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Lattice calculation of the zero-recoil form factor of B̄\D* l n̄: Toward a model independent
determination of zVcbz
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We develop a new method in lattice QCD to calculate the form factorFB→D* (1) at zero recoil. This is the

main theoretical ingredient needed to determineuVcbu from the exclusive decayB̄→D* l n̄. We introduce three
ratios, in which most of statistical and systematic error cancels, making a precise calculation possible. We fit
the heavy-quark mass dependence directly, and extract the 1/mQ

2 and three of the four 1/mQ
3 corrections in the

heavy-quark expansion. In this paper we show how the method works in the quenched approximation, obtain-
ing FB→D* (1)50.91320.017

10.02460.01620.01420.01620.014
10.00310.00010.006where the uncertainties come, respectively, from statistics

and fitting, matching lattice gauge theory to QCD, lattice spacing dependence, light quark mass effects, and the
quenched approximation. We also discuss how to reduce these uncertainties and, thus, to obtain a model-
independent determination ofuVcbu.

DOI: 10.1103/PhysRevD.66.014503 PACS number~s!: 12.38.Gc, 12.15.Hh, 13.20.He
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I. INTRODUCTION

In flavor physics the Cabibbo-Kobayashi-Maskaw
~CKM! matrix elementVcb plays an important role. Much o
the phenomenology ofCP violation centers around the un
tarity triangle, and a precise value ofuVcbu is needed to lo-
cate the triangle’s apex in the complex plane. As a fun
mental parameter of the standard model,Vcb sometimes
appears in unexpected places. For example, the stan
model prediction of theK02K̄0 mixing parametereK is very
sensitive touVcbu @1#.

The determination ofuVcbu is made through inclusive an
exclusive semileptonicB decays, but at present both metho
are limited by theoretical uncertainties. The inclusive meth
requires a reliable calculation of the total semileptonic de
rate of theB meson, which can be done using the hea
quark expansion@2,3#. Ultimately this method is limited by
the breakdown of local quark-hadron duality, which is dif
cult to estimate. The exclusive method, on the other ha
requires a theoretical calculation of the form factorFB→D*
of B̄→D* l n̄ decay. In this paper we take a step towar
reducing the uncertainty in the exclusive method, by dev
ing a precise method to compute the form factor at z
recoil in lattice QCD.

The differential rate for the semileptonic decayB̄
→D* l n̄ l is given by

dG

dw
5

GF
2

4p3 mD*
3

~mB2mD* !2Aw221G~w!uVcbu2

3uFB→D* ~w!u2, ~1.1!

wherew5v8•v is the velocity transfer from the initial stat
~with velocity v! to the final state~with velocity v8!. The
velocity transfer is related to the momentumq transferred to
the leptons byq25mB

222wmBmD* 1mD*
2 , and it lies in the

range 1<w,(mB
21mD*

2 )/2mBmD* . The function
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G~w!5
w11

12 S 5w111
8w~w21!mBmD*

~mB2mD* !2 D ~1.2!

has a kinematic origin, withG(1)51. Thus, given the form
factor FB→D* (w), one can use the measured decay rate
determineuVcbu.

One makes use of the zero-recoil pointw51, even though
the phase-space factorAw221 suppresses the event rate, b
cause then theoretical uncertainties are under better con
For w.1, FB→D* (w) is a linear combination of severa
form factors ofB̄→D* transitions mediated by the vecto
and axial vector currents. At zero recoil, however,

FB→D* ~1!5hA1
~1!, ~1.3!

wherehA1
is a form factor of the axial vector currentAm:

namely,

^D* ~v !uAmuB̄~v !&5 iA2mB2mD* ē8mhA1
~1!. ~1.4!

More importantly, heavy-quark symmetry plays an essen
role in constraininghA1

(1), leading to the simple heavy
quark expansion@4,5#

hA1
~1!5hAF12

l V

~2mc!
2 1

2l A

2mc2mb
2

l P

~2mb!2G , ~1.5!

including all terms of order 1/mQ
2 . In Eq.~1.5!, hA is a short-

distance radiative correction, which is known at the two-lo
level @6,7#, and thels are long-distance matrix elements
the heavy-quark effective theory~HQET!.1 Heavy-quark
symmetry normalizes the leading term inside the bracke

1In the HQET literature, thels are often called ‘‘hadronic param
eters,’’ because they are viewed as incalculable. In a QCD con
however, the are not free parameters, but calculable matrix
ments.
©2002 The American Physical Society03-1
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unity @8# and, moreover, forbids terms of order 1/mQ @9#. The
1/mQ

2 corrections are formally small—(L̄/2mc)
2;4%—but

one would like to reach better precision onuVcbu, so these
terms cannot be neglected.

There have been mainly two different methods used
estimate the 1/mQ

2 terms in Eq. ~1.5!, but neither has
achieved a model independent calculation. One involves
ing a quark model@4,10# to estimate thels. The other em-
ploys the zero-recoil sum rule@11#. Although based on a
rigorous upper bound@12#, to make a prediction of
FB→D* (1) this approach requires an assumption on the
fects of higher excited states in the sum rule. Thus—jus
with quark models—it is difficult to estimate, let alone r
duce, the uncertainty associated with the estimate.

In this paper we take a step towards reducing the theo
ical uncertainty by using lattice QCD to calculatehA1

(1)

5FB→D* (1). Lattice QCD is, in principle, model indepen
dent, although here we work in the quenched approximat
The quenched approximation is not less rigorous than
methods used in Refs.@10,11#. From our point of view, how-
ever, the main advantage of the quenched approximatio
that it allows us to learn how to control and estimate all ot
lattice uncertainties. With a proven technique, it is concep
ally straightforward, if computationally demanding, to car
out a calculation in full QCD.

Until now three obstacles prevented even quenched la
calculations ofhA1

(1) to the needed precision. First, a dire
Monte Carlo calculation of the matrix element in Eq.~1.4!
suffers from a statistical error that is too large to be intere
ing. Second, the normalization of the lattice axial vector c
rent was uncertain, being limited by a poorly convergi
perturbation series. Finally, early works@13# usedad hoc
methods for heavy quarks on the lattice, which entaile
poorly controlled extrapolation in the heavy quark mass.
have devised methods to circumvent all three obstacles.
first two are handled with certain double ratios of correlat
functions, in which the bulk of statistical and systematic u
certainties cancel@14#. The third obstacle—the problem o
heavy-quark lattice artifacts—is overcome by using a s
tematic method for treating heavy quarks on the latti
based on Wilson fermions@15#. This obstacle could also b
overcome using lattice nonrelativistic QCD~NRQCD! @16#,
as in the work of Heinet al. @17#.

In our work @14# on the form factorh1(1) in the decay
B̄→Dl n̄ at zero recoil, a central role was played by t
double ratio of matrix elements

R15
^Duc̄g4buB̄&^B̄ub̄g4cuD&

^Duc̄g4cuD&^B̄ub̄g4buB̄&
5uh1~1!u2, ~1.6!

where

^D~v !uVmuB̄~v !&5 iA2mB2mDvmh1~1!. ~1.7!

In Ref. @14# we studied the heavy-quark mass dependenc
h1(1), using a fit to obtain the 1/mQ

2 and 1/mQ
3 corrections.
01450
o

s-

f-
s

t-

n.
e

is
r
-

ce

t-
-

a
e
he

-

-
,

of

In this work we employ this double ratio and two simila
ones. The first additional double ratio is

R15
^D* uc̄g4buB̄* &^B̄* ub̄g4cuD* &

^D* uc̄g4cuD* &^B̄* ub̄g4buB̄* &
5uh1~1!u2, ~1.8!

where the pseudoscalar mesonsB̄ and D, and their form
factor h1(1), arereplaced with the vector mesonsB̄* and
D* , and their form factorh1(1):

^D* ~v !uVmuB̄* ~v !&5 iA2mB* 2mD* ē8•evmh1~1!.
~1.9!

The second additional double ratio is

RA1
5

^D* uc̄g jg5buB̄&^B̄* ub̄g jg5cuD&

^D* uc̄g jg5cuD&^B̄* ub̄g jg5buB̄&

5
hA1

B̄→D* ~1!hA1

D→B̄* ~1!

hA1

D→D* ~1!hA1

B̄→B̄* ~1!
[uȟA1

~1!u2, ~1.10!

where the axial vector current mediates pseudoscala
vector transitions, leading to a double ratio of the form fac
hA1

. As stressed in Ref.@14#, the double ratios overcome tw
of the obstacles in the lattice calculation, because numer
and denominator are so similar. Statistical fluctuations in
numerator and denominator are very highly correlated
largely cancel in the ratio. Also, most of the normalizati
uncertainty in the lattice currents cancels, leaving only a
sidual normalization factor that can be computed reliably
perturbation theory@18#. Indeed, all uncertainties scale a
R21, rather than asR.

Note that the double ratioRA1
does not yield the desired

form factorhA1

B̄→D* , but instead the combinationȟA1
, which

is itself a double ratio of form factors. One can, howev
extract hA1

(1) from the three double ratiosR1 , R1 , and

RA1
, at least to the order in the heavy-quark expansion gi

in Eq. ~1.5!. This possibility follows from the heavy quar
expansions forh1(1) andh1(1) @4,5#,

h1~1!5hVF12 l PS 1

2mc
2

1

2mb
D 2G , ~1.11!

h1~1!5hVF12 l VS 1

2mc
2

1

2mb
D 2G , ~1.12!

and comparing to Eq.~1.5!. In h1(1) andh1(1) the absence
of terms of order 1/mQ @9# is easily understood, becaus
charge conservation requiresh1(1)5h1(1)51 when mc
5mb , and because the matrix elements defining them
symmetric under the interchangemc↔mb . Similarly, the
heavy-quark expansion of the form factor ratioȟA1

(1), ob-

tained fromRA1
, is
3-2
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ȟA1
~1!5ȟAF12 l AS 1

2mc
2

1

2mb
D 2G , ~1.13!

which follows immediately from Eq.~1.5!, defining ȟA
2

5hAcbhAbc /hAcchAbb. Hence, by varying the heavy quar
masses in the lattice calculation of the double ratiosR1 ,
R1 , andRA1

, one can extractl P , l V , and l A , respectively.

Then,hA1
(1)5FB→D* (1) can be reconstituted through E

~1.5!.
A key to this method is that heavy-quark symmetry

quires the quantitiesl P and l V to appear in Eq.~1.5!, as well
as in Eqs.~1.11! and ~1.12! @4,5#. A simple argument ex-
plains why. For each form factor there are three poss
terms at order 1/mQ

2 21/mc
2, 1/mb

2, and 1/mcmb—and each
multiplies an HQET matrix element. Forh1(1) andh1(1)
the particular form of the expansions is restricted by
b↔c interchange symmetry, so only one HQET matrix e
ment can appear in each case:l P for h1(1) andl V for h1(1).
Interchange symmetry does not apply to theB̄→D* transi-
tion, however, so three HQET matrix elements are neede
the expansion ofhA1

(1), Eq. ~1.5!. Two of them, however,

coincide withl P and l V . If one flips the spin of the charme
quark in theB̄→D transition in Eq.~1.7!, one obtains the
B̄→D* transition in Eq.~1.4!, and in the limit of infinite
charmed quark mass the matrix elements are identical
heavy-quark spin symmetry. Consequently, the 1/mb

2 term in
Eq. ~1.5! must be the same as that in Eq.~1.11!, namely
l P /(2mb)2. The same logic applied to theb quark’s spin,
starting from theB̄* →D* transition in Eq.~1.9!, implies
that the 1/mc

2 term in Eqs.~1.5! and~1.12! must be the same
namelyl V /(2mc)

2.

At order 1/mQ
3 there are, in general, four terms for ea

form factor. In Sec. V we show how the same kind of re
soning can be used to extract three of the four terms from
1/mQ

3 behavior of the three double ratios. Including the
corrections not only reduces the systematic error of
heavy quark expansion, but also reduces our statistical e
because fitted values for the quadratic and cubic terms
correlated.

In the remainder of this paper we describe the details
our lattice calculation ofFB→D* (1)5hA1

(1), as sketched
above. Discretization effects are studied by repeating
analysis at three different lattice spacings. The depende
on the light quark mass is expected to be small, which we
able to verify. After a thorough investigation of systema
uncertainties, we obtain

FB→D* ~1!50.91320.017
10.02460.01620.01420.01620.014

10.00310.00010.006,
~1.14!

where the uncertainties come, respectively, from statis
and fitting, matching lattice gauge theory and HQET
QCD, lattice spacing dependence, light quark mass effe
and the quenched approximation. A preliminary report of t
calculation based on our coarsest lattice appeared in
@19#, reportingFB→D* (1)50.93560.02220.024

10.023. The change
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comes mostly from the results on two finer lattices, par
from some secondary changes in the analysis, and pa
from the inclusion of some contributions of order 1/mQ

3 .
Clearly, these central values are indistinguishable within
error bars.

The paper is organized as follows. In Sec. II we discu
how to combine heavy-quark theory and lattice gauge the
to calculate the needed matrix elements; in particular,
review how we are able to extract the 1/mQ

2 corrections@20#.
Section II is fairly general and much of it also applies
lattice NRQCD. Specific details of our numerical work a
given in Sec. III, including input parameters and the ba
outputs. The ‘‘Fermilab’’ method for heavy quarks@15# re-
quires matching the short-distance behavior of lattice ga
theory to QCD, which is discussed in Sec. IV. Section
shows a key feature of our analysis, namely the direct fitt
of the heavy-quark mass dependence to obtain the po
corrections in Eq.~1.5!. A detailed discussion of the system
atic uncertainties is in Sec. VI. Our result, Eq.~1.14!, is
compared to other methods in Sec. VII. Section VIII conta
some concluding remarks.

II. CONTINUUM AND LATTICE MATRIX ELEMENTS

In this section we discuss how to obtain continuum-QC
heavy-quark observables from lattice gauge theory. Discr
zation effects of the heavy quarks are a special concern
they are discussed in detail in this section. For the light sp
tator quark we use well-known methods, and we prov
details in Sec. III.

Discretization effects of the heavy quarks can be c
trolled by matching the lattice theory to HQET@20#. This is
possible whether one discretizes the NRQCD effective
grangian@16#, or one employs the nonrelativistic interpret
tion of Wilson fermions@15#. In either case, on-shell lattic
matrix elements can be described by a version of~con-
tinuum! HQET, with effective Lagrangian~in the rest frame!

LHQET5m1h̄vhv1
h̄vD2hv

2m2
1

h̄vi S•Bhv

2mB
1¯ , ~2.1!

where hv is the heavy-quark field of HQET, andB is the
chromomagnetic field. The ‘‘masses’’m1 , m2 , and mB are
short-distance coefficients; they depend on the bare c
plings of the lattice action, including the gauge couplin
Matrix elements are completely independent ofm1 @20#, so
the important coefficients arem2 and mB . The lattice
NRQCD action has bare parameters that correspond dire
to m2 and mB . With Wilson fermions one must use th
Sheikholeslami-Wohlert~SW! action@21#, and adjustm0 and
cSW to tunem2 andmB . In practice, we tunem2 nonpertur-
batively, using the heavy-light and quarkonium spectra, a
mB with the estimate of tadpole-improved, tree-level pert
bation theory@22#. There are also terms of order 1/mQ

2 in the
effective LagrangianLHQET, but they do not influence the
double ratios, as discussed further below.

In this paper we use lattice currents that are constructe
in Ref. @15#. ~An analogous set of currents can be construc
3-3
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for lattice NRQCD@24#.! We distinguish the lattice current
Vm and Am from their continuum counterpartsVm and Am.
We define

Vm5AZVccZVbbC̄cig
mCb , ~2.2!

Am5AZVccZVbbC̄cig
mg5Cb , ~2.3!

where the rotated field@15#

Cq5@11ad1g•Dlat#cq , ~2.4!

andcq is the lattice quark field (q5c,b) in the SW action.
Here Dlat is the symmetric, nearest-neighbor, covariant d
ference operator. In Eqs.~2.2! and ~2.3! the factorsZVqq, q
5c,b, normalize the flavor-conserving vector currents. B
cause for massive quarks onlyZV can be computed nonpe
turbatively, we choose to putZV into the definition of the
axial currentAm. In the work reported in this paper, we d
not need to compute the factorAZVccZVbb, because it cancel
in the double ratios.

Matching the currentVm to HQET requires further short
distance coefficients:

Vm8CVi

latvmc̄vbv2
BVc

lat c̄vD”Q 'ig'
mbv

2m3c

2
BVb

lat c̄vig'
mD”'bv

2m3b
1¯ , ~2.5!

Am8CA'

lat c̄vig'
mg5bv1

BAc
latvmc̄vD”Q 'g5bv

2m3c

2
BAb

lat vgmc̄vg5D”'bv

2m3b
1¯ , ~2.6!

where the symbol8 implies equality of matrix elements
andbv andcv are HQET fields for the bottom and charme
quarks. At the tree level the short-distance coefficientsCVi

lat ,

CA'

lat , and BhJ
lat all equal one. The free parameterd1 in Eq.

~2.4! can be adjusted to tune 1/m3Q to 1/mQ . In the present
calculations, we adjustd1 with the estimate of tadpole
improved, tree-level perturbation theory, as explained in R
@15#. Further dimension-four operators, whose coefficie
vanish at the tree level, are omitted from the right-hand si
of Eqs.~2.5! and ~2.6!; they are listed in Ref.@18#.

The description in Eqs.~2.5! and ~2.6! is in complete
analogy with that for the continuum currents; namely,

Vm8CVi
vmc̄vbv2

BVcc̄vD”Q 'ig'
mbv

2mc

2
BVbc̄vig'

mD”'bv

2mb
1¯ , ~2.7!
01450
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Am8CA'
c̄vig'

mg5bv1
BAcv

mc̄vD”Q 'g5bv

2mc

2
BAbv

mc̄vg5D”'bv

2mb
1¯ . ~2.8!

The radiative corrections to the short-distance coefficient
Eqs.~2.5! and~2.6! differ from those in Eqs.~2.7! and~2.8!,
because the lattice modifies the physics at short distan
On the other hand, the HQET operators are the sa
throughout.

There are also terms of order 1/mQ
2 in the effective cur-

rents on the right-hand sides of Eqs.~2.5!–~2.8!, although for
brevity they are not written out. The most important ope
tors to be added to Eqs.~2.5! and ~2.6! are

V~1,1!
m 5

@11O~g2!# c̄vD”Q 'vmD”'bv

2m3c2m3b
, ~2.9!

A~1,1!
m 5

@11O~g2!# c̄vD”Q 'ig'
mg5D”'bv

2m3c2m3b
.

~2.10!

The corresponding terms to be added to Eqs.~2.7! and~2.8!
are the same, except that 2mc2mb appears in the denomina
tors. Thus, our lattice currents enjoy the correct normali
tion for the 1/mcmb term, as long asd1 is adjusted so tha
m3Q5mQ , as above. The HQET description also has ter
of order 1/mc

2 and 1/mb
2. They contribute to the individua

matrix elementŝD (* )uJmuB(* )&, but their contributions drop
out of the double ratios, see below.

Since we aim for the 1/mQ
2 corrections to the double ratio

we must, however, discuss in more detail how these con
butions are incorporated, when the lattice action and curre
are constructed and normalized along the lines given ab
The HQET description of matrix elements reveals seve
sources of such contributions@4,5,20#: ~1! double insertions
of the 1/mQ terms in the effective LagrangianLHQET; ~2!
single insertions of the 1/mQ terms in the effective Lagrang
ian into matrix elements of the 1/mQ terms in the effective
HQET currents;~3! single insertions of genuine 1/mQ

2 terms
in the effective Lagrangian;~4! matrix elements of genuine
1/mQ

2 terms in the effective HQET currents.
The first set of contributions is correctly normalized at t

same level of accuracy as the 1/mQ terms of the action. The
second set makes no contribution to zero recoil matrix e
ments whatsoever@20#. The third set also makes no contr
bution at zero recoil, because the leading terms in Eqs.~2.5!
and ~2.6! are Noether currents of the heavy-quark symm
tries and, as in the proof of Luke’s theorem, first correctio
to Noether currents vanish@25,20#.

One is left with the last set, whichdoescontribute to the
matrix elements^D (* )uJmuB(* )&. The HQET matrix ele-
ments of all dimension-five currents can be reduced tol1
and l2 , which appear in the heavy-quark expansion of t
mass@4#. In the double ratios, however, the following ca
cellation takes place@20#:
3-4
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@12l~Xb /mb
221/mcmb1Xc /mc

2!#2

@12l~2Xc21!/mc
2#@12l~2Xb21!/mb

2#

512lS 1

mc
2

1

mb
D 2

, ~2.11!

wherel is proportional tol1 or l2 . We write 1/mcmb for
the correctly normalized contributions of Eqs.~2.9! and
~2.10!, andXQ /mQ

2 for the other, incorrectly normalized op
erators. The incorrectly normalized contributions cancel
the double ratios. In practice, the ‘‘correctly normalize
terms are normalized only at the tree level, leaving us w
uncertainties of orderas(L̄/mQ)2. Along with their small
statistical and normalization uncertainties, the absence
maladjusted 1/m2 contributions is the double ratios’ mos
important trait.

Once one is content to neglect corrections of or
as(L̄/mQ)2, it is easy to obtain the continuum normalizatio
of the lattice currents. By comparing the heavy-quark exp
sions forVm andAm to those forVm andAm, one sees that

Vcb
m 8rVcbVcb

m , ~2.12!

Acb
m 8rAcbAcb

m , ~2.13!

apart from discretization effects discussed above. Ther fac-
tors are

rVcb5CVi
/CVi

lat , ~2.14!

rAcb5CA'
/CA'

lat , ~2.15!

and they are known at the one-loop level@18#.
The matrix elements are obtained from three-point co

lation functions. For the zero-recoilB→D, B* →D* and
B→D* transitions the three-point function are, respective

CB→D~ t f ,ts ,t i !5(
x,y

^0uOD~x,t f !C̄cg4Cb~y,ts!

3OB
†~0,t i !u0&, ~2.16!

CB* →D* ~ t f ,ts ,t i !5(
x,y

^0uOD* ~x,t f !C̄cg4Cb~y,ts!

3OB*
†

~0,t i !u0&, ~2.17!

CB→D* ~ t f ,ts ,t i !5(
x,y

^0uOD* ~x,t f !C̄cg jg5Cb~y,ts!

3OB
†~0,t i !u0&, ~2.18!

where OB(* ) and OD(* ) are interpolating operators for th
B(* ) and D (* ) mesons. InCB* →D* the spins of the vecto
mesons are parallel, and inCB→D* the spin of theD* lies in
the j direction. These correlation functions are calculated
a Monte Carlo method, as usual in lattice QCD. In the lim
of large time separations, the correlation functions becom
01450
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t

CB→D~ t f ,ts ,t i !5ZD
1/2ZB

1/2^DuC̄cg4CbuB&

A2mDA2mB

3e2mB~ ts2t i !e2mD~ t f2ts!1¯ ,

~2.19!

CB* →D* ~ t f ,ts ,t i !5ZD*
1/2ZB*

1/2 ^D* uC̄cg4CbuB* &

A2mD*A2mB*

3e2mB* ~ ts2t i !e2mD* ~ t f2ts!

1¯ , ~2.20!

CB→D* ~ t f ,ts ,t i !5ZD*
1/2ZB

1/2^D* uC̄cg jg5CbuB&

A2mD*A2mB

3e2mB~ ts2t i !e2mD* ~ t f2ts!

1¯ , ~2.21!

wheremB(* ) andmD(* ) are the masses of theB(* ) andD (* )

mesons. The normalization factorsAZH(* )/2mH(* ) are con-
ventional; they cancel when forming the double ratios, so
do not need them. The correlation functions defined in E
~2.16!–~2.18! are the only objects needed from the Mon
Carlo. In practice we holdt i50 andt f5T/2 fixed and vary
ts over the range for which the lowest-lying states domin
the correlation functions, as is needed for Eqs.~2.19!–~2.21!
to hold. ~T5NTa is the temporal length of the lattice.!

From the correlation functions we form the followin
double ratios:

R1~ t !5
CB→D~0,t,T/2!CD→B~0,t,T/2!

CD→D~0,t,T/2!CB→B~0,t,T/2!
, ~2.22!

R1~ t !5
CB* →D* ~0,t,T/2!CD* →B* ~0,t,T/2!

CD* →D* ~0,t,T/2!CB* →B* ~0,t,T/2!
,

~2.23!

RA1
~ t !5

CB→D* ~0,t,T/2!CD→B* ~0,t,T/2!

CD→D* ~0,t,T/2!CB→B* ~0,t,T/2!
.

~2.24!

Apart from renormalization factors, these ratios correspo
to the continuum ratiosR1 , R1 , andRA1

. In the window of

time separationst and T/22t for which the lowest-lying
states dominate, all convention-dependent normalization
tors cancel in the double ratios, and the ratios reduce to

rVcbAR15AR15h1~1!, ~2.25!

rVcbAR15AR15h1~1!, ~2.26!

řAcbARA1
5ARA1

5ȟA1
~1!, ~2.27!

where řA
25rAcbrAbc /rAccrAbb. In particular, note that the

axial current double ratio does not yieldhA1
(1) directly, but
3-5
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TABLE I. Input parameters to the numerical lattice calculations, together with some elementary output parameters. Error ba
outputs refer to the last digit~s!.

Inputs

b56/g0
2 6.1 5.9 5.7

Volume,NS
33NT 243348 163332 123324

Configurations 200 350 300
cSW 1.46 1.50 1.57

kh , m0 ~GeV! 0.080, 7.90 0.077, 6.03 0.062, 6.16
0.090, 5.82 0.088, 4.36 0.089, 2.87
0.097, 4.62 0.099, 3.06 0.100, 2.03
0.100, 4.16 0.110, 2.02 0.110, 1.42
0.115, 2.21 0.121, 1.16 0.119, 0.96
0.122, 1.46 0.126, 0.83 0.125, 0.69
0.125, 1.16

kq , m0 ~GeV! 0.1373, 0.092 0.1385, 0.088 0.1405, 0.093
0.1379, 0.039 0.1388, 0.073

0.1391, 0.057
t range @9,15# @6,10# @4,8#

Elementary outputs

kcrit 0.1384722
14 0.1401721

13 0.1432722
15

a1P-1S
21 ~GeV! 2.64213

117 1.8126
17 1.1623

13

af p
21 ~GeV! 2.40212

110 1.4726
16 0.8922

12

u0 0.8816 0.8734 0.8608
aV(3.40/a) 0.14533 0.15938 0.18265
-
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insteadȟA1
(1), defined in Eq.~1.10!. Once we have com

puted the left-hand sides of Eqs.~2.25!–~2.27! for several
combinations of the heavy quark masses, we can fit the m
dependence to the form predicted by the heavy-quark ex
sions, Eqs.~1.11!–~1.13!.

To summarize this section, let us review the steps nee
to obtain the physical form factorFB→D* (1): ~1! compute
the three-point correlation functions and thence the ra
R1,R1,RA1

; ~2! multiply AR1 and AR1 with rV /hV , and

ARA1
with řA /ȟA , to obtain h1(1)/hV , h1(1)/hV , and

ȟA1
(1)/ȟA ; ~3! fit 12h/h @where h/h is h1(1)/hV ,

h1(1)/hV , or ȟA1
(1)/ȟA# to the heavy-quark mass depe

dence expected from Eqs.~1.11!–~1.13!; ~4! use the resulting
l V , l A , and l P ~and associated 1/mQ

3 terms! to reconstitute
hA1

(1)5FB→D* (1) via ~the 1/mQ
3 version of! Eq. ~1.5!.

As discussed above, with the lattice action, currents,
normalization conditions chosen above, we obtainhA1

(1)

with uncertainties of orderas(L̄/2mc)
2 and L̄3/(2mQ)3

from matching, although the fitting procedure also yields
timates of three of the four 1/mQ

3 terms inhA1
(1), asdis-

cussed in Sec. V.

III. LATTICE CALCULATION

This work uses three ensembles of lattice gauge field c
figurations, which have been used in previous work
heavy-light decay constants@26,27#, B→p ln and D→p ln
01450
ss
n-

ed

s

d

-

n-
n

semileptonic form factors@28#, light-quark masses@29#, and
quarkonia@30#. The quark propagators are the same as
Ref. @27#, but we now use 200 instead of 100 configuratio
on the finest lattice~with b56.1!. The input parameters fo
these fields are in Table I, together with some element
output parameters.

The quark propagators are computed from t
Sheikholeslami-Wohlert~SW! action @21#, which includes a
dimension-five interaction with couplingcSW, sometimes
called the ‘‘clover’’ coupling. For the light spectator quar
we use customary normalization conditions for massl
quarks with the SW action, socSW is adjusted to reduce th
leading lattice-spacing effect of Wilson fermions. In practic
we adjust cSW to the value u0

23 suggested by tadpole
improved, tree-level perturbation theory@22#, and the so-
called mean linku0 is calculated from the plaquette. Th
leading light-quark cutoff effect is then of orderasLa, mul-
tiplied by a numerical coefficient that is known to be sma
For the heavy quarks we adjustcSW to the same value, but
as explained in Sec. II, one should think of this adjustmen
tuning a coefficient in the HQET effective Lagrangian.

The hopping parameterk is related to the bare quar
mass. For the heavy quarks,kh is varied over a wide range
encompassing charm and bottom. For the light spect
quark, the first row ofkq in Table I corresponds to the
strange quark. To test the dependence of the form factor
the light quark mass, we repeat the analysis for a few ligh
spectator quarks. Table I also lists the tadpole-improved b
quark mass in GeV,
3-6
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am05
1

u0
S 1

2k
2

1

2kcrit
D , ~3.1!

where the critical quark hopping parameterkcrit makes the
pion massless. Although this mass is just a bare mas
shows that the heavy quarks are heavy, and the light qu
light.

The lattice spacinga plays a minor role in our analysis
because both the lattice perturbation theory and the fittin
the heavy-quark mass dependence can be carried out in
tice units. The physical scale enters only in adjusting
heavy-quark hopping parameters to the physical mass s
tra, and in studying the dependence ofhA1

(1) on a. Table I

contains two estimates of the lattice spacing, from the sp
averaged 1P-1S splitting of charmonium,Dm1P-1S , and
from the pion decay constantf p .

The renormalized strong couplingaV(3.40/a) at scale
3.40/a is determined as in Ref.@22#. In Sec. IV the coupling
is run toaV(q* ), whereq* is the optimal scale according t
the Brodsky-Lepage-Mackenzie~BLM ! prescription@23,22#.
Then aV(q* ) is used to calculate the short-distance coe
cients rV /hV and řA /ȟA , which are introduced in Eqs
~2.25!–~2.27!, as well as the coefficienthA .

The right-hand side of Eq.~2.19! is the first term in a
series, with additional terms for each radial excitation@and
similarly for Eqs.~2.20! and ~2.21!#. We reduce contamina
tion from excited states in two ways. First, we keep the th
points of the three-point function well separated in~Euclid-
ean! time. The initial-state meson creation operator is alwa
at t i50 and the final-state meson annihilation operator at f

5NT/2. We then vary the timets of the current, to see whe
the lowest-lying states dominate. The second way to iso
the lowest-lying states is to choose creation operatorsOB(* )

†

and annihilation operatorsOD(* ) to provide a large overlap
with the desired state. This is done by smearing out the qu
and antiquark with 1S and 2S Coulomb-gauge wave func
tions, as in Ref.@31#.

Figure 1 shows the isolation of the ground state in
ratiosR1(t), R1(t), andRA1

(t). In each of the three mode

we find a long plateau. We fit to a constant and obtain
precision at the percent level. For each ensemble, we ch
the same fit range for all mass combinations listed in Tabl
In Fig. 1 the resulting central values and error envelopes
given by the solid and dotted lines, respectively. Different
ranges lead to slightly different, though consistent, resu
this variation is folded in with the statistical error. Statistic
errors, including the full correlation matrix in all fits, ar
determined from 1000 bootstrap samples for each ensem
The bootstrap procedure is repeated with the same sequ
for all quark mass combinations, and in this way the fu
correlated statistical errors are propagated through all st
of the analysis.

Figure 1 also demonstrates a clear distinction between
B̄* →D* and the other two modes. Consequently, one
already see thatl V is definitely greater thanl P and l A , as
01450
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expected from Refs.@10–12#. This is an important observa
tion, because the largest 1/mQ

2 correction to hA1
(1) is

l V /(2mc)
2.

IV. PERTURBATION THEORY

In this paper perturbation theory is needed to calculate
short-distance coefficientsrJ (J5V,A) defined in Eqs.

FIG. 1. Double ratiosRA1
(t) ~triangles!, R1(t) ~diamonds!, and

R1(t) ~squares! at ~a! b55.7, ~b! b55.9, and ~c! b56.1. The
heavy quark hopping parameters are~a! (kb ,kc)5(0.062,0.100),
~b! (kb ,kc)5(0.088,0.121), and~c! (kb ,kc)5(0.097,0.122). The
light quark mass is close to the strange quark mass. The lines
resent constant fits in the indicated ranges.
3-7
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HASHIMOTO, KRONFELD, MACKENZIE, RYAN, AND SIMONE PHYSICAL REVIEW D66, 014503 ~2002!
~2.14! and~2.15!, andhJ andȟA appearing in Eqs.~1.5! and
~1.11!–~1.13!. The r factors match lattice gauge theory
QCD, and theh factors match HQET to QCD. To fit the
heavy-quark mass dependence of the lattice double ra
one must also match lattice gauge theory to HQET, and
corresponding factors are simplyrV /hV and řA /ȟA . Figure
2 illustrates how these matching factors connect lattice ga
theory and HQET to QCD, and to each other.

Lattice perturbation theory often yields a series that
pears to converge slowly. The two main causes of the p
convergence have been identified@22#: the bare gauge cou
pling is an especially poor expansion parameter, and w
tadpole diagrams occur expansion coefficients are la
These two problems can be avoided by using a renormal
coupling as the expansion parameter and by using pertu
tion theory only for quantities in which tadpole diagram
largely cancel. Then lattice perturbation theory seems to c
verge as well as perturbation theory in continuum QCD.

To calculate ther factors only the vertex function is
needed. By construction the self-energy contribution
wave-function renormalization, in particular the tadpole d
grams, cancels completely. Furthermore, even the ve
functions cancel partially, so the expansion coefficie
should be small, as verified explicitly at the one-loop lev
@18#. Indeed, asmQa→0, r→1, and asmQa→`, r→h.
Thus, despite the fact that only the one-loop correction torJ
is available@18#, it seems likely that perturbation theory ca
be expected to behave well, especially when measu
against other uncertainties in this calculation.

The other ingredient needed for an accurate perturba
series is a suitable renormalized coupling. We use the c
pling aV defined through the~Fourier transform of! the
heavy quark potential, as suggested in Ref.@22#. The scale
q* of the running couplingaV(q* ) is chosen according to
the BLM prescription@23,22#:

log~q* a!25
* z@1#

z@1# , ~4.1!

where z is rV /hV or řA /ȟA when fitting the mass depen
dence of the double ratios, orhA when reconstitutinghA1

(1)

with Eq. ~1.5!. The numerator* z@1# in Eq. ~4.1! is obtained
from the Feynman integrand forz@1# by replacing the gluon
propagatorD(k) by log(k2a2)D(k), where k is the gluon’s
momentum. Such terms arise at the higher-loop level, so

FIG. 2. Diagram illustrating how the matching factorsr, h, and
r/h match lattice gauge theory and HQET to QCD, and to e
other.
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BLM prescription sums a class of higher-order correctio
Since in the cases at hand the one-loop integrals are ultra
let and infrared finite, the only scales that can appear
Amcmb and 1/a. In general we findq* to be a few GeV; the
only exceptions occur when (rV /hV) @1# or (řA /ȟA) @1# are
accidentally very small.

One of the advantages of the BLM prescription is that
scale depends on the renormalization scheme, in such a
that the value of the coupling itself does not depend on
scheme much. The coupling in an arbitrary schemeS is re-
lated to theV scheme by

~4p!2

gS
2~q!

5
~4p!2

gV
2~q!

1b0bS
~1!1bS

~0!1O~g2!, ~4.2!

where fornf light quarksb051122nf /3, andbS
(0) is inde-

pendent ofnf . In many cases, theb0 term dominates; for
example, for theMS scheme,bMS

(1)
525/3 andbMS

(0)
528. If

one choosesqS* 5q* e2bS
(1)/2, then gS

2(qS* ) differs from
gV

2(q* ) only by ‘‘non-BLM’’ terms of order g4(b0g2) l 22,
l>2, which often are not very important.

In summary, we evaluate all short-distance coefficie
with

z511aV~q* !4pz@1# ~4.3!

and the appropriate BLM scaleq* . To check for the possible
size of non-BLM two-loop corrections~which are unavail-
able forrJ!, we also perform cross checks withaMS(qMS

* ).
We obtainaV(q* ) via two-loop running from@22#

aV~3.40/a!5
2a131

11A124.74a131

, ~4.4!

wherea13152(3/p)ln u0.u0 and aV(3.40/a) are tabulated
in Table I.

Table II contains the values ofrV /hV and řA /ȟA appro-
priate to the heavy quark mass combinations used in Se
As expected, the perturbative corrections to these factors
small. The lattice coefficientsrJ

@1# and* rJ
@1# were obtained in

Ref. @18#. The continuum coefficients are@32#

hV
@1#5CF3 f ~mb /mc!/16p2, ~4.5!

* hV
@1#5CF9 f ~mb /mc!/32p21hV

@1# ln~mbamca!, ~4.6!

ȟA
@1#5CF3 f ~mb /mc!/16p2, ~4.7!

* ȟA
@1#5CF5 f ~mb /mc!/32p21ȟA

@1# ln~mbamca!, ~4.8!

where

f ~z!5
z11

z21
ln z22. ~4.9!

h
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TABLE II. Double ratios, computed in the Monte Carlo calculation, and~re!normalization factors, computed in perturbation theory
one-loop BLM order.

b, kq (kb ,kc) AR1 AR1 rV /hV ARA1
řA /ȟA

6.1 ~0.080, 0.115! 1.0010275
172 0.9851277

174 1.0021 1.0024276
168 0.9940

0.1373 ~0.080, 0.122! 1.00302102
1101 0.97422114

1106 1.0008 1.00432106
1089 0.9919

~0.090, 0.100! 1.0001206
106 0.9990206

106 1.0002 1.0002206
106 1.0000

~0.090, 0.125! 1.0050267
170 0.9757284

181 0.9978 1.0051268
168 0.9908

~0.097, 0.115! 1.0007218
118 0.9948221

121 1.0003 1.0012217
116 0.9985

~0.097, 0.122! 1.0023235
135 0.9871243

141 0.9991 1.0027234
134 0.9954

~0.100, 0.125! 1.0039236
138 0.9838247

145 0.9973 1.0034236
136 0.9933

5.9 ~0.077, 0.110! 0.9981228
134 0.9872229

133 1.0030 1.0009227
132 1.0001

0.1385 ~0.077, 0.121! 0.9971251
158 0.9697254

157 1.0035 1.0030250
157 0.9770

~0.077, 0.126! 0.9984267
169 0.9549271

169 1.0015 1.0054262
170 0.9868

~0.088, 0.110! 0.9993212
115 0.9934213

115 1.0013 1.0007212
114 0.9999

~0.088, 0.121! 0.9993229
132 0.9795232

132 1.0016 1.0028227
133 0.9944

~0.088, 0.126! 1.0011240
146 0.9666247

150 0.9995 1.0053238
144 0.9903

~0.099, 0.110! 0.9999203
104 0.9980203

104 1.0003 1.0003203
104 0.9990

~0.099, 0.121! 1.0003214
116 0.9883216

117 1.0000 1.0019213
115 0.9969

~0.099, 0.126! 1.0022223
127 0.9780228

131 0.9983 1.0041220
125 0.9983

5.7 ~0.062, 0.089! 0.9944226
121 0.9923228

126 1.0024 0.9975225
123 1.0010

0.1405 ~0.062, 0.100! 0.9895243
142 0.9845252

150 1.0050 0.9958248
142 1.0017

~0.062, 0.125! 0.97862118
1102 0.93392150

1122 1.0114 0.98882118
1121 1.0006

~0.089, 0.100! 0.9992203
103 0.9984204

104 1.0005 0.9996203
103 1.0001

~0.089, 0.110! 0.9969210
111 0.9929214

115 1.0018 0.9985211
111 1.0002

~0.089, 0.119! 0.9945222
121 0.9816232

132 1.0035 0.9969224
123 1.0000

~0.089, 0.125! 0.9939234
131 0.9673252

150 1.0041 0.9958237
134 1.0112

~0.100, 0.125! 0.9979218
115 0.9793229

129 1.0022 0.9983221
119 0.9958

~0.110, 0.119! 0.9997202
102 0.9972204

104 1.0004 0.9998203
102 0.9995
e
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The important properties off (z) are f (1)50, f (1/z)
5 f (z). From the matching procedure derived in Ref.@18#
one sees that the masses used inf (mb /mc) should be the
kinetic masses, namely the mass appearing in the kin
term in Eq.~2.1!.

Two different schemes for defining the kinetic quark ma
are used in this paper, because they are simple to implem
Both employ the formula@15#

1

am2
5

1

eam1 sinh~am1!
1

1

eam1
, ~4.10!

which is the tree-level relation between the kinetic massm2
and the rest massm1 , for the SW action. One choice is t
use the tree-level value for the rest massam15 log(1
1am0), with am0 from Eq. ~3.1!, and we call the result the
tree-level kinetic mass. The other is to use the one-loop
mass in Eq.~4.10! @33#, and we call the result the quasi-on
loop kinetic mass.~The kinetic mass receives further radi
tive corrections, but they are known to be small@33#.! The
second choice is essentially the~one-loop! perturbative pole
mass. Although the difference between these schemes is
mally of the non-BLM two-loop order, they could giv
01450
tic

s
nt.

st

or-

slightly different results in practice. Thus, using both a
comparing gives us a handle on the terms omitted from
perturbative series.

When reconstituting the physical form factorhA1
(1) with

Eq. ~1.5!, one needs a numerical value for the short-dista
coefficienthA . Although it is known at the two-loop leve
@6,7#, we use the one-loop, BLM results, so that all pert
bation theory is treated on the same footing. Thus, we t
@32#

hA
@1#5CF@3 f ~mb /mc!22#/16p2, ~4.11!

* hA
@1#5CFF5

2
f ~mb /mc!21G /16p2

1hA
@1# ln~mbamca!. ~4.12!

For consistency, it is necessary to use the same definitio
the quark mass inhA as inr/h.

If we take the quasi-one-loop kinetic masses, which
very close to continuum pole masses, we findz5m2c /m2b
5$0.308,0.296,0.290%, q* 5$2.94,3.08,3.12% GeV, aV(q* )
5$0.205,0.203,0.208% and, hence,

hA5$0.9713,0.9724,0.9724% ~4.13!
3-9
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for b5$5.7,5.9,6.1%, respectively. On the other hand, if w
take the tree-level kinetic masses, we findz
5$0.221,0.230,0.234%, q* 5$2.02,2.14,2.14% GeV, aV(q* )
5$0.241,0.238,0.245% and, hence,

hA5$0.9769,0.9758,0.9746% ~4.14!

for b5$5.7,5.9,6.1%, respectively. Note that although th
coupling is larger in this scheme~because the quark mass
and, hence,q* are smaller!, the perturbative correction i
smaller, because the magnitude of the coefficienthA

@1# de-
creases withz. As we shall see below, this scheme depe
dence in hA is largely cancelled by the correspondin
scheme dependence of the 1/mQ

2 corrections.
These values ofhA are slightly larger than the value 0.96

@6,7#, which is widely adopted in the literature. The origin
this difference is the value used foras . We extractas from
lattice QCD, which, in the quenched approximation, und
estimatesas slightly @30#. Also, there is nothing specia
about the standard value. It does not include uncertain
from the measured value ofas(MZ) or from the b and c
masses. When our method is applied to full QCD, the dou
ratios, the gauge coupling, and the quark masses all ca
determined self-consistently. In the meantime, we shall
sign uncertainties from omitting the non-BLM two-loo
term, adjusting the heavy quark masses, and the quenc
effect onas .

V. HEAVY QUARK MASS DEPENDENCE

In this section we fit the~suitably normalized! double ra-
tios to the form expected from the heavy quark expans
yielding the quantitiesa2l V , a2l A , anda2l P ~i.e., in lattice
units!. We find that it is also necessary and beneficial
incorporate terms of order 1/mQ

3 in the heavy quark expan
sion. The last step is then to combine these results into
main goal, which ishA1

(1).
Table II contains the results of our Monte Carlo calcu

tions of AR1, AR1, and ARA1
, in addition to the short-

distance coefficients discussed in Sec. IV. This informatio
combined to form

rVAR1

hV
5

h1

hV
, ~5.1!

rVAR1

hV
5

h1

hV
, ~5.2!

řAARA1

ȟA
5

ȟA1

ȟA
, ~5.3!

which we fit to the expected heavy-quark mass depende
For each ratio in Eqs.~5.1!–~5.3! we try the fit

rAR

h
512

1

4
D2

2S c~2!1
1

2
c~3!S2D , ~5.4!

wherec(2) andc(3) are taken as free fit parameters, and
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D25
1

am2c
2

1

am2b
, ~5.5!

S25
1

am2c
1

1

am2b
. ~5.6!

In Eqs. ~5.5! and ~5.6!, the subscript 2 indicates that th
kinetic massm2 appears. For the quadratic term we useD2

2,
even though the massesm2 , mB , andm3 all appear in the
heavy-quark expansion to lattice QCD@20#, becausem2
5mB5m3 at our level of accuracy. The rest massm1 in Eq.
~2.1! drops out completely@20#.

The 1/mQ
3 term is introduced in Eq.~5.4! to describe the

data over a wide range of 1/mQ . The particular formD2S is
the only one that is invariant under the interchange symm
c↔b and vanishes formc5mb . The 1/mQ

3 terms arise from
many sources in HQET. Some of them, like triple insertio
of the 1/mQ terms inLHQET, are correctly normalized with
the choice of lattice action and currents made in Sec.
They lead toD2

2S2 , with ~to our accuracy! the kinetic mass
everywhere. Others, like an insertion of a 1/mQ

2 term com-
bined with an insertion of a 1/mQ term, are not and would
lead toD2DXSX , whereDXSX amounts to the difference o
short-distance coefficients for the higher-dimension HQ
operatorOX .

The most important mismatches ofDXSX are of order
asam2c and of order (am2c)

2, providedam2c,1. They are
not necessarily small but, perhaps, small enough to pin do
the 1/mQ

3 corrections. The 1/mQ
3 contributions are influenced

mostly by the region with largeS, wheream2c,0.6. Thus,
the fit coefficientsc(3) can be expected to give a reasonab
estimate of the desireda3l (3). Moreover, corrections of orde
(L̄/mQ)3 are small to begin with, so even a large relati
uncertainty in them leads to a small absolute uncertainty
hA1

(1).

As mentioned in the Introduction, there are four 1/mQ
3

terms in the heavy quark expansion ofhA1
(1). If we write

hA1
~1!5hA@11d1/m21d1/m3#, ~5.7!

thend1/m2 can be read off by comparing with Eq.~1.5!, and

d1/m352
l V
~3!

~2mc!
3 1

l C
~3!

~2mc!
2~2mb!

1
l B
~3!

~2mc!~2mb!2

2
l P
~3!

~2mb!3 . ~5.8!

As suggested by the notation,l V
(3) is related toh1(1), andl P

(3)

is related toh1(1). Repeating the argument based on hea
quark spin symmetry, first for theb, then for thec, one sees
that hA1

(1) andh1(1) share the terml V
(3)/(2mc)

3, and that

hA1
(1) andh1(1) share the terml P

(3)/(2mb)3, as given in

Eq. ~5.8!. The other two terms ind1/m3 can be rewritten
3-10
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l C
~3!

~2mc!
2~2mb!

1
l B
~3!

~2mc!~2mb!2

5
l A
~3!

~2mc!~2mb! S 1

2mc
1

1

2mb
D

1
l D
~3!

~2mc!~2mb! S 1

2mc
2

1

2mb
D , ~5.9!

wherel A
(3)5@ l C

(3)1 l B
(3)#/2 andl D

(3)5@ l C
(3)2 l B

(3)#/2. Simple al-
gebra shows thatl A

(3) is indeed the coefficient of theD2S

term in the heavy-quark expansion of the ratioȟA1
(1). Thus,

to the extent that we can identifyc$P,V,A%
(3) with a3l $P,V,A%

(3) , we

can reconstruct three of the four 1/mQ
3 corrections tohA1

(1).

Only l D
(3) eludes us.

To show the quality of the fit to the mass dependence,
plot in Fig. 3 the quantity

Q5
12rAR/h

D2
2 5

1

4
c~2!1

1

8
c~3!S2 ~5.10!

vs S25(1/am2c11/am2b), with the quasi-one-loop defini
tion of am2 . Linear behavior in (1/am2c11/am2b) is ob-
served for each form factor, and we show the fit line in t
figure. Some curvature is noticeable for the heaviest ma
in Fig. 3~a!, but the linear fit is still consistent within statis
tical errors. The growth of the statistical error toward t
heavy-quark limit is a property of the heavy-light meson
the Monte Carlo calculation, and it is unavoidable@35,36#.

The values of the fit parametersc$P,V,A%
(2) 5a2l $P,V,A% and

c$P,V,A%
(3) are listed in Table III. In each case the extract

values ofc(2) and c(3) are highly correlated. On the othe
hand, the combinations

a2l V
eff5cV

~2!1
cV

~3!

2am2c
, ~5.11!

a2l A
eff5cA

~2!1
1

2
cA

~3!S 1

2am2c
1

1

2am2b
D , ~5.12!

a2l P
eff5cP

~2!1
cP

~3!

2am2b
, ~5.13!

are statistically more precise, because the correlated e
cancels, for the first two especially so. These combinati
appear directly in Eq.~5.7!, provided we can reliably identify
cV

(3) with a3l V
(3) . We argued above that this identification

not too bad, because the coefficientsc(3) should be influ-
enced principally by smaller masses. As seen in Fig. 3,
predjudice is borne out, especially when the correlated
tistics are taken into account: the best fits fit best for la
(1/am2c11/am2b).

The results presented in Fig. 3 and Table III are all for
quasi-one-loop definition ofam2 . One should keep in mind
01450
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that the ls and l (3)s have a well-defined interpretation a
matrix elements within HQET. Their detailed definition d
pends on the renormalization scheme of operators in HQ
as discussed, for example, in Ref.@34#. After reconstituting
hA1

(1), however, the scheme chosen should have only a
nor, residual effect. Repeating the fits with the tree-le
definition ofm2a changes the fit coefficients significantly~as
expected!. The change inhA1

(1) is, however, not great, an

it is of orderas /mQ
2 , as expected.

FIG. 3. (12h/h)/D2
2 vs 1/am2c11/am2b when h/h is

h1(1)/hV ~squares!, h1(1)/hV ~diamonds!, and ȟA1
(1)/ȟA ~tri-

angles! at ~a! b55.7, ~b! b55.9, and~c! b56.1. Solid lines are
best fits and dotted lines are error envelopes.
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TABLE III. Coefficients in the 1/mQ expansion, Eq.~5.4!.

h1 /hV h1 /hV ȟA1
/ȟA

b cP
(2) cP

(3) cV
(2) cV

(3) cA
(2) cA

(3)

6.1 20.0192050
1051 0.0152035

1035 0.1172059
1063 20.0512041

1045 0.0352042
1050 20.0182029

1035

5.9 20.0142038
1042 0.0122030

1033 0.1842048
1042 20.0892036

1032 0.0372042
1040 20.0222034

1032

5.7 0.0752108
1090 20.1002123

1099 0.2892174
1144 20.1452186

1158 0.0892118
1099 20.0302137
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To fix the physical values ofmb andmc we compute the
Bs and Ds spectra on the same ensembles of lattice ga
fields. Combining these inputs with the second row of Ta
III ( b55.9) ~and omitting thel D

(3) contribution! we find

d1/mn5d1/m21d1/m3 ~5.14!

.2
l V
eff

~2mc!
2 1

2l A
eff

2mc2mb
2

l P
eff

~2mb!2

52~0.044720.0070
10.0078!, ~5.15!

which is needed in Eq.~5.7!. The error quoted here is statis
tical only; systematic uncertainties are considered in deta
the next section. Equation~5.15! shows the power of ou
method: even with 15% statistical uncertainties ond1/mn

5hA1
/hA21, one can see thathA1

(1) itself can be very
precise.

VI. SYSTEMATIC ERRORS

The intermediate result in Eq.~5.15! is obtained at one
value of the lattice spacing, and with a spectator quark wh
mass is close to that of the strange quark. In this section
consider the systematic uncertainty from varyinga andmq ,
as well as those from other sources. Table IV summarizes
results of this analysis, giving the absolute error on the m
result, hA1

(1), andalso fractional error on 12hA1
(1). As

noted above, the uncertainties should scale with
2hA1

(1).
In the following subsections, we consider, in turn, t
01450
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1

uncertainties arising from fitting Ansa¨tze, which incorporate
contamination in Eqs.~2.19!–~2.21! of excited states~Sec.
VI A !; heavy quark mass dependence~Sec. VI B!; matching
lattice gauge theory to HQET and QCD~Sec. VI C!; lattice
spacing dependence~Sec. VI D!; light ~spectator! quark mass
dependence~Sec. VI E!; and the quenched approximatio
~Sec. VI F!. In Table IV the statistical uncertainty is added
quadrature to that from fitting, as discussed in Sec. VI A.
outlined in Sec. III, statistical uncertainties are compu
with the bootstrap method and full covariance matrices.

A. Fitting and excited states

We definex2 in our fits with the full covariance matrix
For the plateau fits toR(t)

x25 (
t1 ,t2

@R~ t1!2Rfit#s
22~ t1 ,t2!@R~ t2!2Rfit#. ~6.1!

Because the numerical data are so highly correlated, s
components of the~inverse! matrix s22(t1 ,t2) cannot be
determined well. These components are discarded, accor
to singular value decomposition~SVD!, by eliminating
eigenvectors ofs2 whose eigenvaluel,r SVDlmax, with
r SVD small. We find we have to setr SVD;1022 to remove
the noisy eigenvectors fromx2 in Eq. ~6.1!.

A potential drawback of the double ratio technique is th
an early plateau could be induced. We cope with this issue
trying many fit ranges for the timets of the current. In gen-
eral, fits to a constant have goodx2 and agree for fit ranges
within the plateaus clearly seen in Fig. 1. For each ensem
t
TABLE IV. Budget of statistical and systematic uncertainties forhA1
(1) and 12hA1

(1). The rowlabeled ‘‘total systematic’’ does no
include uncertainty from fitting, which is lumped with the statistical error. The statistical error is that after chiral extrapolation.

Uncertainty hA1

12hA1

~%!

statistics and fitting 10.0238 20.0173 127 220
adjustingmc andmb 10.0066 20.0068 18 28
as

2 60.0082 69

as(L̄/2mQ)2 60.0114 613

(L̄)3/(2mQ)3 60.0017 62

a dependence 10.0032 20.0141 14 216
chiral 10.0000 20.0163 10 219
quenching 10.0061 20.0143 17 216

total systematic 10.0171 20.0302 120 235
total (stat% syst) 10.0293 20.0349 134 240
3-12
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of lattice gauge fields we choose a single range forts for all
three ratios and all heavy quark mass combinations. In e
case, the range is chosen to give small statistical erro
Rfit , while maintaining a central value close to that fro
short intervals centered onT/4.

The expressions in Eqs.~2.19!–~2.21!, relating three-point
correlation functions to matrix elements, suppress te
from radial excitations of the desired, lowest-lying stat
Because of heavy-quark symmetry, corresponding exc
tions of theD and B systems have similar wave function
and mass splittings. Consequently, their contribution to
double ratios largely cancels, leaving a residue that is s
pressed by (L̄/mQ)2 as well as the exponential factor fo
large times. Thus, the excited-state contamination in a do
ratio scales asR21, rather thanR.

The fits of the heavy quark mass dependence are obta
by minimizing

x25(
i , j

S Qi2
1

4
c~2!2

1

8
c~3!S2i Ds i j

22S Qj2
1

4
c~2!

2
1

8
c~3!S2 j D , ~6.2!

wherei , j label mass combinations. Once again, not all co
ponents ofs22 are well determined. The fits are stable wi
r SVD5$531023,531024,131023% for b5$5.7,5.9,6.1%.

In summary, the fitting procedure to determine the dou
ratiosR1 , R1 , andRA1

depends on the fit range forts and

on the cutr SVD in the SVD. Similarly, the fit parameters o
the heavy quark mass dependence,c(2) andc(3), depend on
an additional SVD cut. The central values quoted here
from the fit ranges given in Table I,r SVD51022 for R(t),
andr SVD as given above forc(2) andc(3). We then repeat the
analysis with larger and smaller SVD cuts and, forR(t),
with other fit ranges. The resulting variation inhA1

(1) is
smaller than the statistical error of the ‘‘best fits.’’ Since e
cited states contribute differently in each fitting ansatz,
uncertainty in fittingR(t) incorporates the uncertainty due
excited-state contamination. For convenience in analyz
the other systematics, the fitting error is added in quadra
to the statistical error.

B. Heavy quark mass dependence

The physical heavy quark masses enter when recons
ing hA1

with Eq. ~5.7!. We determine them by tuning th

hopping parameterskb and kc to reproduce theBs and Ds
spectra. To do so, we must compute the meson kin
masses, which are somewhat noisy, and we must choos
observable to define the~inverse! lattice spacing. Thus, the
tuned values ofkb andkc have statistical uncertainties, from
both the meson masses and froma21.

They also have systematic uncertainties. For example
inverse lattice spacinga21 is not the same when defined b
the 1P-1S splitting of charmonium or byf p , as noted in
Table I. Similarly,kb andkc are not the same when quark
nium spectra are used instead of heavy-light spectra,
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though forkc this makes very little difference. In the end, w
are left with a range forkb and kc and, hence, the heav
quark masses used in Eq.~5.7!. This range leads to the erro
bar labeled ‘‘adjustingmb andmc’’ in Table IV.

C. Matching

As discussed in Sec. II our method for heavy qua
matches lattice gauge theory to QCD by normalizing the fi
few terms in the heavy-quark expansion@15,20#. This is nec-
essary to keep heavy-quark discretization effects under c
trol, but the approximate nature of the~perturbative! match-
ing calculations leads to a series of uncertainties. The th
most important of these are listed in Table IV.

The first is formally of orderas
2. It comes from omitting

the non-BLM radiative corrections to the factorsrJ andhJ
and from omitted loop corrections to the quark masses an
as . As discussed in Sec. IV,rJ comes from the cancellation
of ~continuum and lattice! vertex functions. Thus, by design
the coefficients of its perturbation series are small—usu
smaller than those inhJ @18#. With hA ~and hV! we can
check explicitly how big the non-BLM two-loop correction
are. For example, the value ofhA1

(1) is reduced by 0.0082 if

we switch to the modified minimal subtraction (MS) scheme
and include the non-BLM two-loop part of thehJ . Since the
unknown two-loop corrections to therJ could compensate
or even over-compensate, we take the two-loop uncerta
to be60.0082.

The next matching uncertainty is formally of orde
as(L̄/2mc)

2, from tuning the lattice action and currents
HQET. Settingas50.2, L̄5500 MeV, andmc51.25 GeV,
one findsas(L̄/2mc)

250.008. Another way to estimate thi
effect is to compare the analysis with tree-level heavy qu
masses to the standard one with quasi-one-loop masses
difference in hA1

(1) is in the same ballpark, at mos
10.0114. Since other schemes for the quark mass could
to shifts in the other direction, we take60.0114 as the un-
certainty from this source.

The last matching uncertainty is of order (L̄/mQ)3, from
the omission of

l D
~3!

~2mc!~2mb! S 1

2mc
2

1

2mb
D;0.0017, ~6.3!

assumingl D
(3)5L̄3, mb54 GeV, and the same values a

above. With same choices made above, we estimate
l A
(3)@1/(2mc)11/(2mb)#/(2mc2mb) and l P

(3)/(2mb)3 should
be around 0.0033, and 0.0002, respectively. In Table V
show the actual effect of the included 1/mQ

3 corrections. The
scatter of the different analyses bears out the latter estima
lending credence to Eq.~6.3!. Uncertainties in the included
1/mQ

3 terms are smaller than Eq.~6.3!, because many of them
are obtained correctly, and the mismatch in the others
small.

D. Lattice spacing dependence

The lattice calculation ofhA1
has lattice artifacts from

heavy quarks, light quarks, and gluons. For the heavy qua
3-13
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TABLE V. Scheme dependence ofhA1
(1). For each value ofb, the columns compare the scheme with tree-level and quasi-one-

kinetic masses inhJ and in the mass dependence. The rows compare the effect of the 1/m3 contributions; hereS51/mc11/mb refers to the
correction in Eq.~5.12!. Each row includes the corrections from all preceding rows.

b56.1 b55.9 b55.7
l /mn tree quasi tree quasi tree quasi

1/mQ
2 0.875520.0372

10.0343 0.894820.0430
10.0416 0.907820.0097

10.0113 0.910320.0130
10.0140 0.936520.0141

10.0173 0.930320.0234
10.0275

1/mc
3 0.933120.0123

10.0150 0.932920.0167
10.0205 0.936220.0051

10.0056 0.932120.0072
10.0082 0.954920.0086

10.0099 0.940620.0151
10.0162

1/mb
3 0.933220.0124

10.0150 0.932620.0166
10.0206 0.936320.0051

10.0056 0.932020.0073
10.0082 0.955120.0086

10.0099 0.940920.0151
10.0163

S/(mcmb) 0.927520.0114
10.0126 0.927420.0148

10.0163 0.933820.0052
10.0057 0.930020.0068

10.0076 0.950320.0079
10.0097 0.940020.0135

10.0152
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discretization effects and heavy-quark effects are inevita
intertwined @15,20#, and are mostly part and parcel of th
matching uncertainties considered above. The light qua
suffer from discretization effects of orderasLa and (La)2;
the gluons of order (La)2. That being said, we can test fo
the magnitude of discretization effects, by comparing
analysis of Sec. V for three lattice spacings. The results
plotted againsta in Fig. 4, which also contains results fo
h1(1) andh1(1). Thelast two are much closer to 1 and the
statistical uncertainties are correspondingly smaller. This
derscores, once again, that the uncertainties scale as 12h.

The result forhA1
(1) with the available 1/mQ

3 contribu-
tions ~solid triangles! is consistent with a constant. We tak
as our central value the average from the two finer lattic
because for them the~heavy-quark! discretization effects are
smaller. This is

hA1
~1!50.929320.0092

10.0110, ~6.4!

where the error is the statistical error on the average, with
error from fitting added in quadrature. In Fig. 4 the solid a
dotted lines indicate this average and error band.

FIG. 4. Lattice spacing dependence ofhA1
(1) ~triangles!, h1(1)

~diamonds!, andh1(1) ~squares!. The light quark mass is close t
the strange quark mass. The solid~dotted! lines represent best fit
~error envelopes!.
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The third point, ata50.84 GeV ~from b55.7!, has the
greatest uncertainty fromheavyquark discretization effects
so it is excluded from the central value. Instead we use i
estimate discretization uncertainties. If one assumes that
cretization effects from the light spectator quark and gluo
are negligible, then it would be appropriate to average
three. This average is slightly higher, and we take this
crease as the upward systematic error bar. If, on the o
hand, one assumes that the light spectator quark’s discre
tion effects are responsible for the somewhat larger value
hA1

(1) on the coarsest lattice, then it would be appropriate
extrapolate linearly ina. The dashed line in Fig. 4 shows th
extrapolation. The extrapolated value is significantly low
and we take this decrease as the downward systematic
bar. The error bar resulting from these two estimates is v
asymmetric:20.0141

10.0032.

E. Chiral extrapolation

The calculations discussed so far have a spectator q
whose mass is near that of the strange quark. Figure 5 sh
how hA1

(1) changes for lighter spectator quarks, on the l
tice with b55.9, for which we have three values of the lig
quark mass.hA1

(1) is plotted againstmp
2 ~in lattice units!,

which is a physical measure of the light quark mass. Si

FIG. 5. Dependence ofhA1
(1) atb55.9 on the mass of the ligh

spectator quark. Heremp
2 is the mass of the pseudoscalar mes

consisting of two ‘‘light’’ quarks. The solid~dotted! lines represent
the best linear fit~error envelope!. The lower~upper! curves with a
cusp add to the linear behavior the contribution in Eq.~6.6!, taking
gD* Dp50.60 (gD* Dp50.27).
3-14
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the statistical errors in Fig. 5 are highly correlated, the dow
ward trend inhA1

(1) is significant. The same trend is se

for b56.1. Extrapolating linearly inmp
2 to the physical pion,

reduces the result in Eq.~6.4! to

hA1
~1!50.913020.0173

10.0238 ~6.5!

and increases the statistical error. This value, using the a
age of theb55.9 and 6.1 lattices and the chiral extrapolati
from b55.9, gives the central value in Eq.~1.14!.

In the chiral expansion, the terms responsible for the
ear behavior are formally of orderL̄2mp

2 /(2mc4p f p)2.

Terms of orderL̄4/(2mc4p f p)2 are larger for the physica
pion mass, but are comparable for our artificially large p
masses. Randall and Wise@37# have computed themp

0 effect
at one loop in chiral perturbation theory. They find

l V~mp!

~2mc!
2 5

l V~mhs
!

~2mc!
2 1

gD* Dp
2

2 S D~c!

4p f p
D 2F ln

mhs

2

mp
2

1 f ~2xp!2 f ~2xhs
!G , ~6.6!

wheremhs

2 52mK
2 is the mass of the pseudoscalar meson w

two strange quarks,gD* Dp is the D* -D-p coupling, D (c)

5mD* 2mD5142 MeV is theD* -D mass splitting, andxa

5D (c)/ma (a5p,hs). For gD* Dp we consider the range
0.27–0.60, which encompasses estimates based on fits t
perimental data~gD* Dp50.2720.03

10.06 @38#!, quark models
~gD* Dp'0.38 @39#!, quenched lattice QCD~gD* Dp50.30
60.16@40# or gB* Bp50.4260.09@41#!, and the recent mea
surement of theD* width ~gD* Dp50.5960.07 @42#!.

The chiral loop functionf (x) has rather different behav
ior, depending onx. At x521, which turns out to be the
physical region (mp'D (c)), there is a cusp, and the value
f becomes large:f (21)'11 whereasf (2xhs

)5 f (20.2)

50.53. To illustrate this behavior, we have shown in Fig
the sum of the second term in Eq.~6.6! and the linear fit. In
the region where we have data, the term from Eq.~6.6!
hardly varies, but near the physical limit, it bends the cu
down. With the quoted range forgD* Dp , the decrease in
hA1

(1) amounts to 0.0033–0.0163, coming mostly in the

gion wheremp'D (c), as shown in Fig. 5. In an unquenche
calculation, one would add this contribution tohA1

(1). Be-

causegD* Dp remains uncertain and because we are using
quenched approximation, we take it as an additional syst
atic uncertainty of20.0163

10.0000. This effect and the amplification
of the statistical error together make the chiral extrapolat
the largest source of uncertainty.

F. Quenching

An important limitation of our numerical value forhA1
(1)

is that the gauge fields were generated in the quenched
proximation. The quenched approximation omits the ba
reaction of light quark loops on the gluons, and compens
the omission with a shift in the bare couplings. Two obvio
01450
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consequences of quenching are that the couplingas runs
incorrectly, and that pion loops@as in Eq.~6.6!# are not cor-
rectly generated.

Let us consider first the effect on the running couplin
The values forhA in Sec. IV are obtained with the quenche
coupling. If as is corrected for quenching, it is larger@30#,
and the short-distance coefficients are changed by20.0050
for hA and 10.0032 for hV . These changes both reduc
hA1

(1).
For the pion-loop contribution we can look to compa

sons of quenched and unquenched calculations of other
trix elements. Studies of the decay constantsf B and f D show
discrepancies on the order of 10% between quenched
~partly! unquenched QCD@43,44#. A form factor, which is
the overlap of two wave functions, is presumably less se
tive to quenching than a decay constant, which is a w
function at the origin. So, one should not expect the quen
ing error here to be more than 10%. Even in the quenc
approximation all three double ratios tend to unity in t
heavy-quark symmetry limit. Thus, the quenching error, li
all others, scales withR21, rather thanR. We therefore ap-
ply the estimate of 10% to the long-distance part,d1/mn, to
obtain an error bar of60.0061.

We estimate the total quenching uncertainty to be the s
of these two effects, or20.0143

10.0061.

G. Summary

Combining Eq.~6.5! with the error budget in Table IV, we
obtain

hA1
~1!50.913020.017320.015720.014120.016320.0143

10.023810.015610.003210.000010.0061,
~6.7!

where the error bars are from statistics and fitting, adjust
the heavy quark masses and matching, lattice spacing de
dence, light quark mass dependence, and the quenche
proximation.~The uncertainties on the second through fi
rows of Table IV are added in quadrature.! Adding all sys-
tematics in quadrature, we obtain

hA1
~1!5FB→D* ~1!50.913020.017320.0302

10.023810.0171. ~6.8!

Although we have considered all sources of systematic
certainty, it is not possible to disentangle them complete
For example, the lattice spacing dependence is not c
pletely separated from the HQET matching uncertainties,
the quenched approximation affects the chiral behavior,
adjustment ofmc and mb , and, throughas , the matching
coefficients.

VII. COMPARISON WITH OTHER METHODS

In this section we compare our method, based on lat
gauge theory, with others existing in the literature. To do
it is convenient to refer to Eq.~1.5! and discuss how the
short- and long-distance contributions are evaluated.

One approach, sometimes advertised as ‘‘mod
independent,’’ is to estimate thels with the nonrelativistic
quark model@4,10#. The more recent estimate@10# takes
3-15
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d1/m2 to be20.05560.025 by covering a range of ‘‘all rea
sonable choices.’’ Combining it with the two-loop calcul
tion @6# of hA , one obtains

FB→D* ~1!50.90760.00760.02560.017, ~7.1!

where the quoted uncertainties@10,6# are from perturbation
theory, errors in the quark model estimate of the 1/mQ

2 terms,
and the omission of 1/mQ

3 terms. Uncertainties fromas and
the quark masses are not included. A fair criticism of t
approach is that it does not pay close attention to sch
dependence of the long- and short-distance contributio
The standard~m-independent! result for hA corresponds to
renormalizing the operator insertions of HQET in theMS
scheme. The quark model estimates, on the other hand
presumably in some other scheme, so there is a possibili
over- or undercount the contribution at the interface of lo
and short distances.

Another approach is based on a zero-recoil sum r
@11,3#. These authors prefer to introduce a concrete sep
tion scalem. In this schemehA and thels depend explicitly
on m. Them-dependent two-loop part ofhA is known@45#. A
recent estimate of the zero-recoil form factor is@46#

FB→D* ~1!50.8960.01560.02560.01560.025,
~7.2!

where the quoted uncertainties are from the unknown va
of the kinetic energymp

2 (m), higher excitations withD*
quantum numbers and energyE,mD* 1m, perturbation
theory, and the omission of 1/mQ

3 terms. We note that both
mp

2 and the excitation contribution should, in this schem
cancel the (m/mQ)2 part ofhA(m). Since there is no model
independent method to calculate the excitation contribu
~except unquenched lattice QCD!, it is not clear how to
implement this cancellation.

As shown in Fig. 6, our result Eq.~1.14! agrees with the

FIG. 6. Comparison of determinations ofhA1
(1)5FB→D* (1)

with nonperturbative input from the nonrelativistic quark mod
@10,6#, a zero-recoil sum rule@46#, and quenched lattice QCD.
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previous results, within errors, and the quoted errors are
comparable size. Our result includes an estimate of thre
the four 1/mQ

3 contributions. All three are subject to a QE
correction of 10.007 @47#. An important feature of our
method is that, even in the quenched approximation, we
able to separate long- and short-distance contributions s
consistently. Indeed, we have repeated the calculation w
two different schemes for the heavy quark masses, and
results are the same. Furthermore, it is clear that mov
terms of orderm2/mQ

2 between the long- and short-distan
parts will cancel out in our method, as long as it is do
consistently. Finally, with future unquenched calculations
lattice QCD, our method allows for a systematic reduction
the theoretical error onuVcbu.

VIII. CONCLUSIONS

We have developed a method to calculate the zero re
form factor of B̄→D* ln decay. We introduce three doub
ratios in which the bulk of statistical and systematic erro
cancels, thus enabling a precise calculation ofFB→D* (1).
By matching lattice gauge theory to HQET, we are able
separate long-distance from short-distance contributio
Then the coefficients in the 1/mQ expansion are obtained b
fitting the numerical data. In this way we obtain the~leading!
1/mQ

2 corrections and three of the four 1/mQ
3 corrections. A

similar approach has already been taken forB→Dln @14#.
Our result in the quenched approximation,FB→D* (1)

50.91320.01720.030
10.02410.017, is consistent with results based on oth

ways of treating nonperturbative QCD. By using th
quenched approximation we are able to gain control over
other uncertainties. Note, however, that the second error
incorporates~among others! our estimate of the uncertaint
from quenching. Furthermore, despite the shortcomings
the quenched approximation, it is not less rigorous than co
peting determinations ofFB→D* (1), which use either non-
relativistic quark models or a subjective estimate of the ‘‘e
citation contribution.’’ With recent measurements
uVcbuFB→D* (1) from CLEO @48#, the CERNe1e2 collider
LEP experiments@49#, and Belle@50#, our result implies

103uVcbu5H 45.962.421.4
11.8 @48#,

38.761.821.2
11.5 @49#,

39.362.521.2
11.6 @50#,

~8.1!

where the second, asymmetric error comes from adding
our uncertainties in quadrature. Here we have included
QED correction toFB→D* (1) of 10.007.

Since several groups have started partially unquenc
lattice calculations of spectrum and decay constants, we c
clude with some remarks on the prospects forFB→D* (1). In
this context, ‘‘partially quenched’’ means that the valen
and sea quarks have different, and separately varied, ma
The analysis presented here shows that the double ra
bring the statistical precision under control, and that fitti
the heavy-quark mass dependence is straightforward. Tw
our larger systematic uncertainties will improve simply
including dynamical quarks. First, the self-consistent de

l
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mination of the heavy-quark masses and ofas will improve.
At present, we believe the quenching bias inas , which af-
fects the short-distance contribution, to be the largest so
of uncertainty from the quenched approximation. Seco
partially quenched numerical data are enough to extract
physical result, because one can use the recently derive
sult in partially quenched chiral perturbation theory@51#.

The other two main sources of systematic uncertainty
the lattice spacing dependence and the matching of la
gauge theory to HQET and QCD. The former is mostly
matter of computing. Indeed, our present estimate may
conservative, as it is driven by the coarsest lattice. To
crease the matching uncertainties, one must calculate
normalization factor to two loops and calculate the 1/mQ

2

corrections to one loop. The latter is not quite as hard a
might seem. Heavy-quark symmetry protects the needed
trix elements, so one only needs the one-loop calculation
the chromomagnetic term in the effective Lagrangian~a
1/mQ term! and the 1/mQ and mixed 1/mcmb terms in the
currents.~An alternative to perturbation theory would be
develop a fully nonperturbative matching scheme for he
quarks, including the 1/mQ

n corrections.!
rt.

D

s.

-

s.

D
.

H

01450
ce
,
e

re-

re
ce

e
-

he

it
a-
of

y

With the improvements from unquenched simulations
more detailed study of lattice spacing dependence,
higher order matching calculations, it is conceivable that
error onFB→D* (1) could be brought to or below 1%. At thi
level, it would become crucial to compute, possibly by sim
lar methods, the slope and curvature ofFB→D* (w) nearw
51. Then the determination ofuVcbu would not only become
very precise, but also truly model-independent.
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