] as Refs.[32,4,27. Unfortunately, a matching calculation f@x
could not be found in the literature, so the data could only be
Aqcp=238£19 MeV. (85  compared to the one loop runnifghich is taken from Ref.
. i ] ) _ [33]). The SI quantity so calculated is shown in Fig. 16 and
To do this consistently with thg way the lattice treatment inpaq 4 gradient of —0.02.
Ref. [30] was performed, their value afo=0.5 fm was Taking the interpretation that the remaining scale depen-
taken and convertgd into a lattice spacing using the results Qfence is due t@[ (ap)?] effects, the correct way to extract
Ref. [31]. For the dimensionful scales that we will quote, We ihe renormalization coefficients is to first construct the S

set the physical scale through the rho mass computed withantity as described above, and then fit any remaining scale
domain wall fermiong12], which for 8=6.0 gives dependence4] to the form

2
s SR, _ % S@)R)
—=1+— + — +.n.
" 1+ 2§ (47T)220 (84)

a=0.52q11) GeVv L. (86)
_ o y=ci+cy(ap)?, (88)
Both Z, andZ,, should be scale independent, but this is
not the case foZ,. Figure 14 shows both A/, and the scale

invariant(Sl) quantity calculated as described above: for a range of momenta that is chosen to be “above” the
region for which condensate effects are deemed to be impor-
ARl(ap)?1=AAl(ap)?l/Cal(ap)?]. (87 tant. Table Il shows the fitted values for the RI aNtS

scheme renormalization coefficients using a fitting rage of
The quantityC, is determined through three loops using the0.8< (ap)?<2.0. Now that the renormalization group run-
anomalous dimension coefficients calculated in Refsning has been taken into account, it is possible to make a
[32,4,27 as described in Appendix B. It is normalized so thatcomparison of the various methods of calculatiig and
Ca(1)=1. As can be seen, in this case the renormalizationthus give final results for the renormalization factors. Table Il
group running actually goes in the opposite direction fromalready givesZ, as calculated from the conserved currents
the data. The scale dependence of these data, either predictgdg. 17 shows the momentum dependence of both the Sl and
or actual, is, however, very small and a plausible explanatiomare form; see also Table )JllAnother simple way to derive
for this is an @p)? error. Indeed, when a linear fit of the S this quantity is by takinga/Z, from Table Il and combining
data versus gp)? is performed, for 0.8 (ap)?<2.0, the it with the value ofZ, obtained from hadronic matrix ele-
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' 1 LI — T TABLE II. Final Z-factor results.Z, is calculated two ways:
r § 7 from usingZ, /Z, from this table combined wit , from hadronic
LIS| O bare] - matrix elements, denotezf®°", and from the conserved currents
¢ o SI | using off-shell quark states, denot&f*.
1.1 — JE—
% T ] Z-factor RI/S| MS at 2 GeV
105 O ® o = ZplZ, 0.934(2)(10) 0.938(2)(12
3 i3 o) 1 Zs/Z, 0.683(7)(30) 0.779(8)(35)
- ) % TDw o - Z71Z, _ 1.034(3)(100 1.035(3)(100
i P lel oo Zgadronte 0.808(3)(15) 0.805(3)(17)
-l o ZNerd 0.753(16)(30) 0.750(15)(30)
0.9 . L . ! . ! . ! .
0 0.5 1 1.5 2 2.5 . . .
5 for bilinear operators is less precise. However, the results are
(ap) in rough agreement with the more precise methods described

FIG. 16. A plot showing the raw data for Af (labeled as
“Bare”) and the value of W ; divided by its predicted one loop
perturbative runnindlabeled as “SI"), such that they coincide at
(ap)®=1, versus momentum. The slope of the latter versus){
may be interpreted as afi(a?) effect and is~—0.02.

ments. This givesZ,=0.8053)(15). This, approximately
5%, difference may be taken as an indication of the size o
the systematic errors.

Xl. Z4 FROM THE PROPAGATOR—RESULTS

Here we show results for the wave function renormaliza
tion computed through Eq48) and demonstrate that this

method contains a comparatively large systematic uncer,,

tainty due to the ambiguity in defining discrete momentum.
We use the perturbative matching betw@’p andZ,, as
given in Ref.[27]. Then the SIZ, can be constructed as
described above.

Figure 18 shows the S, usingZ; defined in Eq.(48),
and Fig. 19 shows the S, where the replacement

ap,—sinap,)=ap, (89)

is made in Eq(48). Note that the former is plotted vap)?
and the latter vsgp)?. We use the data a;=0.02 since no
mass dependence can be observed.

As in the previous section, we extrapolate wpf°=0.
We find for the data in Fig. 18,=0.715-0.007+ 0.040,

where the first error is statistical and the second comes from

different choices for the range of momenta over which to fit.
The data in Fig. 19 giv&,=0.733+0.007+0.050. We can

further probe these discretization uncertainties by extrapolat-

ing Z;* to zero @p)? or (ap)?. This results inZ,=0.732
*+0.006*0.020 andZ,=0.772+0.006+* 0.020, respectively.
The spread in values d, obtained depending on mo-
mentum ranges and on the definition of discrete moment
means that extracting a &l, in the same manner as taés

Their convention is that a gived@ factor in Ref.[27] is the
reciprocal of ours.

above.

Xll. COMPARISON WITH PERTURBATION THEORY

All the renormalization factors considered above have
also been calculated in lattice perturbation theory, at the one
%oop level, for the domain wall fermion action in theg
—oo limit [20,19,21. As we see little evidence of explicit
chiral symmetry breaking effects in our study, the fact that
the perturbative calculations have been performed inLthe
— oo limit will probably not affect this comparison. However,

a more serious issue is whidts value to use in the pertur-

bative formulas.

The reason for this is easy to understand. Away from the
alls, the massless domain wall fermion Lagrangian,(&yg.
may be viewed as a simple extension of the standard Wilson
fermion action to five dimensions with a negative mass term,
Ms. Like the four dimensional Wilson mass terMg under-
goes a strong additive renormalization, the size of which
perturbation theory is not good at predicting. While a more
accurate prediction may be made using tadpole improved
perturbation theory2], a good deal of ambiguity remains in

0.9

0.8

0.7 O bare

o SI

0.6

a

0'50 0.5

(ap)’

FIG. 17. Bare and scale invariaf8l) versions ofZ, determined
from the conserved axial and vector currents.
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TABLE Ill. This table collects together the raw data used for the 5y caseM gim: 1.8). ForB=6.0, this ansatz leads to a shift

“Bare” data plotted in Figs. 14, 15 and 16 for 6:§ap)*<2.0. of magnitude~0.8, which has been found to describe the
5 dependence of the pion mass squared as a functidmsab
(ap) LAA UAs VA< a good degree of accuracy in a numerical simulation with
0.501 0.92266) 0.620486) 1.054238) Ls=14[21]. _ _
0.616 0.924(23) 0.640167) 1.044630) _ _Equat|on(4.10)_ in Ref. [19] gives the complete one loop
0.655 0.920@22) 0.648164) 1.035228) bilinear renormalization constants in tMS scheme:
0.771 0.920620) 0.657455) 1.027322) ZiQtalz [(1_W§)Zw] *lZF ) (92)
0.810 0.91783) 0.661459) 1.019727)
0.925 0.918R1) 0.675553) 1.012525) HereZ,,, Z,, andZ; are to be computed from Eqg&3.30,
0.964 0.91722) 0.678454) 1.009224) (3.42, and (4.11) and Tables Il and Il in Ref[19], while
1.079 0.915R27) 0.691062) 0.999734) wo=1—Ms;. In the mean-field improved case, the above re-
1.118 0.916(@3) 0.693552) 0.998926) lations hold with the replacemenlw0—>w(’§"F:W0+ 4(1
1.234 0.918820) 0.700745) 0.998923) —u), Zy—Zy", Z,—uzy", andZp—uzy'" [34], whose
1.272 0.915(®3) 0.705951) 0.992326) values can also be computed from Tables Il and Il in Ref.
1.388 0.914R21) 0.710245) 0.988924) [19]. The factoru in these formulas is the mean link variable
1.426 0.914(25) 0.711245) 0.987629) in the Feynmap gauge. As it is not possible to use the value
1.542 0.910626) 0.716848) 0.980130) of the mean link in the Feynman gauge, we have mste_ad
1.581 0.910@5) 0.720248) 0.977527) used the fourth root of the plaquette and the perturbative
1.735 0.908(29) 0.725749) 0.970632) reslults 'of Ref[17] tq convert the ret:(s)glts of Rtoetlgg].
1.851 0.910L28) 0.733445) 0.972731) _In'Fig. 20 and Fig. 21 we ploZ,™ and Zg™, respec-
1.889 0.908(30) 0.733942) 0.970835) tively, as functions of the variabl®l; in naive perturbation

theory, in naive perturbation theory with the variatie
shifted according to Eq90) and in the mean-field improved

the perturbative prediction of any quantity that is stronglyc@se. To computers, we used the same input values for
dependent oM. Agcp anda as in the perturbative running calculations in

Further consideration of the similarity of the domain wall S€¢- X. We obtainJ (ap)?=1]=0.20. These figures show
and standard Wilson actions, leads to a nonperturbative es@PpreciableMs dependence. Our nonperturbative result is
mate of the magnitude of this additive renormalization. AsShown as a point corresponding to the single valuevief
argued in Ref[21], in the Le—c limit, the effect of this = 1.8 that we have studied.

additive renormalization may be taken into account by using The naive perturbation theory curve has a significant de-
pendence on the precise value®f. In the mean-field im-

proved case this problem is not as serious as the coefficient
), (90 of ag is a factor of 2—3 times smaller. Examining Figs. 20
and 21, one recognizes that naive perturbation theory does a
_ ) _ ) poor job of determiningZ, or Zg giving values nearly 2
in the perturbative equations, where. is the four-  {imestoo small foMs= 1.8. Introducing the shift of Eq90)
dimensional critical Wilson hopping parameter aid™ re-  improves the situation noticeably giving values 15% too
fers to the value used in the nonperturbative simulation  small and to within a few percent, although the perturbative

, 1
M Eert: M;lm_ ( 4_ Z
c

1 | T . . . | . 1.1 T T T T T T T
i il 105 D
095k L
g L o ]
I o i o) ]
091 % o) N 095 Qﬂm =
- @ @ i | - @ ]
0.851— @ - 09 @ § mm -
I @@ @g@ | 035-— %g@%@@@ i
08| @ & ® 4 1l )
L | o8k 4
075 - I
0.75 —
o7l 1 07- ! I L
0 0.5 1 15 2 25 05 1 15 2
—2
(ap)” (ap)
FIG. 18. A scale invarianSI) version ofZ, determined from FIG. 19. The scale invariaiigl) version ofZ, determined from

Z, but usingap,, instead ofap,, .
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in Sec. X by dividing the regularization independent scheme
coefficients by the three loop renormalization group running
(where availablg The residual scale dependence of these
quantities is small and was treated asa?) error. Three
different quantities were used to determine the quark renor-
malization factor: the off-shell vertex functions of the con-
served vector and axial currents; the trace of the product of
p#y* and the off-shell quark propagator; and the combina-
tion of Z, as determined from hadronic matrix elements with
the value ofZ,/Z, obtained in this study from the off-shell,
axial vector vertex function. The technique of obtaining this
Z, directly from the propagator suffers from large discreti-
zation errors, but is roughly consistent with the other two
methods which gave results differing by5%.

In the final section we compared our results against the
predictions of both standard and mean-field improved one
loop perturbation theory.

FIG. 20. The renormalization fact@®® of Eq. (91) in the MS

scheme at 2 GeV computed in naive perturbation theory, naive

perturbation theory shifted by (41/2«;) as in Eg.(90) and mean

field improved perturbation theory.
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perturbative renormalization of the quark field and flavor
nonsinglet fermion bilinear operators in the context of do-
main wall fermions. We presented a theoretical argument
constraining the form that explicit chiral symmetry breaking
effects may take, and found that numerically these are insig-
nificant, as might be expected from the measured size of the
additive mass renormalizatiom,es [12,13. However, sys-

tematic effects due to spontaneous chiral symmetry breakingnd

and zero-modes are significant, but accurately follow the ex-
pected form and can be effectively subtracted away.

APPENDIX A: THE RUNNING OF ag

In the following the definitions

Renormalization group invariant quantities were obtained
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M,

FIG. 21. Same as Fig. 20 but fa@id*®'.
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a—ﬂ, (Al)
c Ne—1 A2
F— 2NC ] ( )

will be used. The renormalized coupling may be defined in
terms of the bare coupling by

ap= Zéas,U,ZE. (A3)
As ay, is completely independent qf,

da

uzd—ﬂz = —east+f (A4)
with,
2 .dz
_ 2 9
=—ag-ul—. (A5)
ﬂ Szg d/_‘,z

The results for the beta function are most easily given in
terms of thegB; variable:
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TABLE IV. B;’s for the quenched theory. TABLE VI. QuenchedZg anomalous dimensions.

Bi Quenched Value Elements ofyg Quenched Value
Bo 11 4@ _8
B 102 »® —134.667
Ba 1428.5 »@ —2498
Blas) as)? as|® Requiring that the bare operator is independent of the renor-
an  Polan Yamzl — (AB)  malization scale gives the RG equation,
The values used in the current work are summarized in Table d 1 dz
IV. They are taken from Ref27] with the number of flavors w2 ——=0,en= _MZ_Ooren (B2)
set to zerdas we are working in the quenched caaed the du? Zo'" du?
number of colors set to three.
Once theg;’s are known, the running equation,
L)
- 7Oren- (83)
L e 2py 25, (A7)
M Og= — - Ty
du ® 04 Y(4m)? Writing the solution to this equation as
may be solved. Colu'?)
One loop solution: olu' ,
P Zo(uD)=—2F 2 20(p?), (B4)
Co(u?)
as 1 A8)
4 Bo'n(ﬂz//\éco). and using the notation
Two loop solution[35]: A ag)' Tt
vo=2 18\ 7, (B5)
i a
as 1 BrInIn(u? Adcp)
P S L iz a2 L A9 (i)
T Boln(uwAGep)  BoIn*(n/Agep) — _Yo B6
Yoi 2[30 ( )
Three loop solutiorf4]:
272 Z_ P
as 1 B1InIn(uTAGep) Bi= By’ (B7)
4T BoIn(p’lAdep) BN (pP A cp)
gives rise to solutions to the running equation of the follow-
212 2/ A2 ing form (where we have suppressed the subscripts identify-
* B3 In3(2/A2 ){ﬁlln In(p7Aqco) ing the particular operator YO
0 M QCD .
5 ) , One loop solutior35]:
—BinIn(u?/Agcp)+ B2Bo— B} (A10)

C(u?) = ag( ). (B8)
APPENDIX B: THE RUNNING OF THE Z-FACTORS

. . . Two | lution:
As mentioned previously, the renormalized operators we © loop solutio

are working with are defined as

Zo0pare=Oren- (B1)

TABLE V. QuenchedZ, anomalous dimensions.

Elements ofy,

Quenched Value

Y 0
y® 44.6667
3 1056.65

ag(u)

2. (n B[ (BY

C(u?) = ag(p) ] 1+

Three loop solution:

TABLE VII. QuenchedZ; anomalous dimension.

Elements ofy; Quenched Value

7@ 2.66667
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TABLE VIIl. Z, RI to MS matching coefficients.

PHYSICAL REVIEW D66, 014504 (2002

TABLE IX. Zg Rl to MS matching coefficients.

z(M 0 z(M 5.33333
z —14.4975 z 188.651
work. These values were taken from Réf32,4,33 with the
2 % as(p) — o number of flavors set to zero and the number of colors t
C(p?)=ag(u) " 1+ ——(v1~B1%0) umber of flavors set to zero a e number of colors to
™ three.
Lafmw\? — —— , — —— ——
5( 2| L= B1yo)®+v2+ Bryve—Buva
APPENDIX C: MATCHING COEFFICIENTS
—Ez;o]]- (B10) The numerical values of the matching coefficier§:)

and Z§?) in Eq. (84), used forZ, and Zs are collected to-

Tables V-VII show the anomalous dimensions used in thigether in Table VIII and Table IX.

[1] S. J. Brodsky, G. P. Lepage, and P. B. Mackenzie, Phys. Rev. P17] S. Aoki, T. lzubuchi, Y. Kuramashi, and Y. Taniguchi, Phys.

28, 228(1983.

Rev. D60, 114504(1999.

[2] G. P. Lepage and P. B. Mackenzie, Phys. Rev4® 2250 [18] S. Aoki and Y. Taniguchi, Phys. Rev. B9, 094506(1999.

(1993.

[19] S. Aoki, T. Izubuchi, Y. Kuramashi, and Y. Taniguchi, Phys.

[3] G. Martinelli, C. Pittori, C. T. Sachrajda, M. Testa, and A. Rev. D59, 094505(1999.

Vladikas, Nucl. PhysB445 81 (1995.

[20] S. Aoki and Y. Taniguchi, Phys. Rev. B9, 054510(1999.

[4] V. Gimenez, L. Giusti, F. Rapuano, and M. Talevi, Nucl. Phys.[21] T. Blum, A. Soni, and M. Wingate, Phys. Rev. @0, 114507

B531, 429(1998.

(1999.

[5] A. Donini, V. Gimenez, G. Martinelli, M. Talevi, and A. Vladi- [22] T. Blum, Nucl. Phys. B(Proc. Supp). 73, 167 (1999.

kas, Eur. Phys. J. @0, 121(1999.

[23] M. Bochicchio, L. Maiani, G. Martinelli, G. C. Rossi, and M.

[6] L. Giusti, V. Gimenez, F. Rapuano, M. Talevi, and A. Vladikas, Testa, Nucl. PhysB262 331(1985.

Nucl. Phys. B(Proc. Supp). 73, 210(1999.
[7] D. Becirevicet al, Phys. Lett. B444, 401 (1998.

[24] D. Becirevic, V. Gimenez, V. Lubicz, and G. Martinelli, Phys.
Rev. D61, 114507(2000.

[8] JLQCD Collaboration, S. Aokket al, presented at the XVI [25] H. D. Politzer, Nucl. PhysB117, 397 (1976.
International Symposium on Lattice Field Theory LATTICE [26] P. Pascual and E. de Rafael, Z. PhyslZ> 127 (1982.

98, 1998, Boulder, Colorado.

[27] E. Franco and V. Lubicz, Nucl. PhyB531, 641 (1998.

[9] D. B. Kaplan, Nucl. Phys. BProc. Supp). 30, 597 (1993. [28] J.-R. Cudell, A. L. Yaouanc, and C. Pittori, Phys. Lett484,

[10] Y. Shimir, Nucl. PhysB406, 90 (1993.

105(1999.

[11] R. Narayanan and H. Neuberger, Nucl. Ph143 305 [29] T. Blum and S. Sasaki, hep-lat/0002019.

(1995.
[12] T. Blum et al, Phys. Rev. D65, 014504(2002.

[30] ALPHA Collaboration, S. Capitani, M. Luscher, R. Sommer,
and H. Wittig, Nucl. PhysB544, 669 (1999.

[13] CP-PACS Collaboration, A. A. Khaet al, Phys. Rev. D63, [31] ALPHA Collaboration, M. Guagnelli, R. Sommer, and H. Wit-

114504(2007).

tig, Nucl. Phys.B535, 389(1998.

[14] M. L. Paciello, S. Petrarca, B. Taglienti, and A. Vladikas, Phys.[32] K. G. Chetyrkin and A. Retey, Nucl. PhyB583 3 (2000.

Lett. B 341, 187(1994.
[15] M. Gockeleret al, Nucl. Phys.B544, 699 (1999.
[16] V. Furman and Y. Shamir, Nucl. PhyB439, 54 (1995.

[33] H. He and X. Ji, Phys. Rev. B2, 2960(1995.
[34] S. Aoki (private communication
[35] A. J. Buras, hep-ph/9806471.

014504-19



