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We develop a new method in lattice QCD to calculate the form fagkorp« (1) at zero recoil. This is the
main theoretical ingredient needed to deternjig) from the exclusive decaB— D* 1. We introduce three
ratios, in which most of statistical and systematic error cancels, making a precise calculation possible. We fit
the heavy-quark mass dependence directly, and extractm@anid three of the four fm% corrections in the
heavy-quark expansion. In this paper we show how the method works in the quenched approximation, obtain-
ing Fg_p+(1)=0.913 5529+ 0.016" 3905 5 592" 3- 908 where the uncertainties come, respectively, from statistics
and fitting, matching lattice gauge theory to QCD, lattice spacing dependence, light quark mass effects, and the
quenched approximation. We also discuss how to reduce these uncertainties and, thus, to obtain a model-
independent determination P ).
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I. INTRODUCTION W1 BW(W— 1) MgMp s
. _ _ G(W)= ——— | 5w+1+ 5 (1.2
In flavor physics the Cabibbo-Kobayashi-Maskawa 12 (Mg—Mpx)

(CKM) matrix elemen¥,, plays an important role. Much of

the phenomenology dEP violation centers around the uni- tactor F. " d d e t
tarity triangle, and a precise value pf,| is needed to lo- actor J's_.p« (W), one can use the measured decay rate to
determine|V.y|.

cate the triangle’s apex in the complex plane. As a funda- L
g b plex p One makes use of the zero-recoil pawnt 1, even though

mental parameter of the standard mod€],, sometimes
appears in unexpected places. For example, the standalidf Phase-space factw”—1 suppresses the event rate, be-
— cause then theoretical uncertainties are under better control.

- . O_ 0 . . -
modc_al_ prediction of th&™— K" mixing paramete is very For w>1, Fg_p«(w) is a linear combination of several
sensitive to|Vp| [1]. =

The determination ofV/.,| is made through inclusive and form fgctors ofB—D* transitions med.iated by the vector
exclusive semileptoniB decays, but at present both methods@nd axial vector currents. At zero recoil, however,
are Ii_mited by_theoretical u_ncertainties. The int_:lusive_method Fopx(1)=hu (1), (1.3
requires a reliable calculation of the total semileptonic decay 1
rate of theB meson, which can be done using the heavywhereh, is a form factor of the axial vector currept”:
guark expansiofi2,3]. Ultimately this method is limited by namely, !
the breakdown of local quark-hadron duality, which is diffi- ’
cult to estimate. The exclusive method, on the other hand, <D*(v)|AM|§(U)>:i\/M?MhA (1). (1.9
requires a theoretical calculation of the form facy ,p+ !
of B—D*Iv decay. In this paper we take a step towardsMore importantly, heavy-quark symmetry plays an essential
reducing the uncertainty in the exclusive method, by devisfole in constrainingh, (1), leading to the simple heavy
ing a precise method to compute the form factor at zerqquark expansiof4,5]
recoil in lattice QCD.

The differential rate for the semileptonic decg
—D*1y, is given by

has a kinematic origin, witl§j(1)=1. Thus, given the form

e (D)= pal 1 1V 2 'p 1
Al( )_7’A _(ch)z zmczmb_ (zmb)Zi ( 5)

including all terms of order Mé. In EQ.(1.5), 54 is a short-

dr Gf : o . -

= me (Ma—Mp )2 W2— 1G(W)| V.., |2 distance radiative correction, which is known at the two-loop

dw 4720 (Mg Mp-) (W)IVes level [6,7], and thels are long-distance matrix elements of
X | Fa s (W)2 (1.1) the heavy-quark effective theorfHQET).> Heavy-quark

symmetry normalizes the leading term inside the bracket to

wherew=v"'-v is the velocity transfer from the initial state

. . . - . ,
e oo o " 1 HOET bt s e o calle i v
y o eters,” because they are viewed as incalculable. In a QCD context,

2_ 2 2 o .
the leptons by —m52 2wmgMp« +mMp,, and it lies in the  5wever, the are not free parameters, but calculable matrix ele-
range EW<(mZB+ My« )/2mgMp»« . The function ments.
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unity [8] and, moreover, forbids terms of ordent{ [9]. The  In this work we employ this double ratio and two similar

1/md corrections are formally small-A/2m)?~4%—but ~ ones. The first additional double ratio is
one would like to reach better precision Pv,|, so these
terms cannot be neglected. (D*[Cy*b|B* )(B* |by’c|D*)
There have been mainly two different methods used to Ry= e A e 2=
estimate the Ihé terms in Eq. (1.5, but neither has (D*[cy*c|D*)(B*[by*b|B*)
achieved a model independent calculation. One involves us- _
ing a quark mode[4,10] to estimate thés. The other em- Where the pseudoscalar mesddsand D, and their form
ploys the zero-recoil sum rulgll]. Although based on a factorh (1), arereplaced with the vector meso and
rigorous upper bound[12], to make a prediction of D*, and their form factoh,(1):
Fs_p+(1) this approach requires an assumption on the ef-
fects of higher excited states in the sum rule. Thus—justas  (D*(y)|V*B* (v))=i V2mg«2mp« € - ev”hy(1).
with quark models—it is difficult to estimate, let alone re- (1.9
duce, the uncertainty associated with the estimate.
In this paper we take a step towards reducing the theoretfhe second additional double ratio is
ical uncertainty by using lattice QCD to calculam\l(l)

=lhy(DJ? (1.9

=Fg_p+(1). Lattice QCD is, in principle, model indepen- (D*[Cy; 75b|§><§* |Eyj ys¢|D)
dent, although here we work in the quenched approximation. Ra,= — —— —
The quenched approximation is not less rigorous than the (D*[cy;ysc|D)(B*|by;ysh|B)
methods used in Refg10,11. From our point of view, how- - —,

ever, the main advantage of the quenched approximation is thD (Uhng (1)

that it allows us to learn how to control and estimate all other |hA1(l)|21 (1.10
lattice uncertainties. With a proven technique, it is conceptu-
ally straightforward, if computationally demanding, to carry
out a calculation in full QCD. where the axial vector current mediates pseudoscalar-to-
Until now three obstacles prevented even quenched latticgector transitions, leading to a double ratio of the form factor

calculations oh, (1) to the needed precision. First, a direct ha,. As stressed in Ref14], the double ratios overcome two

Monte Carlo calculation of the matrix element in EG.4) of the obstacles in the lattice calculation, because numerator
suffers from a statistical error that is too large to be interestand denominator are so similar. Statistical fluctuations in the
ing. Second, the normalization of the lattice axial vector curnumerator and denominator are very highly correlated and
rent was uncertain, being limited by a poorly converginglargely cancel in the ratio. Also, most of the normalization
perturbation series. Finally, early work&3] usedad hoc uncertainty in the lattice currents cancels, leaving only a re-
methods for heavy quarks on the lattice, which entailed sidual normalization factor that can be computed reliably in
poorly controlled extrapolation in the heavy quark mass. Weperturbation theory{18]. Indeed, all uncertainties scale as
have devised methods to circumvent all three obstacles. THR— 1, rather than a®.

first two are handled with certain double ratios of correlation Note that the double ratitle1 does not yield the desired
functions, in which the bulk of statistical and systematic un-
certainties cancel14]. The third obstacle—the problem of )
heavy-quark lattice artifacts—is overcome by using a sys!S itself a double ratio of form factors. Qne can, however,
tematic method for treating heavy quarks on the lattice€xtractha (1) from the three double ratioR, , R;, and
based on Wilson fermionjsl5]. This obstacle could also be R, , at least to the order in the heavy-quark expansion given

overcome using lattice nonrelativistic QGNRQCD) [16],  in Eq. (1.5). This possibility follows from the heavy quark

as in the work of Heiret al. [17] expansions f0h+(1) andhl(l) [4,5],
__Inour work [14] on the form factorth_, (1) in the decay

R PN(1)hE B (1)

form factorh,‘i?D* , but instead the combinatidm, , which

B—DIv at zero recoil, a central role was played by the 1 1\?
double ratio of matrix elements h (1)=ny 1-lp om. 2m ' (1.11
c b
— AN /B 2
(D[cy*b|B)(B|by*c|D) _ 11
R,.= =lh, (D% (1.6 hi(1)=ny| 1-1y 2m, 2mg) | (1.12

= ——
(D[cy*c|D)(B[by*b|B)
and comparing to Eq1.5). In h (1) andh;(1) the absence
where of terms of order Ihg [9] is easily understood, because
o charge conservation requirds, (1)=h,(1)=1 when m,
(D(v)|V*B(v))y=iv2mg2mpv*h, (1). (1.7 =m,, and because the matrix elements defining them are
symmetric under the interchange.—m,. Similarly, the
In Ref.[14] we studied the heavy-quark mass dependence dieavy-quark expansion of the form factor rakig (1), ob-
h, (1), using a fit to obtain the mg and 1m% corrections.  tained fromRAl, is
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ha (1)=77a (113 from some secondary changes in the analysis, and partly
from the inclusion of some contributions of ordem@.
Clearly, these central values are indistinguishable within the
error bars.

The paper is organized as follows. In Sec. Il we discuss

1 ﬂ comes mostly from the results on two finer lattices, partly

1_IA(ZmC_ 2m,

which follows immediately from Eq.(1.5), defining 73
= yacbypbe/ Paceypbb. Hence, by varying the heavy quark

masses in the lattice calculation of the double rativs, how to combine heavy-quark theory and lattice gauge theory

R1, andRa,, one can extradtp, lv, andI.A, respectively. to calculate the needed matrix elements; in particular, we
Then,h, (1)=7Fg_.p+(1) can be reconstituted through EQ. reyiew how we are able to extract ther§f correctiong20].

(1.5). . _ Section 1l is fairly general and much of it also applies to
A key to this method is that heavy-quark symmetry re-jattice NRQCD. Specific details of our numerical work are
quires the quantitiel, andl, to appear in Eq(1.5, as well  given in Sec. Ill, including input parameters and the basic

as in Egs.(1.1) and (1.12 [4,5]. A simple argument ex- outputs. The “Fermilab” method for heavy quarks5] re-
plains why. For each form factor there are three possiblgjuires matching the short-distance behavior of lattice gauge
terms at order ™3—1/mZ, 1/mj, and 1m;m,—and each theory to QCD, which is discussed in Sec. IV. Section V
multiplies an HQET matrix element. Fdr. (1) andhy(1)  shows a key feature of our analysis, namely the direct fitting
the particular form of the expansions is restricted by theof the heavy-quark mass dependence to obtain the power
b« c interchange symmetry, so only one HQET matrix ele-corrections in Eq(1.5. A detailed discussion of the system-
ment can appear in each cakefor h (1) andl,, for h;(1). atic uncertainties is in Sec. VI. Our result, E{..14), is
Interchange symmetry does not apply to BiesD* transi- compared to other methods in Sec. VII. Section VIII contains

tion, however, so three HQET matrix elements are needed iROMe concluding remarks.
the expansion ohAl(l), Eqg. (1.5. Two of them, however,

coincide withl andly, . If one flips the spin of the charmed  1I. CONTINUUM AND LATTICE MATRIX ELEMENTS

quark in thel?.—>D. transition in Eq..(1.7), o.nel obt§|n§ .the In this section we discuss how to obtain continuum-QCD,
B—D* transition in Eq.(1.4), and in the limit of infinite  heayy-quark observables from lattice gauge theory. Discreti-
charmed quark mass the matrix elements are identical, byation effects of the heavy quarks are a special concern, so
heavy-quark spin symmetry. Consequently, theZlterm in  they are discussed in detail in this section. For the light spec-
Eqg. (1.5 must be the same as that in Ed.11), namely tator quark we use well-known methods, and we provide
Ip/(2m,)2. The same logic applied to the quark’s spin, details in Sec. Il

starting from theB* —D* transition in Eq.(1.9), implies Discretization effects of the heavy quarks can be con-
that the hZ term in Eqs.(1.5) and(1.12 must be the same, trolled by matching the lattice theory to HQEZO]. This is
namelyl, /(2m,)2. possible whether one discretizes the NRQCD effective La-

grangian[16], or one employs the nonrelativistic interpreta-
tion of Wilson fermiong[15]. In either case, on-shell lattice
matrix elements can be described by a version(amin-

1/m% behavior of the three double ratios. Including theseﬁnuum) HQET, with effective Lagrangiatin the rest framg

corrections not only reduces the systematic error of the — .
heavy quark expansion, but also reduces our statistical error, h,Dh, N h,iX-Bh,
because fitted values for the quadratic and cubic terms are 2m, 2mg
correlated.

In the remainder of this paper we describe the details ofynere h, is the heavy-quark field of HQET, an is the
our lattice calculation offg_.p«(1)=ha (1), assketched chromomagnetic field. The “massesi;, m,, andmjy are
above. Discretization effects are studied by repeating thehort-distance coefficients; they depend on the bare cou-
analysis at three different lattice spacings. The dependengdings of the lattice action, including the gauge coupling.
on the light quark mass is expected to be small, which we ar#&latrix elements are completely independentnaf [20], so
able to verify. After a thorough investigation of systematicthe important coefficients aren, and mgz. The lattice

At order 1/m‘°é there are, in general, four terms for each
form factor. In Sec. V we show how the same kind of rea-

Lhger= myh,h,+ +-0, (2

uncertainties, we obtain NRQCD action has bare parameters that correspond directly
to m, and mgz. With Wilson fermions one must use the
Fapx(1)=0.913 5524+ 0.016" 5093 3-39%" -500 Sheikholeslami-WohlettSW) action[21], and adjustn, and

(1.14 Csy to tunem, andmg. In practice, we tunen, nonpertur-
batively, using the heavy-light and quarkonium spectra, and

where the uncertainties come, respectively, from statistice with the estimate of tadpole-improved, tree-level pertur-
and fitting, matching lattice gauge theory and HQET tobation theonf22]. There are also terms of ordemg in the
QCD, lattice spacing dependence, light quark mass effectgffective LagrangianCyqer, but they do not influence the
and the quenched approximation. A preliminary report of thisdouble ratios, as discussed further below.
calculation based on our coarsest lattice appeared in Ref. In this paper we use lattice currents that are constructed as
[19], reportingFg_px (1)=0.935+ 0.022" 3923, The change in Ref.[15]. (An analogous set of currents can be constructed
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for lattice NRQCD[24].) We distinguish the lattice currents Ba*C, D, y5b
V# and A* from their continuum counterpartg and A*. AF=Cp Ci vt ysb, + %
We define me
_ Bapv*C, ys0, b,
V= \[ZgeZyorW i AW, 2.2 - omg 28
. The radiative corrections to the short-distance coefficients in
AP =NZyeeZyou¥ ol y ys W, 23 Egs.(2.5 and(2.6) differ from those in Eqs(2.7) and(2.8),
] because the lattice modifies the physics at short distances.
where the rotated fielffL5] On the other hand, the HQET operators are the same
throughout.
Va=[1+ad;y Dadtyg, 2.9 There are also terms of ordemi in the effective cur-

rents on the right-hand sides of E¢8.5)—(2.8), although for
and iy is the lattice quark field=c,b) in the SW action.  brevity they are not written out. The most important opera-
Here D,y is the symmetric, nearest-neighbor, covariant dif-tors to be added to Eq&2.5 and(2.6) are
ference operator. In Eq$2.2) and (2.3 the factorsZyqq, q

=c,b, normalize the flavor-conserving vector currents. Be- [1+ O(gz)]?vlﬁivf‘lbibv
cause for massive quarks onfy, can be computed nonper- 1Ly~ 2Mac2Map ) (2.9
turbatively, we choose to pu, into the definition of the
axial currentA*. In the work reported in this paper, we do Mk
not need to compute the factQZ,,ccZy»b, because it cancels AL — [1+0(g9)]e,D iyl ysD.b,
in the double ratios. LD 2Mge2Mgp, :
Matching the currenV* to HQET requires further short- (2.10

distance coefficients:
The corresponding terms to be added to Egsi) and (2.8
BRE, b,i Y4, are the same, except thatnZz2my, appears in the denoming-
_verw o LY tors. Thus, our lattice currents enjoy the correct normaliza-
2mg, tion for the 1m.m, term, as long asl, is adjusted so that
BlatE YAD b M3o=Mq, as above. The HQET description also has terms
_ Ve LT L (2.5  of order 1mZ and 1m3. They contribute to the individual
2Mgp matrix elementgD *)|J#|B*)), but their contributions drop
out of the double ratios, see below.
B',i“cv“ﬁﬂl ysb, Since we aim for the mg corrections to the double ratios
— we must, however, discuss in more detail how these contri-
butions are incorporated, when the lattice action and currents
BRLv9™e, ysD, b, are constructed and normalized along the lines given above.
- (2.6)  The HQET description of matrix elements reveals several
sources of such contributior4,5,23: (1) double insertions
of the 1y terms in the effective LagrangiaBqer; (2)
single insertions of the fig terms in the effective Lagrang-
ian into matrix elements of the i, terms in the effective
HQET currents{3) single insertions of genuine mé terms

- lat =
VH= CV”U MCU bl} -

. ~lat—:
AM:C:ICUI 'yiL'YSbv—i_ 2m3
C

2mg,

where the symbol= implies equality of matrix elements,
andb, andc, are HQET fields for the bottom and charmed
guarks. At the tree level the short-distance coeffici@{%,

C',fi, and B'ﬁ‘} all equal one. The free parametgy in Eq.  in the effective Lagrangiani4) matrix elements of genuine
(2.4) can be adjusted to tunerifg to 1img. In the present 1/m, terms in the effective HQET currents.
calculations, we adjustl; with the estimate of tadpole- The first set of contributions is correctly normalized at the

improved, tree-level perturbation theory, as explained in Refsame level of accuracy as thery terms of the action. The
[15]. Further dimension-four operators, whose coefficientssecond set makes no contribution to zero recoil matrix ele-
vanish at the tree level, are omitted from the right-hand sidegents whatsoevg20]. The third set also makes no contri-

of Egs.(2.5) and(2.6); they are listed in Ref.18]. bution at zero recoil, because the leading terms in E3J5)
The description in Eqgs(2.5 and (2.6) is in complete and(2.6) are Noether currents of the heavy-quark symme-
analogy with that for the continuum currents; namely, tries and, as in the proof of Luke’s theorem, first corrections

to Noether currents vanidl25,20.

One is left with the last set, whictloescontribute to the
matrix elements(D®*)|J#B*)). The HQET matrix ele-
2m ments of all dimension-five currents can be reduced {o

and \,, which appear in the heavy-quark expansion of the
(2.77  mass[4]. In the double ratios, however, the following can-
2my cellation takes placg20]:

_ ByL,Divih,
WH=Cy 0HCyb, — — o

BypC,i ¥ DD,
- - - .
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[1—N(Xp/mZ—1/memy+ X /mZ)]?
[1—N(2X—1)/mZ][1—N(2Xp—1)/m;]

1 1)\2
mcmb,

=1- )\( (2.1)
where\ is proportional tox, or A,. We write 1 m,, for
the correctly normalized contributions of Eg&.9 and
(2.10, andXQ/m(zg for the other, incorrectly normalized op-

PHYSICAL REVIEW D66, 014503 (2002

21/221/2<D|\Pc'y4\lrb| B>

V2mp\2mg

CB*}D(tf vtS !ti)

erators. The incorrectly normalized contributions cancel in

the double ratios. In practice, the “correctly normalized”

terms are normalized only at the tree level, leaving us with

uncertainties of ordeaS(K/mQ)z. Along with their small

statistical and normalization uncertainties, the absence of

maladjusted Ih? contributions is the double ratios’ most
important trait.

Once one is content to neglect corrections of order

aS(K/mQ)Z, it is easy to obtain the continuum normalization

of the lattice currents. By comparing the heavy-quark expan-

sions forV# and A* to those forV* and . A*, one sees that
(2.12
(2.13

apart from discretization effects discussed above. d feec-
tors are

o "
Veb™ PvebVe

Ah=PacvAch
pvcb=cvu/c'vﬁf, (2.14
pasv=Ca ICR, (2.15

and they are known at the one-loop leY&8].

The matrix elements are obtained from three-point corre-

lation functions. For the zero-recoB—D, B* —-D* and

B—D* transitions the three-point function are, respectively,

CBD(t ,ts,to:XZy (0| Op (X, t) W ey Wp(Y,ts)

OL(0,t)]0), (2.16

cB“D*(tf,ts,ti):XEy (0] Opx (X, t) W e y4 W (Y, to)

X 0L (0,t)]0), (2.17)

CBP* (¢ ,ts,ti):XZy <O|OD*(Xatf)ac'}’j YsWp(Y,ts)

OL(0,1)|0), (2.18

where Ogx) and Opx) are interpolating operators for the
B®*) and D*) mesons. InCB*~P” the spins of the vector
mesons are parallel, and @ —P" the spin of theD* lies in

X e~ Melts~t)g~Mp(ti—ts) 4 ...
(2.19
* * D* \I_, V. \I’ B*
CB —D (tf 1tsyt|)=ngZé/*2< | c/4 b| >
V2 Mpx 2mB*
><e_mB*(ts_ti)e_mD*(tf_ts)
tey (2.20
. D* |y, vV, |B
cB-D (tf,ts,ti)ZngZéQ( | c?iVs b| >
V2Mpx \/2Mg
X @~ M(ts—t) g~ Mp=(tt—tg)
+ey (2.21)

wheremg) andmp ) are the masses of tt&*) andD*)
mesons. The normalization factofsZ,«)/2my«) are con-
ventional; they cancel when forming the double ratios, so we
do not need them. The correlation functions defined in Egs.
(2.16—(2.18 are the only objects needed from the Monte
Carlo. In practice we hold,=0 andt;=T/2 fixed and vary
ts over the range for which the lowest-lying states dominate
the correlation functions, as is needed for E@s19—(2.21)
to hold. (T=Nsa is the temporal length of the lattige.

From the correlation functions we form the following
double ratios:

CBP(0t,T/2)CP~B(0t,T/2)

Ri(O=co=p0rT2c5 B0t (222
0= CE"~P™(04,T/2)CP" ~B" (04, T/2)
! D*—D* (0t T/2)CB* ~B* (04,T/2)’
(2.23
CB-DP*(0t,T/2)CP~B*(0t,T/2)
RAl(t)= D_D* B_B* .
C (0t,T/2)CB~B"(0t,T/2)
(2.24)

Apart from renormalization factors, these ratios correspond
to the continuum ratio® , , R4, andRAl. In the window of
time separationg and T/2—t for which the lowest-lying
states dominate, all convention-dependent normalization fac-
tors cancel in the double ratios, and the ratios reduce to

pverVRy =R =h (1), (2.29
pyeryRy =R, =hy(1), (2.2
pao\Ra, = R, =P (1), (2.27

the | direction. These correlation functions are calculated by
a Monte Carlo method, as usual in lattice QCD. In the limitwhere p pA pacbpabel pacepabb. In particular, note that the
of large time separations, the correlation functions becomeaxial current double ratio does not y|d|q1(1) directly, but
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TABLE I. Input parameters to the numerical lattice calculations, together with some elementary output parameters. Error bars on the
outputs refer to the last didg).

Inputs
B=6lg3 6.1 5.9 5.7
Volume, N3x Nt 243 48 16x32 12x24
Configurations 200 350 300
Csw 1.46 1.50 1.57
Kn, Mo (GeV) 0.080, 7.90 0.077, 6.03 0.062, 6.16
0.090, 5.82 0.088, 4.36 0.089, 2.87
0.097, 4.62 0.099, 3.06 0.100, 2.03
0.100, 4.16 0.110, 2.02 0.110, 1.42
0.115, 2.21 0.121, 1.16 0.119, 0.96
0.122, 1.46 0.126, 0.83 0.125, 0.69
0.125, 1.16
Kq, Mg (GeV) 0.1373, 0.092 0.1385, 0.088 0.1405, 0.093
0.1379, 0.039 0.1388, 0.073
0.1391, 0.057
t range [9,15 [6,10] [4,8]
Elementary outputs
Keri 0.13847 % 0.140173 0.143273
a;p15(Gev) 2.64"1% 1.81°¢ 1.16°3
a;! (GeV) 2.40'13 1.47"8 0.89'2
Uo 0.8816 0.8734 0.8608
ay(3.40R) 0.14533 0.15938 0.18265

insteadn, (1), defined in Eq.(1.10. Once we have com- Semileptonic form factorf28], light-quark masseg29], and
puted the left-hand sides of Eq.25—(2.27) for several ~duarkonia[30]. The quark propagators are the same as in
combinations of the heavy quark masses, we can fit the ma&kef: [27], but we now use 200 instead of 100 configurations
dependence to the form predicted by the heavy-quark expai@n the finest latticéwith 8=6.1). The input parameters for
sions, Eqgs(1.1)—(1.13. these fields are in Table I, together with some elementary

To summarize this section, let us review the steps neede@utput parameters.
to obtain the physical form factaFg_.p«(1): (1) compute The quark propagators are computed from the
the three-point correlation functions and thence the ratio$heikholeslami-WohlertSW) action[21], which includes a
R+ ,Ry,Ra; (2) multiply VR, and JR; with py/5y, and dimension-five interaction with couplingsy, sometimes

Ra With pa/#a. to obtainh,(1)/ny, h,(1)/ny, and called the “clover” coupling. For the light spectator quark
:/—Al . _pA nA_ iy _1( My we use customary normalization conditions for massless
ha,(1)/ 74 (3:) fit 1—h/n [where hin is h.(1)/nv,  quarks with the SW action, soy is adjusted to reduce the
h1(1)/79y, or ha (1)/7a] to the heavy-quark mass depen- leading lattice-spacing effect of Wilson fermions. In practice,
dence expected from Eqd.11—(1.13; (4) use the resulting We adjustcsy to the valueug® suggested by tadpole-
ly, l5, andlp (and associated nt% term9 to reconstitute improved, tree-level perturbation theofg2], and the so-
hAl(l):]:BHD*(l) via (the 1/m% version of Eq. (1.5). called mean linku, is calculated from the plaquette. The

As discussed above, with the lattice action, currents, anéfading light-quark cutoff effect is then of ordegAa, mul-

! For the heavy quarks we adjust,, to the same value, but,

with uncertainties of orderas_(/_\/ch)z and /\3/(2"_]@3 as explained in Sec. II, one should think of this adjustment as
f_rom matching, although the fitting procgdure also y|e!ds ©Stuning a coefficient in the HQET effective Lagrangian.
timates of three of the four r:h‘f‘g terms inh, (1), asdis- The hopping parametex is related to the bare quark
cussed in Sec. V. mass. For the heavy quarks, is varied over a wide range
encompassing charm and bottom. For the light spectator
quark, the first row ofx, in Table | corresponds to the
strange quark. To test the dependence of the form factors on

This work uses three ensembles of lattice gauge field corthe light quark mass, we repeat the analysis for a few lighter
figurations, which have been used in previous work onspectator quarks. Table | also lists the tadpole-improved bare
heavy-light decay constan{6,27, B—#lv andD—wlv  quark mass in GeV,

IIl. LATTICE CALCULATION
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_ 1/1 1 3.1
amo—u—o 2K 2Keit) 33 W T

where the critical quark hopping parametey; makes the

pion massless. Although this mass is just a bare mass, |
shows that the heavy quarks are heavy, and the light quark R 098k
light. .

The lattice spacin@ plays a minor role in our analysis, 0.96
because both the lattice perturbation theory and the fitting tc r
the heavy-quark mass dependence can be carried out in la 094F

tice units. The physical scale enters only in adjusting the
heavy-quark hopping parameters to the physical mass spe«
tra, and in studying the dependencehqf(1) ona. Table | (a)
contains two estimates of the lattice spacing, from the spin-
averaged P-1S splitting of charmonium,Am;p.15, and
from the pion decay constaift, .

The renormalized strong coupling,(3.40&) at scale

092;
Y

3.40A is determined as in Ref22]. In Sec. IV the coupling 1.00f

is run toay(q*), whereq* is the optimal scale according to

the Brodsky-Lepage-Mackenz{8LM) prescription[23,22. R 098}

Then ay(g*) is used to calculate the short-distance coeffi- [

cients py /7y and pa/7,, which are introduced in Egs. 0961

(2.29—(2.27), as well as the coefficien, . 0943_ ) N
The right-hand side of Eqg2.19 is the first term in a b M ',;; ]

series, with additional terms for each radial excitatjand P T S RO R R !

similarly for Egs.(2.20 and(2.21)]. We reduce contamina- 0 2 4 6 8 01241

tion from excited states in two ways. First, we keep the three (b) 1

points of the three-point function well separated(fuclid-
earn time. The initial-state meson creation operator is always
att;=0 and the final-state meson annihilation operatar; at

L e L B NN B B LA B L

T

=Ny/2. We then vary the timg, of the current, to see when 1'02: é@#“HH} 1 3 ;
the lowest-lying states dominate. The second way to isolate 1Look- I EMH}{} 1]
the lowest-lying states is to choose creation operatlgr(s) % * % % % % } f ]
and annihilation operator®px) to provide a large overlap R 098 % } % { { . * * ]
with the desired state. This is done by smearing out the quarl 0961_ R
and antiquark with § and 2S Coulomb-gauge wave func- T ;
tions, as in Ref[31]. 0.94f N ]

Figure 1 shows the isolation of the ground state in the i MY
ratiosR (t), Ry(1), andRAl(t). In each of the three modes 0.92(; — -"" o VR TR T 2'4

we find a long plateau. We fit to a constant and obtain a (c) t

precision at the percent level. For each ensemble, we choosc '

the same fit range for all mass combinations listed in Table I. £ 1. pouble ratioR, () (triangles, R, (t) (diamonds, and
) , ,

In Fig. 1 the resulting central values and error envelopes arg (1) (squares at (8 B=5.7, (b) B=5.9, and(c) B=6.1. The
given by the solid and dotted lines, respectively. Different fitheayy quark hopping parameters 48 (i, «.)=(0.062,0.100),

ranges lead to slightly different, though consistent, resultsg, (kp ko) =(0.088,0.121), andc) (y,x.)=(0.097,0.122). The
this variation is folded in with the statistical error. Statistical ||ght quark mass is close to the Strange quark mass. The lines rep-

errors, including the full correlation matrix in all fits, are resent constant fits in the indicated ranges.
determined from 1000 bootstrap samples for each ensemble. o )
The bootstrap procedure is repeated with the same sequeng¥Pected from Refd10-12. This is an important observa-
for all quark mass combinations, and in this way the fullytion, because the largestnt correction to h, (1) is
correlated statistical errors are propagated through all stagég/(2m)?.
of the analysis.

Figure 1 also demonstrates a clear distinction between the IV. PERTURBATION THEORY

B*—D* and the other two modes. Consequently, one can In this paper perturbation theory is needed to calculate the
already see thalt, is definitely greater thahp andl,, as  short-distance coefficientp; (J=V,A) defined in Egs.
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BLM prescription sums a class of higher-order corrections.
lattice Since in the cases at hand the one-loop integrals are ultravio-
o/n let and infrared finite, the only scales that can appear are
ym:m, and 1A. In general we find]* to be a few GeV; the
HQET only exceptions occur whenp(/ 7)1 or (pal 7)1 are

accidentally very small.
One of the advantages of the BLM prescription is that the
N . scale depends on the renormalization scheme, in such a way
QCD . that the value of the coupling itself does not depend on the

scheme much. The coupling in an arbitrary schesris re-
ated to theV scheme by

P

FIG. 2. Diagram illustrating how the matching factersz, and |
plm match lattice gauge theory and HQET to QCD, and to each

other.
(4m)? _ (4m)? b6+ O(g) s
(2.14) and(2.15, and 7, and 7, appearing in Eqg1.5) and 0i(q) gi(q) TS TS g '

(1.1)—(1.13. The p factors match lattice gauge theory to

QCD, and then factors match HQET to QCD. To fit the_ where forn; light quarksBo=11—2n,/3, andb{?) is inde-

heavy-quark mass dependence of the lattice double ratiogengent ofn,. In many cases, th@, term dominates; for
one must also match lattice gauge theory to HQET, and thgxample, for thevis schemeb%z _5/3 andb%z _8. If

corresponding factors are simpby,/ 7y andp,/ 7, . Figure . bW 0 !
2 illustrates how these matching factors connect lattice gaug@ne choosesqs=qg*e "s ™, then gg(qs) differs from

theory and HQET to QCD, and to each other. 95(g*) only by “non-BLM” terms of order g*(8,9?)' 2,
Lattice perturbation theory often yields a series that apd=2, which often are not very important.

pears to converge slowly. The two main causes of the poor In summary, we evaluate all short-distance coefficients

convergence have been identifig22]: the bare gauge cou- with

pling is an especially poor expansion parameter, and when

tadpole diagrams occur expansion coefficients are large. =1+ av(q*)477§[1] 4.3

These two problems can be avoided by using a renormalized

coupling as the expansion parameter and by using perturbanq the appropriate BLM scatg. To check for the possible
tion theory only for quantities in which tadpole diagrams gjze of non-BLM two-loop correctionéwhich are unavail-
largely cancel. Then lattice perturbation theory seems to conpo forpy), we also perform cross checks withys(rs)

b M .

verge as well as perturbation theory in continuum QCD. . o i .
To calculate thep factors only the vertex function is We obtaina(q*) via two-loop running from{22]

needed. By construction the self-energy contribution to
wave-function renormalization, in particular the tadpole dia- (3.408) = 2011
grams, cancels completely. Furthermore, even the vertex avis. 1+V1—4.74a1,,

functions cancel partially, so the expansion coefficients
should be small, as verified explicitly at the one-loop IeveIWhereale: — (3/m)In Ug.Uy and an(3.40A) are tabulated
in Table I.

[18]. Indeed, asmga—0, p—1, and asmga—«, p— 7.
Table Il contains the values @k, /7y andpa/ 75 appro-

Thus, despite the fact that only the one-loop correctiop;to
is available[18], it seems likely that perturbation theory can riate to the heavy quark mass combinations used in Sec. V.
s expected, the perturbative corrections to these factors are

be expected to behave well, especially when measure
mall. The lattice coefficients;™ and* pl'! were obtained in

against other uncertainties in this calculation.
The other ingredient needed for an accurate perturbatloﬁef. [18]. The continuum coefficients af&2]

series is a suitable renormalized coupling. We use the cou-
pling ay defined through thgFourier transform of the

4.4

heavy quark potential, as suggested in R22]. The scale 7= Ce3f(my/me)/16m2, (4.5
g* of the running couplingxy(q*) is chosen according to
the BLM prescription23,22: * pH=Cr9f(m,/me)/327%+ 7H In(myamea), (4.6)
* #[1] 1] 5
log(q* a)2= AT (4. 7 =Cg3f(my/my)/1677, (4.7
v[1]__ v[1
where ¢ is py/7y Of pal7a when fitting the mass depen- 7= C5f (M, /me)/327° + 7 In(mpamga), (4.9

dence of the double ratios, e, when reconstituting]Al(l)

with Eq. (1.5). The numerator* {{*) in Eq. (4.1) is obtained where
from the Feynman integrand f@t'! by replacing the gluon
propagatorD (k) by logk?a?)D(K), wherek is the gluon’s f(2)= z+1 Inz—2 4.9
momentum. Such terms arise at the higher-loop level, so the z—-1 ' '
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TABLE Il. Double ratios, computed in the Monte Carlo calculation, &®lnormalization factors, computed in perturbation theory to
one-loop BLM order.

1 Kg Kp,Kc + 1 pviTyv A pal A
B ( ) JR JRy / JRa, /

6.1 (0.080, 0.115 1.0010° 72 0.9851° 7% 1.0021 1.0024 ¢ 0.9940

0.1373 (0.080, 0.122 1.0030 102 0.9742 1% 1.0008 1.0043 952 0.9919

(0.090, 0.100 1.0001° 58 0.9990° %8 1.0002 1.0002 %8 1.0000

(0.090, 0.125 1.0050°£9 0.9757°%; 0.9978 1.0051° &8 0.9908

(0.097, 0.115 1.0007 3% 0.9948 2} 1.0003 1.0012 3% 0.9985

(0.097, 0.122 1.0023 32 0.9871° %3 0.9991 1.0027°3; 0.9954

(0.100, 0.125 1.0039 38 0.9838 53 0.9973 1.0034' 3% 0.9933

5.9 (0.077, 0.110 0.9981 35 0.9872 33 1.0030 1.0009 57 1.0001

0.1385 (0.077, 0.121 0.9971°38 0.9697°2; 1.0035 1.0030 2} 0.9770

(0.077, 0.126 0.9984 & 0.9549 % 1.0015 1.0054 £ 0.9868

(0.088, 0.11D 0.9993 15 0.9934 13 1.0013 1.0007 15 0.9999

(0.088, 0.121 0.9993 33 0.9795 32 1.0016 1.0028 33 0.9944

(0.088, 0.125 1.0011°45 0.9666 35 0.9995 1.0053 33 0.9903

(0.099, 0.110 0.9999 33 0.9980' %3 1.0003 1.0003 33 0.9990

(0.099, 0.121 1.0003 15 0.9883 1{ 1.0000 1.0019°13 0.9969

(0.099, 0.12 1.0022 2} 0.9780° 3 0.9983 1.0041° 33 0.9983

5.7 (0.062, 0.089 0.9944'31 0.9923 38 1.0024 0.9975'32 1.0010

0.1405 (0.062, 0.100 0.9895 43 0.9845 2 1.0050 0.9958 ;2 1.0017

(0.062, 0.125 0.9786 1% 0.9339 12 1.0114 0.9888 1% 1.0006

(0.089, 0.10D 0.9992 33 0.9984 2 1.0005 0.9996 03 1.0001

(0.089, 0.110 0.9969 13 0.9929' 13 1.0018 0.9985 11 1.0002

(0.089, 0.119 0.9945 23 0.9816 3 1.0035 0.9969 23 1.0000

(0.089, 0.125 0.9939°3; 0.9673 29 1.0041 0.9958 37 1.0112

(0.100, 0.125 0.9979'13 0.9793 33 1.0022 0.9983 3} 0.9958

(0.110, 0.119 0.9997 33 0.9972 3% 1.0004 0.9998 33 0.9995

The important properties off(z) are f(1)=0, f(1/2) slightly different results in practice. Thus, using both and
=f(z). From the matching procedure derived in REgff8]  comparing gives us a handle on the terms omitted from the
one sees that the masses used (im,/m;) should be the perturbative series.

kinetic masses, namely the mass appearing in the kinetic When reconstituting the physical form facltm,;;l(l) with

term in Eq.(2.1). Eg. (1.5, one needs a numerical value for the short-distance
Two different schemes for defining the kinetic quark masscoefficient na. Although it is known at the two-loop level
are used in this paper, because they are simple to implemer 7], we use the one-loop, BLM results, so that all pertur-
Both employ the formul&15] bation theory is treated on the same footing. Thus, we take
[32]

1 _ 1 N alm , 4.10 7= Ce[3f(my/m,) — 2]/1672, (4.12)
am, e*™sinhlam;) e*™
5
* n[AIJZCF[—f(mb/mC)—1}/16772

which is the tree-level relation between the kinetic mass 2
and the rest mass,, for the SW action. One choice is to + i In(mpamea). (4.12
use the tree-level value for the rest maas;=log(1l
+amy), with am, from Eq. (3.1), and we call the result the For consistency, it is necessary to use the same definition of
tree-level kinetic mass. The other is to use the one-loop reshe quark mass im, as inp/7.
mass in Eq(4.10 [33], and we call the result the quasi-one-  |f we take the quasi-one-loop kinetic masses, which are
loop kinetic mass(The kinetic mass receives further radia- very close to continuum pole masses, we fdm,./m,,
tive corrections, but they are known to be snj&B8].) The ={0.308,0.296,0.290 g* ={2.94,3.08,3.12GeV, a\(q*)
second choice is essentially th@ne-loop perturbative pole ={0.205,0.203,0.208and, hence,
mass. Although the difference between these schemes is for-

mally of the non-BLM two-loop order, they could give 7a=1{0.9713,0.9724,0.9724 (4.13
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for 8={5.7,5.9,6.}, respectively. On the other hand, if we 1 1

take the tree-level kinetic masses, we find A= amy. Ay’ (5.9

={0.221,0.230,0.234 q* ={2.02,2.14,2.14GeV, ay(q*) ¢ b

={0.241,0.238,0.245and, hence, L L
7a={0.9769,0.9758,0.9746 (4.14 2= amy. + amy’ (5.6

for B={5.7,5.9,6.}, respectively. Note that although the ) o

coupliné] is larger %n this schem@ecause the quark masses !N Eds: (5.5 and (5.6), the subscript 2 indicates that the
and, henceg* are smallex, the perturbative correction is Kinetic massm, appears. For the quadratic term we sk
smaller, because the magnitude of the coefficigff de- ~€Ven though the masses,, m, andm all appear in the
creases wittz. As we shall see below, this scheme depen€@vy-quark expansion to lattice QC[20], becausem,
dence in 7, is largely cancelled by the corresponding —Ms=Ms at our level of accuracy. The rest masg in Eq.
scheme dependence of then§y corrections. 2.3 dropssout completely20]. _

These values ofy, are slightly larger than the value 0.960 The 1mg t(_arm Is introduced in Eq(.5._4) to descrltz)e Fhe
[6,7], which is widely adopted in the literature. The origin of data over a wide range ofri, . The particular form\°X. is
this difference is the value used fat,. We extracta, from the only one that is invariant under the Lnterchange symmetry
lattice QCD, which, in the quenched approximation, under< P and vanishes fomg=m, . The 1M, terms arise from
estimatesas slightly [30]. Also, there is nothing special Many sources in HQET. Some of them, like tnpk_a insertions
about the standard value. It does not include uncertaintie@f the 1mq terms in L qer, are correctly normalized with
from the measured value af((M,) or from theb and ¢ the choice oleatuce .act|on and currents maQe in Sec. Il
masses. When our method is applied to full QCD, the doubld Ney lead toA5%,, with (to our accuracythe kinetic mass
ratios, the gauge coupling, and the quark masses all can gverywhere. Others, like an insertion of an§/ term com-
determined self-consistently. In the meantime, we shall asbined with an insertion of a fii, term, are not and would
sign uncertainties from omitting the non-BLM two-loop lead toA,AyZy, whereAy2 x amounts to the difference of
term, adjusting the heavy quark masses, and the quenchirgport-distance coefficients for the higher-dimension HQET

effect onas. operatorOy .
The most important mismatches a&f >y are of order
V. HEAVY QUARK MASS DEPENDENCE asamy and of order &my.)?, providedam,.<1. They are

_ _ _ _ . not necessarily small but, perhaps, small enough to pin down
_ In this section we fit thesuitably normalizefidouble ra- ~ the 1% corrections. The B3 contributions are influenced
tios to the form expected from the heavy quark expansionmostly by the region with largs, wheream,.<0.6. Thus,

yielding the_quantitie_saz_lv, a’la, anda’lp (i.e. in lattice e fit coefficientsc® can be expected to give a reasonable
units). We find that it is also necessary and beneficial t0ggtimate of the desireafl (®). Moreover, corrections of order
incorporate terms of order mé in the heavy quark expan- ,—

. . ) . A/mQ)3 are small to begin with, so even a large relative
sion. The last _ste_p is then to combine these results into th ncertainty in them leads to a small absolute uncertainty on
main goal, which |shAl(1).

hy (1).
Table Il contains the results of our Monte Carlo calcula- A1

. —_ . . As mentioned in the Introduction, there are foumé/
“9”5 of R*'_ \/R— a.nd RAl’ .|n addition t_o 'the sho.rt— _terms in the heavy quark expansiontgf (1). If we write
distance coefficients discussed in Sec. IV. This information is 1

combined to form

ha, (1) = Al 1+ Sym2+ Symel, (5.7
pvVR4 _ h_+ (5.1)
woon ' then 8,2 can be read off by comparing with E¢[L.5), and
R; h
pvVR _ h 5.2 L 1o & &
v v 1m3=

T 2m)? T 2ZmoZ2my) | (2mo)(2my)?

PayRa, D I8

T ®3 T 2my®

(5.9

which we fit to the expected heavy-quark mass dependencg, (343) (3)
For each ratio in Eqs5.1)—(5.3) we try the fi Rs suggested by the notatldl{l,, is related tch,(1), andl s

is related tch (1). Repeating the argument based on heavy-
pR 1 1 quark spin symmetry, first for thie, then for thec, one sees
—=1- —Ag(c<2>+ —0(3)22>, (5.4  thath, (1) andhy(1) share the term{/(2m)®, and that

7 4 2 ha,(1) andh, (1) share the term&/(2my)?, as given in
wherec® andc® are taken as free fit parameters, and  Eq. (5.8). The other two terms ib;;,3 can be rewritten
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|(3) |(3) 0.32 T
c B
2 + 2 » .
(2my)=(2my)  (2me)(2my,) o2l on ]
i Ak
W11 .
(2my)(2my) | 2m, " 2m, Doaep :
—
I 1 1 = *
i _ ook D e 1
(2mg)(2my) (ch 2mb)’ 59 = —\i}\LL;H\ _
0'00?‘“ e ok & %
wherel &=[18+10)1/2 andIP=[1®-1P]/2. Simple al- : ;
gebra shows thalty)) is indeed the coefficient of thA?3, -0.085 : : . L >
term in the heavy-quark expansion of the rzitjpl(l). Thus, (a) Vam, + llam,,
to the extent that we can identitfg),, ,, with a1, ,, . we
can reconstruct three of the foumsy corrections tch, (1). L
Only I®) eludes us. : o]
To show the quality of the fit to the mass dependence, we 0061 Ak,
plot in Fig. 3 the quantity P L J‘\L ]
i S N ) BN € ) o I . S ]
A2 ¢ g P (5.10 =
vs 3,=(1l/amy.+ 1/am,,), with the quasi-one-loop defini- ]
tion of am,. Linear behavior in (Hmy.+1/amyy) is ob- ol ]
served for each form factor, and we show the fit line in the 0 ! 2 3
! ) i . Vam, + llam
figure. Some curvature is noticeable for the heaviest masses(b) Ze 2b
in Fig. 3(a), but the linear fit is still consistent within statis-
tical errors. The growth of the statistical error toward the 0.08r . T T
heavy-quark limit is a property of the heavy-light meson in 006:_ . h 1
the Monte Carlo calculation, and it is unavoidab®s,36|. -t o ]
The values of the fit parametec§?),, ,=al(p o, and 0.04f S— o
c{p)v,a are listed in Table Ill. In each case the extracted g  fF~——— 1= ]
values ofc® and c¢(® are highly correlated. On the other T L T 5
hand, the combinations f 0.00F. o] >
o T I ]
2peff _ (2) [ ]
a‘ly'=cy’+ Zamy.’ (5.11 “o0af ;
. .
21eff _ (2) 4 ~ o(3) 1/ + l/lam
AN =Ca '+ 5Ca Jamy. | 2amy)’ (5.12 (c) amy. 2b
NE) FIG. 3. (1-h/n)/A3 vs lam,+1/am,, when h/z is
a?&f=c + ZaLm (513  hi(1)/ny (squares h.(1)/7y (diamonds, and ha (1)/7a (tri-
b

angles at (a) 8=5.7, (bh) B=5.9, and(c) 8=6.1. Solid lines are

- . best fits and dotted lines are error envelopes.
are statistically more precise, because the correlated error

cancels, for the first two especially so. These combinations 3) . . .
appear directly in Eq5.7), provided we can reliably identify nat thels andI™s have a well-defined interpretation as
c§,3) with a3|§/3)- We argued above that this identification is matrix elements W|th|n.HQ_ET. Their detailed deflnl'glon de-
not too bad. because the coefficient®) should be influ- pends on the renormalization scheme of operators in HQET,
O Lo .as discussed, for example, in RE34]. After reconstituting

enced principally by smaller masses. As seen in Fig. 3, thi (1), however, the scheme chosen should have only a mi-
predjudice is borne out, especially when the correlated sta-A1*~/" " ' i ) ) y
tistics are taken into account: the best fits fit best for largdlor, residual effect. Repeating the fits with the tree-level
(L/amy+ 1/amy,). definition ofm,a changes the fit coefficients significantlys

The results presented in Fig. 3 and Table Il are all for theexPected The change i, (1) is, however, not great, and
quasi-one-loop definition oim,. One should keep in mind it is of orderaslmé, as expected.
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TABLE llI. Coefficients in the Iihg expansion, Eq(5.4).

hy /7y hy/7y hA1/V77A
:8 C?32) 0%3) CS/Z) CS/S) C/(AZ) C(A?:)
6.1 —-0.019" %% 0.015'932 0.117°983 —-0.051°933 0.035'939 -0.018"355
5.9 —-0.014' %2 0.012'333 0.184° 23 —0.089' 932 0.037°92 —-0.022°5%%2
5.7 0.075" 9% -0.100"%% 0.289 134 —0.145'138 0.089" 9% —0.030'1%3

To fix the physical values afh, andm, we compute the uncertainties arising from fitting Antze, which incorporate
B, and D, spectra on the same ensembles of lattice gaugeontamination in Eqs(2.19—-(2.21 of excited stategSec.
fields. Combining these inputs with the second row of TableVI A); heavy quark mass depender{&c. VI B); matching

Il (3=5.9) (and omitting thel & contribution we find lattice gauge theory to HQET and QQBSec. VIQ; lattice
spacing dependend€ec. VI D); light (spectatorquark mass
O1mn= Oym2+ Oyme (5.149  dependencdSec. VIB; and the quenched approximation
(Sec. VIB. In Table IV the statistical uncertainty is added in
15" 213" I quadrature to that from fitting, as discussed in Sec. VIA. As
= (2mc)2+ 2m2m,  (2my)? outlined in Sec. lll, statistical uncertainties are computed

with the bootstrap method and full covariance matrices.
=—(0.04473357, (5.19

which is needed in Eq5.7). The error quoted here is statis- A. Fitting and excited states
tical only; systematic uncertainties are considered in detail in We definex? in our fits with the full covariance matrix.
the next section. Equatiofb.15 shows the power of our For the plateau fits t&(t)
method: even with 15% statistical uncertainties 8p,n
=hp, Imp—1, one can see thdi, (1) itself can be ver -
e e A1) y x*= 3 [R(t) —Relo (. IR() Ryl (6
. 1:t2

VI. SYSTEMATIC ERRORS Because the numerical data are so highly correlated, some
_ ) ) ) ) components of theinversg matrix o~ %(t;,t,) cannot be
The intermediate result in E¢5.19 is obtained at one determined well. These components are discarded, according
value <_)f the lattice spacing, and with a spectator.quark _vvhosgj singular value decompositioiSVD), by eliminating
mass is close to that of the strange quark. In this section wgjgenvectors ofo2 whose eigenvalue\ <rgyph mayx, With
consider the systematic uncertainty from varyagnd mg, Fsyp SMall. We find we have to sety,p~10"2 to remove
as well as those from other sources. Table IV summarizes t e noisy eigenvectors from? in Eq. (6.1)
results of this analysis, giving the absolute error on the main A potential drawback of the double ratio technique is that
result, ha, (1), andalso fractlgngl error on % hy,(1). AS  an early plateau could be induced. We cope with this issue by
noted above, the uncertainties should scale with ]{rymg many fit ranges for the t"‘ne> of the current. In gen-
—ha (1). eral, fits to a constant have gogd and agree for fit ranges
In the following subsections, we consider, in turn, thewithin the plateaus clearly seen in Fig. 1. For each ensemble

TABLE IV. Budget of statistical and systematic uncertainties HQ{(l) and 1- hAl(l). The rowlabeled “total systematic” does not
include uncertainty from fitting, which is lumped with the statistical error. The statistical error is that after chiral extrapolation.

1-hp,

Uncertainty ha, (%)
statistics and fitting +0.0238 —0.0173 +27 -20
adjustingm, andm, +0.0066 —0.0068 +8 -8
a? +0.0082 +9
ag(Al2mg)? +0.0114 +13
(A)3(2mg)*® +0.0017 +2
a dependence +0.0032 -0.0141 +4 -16
chiral +0.0000 —0.0163 +0 -19
quenching +0.0061 —0.0143 +7 -16
total systematic +0.0171 —0.0302 +20 -35
total (stat syst) +0.0293 —0.0349 +34 —40
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of lattice gauge fields we choose a single rangetfdor all ~ though fork, this makes very little difference. In the end, we
three ratios and all heavy quark mass combinations. In eaclre left with a range fok, and . and, hence, the heavy
case, the range is chosen to give small statistical error oguark masses used in E.7). This range leads to the error
Rs:,» While maintaining a central value close to that from bar labeled “adjustingn, andm,” in Table IV.
short intervals centered or4.

The expressions in Eq&.19—(2.21), relating three-point C. Matching
correlatio_n fungtiops to matrix el_ements, suppress terms  aq discussed in Sec. Il our method for heavy quarks
from radial excitations of the desired, Iowest—ly|_ng stateS.matches lattice gauge theory to QCD by normalizing the first
Because of heavy-quark symmetry, corresponding excitagayw terms in the heavy-quark expansidis,20. This is nec-
tions of theD and B systems have similar wave functions essary to keep heavy-quark discretization effects under con-
and mass splittings. Consequently, their contribution to therol, but the approximate nature of tierturbativé match-
double ratios largely cancels, leaving a residue that is sufing calculations leads to a series of uncertainties. The three
pressed by £/mg)? as well as the exponential factor for most important of these are listed in Table IV.
large times. Thus, the excited-state contamination in a double The first is formally of ordew?. It comes from omitting

ratio scales aR— 1, rather tharR. the non-BLM radiative corrections to the factqrg and »;
The fits of the heavy quark mass dependence are obtaingihd from omitted loop corrections to the quark masses and to
by minimizing as. As discussed in Sec. I\g; comes from the cancellation
of (continuum and latticevertex functions. Thus, by design,
) 1 @ 1 3 s 1 @ the coefficients of its perturbation series are small—usually
X ZiEJ Qi-z¢7 -3¢ 25005 Q—z¢ smaller than those imp; [18]. With 7, (and 7,) we can

check explicitly how big the non-BLM two-loop corrections
are. For example, the value bf\l(l) is reduced by 0.0082 if

we switch to the modified minimal subtractioh§) scheme
and include the non-BLM two-loop part of thg,. Since the
wherei,j label mass combinations. Once again, not all com-unknown two-loop corrections to the; could compensate,
ponents ofo~ 2 are well determined. The fits are stable with or even over-compensate, we take the two-loop uncertainty
rsvo=15x1035x10 4,1x10 3 for B={5.7,5.9,6.1. to be =0.0082.

In summary, the fitting procedure to determine the double The next matching uncertainty is formally of order
ratiosR, , Ry, andR, depends on the fit range fofand o (A/2m)?2, from tuning the lattice action and currents to
on the cutrgp in the SVD. Similarly, the fit parameters of HQET. Settinga=0.2, A =500 MeV, andm,=1.25 GeV,
the heavy quark mass dependenz®) andc'®), depend on e findsag(A/2m,)2=0.008. Another way to estimate this
an additional SVD cut. The central values quoted here ar@geact is to compare the analysis with tree-level heavy quark

1
- §C<3>22j), (6.2

- ; ; —10-2
from the fit ranges given in Table tsyp=10"° for R(t),  masses to the standard one with quasi-one-loop masses. The
andrsyp as given above foc® andc®. We then repeat the  difference in h, (1) is in the same ballpark, at most
analysis with larger and smaller SVD cuts and, Rft),  10.0114. Since other schemes for the quark mass could lead

with other fit ranges. The resulting variation iy (1) is g shifts in the other direction, we take0.0114 as the un-
smaller than the statistical error of the “best fits.” Since ex- certainty from this source.

cited states contribute differently in each fitting ansatz, the Tne |ast matching uncertainty is of ordekmg)3, from
uncertainty in fittingR(t) incorporates the uncertainty due to the omission of

excited-state contamination. For convenience in analyzing

the other systematics, the fitting error is added in quadrature I 1 1
to the statistical error. 2my)(2my) | 2m.~ 2mg ~0.0017, (6.3
B. Heavy quark mass dependence assumingl$®)=A3% m,=4GeV, and the same values as

: . above. With same choices made above, we estimate that

The physical heavy quark masses enter when reconsutu?m 3)17 3

ing h, with Eq. (5.7). We determine them by tuning the 'A L1/(2Mc) +1/(2my)]/(2m:2m,) and 1/ (2my)* should

ho inl arameters. and «. to reproduce thé. and D be around 0.0033, and 0.0002, respectively. In Table V we
ppIng p b Ke P s s .show the actual effect of the includedﬁ‘g corrections. The

spectra. To do so, we must compute the meson kinetic . .
masses. which are somewhat noisv. and we must choose ﬁatter of the different analyses bears out the latter estimates,
f Y, ending credence to Ed6.3). Uncertainties in the included

observable to define th@nverse lattice spacing. Thus, the
hen 0 P g 1/mz°5 terms are smaller than E(6.3), because many of them

tuned values ok, and k. have statistical uncertainties, from . . . .
both the meson masses and fram® are obtained correctly, and the mismatch in the others is

They also have systematic uncertainties. For example, th%ma”'
inverse lattice spacing ™! is not the same when defined by
the 1P-1S splitting of charmonium or byf ., as noted in
Table I. Similarly, «,, and k., are not the same when quarko- ~ The lattice calculation ohAl has lattice artifacts from
nium spectra are used instead of heavy-light spectra, aheavy quarks, light quarks, and gluons. For the heavy quarks,

D. Lattice spacing dependence
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TABLE V. Scheme dependence bgl(l). For each value ofg, the columns compare the scheme with tree-level and quasi-one-loop
kinetic masses im; and in the mass dependence. The rows compare the effect ohtAedntributions; her& = 1/m.+ 1/m, refers to the
correction in Eq(5.12. Each row includes the corrections from all preceding rows.

B=6.1 B=5.9 B=5.7

[/m" tree quasi tree quasi tree quasi
1/mg 0.87550057;  0.894800:30  0.90780057  0.910300150 09365001,  0.93035si
1m; 0.933Lg0;5 093290075 09362000,  0.932L000  0.9549000ss  0.9406 gp1sy
v 093375050 093263%%  0936IE 0932090 0955T% 0940935
S/(memp) 092750013 09274705 0933800  0.930005%6  0.95035507  0.940075015

discretization effects and heavy-quark effects are inevitably The third point, ata=0.84 GeV(from 5=5.7), has the
intertwined [15,20], and are mostly part and parcel of the greatest uncertainty frorheavyquark discretization effects,

matching uncertainties considered above. The light quark€2 It IS €xcluded from the central value. Instead we use it to
) o 2. estimate discretization uncertainties. If one assumes that dis-
suffer from discretization effects of ordes;Aa and (Aa)“;

he dl f ord 2 That bei o f cretization effects from the light spectator quark and gluons
the gluons of or er/§a) - That being said, we can test for o negligible, then it would be appropriate to average all
the magnitude of discretization effects, by comparing thepree This average is slightly higher, and we take this in-

analysis of Sec. V for three lattice spacings. The results argrease as the upward systematic error bar. If, on the other
plotted against in Fig. 4, which also contains results for hand, one assumes that the light spectator quark’s discretiza-
h. (1) andh,(1). Thelast two are much closer to 1 and their tjon effects are responsible for the somewhat larger value of
statistical uncertalntn_es are correspondmgly smaller. This u”hAl(l) on the coarsest lattice, then it would be appropriate to
derscores, once again, that the unce.rtalntlesgscalegm 1 extrapolate linearly im. The dashed line in Fig. 4 shows this
The result forh, (1) with the available Ing contribu-  extrapolation. The extrapolated value is significantly lower,
tions (solid triangle$ is consistent with a constant. We take and we take this decrease as the downward systematic error
as our central value the average from the two finer latticespar. The error bar resulting from these two estimates is very
because for them théneavy-quark discretization effects are asymmetric: 33952,
smaller. This is
E. Chiral extrapolation
_ 0.0110 . .
ha,(1)=0.9293 5555, (6.4 The calculations discussed so far have a spectator quark
whose mass is near that of the strange quark. Figure 5 shows
how h, (1) changes for lighter spectator quarks, on the lat-
tice with 8=5.9, for which we have three values of the light
auark massh, (1) is plotted againsin? (in lattice units,
which is a physical measure of the light quark mass. Since

where the error is the statistical error on the average, with th
error from fitting added in quadrature. In Fig. 4 the solid and
dotted lines indicate this average and error band.

1.00 L . B |
l————7————7 77" I
e : | 0.96 .
2 < $ o i i ]
1.00} - ‘ ]
: & e + 1 L | 44—
h 0.96F . L s ]
B I I |
X7 IO M : - - 1
I : : ] 084be— o L L L
. 1 0 0.04 008 0.12 0.16
I PR U0 MU S RS | .At - ] (m a)
0880 02 0.4 08, 0.8 1.0 T
Aip.1s (GeV ) FIG. 5. Dependence dn‘Al(l) atB=>5.9 on the mass of the light

spectator quark. Hermf, is the mass of the pseudoscalar meson
FIG. 4. Lattice spacing dependencehgf (1) (triangles, h,.(1)  consisting of two “light” quarks. The soliddotted lines represent
(diamonds$, andh,(1) (squares The light quark mass is close to the best linear fiferror envelopg The lower(upped curves with a
the strange quark mass. The soldbtted lines represent best fits cusp add to the linear behavior the contribution in &g6), taking
(error envelopes Op*p-=0.60 @p*p,=0.27).
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the statistical errors in Fig. 5 are highly correlated, the downconsequences of quenching are that the couptigguns
ward trend inh, (1) is significant. The same trend is seenincorrectly, and that pion loofss in Eq.(6.6)] are not cor-

for B=6.1. Extrapolating linearly im? to the physical pion, rectly generated.

reduces the result in EG6.4) to Let us consider first the effect on the running coupling.
The values forp, in Sec. IV are obtained with the quenched
hAl(l):0.913(I8:8§§§ (6.5  coupling. If ag is corrected for quenching, it is larggs0],

and the short-distance coefficients are changed-By0050

and increases the statistical error. This value, using the avefer », and +0.0032 for ,. These changes both reduce
age of theB=15.9 and 6.1 lattices and the chiral extrapolation hAl(l).
from $=5.9, gives the central value in E€L.14. For the pion-loop contribution we can look to compari-

In the chiral expansion, the terms responsible for the linsons of quenched and unquenched calculations of other ma-
ear behavior are formally of ordeA’m?/(2m.4rf.)>2. trix elements. Studies of the decay constdpteindfy, show
Terms of orderA®/(2m.4f_)? are larger for the physical discrepancies on the order of 10% between quenched and
pion mass, but are comparable for our artificially large pion(Partly) unquenched QCD43,44. A form factor, which is
masses. Randall and Wi§&7] have computed th®. effect the overlap of two wave functions, is presumably less sensi-

at one loop in chiral perturbation theory. They find tive to quenching _than a decay constant, which is a wave
function at the origin. So, one should not expect the quench-
2 i here to be more than 10%. Even in the quenched
(m,) WM, ghp (A©Z m ing error he _ au
v ”Z: 7’52 + 9o D”( ) |n—"2S approximation all three double ratios tend to unity in the
(2mc) (2mc) 2 4ty mz heavy-quark symmetry limit. Thus, the quenching error, like

all others, scales witR— 1, rather tharR. We therefore ap-
(6.6) ply the estimate of 10% to the long-distance pa@¥fn, to
’ obtain an error bar of=0.0061.
We estimate the total quenching uncertainty to be the sum
wheremf]s= 2mj is the mass of the pseudoscalar meson withof these two effects, of 9%
two strange quarksyp«p, is the D*-D- coupling, A(®
=mpx —Mp=142 MeV is theD*-D mass splitting, anc, G. Summary

=A©/m, (a=m, 7). For gp+p, We consider the range - i i
0.27-0.60, which encompasses estimates based on fits to edg;%mbmmg Ea{6.5 with the error budget in Table IV, we

(= %) —F(= )

perimental data(gp«p,=0.27"355 [38]), quark models
(5, <038 [39), aenched latice QCDG-0, =030, (1)-0.9130 Q5 AL OIT SO0 ts
+0.16[40] or gg+g,= 0.42+0.09[41]), and the recent mea- 6.7)

surement of thd* width (gp+p,=0.59+0.07[42]).

The chiral loop functionf(x) has rather different behav- where the error bars are from statistics and fitting, adjusting
ior, depending orx. At x=—1, which turns out to be the the heavy quark masses and matching, lattice spacing depen-
physical region fn,~A(®), there is a cusp, and the value of dence, light quark mass dependence, and the quenched ap-
f becomes largef(—1)~11 whereasf(—-x,)=f(-0.2) proximation.(The uncertaintie_s on the seconql through fifth
=0.53. To illustrate this behavior, we have shown in Fig. 5'0Ws of Table IV are added in quadratyrédding all sys-
the sum of the second term in E@.6) and the linear fit. [n  {€Matics in quadrature, we obtain
the region where we have data, the term from Eg6) _ _ 0.0238+0.0171
hardly varies, but near the physical limit, it bends the curve hAl(l)_}—B—’D*(l)_0'913¢0-017}°-0302' 68
EZV\(IT) \;Vr:gut:ti t(z)ug'tgg;BTg%f%%%%i r:gemgzﬁgeasteh énr e_Altho.ugh we have con;idered qll sources of systematic un-

A1 R certainty, it is not possible to disentangle them completely.
gion Wh.eremﬂ”A(c), as shown in Fig. 5. In an unquenched pqor example, the lattice spacing dependence is not com-
calculation, one would add this contributiont@ (1). Be-  pjetely separated from the HQET matching uncertainties, and
causeyp«p, rfemains uncertain and because we are using théhe quenched approximation affects the chiral behavior, the
guenched approximation, we take it as an additional systemadjustment ofm, and m,, and, throughag, the matching
atic uncertainty of 5999 This effect and the amplification coefficients.
of the statistical error together make the chiral extrapolation

the largest source of uncertainty. VIl. COMPARISON WITH OTHER METHODS

In this section we compare our method, based on lattice
gauge theory, with others existing in the literature. To do so,
An important limitation of our numerical value fora (1) it is convenient to refer to Eq1.5 and discuss how the

is that the gauge fields were generated in the quenched aphort- and long-distance contributions are evaluated.
proximation. The quenched approximation omits the back One approach, sometimes advertised as “model-
reaction of light quark loops on the gluons, and compensateisdependent,” is to estimate the with the nonrelativistic
the omission with a shift in the bare couplings. Two obviousquark model[4,10]. The more recent estimafd0] takes

F. Quenching
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previous results, within errors, and the quoted errors are of
comparable size. Our result includes an estimate of three of
the four 1mg contributions. All three are subject to a QED
P — quark model correction of +0.007 [47]. An important feature of our
method is that, even in the quenched approximation, we are
able to separate long- and short-distance contributions self-
consistently. Indeed, we have repeated the calculation with
e sum rule two different schemes for the heavy quark masses, and the
results are the same. Furthermore, it is clear that moving
terms of order,uzlmé between the long- and short-distance
parts will cancel out in our method, as long as it is done
consistently. Finally, with future unquenched calculations in
lattice QCD, our method allows for a systematic reduction in

A I the theoretical error o .
085 090 095 ey

—— lattice QCD

hA (D VIIl. CONCLUSIONS
i

We have developed a method to calculate the zero recoil

FIG. 6. Comparison of determinations bf (1)=%s.0+(1)  form factor of B—D*|v decay. We introduce three double
with nonperturbative input from the nonrelativistic quark model ratios in which the bulk of statistical and systematic errors
[10,6], a zero-recoil sum rulg46], and quenched lattice QCD. cancels, thus enabling a precise calculation/f , o (1).

By matching lattice gauge theory to HQET, we are able to
separate long-distance from short-distance contributions.
Then the coefficients in the iy, expansion are obtained by
fitting the numerical data. In this way we obtain theading
1/mé corrections and three of the fourng corrections. A
similar approach has already been takenBes Dl v [14].

Our result in the quenched approximatiafg_,p«(1)
=0.9135.033" 5-930, is consistent with results based on other
o o ways of treating nonperturbative QCD. By using the
and the omission of ik te”_“s- Uncerta|nt_|es lfr_or_‘as and . qugnched approgmatioﬁ we are able?o gain gontrol gver all
the quark masses are not included. A fair criticism of thiSyyer ncertainties. Note, however, that the second error bar

prro‘?h Is th?t ri]t dloes not gayhclosdg attention to.schemﬁcorporates(among othersour estimate of the uncertainty
ependence of the long- and short-distance contrioutiong, , " enching. Furthermore, despite the shortcomings of

The stan.dgrc{,u-independer)t.resuIF for ya Correspondito the quenched approximation, it is not less rigorous than com-
renormalizing the operator insertions of HQET in thiS peting determinations afs_, o+ (1), which use either non-

scheme. The quark model estimates, on the other hand, afgaivistic quark models or a subjective estimate of the “ex-
presumably in some other scheme, so there is a possibility tgation contribution.” With recent measurements of

over- or undercount the contribution at the interface of Iong|\/cb|]_—B o+ (1) from CLEO[48], the CERNe" e~ collider

and short distances. . LEP experiment$49], and Belle[50], our result implies
Another approach is based on a zero-recoil sum rule

S1me to be —0.055+0.025 by covering a range of “all rea-
sonable choices.” Combining it with the two-loop calcula-
tion [6] of 7,5, one obtains

Fe_p+(1)=0.907+0.007+=0.025-0.017, (7.1
where the quoted uncertainti€s0,6] are from perturbation

theory, errors in the quark model estimate of th@ét,terms,
3

[11,3]. These authors prefer to introduce a concrete separa- 45.9+ 2_4j%-§ [48],

tion scaleu. In this schemey, and thels depend explicitly 1 at15

on u. The u-dependent two-loop part o, is known[45]. A 10°|Vep| =1 38.721.8773 [49], (8.9

recent estimate of the zero-recoil form factof 46 39.3+2.5' 15 [50],
Fg—p+(1)=0.89+0.015-0.025+0.015+ 0.025, where the second, asymmetric error comes from adding all

(7.2) our uncertainties in quadrature. Here we have included the
o QED correction taFg_p«(1) of +0.007.

where the quoted uncertainties are from the unknown value gjnce several groups have started partially unquenched
of the kinetic energyu?(u), higher excitations withD* |attice calculations of spectrum and decay constants, we con-
quantum numbers and enerdy<mp«+u, perturbation  clude with some remarks on the prospectsr.ps(1). In
theory, and the omission of b, terms. We note that both this context, “partially quenched” means that the valence
,ufT and the excitation contribution should, in this schemeand sea quarks have different, and separately varied, masses.
cancel the ;@/mQ)2 part of y5(u). Since there is no model- The analysis presented here shows that the double ratios
independent method to calculate the excitation contributiorbring the statistical precision under control, and that fitting
(except unquenched lattice QEDit is not clear how to the heavy-quark mass dependence is straightforward. Two of
implement this cancellation. our larger systematic uncertainties will improve simply by

As shown in Fig. 6, our result Eql.14) agrees with the including dynamical quarks. First, the self-consistent deter-
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mination of the heavy-quark masses andvgfwill improve. With the improvements from unquenched simulations, a
At present, we believe the quenching biasdp, which af- more detailed study of lattice spacing dependence, and
fects the short-distance contribution, to be the largest sourdaigher order matching calculations, it is conceivable that the
of uncertainty from the quenched approximation. Seconderror onFg_p«(1) could be brought to or below 1%. At this
partially quenched numerical data are enough to extract thkevel, it would become crucial to compute, possibly by simi-
physical result, because one can use the recently derived riar methods, the slope and curvature&f_,p«(w) nearw
sult in partially quenched chiral perturbation the@8yd)]. =1. Then the determination ¢¥.,| would not only become
The other two main sources of systematic uncertainty areery precise, but also truly model-independent.
the lattice spacing dependence and the matching of lattice
gauge theory to HQET and QCD. The former is mostly a
matter of computing. Indeed, our present estimate may be
conservative, as it is driven by the coarsest lattice. To de- We thank Aida El-Khadra for helpful discussions. High-
crease the matching uncertainties, one must calculate thﬁgrformance computing was carried out on ACPMAPS; we
normalization factor to two loops and calculate thené/ thank past and present members of Fermilab’s Computing
corrections to one loop. The latter is not quite as hard as iDivision for designing, building, operating, and maintaining
might seem. Heavy-quark symmetry protects the needed mahis supercomputer, thus making this work possible. Fermi-
trix elements, so one only needs the one-loop calculation abb is operated by Universities Research Association Inc.,
the chromomagnetic term in the effective Lagrangi@n under contract with the U.S. Department of Energy. S.H. is
1/mg term) and the Ihg and mixed Ihc.m, terms in the supported in part by the Grants-in-Aid of the Japanese Min-
currents.(An alternative to perturbation theory would be to istry of Education under Contract No. 11740162. A.S.K.
develop a fully nonperturbative matching scheme for heavywould like to thank the Aspen Center for Physics for hospi-
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