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Nonperturbative renormalization of domain wall fermions: Quark bilinears
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We find the renormalization coefficients of the quark field and the flavor nonsinglet fermion bilinear opera-
tors for the domain wall fermion action, in the regularization independent~RI! renormalization scheme. Our
results are from a quenched simulation, on a 163332 lattice, withb56.0 and an extent in the fifth dimension
of 16. We also discuss the expected effects of the residual chiral symmetry breaking inherent in a domain wall
fermion simulation with a finite fifth dimension, and study the evidence for both explicit and spontaneous
chiral symmetry breaking effects in our numerical results. We find that the relations between different renor-
malization factors predicted by chiral symmetry are, to a good approximation, satisfied by our results and that
systematic effects due to the~low energy! spontaneous chiral symmetry breaking and zero modes can be
controlled. Our results are compared against the perturbative predictions for both their absolute value and
renormalization scale dependence.
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I. INTRODUCTION

Renormalization of lattice operators is an essential ing
dient needed to deduce physical results from numer
simulations. In contrast with the determination of hadro
masses, physical matrix elements can be determined on
the normalization of the appropriate lattice operators can
related to that of the corresponding continuum operat
conventionally specified perturbatively at short distances
principle, lattice perturbation theory may be used to estab
this connection. However, lattice perturbation theory co
verges slowly and the expansion parameter, the square o
lattice coupling evaluated at the lattice scale,g(a)2, de-
creases only as an inverse power of ln(a). This makes sys-
tematic improvement of perturbative results essentially
possible. This convergence may be improved wh
following ideas from continuum perturbation theory@1#, a
renormalized or ‘‘boosted’’@2# coupling rather than the bar
coupling is used as an expansion parameter. Even so, co
erable arbitrariness remains, and in general it is extrem
difficult to go beyond one loop order in such calculations.
overcome these difficulties, Martinelliet al. @3# have pro-
posed a promising nonperturbative renormalization pro
dure. This method has been previously used to determ
renormalization coefficients for various operators using
Wilson @4–7# and staggered actions@8#. The purpose of this
work is to study the application of this technique to t
renormalization of the quark field and flavor nonsinglet f
mion bilinear operators for the domain wall fermion actio

Domain wall fermions@9–11# provide an action, that a
the expense of introducing a fifth dimension, has a low
ergy theory with excellent chiral properties while at the sa
time preserving exact flavor symmetry. These good ch
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properties lead to a suppression of the possible dimensio
terms in the long-distance effective Lagrangian implying th
domain wall fermions define a lattice version of QCD whi
is off-shell improved toO(a2). As we will see, these domain
wall off-shell Green’s functions show remarkably reduc
lattice artifacts. A study of operator renormalization coef
cients for this action is useful, both because these num
are needed for use in practical calculations of physical qu
tities @12# and because it provides an excellent test of
chiral properties of the domain wall fermion action in pra
tical simulations. In fact, we find that domain wall fermion
perform quite well for nonperturbative renormalization wi
negligible contributions from explicit chiral symmetry brea
ing. This finding is in good agreement with recent work
the chiral limit of quenched QCD with domain wall fermion
@12,13#.

Careful operator normalization is especially important
the domain wall fermion method. As is reviewed in Se
III A, the interpolating field conventionally used to crea
and destroy the physical modes is exactly localized in
fifth-dimension on the right and left walls. Since the actu
physical modes extend somewhat into the fifth dimensi
the overlap between the interpolating field and the phys
modes will be smaller than 1. This implies a wave functi
renormalization factor (Zq) which differs from one even in
the case of free fields. For the eigenvectors correspondin
the smallest 19 Dirac eigenvalues examined in the quenc
b56.0 calculation of Ref.@12#, this overlap typically varies
between 75% and 85%. Fortunately, the nonperturba
methods employed here@3# precisely include these effects.

We begin in Sec. II with a brief summary of the ma
issues involved in applying the nonperturbative renormali
tion method. In Sec. III, we give the domain wall fermio
action and discuss the Ward-Takahashi identities it obe
Section IV builds on this base to constrain the ways in wh
explicit chiral symmetry breaking terms may enter low e

ty,
©2002 The American Physical Society04-1
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ergy matrix elements calculated using domain wall fermio
In Sec. V we give the details of our lattice simulations. S
tion VI describes the renormalization of the quark propa
tor, and in Sec. VII we introduce the quark bilinears a
compute their renormalization on the lattice in the regul
ization independent scheme. After removing expected n
perturbative pole terms, we look for effects of explicit chir
symmetry breaking and find that they are negligible. In S
VIII, we avail ourselves of the axial Ward-Takahashi ident
again to compute the quark wave function renormalizat
from the conserved vector and partially conserved ax
vector currents. In Sec. IX we calculate the renormalizat
of the nonconserved, local axial current from a ratio of
hadronic matrix element to the hadronic matrix element
the partially conserved axial current and find good agreem
with the results of Sec. VII. In Sec. X we convert the ren
malization coefficients to renormalization group invaria
quantities by dividing out the renormalization group runnin
In Sec. XI we discuss the calculation of the quark wa
function renormalization from the propagator.

After comparing our nonperturbative results with rece
perturbative calculations in Sec. XII, we end with our co
clusions. The details of the exact conventions and equat
used for the perturbative running and matching are releg
to Appendixes.

II. NONPERTURBATIVE RENORMALIZATION

In the following the method of nonperturbative renorm
ization introduced in Ref.@3# will be studied. This method
uses a renormalization scheme that is defined by a se
conditions that mandate the renormalized values of the
erators of interest between external quark states, in a fi
gauge, at large virtualities. As such these conditions may
expressed in any regularization scheme@and so this scheme
is known as the regularization independent~RI! scheme#. In
particular this allows the renormalization factors to be d
fined in the lattice regularization, opening the way for ren
malization factors to be directly calculated in numerical l
tice simulations.

While calculating renormalization factors from lattic
simulations neatly avoids the need to perform analytic ca
lations using lattice perturbation theory, which are both ch
lenging and poorly behaved, doing so introduces severa
sues that must be considered.

Calculating the matrix elements of the operators of int
est between external quark states requires a fixed gauge
used. This allows for the appearance of Gribov copies, p
sibly obscuring the required comparison with continuum p
turbation theory where only the trivial copy appears. Ear
studies@14# of the size of Gribov noise in the calculation o
a gauge invariant normalization factor as a ratio of t
gauge-variant amplitudes suggest this may not be an im
tant difficulty for the parameters used here. However, in
ture work, this difficulty can be avoided by taking two step
~i! Impose the regularization invariant normalization con
tion in a sufficiently small physical volume so that no
perturbative effects are suppressed.~ii ! Begin the Landau
gauge fixing procedure from a configuration that is in a co
01450
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pletely fixed axial gauge. Taking these two precautions w
insure that any effects of Gribov copies will be similar
other nonperturbative effects and will vanish as the comp
son with perturbation theory is done at weaker and wea
coupling.

Numerical simulations are performed with a finite latti
spacing. This provides a natural condition,

upu!
1

a
, ~1!

over the momenta range for which a direct extraction of c
tinuum quantities is possible.

As the renormalization factors are determined in a n
perturbative calculation, the contributions of propagati
mesons, and in particular pseudo-Goldstone bosons, mu
identified and removed. These effects may be reduced
working at high momenta, with a natural condition for th
absence of significant deviations being

LQCD!upu. ~2!

Taking the last two points together suggests that this te
nique relies on the existence of a ‘‘window’’ of momenta,

LQCD!upu!
1

a
, ~3!

for which the predictions of continuum perturbation theo
should correctly describe the form of the lattice data. In pr
tical simulations however, it has been found that the effe
of deviations due to the violations of both these inequalit
must be taken into account@4,15,7#.

Fortunately, near either edge of this window, the form
deviations from perturbative behavior may be predicted.
the case of too low momenta, the initial corrections may
described by an expansion in terms of momentu
suppressed condensate terms by use of the operator pro
expansion~OPE!. In turn, the first corrections to continuum
like behavior may be taken into account in terms of an
pansion in the lattice spacing,a.

Another trivial consequence of the restricted range of m
menta available in current lattice simulations is the need
many phenomenological calculations to be composed of c
tinuum perturbation theory calculations at high scales, t
are then run down to scales accessible on the lattice
combined with the lattice result. As the majority of the e
isting calculations for the continuum perturbative results u
renormalization schemes that may only be defined when
ing dimensional regularization@such as the modified minima
subtraction (MS) scheme#, perturbative matching calcula
tions between these schemes and the ones that may b
fined in the lattice regularization need to be performed.

III. DOMAIN WALL FERMIONS

In this section the domain wall fermion formulation, a
used in our simulations, will be reviewed.
4-2
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A. Action

The domain wall fermion~DWF! method is a promising
new approach to lattice QCD introduced in Ref.@10#, which,
at the expense of introducing an extra, discrete, non-ga
dimension, provides drastically improved chiral properties
finite lattice spacing while preserving exact symmetry un
vectorial flavor rotations. This is achieved by using an act
in the fifth dimension that is asymmetric between the le
handed and right-handed components of the fermion fi
Denoting the fifth coordinate ass, with

sP0, . . . ,Ls21, ~4!

the massless action may be written as

Sfermion~mf50!52(
x,s

C̄x,sH 2gm

1

2
~¹m

11¹m
2!

1F1

2
¹m

2¹m
11M5G

1PL]5
12PR]5

2J Cx,s , ~5!

with

Z5E @dU#@dC̄dC#exp~2Sgauge2Sfermion!. ~6!

In Eqs.~5! and~6!, Cx,s is the fermionic field,Um(x) is the
gauge field and

Sgauge5b(
P

S 12
1

3
Re Tr@UP# D , ~7!

with b56/g0
2 andg0 is the bare lattice coupling. The projec

tors for the left and right-handed spinors are defined as

PL5
1

2
~12g5!

~8!

PR5
1

2
~11g5!.

The notation¹m
6 has been used to denote the discrete f

ward or backward covariant derivatives:

¹m
1cx5@Um~x!cx1m2cx# ~9!

¹m
2cx5@cx2Um

† ~x2m!cx2m#, ~10!

and ]m
6 represents the corresponding derivative with

gauge term. For the case of the derivative in the fifth dim
sion, ]5

6 , the domain wall is implemented by giving th
derivative hard boundaries. For example a one-dimensio
]5

1 acting on a space with four points may be written
matrix form as
01450
ge
t
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]5
1S Cx,0

Cx,1

Cx,2

Cx,3

D 5S 21 1 0 0

0 21 1 0

0 0 21 1

0 0 0 21
D S Cx,0

Cx,1

Cx,2

Cx,3

D .

~11!

It should be noted that the action in Eq.~5! is actually the
Hermitian conjugate of the action proposed in Ref.@10#. This
change was made for practical reasons related to compa
ity with the existing Wilson operator implementation for th
QCDSP machine.

In the free theory, for 0,M5,2, the effect of this is to
produce a spectrum with one light fermionic mode, with e
act chiral symmetry in theLs→` limit, and 16Ls21 heavy
modes. The wave function of this light mode has its rig
handed component concentrated on the wall ats5Ls21 and
its left-handed component on the wall ats50. This light
fermion mode may be studied by introducing an interpol
ing operator of the form@16#

qx5PLCx,01PRCx,Ls21

~12!
q̄x5C̄x,0PR1C̄x,Ls21PL .

The above considerations also naturally lead to the introd
tion of an explicit mass term to the action of the form

Sfermion~mf !5Sfermion~mf50!1(
x

mfq̄q, ~13!

wheremf is the bare quark mass. In the free case, this le
to a spectrum with one light fermion of mass

M5~22M5!@mf1~12M5!Ls#. ~14!

Note that in theLs→` limit this is proportional tomf , while
for finite Ls there remains a residual mass,mres, that acts as
an additive renormalization tomf .

However, the properties of domain wall fermions in th
presence of gauge fields is a much more difficult question
particular while the form of the mass of the light mode
expected to be proportional tomf1mres, the dependence o
mres on Ls must be determined. Perturbative calculatio
@17–21# have shown that the existence of the light mode
stable to small perturbations and that this mode has all ch
symmetry breaking proportional tomf asLs→`. These stud-
ies also highlight several issues that must be conside
when undertaking numerical simulations:

~i! The dependence ofmres on Ls may no longer be of the
simple exponential form shown in Eq.~14!.

~ii ! M5 undergoes a strong additive renormalization. T
is understandable, as the five dimensional problem has
approximate chiral symmetry to protect it.

Indeed, extensive numerical studies in the quenched
proximation @12,13# have shown that theLs dependence of
mres does not fit a single exponential in the rangeLs512
→48 for lattices with the same lattice spacing (a
50.520 GeV21) as the results in this paper. ForLs516, the
4-3
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value used in this work,mres was found to be;4 MeV in
theMS scheme at 2 GeV@12#. The strong additive renormal
ization ofM5 requires that an input value be chosen nume
cally so that a single light mode forms and that its decay
Ls is as rapid as possible. It has been found that for e
coarser lattices than used here such a choice can be m
@22,12#.

B. Lattice Ward-Takahashi identities

For the purpose of analyzing the consequences of
symmetries of the action, it is convenient to introduce
extended mass term,M, with flavor structure such that th
mass term reads

q̄LM†qR1q̄RMqL , ~15!

and so the mass term is invariant under a transformatio
the quark fields and the mass matrixM of the form

qL→ULqL

qR→URqR ~16!

M→URMUL
† .

Following Ref.@16#, on a finite lattice, an exact vector Ward
Takahashi identity may be derived by considering trans
mations of the 5-dimensional fermion field,C, such that

dVCx,s5 i ex
aTaCx,s

~17!

dVC̄x,s52 i ex
aC̄x,sT

a,

where$Ta% is the set of Hermitian traceless matrices act
on SU(Nf) flavor-space. This leads to an exact War
Takahashi identity that reads

2]m
2^V m

a ~z!O~x1 , . . . ,xn!&

1^q̄@M ,Ta#q~z!O~x1 , . . . ,xn!&

52 i ^daO~x1 , . . . ,xn!&, ~18!

where

V m
a ~x!5

1

2 (
s

@C̄x1m,s~11gm!Ux,m
† TaCx,s

2C̄x,s~12gm!Ux,mTaCx1m,s#. ~19!

For the case of axial transformations the analogous choic
a transformation of the form

dACx,s5 i ex,s
a TaCx,s

~20!

dAC̄x,s52 i ex,s
a C̄x,sT

a,

with
01450
i-
n
n
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ex,s
a 5H ex

a , 0<s,Ls/2

2ex
a , Ls/2<s,Ls .

~21!

This leads to a Ward-Takahashi identity of the form

2]m
2^A m

a ~z!O~x1 , . . . ,xn!&

1^q̄$M ,Ta%g5q~z!O~x1 , . . . ,xn!&

12^J5q
a O~x1 , . . . ,xn!&

52 i ^dA
aO~x1 , . . . ,xn!&, ~22!

where

A m
a 5

1

2 (
s

sgnS s2
Ls21

2 D
3@C̄x1m,s~11gm!Ux,m

† TaCx,s

2C̄x,s~12gm!Ux,mTaCx1m,s# ~23!

J5q
a 52C̄x,Ls/221PLTaCx,Ls/2

1C̄x,Ls/2
PRTaCx,Ls/221 . ~24!

Therefore, in contrast to the previous case, the axial cur
is not exactly conserved. This is necessary both to provid
mechanism for physical terms due to theU(1)A axial
anomaly to enter the calculated amplitudes and also to a
for explicit chiral symmetry breaking contributions at fini
Ls . The situation is analogous to that for Wilson fermio
@23#, where the role ofJ5q

a is played by the chiral variation o
the Wilson term, except that the contributions fromJ5q

a are
expected to tend to zero asLs→` in the present case@16#.
The form of the contributions fromJ5q

a will be further dis-
cussed in the next section.

IV. OPERATOR MIXING AND CHIRAL SYMMETRY

The major attraction of the domain wall fermion forma
ism is its ability to decrease the size of chiral symme
breaking by increasing the parameterLs , the distance be-
tween the two four-dimensional lattice boundaries to wh
the left and right chiral modes are bound. However, it
often impractical or inefficient to choose such a large va
of Ls that all chiral symmetry breaking effects from mixin
between these walls can be neglected. Thus, it is importan
characterize the effects of this chiral symmetry breaking a
in this section we will determine how it can affect the lo
energy physics of lattice QCD. As we will see, this can
done as either an expansion in the size of the wall-mix
effects, which for simplicity we will denote byO(e2aLs)
although the exactLs dependence may be different, and/or
an expansion in the lattice spacinga.

This analysis is easily made by starting with the interp
tation of chiral symmetry proposed by Furman and Sha
@16#. Here one identifies the fullSU(Nf)L ^ SU(Nf)R chiral
symmetry of the continuum theory as the independ
4-4



d

-

ar

t
iv
he
ot
e
it
n
it

r
a

ril
ia

m
th
al

s-

e
f
by
d
-
fo
e

ne
, t
n

t o

be-

in
-

ry
der
an-
the
ust

the
of
n-
ing

ed

ing

.

lls,
d

-
s of

op-

n-

sion

he
The
e
er

NONPERTURBATIVE RENORMALIZATION OF DOMAIN . . . PHYSICAL REVIEW D66, 014504 ~2002!
SU(Nf) rotation of the fermion fields defined on the left- an
right-hand halves of the five-dimensional lattice:

C~x,s!→ULC~x,s!, 0<s<Ls/221
~25!

C~x,s!→URC~x,s!, Ls/2<s<Ls21,

whereUL and UR are Nf3Nf special unitary matrices be
longing to the left and right factors ofSU(Nf)L
^ SU(Nf)R . From Eq.~12! it is clear that this transformation
will act on the four-dimensional quark fields as a stand
element of the full chiral symmetry.

Of course, the transformation in Eq.~25!, whose genera-
tors are given in Eq.~20! and Eq.~17!, cannot be an exac
symmetry of the five-dimensional theory as the derivat
terms in the fifth dimension, taken collectively, couple t
left and right hand walls and prevent such independent r
tions of this single, five-dimensional field. However, in th
low energy sector of the theory this symmetry can be qu
good. The physical, chiral modes which survive at low e
ergy are expected to be exponentially bound to the walls w
an overlap that is suppressed asLs increases. The highe
energy modes which can propagate freely between the w
are all far off-shell with propagators which are necessa
also exponentially suppressed at long distances, espec
for the large distanceLs .

In order to characterize the effects of this controlled sy
metry breaking that comes from communication between
walls, we will generalize somewhat the Dirac domain w
fermion operator of Shamir given in Eq.~13!. We will intro-
duce a special-unitary, flavor matrixV in the derivative term
joining the four-dimensional planess5Ls/221 and s
5Ls/2. Thus, we will modify Eq.~5! by adding the term

SV52(
x

$C̄x,Ls/221PL~V†21!Cx,Ls/2

1C̄x,Ls/2
PR~V21!Cx,Ls/221%. ~26!

If we include the transformation of the matrixV,

V→URVUL
† , ~27!

this generalized domain wall Dirac operator will now po
sess exact chiral symmetry. Note, a comparison with Eq.~16!
shows thatV transforms ‘‘like a mass term.’’

Thus, if we examine this generalized theory that includ
the chiral matrixV, all amplitudes will become functions o
V but will exactly obey the chiral symmetry described
Eq. ~25! and Eq.~27!. Therefore, we need only understan
how the matrixV will enter the low energy Green’s func
tions of interest to determine in a precise way the trans
mation properties of the chiral symmetry breaking induc
by mixing between the walls.

To zeroth order ine2aLs, the fermion degrees of freedom
will remain bound to the walls and propagation from o
wall to the other can be neglected. In such circumstances
matrix V which is introduced at a point mid-way betwee
the walls cannot enter, the amplitude will be independen
V and hence naively invariant under the fullSU(Nf)L
01450
d

e

a-

e
-
h

lls
y
lly

-
e
l

s

r-
d

he

f

^SU(Nf)R chiral symmetry. To the next order,}e2aLs, we
expect phenomena which involve a single propagation
tweens50 ands5Ls21. Thus, the matrixV should enter
linearly in such amplitudes.

An important application of this analysis is to constra
the form of the effective continuum action which gives am
plitudes that agree with those of the domain wall theo
through a given order in the lattice spacing. To leading or
in the lattice spacing, this effective Lagrangian has the st
dard continuum form. The above analysis requires that
mass term in this leading order effective Lagrangian m
have the form

Zmmf c̄c1c$c̄V†PRc1c̄VPLc%, ~28!

wherec is a constant with the dimensions of mass. Here
field c represents a conventional continuum multiplet
quark fields and all quantities carry their physical dime
sions. The first piece is the normal chiral symmetry break
introduced by the input massmf . The second comes from
mixing between the walls and is required by the extend
symmetry of Eq.~25! and Eq.~27! to be linear inV. Thus,
this induced mass term can occur to first order in the mix
between the walls, permittingc}e2aLs/a. With the conven-
tional choice of Shamir,Va,b5da,b , the second term in Eq
~28! reduces to our usual residual mass term withamres
'1023 @12#.

In a similar fashion theO(a) effective Lagrangian will
contain a clover term induced by mixing between the wa
again to first order ine2aLS, since it also has the permitte
SU(Nf)L ^ SU(Nf)R chiral structure:

ac1$c̄smnFmnV†PRc1c̄smnFmnVPLc%, ~29!

where c1}e2aLs is O(amres). Thus, such a term is sup
pressed both by the lattice spacing and by the smallnes
mres.

If we extend these considerations toO(a2) terms in the
effective Lagrangian, we can conclude that a four-Fermi
erator of the form

c2a2~ c̄c!~c̄c!, ~30!

wherec2 is a constant, cannot occur to ordere2aLs. Since
this operator will become a chiral singlet only when co
tracted with two powers of the matrixV or one power ofV
and one power of the mass matrixM of Eq. ~15!, the coeffi-
cient of such an operator must contain a double suppres
c2}e22aLs or a further factor ofmf .

V. SIMULATION DETAILS

In the following discussions much use will be made of t
momentum space quark propagator in Landau gauge.
first step in calculating this quantity is to fix the gauge. W
implement Landau gauge fixing by iteratively sweeping ov
all lattice sites, maximizing the functional

(
x,m

$Tr@Um~x!1Um
† ~x!#%. ~31!
4-5
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At each lattice site we determine a gauge transformation
trix, g(x), which increases the value of Eq.~31!. The maxi-
mum is achieved when

(
x

Tr@B~x!B†~x!# ~32!

is zero, where

B~x!5A~x!2A†~x!2
1

3
Tr~A2A†! ~33!

A~x!5(
m

@Ũm
† ~x!1Ũm~x2m!# ~34!

and

Ũm~x!5g~x!Um~x!g†~x1m!. ~35!

In practice we stop when the quantity in Eq.~32! is smaller
than 1028.

On this gauge-fixed configuration the quark propaga
S(x,0), from one source, denoted as 0, to all possible sink
then calculated. A discrete Fourier transform is then p
formed over the sink positions giving,

S~p,0!5(
x

exp~2 ip latt
•x!S~x,0!, ~36!

with

pm
latt5

2p

Lm
nm , ~37!

wherem is one ofx,y,z or t andnm may in principle lie in
the range 0→Lm21. In practice, however, only a subset
this range is used.

Unless otherwise stated all the data that will be presen
are from calculations on a 163332316 lattice ~where the
last number refers to the extent of the lattice in the fi
dimension!. The simulation was performed atb56.0 with
2000 heatbath sweeps between every configuration and
2000 thermalization sweeps performed at the outset. In t
142 configurations were generated. For this lattice size
momentum range was restricted to those momenta for w
nm50,1,2 form5x,y,z andnt50,1,2,3. Quark propagator
for 5 bare masses,mf50.01, 0.02, 0.03, 0.04 and 0.0
were calculated all usingM551.8.

The results will often be quoted against the square of
absolute momentum, where this refers to the Euclidean in
product of the momentum defined in Eq.~37!. To be more
specific

~ap!25(
m

pm
lattpm

latt , ~38!

wherep is dimensionful.
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VI. THE RENORMALIZED PROPAGATOR

Before we treat the more complicated situation of the f
mion bilinears it is necessary to first consider the renorm
ization of the quark propagator. Neglecting, for the mome
potential contributions from lattice artifacts the renormaliz
quark field may be defined as

qren~x!5Zq
1/2q0~x!. ~39!

If we similarly introduce a renormalized mass, defined by

mren5Zmm0 , ~40!

wherem0 represents a generic multiplicatively renormaliz
bare mass, then the renormalized propagator may be wr

Sren~p,mren!5ZqS0~p,m0!um05mren/Zm
. ~41!

Both Zq andZm are fixed in the RI scheme by requiring th
the renormalized propagator obey the Euclidean space
tions

lim
mren→0

2
i

12
TrS ]Sren

21

]p”
~p!D

p25m2

51 ~42!

lim
mren→0

1

12mren
Tr~Sren

21~p!!p25m251. ~43!

While Eq. ~42! and Eq.~43! seem to give a simple an
appealing way to calculateZq and Zm by directly applying
them to the lattice propagators, the effect of both lattice
tifacts and spontaneous chiral symmetry breaking must
considered.

Lattice actions with explicit chiral symmetry breaking r
quire an additive renormalization of the input mass, wh
may be taken into account for domain wall fermions by ma
ing the replacement

m0→mf1mres, ~44!

in the equations above. However, the effects of lattice a
facts on the correct definition of the renormalized and i
proved quark field are more complicated. They have b
studied in Ref.@24# for Wilson fermions, where it is noted
that there are three terms that may mix with the definition
O(a) in the lattice spacing, giving rise to an expression
the improved and renormalized quark field of

qren5Zq
1/2~11bqma!$11acq8~D” 1mren!1acNGI]” %q0 ,

~45!

where]” may appear because the gauge is fixed. If such e
terms appear then conditions must be found that allow th
to be subtracted from the bare quark field before Eq.~42! and
Eq. ~43! may be applied. In the context of simulations usi
O(a) improved Wilson action atb56.0 these terms have
been found to give significant contributions to the form
the propagator@24#. In particularcq8 was found to be large
However, they all break chiral symmetry and so, followin
4-6
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the arguments of Sec. IV, should be suppressed by a fact
O(amres) for simulations using domain wall fermions. A
such, studying the form of the propagator provides an ex
lent test of the chiral properties of domain wall fermions.

The effects of spontaneous chiral symmetry breaking
the form of the propagator are well known@25,26#. The most
noticeable effect is that the trace of the inverse propag
picks up an extra contribution, which at lowest order in
power expansion in 1/p2 may be described as

1

12
Tr„Sren

21~p!…5mren1C1

^q̄q&

p2
1••• ~46!

where, at first order in perturbation theory,C154pas /3.
Putting Eq.~46! and Eq.~45! together, the predicted form fo
the trace of the lattice quark propagator is

1

12
Tr~Slatt

21~ap!!5•••1
a3^q̄q&

~ap!2
C1Zq1ZmZq$amf1amres%

12~cNGIZq2cq8!~ap!21•••, ~47!

where terms ofO(mcNGI) have been neglected.
In Fig. 1 we plot the left-hand side of Eq.~47! versus

(ap)2 for a variety of values formf . As can be seen, fo
domain wall fermions this quantity approaches a cons
value for moderately large values of (ap)2. Also, it is en-
couraging that while at low momenta the effects of spon
neous chiral symmetry are visible, there is no evidence
suggest appreciable effects from explicit chiral symme
breaking. In particular, there is no evidence of a large ad
tive mass renormalization. This is visible in Fig. 2, whic
shows the result of a linear extrapolation of the data to
point mf50. Figure 3 shows the slope of this extrapolatio
which from Eq.~47! is ZmZq at large (ap)2.

FIG. 1. A plot of 1
12Tr(Slatt

21 ) versus (ap)2 showing that for
moderate values of (ap)2 the effects of explicit chiral symmetry
breaking are small.
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A. Extracting Zq from the propagator

The extraction ofZq from the propagator via Eq.~42! is
numerically challenging due to the need for a discrete der
tive to be calculated. A much simpler method@3#, is to cal-
culate

Zq852 i
1

12 (
m

apm

~ap!2
Tr„gmSlatt

21~ap!…. ~48!

This quantity may then be related toZq by a perturbative
matching calculation performed in the continuum@27#.

On the other hand, the use ofZq8 to determineZq intro-
duces significantO(a2) errors through the choice of how th
discretized momenta are defined. If we were to replace in
~48! the definition of the lattice momentum in Eq.~37! by,
for example,

p̄m5
1

a
sinpma, ~49!

FIG. 2. The value of 1
12Tr(S21) extrapolated tomf50 vs

(ap)2. For moderate (ap)2 the extrapolated value is zero withi
errors, showing that the residual mass is small.

FIG. 3. ZmZq calculated from the slope of112Tr(S21) versusmf

plotted as a function of (ap)2.
4-7
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then the resultingZq8 would differ from that given in Eq.~48!
by O(a2) because the trace includes an explicit factor
pmgm . One can estimate the size of this error by using va
ous definitions for the lattice momentum in the analysis.
will be shown later in Sec. XI, this uncertainty is rough
10–20 %. In Secs. VIII and IX we introduce two methods f
computingZq which avoid this uncertainty.

VII. FLAVOR NONSINGLET FERMION BILINEARS

A. Introduction

In the following the renormalization of the flavor non
singlet fermion bilinear operators will be considered. To si
plify notation explicit quark flavors (u andd) will be used in
the following equations. The most general fermion biline
may be written asūG id with

G iP$1,gm ,g5 ,gmg5 ,smn%, ~50!

where i represents whatever indices the gamma matr
have. The renormalized operator is defined as

@ ūGd# ren5ZG@ ūGd#0 . ~51!

The factor ZG is fixed in the RI scheme by defining th
unrenormalized, amputated vertex function

PG,0~p,q!5
1

VE d4zd4x1d4x2e2 ip•x11 iq•x2

3^@ ūGd#0~z!u0~x1!d0̄~x2!&AMP , ~52!

the corresponding renormalized, amputated vertex functi

PG,ren~p,q!5
ZG

Zq
PG,0~p,q! ~53!

and requiring that

LG i ,ren~p,p!p25m2

5
1

TrS (
i

G iG i DTrS (
i

G iPG i ,ren~p,p! D
p25m2

51.

~54!

Note, the corresponding, unrenormalized vertex amplitud
defined by

LG,05
1

TrS (
i

G iG i DTrS (
i

G iPG i ,0
~p,p! D , ~55!

so that

LG i ,ren~p,p!5
ZG

Zq
LG i ,0~p,p!. ~56!
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While Eq. ~56! completely defines a procedure for calcula
ing a renormalization factor for the bilinear operator of i
terest, practically we need to be able to use a renormaliza
condition that allows us to match to perturbative calcu
tions. In general the value ofLG i ,0(p,p) has contributions
from intrinsically non-perturbative effects~such as those due
to propagating pions! that perturbative calculations do no
include. As we are interested in the value of the renorm
ization factors in the perturbative regime we either apply
renormalization condition at a high enough momenta s
that the nonperturbative effects are suppressed, or rem
such effects from the data and in the following that is wh
we will do. We will reserve the notationZi , i
P$q,S,P,T,A,V% for the renormalization factors in the pe
turbative regime.

B. ZA and ZV

A ~partially! conserved current that is normalized in
fashion which is consistent with the usual Ward-Takaha
identities will undergo no renormalization and the corr
spondingZG will be unity. In particular, for domain wall
fermions and the RI renormalization scheme specified
Eqs. ~42! and ~54! and imposed at high-momentum,m
@LQCD , we expect

ZA5ZV51. ~57!

However, on the lattice the~partially! conserved currents ar
not local and it is frequently more convenient to work wi
their local counterparts. Provided that these are related b
chiral transformation one still has

ZA5ZV . ~58!

This does not, however, mean thatLA must equalLV , and
several mechanisms exist for splitting them away from e
other at low energies.

Even if there are no significant effects from explicit chir
symmetry breaking, the effects of spontaneous chiral sy
metry breaking must be taken into account. Consideration
the operator product expansion, to lowest order in power
1/p2, shows thatLA and LV may get contributions from
terms of the form

mren
2

p2
~59!

and

mren̂ q̄q&

p4
. ~60!

Since such terms, by their very nature, stem from chiral sy
metry breaking they are not constrained to enterLA andLV
with the same weight. At large momenta these terms
suppressed and do not affect the extraction ofZA andZV .

If the action being used explicitly breaks chiral symmet
ZA andZV need not be equal, but their ratio will still be sca
4-8
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independent. This means that whileLA and LV need not
approach one another at high momenta, their ratio sho
become scale independent for large enough momenta.

While we want to work in the chiral limit for the extrac
tion of the renormalization factors it is also worthwhile
consider what the mass dependence ofLA andLV should be
~especially as we wish to extract the chiral limit from da
measured in finite mass simulations!. Requiring that the
‘‘generalized’’ symmetry introduced in Eq.~16! is satisfied
constrains the mass dependence to either be of the same
as Eq.~59! ~a single power of mass multiplying somethin
that breaks chiral symmetry—and therefore by the argum
of the previous paragraph damped with momentum! or pro-
portional to a second or higher power of mass. In the la
case any effect on our data should be negligible.

The above considerations suggest looking at the quan

LA2LV . ~61!

This is shown in Fig. 4 and, as with the case for the qu
propagator, while the effects of nonperturbative break
terms are visible at low momenta, they are damped at hig
momenta. There is no significant signal for effects from e
plicit chiral symmetry breaking, sinceLA2LV is tending to
zero. At momenta of interest, there also seems to be no
nificant splitting due to nonperturbative effects with the d
ference betweenLA andLV being less than 1% in the chira
limit at (ap)250.8 and smaller for momenta above this. Th
being so, it is sensible to use the quantity1

2 (LA1LV) for the
extraction of bothZA /Zq andZV /Zq to increase the statisti
cal accuracy. This is shown in Fig. 5.

C. ZS and ZP

For a theory with chiral symmetry the RI scheme p
serves the well knownMS relations

ZS5ZP ~62!

FIG. 4. A plot of LA2LV versus (ap)2, showing that there is
no significant difference betweenZA and ZV , even for moderate
values of (ap)2.
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1

ZS
. ~63!

If the potential for explicit chiral symmetry breaking is take
into account, these equalities cease to be valid, but the q
tities ZS /ZP , ZSZm and ZmZP are expected to be scale in
dependent. However, lattice studies using both the Wil
and staggered actions have shown that the ratioLP /LS ,
which in perturbation theory would be equal toZS /ZP and
therefore might be expected to be momentum independ
up to small corrections, is strongly momentum and mass
pendent, with the bulk of this dependence arising fromLP .
It is instructive to consider the source of this discrepan
@3,28#. We start from the continuum axial Ward-Takahas
identity which is derived by taking the axial variation of th
quark propagator. This reads

~mu1md!E dẑ u~x1!@ ūg5d#~z!d̄~x2!&

5g5^d~x1!d̄~x2!&1^u~x1!ū~x2!&g5 . ~64!

Moving to momentum space gives

~mu1md!^u@ ūg5d#d̄&~p,p!5g5^dd̄&~p!1^uū&~p!g5 ,
~65!

which in themu→md[m limit gives

2m^u@ ūg5d#d̄&~p,p!5$g5 ,S~p!%. ~66!

Amputating and tracing withg5 yields

mLP~p,p!5
1

12
Tr„S21~p!…. ~67!

Neglecting all lattice artifact terms except the additive ma
renormalization~which is justified by the discussions in Se
VI !, this leads to an approximate expression forLP, latt , in-
cluding the first order contribution of spontaneous chi
symmetry breaking:

FIG. 5. A graph of1
2 $LA1LV% versus (ap)2, which up to lat-

tice artifacts, givesZA /Zq andZV /Zq .
4-9
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~mf1mres!LP, latt~ap,ap!5•••1
a2^q̄q&

~ap!2
C1Zq

1ZmZq~mf1mres!, ~68!

neglecting terms ofO@(ap)2#. While in the absence of the
condensate term this equation reduces toZP51/Zm , the con-
densate term, which is clearly visible in Fig. 2, gives rise
a pole term of the form

^q̄q&

~mf1mres!~ap!2
C1Zq ~69!

in LP, latt . Figure 6 shows the data forLP, latt with this effect
clearly visible, with the rise for small (ap)2 becoming much
more pronounced as the mass decreases.

A similar argument may be put forward forLS . In this
case it is the Ward-Takahashi identity arising from a vec
rotation of the fields:

~mu2md!E dẑ u~x1!@ ūd#~z!d̄~x2!&

5^d~x1!d̄~x2!&2^u~x1!ū~x2!&. ~70!

Moving to momentum space, this gives

~mu2md!^u@ ūd#d̄&~p,p!5^dd̄&~p!2^uū&~p!, ~71!

which in themu→md limit tends to

^u@ ūd#d̄&~p,p!52
]

]m
S~p!. ~72!

Finally, amputating and tracing gives

LS5
1

12

] Tr@S~p!21#

]m
. ~73!

FIG. 6. LP versus (ap)2 for several values ofmf , showing that
the 1/p2 pole is more pronounced for smallmf .
01450
r

Note that this relation should be exact for domain wall fe
mions ~with m5mf) for any value ofLs . Using Eq.~47!,
and noting that both the residual mass and the renorma
tion factors should be independent ofmf , gives the approxi-
mate expression

LS, latt5ZmZq1
C1Zq

~ap!2

]a3^q̄q&
]~amf !

. ~74!

If the mass dependence of^q̄q&, for small masses, is propor
tional to only positive powers of the mass, then the seco
term in Eq.~74! is almost certainly unimportant as it is sup
pressed in exactly the region of parameter space in which
are working: large momenta and small masses.~The effect
might be larger than naively expected, as^q̄q& is quadrati-
cally divergent in the lattice spacing.! It is necessary, how-
ever, to consider the effects of fermionic zero-modes

^q̄q&. Assuming a theory with chiral symmetry, the spect
decomposition of the quark propagator leads to an expe
form for ^q̄q&, on a single configuration C, of

2^q̄q&C5Tr@~D” 1m!21# ~75!

5
n0

mV
1

1

V (
ln.0

1

m1 iln
, n0>0,

~76!

wheren0 is the number of fermionic zero-modes,V is the
four dimensional space-time volume and theln are such that
D” cn5 ilncn . The number of such zero modes should gro
more slowly than the volume, and so the first term in E
~76! will vanish in the infinite volume limit. However, for the
lattice parameters used for this simulation the effects of ze
modes have been found to be noticeable in both^q̄q& and
hadronic spectrum calculations@12# and so must be consid
ered for the present case. Comparing Eq.~74! and Eq.~76!
shows that, asm→0 for fixed momentum,LS gets a large
contribution from zero-modes of the form

2
1

m2
^n0&

C1Zq

p2
, ~77!

that must be subtracted beforeZS /Zq may be calculated from
Eq. ~54!. Figure 7 shows our data forLS, latt . While the effect
of the condensate term is smaller than that forZP , it is
noticeable for the lighter masses.

D. Fitting the pole terms

Considering Eq.~77! and moving to lattice notation, the
method for extractingZS from LS becomes clear. Working a
a fixed momentum,LS may be fitted to the form

LS, latt5
c1,S

@amf1O~amres!#
2

1c2,S1c3,S~amf !
2, ~78!

with Zq /ZS being given byc2,S . While one might naively
expect the denominator in the above equation to beamf
1amres, as shown in Ref.@12# the residual chiral symmetry
4-10
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breaking effects that appear in the pole term inq̄q are not
parametrized precisely byamres since the singular behavio
of the pole enhances what are expected to be ordera2 varia-
tions in the quantityamres. One only knows that the residua
chiral symmetry breaking effects are ofO(amres). However,
for the pole subtractions in this paper we have used preci
amf1amres. This is justified since the statistical errors o
our data are such that the fits are insensitive to the e
value ofmres.

The situation for theZP extraction is slightly more com
plicated. Examining Eq.~68! and Eq.~76!, shows thatLP
should have a double pole of the form

LP, latt5
c1,P

~amf1amres!
2

1
c2,P

~amf1amres!

1c3,P1c4,P~amf !
2, ~79!

with c3,P being equal toZq /ZP and the quadratic mass po
due to zero-mode effects in̂q̄q&. For simplicity, we have
again usedamf1amres in the first term of the right-hand sid
in Eq. ~79!. For practical purposes, however, the need to fi
the quadratic term may be avoided by working withmf
>0.02. Good evidence that the above fitting forms are c
rect is shown in Fig. 8. This shows the average, over all
momenta in the range 0.5,(ap)2,2.0, of thex2 per degree
of freedom for a correlated fit to the above forms formf
dependence with the power of the pole treated as a free
rameter. One sees that a 1/m pole is favored for theZP case
while a 1/m2 is identified in the fit forZS . Further evidence
is provided by considering the resulting values forZS /Zq
and ZP /Zq . Figure 9 shows a comparison between the
tracted values of these two quantities. As chiral symme
would predict forZS /Zq andZP /Zq , the two quantities co-
incide at large momenta. This provides an excellent tes
both the extraction method and the chiral properties of
main wall fermions. This can be further seen by compar

FIG. 7. A plot of LS, latt versus (ap)2 for several masses. Th
mass pole can be clearly seen for small momenta and is attribu
to zero-mode effects.
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ZP andZm ~as calculated from the trace of the inverse prop
gator!, which is shown in Fig. 10. This product is clear
very close to unity.

E. ZT

The tensor density renormalization, while sometimes
glected in bilinear renormalization coefficient calculations,
a quantity of use to current lattice simulations@29#. An ex-
traction of its value will be postponed to Sec. X, but f
completeness a plot ofLT is shown in Fig. 11.

VIII. EXTRACTING Zq FROM THE EXACT WARD
IDENTITIES

The vector Ward-Takahashi identity of Eq.~18! is exact at
finite lattice spacing. As such, the renormalization coeffici
for the conserved vector current defined in Eq.~19!, is equal
to unity. Additionally, the considerations of Sec. IV sho

ble
FIG. 8. This figure displays the averagex2 per degree of free-

dom for the fits used to determine the power of the mass pole
LS andLP , clearly showing their 1/m2 and 1/m poles, respectively.

FIG. 9. A comparison ofZS /Zq and ZP /Zq as extracted from
LS andLP after pole subtraction.
4-11
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that through first order in the residual chiral symmetry bre
ing the extraJ5q

a in Eq. ~22! can be completely absorbed in
the additive renormalization of the mass so that the a
Ward-Takahashi identity, for low-energy physics, takes
the normal, continuum form. Therefore, the renormalizat
factor for the axial current defined by Eq.~23! should also be
unity to a good approximation.

The above facts can be used to compute the quark
renormalizationZq from Eq. ~54!, as applied the conserve
vector and axial currents. For the case of the conserved
tor current Eq.~54! reads

Zq
21ZV

1

48
Tr„gmLV

m~p!…51 ~80!

which therefore implies

Zq5
1

48
Tr„gmLV

m~p!…. ~81!

FIG. 10. The productZPZm calculated by combiningZP /Zq

from pole subtraction with the trace of the inverse propagator. T
product is clearly unity within errors.

FIG. 11. This is a graph ofLT versus (ap)2, from whichZT will
be extracted in Sec. X.
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A similar equation also holds for the conserved axial curre
Because the formulas for the conserved currents con

fermion fields at separate points on the lattice as well
summation over alls, the calculation of the matrix element
for these operators can be very expensive. We used a ran
source estimator to compute the part of the sum betwees
51 to s5Ls22. Also, instead of calculating all four com
ponents ofLm(p) for a given momentump, we calculate
L0(p) for momenta related top by interchange of its 0th
component with each of the other three. We then use
equality

Tr„gmLV
m~p0,p1,p2,p3!…5Tr„g0LV

0 ~p0,p1,p2,p3!…

1Tr„g0LV
0 ~p1,p0,p2,p3!…

1Tr„g0LV
0 ~p2,p1,p0,p3!…

1Tr„g0LV
0 ~p3,p1,p2,p0!…,

~82!

to obtain the needed result. As the time to Fourier transfo
of a matrix element is negligible in comparison with th
calculation of the matrix element itself, this allows us
obtain the result with only a quarter of the running time
direct calculation ofLV

m .
Because the volume 163332 used in the simulations i

not symmetric, strictly speaking the above equation is
exact, as the third component of momentum is not related
symmetry to the first and second ones. However, this dif
ence is suppressed by two powers of the lattice spacing
in practice, the results obtained for the last three terms in
~82! all agree within statistical errors for the momenta us
We used momenta with the first three integer components
larger than 2 and the last component equal to 0 or 2. The
exceptions were the momenta with integer compone
(2,2,2,0) and (2,2,2,2) that were excluded since they wo
require usage of momenta (0,2,2,4) and (1,2,2,4).

Figure 12 shows the difference betweenZq calculated us-
ing the axial and vector Ward-Takahashi identities, wh
Fig. 13 shows the average. As can be seen from Fig.
while for low momenta the two methods give different r
sults, this difference is damped at large momenta as woul
expected if this effect stems from spontaneous~rather than
explicit! chiral symmetry breaking. Again, this provide
strong evidence that the effects of explicit chiral symme
breaking are negligible in these calculations.

IX. ZA FROM HADRONIC MATRIX ELEMENTS

As mentioned in Sec. VIII, to a good approximation th
axial current defined by Eq.~23! is conserved, and therefor
has a renormalization coefficient equal to the identity. T
provides a simple way to calculate the renormalization co
ficient of the local axial current operator,ZA , directly from
hadronic matrix element calculations. One method, that
been used in Ref.@12#, is to note that the matrix element o
any operator with the renormalized axial current is a w
defined quantity, which will be independent of the interp
lating operator for the axial current at distances above

is
4-12
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scale of the lattice spacing. Therefore,

^A0~ t1!q̄g5q~ t2!&5ZA^A0~ t1!q̄g5q~ t2!& ~83!

for ut12t2ua@1. A full discussion of this method and th
results are given in Ref.@12#, but it is useful to summarize
the results here. Table I collects together values forZA for
severalLS values on ab56.0, 163332 lattice with M5
51.8. The quoted errors are statistical only.

X. RENORMALIZATION GROUP BEHAVIOR

The previous sections have provided an extraction of
renormalization coefficients of interest taking into accou
the possible effects stemming from chiral symmetry break
~either explicit or spontaneous!. In general, perturbation
theory predicts that these coefficients may be logarithmic
dependent on the momentum scale. Lattice artifacts may
cause the result to depend on the definition of momentum
the lattice. When small, these lattice artifacts will be ma

FIG. 12. The difference betweenZq as extracted from the con
served axial vector and vector currents.

FIG. 13. The average ofZq from the conserved axial vector an
vector currents.
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fest in the data as added terms proportional to (ap)2.
The simplest approach to using the renormalization co

ficients calculated in this paper is to take the~mass-pole sub-
tracted! value for L i(ap) as (Zq /Zi)(ap). However, we
need to address two significant uncertainties.

First, this choice assumes, without verification, that t
O@(ap)2# lattice artifacts are small. We should attempt
understand the momentum dependence of the ampli
L i(ap) to determine the size of theO@(ap)2# contamination
and, if possible, remove it.

Second, most operators of interest in lattice calculatio
are ultimately defined using continuum perturbation theo
Making this connection requires the use of perturbat
theory to connect the RI scheme and momentum scale u
here with the renormalization procedure and moment
scale used in the original continuum definition, typically t
MS scheme. This final matching step between the norm
ized lattice and continuum operators is done at a spec
momentum scale for the renormalized lattice operator.
general, both the normalization of lattice operators and
matching coefficients will depend on this momentum sca
It is not known a priori how many loops in perturbation
theory must be calculated to correctly describe the mom
tum range probed in current lattice calculations, or even
perturbation theory can describe the region we are study
Comparing the momentum behavior predicted from pert
bation theory to that of the data therefore provides an imp
tant consistency check for the general framework of
method.

Our approach to comparing the known perturbative ru
ning of the quantities of interest to our numerical data will
to divide the data by the predicted renormalization gro
running, with the overall normalization set by requiring th
at the point (ap)251 this divisor is one. If the perturbative
result correctly describes the data, and the effect of (ap)2

terms may be neglected, the result will be completely sc
independent.

There are three components that are needed to calc
these quantities.

~i! The anomalous dimensions for the operators from p
turbation theory.

~ii ! The ratio ofZRI/ZMS must be known to perform the
matching. Since the renormalization condition that det
mines ZRI is well defined both on the lattice and in con
tinuum dimensional regularization this ratio may be calc
lated perturbatively using the latter regularization. In gene
it can be expanded as

TABLE I. ZA computed from the ratios of hadronic matrix el
ments.

LS ZA no. configs.

12 0.7560~3! 56
16 0.7555~3! 56
24 0.7542~3! 56
32 0.7535~3! 72
48 0.7533~3! 64
4-13
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ZRI

ZMS
511

as

4p
Z0

(1)RI1
as

2

~4p!2
Z0

(2)(RI)1•••. ~84!

For a consistent treatment this ratio need only be known
one less power ofas than the running is known.

~iii ! A lattice value foras . The value ofas affects the
scale dependence of both the matching and running for
calculation. For this work the value ofas was calculated a
three loops using a lattice value ofLQCD taken from Ref.
@30# as

LQCD5238619 MeV. ~85!

To do this consistently with the way the lattice treatment
Ref. @30# was performed, their value ofr 050.5 fm was
taken and converted into a lattice spacing using the resul
Ref. @31#. For the dimensionful scales that we will quote, w
set the physical scale through the rho mass computed
domain wall fermions@12#, which for b56.0 gives

a50.520~11! GeV21. ~86!

Both ZA and ZV should be scale independent, but this
not the case forZq . Figure 14 shows both 1/LA and the scale
invariant ~SI! quantity calculated as described above:

LA
SI@~ap!2#5LA@~ap!2#/CA@~ap!2#. ~87!

The quantityCA is determined through three loops using t
anomalous dimension coefficients calculated in Re
@32,4,27# as described in Appendix B. It is normalized so th
CA(1)51. As can be seen, in this case the renormaliza
group running actually goes in the opposite direction fro
the data. The scale dependence of these data, either pred
or actual, is, however, very small and a plausible explana
for this is an (ap)2 error. Indeed, when a linear fit of the S
data versus (ap)2 is performed, for 0.8,(ap)2,2.0, the

FIG. 14. A plot showing the raw data for 1/LA ~labeled as
‘‘Bare’’ ! and the value of 1/LA divided by its predicted three loop
perturbative running~labeled as ‘‘SI’’!, such that they coincide a
(ap)251, versus momentum. The slope of the latter versus (ap)2

may be interpreted as anO(a2) effect and is'20.02.
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gradient is'20.02. A more compelling test of the renorma
ization group behavior is provided by studying the data
ZS /Zq . In this case the predicted scaling behavior over
range of momenta studied is much larger and, as Fig.
shows, the agreement between the predicted behavior an
data is impressive~with a gradient, in this case, o
'20.003!. The values forZS /Zq versus momentum use
here are taken after the mass-pole has been subtracted
again, the three loop results for the running are taken fr
Refs.@32,4,27#. Unfortunately, a matching calculation forZT
could not be found in the literature, so the data could only
compared to the one loop running~which is taken from Ref.
@33#!. The SI quantity so calculated is shown in Fig. 16 a
has a gradient of'20.02.

Taking the interpretation that the remaining scale dep
dence is due toO@(ap)2# effects, the correct way to extrac
the renormalization coefficients is to first construct the
quantity as described above, and then fit any remaining s
dependence@4# to the form

y5c11c2~ap!2, ~88!

for a range of momenta that is chosen to be ‘‘above’’ t
region for which condensate effects are deemed to be im
tant. Table II shows the fitted values for the RI andMS
scheme renormalization coefficients using a fitting rage
0.8,(ap)2,2.0. Now that the renormalization group run
ning has been taken into account, it is possible to mak
comparison of the various methods of calculatingZq and
thus give final results for the renormalization factors. Table
already givesZq as calculated from the conserved curren
~Fig. 17 shows the momentum dependence of both the SI
bare form; see also Table III!. Another simple way to derive
this quantity is by takingZA /Zq from Table II and combining
it with the value ofZA obtained from hadronic matrix ele

FIG. 15. A plot showing the raw data for 1/LS ~labeled as
‘‘Bare’’ ! and the value of 1/LS divided by its predicted three loop
perturbative running~labeled as ‘‘SI’’!, such that they coincide a
(ap)251, versus momentum. The slope of the latter versus (ap)2

may be interpreted as anO(a2) effect and is'20.003.
4-14
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ments. This givesZq50.805(3)(15). This, approximately
5%, difference may be taken as an indication of the size
the systematic errors.

XI. Zq FROM THE PROPAGATOR—RESULTS

Here we show results for the wave function renormali
tion computed through Eq.~48! and demonstrate that thi
method contains a comparatively large systematic un
tainty due to the ambiguity in defining discrete momentu
We use the perturbative matching betweenZq8 and Zq , as
given in Ref. @27#.1 Then the SIZq can be constructed a
described above.

Figure 18 shows the SIZq usingZq8 defined in Eq.~48!,
and Fig. 19 shows the SIZq where the replacement

apm→sin~apm![ap̄m ~89!

is made in Eq.~48!. Note that the former is plotted vs (ap)2

and the latter vs (ap̄)2. We use the data atmf50.02 since no
mass dependence can be observed.

As in the previous section, we extrapolate to (ap)250.
We find for the data in Fig. 18,Zq50.71560.00760.040,
where the first error is statistical and the second comes f
different choices for the range of momenta over which to
The data in Fig. 19 giveZq50.73360.00760.050. We can
further probe these discretization uncertainties by extrapo
ing Zq

21 to zero (ap)2 or (ap̄)2. This results inZq50.732
60.00660.020 andZq50.77260.00660.020, respectively.

The spread in values ofZq obtained depending on mo
mentum ranges and on the definition of discrete mome
means that extracting a SIZq in the same manner as theZ’s

1Their convention is that a givenZ factor in Ref. @27# is the
reciprocal of ours.

FIG. 16. A plot showing the raw data for 1/LT ~labeled as
‘‘Bare’’ ! and the value of 1/LT divided by its predicted one loop
perturbative running~labeled as ‘‘SI’’!, such that they coincide a
(ap)251, versus momentum. The slope of the latter versus (ap)2

may be interpreted as anO(a2) effect and is'20.02.
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for bilinear operators is less precise. However, the results
in rough agreement with the more precise methods descr
above.

XII. COMPARISON WITH PERTURBATION THEORY

All the renormalization factors considered above ha
also been calculated in lattice perturbation theory, at the
loop level, for the domain wall fermion action in theLs
→` limit @20,19,21#. As we see little evidence of explici
chiral symmetry breaking effects in our study, the fact th
the perturbative calculations have been performed in theLs
→` limit will probably not affect this comparison. Howeve
a more serious issue is whichM5 value to use in the pertur
bative formulas.

The reason for this is easy to understand. Away from
walls, the massless domain wall fermion Lagrangian, Eq.~5!,
may be viewed as a simple extension of the standard Wil
fermion action to five dimensions with a negative mass te
M5. Like the four dimensional Wilson mass term,M5 under-
goes a strong additive renormalization, the size of wh
perturbation theory is not good at predicting. While a mo
accurate prediction may be made using tadpole impro
perturbation theory@2#, a good deal of ambiguity remains i

FIG. 17. Bare and scale invariant~SI! versions ofZq determined
from the conserved axial and vector currents.

TABLE II. Final Z-factor results.Zq is calculated two ways:
from usingZA /Zq from this table combined withZA from hadronic
matrix elements, denotedZq

Hadronic, and from the conserved curren
using off-shell quark states, denotedZq

Ward.

Z-factor RI/SI MS at 2 GeV

ZA /Zq 0.934~2!~10! 0.938~2!~12!

ZS /Zq 0.683~7!~30! 0.779~8!~35!

ZT /Zq 1.034~3!~100! 1.035~3!~100!
Zq

Hadronic 0.808~3!~15! 0.805~3!~17!

Zq
Ward 0.753~16!~30! 0.750~15!~30!
4-15
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the perturbative prediction of any quantity that is strong
dependent onM5.

Further consideration of the similarity of the domain w
and standard Wilson actions, leads to a nonperturbative
mate of the magnitude of this additive renormalization.
argued in Ref.@21#, in the Ls→` limit, the effect of this
additive renormalization may be taken into account by us

M5
pert5M5

sim2S 42
1

2kc
D , ~90!

in the perturbative equations, wherekc is the four-
dimensional critical Wilson hopping parameter andM5

sim re-
fers to the value used in the nonperturbative simulation~in

FIG. 18. A scale invariant~SI! version ofZq determined from
Zq8 .

TABLE III. This table collects together the raw data used for t
‘‘Bare’’ data plotted in Figs. 14, 15 and 16 for 0.5,(ap)2,2.0.

(ap)2 1/LA 1/LS 1/LT

0.501 0.9225~26! 0.6200~86! 1.0542~38!

0.616 0.9240~23! 0.6401~67! 1.0446~30!

0.655 0.9208~22! 0.6481~64! 1.0352~28!

0.771 0.9206~20! 0.6574~55! 1.0273~22!

0.810 0.9178~23! 0.6614~59! 1.0197~27!

0.925 0.9187~21! 0.6755~53! 1.0125~25!

0.964 0.9172~22! 0.6784~54! 1.0092~24!

1.079 0.9157~27! 0.6910~62! 0.9997~34!

1.118 0.9164~23! 0.6935~52! 0.9989~26!

1.234 0.9185~20! 0.7007~45! 0.9989~23!

1.272 0.9150~23! 0.7059~51! 0.9920~26!

1.388 0.9147~21! 0.7102~45! 0.9889~24!

1.426 0.9141~25! 0.7112~45! 0.9876~29!

1.542 0.9106~26! 0.7168~48! 0.9801~30!

1.581 0.9104~25! 0.7202~48! 0.9775~27!

1.735 0.9080~29! 0.7257~49! 0.9706~32!

1.851 0.9101~28! 0.7334~45! 0.9727~31!

1.889 0.9081~30! 0.7339~42! 0.9706~35!
01450
ti-
s

g

our caseM5
sim51.8). Forb56.0, this ansatz leads to a shi

of magnitude'0.8, which has been found to describe t
dependence of the pion mass squared as a function ofM5 to
a good degree of accuracy in a numerical simulation w
Ls514 @21#.

Equation~4.10! in Ref. @19# gives the complete one loo
bilinear renormalization constants in theMS scheme:

ZG
total5@~12w0

2!Zw#21ZG . ~91!

HereZw , Z2, andZG are to be computed from Eqs.~3.30!,
~3.42!, and ~4.11! and Tables II and III in Ref.@19#, while
w0512M5. In the mean-field improved case, the above
lations hold with the replacementsw0→w0

MF5w014(1
2u), Zw→Zw

MF , Z2→uZ2
MF , andZG→uZG

MF @34#, whose
values can also be computed from Tables II and III in R
@19#. The factoru in these formulas is the mean link variab
in the Feynman gauge. As it is not possible to use the va
of the mean link in the Feynman gauge, we have inst
used the fourth root of the plaquette and the perturba
results of Ref.@17# to convert the results of Ref.@19#.

In Fig. 20 and Fig. 21 we plotZA
total and ZS

total, respec-
tively, as functions of the variableM5 in naive perturbation
theory, in naive perturbation theory with the variableM5
shifted according to Eq.~90! and in the mean-field improved
case. To computeas , we used the same input values f
LQCD and a as in the perturbative running calculations
Sec. X. We obtainas@(ap)251#50.20. These figures show
appreciableM5 dependence. Our nonperturbative result
shown as a point corresponding to the single value ofM5
51.8 that we have studied.

The naive perturbation theory curve has a significant
pendence on the precise value ofas . In the mean-field im-
proved case this problem is not as serious as the coeffic
of as is a factor of 2–3 times smaller. Examining Figs. 2
and 21, one recognizes that naive perturbation theory do
poor job of determiningZA or ZS giving values nearly 2
times too small forM551.8. Introducing the shift of Eq.~90!
improves the situation noticeably giving values 15% t
small and to within a few percent, although the perturbat

FIG. 19. The scale invariant~SI! version ofZq determined from

Zq8 but usingap̄m instead ofapm .
4-16
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result is rapidly varying withM5 in this case. The mean-fiel
results differ from the nonperturbative result by around 5
in both cases.

XIII. CONCLUSIONS

In this paper we have described a first study of no
perturbative renormalization of the quark field and flav
nonsinglet fermion bilinear operators in the context of d
main wall fermions. We presented a theoretical argum
constraining the form that explicit chiral symmetry breaki
effects may take, and found that numerically these are in
nificant, as might be expected from the measured size of
additive mass renormalization,mres @12,13#. However, sys-
tematic effects due to spontaneous chiral symmetry brea
and zero-modes are significant, but accurately follow the
pected form and can be effectively subtracted away.

Renormalization group invariant quantities were obtain

FIG. 20. The renormalization factorZA
total of Eq. ~91! in theMS

scheme at 2 GeV computed in naive perturbation theory, na
perturbation theory shifted by (421/2kc) as in Eq.~90! and mean
field improved perturbation theory.

FIG. 21. Same as Fig. 20 but forZS
total .
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in Sec. X by dividing the regularization independent sche
coefficients by the three loop renormalization group runn
~where available!. The residual scale dependence of the
quantities is small and was treated as anO(a2) error. Three
different quantities were used to determine the quark ren
malization factor: the off-shell vertex functions of the co
served vector and axial currents; the trace of the produc
pmgm and the off-shell quark propagator; and the combin
tion of ZA as determined from hadronic matrix elements w
the value ofZA /Zq obtained in this study from the off-shel
axial vector vertex function. The technique of obtaining th
Zq directly from the propagator suffers from large discre
zation errors, but is roughly consistent with the other tw
methods which gave results differing by'5%.

In the final section we compared our results against
predictions of both standard and mean-field improved o
loop perturbation theory.
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APPENDIX A: THE RUNNING OF as

In the following the definitions

a5
g2

4p
, ~A1!

and

CF5
NC

2 21

2NC
, ~A2!

will be used. The renormalized coupling may be defined
terms of the bare coupling by

ab5Zg
2asm

2e. ~A3!

As ab is completely independent ofm,

m2
das

dm2
52eas1b ~A4!

with,

b52as

2

Zg
m2

dZg

dm2
. ~A5!

The results for the beta function are most easily given
terms of theb i variable:

e

4-17
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b~as!

4p
52b0F as

4pG2

2b1F as

4pG3

2 . . . . ~A6!

The values used in the current work are summarized in Ta
IV. They are taken from Ref.@27# with the number of flavors
set to zero~as we are working in the quenched case! and the
number of colors set to three.

Once theb i ’s are known, the running equation,

m
d

dm
as522b0

as
2

4p
22b1

as
3

~4p!2
2 . . . , ~A7!

may be solved.
One loop solution:

as

4p
5

1

b0 ln~m2/LQCD
2 !

. ~A8!

Two loop solution@35#:

as

4p
5

1

b0 ln~m2/LQCD
2 !

2
b1 ln ln~m2/LQCD

2 !

bo
3 ln2~m2/LQCD

2 !
. ~A9!

Three loop solution@4#:

as

4p
5

1

b0 ln~m2/LQCD
2 !

2
b1 ln ln~m2/LQCD

2 !

bo
3 ln2~m2/LQCD

2 !

1
1

b0
5 ln3~m2/LQCD

2 !
$b1

2 ln2 ln~m2/LQCD
2 !

2b1
2 ln ln~m2/LQCD

2 !1b2b02b1
2%. ~A10!

APPENDIX B: THE RUNNING OF THE Z-FACTORS

As mentioned previously, the renormalized operators
are working with are defined as

ZOObare5Oren . ~B1!

TABLE IV. b i ’s for the quenched theory.

b i Quenched Value

b0 11
b1 102
b2 1428.5

TABLE V. QuenchedZq anomalous dimensions.

Elements ofgq Quenched Value

g (0) 0
g (1) 44.6667
g (2) 1056.65
01450
le

e

Requiring that the bare operator is independent of the re
malization scale gives the RG equation,

m2
d

dm2
Oren5

1

ZO
m2

dZO

dm2
Oren ~B2!

52
gO

2
Oren . ~B3!

Writing the solution to this equation as

ZO~m2!5
CO~m82!

CO~m2!
ZO~m82!, ~B4!

and using the notation

gO5(
i

gO
( i )S as

4p D i 11

~B5!

ḡOi5
gO

( i )

2b0
~B6!

b̄ i5
b i

b0
, ~B7!

gives rise to solutions to the running equation of the follo
ing form ~where we have suppressed the subscripts iden
ing the particular operator O!.

One loop solution@35#:

C~m2!5as~m!ḡ0. ~B8!

Two loop solution:

C~m2!5as~m!ḡ0H 11
as~m!

4p
~ḡ12b̄1ḡ0!J . ~B9!

Three loop solution:

TABLE VI. QuenchedZS anomalous dimensions.

Elements ofgS Quenched Value

g (0) 28
g (1) 2134.667
g (2) 22498

TABLE VII. QuenchedZT anomalous dimension.

Elements ofgT Quenched Value

g (0) 2.66667
4-18
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C~m2!5as~m!ḡ0H 11
as~m!

4p
~ḡ12b̄1ḡ0!

1
1

2 S as~m!

4p D 2

@~ ḡ12b̄1ḡ0!21ḡ21b̄1
2ḡ02b̄1ḡ1

2b̄2ḡ0#J . ~B10!

Tables V–VII show the anomalous dimensions used in

TABLE VIII. Zq RI to MS matching coefficients.

Z0
(1) 0

Z0
(2) 214.4975
v.

A.

ys

s,

E

ys

01450
is

work. These values were taken from Refs.@32,4,33# with the
number of flavors set to zero and the number of colors
three.

APPENDIX C: MATCHING COEFFICIENTS

The numerical values of the matching coefficients,Z0
(1)

and Z0
(2) in Eq. ~84!, used forZq and ZS are collected to-

gether in Table VIII and Table IX.

TABLE IX. ZS RI to MS matching coefficients.

Z0
(1) 5.33333

Z0
(2) 188.651
s.

s.

.

s.
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