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Accelerated overlap fermions
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Numerical evaluation of the overlap Dirac operator is difficult since it contains the sign functione(Hw) of
the Hermitian Wilson-Dirac operatorHw with a negative mass term. The problems are due toHw having very
small eigenvalues on the equilibrium background configurations generated in current day Monte Carlo simu-
lations. Since these are a consequence of the lattice discretization and do not occur in the continuum version of
the operator, we investigate in this paper to what extent the numerical evaluation of the overlap can be
accelerated by making the Wilson-Dirac operator more continuum-like. Specifically, we study the effect of
including the clover term in the Wilson-Dirac operator and smearing the link variables in the irrelevant terms.
In doing so, we have obtained a factor of 2 speedup by moving from the Wilson action to a fat link irrelevant
clover action as the overlap kernel.
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I. INTRODUCTION

The overlap formalism@1–4# leads, in the vector case, t
a lattice formulation of QCD based on the overlap Dir
operator@5#, given ~in the massless case! by

Do5
1

2a
@11g5e~Hw!#, e~H !5

H

AH2
, ~1!

(a5 lattice spacing) where

Hw5g5S Dw2
m

a D , ~2!

is a Hermitian operator constructed from the Wilson-Dir
operatorDw @6# with m being a tuning parameter.1 The free
field propagator ofDo has the correct continuum limit and
free of doublers when 0,m,2. Because of its origin in the
overlap formalism,Do has good chiral properties@7#; this
can also be seen from the fact that it satisfies@8# the
Ginsparg-Wilson relation@9#

g5D1Dg552aDg5D. ~3!

Lattice Dirac operators satisfying this relation have an ex
lattice-deformed chiral symmetry@10#, can have exact zero
modes with definite chirality@11#, as well as the absence o
mass renormalization and other promising theoretical pr
erties@12–14#.

The nice theoretical properties of the overlap Dirac ope
tor come at a price: numerical evaluation of it via the po

*Electronic address: wkamleh@physics.adelaide.edu.au
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§Electronic address: awilliam@physics.adelaide.edu.au
1We are assuming that the Wilson parameter has been set

canonical valuer 51.
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nomial approximation is difficult due to the discontinuity
the origin of the matrix sign functione(H). Practical meth-
ods have been developed in whiche(H) is approximated by
a sum over poleseN(H), using either the so-called pola
decomposition or the optimal rational polynomial appro
mation @15,16#, both of which take the form

eN~H !5HS c01 (
k51

N
ck

H21dk
D . ~4!

The two approximations only differ in their choice of coe
ficients$c0 ,ck ,dk%, and both are evaluated~indirectly! using
a multishift conjugate gradient~CG! matrix inverter@17# to
calculate their action on a vector. This is an iterative pro
dure where each iteration requires one evaluation of the
trix operatorH2 acting on a vector~i.e. two evaluations of
H), and the number of iterations required to reach a giv
solution precision is proportional to the condition number
H, k(H)5ulmax/lminu, which is the ratio of the largest eigen
value ofH to the smallest eigenvalue@16#.

Triangle inequalities lead to an upper bound@18# given by
ulmaxu<(82m)/a for the operatorHw in Eq. ~2!. The lower
boundulminu can be zero though. The lattice gauge fields
which lmin50 form a subspace of measure zero in the sp
of all lattice gauge fields, so it is exceedingly unlikely th
one would ever encounter them in a numerical simulati
However, our practical experience is thatulmaxu&8 while
ulminu is often as small as 1028. This results in an unaccept
ably large value for the condition numberk(H). There is a
way to get around this problem though@19#. The typical
spectrum ofHw is characterized by a handful of isolate
low-lying eigenmodes, so one can project these out and
with them explicitly. The condition number for the remainin
part of the spectrum is then small enough that the appr
mation in Eq.~4! becomes feasible. In practical simulation
after projecting out the isolated low-lying modes,eN(Hw)
takes roughly speakingO(1002300) iterations to converge
its
©2002 The American Physical Society01-1
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for N'14, meaning that overlap fermions with the standa
Hw are aboutO(2002600) times more expensive than sta
dard Wilson fermions.

Obviously it is desirable to improve upon this situation
order to make simulations with overlap fermions more fe
sible. In this paper we investigate ways to do this by mo
fying the operatorHw in the overlap formula in Eq.~1! so
that its spectral properties are improved. The improveme
we seek are twofold:~i! An upward shift in the magnitude o
the low-lying eigenvalues ofHw so as to decrease the co
dition number, and~ii ! a reduction in thedensityof low-lying
eigenvalues, so as to make the projection method of R
@19# more efficient. Furthermore, our aim is to produce
implementation of the overlap formalism that will perfor
efficiently on large-scale parallel computing architectur
On such architectures, the cost of internode communica
is typically high compared to the cost of intranode compu
tion. We therefore demand that our candidateH be no less
sparse than the Hermitian Wilson-Dirac operator, that is, p
sess at most nearest neighbor couplings.

II. FERMION ACTIONS

The continuum versionHc5g5@]”2(m/a)# of Hw has the
lower boundulminu>m/a sinceHc

252]” 21(m/a)2>(m/a)2.
Hence the near zero values of the lowest eigenvalues ofHw
on equilibrium backgrounds at currently accessibleb are a
result of the lattice discretization. Our aim is to shift th
lowest eigenvalues away from zero by makingHw , or more
specifically, the Wilson-Dirac operatorDw in Hw , more con-
tinuumlike. In the framework of nonperturbative improv
ment of lattice operators~see, e.g.,@20#!, O(a) lattice arti-
facts in Dw are removed by adding the clover term of Re
@21#. A simple heuristic argument for why this should b
beneficial in the present situation is the following. We wr
the Wilson-Dirac operator as

Dw5¹” 1
a

2
D, ~5!

where the naive lattice Dirac operator¹” and lattice Laplace
operatorD are given by

a¹”x,x8[a~gm¹m!x,x8

5
1

2 (
m

$gm@Um~x!dx1em ,x8

2Um
† ~x2em!dx2em ,x8#%, ~6!

a2Dx,x858dx,x82(
m

@Um~x!dx1em ,x8

1Um
† ~x2em!dx2em ,x8#. ~7!

The g matrices are chosen to be Hermitian, so¹” is anti-
Hermitian andD is Hermitian and positive. Define the op
eratorC by the relation

¹” 25¹21C ~8!
01450
d

-
i-

ts

f.

.
n
-

s-

.

~where ¹25(m¹m¹m). Then C5 1
4 @gm ,gn#@¹m ,¹n# is

;O(a) and coincides with the usual clover term~with coef-
ficient csw51, the tree level value! up to anO(a2) term.
Here and in the followingO(ap) denotes a lattice operato
whose leading term in a formal expansion in powers of
lattice spacing is; ap. Now, setting the parameterm in Hw
to its canonical valuem51 we have

Hw
2 5S Dw2

1

aD * S Dw2
1

aD
52¹” 22D1S a

2
D D 2

1
a

2
@D,¹” #1

1

a2
. ~9!

Straightforward calculations show thatD1¹2;O(a2) and
@D,¹” #;O(a); hence, by Eq.~8!, we have ¹” 21D5C
1O(a2). Hence we obtain the lower bound

Hw
2>

1

a2
2C2O~a2!5

1

a2
2O~a!. ~10!

Thus the lower bound 1/a2 on the continuum version ofHw
2

is spoiled in the lattice case by anO(a) term. If we now add
C to D in Eq. ~5!, i.e. replace

Dw→Dcw[¹” 1
a

2
~D1C! ~11!

we find

Hcw
2 5S Dcw2

1

aD * S Dcw2
1

aD
52¹” 22~D1C!1S a

2
~D1C! D 2

1
a

2
@D1C,¹” #1

1

a2

>
1

a2
2O~a2!. ~12!

Hence theO(a) term (2C) in Eq. ~10! has dropped out and
the continuum lower bound 1/a2 is now only spoiled by an
O(a2) term.

However, it is well-known that adding a clover term on
improves the chiral properties of the Wilson-Dirac opera
on smooth backgrounds, and that the localization of the
eigenvalues ofDcw is actuallyworsethan forDw on typical
gauge backgrounds generated in Monte Carlo simulati
@22–24#. This suggests that to further improve the chir
properties ofDcw we should consider smoothing the lattic
gauge field. In Ref.@23#, DeGrandet al. found that a signifi-
cant improvement in the chiral properties can be achieved
applying an APE smearing procedure@25–28# to the link
variables, leading to a fat link version ofDcw . ~The idea of
using fat links in fermion actions was first explored by t
MIT group @29#.! More recently, Zanottiet al.have shown in
@30# that such improvement can be achieved by smea
only the link variables appearing in the irrelevant operato
i.e. in the Wilson and clover terms. This has the advantag
1-2
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preserving the short distance quark interactions.~The idea of
using fat links in the irrelevant operators had been indep
dently suggested previously in Ref.@18#.!

Motivated by the preceding discussion, we compare
evaluation of the usual overlap Dirac operator with the o
erators obtained by replacingHw in the overlap formula of
Eq. ~1! with the following variants~the lattice spacing ha
been set to 1 unless specified otherwise!:

~i! Hermitian Wilson-Dirac operator with clover term:

Hcw~m,csw!5g5F¹” 1
1

2 S D2
csw

2
s•F D2mG , ~13!

where

smn5
1

2
@gm ,gn#, Fmn~x!5

1

2
@Cmn~x!2Cmn

† ~x!#,

~14!
c
g
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01450
n-

e
-

Cmn~x!5
1

4
@Umn~x!1U2nm~x!1Un2m~x!1U2m2n~x!#.

~15!

~ii ! Fat link Hermitian Wilson-Dirac operator, both with and
without clover term:

H fw~m,anape!5g5S ¹” 1
1

2
D (anape)2mD , ~16!

H fcw~m,csw,anape!5g5F¹” 1
1

2 S D (anape)

2
csw

2
s•F (anape)D2mG , ~17!

where APE-smearing is carried out on the individual links
the irrelevant operators by making the replacement
Um~x!→Um
(a)~x!5PS ~a21!Um~x!1

a

6 (
6nÞm

Un~x!Um~x1aen!Un
†~x1aem! D . ~18!
ef.

rth
al-

ld
in
nd
the
ce
HereP denotes projection of the RHS of Eq.~18! back to the
SU~3! gauge group. That is, each link is modified by repla
ing it with a combination of itself and the surroundin
staples to give a set of ‘‘fat links.’’ The means by which o
projects back to SU~3! is not unique. We choose an SU~3!
matrix Um

(a)(x) such that the gauge invariant measu
ReTr„Um

(a)(x)Xm
† (x)… is maximal, where Xm(x) is the

smeared link before projection, that is,Um
(a)(x)[PXm(x).

As the process of APE-smearing removes short-dista
physics, it is preferable to only smear the irrelevant ope
tors. Throughout this work ‘‘fat’’ means APE smearing
links in irrelevant terms only. Herea is the smearing fraction
andnape is the number of smearing sweeps~18! we perform.
As shown in @28#, we can effectively reduce the two
dimensional parameter space (a,nape) to a one-dimensiona
space that depends solely on the productanape, and this is
reflected in the notation in Eqs.~16!, ~17!.

Finally, as in@30#, we can perform tadpole or mean-fie
improvement~MFI! @31# to bring our links closer to unity.
This consists of updating each link with a division by t
mean link, which is the fourth root of the average plaque

u05 K 1

3
ReTrUmn~x!L

x,m,n

1/4

. ~19!

In the case ofHw andH fw , mean-field improvement ha
little effect, entering in only as a single power in both cas
For Hw , mean field improvement effectively changes t
value ofm and renormalizes the Wilson parameterr. In the
case ofH fw it has a similar effect but we have two mean lin
values, one for the untouched set of links and one for
smeared set. However,u0 enters in as the fourth power i
-

ce
-

,

.

e

front of the clover term, effectively raisingcsw towards its
nonperturbative value. Hence our final two variants ofHw
are the following.

~iii ! MFI clover Hermitian Wilson-Dirac operator, both
with and without fat links:

Hcl
mfi~m,csw!5g5F 1

u0
¹” 1

1

2 S 1

u0
D2

csw

2u0
4
s•F D 2mG ,

~20!

H fcl
mfi~m,csw,anape!5g5F 1

u0
¹” 1

1

2 S 1

u0
fl
D (anape)

2
csw

2~u0
fl!4

s•F (anape)D 2mG , ~21!

where we have differentiated the mean linku0 for the un-
touched links andu0

fl for the fat links. We refer to the MFI fat
clover action as the FLIC~fat-link irrelevant clover! action.
The FLIC action was recently introduced and studied in R
@30#. If followed by a number~e.g. FLIC12! this denotes the
number of APE-smearing sweeps~at a50.7) used in the
action.

Before proceeding to the numerical results it is wo
pointing out that the previous analytical results on the loc
ity @32# and continuum limit of the axial anomaly@33–36#
and index@37# of the overlap Dirac operator continue to ho
when Hw is replaced by any of the variants given above
the overlap formula. In the case of the axial anomaly a
index, this is essentially because the leading order term in
expansion of commutators of the covariant finite differen
1-3
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operators in powers of the lattice spacing is unchanged,
the variants ofHw all coincide withHw in the free field case
Regarding locality, the admissibility bounds of@18,32# on the
plaquette variables get modified somewhat when the dif
ent variants ofHw are used. In light of the heuristic argu
ments above and our numerical results below, we expect
it should be possible to derive improved~i.e., less restrictive!
bounds in these cases, although so far we have not been
to show this.

We also mention that more general variants of the ove
Dirac operator have been considered where one starts
an approximate solution to the Ginsparg-Wilson relation a
then gets an exact solution by substituting into the over
formula @38–42#.2 This has led to variants of the overla
action which are both easier to evaluate and more local t
the original. However, it is not clear whether such gene
operators will have the good topological properties of
standard overlap Dirac operator, namely exact zero-mo
with definite chirality in topologically nontrivial back
grounds,~cf. the counter-example of Chiu@43,44#!. This is
important in connection with the lattice implementation
the Witten-Veneziano formula for theh8 mass withGW fer-
mions@14#, since for the argument to work it is essential th
the would-be zero modes be exact zero modes.

III. SPECTRAL FLOW COMPARISON

In order to test the merits of each of our proposed actio
we first calculate the spectral flow of each of them to se
our reasoning regarding their low-lying spectra is val
From the quadratic form of the lower bounds as a function
m, and based upon results given in Ref.@45#, we expect there
to be some peak value ofm for which the gap around zero i
the largest. We calculated the flow of the lowest 15 eigenv
ues as a function ofm for an ensemble of 10 mean-fiel
improved Symanzik configurations atb54.38 and size 83

316. The following flow graphs allow us to see them value
for the biggest gap, and also allow us to compare the dif
ent actions. As we are interested in the magnitude of
low-lying values rather than their sign, we plotulu vs m.

We begin by examining the flow of the Wilson and clov
action in Fig. 1. We see the Wilson spectrum is very po
with a high density of very small eigenmodes and no g
away from zero. The addition of the clover term~at csw
51) provides some improvement, shifting the flow upwar
and moving the peak values towardsm51 as expected. The
presence of many small eigenmodes persists however
though their density is clearly reduced.

In Fig. 2 we examine the MFI clover and fat Wilson a
tions. Mean field improvement assists the basic clover ac
somewhat, spreading the spectrum upwards, although
lowest modes are not raised significantly. The mass valu
which the low-lying density is minimized has moved signi

2Specifically, if Dapprox is some approximate solution to theGW
relation thenA512Dapprox satisfiesA* A'1. An exact solutionD
to theGW relation, which is approximately equal toDapprox, is then
obtained via the overlap formula by settingD512(A/AA* A).
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cantly away fromm51.2 to aroundm50.6. As mentioned
earlier, essentially all MFI does in this case is to change
value ofcsw to 1.0/u0

3, pushing it towards its nonperturbativ
value. Modifying the Wilson action by smearing the irre
evant operators provides a considerable improvement. W
there are still some small modes present, their density
been greatly reduced, and the spectral flow now has a c
division between the isolated low-lying modes and t
modes where the spectral density becomes high, which
well separated from zero. Smearing was performed witha
50.7 andnape512 smearing sweeps.

Results for the fat clover and FLIC12 actions are sho
in Fig. 3. The spectral flow of the fat clover action clear
demonstrates the superiority of clover-improved actions. T
gap around zero is enhanced again over the fat Wilson
tion, and the number of isolated low-lying modes is sign
cantly reduced. As the fat links are already close to unity,
addition of mean field improvement only affects the fat c
ver flow slightly, raising the gap around zero a little an
spreading the eigenvalues upwards slightly also. The lo
lying density is again very good in this case and far supe
to that of the Wilson action.

To confirm our results we choose the Wilson action a
‘‘baseline’’ and compare it against the FLIC action~the best
of the alternative actions! on a larger, finer lattice, 123324 at
b54.60. This time we only use 4 smearing sweeps in
FLIC action since FLIC4 has less fattening and is the cho
used in actual simulations@30#. We see that the Wilson actio
benefits significantly from the smaller lattice spacing,
there is now a visible separation from zero before the mo
become dense. The FLIC action has the same character
as on the coarser lattice, but it now has a peak separatio
the dense modes from zero of around 0.45.~See Fig. 4.!

Additionally, we tested the dependence of the FLIC act
upon the amount of smearing done~see Fig. 5!. As stated in
@28#, we only effectively need to vary the productanape, so
we fix a at 0.7 and varynapebetween 0 and 12. We observ
that the initial 4–6 sweeps have a significant effect, but
yond 6 sweeps the effect is marginal, with the low lyin
density remaining roughly constant and the eigenvalues
ing compressed very slightly downwards.

We note that there are other suggestions to accelerate
computation of the sign function by using improved gau
actions@46,47#. Our analysis is already based on improv
gauge configurations and further improvements arising fr
the use of the fermion actions described herein are in a
tion to that of using improved gluon-field configurations~see
Fig. 6!. In particular, we use a 2-loop tadpole-improve
Luscher-Wiese action. While explicit tests have not been p
formed using the FLIC action and Iwasaki glue, th
‘‘smoothing’’ effect of APE-smearing the irrelevant operato
~which is responsible for the improved spectrum! does not
depend on the details of glue that is used. Hence the
provements observed in the following are expected to h
for Iwasaki glue as well.

IV. RESULTS

Having obtained some understanding of the low-lyi
spectra of the various actions via the flow diagrams, we n
1-4
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FIG. 1. Spectral flow of the
Wilson action~left! and the clover
action ~right! at b54.38.

FIG. 2. Spectral flow of the
MFI clover action ~left! and the
fat Wilson action ~right! at b
54.38.

FIG. 3. Spectral flow of the fat
clover action ~left! and FLIC12
action ~right! at b54.38.

FIG. 4. Spectral flow of the
Wilson action~left! and FLIC4 ac-
tion ~right! at b54.60.

FIG. 5. Dependence of the
FLIC spectrum at b54.60,m
51.35 ~left! and b54.38,m
51.45 ~right! on the number of
APE smearing sweeps.
014501-5
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FIG. 6. Condition numbers of
the various actions.~Top-left! Re-
sults forb54.38 with 5 projected
modes. ~Bottom-left! Results for
b54.38 with 15 projected modes
~Top-right! Results for b54.60
with 5 projected modes.~Bottom-
right! Results forb54.60 with 15
projected modes.
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turn to quantitative comparisons. First we examine the c
dition number,k, of the different actions as a function ofm.
We show below the condition numbers having projected
the lowest 5 eigenmodes and the lowest 15 eigenmode
the 2 lattices that we used. The points are the mean cond
numbers across the ensembles, and the error bars indica
minimum and maximum condition numbers, giving an id
of the variation ink. The smeared irrelevant-term action
here used 12 APE sweeps ata50.7 for the coarse lattice an
4 sweeps for the fine lattice. Some points are offset horiz
tally for clarity.

Two things are immediately noticeable. First, the smea
irrelevant-term actions are much better conditioned than
unsmeared actions, and second, the variation ofk between
configurations is less. It should be noted that the variati
~error bars! are displayed for all actions, but are smaller th
the plot symbol at some points of the fat clover and FL
lines. Projecting out an additional 10 eigenvalues has a
nificant effect on the unsmeared actions, but relatively li
effect on the smeared actions due to reduction in the num
of isolated low-lying values. In terms of condition numbe
the fat clover and FLIC actions are clearly and significan
superior to the other actions, with the FLIC action possess
a ~slight! edge over the fat clover which arises from the me
field improvement.

As the clover term is quite fast to evaluate, we discard
fat Wilson as a candidate action at this point as it is the le
well-conditioned of the smeared actions. Given the simila
between the clover-improved actions with and without me
field improvement, we focus on the MFI clover and FLI
actions. We now compare in detail the performance for th
actions: the Wilson, MFI clover and FLIC. To see how im
proving the condition number translates into a saving in
iterations, we calculated the number of multi-CG iteratio
required to evaluateDo once across the ensemble for each
01450
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these actions, using some typical simulation parameters.
number of modes we project out is determined by the sp
tral density at the highest mode. The spectral flow res
show that in each of the actions tested, past a certain p
the spectral density becomes very high and there is no c
putational benefit in projecting modes past this point. The
fore, we choose to stop projecting out modes when onl
marginal improvement in the condition number is gained
projecting out more eigenmodes.

The Wilson and MFI clover are tested using the 14th
der optimal rational polynomial~ORP! approximation@19#.
The improved condition number of the FLIC actions allow
us to use the 12th order polar decomposition, chosen to
a maximum deviation frome(x) of less than 1026 compared
to the 3.131025 of the 14th order ORP. TheN th order polar
decomposition is specified by

c050, ck5
1

N cos2S p

2N S k2
1

2D D ,

dk5tan2S p

2N
~k2 1

2 ! D . ~22!

Low-lying modes are projected out where necessary. T
sign function solution is calculated to a precision of 1026

across the fine ensemble and the coarse ensemble
above. The value ofm is chosen differently for each of th
actions to optimizek. Given the relative lack of improve
ment in using the MFI clover action compared to the Wilso
we discard it at this point and concentrate on comparing
Wilson and FLIC actions. As the results in Table I show, t
FLIC action is by far the best in terms of convergence with
1-6
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reduction in iterations compared to the Wilson action o
factor of between 1.9 and 2.4.

However, what is not clear from this is how the savings
iterations translates into the most important quantity, a s
ings in compute time. Shifting from a standard Wilson acti
to a partially smeared action means that we now have
sets of gauge fields, the standard and smeared links.
doubles the number of vector-multiplications needed, and
standard spin-projection trick@48# is no longer applicable
providing an additional factor of 2 in both the multiplication
needed and the communications needed. So, moving f
the Wilson action to the FLIC action costs us a factor of 4
vector multiplications and a factor of 2 in communication
plus the overhead for the clover term. On the other ha
evaluating the action ofeN(x) on a vector costsO(2N) vec-
tor multiplications in addition to the two evaluations of th
kernel, H. While vector multiplications form a significan
part of the cost of evaluatingH, they are not the only part
There is a relatively high cost of communication compa
to computation on the parallel architectures that we wish
use. It quickly becomes clear that the only real way to
how much of an improvement we have made is to do
actual calculation and compare the compute time neede

To test the actual speedup, we choose to calculate
low-lying eigenmodes ofHo

25Do
†Do for the two different

kernels, Wilson and FLIC. This calculation allows us
verify that both kernels give the appropriate spectral prop
ties @16#, and also allows us to calculate directly the relati
compute time needed to evaluateDo in each case. For the
Wilson action we used the 14th order rational polynom
approximation in the region which it is bounded by un
(0.025,uxu,1.918) and where the maximal deviation fro
e(x) is 3.131025. We used the mass parameterm51.65 and
projected out 15 eigenvalues. For the FLIC action, we
take advantage of the improved condition number with
reducing the accuracy of our approximation by using
polar decomposition at 12th order, which is sufficient to p
vide a maximal deviation of less than 3.131025. This saves
us a~small! amount of computation. To optimize the cond
tion number we choose to perform only 6 APE sweeps w
the mass parameter set tom51.45 and projecting out 10
eigenvalues. To minimize the computation needed, we im
ment individual pole convergence testing in our multi-C
routine. The first pole is considered converged in the
iteration according to the usual criterion based on the r
due, uur nuu,d, where we chosed51028. The convergence
criterion for the other poles is easily deduced by noting

TABLE I. Conjugate gradient~CG! iterations needed for a
single evaluation ofeN(x) using actual simulation parameters.

Action b Projections Mean Min Max

Wilson 4.38 15 219 188 253
4.60 15 202 190 212

MFI clover 4.38 15 200 178 240
FLIC12 4.38 10 92 89 100
FLIC6 4.38 10 90 86 101
FLIC4 4.60 15 109 106 112
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shifted polynomial structure of the residual,r n
i 5Pn@H2

1s( i )#r 05zn
sPn(H2)r 05zn

sr n . Then theith pole is consid-
ered converged if

uur nuuzn
s( i ),0.13d, ~23!

wherezn
s( i ) is defined as in Eq.~2.44! of Ref. @17#. We have

tested this convergence criterion by calculating individu
residues and found it to be numerically very safe, and als
save significant amounts of computation. We consider the
83316,b54.38 lattices. Computations are performed on
nodes of the Orion supercomputer~a Sun E420R cluste
comprised of 40 nodes!, with each node posessing 4 GB o
RAM, 16 MB of L2-cache, and 4 UltraSPARC II 450 MH
processors and with nodes are connected by Myrinet
working. The lowest 6 eigenmodes ofHo

2 are calculated on
each configuration using the Ritz functional method@49#. We
measure the compute time spent in each of the different p
of the ‘‘inner-CG’’ calculation, with the following results.

The results show that using the FLIC action as the ker
in the overlap formalism provides a savings of a factor of 1
in actual compute-time spent in evaluating the overlap ac
~see Table II!. This is easily understood by first observin
that the time spent in the fermion matrix multiplication co
stitutes less than half of the compute time spent in the in
CG inversion. Secondly, we have only paid a factor of 2
compute time moving from the Wilson action to the FLI
action, not the potential factor of 4. This is because the ti
spent in communication and performing theg matrix algebra
is not negligible when compared to the time spent in p
forming the gauge field multiplications. Finally, as the im
proved condition number of the FLIC kernel allows us to u
the 12th order polar decomposition, we expend less effort
iteration in the CG component of the sign function evalu
tion. This is because the number of unconverged poles
iteration is reduced, as demonstrated in Table III.

These facts mean that the overall compute time per in
CG iteration increases by only 15% when moving to t
FLIC kernel, and hence the savings of 55% in the total nu
ber of inner CG iterations needed translates into a saving
compute time. Thus we have shown that the FLIC action
numerically superior to the Wilson action as an overlap k
nel. What has not been answered is what, if any, are
differences in physical properties ofDo using the different
kernels. For example, overlap fermions are free ofO(a) er-
rors irrespective of the choice of kernel, but in general m
have differentO(a2) errors. This will be addressed in futur
work.

TABLE II. Actual compute time spent in the various parts of th
algorithm.

Code portion Wilson FLIC6

1 kernel-vector evaluation~H! 0.022 sec 0.037 sec
1 multi-CG iteration~including H! 0.133 sec 0.154 sec
1 multi-CG iteration~excluding H! 0.089 sec 0.079 sec
1 overlap-vector evaluation 25.52 sec 13.67 se
1-7
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V. CONCLUSION

Practical implementations of the overlap-Dirac opera
use a sum over poles to approximate the matrix sign fu
tion. These approximations are evaluated using an itera
conjugate gradient routine. As each iteration requires ab
twice as much computational effort to evaluate as a sin
evaluation ofHw , reducing the number of iterations need
is the most direct way of reducing the expense of the ove
formalism. To succeed in this, we select an overlap ker
with an improved condition number motivated by analy
arguments. From the six candidate actions tested, the F
action has the best convergence properties, requiring fe

TABLE III. Breakdown of the mean convergence for each of t
poles.

Pole Wilson FLIC6 Pole Wilson FLIC6

1 188221
132 8526

111 8 5523
14 1921

11

2 188221
132 8224

110 9 3922
12 1421

11

3 188221
132 6524

16 10 2822
11 1020

11

4 188221
131 5022

14 11 1921
12 721

10

5 161213
115 3922

13 12 1421
10 420

10

6 11628
17 3122

12 13 921
10

7 8025
15 2421

12 14 520
11
.

ys

ys

n,
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low-lying projections than the Wilson action and providing
savings in iterations by about a factor of 2. This savings
iterations translates almost directly into a savings in com
tation time. We restate that only the irrelevant operators
smeared, and that minimal smearing is required, 6 sweep
a50.7 for b54.38,a50.165(2) or 4 sweeps ata50.7 for
b54.60,a50.125(2). As theFLIC action has only neares
neighbor couplings, it is well suited to calculations on high
parallel machines. We recognize that there will be so
implementation dependence in our compute-time results,
believe that this dependence will be sufficently small that
groups who wish to perform overlap calculations will bene
in moving from the Wilson to the FLIC kernel. As we hav
concluded that the FLIC action is a numerically super
kernel, we can proceed to investigate the dependence o
overlap action’s physical properties on the kernel action.
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