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Numerical evaluation of the overlap Dirac operator is difficult since it contains the sign furegtity) of
the Hermitian Wilson-Dirac operatdt,, with a negative mass term. The problems are dud jdaving very
small eigenvalues on the equilibrium background configurations generated in current day Monte Carlo simu-
lations. Since these are a consequence of the lattice discretization and do not occur in the continuum version of
the operator, we investigate in this paper to what extent the numerical evaluation of the overlap can be
accelerated by making the Wilson-Dirac operator more continuum-like. Specifically, we study the effect of
including the clover term in the Wilson-Dirac operator and smearing the link variables in the irrelevant terms.
In doing so, we have obtained a factor of 2 speedup by moving from the Wilson action to a fat link irrelevant
clover action as the overlap kernel.

DOI: 10.1103/PhysRevD.66.014501 PACS nuniberll.15.Ha, 12.38.Gc

I. INTRODUCTION nomial approximation is difficult due to the discontinuity at
the origin of the matrix sign functioa(H). Practical meth-
The overlap formalisni1—4] leads, in the vector case, to ods have been developed in whiefH) is approximated by
a lattice formulation of QCD based on the overlap Diraca sum over polesy(H), using either the so-called polar
operator{5], given (in the massless casby decomposition or the optimal rational polynomial approxi-
mation[15,16], both of which take the form

1 H
DO 2a[1+’)/5€(HW)]1 G(H) \/mv (1) N
Ck
. . eN<H>=H(co+Z —. 4
(a=lattice spacing) where k=1 H +d
m . . . . . .
Hw=¥s| Dw— "k (2)  The two approximations only differ in their choice of coef-

ficients{cgy,cy,d,}, and both are evaluatéthdirectly) using

a multishift conjugate gradiedtCG) matrix inverter[17] to
calculate their action on a vector. This is an iterative proce-
dure where each iteration requires one evaluation of the ma-
trix operatorH? acting on a vectofi.e. two evaluations of
H), and the number of iterations required to reach a given
solution precision is proportional to the condition number of

is a Hermitian operator constructed from the Wilson-Dirac
operatorD,, [6] with m being a tuning parametéiThe free
field propagator oD, has the correct continuum limit and is
free of doublers when€@m<2. Because of its origin in the
overlap formalism,D, has good chiral propertig<’]; this
can also be seen from the fact that it satisfij@$ the

Ginsparg-Wilson relatiofio] H, k(H)=|\ max/Aminl» Which is the ratio of the largest eigen-
value ofH to the smallest eigenvalyé6].
ysD+ D ys=2aDysD. 3) Triangle inequalities lead to an upper boudd] given by

[N mad=<(8—m)/a for the operatoH,, in Eqg. (2). The lower
Lattice Dirac operators satisfying this relation have an exacthound|\ ;| can be zero though. The lattice gauge fields for
lattice-deformed chiral symmetiji0], can have exact zero Wwhich \,,;,=0 form a subspace of measure zero in the space
modes with definite chirality11], as well as the absence of of all lattice gauge fields, so it is exceedingly unlikely that
mass renormalization and other promising theoretical propone would ever encounter them in a numerical simulation.
erties[12—14. However, our practical experience is that,.J=<8 while

The nice theoretical properties of the overlap Dirac operal\mir| is often as small as I6. This results in an unaccept-

tor come at a price: numerical evaluation of it via the poly-ably large value for the condition numbe(H). There is a

way to get around this problem thoudt9]. The typical

spectrum ofH,, is characterized by a handful of isolated

*Electronic address: wkamleh@physics.adelaide.edu.au low-lying eigenmodes, so one can project these out and deal
TElectronic address: adams@phy.duke.edu with them explicitly. The condition number for the remaining
*Electronic address: dleinweb@physics.adelaide.edu.au part of the spectrum is then small enough that the approxi-
SElectronic address: awilliam@physics.adelaide.edu.au mation in Eq.(4) becomes feasible. In practical simulations,
We are assuming that the Wilson parameter has been set to i&fter projecting out the isolated low-lying modesy(H,,)
canonical valug =1. takes roughly speakin®(100—300) iterations to converge
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for N~ 14, meaning that overlap fermions with the standardwhere szEﬂVMVIL). Then C= %[yﬂ,y,,][vﬂ V1 is

H,, are abouD(200-600) times more expensive than stan- ~O(a) and coincides with the usual clover tefmith coef-

dard Wilson fermions. ficient ¢, =1, the tree level valyeup to anO(a?) term.

Obviously it is desirable to improve upon this situation in Here and in the followingd(aP) denotes a lattice operator

order to make simulations with overlap fermions more fea-whose leading term in a formal expansion in powers of the

sible. In this paper we investigate ways to do this by modidattice spacing is~ aP. Now, setting the parametenin H,,

fying the operatoH,, in the overlap formula in Eq(l) so  to its canonical valuen=1 we have

that its spectral properties are improved. The improvements

we seek are twofoldi) An upward shift in the magnitude of 1)*( 1
. . Dy—=| |Dy— =

the low-lying eigenvalues dfi,, so as to decrease the con- Y a Y a

dition number, andii) a reduction in thelensityof low-lying

eigenvalues, so as to make the projection method of Ref.

[19] more efficient. Furthermore, our aim is to produce an

implementation of the overlap formalism that will perform

efficiently on large-scale parallel computing architecturesStraightforward calculations show that+ V?~0(a?) and

On such architectures, the cost of internode communicatiopA | ¥]~0(a); hence, by Eq.(8), we have Y?+A=C

is typically high compared to the cost of intranode computa-+ O(a?). Hence we obtain the lower bound

tion. We therefore demand that our candidbitdoe no less

sparse than the Hermitian Wilson-Dirac operator, that is, pos- 5 1

sess at most nearest neighbor couplings. Hy= 2 C-0(a%)= 2 O(a). (10

H2=

=-V?-A+

a )2 a 1

Il. FERMION ACTIONS Thus the lower bound &f on the continuum version d2

The continuum versiohl .= ys[ 4— (m/a) ] of H,, has the is spoiled in the Ia_ttice case by &a) term. If we now add
lower bound|\ | =m/a sinceH2= — 2+ (m/a)?=(m/a)2.  C 10 A in Eq.(5), i.e. replace
Hence the near zero values of the lowest eigenvalue$,of a
on equilibrium backgrounds at currently accessiBlare a Dy—Dn=Y+ =(A+C) (11
result of the lattice discretization. Our aim is to shift the 2
lowest eigenvalues away from zero by makidg, or more
specifically, the Wilson-Dirac operat@,, in H,,, more con-
tinuumlike. In the framework of nonperturbative improve- 1\ * 1
ment of lattice operatorésee, e.g.[20]), O(a) lattice arti- H§W=(DCW— —) (DCW— —
facts inD,, are removed by adding the clover term of Ref. a a
[21]. A simple heuristic argument for why this should be
beneficial in the present situation is the following. We write =—Y2-(A+C)+
the Wilson-Dirac operator as

we find

2

aAC aACV !
§(+)+§[+,]+;

a 1
Du=V+3A, 5 zg—O(az). (12)

where the naive lattice Dirac operatérand lattice Laplace

operatorA are given by Hence theD(a) term (—C) in Eq. (10) has dropped out and

the continuum lower bound 47 is now only spoiled by an

aVex=a(y"V,)xx O(a% term. |
’ ’ However, it is well-known that adding a clover term only

1 improves the chiral properties of the Wilson-Dirac operator
2 2}:« {7ulU (%) 5><+e#vX’ on smooth backgrounds, and that the localization of the real
eigenvalues oD, is actuallyworsethan forD,, on typical
—UL(X—eu)fo—e#,x']}- (6) gauge backgrounds generated in Monte Carlo simulations

[22-24. This suggests that to further improve the chiral
properties ofD, we should consider smoothing the lattice

@20y =88, — 2, [U,(x) Oxte, ! gauge field. In Ref[23], DeGrandet al. found that a signifi-
. cant improvement in the chiral properties can be achieved by
+UL(X—G#)5x7e « ] (7 applying an APE smearing procedu25-2§ to the link
- variables, leading to a fat link version 6f,,. (The idea of
The y matrices are chosen to be Hermitian, Bois anti-  using fat links in fermion actions was first explored by the
Hermitian andA is Hermitian and positive. Define the op- MIT group[29].) More recently, Zanottet al. have shown in
eratorC by the relation [30] that such improvement can be achieved by smearing
only the link variables appearing in the irrelevant operators,
V2=V?+C (8) i.e. in the Wilson and clover terms. This has the advantage of
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preserving the short distance quark interactidibe idea of 1

using fat links in the irrelevant operators had been indepen<C,(X)= 7[U,,(X)+U_,,(x)+U,_,()+U_,_,(x)].

dently suggested previously in R¢i.8].) (15)
Motivated by the preceding discussion, we compare the

evaluation of the usual overlap Dirac operator with the op<(ii) Fat link Hermitian Wilson-Dirac operator, both with and

erators obtained by replacirtd,, in the overlap formula of without clover term

Eqg. (1) with the following variants(the lattice spacing has

been set to 1 unless specified otheryise _ 1 (angd
(i) Hermitian Wilson-Dirac operator with clover term Hiw(M, aNapg 75( v+ gA we—mi, (16)
1
e s =7 T+ 3( 3= o F|-m|, (19 i, Cay M = 75| 5| A7)
where Can
— 70-. F(“nape) -m|, (17)

1 1
e = — — T
Tuwr™ 3 [Vl FunlX) 2 [CunX)=Cu¥)], where APE-smearing is carried out on the individual links in

(14)  the irrelevant operators by making the replacement

o
U,00—=URP0=P (a= DU+ 5 X U (U, (x+ae)U (x+ae,) | (18)
vE u

HereP denotes projection of the RHS of EG.8) back to the  front of the clover term, effectively raising,,, towards its
SU(3) gauge group. That is, each link is modified by replac-nonperturbative value. Hence our final two variantsHyf
ing it with a combination of itself and the surrounding are the following.

staples to give a set of “fat links.” The means by which one  (jii) MFI clover Hermitian Wilson-Dirac operator, both
projects back to S(B) is not unique. We choose an 8)  with and without fat links

matrix Ulf"(x) such that the gauge invariant measure

ReT(U{Y(x)X](x)) is maximal, where X,(x) is the - 11 Cow
smeared link before projection, that |Bl(“)(x) PX (). He (M, Csn) =75 u_OW > UOA_ZO- F
As the process of APE-smearing removes short distance (20)
physics, it is preferable to only smear the irrelevant opera-
tors. Throughout this work “fat” means APE smearing of
links in irrelevant terms only. Here is the smearing fraction
andngpeis the number of smearing swee(d$) we perform.

As shown in[28], we can effectively reduce the two-
dimensional parameter space,(,,9 to a one-dimensional Csw
space that depends solely on the produst,., and this is 2( )4
reflected in the notation in Eq§l6), (17).

Finally, as in[30], we can perform tadpole or mean-field
improvement(MFI) [31] to bring our links closer to unity.
This consists of updating each link with a division by the
mean link, which is the fourth root of the average plaquette

1
Y7 + J — Al@Napd

Uog

fcI (m CSW!anape) 75

F(anapé) , (2D

where we have differentiated the mean link for the un-
touched links andif} for the fat links. We refer to the MFI fat
clover action as the FLICfat-link irrelevant clover action.
The FLIC action was recently introduced and studied in Ref.

1 14 [30]. If followed by a numbefe.g. FLIC12 this denotes the
uo=<—ReTrU,w(x)> ) (19  humber of APE-smearing sweeyfat «=0.7) used in the
3 X, <V action.

Before proceeding to the numerical results it is worth
In the case oH,, andHy, , mean-field improvement has pointing out that the previous analytical results on the local-
little effect, entering in only as a single power in both casesity [32] and continuum limit of the axial anoma[\33—36
For H,,, mean field improvement effectively changes theand indeX37] of the overlap Dirac operator continue to hold
value ofm and renormalizes the Wilson parametetn the ~ whenH,, is replaced by any of the variants given above in
case ofHy, it has a similar effect but we have two mean link the overlap formula. In the case of the axial anomaly and
values, one for the untouched set of links and one for théndex, this is essentially because the leading order term in the
smeared set. Howeveu, enters in as the fourth power in expansion of commutators of the covariant finite difference
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operators in powers of the lattice spacing is unchanged, ancantly away fromm=1.2 to aroundm=0.6. As mentioned
the variants oH,, all coincide withH,, in the free field case. earlier, essentially all MFI does in this case is to change the
Regarding locality, the admissibility bounds[dB,32 on the  value ofcg, to 1.003, pushing it towards its nonperturbative
plaguette variables get modified somewhat when the differvalue. Modifying the Wilson action by smearing the irrel-
ent variants ofH,, are used. In light of the heuristic argu- evant operators provides a considerable improvement. While
ments above and our numerical results below, we expect thafiere are still some small modes present, their density has
it should be possible to derive improvéice., less restrictive ~ Peen greatly reduced, and the spectral flow now has a clear
bounds in these cases, although so far we have not been af§l&vision between the isolated low-lying modes and the
to show this. modes where the spectral density becomes high, which are
We also mention that more general variants of the overlapvell separated from zero. Smearing was performed with
Dirac operator have been considered where one starts witi 0.7 andngps=12 smearing sweeps.
an approximate solution to the Ginsparg-Wilson relation and Results for the fat clover and FLIC12 actions are shown
then gets an exact solution by substituting into the overlapn Fig. 3. The spectral flow of the fat clover action clearly
formula [38—42.2 This has led to variants of the overlap demonstrates the superiority of clover-improved actions. The
action which are both easier to evaluate and more local thagiap around zero is enhanced again over the fat Wilson ac-
the original. However, it is not clear whether such generafion, and the number of isolated low-lying modes is signifi-
operators will have the good topological properties of thecantly reduced. As the fat links are already close to unity, the
standard overlap Dirac operator, namely exact zero-modegddition of mean field improvement only affects the fat clo-
with definite chirality in topologically nontrivial back- Ver flow slightly, raising the gap around zero a little and
grounds,(cf. the counter-example of Chi#3,44). This is  spreading the eigenvalues upwards slightly also. The low-
important in connection with the lattice implementation of lying density is again very good in this case and far superior
the Witten-Veneziano formula for thg’ mass withGW fer-  to that of the Wilson action.
mions[14], since for the argument to work it is essential that  To confirm our results we choose the Wilson action as a

the would-be zero modes be exact zero modes. “baseline” and compare it against the FLIC actitthe best
of the alternative action®n a larger, finer lattice, £X 24 at

B=4.60. This time we only use 4 smearing sweeps in the
lll. SPECTRAL FLOW COMPARISON FLIC action since FLIC4 has less fattening and is the choice
used in actual simulation80]. We see that the Wilson action
enefits significantly from the smaller lattice spacing, as
there is now a visible separation from zero before the modes
pecome dense. The FLIC action has the same characteristics
as on the coarser lattice, but it now has a peak separation of

In order to test the merits of each of our proposed action
we first calculate the spectral flow of each of them to see i
our reasoning regarding their low-lying spectra is valid.
From the quadratic form of the lower bounds as a function o
m, and based upon results given in Rdf], we expect there

to be some peak value af for which the gap around zero is theA%%r_lge rr:lodes ftront1 (zjetrho %f arougd 0‘&}?:%'_?6 .
the largest. We calculated the flow of the lowest 15 eigenval- iuonally, we tested tne dependence ot the action

ues as a function ofm for an ensemble of 10 mean-field YPON the amount of smearing dofgee Fig. 3. As stated in

; ; : ; _ ; 28], we only effectively need to vary the produen,,., S0
improved Symanzik configurations @=4.38 and size 8 [ . ape
X 16. The following flow graphs allow us to see timrevalue we fix a at 0.7 and vann,,e between 0 and 12. We observe

for the biggest gap, and also allow us to compare the differ'—[hat the initial 4—6 sweeps have a significant effect, but be-

ent actions. As we are interested in the magnitude of théfond_ 6 SWEEPS the effect is marginal, with t_he low lying
low-lying values rather than their sign, we plag vs m. density remaining roughly constant and the eigenvalues be-

We begin by examining the flow of the Wilson and clover ing compressed very slightly downward_s.
action in Fig. 1. We see the Wilson spectrum is very poor We note that there are other suggestions to accelerate the

with a high density of very small eigenmodes and no gar’)computation of the sign function by using improved gauge

away from zero. The addition of the clover terfat cq, actions[46,47]. Our analysis is already based on improved

— 1) provides some improvement, shifting the flow upwardsgauQe configurations and further improvements arising from

and moving the peak values towans=1 as expected. The the use of the fermion actions described herein are in addi-

presence of many small eigenmodes persists however a'ti_on to that of using improved gluon-field configuratioisee

though their density is clearly reduced ig. 6). In particular, we use a 2-loop tadpole-improved
In Fig. 2 we examine the MF| cIove.r and fat Wilson ac- Luscher-Wiese action. While explicit tests have not been per-

tions. Mean field improvement assists the basic clover actio{)ormed using the FLIC action and Iwasaki glue, the

somewhat, spreading the spectrum upwards, although tIl{gmoothmg effect of APE-smearing the irrelevant operators

lowest modes are not raised significantly. The mass value (}gh'Ch is responsible for the improved spectudoes not

; o e .. depend on the details of glue that is used. Hence the im-
which the low-lying density is minimized has moved signif provements observed in the following are expected to hold

for lwasaki glue as well.

2specifically, if D approx IS SOMeE approximate solution to ti&W IV. RESULTS
relation thenA=1—D 405 SatisfiesA* A~1. An exact solutiorD
to theGW relation, which is approximately equal B,proy. is then Having obtained some understanding of the low-lying
obtained via the overlap formula by settifbig=1— (A/A*A). spectra of the various actions via the flow diagrams, we now
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FIG. 1. Spectral flow of the
Wilson action(left) and the clover
action (right) at 3=4.38.

FIG. 2. Spectral flow of the
MFI clover action (left) and the
fat Wilson action (right) at g
=4.38.

FIG. 3. Spectral flow of the fat
clover action (left) and FLIC12
action(right) at 8=4.38.

FIG. 4. Spectral flow of the
Wilson action(left) and FLIC4 ac-
tion (right) at 3=4.60.

FIG. 5. Dependence of the
FLIC spectrum at 8=4.60m
=1.35 (left) and B=4.38m
=1.45 (right) on the number of
APE smearing sweeps.
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turn to quantitative comparisons. First we examine the conthese actions, using some typical simulation parameters. The
dition number , of the different actions as a function ot number of modes we project out is determined by the spec-
We show below the condition numbers having projected outral density at the highest mode. The spectral flow results
the lowest 5 eigenmodes and the lowest 15 eigenmodes ahow that in each of the actions tested, past a certain point
the 2 lattices that we used. The points are the mean conditiohe spectral density becomes very high and there is no com-
numbers across the ensembles, and the error bars indicate hatational benefit in projecting modes past this point. There-
minimum and maximum condition numbers, giving an ideafore, we choose to stop projecting out modes when only a
of the variation ink. The smeared irrelevant-term actions marginal improvement in the condition number is gained by
here used 12 APE sweepscat 0.7 for the coarse lattice and projecting out more eigenmodes.

4 sweeps for the fine lattice. Some points are offset horizon- The Wilson and MFI clover are tested using the 14th or-
tally for clarity. der optimal rational polynomialORP) approximation[19].

Two things are immediately noticeable. First, the smeared’he improved condition number of the FLIC actions allows
irrelevant-term actions are much better conditioned than thas to use the 12th order polar decomposition, chosen to give
unsmeared actions, and second, the variatior tletween a maximum deviation frone(x) of less than 10° compared
configurations is less. It should be noted that the variation$o the 3.2x 10> of the 14th order ORP. Thidth order polar
(error bar$ are displayed for all actions, but are smaller thandecomposition is specified by
the plot symbol at some points of the fat clover and FLIC
lines. Projecting out an additional 10 eigenvalues has a sig-
nificant effect on the unsmeared actions, but relatively little
effect on the smeared actions due to reduction in the number
of isolated low-lying values. In terms of condition number, N C052(
the fat clover and FLIC actions are clearly and significantly
superior to the other actions, with the FLIC action possessing
a(slight) edge over the fat clover which arises from the mean d=tarf
field improvement.

As the clover term is quite fast to evaluate, we discard the
fat Wilson as a candidate action at this point as it is the leastow-lying modes are projected out where necessary. The
well-conditioned of the smeared actions. Given the similaritysign function solution is calculated to a precision of %0
between the clover-improved actions with and without meanacross the fine ensemble and the coarse ensemble used
field improvement, we focus on the MFI clover and FLIC above. The value ofn is chosen differently for each of the
actions. We now compare in detail the performance for threactions to optimizex. Given the relative lack of improve-
actions: the Wilson, MFI clover and FLIC. To see how im- ment in using the MFI clover action compared to the Wilson,
proving the condition number translates into a saving in CGwve discard it at this point and concentrate on comparing the
iterations, we calculated the number of multi-CG iterationsWilson and FLIC actions. As the results in Table | show, the
required to evaluat®, once across the ensemble for each of FLIC action is by far the best in terms of convergence with a

COZO, Ck=

Z|:] -

3]

v K 1
il —5))- 22)
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TABLE I. Conjugate gradientCG) iterations needed for a TABLE Il. Actual compute time spent in the various parts of the

single evaluation o&y(x) using actual simulation parameters. algorithm.

Action B Projections Mean Min Max Code portion Wilson FLIC6

Wilson 4.38 15 219 188 253 1 kernel-vector evaluatiofH) 0.022 sec 0.037 sec
4.60 15 202 190 212 1 multi-CG iteration(including H) 0.133 sec 0.154 sec

MFI clover 4.38 15 200 178 240 1 multi-CG iteration(excluding B 0.089 sec 0.079 sec

FLIC12 4.38 10 92 89 100 1 overlap-vector evaluation 25.52 sec 13.67 sec

FLIC6 4.38 10 90 86 101

FLIC4 4.60 15 109 106 112

shifted polynomial structure of the residuarlinan[H2

; s N o . . .
reduction in iterations compared to the Wilson action of a:rg(glz:yr?\;fg;‘(; )To=¢nfn. Then theith pole is consid-
factor of between 1.9 and 2.4.

However, what is not clear from this is how the savings in (i)
iterations translates into the most important quantity, a sav- [Irall5™<0.1x6, (23
ings in compute time. Shifting from a standard Wilson action _
to a partially smeared action means that we now have twwhereg“‘n’(') is defined as in Eq.2.44) of Ref.[17]. We have
sets of gauge fields, the standard and smeared links. Thissted this convergence criterion by calculating individual
doubles the number of vector-multiplications needed, and theesidues and found it to be numerically very safe, and also to
standard spin-projection trick48] is no longer applicable, save significant amounts of computation. We consider the ten
providing an additional factor of 2 in both the multiplications 83X 16,8=4.38 lattices. Computations are performed on 4
needed and the communications needed. So, moving fromodes of the Orion supercomputéa Sun E420R cluster
the Wilson action to the FLIC action costs us a factor of 4 incomprised of 40 nodeswith each node posessing 4 GB of
vector multiplications and a factor of 2 in communications,RAM, 16 MB of L2-cache, and 4 UltraSPARC Il 450 MHz
plus the overhead for the clover term. On the other handprocessors and with nodes are connected by Myrinet net-
evaluating the action ofy(x) on a vector cost®(2N) vec-  working. The lowest 6 eigenmodes b‘fﬁ are calculated on
tor multiplications in addition to the two evaluations of the each configuration using the Ritz functional metti4g]. We
kernel, H. While vector multiplications form a significant measure the compute time spent in each of the different parts
part of the cost of evaluatingl, they are not the only part. of the “inner-CG” calculation, with the following results.
There is a relatively high cost of communication compared The results show that using the FLIC action as the kernel
to computation on the parallel architectures that we wish tdn the overlap formalism provides a savings of a factor of 1.9
use. It quickly becomes clear that the only real way to seén actual compute-time spent in evaluating the overlap action
how much of an improvement we have made is to do ar{see Table Ii. This is easily understood by first observing
actual calculation and compare the compute time needed. that the time spent in the fermion matrix multiplication con-

To test the actual speedup, we choose to calculate thetitutes less than half of the compute time spent in the inner
low-lying eigenmodes ngzDgDO for the two different CG inversion. Secondly, we have only paid a factor of 2 in
kernels, Wilson and FLIC. This calculation allows us to compute time moving from the Wilson action to the FLIC
verify that both kernels give the appropriate spectral properaction, not the potential factor of 4. This is because the time
ties[16], and also allows us to calculate directly the relativespent in communication and performing thenatrix algebra
compute time needed to evaluddg in each case. For the is not negligible when compared to the time spent in per-
Wilson action we used the 14th order rational polynomialforming the gauge field multiplications. Finally, as the im-
approximation in the region which it is bounded by unity proved condition number of the FLIC kernel allows us to use
(0.025<|x|<1.918) and where the maximal deviation from the 12th order polar decomposition, we expend less effort per
€(x) is 3.1 10 °. We used the mass parameter1.65 and iteration in the CG component of the sign function evalua-
projected out 15 eigenvalues. For the FLIC action, we cartion. This is because the number of unconverged poles per
take advantage of the improved condition number withoufteration is reduced, as demonstrated in Table III.
reducing the accuracy of our approximation by using the These facts mean that the overall compute time per inner
polar decomposition at 12th order, which is sufficient to pro-CG iteration increases by only 15% when moving to the
vide a maximal deviation of less than %107 °. This saves FLIC kernel, and hence the savings of 55% in the total num-
us a(small amount of computation. To optimize the condi- ber of inner CG iterations needed translates into a savings in
tion number we choose to perform only 6 APE sweeps withcompute time. Thus we have shown that the FLIC action is
the mass parameter set lo=1.45 and projecting out 10 numerically superior to the Wilson action as an overlap ker-
eigenvalues. To minimize the computation needed, we implerel. What has not been answered is what, if any, are the
ment individual pole convergence testing in our multi-CGdifferences in physical properties &f, using the different
routine. The first pole is considered converged in the nttkernels. For example, overlap fermions are fre€g&) er-
iteration according to the usual criterion based on the resirors irrespective of the choice of kernel, but in general may
due, ||r,||< 8, where we chos&=10"8. The convergence have differentO(a?) errors. This will be addressed in future
criterion for the other poles is easily deduced by noting thework.
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TABLE llI. Breakdown of the mean convergence for each of thelow-lying projections than the Wilson action and providing a

poles. savings in iterations by about a factor of 2. This savings in
iterations translates almost directly into a savings in compu-
Pole Wilson FLIC6 Pole Wilson FLIC6  tation time. We restate that only the irrelevant operators are
smeared, and that minimal smearing is required, 6 sweeps at
1 18832 85" ¢! 55'% 191 a=0.7 for 3=4.38a=0.165(2) or 4 sweeps ai=0.7 for
2 18832 82" 10 9 39'2 141 B=4.60a=0.1252). As theFLIC action has only nearest
3 188" 2 65 10 281 10°2 neighbor coup.lmgs, it is well sw_ted to calculauon; on highly
o L s I parallel machines. We recognize that there will be some
4 18875, 507 1 1971 -1 implementation dependence in our compute-time results, but
5 161713 393 12 1449 4+ believe that this dependence will be sufficently small that all
6 116'7 31+2 13 9*0 _groups_who wish to pe_rform overlap calculations will benefit
7 80'5 oqt2 14 541 in moving from the Wilson to the FLIC kernel. As we have
-5 -1 -0 concluded that the FLIC action is a numerically superior

kernel, we can proceed to investigate the dependence of the

overlap action’s physical properties on the kernel action.
V. CONCLUSION
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