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We present a systematical study of two-body and three-body charmless baryonicB decays. The branching

ratios for two-body modes are in general very small, typically less than 1026, except thatB(B2→pD̄22)

;131026. In general,B̄→ND̄.B̄→NN̄ due to the large coupling constant forSb→BD. For three-body

modes we focus on octet baryon final states. The leading three-dominated modes areB̄0→pn̄p2(r2),

np̄p1(r1) with a branching ratio of order 331026 for B̄0→pn̄p2 and 831026 for B̄0→pn̄r2. The

penguin-dominated decays with strangeness in the meson, e.g.,B2→pp̄K2(* ) and B̄0→pn̄K2(* ), nn̄K̄0(* ),

have appreciable rates and theNN̄ mass spectrum peaks at low mass. The penguin-dominated modes contain-

ing a strange baryon, e.g.,B̄0→S0p̄p1, S2n̄p1, have branching ratios of the order of (1 –4)31026. In

contrast, the decay rate ofB̄0→L p̄p1 is smaller. We explain why some of the charmless three-body final
states in which baryon-antibaryon pair production is accompanied by a meson have a larger rate than their
two-body counterparts: either the pole diagrams for the former have an antitriplet bottom baryon intermediate
state, which has a large coupling to theB meson and the nucleon, or they are dominated by the factorizable
externalW-emission process.

DOI: 10.1103/PhysRevD.66.014020 PACS number~s!: 13.25.Hw, 14.20.Pt
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I. INTRODUCTION

Inspired by the claim of the observation of the dec

modespp̄p6 and pp̄p1p2 in B decays by ARGUS@1# in
the late 1980s, baryonicB decays were studied extensive
around the early 1990s@2–13# with the focus on the tree
dominated two-body decay modes, e.g., the charmful dec

B→LcN̄, ScN̄, and charmless onesB→pp̄, LL̄. Up to
now, none of the two-body baryonicB decays have bee
observed@14,15#. Many of the earlier model predictions ar
too large compared to experiment. For example, the prev

limit on B̄0→pp̄,731026 set by CLEO@14# has been re-
cently pushed down to the level of 1.631026 by Belle @15#,
whereas the model predictions are either too large or mar
ally comparable to the experimental limit~see Table II be-
low!.

The penguin-induced charmless baryonicB decays such
as B̄→S p̄, SD̄ have been studied by Chernyak and Zh
nitsky @7# based on the QCD sum rule analysis. They o
tained the branching ratios of the order of (0.3–1.0)31025.
Experimentally, only the upper limits onB2→L p̄,
L p̄p1p2, D0p̄, pD̄22 (D̄22 being the antiparticle of
D11), andB̄0→L p̄p1 have been set.

As pointed out by Dunietz@16# and by Hou and Soni@17#,
the smallness of the two-body baryonic decayB→B1B̄2 has
to do with a straightforward Dalitz plot analysis~see Sec. IV
for a detailed discussion! or with the large energy release
Hou and Soni conjectured that in order to have larger ba
onic B decays, one has to reduce the energy release an
the same time allow for baryonic ingredients to be presen
0556-2821/2002/66~1!/014020~26!/$20.00 66 0140
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the final state. Under this argument, the three-body decay

example,B→rpn̄, will dominate over the two-body mode

B→pn̄ since the ejectedr meson in the former decay carrie
away much energy and the configuration is more favora
for baryon production because of reduced energy rele
compared to the latter@18#. This is in contrast to the mesoni
B decays where the two-body decay rate is generally com
rable to the three-body one. The large rate ofB0→D* 2pn̄

andB0→D* 2pp̄p1 observed by CLEO@19# indicates that
the decaysB→ baryons receive comparable contributio
from B̄→Lcp̄X andB̄→DNN̄8X, as originally advocated by
Dunietz@16#. A theoretical study of the decayB→D* pn̄ has
been carried out recently by Chuaet al. @20#. In @21# we have
shown explicitly that the three-body charmful decayB2

→Lcp̄p2(r2) has indeed a magnitude larger thanB̄0

→Lcp̄ as seen experimentally@22#. By the same token, it is
expected that for charmless baryonicB decays, B̄

→(p,r)B1B̄2 are the dominant modes induced by tree o
erators andB̄→(p,r)B1(s)B̄2 , B̄→K (* )B1B̄2 are the leading
modes induced by penguin diagrams. The recent first ob
vation of the penguin-dominated charmless baryonic de
B2→pp̄K2 by Belle@23# clearly indicates that it has a muc
larger rate than the two-body counterpartB̄0→pp̄. Of
course, this does not necessarily imply that the three-b
final stateB1B̄2M always has a branching ratio larger tha
the two-body oneB1B̄2. We shall examine under what cir
cumstance that the above argument holds.

In the present paper we will give a systematical study
two-body and three-body charmless baryonicB decays. The
©2002 The American Physical Society20-1
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factorizableW-exchange orW-annihilation contribution to
two-body decay modes is very small and hence negligi
For nonfactorizable contributions to two-body final stat
we will calculate the corresponding pole diagrams at the h
ron level. We will apply the bag model to evaluate t
baryon-baryon matrix elements and find that the bary
strange baryon weak transition is indeed dominated by p
guin operators. Branching ratios for two-body baryon
modes are found to be in general very small&O(1026)
except for the decays with aD resonance in the final state

The study of three-body baryonic decays is more com
cated. Though it in general receives factorizable contri
tions, some of them involve three-body matrix elements a
hence are not ready to evaluate. Therefore, pole diagr
still play an essential role. The baryonic decay with a vec
meson in the final state normally has a large rate wh
te
e
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-
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should be easily accessible by the existingB factories.
The layout of the present paper is organized as follows

Sec. II the issue of renormalization scheme and scale de
dence of Wilson coefficients is addressed. We then st
charmless two-body baryonicB decays in Sec. III and com
pare our results with the literature and experiment. In Sec
some important three-body modes are analyzed. Sectio
gives discussions and conclusions. A short summary of
relevant baryon wave functions and the bag model eva
tion of baryon-baryon matrix elements are presented in A
pendixes A and B.

II. HAMILTONIAN

The relevant effectiveDB51 weak Hamiltonian for had-
ronic charmlessB decays is
Heff~DB51!5
GF

A2
H VubVuq* @c1~m!O1

u~m!1c2~m!O2
u~m!#1VcbVcq* @c1~m!O1

c~m!1c2~m!O2
c~m!#

2VtbVtq* (
i 53

10

ci~m!Oi~m!J 1H.c., ~2.1!

whereq5d,s, and

O1
u5~ ūb!

V2A
~ q̄u!

V2A
, O2

u5~ ūabb!
V2A

~ q̄bua!
V2A

,

O1
c5~ c̄b!

V2A
~ q̄c!

V2A
, O2

c5~ c̄abb!
V2A

~ q̄bca!
V2A

,

O3(5)5~ q̄b!
V2A(

q8
~ q̄8q8!

V2A(V1A)
, O4(6)5~ q̄abb!

V2A(
q8

~ q̄b8qa8 !
V2A(V1A)

, ~2.2!

O7(9)5
3

2
~ q̄b!

V2A(
q8

eq8~ q̄8q8!
V1A(V2A)

, O8(10)5
3

2
~ q̄abb!

V2A(
q8

eq8~ q̄b8qa8 !
V1A(V2A)

,

to

el-
ma-

ecay
e
n
ac-

on.
with O3–O6 being the QCD penguin operators,O7–O10 the
electroweak penguin operators, and (q̄1q2)

V6A
[q̄1gm(1

6g5)q2. The scale dependent Wilson coefficients calcula
at next-to-leading order are renormalization scheme dep
dent. We use the next-to-leading Wilson coefficients eva
ated in the naive dimensional regularization scheme@24#

c151.082, c2520.185, c350.014,

c4520.035, c550.009, c6520.041,
~2.3!

c7 /a520.002, c8 /a50.054, c9 /a521.292,

c10/a50.263, cg520.143,

at m5m̄b(mb)54.40 GeV forLMS
(5)

5225 MeV taken from
Table XXII of @24# with a being an electromagnetic fine
structure coupling constant. In order to ensure that the ph
d
n-
-

i-

cal amplitude is renormalization scale andg5-scheme inde-
pendent, we include vertex and penguin corrections
hadronic matrix elements of four-quark operators@25,26#.
This amounts to modifyingci(m)→ci

eff and

( ci~m!^Qi~m!&5( ci
eff^Qi&VIA , ~2.4!

where the subscript VIA means that the hadronic matrix
ement is evaluated under the vacuum insertion approxi
tion. Numerical results forci

eff are shown in Table I~for
details, see@25#!. It should be stressed thatci

eff are renormal-
ization scale and scheme independent. For the mesonic d
B→M1M2 with two mesons in the final state, two of th
four quarks involved in the vertex diagrams will form a
ejected meson. In this case, it is necessary to take into
count the convolution with the ejected meson wave functi
0-2
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TABLE I. Numerical values of the effective Wilson coefficientsci
eff for b→s, b→d, andb̄→d̄ transitions

evaluated atm f5mb and k25mb
2/2 taken from Table I of@26#, where use ofuVub /Vcbu50.085 has been

made. The numerical results are insensitive to the unitarity angleg.

b→s, b̄→ s̄ b→d b̄→d̄

c1
eff 1.169 1.169 1.169

c2
eff 20.367 20.367 20.367

c3
eff 0.02271 i0.0045 0.02261 i0.0038 0.02301 i0.0051

c4
eff 20.04632 i0.0136 20.04602 i0.0114 20.04702 i0.0154

c5
eff 0.01341 i0.0045 0.01331 i0.0038 0.01371 i0.0051

c6
eff 20.06002 i0.0136 20.05972 i0.0114 20.06082 i0.0154

c7
eff/a 20.03092 i0.0367 20.03052 i0.0324 20.03262 i0.0403

c8
eff/a 0.070 0.070 0.070

c9
eff/a 21.4282 i0.0367 21.4282 i0.0324 21.4302 i0.0403

c10
eff/a 0.48 0.48 0.48
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The penguin matrix element of scalar and pseudosc
densities,^B1B̄2uq̄1(16g5)q2u0&, is usually evaluated by
applying the equation of motion and it is renormalizati
scale and scheme dependent. Since the factorization sca
set at m f5mb to obtain the effective Wilson coefficient
listed in Table I, we will therefore evaluate the penguin m
trix element of scalar and pseudoscalar densities at themb
scale.

For quark mixing matrix elements, we will us
uVub /Vcbu50.085 and the unitary angleg560°. In terms of
the Wolfenstein parametersA50.815 andl50.2205 we
have

r50.385 sing, h50.385 cosg, ~2.5!

wherer andh are the parameters in the Wolfenstein para
etrization@27# of the quark mixing matrix.

III. CHARMLESS TWO-BODY BARYONIC DECAYS

The charmlessB decays into two light baryons can b
classified into two categories: the ones induced by theb
→u tree transition, and the ones by theb→s penguin tran-

sition. The decay amplitude ofB→B1( 1
2

1)B̄2( 1
2

1) has the
form

A~B→B1B̄2!5ū1~A1Bg5!v2 , ~3.1!

whereA and B correspond top-wave parity-violating~PV!
ands-wave parity-conserving~PC! amplitudes, respectively
The decay rate is given by

G@B→B1~1/21!B̄2~1/21!#

5
pc

4p H uAu2
~mB1m11m2!2pc

2

~E11m1!~E21m2!mB
2

1uBu2
@~E11m1!~E21m2!1pc

2#2

~E11m1!~E21m2!mB
2 J , ~3.2!
01402
ar

is

-

-

wherepc is the c.m. momentum,Ei and mi are the energy
and mass of the baryonBi , respectively. For the decayB

→B1( 3
2

1)B̄2( 1
2

1) with a spin-32 baryon in the final state, the
general amplitude reads

A@B→B1~p1!B̄2~p2!#5 iqmū1
m~p1!~C1Dg5!v2~p2!,

~3.3!

whereum is the Rarita-Schwinger vector spinor for a spin3
2

particle,q5p12p2, andC, D correspond to parity-violating
p-wave and parity-conservingd-wave amplitudes, respec
tively. The corresponding decay rate is

G@B→B1~3/21!B̄2~1/21!#

5
pc

3

6p

1

m1
2 H uCu2

@~E11m1!~E21m2!1pc
2#2

~E11m1!~E21m2!mB
2

1uDu2
~mB1m11m2!2pc

2

~E11m1!~E21m2!mB
2J . ~3.4!

As shown in Fig. 1, the quark diagrams for two-body ba
onic B decays consist of internalW-emission diagram,b
→d(s) penguin transition,W-exchange for the neutralB me-
son andW-annihilation for the chargedB. Just as mesonicB
decays,W-exchange andW-annihilation are expected to b
helicity suppressed and the former is furthermore subjec
color suppression.1 In the language of the pole model, th
M (* )B1B̄2 form factor is expected to be largely suppressed

q25mB
2 . As estimated by@5,10,13#, the W-exchange or

W-annihilation contribution is very insignificant and hen
can be neglected. The tree-dominated decays, e.g.,B̄0

→pp̄, pD̄2 are mainly induced by the internalW-emission
via b→u transition, while penguin-dominated modes, e.

1In contrast,W-exchange plays an essential role in nonlepto
decays of baryons as it is no longer subject to color and heli
suppression.
0-3
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B2→L p̄, S0p̄ proceed throughb→s penguin transition.
These amplitudes are nonfactorizable and thus very diffi
to evaluate directly. This is the case in particular for baryo
which being made out of three quarks, in contrast to t
quarks for mesons, bring along several essential comp
tions. In order to circumvent this difficulty, it is customary
assume that the decay amplitude at the hadron level is d
nated by the pole diagrams with low-lying one-particle int
mediate states. More precisely, PC and PV amplitudes
dominated by1

2
1 ground-state intermediate states and1

2
2

low-lying baryon resonances, respectively@10#.2 This pole
model has been applied successfully to nonleptonic dec
of hyperons and charmed baryons@28,29#. In general, the
pole diagram leads to

A52(
Bb*

gB
b* →BB2

bB
b* B1

m12mB
b*

, B5(Bb

gBb→BB2
aBbB1

m12mBb

,

~3.5!

where

2Thes-channel meson pole states correspond to weak annihila
diagrams@see Fig. 1~b!#.

FIG. 1. Quark and pole diagrams forB̄→B1B̄2 where the sym-
bol d denotes the weak vertex.~a! corresponds to the nonfactoriz
able internalW emission or theb→d(s) penguin transition, while
~b! to the W-exchange contribution for the neutralB or
W-annihilation for the chargedB, or penguin-induced weak annih
lation.
01402
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^B1uHeff
PCuBb&5ūB1

aBbB1
uBb

,

^B1uHeff
PVuBb* &5 i ūB1

bB
b* B1

uB
b*

~3.6!

are PC and PV matrix elements, respectively.
Since the weak transition does not involve moment

transfer, it can be evaluated using the quark model. Conv
tionally, baryon matrix elements are evaluated using the
model or the harmonic oscillator model. In the present wo
we prefer to employ the MIT bag model@30# to compute the
weak baryon-baryon transition for several reasons. Firs
has been applied successfully to describe thep-wave ampli-
tudes of hyperon nonleptonic decays and it is much simp
than the harmonic oscillator model for computing the P
matrix elements. Second, it is relatively easy to incorpor
penguin operators in calculations. Third and most imp
tantly, the bag model calculation gives predictions consist
with experiment, whereas the calculated results based on
harmonic-oscillator model are too large compared to
data. This will be clearly demonstrated below when we d
cussB→pp̄ andpD̄.

However, it is known that the bag model is considerab
less successful for describing the physical noncharm
nonbottom1

2
2 resonances@30#, not mentioning the charm o

bottom 1
2

2 baryon states. Therefore, we will not evaluate t
PV matrix elementbB* B and the strong couplinggB

b* →BB2
as

their calculations in the bag model are much more involv
and are far more uncertain than the PC case@28#. Fortu-
nately, there are some decay modes that are purely pa
conserving within the framework of the3P0 quark-pair-
creation model to be mentioned shortly. Examples areB2

→np̄ and B̄→ND̄, which will be discussed below.
For strong couplings we will follow@10,31# to adopt the

3P0 quark-pair-creation model in which theqq̄ pair is cre-
ated from the vacuum with vacuum quantum numbers3P0.
We shall apply this model to estimate the relative stro
coupling strength and chooseugS

b
1→B̄0pu55 as a bench-

marked value for the absolute coupling strength~see below!.
Presumably, the3P0 model works in the nonperturbative low
energy regime. In contrast, in the perturbative high ene
region where perturbative QCD is applicable, it is expec
that the quark pair is created perturbatively via one glu
exchange with one-gluon quantum numbers3S1. Since the
light baryons produced in two-body baryonicB decays are
very energetic, it appears that the3S1 model may be more
relevant. However, in the present paper we adopt the3P0
model for quark pair creation for the following two reason
First, it is much simpler to estimate the relative strong co
pling strength in the3P0 model rather than in the3S1 model
where hard gluons arise from four different quark legs a
generally involve infrared problems. Second, this mode
presumably reliable for estimating theBbBB coupling when
all particles are on their mass shell. Of course, the interm
diate pole stateBb in the two-body baryonic decay is fa
from its mass shell~but not quite so in the three-body decay!.
In principle, one can treat the intermediate state as an
shell particle and then assume that off-shell effects of
n

0-4
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TABLE II. Predictions of the branching ratios for some charmless two-body baryonicB decays classified
into two categories: tree-dominated and penguin-dominated. In this work, some branching ratios den
‘‘†’’ are calculated only for the parity-conserving part. For comparison some other predictions in the lite
are also shown. We have normalized the branching ratios touVub /Vcbu50.085. The predictions given in@11#
are carried out in two different quark-pair-creation models: local and nonlocal. The line separates tre
penguin-dominated charmless baryonicB decays and experimental limits are taken from@14,15#.

Ref. @11#

Ref. @3# Ref. @7# Ref. @10# nonlocal local This work Expt.

B̄0→pp̄ 4.231026 1.231026 7.031026 2.931026 2.731025 1.131027† ,1.231026

B̄0→nn̄ 3.531027 7.031026 2.931026 2.731025 1.231027†

B2→np̄ 6.931027 1.731025 0 0 5.031027

B̄0→LL̄ 231027 0† ,1.031026

B2→pD̄22 1.531024 2.931027 3.231024 2.431026 8.731026 1.431026 ,1.531024

B̄0→pD̄2 731028 1.031024 1.031026 4.031026 4.331027

B2→nD̄2 1.131024 2.731027 131027 4.631027

B̄0→nD̄0 1.031024 1.031026 4.031026 4.331027

B2→L p̄ &331026 2.231027† ,2.231026

B̄0→Ln̄ 2.131027†

B̄0→S1p̄ 631026 1.831028†

B2→S0p̄ 331026 5.831028†

B2→S1D̄22 631026 2.031027

B̄0→S1D̄2 631026 6.331028

B2→S2D̄0 231026 6.731028
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pole can be parametrized in terms of form factors. Such fo
factors are basically unknown, though they are expecte
become smaller as the intermediate state is more away
its mass shell due to less overlap of initial and final had
wave functions. Since we are interested in the relat
strength of strong couplings rather than the absolute stren
it seems plausible to assume that the relative coup
strengths are essentially not affected by the off-shell extra
lation; that is, the strong form factors are assumed to
universal. We then use the experimental result forB2

→Lcp̄p2 to fix the absolute coupling strength ofgL
b
1→B̄0p

or gS
b
1→B̄0p @21#.3 In the future, it is important to carry ou

the more sophisticated pQCD analysis to gain a better un
standing of the underlying decay mechanism for baryoniB
decays.

At this point, we would like to stress that although w
employ the same pole-model framework as Jarfiet al. @10# to
discuss baryonicB decays, the calculational detail is diffe
ent. While Jarfiet al. evaluated baryon matrix elements
large momentum transfer and strong couplings at small tra
fer, we consider weak transition at zero transfer and str

3The nonresonant decayB2→Lcp̄p2 receives its main contribu
tions from Figs. 2~a! and 2~d! shown in Sec. IV~see@21#!. In the
pole model, the contribution of the former is governed by theLb

pole. Therefore, a measurement of the decay rate of this mode
ables us to determine the off-shell couplinggL

b
1→B̄0p . For details,

see@21#.
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couplings at large momentum transfer as elaborated bef
Another difference is related to the quark model evaluat
of baryon matrix elements: We employ the bag model rat
than the harmonic oscillator model.

For the reader’s convenience, in Table II we give a su
mary of the calculational results presented in Secs. III A a
III B below. For comparison, some other predictions in t
literature are shown in the same table.

A. Tree-dominated two-body decays

1. B̄0\pp̄

As discussed before, we can neglectW-exchange contri-
butions to B̄0→pp̄ and simply focus on the interna
W-emission which is manifested as the pole diagram at
hadron level with the low-lying intermediate statesSb

1(* )

@see Fig. 1~a!#. The PV and PC wave amplitudes read

A52
gS

b
1* →B̄0p bS

b*
1p

mp2mS
b*

, B5
gS

b
1→B̄0p aS

b
1p

mp2mSb

. ~3.7!

Neglecting penguin contributions to the matrix element d
to the smallness of penguin coefficients, we have

aS
b
1p5

GF

A2
VubVud* ~c1

eff2c2
eff!^puO1

PCuSb
1& ~3.8!

n-
0-5
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for the PC matrix element, whereO15(ūb)
V2A

(d̄u)
V2A

and

use has been made of^puO2uSb
1&52^puO1uSb

1&. The latter
relation holds because the combination of the four-quark
eratorsO11O2 is symmetric in color indices~more pre-
cisely, it is a color sextet! and hence it does not contribute
the baryon-baryon matrix element since the baryon-co
wave function is totally antisymmetric. In contrast, the o
erator O12O2 is a color antitriplet and has isospinI 5 1

2

because the diquarkud is isoscalar due to antisymmetriza
tion. The latter feature will lead to someDI 5 1

2 rule rela-
tions, see, for example, Eq.~3.26! below.

We shall employ the MIT bag model@30# to evaluate the
baryon matrix elements~see, e.g.,@28,29# for the method!.
From the Appendix of@21# or @28# we obtain the PC matrix
element

^puO1
PCuSb

1&526X~4p!, ~3.9!

where

X5E
0

R

r 2dr@uu~r !ub~r !1vu~r !vb~r !#

3@ud~r !uu~r !1vd~r !vu~r !# ~3.10!

is a four-quark overlap bag integral anduq(r ), vq(r ) are the
large and small components of the quark wave functions
the ground (1S1/2) state~see, for example,@21#!. As stressed
in passing, we will not evaluate the PV matrix elementbS

b* p

as its calculation in the bag model is much more involv
and considerably less reliable than the PC one.~However,
see @28,29# for the evaluation of PV matrix elements i
charmed baryon decays.! Numerically, we obtain

X51.5231024 GeV3. ~3.11!

Collecting everything together leads to

B~B̄0→pp̄!PC51.131027UgS
b
1→B̄0p

5
U2

, ~3.12!

and hence

B~B̄0→pp̄!&2.231027UgS
b
1→B̄0p

5
U2

, ~3.13!

where the upper limit corresponds toGPV/GPC51. There-
fore, the above result is consistent with the experimen
limit 1.231026 @15#.

We have chosenugS
b
1→B̄0pu55 as a benchmarked valu

for the strong coupling for two reasons. First, a calculat
based on the3P0 quark-pair-creation model yields a value
6–10 for this coupling@10#. Second, we have computed th
decayB2→Lcp̄p2 in @21#. A fit to the measured branchin
ratio for this mode implies a strong couplinggLb→B2p with
the strength in the vicinity of order 16. Using the relatio
ugLb→B2pu53A3/2ugS

b
1→B̄0pu derived from the3P0 quark-
01402
-

r
-

in

d

al

n

pair-creation model, it follows thatugS
b
1→B̄0pu;4.4, which is

close to the above-mentioned model estimate.
Note that a similar pole model calculation by Jarfiet al.

@10# yields a branching ratio of order 7.031025 after scaling
their original result ~see Table I of @10#! to uVub /Vcbu
50.085 and to the current world average ofB lifetimes @32#.
SinceGPV/GPC50.79 is obtained by the same authors, an
strong couplingugS

b
1→B̄0pu510 is used by them, it follows

that

B~B̄0→pp̄!PC
H.O.51.031026UgS

b
1→B̄0p

5
U2

~3.14!

is predicted by Jarfiet al. @10# using the harmonic oscillato
wave functions for baryons. Evidently, the estimate of the
matrix elementaS

b
1p in the harmonic oscillator model is

about three times as big as the one calculated in the
model.4

2. B̄0\nn̄, BÀ\np̄

The relevant intermediate states in the pole diagrams
the decaysB̄0→n n̄ andB2→np̄ areLb

(* ) andSb
0(* ) . Con-

sider the former decay first. The PV and PC wave amplitu
read

A52
gS

b
0* →B̄0n bS

b
0* n

mn2mS
b*

2
gL

b* →B̄0nbL
b* n

mn2mL
b*

,

~3.15!

B5
gS

b
0→B̄0naS

b
0n

mn2mSb

1
gLb→B̄0n aLbn

mn2mLb

.

Applying the bag model leads to the PC matrix elements

^nuO1
PCuSb

0&53A2X~4p!, ^nuO1
PCuLb&5A6X~4p!.

~3.16!

For strong couplings, the3P0 quark-pair-creation model im
plies @31#

gLb→B̄0n

gS
b
0→B̄0n

5
^Fn↑~124!F B̄0~35!uFL

b
↑~123!Fvac~45!&

^Fn↑~124!F B̄0~35!uFS
b
0↑~123!Fvac~45!&

,

~3.17!

where theF ’s are the spin-flavor wave functions and th
vacuum wave function has the expression

Fvac5
1

A3
~uū1dd̄1ss̄! ^

1

A2
~↑↓1↓↑ !. ~3.18!

4It is not clear to us how to make a direct comparison of our res
for aS

b
1p , which has a dimension of mass, with the numerical va

of aS
b
1p shown in Table II of@10# which seems to be dimensionles
0-6



e

s

ex

-
tro
t

de

e

ill
he

ate

e
y-
del

CHARMLESS EXCLUSIVE BARYONICB DECAYS PHYSICAL REVIEW D66, 014020 ~2002!
Using the baryon wave functions given in Eq.~A1! and theB
meson wave function

F B̄05bd̄^
1

A2
~↑↓2↓↑ !, ~3.19!

we obtain

gLb→B̄0n523A3gS
b
0→B̄0n . ~3.20!

Consequently,

B~B̄0→nn̄!52gS
b
0→B̄0nS 3A3aLbn

mn2mLb

2
aS

b
0n

mn2mSb

D .

~3.21!

Likewise, forB2→np̄ we have

B~B2→np̄!5gS
b
0→B̄0nS 3A3 aLbn

mp2mLb

1
aS

b
0n

mp2mSb

D ,

~3.22!

where use has been made of

gLb→B2p53A3gS
b
0→B̄0n , gS

b
0→B2p5gS

b
0→B̄0n .

~3.23!

Using the relations

gS
b
0→B̄0n52

1

A2
gS

b
1→B̄0p ~3.24!

and

aS
b
0n52

1

A2
aS

b
1p ~3.25!

derived from Eqs.~3.9! and ~3.16!, we find that B̄→NN̄
amplitudes satisfy theDI 51/2 relation@5,10#

A~B̄0→pp̄!2A~B̄0→nn̄!5A~B2→np̄!. ~3.26!

As mentioned before, thisDI 5 1
2 relation arises because th

weak operatorO12O2 has isospinI 5 1
2 .

From Eqs.~3.16!, ~3.21!, and ~3.22!, it is evident that
B2→np̄ has a larger rate thanB̄0→nn̄. In contrast, the QCD
sum rule analysis in@7# predicts thatG(B̄0→pp̄).G(B2

→np̄).G(B̄0→nn̄). Moreover, as pointed out in@5,10#, the
decay B2→np̄ is purely parity-conserving, namely, it
parity-violating amplitude vanishes provided that theqq̄ pair
is created from the vacuum. As pointed out by Ko¨rner @5#, if
the quark pair is created perturbatively via one gluon
change with one-gluon quantum number (3S1 model!, the
neutron inB2→np̄ will have a positive longitudinal polar
ization. Therefore, a polarization measurement of the neu
by studying its subsequent weak decay can be used to tes
3P0 and 3S1 quark-pair-creation models.
01402
-

n
the

We are ready to compute branching ratios and obtain

B~B̄0→nn̄!PC51.231027UgS
b
1→B̄0p

5
U2

,

~3.27!

B~B2→np̄!55.031027UgS
b
1→B̄0p

5
U2

.

3. B̄0\LL̄

Let us consider the PC amplitude ofB̄0→LL̄. In the pole
model it receives pole contributions from the antitripletJb

0

and sextetJb
08

B5
gJ

b
0→B̄0LaJ

b
0L

mL2mJb

1
gJ

b8
0→B̄0LaJ

b8
0L

mL2mJ
b8

. ~3.28!

Using the wave functions given in Appendix A, we obtain

^LuO1
PCuJb

0&522X~4p!,
~3.29!

^LuO1
PCuJb8

0&522A3X~4p!

for PC matrix elements, and

gJ
b
0→B̄0L52A3gJ

b8
0→B̄0L ~3.30!

for strong couplings. Then it is clear that the PC amplitu
vanishes as the mass difference betweenJb andJb8 is neg-
ligible. That is, this decay is purely parity violating in th
3P0 quark-pair-creation model as noticed by Ko¨rner @5# and
Jarfi et al. @10# some time ago. As noted in passing, we w
not compute the PV amplitude within the framework of t
bag model.

4. BÀ\pD̄ÀÀ, nD̄À, B̄0\pD̄À, nD̄0

The relevant pole diagram consists of the intermedi
statesSb

1(* ) for pD̄22, pD̄2 modes (D̄22 being the anti-

particle ofD11 and likewise for otherD̄ particles! andSb
0(* )

as well asLb
(* ) for nD̄2, nD̄0 final states. However, it is

straightforward to show that, in the3P0 quark-pair-creation
model, the strong coupling forLb→ND̄ vanishes and henc
the Lb pole makes no contribution. Moreover, the parit
violating part vanishes in the same quark-pair-creation mo
@5,10#. Therefore,
0-7
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D~B2→pD̄22!5
gS

b
1→B2D11aS

b
1p

mp2mSb

,

D~B2→nD̄2!5
gS

b
0→B2D1aS

b
0n

mn2mSb

,

~3.31!

D~B̄0→pD̄2!5
gS

b
1→B̄0D1 aS

b
1p

mp2mSb

,

D~B̄0→nD̄0!5
gS

b
0→B̄0D0aS

b
0n

mn2mSb

,

where the PC matrix elementsaS
b
1p and aS

b
0n have been

evaluated before. The relative strong couplings are

gS
b
1→B2D1152A3gS

b
1→B̄0D152A3/2gS

b
0→B̄0D0

5A3/2gS
b
0→B2D152A6 gS

b
1→B̄0p . ~3.32!

This together with the baryon matrix elements~3.9! and
~3.16! leads to the relation

G~B2→pD̄22!53G~B2→nD̄2!

53G~B̄0→pD̄2!53G~B̄0→nD̄0!, ~3.33!

as first pointed out by Jarfiet al. @10#. In the diquark model
of @11#, nD̄2 has a rate different frompD̄2 andnD̄0. Hence,
experimentally it is important to test the relation~3.33!.

If we apply Eq. ~3.32! and useugS
b
1→B̄0pu55, we will

obtain ugS
b
1→B2D11u524 andB(B2→pD̄22)55.831026.

Because of the strong decayD̄22→ p̄p2, the resonant con
tribution from D̄22 to the branching ratio ofpp̄p2 would
be 631026. This already exceeds the recent Belle measu
ment B(B2→pp̄p2)5(1.920.9

11.060.3)31026 or the upper

limit of B(B2→pp̄p2),3.731026 @23#. Therefore, the
coupling of theD to the B meson and the octet baryon
smaller than what is expected from Eq.~3.32! probably due
to the different off-shellness ofD. Recall that the parity-
conserving transition to theD corresponds to aL52 partial
wave. Therefore, the off-shell suppression on the three-p
coupling of Sb→BD is likely to be different from that of
Lb→BN. For definiteness, we will chooseugS

b
1→B2D11u

512 and obtain

B~B2→pD̄22!51.431026UgS
b
1→B2D11

12
U2

. ~3.34!

Thus this charmless decayB2→pD̄22 can have a large
branching ratio of order 1026 owing to the large coupling
constantgS

b
1→B2D11. In sharp contrast, this mode is pr

dicted to be only at the level of 331027 in the QCD sum
rule analysis@7# ~see also Table II!. The branching ratios o
01402
e-

nt

other modes can be calculated using Eq.~3.33! and are
shown in Table II. Experimentally, the decayB2→pD̄22

should be readily accessible byB factories BaBar and Belle

B. Penguin-dominated two-body decays

1. BÀ\Lp̄, B̄0\Ln̄

This decay receives internalW-emission andb→s pen-
guin contributions@see Fig. 1~a!#. As we shall see below, it is
a penguin-dominated mode. The pole diagram forB2→L p̄
consists of the intermediate statesLb

0(* ) andSb
0(* )

A52
gL

b* →B2pbL
b* L

mL2mL
b*

2
gS

b
0* →B2pbS

b
0* L

mL2mS
b*

,

~3.35!

B5
gLb→B2p aLbL

mL2mLb

1
gS

b
0→B2p aS

b
0L

mL2mSb

.

To evaluate the hadronic matrix elements, we notice that
combinations of the operatorsO2i 111O2i 12 ( i 50, . . . ,4)
are symmetric in color indices and hence they cannot c
tribute to the baryon-baryon matrix element. From this
can write the PC matrix elementaLbL as

aLbL5
GF

A2
$VubVus* ~c1

eff2c2
eff!^LuO1

PCuLb&

2VtbVts* @~c3
eff2c4

eff!^LuO3
PCuLb&1~c5

eff2c6
eff!

3^LuO5
PCuLb&1~c7

eff2c8
eff!^LuO7

PCuLb&

1~c9
eff2c10

eff!^LuO9
PCuLb&#%. ~3.36!

Since the bag model implies

^Lu~ s̄b!
V2A

~ d̄d!
V6A

uLb&PC5^Lu~ s̄b!
V2A

~ ūu!
V6A

uLb&PC,
~3.37!

the baryon matrix elements ofO3 andO9 can be related to
O1, while the matrix element ofO7 is related toO5, for
example,

^LuO3
PCuLb&5^Lu~ s̄b!

V2A
@~ ūu!

V2A
1~ d̄d!

V2A
#uLb&PC

522^LuO1
PCuLb&. ~3.38!

Hence, Eq.~3.36! can be recast as
0-8



in

tes

CHARMLESS EXCLUSIVE BARYONICB DECAYS PHYSICAL REVIEW D66, 014020 ~2002!
aLbL5
GF

A2
H FVubVus* ~c1

eff2c2
eff!2VtbVts*

3S 22c3
eff12c4

eff2
1

2
c9

eff1
1

2
c10

effD G^LuO1
PCuLb&

2VtbVts* S c5
eff2c6

eff1
1

2
c7

eff2
1

2
c8

effD
3^LuO5

PCuLb&J . ~3.39!

Likewise, the relation

^Lu~ s̄b!
V2A

~ d̄d!V6AuSb
0&PC52^Lu~ s̄b!

V2A
~ ūu!

V6A
uSb

0&PC

~3.40!

implied by the bag model leads to

aS
b
0L5

GF

A2
H FVubVus* ~c1

eff2c2
eff!

2VtbVts* S 2
3

2
c9

eff1
3

2
c10

effD G^LuO1
PCuSb

0&

2VtbVts* ~c7
eff2c8

eff!^LuO7
PCuSb

0&J . ~3.41!

Therefore, the PC matrix element for theSb
02L weak tran-

sition does not receive QCD penguin contributions.
Applying Eqs.~B2! and ~B5! we obtain

^LuO1
PCuLb&5

4

3
X1~4p!,

^LuO5
PCuLb&5

4

3
~2Y112Y22Y181Y28!~4p!,

~3.42!

^LuO1
PCuSb

0&52
1

A3
~X113X2!~4p!,

^LuO7
PCuSb

0&52A3

2
@Y11Y222~Y182Y28!#~4p!

in the bag model, where
01402
X15E
0

R

r 2dr@us~r !vu~r !2vs~r !uu~r !#

3@uu~r !vb~r !2vu~r !ub~r !#,

X25E
0

R

r 2dr@us~r !uu~r !1vs~r !vu~r !#

3@uu~r !ub~r !1vu~r !vb~r !#,

Y15E
0

R

r 2dr@us~r !vb~r !2vs~r !ub~r !#

3@uu~r !vu~r !2vu~r !uu~r !#,
~3.43!

Y185E
0

R

r 2dr@us~r !vb~r !1vs~r !ub~r !#

3@uu~r !vu~r !1vu~r !uu~r !#,

Y25E
0

R

r 2dr@us~r !ub~r !1vs~r !vb~r !#

3@uu~r !uu~r !1vu~r !vu~r !#,

Y285E
0

R

r 2dr@us~r !ub~r !2vs~r !vb~r !#

3@uu~r !uu~r !2vu~r !vu~r !#

are four-quark overlap bag integrals. Finally we arrive at

B~B2→L p̄!52
1

A2
gS

b
1→B̄0pS 3A3aLbL

mL2mLb

1
aS

b
0L

mL2mSb

D , ~3.44!

where use has been made of Eqs.~3.23! and ~3.24!.
The bag integrals have the values

X1524.631026 GeV3, X251.731024 GeV3,

Y150, Y1854.531025 GeV3, ~3.45!

Y251.731024 GeV3, Y2851.231024 GeV3.

It is easy to check thataLbL and hence the decay is pengu
dominated. For the branching ratio we find

B~B2→L p̄!PC52.231027UgS
b
1→B̄0p

5
U2

. ~3.46!

For B̄0→Ln̄, it has the same rate asB2→L p̄.

2. B̄0\S¿p̄

We consider the pole diagram with the intermediate sta
Sb

1(* )
0-9
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A52
gS

b
1* →B̄0pbS

b* p

mS2mS
b*

, B5
gS

b
1→B̄0paS

b
1S

mS2mS
b
1

. ~3.47!

The PC weak matrix element for theSb
12S1 transition

reads

aS
b
1S15

GF

A2
$@VubVus* ~c1

eff2c2
eff!2VtbVts*

3~2c3
eff1c4

eff2c9
eff1c10

eff!#^S1uO1
PCuSb

1&

2VtbVts* ~c5
eff2c6

eff1c7
eff2c8

eff!^S1uO5
PCuSb

1&%.

~3.48!

In the bag model,

^S1uO1
PCuSb

1&5
2

3
~X129X2!~4p!,

~3.49!

^S1uO5
PCuSb

1&5
2

3
@Y11Y214~Y182Y28!#~4p!.

We obtain numerically

B~B̄0→S1p̄!PC51.831028UgS
b
1→B̄0p

5
U2

. ~3.50!

Note that the branching ratio is predicted to be 531026 in
the QCD sum rule analysis of@7#, which is larger than our
result by two orders of magnitude~see Table II!.

3. BÀ\S0p̄

The intermediate low-lying pole states for this decay
Lb

0(* ) andSb
0(* )

A52
gL

b* →B2p bL
b* S0

mS2mL
b*

2
gS

b
0* →B2p bS

b
0* S0

mS2mS
b*

,

~3.51!

B5
gLb→B2p aLbS0

mS2mLb

1
gS

b
0→B2p aS

b
0S0

mS2mSb

.

The PC matrix elements are given by

aS
b
0S05

GF

A2
H FVubVus* ~c1

eff2c2
eff!2VtbVts*

3S 22c3
eff12c4

eff2
1

2
c9

eff1
1

2
c10

effD G^S0uO1
PCuSb&

2VtbVts* S c5
eff2c6

eff1
1

2
c7

eff2
1

2
c8

effD
3^S0uO5

PCuSb&J , ~3.52!

and
01402
e

aL
b
0S05

GF

A2
H FVubVus* ~c1

eff2c2
eff!2VtbVts*

3S 2
3

2
c9

eff1
3

2
c10

effD G^S0uO1
PCuLb

0&2VtbVts*

3~c7
eff2c8

eff!^S0uO7
PCuLb

0&J , ~3.53!

where in the bag model

^S0uO1
PCuLb&52

1

A3
~X113X2!~4p!,

^S0uO7
PCuLb&52A3

2
@Y11Y222~Y182Y28!#~4p!,

~3.54!

^S0uO1
PCuSb

0&5
1

3
~X129X2!~4p!,

^S0uO5
PCuSb

0&5
2

3
@Y11Y214~Y182Y28!#~4p!.

Hence,

B52
1

A2
gS

b
1→B̄0pS 3A3aLbS0

mS2mLb

1
aS

b
0S0

mS2mSb

D , ~3.55!

where use of Eqs.~3.23! and~3.24! for strong couplings has
been made. We obtain

B~B2→S0p̄!PC55.831028UgS
b
1→B̄0p

5
U2

. ~3.56!

Again, the QCD sum rule prediction for this mode is mu
higher @7#.

4. BÀ\S¿D̄ÀÀ, SÀD̄0, B̄0\S¿D̄À

As stated before, the decaysB2→S1D̄22, S2D̄0, B̄0

→S1D̄2 only receive parity-conserving contributions@5,10#
so that

D~B2→S1D̄22!5
gS

b
1→B2D11aS

b
1S1

mS2mSb

,

D~B̄0→S1D̄2!5
gS

b
1→B̄0D1aS

b
1S1

mS2mSb

, ~3.57!

D~B2→S2D̄0!5
gS

b
2→B2D0 aS

b
2S2

mS2mSb

.

The PC matrix elementaS
b
1S1 has been evaluated before an

aS
b
2S25aS

b
1S1. For strong couplings we get
0-10



o

on

e
on
r
e
a

an

rk
-

ic

ru

of

p
is
ha
t

th
n

tl

e-

ed

-

the

tion

-

fa-
rgy

the

y
ely
tur-
y,

on-

con-

the

-
t

dy
ove

ams

nal

ms
gs.

CHARMLESS EXCLUSIVE BARYONICB DECAYS PHYSICAL REVIEW D66, 014020 ~2002!
gS
b
1→D11B252A3gS

b
1→D1B̄05A3gS

b
2→D0B2

52A6gS
b
1→pB̄0, ~3.58!

in the 3P0 model. Collecting all the results gives

B~B2→S1D̄22!52.031027UgS
b
1→D11B2

12
U2

,

B~B̄0→S1D̄2!56.331028UgS
b
1→D11B2

12
U2

, ~3.59!

B~B2→S2D̄0!58.731028UgS
b
1→D11B2

12
U2

,

where we have followed the discussion ofB̄→ND̄ to choose
the couplingugS

b
1→D11B2u512 as a benchmarked value.

C. Comparison with other models

As discussed in passing, though we adopt the same p
model framework as Jarfiet al. @10# for describing two-body
baryonicB decays, a crucial difference is that weak bary
matrix elements are evaluated by Jarfiet al. at large momen-
tum transfer and strong couplings at small transfer, wher
the weak transition is computed at zero transfer and str
couplings at large momentum transfer in our case. In gene
the difference in numerical results shown in Table II com
mainly from the fact that we use the bag model rather th
the harmonic oscillator model to evaluate weak baryon tr
sitions.

In the following we compare our results with the diqua
model by Ball and Dosch@11# and the QCD sum rule analy
sis by Chernyak and Zhitnitsky@7# ~see also Table II!. For
B̄→NN̄ decays, the diquark model has one unique pred
tion, namely, there is noB2→np̄ decay, whilepp̄ and nn̄
final states have the same rates. In contrast, the sum
approach predicts thatG(B̄0→pp̄).G(B2→np̄).G(B̄0

→nn̄) ~see Table II!, while in our caseG(B2→np̄)
.G(B̄0→pp̄)'G(B̄0→nn̄). Therefore, a measurement
the relative rates ofB̄→NN̄ ~especiallyB2→np̄) will serve
to test the three models.

As for the tree-dominated modesB̄→ND̄, they are sup-
pressed in the diquark model because the operatorsO1 and
O2 can only generate scalar diquarks whereas the decu
baryons are made of a vector diquark and a quark. Likew
they are also suppressed in the sum rule analysis. In s
contrast, these modes have sizable branching ratios in
pole model, namely,G(B̄→ND̄).G(B̄→NN̄), owing to the
large coupling of the intermediate stateSb with theB meson
and theD resonance.

The penguin-dominated decays have smaller rates
B̄→pp̄ in the diquark model as the penguin operators are
included in the original calculations by Ball and Dosch~the
effect of the penguin operators in this model was recen
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discussed in@33#!. In contrast, the sum rule approach pr

dicts branching ratios of order (2 –6)31026 for B̄→L p̄,

S p̄, SD̄. In our work, the decay rates of penguin-dominat
decays are in general small.

In short, measurements of the relative rates ofB̄→NN̄,

S p̄, SD̄ will suffice to differentiate between the above
mentioned three models.

IV. CHARMLESS THREE-BODY BARYONIC DECAYS

As noted in the Introduction, the study and search of

three-body baryonicB decay B̄→B1B̄2M with M being a
meson are mainly motivated by the experimental observa

that B(B2→Lcp̄p2).B(B̄0→Lcp̄) @22# and B(B2

→pp̄K2).B(B̄0→pp̄) @23#. Theoretically, it has been ar
gued that the emitted mesonM in the three-body final state
carries away much energy and the configuration is more
vorable for baryon production because of reduced ene
release compared to the latter@18#. Roughly speaking, the
reason that the two-body baryonic decayB→B1B̄2 is smaller
than the mesonic counterpartB→M1M̄2 stems from the fact
that one needs an additional quark pair production in
internalW-emission diagram@Fig. 1~a!# and twoqq̄ pairs in
weak annihilation diagrams@Fig. 1~b!# in order to form a
baryon-antibaryon pair. Aqq̄ production is suppressed b
either a strong coupling when it is produced perturbativ
via one gluon exchange or by intrinsic softness of nonper
bative pair creation@17#. In the three-body baryonic deca
the emission of the mesonM will carry away energies in
such a way that the invariant mass ofB1B̄2 becomes smaller
and hence it is relatively easier to fragment into the bary
antibaryon pair.

One can also understand the above feature more
cretely by studying the Dalitz plot. Due to theV2A nature
of theb→udū process, the invariant mass of the diquarkud
peaks at the highest possible values in a Dalitz plot for
b→udd̄ transition~see@34# and footnote@91# in @35#!. If the
ud forms a nucleon, then the very massiveudq objects will
intend to form a highly excited baryon state such asD and
N* and will be seen asNnp(n>1) @16#. This explains the
nonobservation of theNN̄ final states and why the three
body modeNN̄p(r) is favored. Of course, this does no
necessarily imply that the three-body final stateB1B̄2M al-
ways has a larger rate than the two-body oneB1B̄2. In this
section we will study some leading charmless three-bo
baryonicB decays and see under what condition the ab
argument holds.

The quark diagrams and the corresponding pole diagr
for decays ofB mesons to the baryonic final stateB1B̄2M are
more complicated. In general there are two exter
W-diagrams, Figs. 2~a! and 2~b!, four internalW-emissions,
Figs. 2~c!–2~f!, and oneW-exchange, Fig. 2~g! for the neu-
tral B meson and oneW-annihilation, Fig. 2~h!, for the
chargedB. Because of space limitations, penguin diagra
are not drawn in Fig. 2; they can be obtained from Fi
0-11
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FIG. 2. Quark and pole diagrams for thre

body baryonicB decay B̄→B1B̄2M , where the
symbol d denotes the weak vertex.~a! and ~b!
correspond to factorizable externalW-emission
contributions,~c! and ~d! to factorizable internal
W-emission,~e! and ~f! to nonfactorizable inter-
nal W-emission,~g! to W-exchange, and~h! to
W-annihilation. Penguin contributions are ob
tained from~c!–~g! by replacing theb→u tree
transition by theb→s(d) penguin transition.
h-

w

2~c!–2~g! by replacing theb→u tree transition by theb
→s(d) penguin transition. Under the factorization hypot
esis, the relevant factorizable amplitudes are

Figs. 2~a!,2~c!: A}^M u~ q̄3q2!u0&^B1B̄2u~ q̄1b!uB&,

Figs. 2~b!,2~d!: A}^B1B̄2u~ q̄1q2!u0&^M u~ q̄3b!uB&, ~4.1!

Figs. 2~g!,2~h!: A}^B1B̄2M u~ q̄1q2!u0&^0u~ q̄3b!uB&.

Since the three-body matrix elements are basically unkno
only the factorizable amplitudes for Figs. 2~b! or 2~d! are
calculable in practice.
01402
n,

The tree-dominated three-body modes of interest are

B̄0→p1~r1!$np̄,LS̄2,S0S̄2,S2L̄,J2J̄0,

pD̄22, . . . %,

B̄0→p2~r2!$pn̄,S1L̄,S1S̄0,LS̄1,D11p̄, . . . %, ~4.2!

B2→p2~r2!$pp̄,nn̄,SS̄,LL̄,DD̄, . . . %,

while some interesting penguin-dominated decays are
0-12
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B̄0→p1~r1!$L p̄,S0p̄,S2n̄,J2L̄,S1D̄22, . . . %,

B2→p2~r2!$S1p̄,Ln̄,S0n̄,J0L̄,S1D̄2, . . . %,

B̄0→K2(* )$pn̄,S1L̄,S1S̄0,LS̄1,J0J̄1,D11p̄, . . . %,
~4.3!

B2→K2(* )$pp̄,nn̄,SS̄,LL̄,DD̄, . . . %,

B̄0→K̄0(* )$pp̄,nn̄,SS̄,LL̄,DD̄, . . . %,

B2→K̄0(* )$np̄,LS̄2,S0S̄2,S2L̄,pD̄22, . . . %.

In the present paper we will focus on octet baryon fin
states.

To evaluate the factorizable amplitude for Fig. 2~b! or
2~d! we need to know the octet baryon form factors defin
by

^B1~p1!B̄2~p2!u~V6A!mu0&

5ū1~p1!H f 1
B1B2~q2!gm1 i

f 2
B1B2~q2!

m11m2
smnqn

1
f 3
B1B2~q2!

m11m2
qm6Fg1

B1B2~q2!gm

1 i
g2

B1B2~q2!

m11m2
smnqn1

g3
B1B2~q2!

m11m2
qmGg5J

3v2~p2!, ~4.4!

where q5p11p2. For octet baryons one can apply SU~3!

symmetry to relate the vector form factorsf i
B1B2 to the

nucleon magnetic and electric form factors. In general, SU~3!
symmetry implies

f i
B1B2~q2!5dB1B 2Di

V~q2!1 f B1B 2Fi
V~q2!,

~4.5!
gi

B1B2~q2!5dB1B 2Di
A~q2!1 f B1B 2Fi

A~q2!,

wheredB1B2 and f B1B2 are the well-known Clebsch-Gordo
coefficients andFi

V(q2) and Di
V(q2) are reduced form fac

tors. The nucleon matrix element of the electromagnetic c
rent is given by

^N~p1!N̄~p2!uJm
emu0&5ūN~p1!FF1~q2!gm

1 i
F2~q2!

2mN
smnqnGv N̄~p2!.

~4.6!

SinceJm
em5Vm

3 1 (1/A3) Vm
8 , SU~3! symmetry allows us to

determineFi
V(q2) and Di

V(q2) separately. The results ar
~see, e.g.,@36#!
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F1,2
V ~ t !5F1,2

p ~ t !1
1

2
F1,2

n ~ t !, D1,2
V ~ t !52

3

2
F1,2

n ~ t !,

~4.7!
F3

V~ t !5D3
V~ t !50,

with t[q2. At t50 we have

F1
V~0!51, D1

V~0!50, F2
V~0!5kp1

1

2
kn ,

~4.8!

D2
V~0!52

3

2
kn ,

wherekp51.79 andkn521.91 are the anomalous magnet
moments of the proton and neutron, respectively.

The experimental data are customarily described in te
of the electric and magnetic Sachs form factorsGE

N(t) and
GM

N (t) which are related toF1
N andF2

N via

GE
p,n~ t !5F1

p,n~ t !1
t

4mN
2 F2

p,n~ t !,

~4.9!
GM

p,n~ t !5F1
p,n~ t !1F2

p,n~ t !.

A recent phenomenological fit to the experimental data
nucleon form factors has been carried out in@20# using the
following parametrization:

uGM
p ~ t !u5S x1

t2 1
x2

t3 1
x3

t41
x4

t5 1
x5

t6 D F ln
t

Q0
2G2g

,

~4.10!

uGM
n ~ t !u5S y1

t2 1
y2

t3 D F ln
t

Q0
2G2g

,

where Q05LQCD'300 MeV and g5214/(3b)52.148.
We will follow @20# to use the best fit values

x15429.88 GeV4, x25210783.69 GeV6,

x35109738.41 GeV8, x452448583.96 GeV10, ~4.11!

x55635695.29 GeV12,

and

y15236.69 GeV4, y252579.51 GeV6, ~4.12!

extracted from neutron data under the assumptionuGE
n u

5uGM
n u. Note that the form factors given by Eq.~4.10! do

satisfy the constraint from perturbative QCD in the limit
larget @20#. Also as stressed in@20#, time-like magnetic form
factors are expected to behave like space-like magnetic f
factors, i.e., real and positive for the proton, but negative
the neutron.

A new empirical fit to the reanalyzed data forGM
p (t) in

the region 0,t,30 GeV2 is recently given in@37#:
0-13
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GM
p ~Q2!5

mp

11z1Q1z2Q21z3Q31z4Q41z5Q5 ,

~4.13!

with

z15~0.11660.040! GeV21,

z25~2.87460.0.098! GeV22,

z35~0.24160.107! GeV23, ~4.14!

z45~1.00660.069! GeV24,

z55~0.34560.017! GeV25,

andmp52.79. An empirical fit to the proton electromagne
form factor ratio is also presented in@37#

mp

GE
p~ t !

GM
p ~ t !

51.02~0.13060.005!@ t2~0.0460.09!#,

~4.15!

for the range 0.04,t,5.6 GeV2, indicating that the form
factor ratio decreases with increasingQ2.

As for the axial form factors, no useful information can
extracted from SU~3! symmetry. Nevertheless, perturbativ
QCD indicates that, in the range of highQ2, the form factors
f 1(t) and g1(t) dominate att→` and all others are sup
pressed by powers ofm/Q @38#. Moreover, all octet-octe
and octet-decuplet form factors at larget can be related to the
magnetic form factors of the nucleonGM

p and GM
n ~see

Tables II–IV of @38#!. Hence, the axial form factorg1 at
large momentum transfer is fixed.

A. Tree-dominated three-body decays

1. B̄0\np̄p¿(r¿)

This decay receives factorizable contributions from Fi
2~b! and 2~d! with a b→d penguin transition, 2~g! and a
nonfactorizable contribution from Fig. 2~e!. As the two-body
baryonic decay, we can neglect theW-exchange contribution
Moreover, we shall assume that this mode is dominated
the factorizable term from Fig. 2~b! as it is governed by the
parametera1:

A@B̄0→np̄p1~r1!# fact

5
GF

A2
VudVub* a1^p

1~r1!u~ ūb!
V2A

uB̄0&

3^np̄u~ d̄u!
V2A

u0&, ~4.16!

wherea15c1
eff1c2

eff/3 and we have neglected penguin co
tributions because the penguin Wilson coefficie
c3 , . . . ,c10 are numerically very small. The two-body meso
matrix elements are parametrized in terms of the form fac
F0 andF1 for the B2p transition
01402
.

y

-
s

rs

^p1~pp!u~ ūb!
V2A

uB̄0~pB!&

5F1
Bp~q2!~pB1pp!m1~F0

Bp~q2!

2F1
Bp~q2!!

mB
22mp

2

q2 qm , ~4.17!

and form factorsV,A0 ,A1 ,A2 for the B2r transition

^r1~pr!u~ ūb!
V2A

uB̄0~pB!&

5
2

mB1mr
emnab«* npB

apr
bVBr~q2!

2 i H ~mB1mr!«m* A1
Br~q2!2

«* •pB

mB1mr

3~pB1pr!mA2
Br~q2!

22mr

«* •pB

q2 qm@A3
Br~q2!2A0

Br~q2!#J , ~4.18!

with q5pB2pp(r) and

A3
Br~q2!5

mB1mr

2mr
A1

Br~q2!2
mB2mr

2mr
A2

Br~q2!.

~4.19!

The factorizable amplitude for the pion emission reads

A~B̄0→np̄p1! fact5
GF

A2
VudVub* a1ūn@~ap” p1b!

2~cp” p1d!g5#v p̄ , ~4.20!

where

a52 f 1
np~ t !F1

Bp~ t !14 f 2
np~ t !F1

Bp~ t !,

b522 f 2
np~ t !F1

Bp~ t !~pn2pp̄!•pp /~2mN!

1 f 3
np~ t !F0

Bp~ t !~mB
22mp

2 !/~2mN!,
~4.21!

c52g1
np~ t !F1

Bp~ t !,

d52mNg1
np~ t !FF1

Bp~ t !1@F0
Bp~ t !

2F1
Bp~ t !#

mB
22mp

2

t G22g2
np~ t !F1

Bp~ t !

3~pn2pp̄!•pp /~2mN!

1g3
np~ t !F0

Bp~ t !~mB
22mp

2 !/~2mN!,

andt[q25(pB2pp)25(pn1pp̄)2. The amplitude for ther
meson case is more cumbersome.
0-14
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TABLE III. Branching ratios ofB̄0→np̄p1(r1) in two different form-factor models for aB2p(r)
transition. Two distinct empirical fits for the proton magnetic form factor given in Eqs.~4.10! and ~4.13!,
denoted by CHT and BKLH respectively, are utilized. The neutron form factors are taken from Eqs.~4.10!
and~4.12!. Branching ratios in the first entry are without contributions from the axial form factorsgi

np(t) and
those in the second entry take into account contributions from the asymptotic form factorg1

np(t) given by Eq.
~4.24!.

GM
p ~CHT! GM

p ~BKLH !

MS BSW MS BSW

B̄0→np̄p1 1.731026 1.831026 8.031027 8.531027

1.731026 1.931026 1.131026 1.331026

B̄0→np̄r1 3.331026 4.831026 4.231026 5.531026

3.431026 4.931026 4.631026 5.931026
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Since the relevant Clebsch-Gordon coefficients arednp

5 f np51, it follows from Eqs.~4.5! and ~4.7! that the weak
form factors have the form

f 1,2
np~ t !5F1,2

V ~ t !1D1,2
V ~ t !5F1,2

p ~ t !2F1,2
n ~ t !. ~4.22!

In terms of the nucleon magnetic and electric form facto
the weak form factors read

f 1
np~ t !5

t

4mN
2 GM

p ~ t !2GE
p~ t !

t/~4mN
2 !21

2

t

4mN
2 GM

n ~ t !2GE
n~ t !

t/~4mN
2 !21

,

~4.23!

f 2
np~ t !52

GM
p ~ t !2GE

p~ t !

t/~4mN
2 !21

1
GM

n ~ t !2GE
n~ t !

t/~4mN
2 !21

.

According to perturbative QCD, the weak form factors in t
large t limit have the expressions@38#

f 1
np~ t !→GM

p ~ t !2GM
n ~ t !,

~4.24!

g1
np~ t !→ 5

3
GM

p ~ t !1GM
n ~ t !.

It is easily seen that this is consistent with the larget behav-
ior of f 1

np given by Eq.~4.23!.

The total decay rate for the processB̄0(pB)→n(p1)
1 p̄(p2)1p1(p3) is computed by

G5
1

~2p!3

1

32mB
3E uAu2dm12

2 dm23
2 , ~4.25!

where mi j
2 5(pi1pj )

2 with p35pp . To make a numerica
estimate, we apply two different empirical fits ofGM

p (t): Eq.
~4.10! denoted by CHT~Chua-Hou-Tsai! and Eq.~4.13! de-
noted by BKLH ~Brash-Kozlov-Li-Huber!. For the proton
electric form factor, we shall follow@20# to assumeuGE

p(t)u
5uGM

p (t)u for CHT form factors and Eq.~4.15! for BKLH
form factors. That is, we assume that Eq.~4.15! is applicable
also to the larget region. As forB2p(r) form factors, we
consider two distinct models: the Bauer-Stech-Wirbel~BSW!
model @39# and the Melikhov-Stech~MS! model based on
01402
,

the constituent quark picture@40#.5 The BSW model assume
a monopole behavior for all the form factors. However, th
is not consistent with heavy quark symmetry for heavy-
light transitions. For example, the form factorsF1 ,V,A0 ,A2
in the infinite quark mass limit should have the sameq2

dependence and they differ fromF0 andA1 by an additional
pole factor@42#. Nevertheless, we apply this model for com
parison.

Considering only the vector-current contribution to t
baryon matrix element, we obtain the results shown in
first entry of Table III. Our calculations are in agreeme
with @18# when the BSW model and CHT form factors a
used. However, we see from Table III that the branching ra
for B̄0→np̄r1 in the BSW model is slightly larger. This is
ascribed to the monopole form factorq2 dependence for al
the B2r form factors. If one changes the form factor m
mentum dependence from monopole to dipole form forA1
and V ~sometimes referred to as the BSWII model in t
literature!, the resulting branching ratios are very similar
that in the MS model.

To estimate the contribution from the axial vector curre
we might assume thatg1(t) takes the asymptotic form
5
3 GM

p (t)1GM
n (t) @see Eq.~4.24!#. It turns out that the con-

tribution due tog1(t) is very small for the CHT form factor
GM

p but not negligible forGM
p ~BKLH !. It is interesting to

notice that the rate ofnp̄r1 is larger than that ofnp̄p1 by a
factor of 2–3 if the CHT parametrization forGM

p is em-
ployed, whereas the ratio becomes as large as 5
GM

p ~BKLH !.

Since bothB0 andB̄0 can decay intonp̄p1(r1), experi-
mentally one has to disentangle the ‘‘background’’ contrib
tion from theB02B̄0 mixing or to tag theB meson. There-
fore, we will give an estimate ofB̄0→pn̄p2(r2) next.

2. B̄0\pn̄pÀ(rÀ)

This decay receives contributions from Figs. 2~a!, 2~e!,
and 2~g!. As the previous decay, we will assume that it

5The QCD sum rule method based on the light-cone sum
analysis@41# is also one of the popular form-factor models. How
ever, we found that some divergence occurs in the phase s
integration when applying this model.
0-15
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dominated by the factorizable contribution from Fig. 2~a!.
Unfortunately, as shown in Eq.~4.1!, it involves a three-body
matrix element that cannot be evaluated directly. Instead
will evaluate the low-lying pole diagrams with the stron
processB̄0→$Lb

(* ) ,Sb
0(* )%n̄ followed by the weak decays6

$Lb
(* ) ,Sb

0(* )%→p2p. Consider the1
2

1 intermediate poles
Applying factorization toLb→p2p yields the pole ampli-
tude

A~B̄0→pn̄p2!

52
GF

A2
VudVub* gLb→B̄0nf pa1ūp

3$ f 1
Lbp

~mp
2 !@2pp•pp1p” p~mLb

2mp!#g5

1g1
Lbp

~mp
2 !@2pp•pp2p” p~mLb

1mp!#%v n̄

3
1

~pp1pp!22mLb

2
1~Lb→Sb

0!, ~4.26!

where we have employed the heavy-light baryon form f
tors defined by

^p~pp!u~ ūb!
V6A

uLb~pLb
!&

5ūpH f 1
Lbp

~pp
2 !gm1 i

f 2
Lbp

~pp
2 !

mLb
1mp

smnpp
n

1
f 3

Lbp
~pp

2 !

mLb
1mp

ppm6Fg1
Lbp

~pp
2 !gm1 i

g2
Lbp

~pp
2 !

mLb
1mp

smnpp
n

1
g3

Lbp
~pp

2 !

mLb
1mp

ppmGg5J uLb
, ~4.27!

with pp5pLb
2pp .

For the heavy-light form factorsf i
B1B2 andgi

B1B2 , we will
follow @43# to apply the nonrelativistic quark model to eval
ate the weak current-induced baryon form factors at z
recoil in the rest frame of the heavy parent baryon, where
quark model is most trustworthy. This quark model approa
has the merit that it is applicable to heavy-to-heavy a
heavy-to-light baryonic transitions at maximumq2. Follow-
ing @44# we have7

6There is another pole diagram with the weak decayB̄0

→p2p1(r1) followed by the strong processp1(r1)→pn̄ @see
Fig. 2~a!#. However, this pole amplitude is expected to be su
pressed as the intermediate pion state is far off its mass shell.
sequently, the nucleon-nucleon-pion coupling is subject to a la
suppression due to the form-factor effects at largeq2.

7The form factors for theLb2p transition atq250 are given in
Table I of @44#. For Sb

02p form factors at zero recoil, it can b
evaluated using Eq.~22! of @43#. Note that the spin factor ish
52

1
3 and the flavor factor isNS

b
0p51/A6 for theSb

02p transition.
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f 1
Lbp

~qm
2 !5g1

Lbp
~qm

2 !50.86,

f 2
Lbp

~qm
2 !5g3

Lbp
~qm

2 !520.51, ~4.28!

f 3
Lbp

~qm
2 !5g2

Lbp
~qm

2 !520.22,

for theLb2p transition at zero recoilqm
2 5(mLb

2mp)2, and

f
1
Sb

0p
~qm

2 !51.65, f
2
Sb

0p
~qm

2 !51.92,

f
3
Sb

0p
~qm

2 !521.72, g
1
Sb

0p
~qm

2 !520.17, ~4.29!

g
2
Sb

0p
~qm

2 !50.04, g
3
Sb

0p
~qm

2 !50.10,

for the Sb
02p transition atqm

2 5(mSb
2mp)2. Since the cal-

culation for theq2 dependence of form factors is beyond t
scope of the nonrelativistic quark model, we will follow th
conventional practice to assume a pole dominance for
form-factorq2 behavior:

f ~q2!5 f ~qm
2 !S 12qm

2 /mV
2

12q2/mV
2 D n

,

~4.30!

g~q2!5g~qm
2 !S 12qm

2 /mA
2

12q2/mA
2 D n

,

wheremV (mA) is the pole mass of the vector~axial-vector!
meson with the same quantum number as the current u
consideration. The function

G~q2!5S 12qm
2 /mpole

2

12q2/mpole
2 D n

~4.31!

plays the role of the baryon Isgur-Wise functionz(v) for the
LQ→LQ8 transition, namely,G51 at q25qm

2 . Previous
model calculations ofz(v) @45–49# indicates that it is con-
sistent withG(q2) with n52. However, a recent calculatio
of z(v) in @50# yields

z~v!5S 2

11v D 1.2310.4/v

~4.32!

and this clearly favorsn51. As we shall below, the recen
first observation ofB2→pp̄K2 by Belle @23# also favors a
monopoleq2 dependence for baryon form factors.

The calculation ofB̄0→pn̄r2 is similar to that ofpn̄p2

except that the vacuum-r matrix element now reads

^r2ud̄gmuu0&5 f rmr«m* , ~4.33!

and that the computation is much more tedious than the p
case, though it is straightforward. Using the pole mas
mV55.32 GeV, mA55.71 GeV, and the decay consta
f r5216 MeV, we obtain

-
n-
e
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B~B̄0→pn̄p2!52.831026 ~2.731027!,
~4.34!

B~B̄0→pn̄r2!58.231026 ~8.231027!,

for a monopole~dipole! q2 dependence for baryon form fac
tors. SincegLb→B̄0n523A3 gS

b
0→B̄0n @cf. Eq. ~3.20!#, the

contribution due to theLb andSb
0 poles is destructive. In the

calculation we have usedugLb→B̄0nu516 @21#.
Three remarks are in order. First, in the calculation

have neglected other nonfactorizable contributions from F
2~e!. For the pole diagrams, we did not evaluate the1

2
2 pole

contributions owing to the technical difficulties for the ba
model in dealing with the negative-parity baryon states. S
ond, sincen51 is favored by the recent measurement of
decayB2→pp̄K2, as we shall see below, it turns out th
B0→np̄r1 has a large branching ratio of order 131025 for
n51. Third, the decayB̄0→pn̄p2 receives the resonan
contribution B̄0→pD̄2 followed by the strong decayD̄2

→n̄p2. Since the branching ratio forB̄0→pD̄2 is only of
order 631028 ~see Table II!, the resonant contribution du
to theD is thus negligible.

3. B̄0\ˆS0S̄À, SÀL̄, JÀJ̄0
‰p¿

„r¿
…

The calculation for the decaysB̄0→$S0S̄2, S2L̄,
J2J̄0%p1(r1) is the same as that forB̄0→np̄p1(r1) ex-
cept for different baryonic form factors in the final state
The relevant Clebsch-Gordon coefficients for weak form f
tors are~see, e.g.,@36#!

dLS1
5A2

3
, dS0S1

50, dJ0J1
51,

~4.35!
f LS1

50, f S0S1
5A2, f J0J1

521.

Then Eqs.~4.5! and ~4.7! lead to

f 1,2
LS1

~ t !52A3

2
F1,2

n ~ t !,

f 1,2
J0J1

52F1,2
p ~ t !22F1,2

n ~ t !, ~4.36!

f 1,2
S0S1

~ t !5A2F1,2
p ~ t !1

1

A2
F1,2

n ~ t !.

A straightforward calculation givesB(B̄0→S2L̄p1)52.9
31027, B(B̄0→J2J̄0p1)52.031027, and B(B̄0

→S0S̄2p1)56.431029. Compared to thenp̄p1 mode,
the decay rates of the above three decays are suppre
owing to smaller baryon form factors and less three-bo
phase spaces available.

4. BÀ\$pp̄,nn̄,S¿S̄À, . . . %pÀ(rÀ)

Let us first consider the decayB2→pp̄p2. It receives
factorizable contributions from Figs. 2~a! and 2~d!:
01402
e
.

c-
e

.
-

sed
y

A~B2→pp̄p2! fact

5
GF

A2
VubVud* $a1^p

2u~ d̄u!
V2A

u0&^pp̄u~ ūb!
V2A

uB2&

1a2^p
2u~ d̄b!

V2A
uB2&^pp̄u~ ūu!

V2A
u0&%

[A11A2 , ~4.37!

wherea1,25c1,2
eff 1c2,1

eff /3. In analog to the previous mode, w
will evaluate the corresponding low-lying pole diagrams f
the factorizable externalW-emission amplitude, namely, th
strong processB2→$Lb

(* ) ,Sb
0(* )% p̄, followed by the weak

decay$Lb
(* ) ,Sb

0(* )%→pp2. Its amplitude governed by the
1
2

1 poles is given by

A152
GF

A2
Vud* VubgLb→B2pf pa1ūp$ f 1

Lbp
~mp

2 !@2pp•pp

1p” p~mLb
2mp!#g51g1

Lbp
~mp

2 !@2pp•pp2p” p

3~mLb
1mp!#%v p̄

1

~pp1pp!22mLb

2

1~Lb→Sb
0!, ~4.38!

where we have applied factorization to the weak dec
$Lb ,Sb

0%→pp2. To evaluate the factorizable amplitudeA2,
we apply the isospin symmetry relations8

^nu~ ūu!
V2A

un&5^pu~ d̄d!
V2A

up&,

~4.39!
^nu~ d̄d!

V2A
un&5^pu~ ūu!

V2A
up&,

to relate the form factorsf 1
pp and f 2

pp appearing in the vecto

currentpp̄ matrix element

^p~p1! p̄~p2!uūgmuu0&

5ūp~p1!F f 1
pp~q2!gm1 i

f 2
pp~q2!

2mp
smnqnGv p̄~p2!, ~4.40!

to the electromagnetic form factorsF1 andF2 defined in the
nucleon matrix element Eq.~4.6!. We find

f 1
pp~ t !52F1

p~ t !1F1
n~ t !,

~4.41!
f 2

pp~ t !52F2
p~ t !1F2

n~ t !.

A straightforward calculation indicates that the contributi
from a2 is small and negligible due mainly to the small ve
tor form factorsf 1,2

pp . The a1 contribution gives a branching
ratio of order 3.831026 for n51 and 2.731027 for n52.

8This isospin relation amounts to assuming^Nu( s̄s)
V2A

uN&50, an
assumption supported by the Okubo-Zweig-Iizuka~OZI! rule.
0-17
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As we shall see below, as far as the factorizablea1 contri-
bution is concerned, the tree-dominatedB2→pp̄p2 and the
penguin-dominated decayB2→pp̄K2 have almost the sam
rate and the latter has been observed recently@23#. In some
sense this is very similar to the mesonic decaysB→Kp and
pp. Without the chiral enhancement for penguin contrib
tions, one will havepp.Kp. The experimental observatio
@51# that K2p1.p2p1 andK̄0p2.p0p2 clearly implies
the importance of penguin chiral enhancement. It is qu
possible that for baryonicB decay we also havepp̄K2

.pp̄p2. Note that thea2 contribution topp̄p2 is destruc-
tive and it is subject to many uncertainties. For example,
axial-vector current contribution to thepp̄ matrix element
has been neglected so far and the value ofa2 is numerically
very small if a25c2

eff1c1
eff/3. A large value ofa2 of order

0.40–0.55@52#, as indicated by the recent observation
B̄0→D0p0 @53#, and an inclusion of axial form factor con
tributions may suppresspp̄p2 relative to pp̄K2. Another
effect we have neglected thus far is the penguin contribut
Just as theB→pp decay, the tree-penguin interference f
B2→pp̄p2 may turn out to be destructive for a certa
range of the phase angleg. In view of the aforementioned
considerations, we will prefer to carry out a full analysis
hi

w
ia

l

01402
-

e

e

f

n.

f

B2→$pp̄,nn̄,S1S̄2, . . . %p2(r2) decays in a separat
publication. It appears to us thatB2→pp̄p2 should have a
branching ratio at least of order 1026, based on the recen
measurement ofB2→pp̄K2 to be discussed below.

Thus far we have focused on the nonresonant deca
pp̄p2. It also receives resonant contributions, for examp
B2→pD̄22 and B2→ p̄N0(1440). As discussed in Sec
III A, the branching ratio of the former is of order (1 –2
31026, to be compared with the recent measurement
Belle @23#

B~B2→pp̄p2!5~1.920.9
11.060.3!31026. ~4.42!

Therefore, the direct nonresonant contribution is proba
smaller than the resonant ones. Experimentally, it is thus
portant to study the resonance effects through the Dalitz
analysis.

B. Penguin-dominated three-body decays

1. B̄\NN̄K (* )

The decayB2→pp̄K2(* ) is mainly governed by the dia
grams Figs. 2~a! and 2~c! with the factorizable amplitude
A~B2→pp̄K2(* )! fact

5
GF

A2
{ VubVus* [a1^K

2(* )u~ s̄u!
V2A

u0&^pp̄u~ ūb!
V2A

uB2&1a2^pp̄u~ ūu!
V2A

u0&^K2(* )u~ s̄b!
V2A

uB2&

2VtbVts* [a3^pp̄u~ ūu1d̄d1 s̄s!
V2A

u0&^K2(* )u~ s̄b!
V2A

uB2&1a5^pp̄u~ ūu1d̄d1 s̄s!
V1A

u0&^K2(* )u~ s̄b!
V2A

uB2&

1~a41a10!^K
2(* )u~ s̄u!

V2A
u0&^pp̄u~ ūb!

V2A
uB2&22~a61a8!^K2(* )us̄~11g5!uu0̄&^pp̄uū~12g5!buB2&

1~a41a10!^K
2(* )pp̄u~ s̄u!

V2A
u0&^0u~ ūb̄!

V2A
uB2&22~a61a8!^K2(* )pp̄us̄~11g5!uu0&^0uū~12g5!buB2&

1a9^pp̄uS ūu2
1

3
d̄d2

1

3
s̄sD

V1A

u0&^K2(* )u( s̄b)
V2A

uB2&]}, ~4.43!

with
a2i5c2i
eff1

1

Nc
c2i 21

eff , a2i 215c2i 21
eff 1

1

Nc
c2i

eff .

~4.44!

In Eq. ~4.43! the last two terms correspond to weak anni
lation. As in the decayB̄0→pn̄p2, since we do not know
how to evaluate the three-body hadronic matrix element,
will instead evaluate the corresponding low-lying pole d
grams with the strong processB2→$Lb

(* ) ,Sb
0(* )% p̄ followed

by the weak decays$Lb
(* ) ,Sb

0(* )%→K2(* )p @cf. Figs. 2~a!
and 2~c!#. Consider the1

2
1 intermediate poles and the fina

stateK2 first. Applying factorization toLb→K2p yields
-

e
-

^K2puHWuLb&5
GF

A2
H @VubVus* a12VtbVts* ~a41a10!#

3^K2u~ s̄u!
V2A

u0&^pu~ ūb!
V2A

uLb&

12VtbVts* ~a61a8!
mK

2

mbms

3^K2u~ s̄u!
V1A

u0&^pu~ ūb!
V1A

uLb&J ,

~4.45!
0-18
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where we have applied equations of motion

2 i ]m~ q̄1gmq2!5~m12m2!q̄1q2 ,
~4.46!

2 i ]m~ q̄1gmg5q2!5~m11m2!q̄1g5q2 .

The pole amplitude then has the form

A~B2→pp̄K2!

52
GF

A2
gL

b
0→B2pf Kūp

3$ f 1
Lbp

~mK
2 !h@2pK•pp1p” K~mLb

2mp!#g5

1g1
Lbp

~mK
2 !h8@2pK•pp2p/K~mLb

1mp!#%v p̄

3
1

~pp1pK!22mLb

2
1~Lb→Sb

0!, ~4.47!

with

h5VubVus* a12VtbVts* H a41a1012~a61a8!
mK

2

mbms
J ,

~4.48!

h85VubVus* a12VtbVts* H a41a1022~a61a8!
mK

2

mbms
J .

SincegLb→B2p53A3 gS
b
0→B2p @Eq. ~3.23!#, it is evident that

the pole contributions arising from theLb and Sb
0 interme-

diate states are constructive and dominated by the for
one.

The amplitude ofB2→pp̄K* 2 is similar to that ofpp̄K2

except that there are noa6 anda8 penguin contributions toh
or h8 given in Eq. ~4.48! owing to the fact that

^K* 2us̄uu0&50. For numerical calculations of decay rat
we use the running quark massesmb(mb)54.4 GeV,
ms(mb)590 MeV and the decay constantf K* 5221 MeV.
Note that the corresponding running strange quark mas
m51 GeV is 140 MeV. Applying the baryon form factor
given by Eqs.~4.28! and ~4.29! we obtain

B~B2→pp̄K2!54.031026 ~2.331027!,
~4.49!

B~B2→pp̄K* 2!52.331026 ~2.131027!,

for n51 (n52), where use of the strong couplin
ugL

b
0→B2pu516 has been made. As stressed before, the la

chiral enhancement of penguin contributions characteri
by themK

2 /(mbms) term accounts for the sizable decay ra

of B2→pp̄K2.
An observation of this mode has recently been repor

by Belle @23#

B~B2→pp̄K2!5~4.320.9
11.160.5!31026. ~4.50!
01402
er

at

ge

d

d

This is the first ever measurement of the penguin-domina
charmless baryonicB decay. Evidently, the model predictio
is in good agreement with experiment provided that
baryon form factorq2 dependence is of the monopole for
~i.e., n51). However, in view of many assumptions and u
certainties involved in the calculation, the statement ab
the monopoleq2 dependence for heavy-to-light baryon
form factors should be regarded as a suggestion rather th
firm one. The absence of penguin contributions ofa6 anda8

to K* production explains why thepp̄K* 2 rate is smaller
than pp̄K2, contrary to the case ofB̄0→np̄p1(r1) where
the ratio ofr1/p1 can be as large as 5.

In Fig. 3 we show the differential decay ratedG/dt of
B2→pp̄K2 where t5(pp1pp̄)25(pB2pK)2. Evidently,
the spectrum peaks att;5.5 GeV2, indicating a threshold
enhancement for baryon production and a fast recoil k
accompanied by a baryon pair with low invariant mass.

For otherNN̄K (* ) modes, it is easily seen that the po
amplitude of B̄0→pn̄K2(* ) is very similar to that ofB2

→pp̄K2(* ) except theLb andSb
0 poles contribute destruc

tively owing to the relationgLb→B̄0n523A3gS
b
0→B̄0n @Eq.

~3.20!#. Repeating the same calculation as before gives

B~B̄0→pn̄K2!51.931026 ~1.531027!,
~4.51!

B~B̄0→pn̄K* 2!51.831026 ~1.931027!,

for n51 (n52). As for B̄0→nn̄K̄0(* ), its pole amplitude is
the same asB̄0→pn̄K2(* ) except that the electroweak pa
rametersa8 anda10 in Eq. ~4.48! are replaced by2 1

2 a8 and
2 1

2 a10, respectively. Since these parameters are very sm
the modenn̄K̄0(* ) has a similar rate aspn̄K2(* ).

As for the decaysB̄0→pp̄K̄0(* ) andB2→nn̄K2(* ), their
branching ratios are suppressed, of order a few times of 127

for K production and 531028 for K* . This is attributed to
the fact that only theSb pole contributes and its couplin
with the B meson and the nucleon is smaller compared
Lb . The current limit isB(B̄0→pp̄K̄0),7.231026 @23#.

2. B̄0\Lp̄p¿(r¿)

This decay receives contributions from Figs. 2~b!, 2~d!,
2~e!, and 2~g!. The factorizable amplitude from Figs. 2~b!
and 2~d! including tree and penguin transitions is

FIG. 3. The differential decay rate ofB2→pp̄K2 where t
5(pp1pp̄)25(pB2pK)2.
0-19
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A~B̄0→L p̄p1~r1!! fact

5
GF

A2
H VubVus* a1^p

1~r1!u~ ūb!
V2A

uB̄0&^L p̄u~ s̄u!
V2A

u0&2VtbVts* F ~a41a10!^p
1~r1!u~ ūb!

V2A
uB̄0&

3^L p̄u~ s̄u!
V2A

u0&22~a61a8!^p1~r1!uū~12g5!buB̄0&^L p̄us̄~11g5!uu0&1S a42
1

2
a10D

3^p1~r1!L p̄u~ s̄d!
V2A

u0&^0u~ d̄b!
V2A

uB̄0&22S a62
1

2
a8D ^p1~r1!L p̄us̄~11g5!du0&^0ud̄~12g5!buB̄0&G J ,

~4.52!
W
ac

u-

id
th
la
hir

e,
where the first term corresponds to externalW-emission, the
second and third terms to theb→s penguin transition, and
the last two terms to penguin-induced weak annihilation.
shall neglect the weak-annihilation contributions in the pr
tical calculation. Applying equations of motion we obtain

^L p̄us̄~11g5!uu0&5
~pL1pp̄!m

ms2mm
^L p̄us̄gmbu0&

1
~pL1pp̄!m

ms1mm
^L p̄us̄gmg5bu0&

5
mL2mp

ms2mu
f 1

Lp~ t !ūLv p̄

1
1

ms1mu
F ~mL1mp!g1

Lp~ t !

1
t

mL1mp
g3

Lp~ t !G ūLg5v p̄ , ~4.53!

wheret5(pL1pp̄)2 and we have taken the SU~3! symmetry
result f 3

Lp(t)50 @see Eqs.~4.5! and ~4.7!#. Since the pseu-
doscalar form factorg3 corresponds to a kaon pole contrib
tion to theL p̄ axial matrix element, it follows that

g3
Lp~ t !52

~mL1mp!2

t2mK
2 g1

Lp~ t !. ~4.54!

Consequently,

^L p̄us̄~11g5!uu0&5
mL2mp

ms2mu
f 1

Lp~ t !ūLv p̄

2
mL1mp

ms1mu

mK
2

t2mK
2 g1

Lp~ t !ūLg5v p̄ .

~4.55!

It is easily seen that the first term on the right-hand s
satisfies the relation of vector current conservation in
SU~3! limit, while the second term respects the PCAC re
tion. Therefore, the above expression has a smooth c
01402
e
-

e
e
-
al

behavior in the zero light quark mass limitms ,mu→0. Ap-
plying equations of motion again yields

^p1uū~12g5!buB̄0&5
mB

22mp
2

mb
F0

Bp~ t !,

~4.56!

^r1uū~12g5!buB̄0&52i
mr

mb
A0

Br~ t !~«* •pB!,

where use of Eqs.~4.17!–~4.19! has been made. Therefor
the third term in Eq.~4.52! is reduced to

^p1uū~12g5!buB̄0&^L p̄us̄~11g5!uu0&

5
mB

22mp
2

mb
F0

Bp~ t !ūLFmL2mp

ms2mu
f 1

Lp~ t !

2
mL1mp

ms1mu

mK
2

t2mK
2 g1

Lp~ t !g5Gv p̄ ,

^r1uū~12g5!buB̄0&^L p̄us̄~11g5!uu0&

52i
mr

mb
A0

Br~ t !~«* •pB!ūLFmL2mp

ms2mu
f 1

Lp~ t !

2
mL1mp

ms1mu

mK
2

t2mK
2 g1

Lp~ t !g5Gv p̄ . ~4.57!

The Clebsch-Gordon coefficients for weakLp form factors
are

dLp52
1

A6
, f Lp52

3

A6
. ~4.58!

Hence,

f 1
Lp~ t !52A3

2
F1

p~ t !, f 2
Lp~ t !52A3

2
F2

p~ t !.

~4.59!

In the larget regime, the dominated axial form factor is@38#
0-20
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TABLE IV. Same as Table III except forB̄0→L p̄p1(r1). The axial form factorg1
Lp(t) is taken to be the

asymptotic form given by Eq.~4.60!.

GM
p ~CHT! GM

p ~BKLH !

MS BSW MS BSW

B̄0→L p̄p1 2.231027 3.431027 8.031028 1.231027

2.931027 4.331027 8.531028 1.331027

B̄0→L p̄r1 2.331027 3.331027 6.631028 9.231028

4.831027 6.431027 8.531028 1.231027
t
ed
e
I

or
-

n

d

ea
a
d

n-
, t

o
ro

n
ti

th
-
ive

te

-

r

f

g1
Lp~ t !→2A3

2
GM

p ~ t !. ~4.60!

As the B̄0→np̄p1(r1) decays, we consider two distinc
empirical fits for the proton magnetic form factors denot
by CHT and BKLH. Using the same running quark mass
as before we show the results of branching ratios in Table
with and without the contributions from the axial form fact
g1

Lp . When including the contribution from axial form fac
tors we shall assume the validity of the relation~4.60! for the
whole range oft. We see that the predictions are quite se
sitive to the baryonic form factorsf i

Lp andgi
Lp . It is evident

from Table IV that the factorizable contributions toB̄0

→L p̄p1(r1) are generally smaller than 131026, while the
current limit is 1.331025 @32#. Thus far we have neglecte
the nonfactorizable contributions from Fig. 2~e!. The corre-
sponding pole diagrams involveSb

1 andS1 poles. Unfortu-
nately, it is not easy to evaluate the nonfactorizable w
matrix elements. It is conceivable that the total decay r
will be enhanced by a factor of 2. At any rate, we conclu
that the branching ratios ofB̄0→L p̄p1 are at most on the
verge of 1026.

In Sec. IV C below we shall explain why this pengui
dominated decay does not have a large rate. In contrast
radiative baryonic decayB2→L p̄g is likely to have an ap-
preciable decay rate for two reasons. First, the main p
diagram for this radiative decay comes from the strong p
cessB2→Lbp̄ followed by the weak radiative transitio
Lb→Lg. Since the latter is induced by the electromagne
penguin mechanismb→sg, it has a magnitude of order 1
31025 @54#. Second, the coupling of theLb with the B
meson and the nucleon is large. Our study indicates
B(B2→L p̄g)'(1 –5)31026 @55#. Therefore, experimen
tally it would be quite interesting to measure the radiat
baryonicB stateL p̄g and compare it withL p̄p1(r1).

3. B̄0\S0p̄p¿(r¿) and B̄0\SÀn̄p¿(r¿)

There are several other interesting penguin-domina
modes as listed in Eq. ~4.3!, for example, B̄0

→$S0p̄,S2n̄,J2L̄,J2S̄0%p1(r1). The calculations are
very similar to that ofB̄0→L p̄p1. The relevant Clebsch
Gordon coefficients for weak form factors are
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dS0p5
1

A2
, f S0p52

1

A2
, dS2n51,

f S2n521, dJ2L52
1

A6
, f J2L5

3

A6
, ~4.61!

dJ2S0
5

1

A2
, f J2S0

5
1

A2
.

Hence,

f 1,2
S0p52

1

A2
~F1,2

p 12F1,2
n !,

f 1,2
S2n52~F1,2

p 12F1,2
n !,

~4.62!

f 1,2
J2L5

3

A6
~F1,2

p 1F1,2
n !,

f 1,2
J2S0

5
1

A2
~F1,2

p 2F1,2
n !.

The dominated axial form factors in the larget regime are

g1
S0p~ t !→ 1

3A2
~GM

p 16GM
n !,

~4.63!

g1
S2n~ t !→ 1

3
~GM

p 16GM
n !.

Obviously,

A@B̄0→S2n̄p1~r1!#5A2A@B̄0→S0p̄p1~r1!#.

It turns out that the branching ratios ofB̄0

→J2L̄(S̄0)p1, being of order 531028, are even smaller
than theL p̄p1 final state. Therefore, only the results fo
SN̄p1(r1) are shown in Table V. We see that~i! branching
ratios of S2n̄p1(r1) lie in the ranges of (1.0;2.2)
31026 and (0.6–1.6)31026, respectively. Thus the ratio o
r1/p1 is not greater than unity, contrary to the case ofB̄0

→pn̄p2(r2). ~ii ! The decay rate ofS2n̄p1(r1) is two
0-21



HAI-YANG CHENG AND KWEI-CHOU YANG PHYSICAL REVIEW D 66, 014020 ~2002!
TABLE V. Same as Table III except forB̄0→SN̄p1(r1). The axial form factorg1(t) is taken to be the
asymptotic form given by Eq.~4.63!.

GM
p ~CHT! GM

p ~BKLH !

MS BSW MS BSW

B̄0→S0p̄p1 1.031026 1.631026 1.431026 2.031026

1.131026 1.831026 1.231026 2.231026

→S0p̄r1 6.931027 6.031027 1.031026 1.031026

1.231026 1.031026 1.631026 1.531026

→S2n̄p1 1.931026 3.331026 2.431026 4.131026

2.231026 3.731026 2.731026 4.531026

→S2n̄r1 1.431026 1.231026 2.031026 2.031026

2.431026 2.131026 3.231026 3.031026
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times as large as that ofS0p̄p1(r1), but the latter will be
more easy to detect experimentally.

4. B̄0\h8Lp̄

It has been argued in@17# that B̄→h8BsB̄ could be the
most promising charmless baryonic modes; they may
comparable to theh8K and a crude estimate yieldsG(B̄0

→h8L p̄)'0.3G(B→h8K). Of course, the study ofh8L p̄
is much more complicated thanh8K: The factorizable am-
plitudes for the former involves several three-body mat
elements that are difficult to evaluate. Another complicat
is that the role played by the gluon anomaly is still cont
versial and not clear even forh8K modes, not mentioning
the three-body one,h8BsB̄. A detailed study ofB̄→h8L p̄
will be presented elsewhere.

C. When do we haveG„B̄\B1B̄2M …ÌG„B̄\B1B̄2…?

As discussed in the beginning of this section, the ques
of why some three-body baryonicB decays in which baryon
antibaryon pair production is accompanied by a meson h
larger rates than their two-body counterparts can be qua
tively understood in terms of the Dalitz plot analysis whi
indicates that, for example, the diquarkud has a very large
invariant mass due to theV2A nature of theb→udū pro-
cess@34,35#. If the ud forms a nucleon, then it will tend to
form a highly excited baryon and will be seen asNnp(n
>1). This explains whyNN̄ final states have small rate
why pD̄ and SD̄ states are leading tree-dominated a
penguin-dominated two-body baryonicB decay modes, and
why the three-body modeNN̄p(r) is favored over the two-
body one. From the calculations in Secs. III and IV, we c
give a more quantitative statement.

The experimental fact that the penguin-dominated de
B2→pp̄K2 has a magnitude larger than the two-body cou
terpart B̄0→pp̄ can be easily explained in the language
the pole model. The intermediate pole states areLb

(* ) and
Sb

(* ) for the above-mentioned three-body final state andSb
(* )

for the two-body one. First, theSb propagator in the pole
amplitude for the latter is of order 1/(mb

22mB
2), while the
01402
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n
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y
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invariant mass of the (pK2) system can be large enough
the former decay so that the propagator in the pole diag
is no longer subject to the same 1/mb

2 suppression. Second
Lb ~and the antitriplet bottom baryonJb) has a much larger
coupling to theB meson and the light octet baryonB thanSb
@see Eq.~3.23!#. These two effects will overcome the thre
body phase space suppression to render the three-body m
dominant. The other examples in this category areG(B̄0

→pn̄p2).G(B2→np̄) as shown before andG(B2

→Lcp̄p2).G(B̄0→Lcp̄) as discussed in@21#. We have
shown before that G(B̄0→np̄p1).G(B2→np̄) even
though the pole diagram for the former does not have aLb
pole. This can be comprehended from the observation
the former is dominated by the externalW-emission contri-
bution governed by the parametera1, while the latter pro-
ceeds via the internalW emission process. If the aforemen
tioned conditions are not satisfied, then the three-body m
will not necessarily have larger branching ratios than
corresponding two-body ones. For example, the peng
dominated decaysB̄0→pp̄K̄0, nn̄K̄0 proceed through the
Sb

(* ) pole only and hence their rates are suppressed.

penguin-dominated decaysB̄0→L p̄p1(r1) are also sup-
pressed relative topp̄K (* ) modes due to the lack ofLb
poles. Indeed, we found their magnitude does not excee
31026.

V. DISCUSSIONS AND CONCLUSIONS

We have presented a systematical study of two-body
three-body charmless baryonicB decays. We first draw som
conclusions from our analysis and then proceed to disc
the sources of theoretical uncertainties during the cours
calculation.

~1! The two-body baryonicB decayB→B1B̄2 receives
main contributions from the internalW-emission diagram for
tree-dominated modes and the penguin diagram for peng
dominated processes. We evaluate the corresponding
diagrams to calculate the nonfactorizable contributions. T
parity-conserving baryon matrix elements are estimated
ing the MIT bag model. We found that the bag-model es
mate of baryon matrix elements is about three times
0-22
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small as the previous calculation based on the harmonic
cillator model. The predicted branching ratios for two-bo
modes are in general very small, typically less than 1026,
except for the case with aD resonance in the final state
Physically, this is because the diquark system inb decay has
a very large invariant mass and hence it tends to form
highly excited baryon state such as theD and will be seen as
Nnp(n>1), for example. This also explains the nonobs

vation of the NN̄ final states. We found that the tree

dominated decayB2→pD̄22 can be of order 1026 due to
the large coupling of theD with the B meson and the octe
baryon. This charmless two-body baryonic mode should
readily accessible byB factories BaBar and Belle.

~2! Owing to large theoretical uncertainties with parit
violating matrix elements, we focus only on the parit
conserving contributions for two-body final states. Nevert

less, B2→np̄, B̄→ND̄ and SD̄ are purely parity-
conserving, whereasB̄0→LL̄ is purely parity-violating,
provided that the quark pair is created from the vacuum w
vacuum quantum numbers (3P0 model!. These features ca
be tested by measuring decay asymmetries or longitud
polarizations.

~3! Although three-body modes in general receive fact
izable contributions, not all of them are calculable in pract
due mainly to the lack of information for three-body ha
ronic matrix elements. Therefore, in many cases we still h
to rely on the pole approximation to evaluate the factoriza
amplitudes.

~4! For three-body modes we focus on octet baryon fi
states. The tree-dominated modesB̄0→np̄p1(r1) have a
branching ratio of order (1 –4)31026 for thep1 production
and (3 –5)31026 for the r1 production. Moreover,B(B̄0

→pn̄p2);331026 andB(B̄0→pn̄r2);831026 are pre-
dicted. There are some theoretical uncertainties for the
diction ofB2→pp̄p2 and it is conjectured to have a branc
ing ratio of order 1026.

~5! Assuming a monopoleq2 dependence for heavy-to
light baryon form factors, we predict thatB(B2→pp̄K2)
;431026 and the other penguin-dominated decaysB2

→pp̄K* 2, B̄0→pn̄K2, and B̄0→pn̄K* 2 all have the
branching ratio of order 231026 and theirNN̄ mass spectra
peak at low mass. The first one is consistent with the rec
measurement ofB2→pp̄K2 by Belle. Therefore, severalB

→NN̄K (* ) decays should be easily seen byB factories at the
present level of sensitivity. The study of the differential d
cay rate ofB2→pp̄K2 clearly indicates a threshold baryo
pair production and a fast recoil meson accompanied b
low mass baryon pair.

~6! The predictions of tree-dominated decaysB̄
→pp̄/np̄, B̄→ND̄ and penguin-dominated modesB̄→S p̄,
SD̄ in the QCD sum-rule approach and the diquark mo
are quite different from the present work. Measurements
the above-mentioned modes can differentiate between
different approaches.

~7! The factorizable contributions to the pengui
01402
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dominated decays containing a strange baryon, e.g.,B̄0

→S0p̄p1(r1), S2n̄p1(r1), L p̄p1(r1), are calculable.

While the SN̄p1 state has a sizable rate, of order (1 –

31026, the branching ratios ofB̄0→L p̄p1(r1) are in gen-
eral smaller than 1026.

~8! Some charmless three-body final states have a la
rate than their two-body counterparts because~i! the propa-
gator in the pole diagrams for the three-body final state is
suppressed by 1/mb

2 , and~ii ! in general the pole diagram o
the former contains aLb or Jb intermediate state which ha
a large coupling to theB meson and the light baryon, fo

example, G(B̄0→pn̄p2).G(B2→np̄), G(B2→pp̄K2)
.G(B̄0→pp̄), or ~iii ! some three-body baryonic decays a
dominated by the factorizable externalW-emission governed
by the parametera1, for example,G(B̄0→np̄p1).G(B2

→np̄).
Needless to say, the calculation of baryonicB decays is

rather complicated and very much involved and hence it s
fers from several possible theoretical uncertainties. Tho
most of them have been discussed before, it is useful to m
a short summary here.~i! Since it is very difficult to evaluate
nonfactorizable and even some of factorizable amplitud
we have relied on the pole approximation that, at the had
level, these amplitudes are manifested as the pole diagr
with low-lying one-particle intermediate states. We use
bag model to evaluate the baryon matrix elements. Owing
the technical difficulties and the unreliability of the mod
for describing negative parity resonances, we limit oursel
to 1

2
1 poles and hence consider only parity-conserving a

plitudes. In the future we need a more sophisticated met
to evaluate both PC and PV weak baryon matrix eleme
Another important issue is that the intermediate pole s
may be far from its mass shell and this will affect the app
cability of the quark-model estimate of baryonic matrix e
ments. ~ii ! We have applied the3P0 quark-pair-creation
model to estimate relative strong coupling strengths. T
amounts to treating the strongBBbB coupling as point-like
or assuming its relative magnitude not being affected by
momentum dependence. However, it is not clear to us h
good this approximation is. In the future, it is important
have a solid pQCD analysis to understand this issue.~iii !
Heavy-to-light baryon form factors are evaluated in the no
relativistic quark model at zero recoil. However, theirq2

dependence is basically unknown. We have resorted to
pole dominance approximation by assuming a simple mo
pole or dipole momentum dependence. The unknown m
mentum dependence for baryon form factors is one of
major theoretical uncertainties.~iv! We have applied SU~3!
symmetry to relate the octet-octet baryonic vector form f
tors to the magnetic and electric form factors of the nucle
Experimentally, one certainly needs measurements
nucleon~especially neutron! electromagnetic form factors fo
a large range ofq2. Theoretically, it is important to know
how important the SU~3! breaking effect is and how to trea
the baryonic axial form factors.~v! The three-body decay
usually proceed through several quark diagrams. To simp
the calculation and to catch the main physics, we have o
0-23
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focused only on the leading factorizable quark diagrams
remains necessary to investigate nonfactorizable contr
tions to see their relevance.

To conclude, we have pointed out several promis
charmless two-body and three-body baryonicB decay modes
which have branching ratios in the range of 1025–1026 and
hence should be measurable byB factories.
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APPENDIX A: BARYON WAVE FUNCTIONS

We list the spin-flavor wave functions of baryons releva
for our purposes:

Lb
↑5

1

A6
@~bud2bdu!xA1~12!1~13!#,

Jb
0↑5

1

A6
@~bus2bsu!xA1~12!1~13!#,

Jb8
0↑5

1

A6
@~bus1bsu!xs1~12!1~13!#,

Sb
1↑5

1

A3
@buuxs1~12!1~13!#,

Sb
0↑5

1

A6
@~bud1bdu!xs1~12!1~13!#,

Sb
2↑5

1

A3
@bddxs1~12!1~13!#,

S1↑5
1

A3
@suuxs1~12!1~13!#,

S0↑5
1

A6
@~sud1sdu!xs1~12!1~13!#,

~A1!

S2↑5
1

A3
@sddxs1~12!1~13!#,

L↑5
1

A6
@~sud2sdu!xA1~12!1~13!#,
01402
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p↑5
1

A3
@duuxs1~12!1~13!#,

n↑5
1

A3
@uddxs1~12!1~13!#,

D11↑5uuux,

D1↑5
1

A3
@duux1~12!1~13!#,

D0↑5
1

A3
@uddx1~12!1~13!#,

where

abcxs5~2a↓b↑c↑2a↑b↑c↓2a↑b↓c↑!/A6,

abcxA5~a↑b↑c↓2a↑b↓c↑!/A2,

abcx5~a↓b↑c↑1a↑b↑c↓1a↑b↓c↑!/A3,

and (i j ) means permutation for the quark in placei with the
quark in placej. The spin-flavor wave function of theD is
expressed for Sz5

1
2 . The relative sign of baryon-

pseudoscalar couplings is then fixed.

APPENDIX B: BARYON MATRIX ELEMENTS
IN THE BAG MODEL

Some of the details for evaluating the baryon matrix e
ments in the MIT bag model are already shown in@28,21#.
Here we add the result for the matrix element of (V2A)(V
1A) current. Consider the four-quark operatorO
5(q̄aqb)

V2A
(q̄cqd)

V2A
. It can be written as O(x)

56(q̄aqb)
V2A

1 (q̄cqd)
V2A

2 where the superscripti on the right-
hand side ofO indicates that the quark operator acts only
the i th quark in the baryon wave function. Applying the r
lations

^q8uV0uq&5u8u1v8v,

^q8uA0uq&52 i ~u8v2v8u!sW • r̂ ,
~B1!

^q8uVW uq&52~u8v1v8u!sW r̂ 2 i ~u8v2v8u! r̂ ,

^q8uAW uq&5~u8u2v8v !sW 12v8v r̂sW • r̂ ,

leads to the PC matrix elements

E r 2dr^q1
aq2

cu~ q̄aqb!
V2A

1 ~ q̄cqd!
V2A

2 uq1
bq2

d&PC

5X11X21~X12X2!sW 1•sW 222X1~sW 1• r̂ !~sW 2• r̂ !

5X11X21
1

3
~X123X2!sW 1•sW 2 , ~B2!
0-24



on

ts

the

CHARMLESS EXCLUSIVE BARYONICB DECAYS PHYSICAL REVIEW D66, 014020 ~2002!
for (V2A)(V2A) current, where we have used the relati

E dV r̂ i r̂ j5
d i j

3 E dV, ~B3!

andX1 ,X2 are the bag integrals

X15E
0

R

r 2dr@ua~r !vb~r !2va~r !ub~r !#

3@uc~r !vd~r !2vc~r !ud~r !#,
~B4!

X25E
0

R

r 2dr@ua~r !ub~r !1va~r !vb~r !#

3@uc~r !ud~r !1vc~r !vd~r !#,

with uq(r ) andvq(r ) being the large and small componen
respectively, of the 1S1/2 quark wave function~see@21,28#
for details!. Likewise, for (V2A)(V1A) current we obtain

E r 2dr^q1
aq2

cu~ q̄aqb!
V2A

1 ~ q̄cqd!
V1A

2 uq1
bq2

d&PC

5~X11X2!1
1

3
@X11X222~X182X28!#sW 1•sW 2 ,

~B5!
t.

a

01402
,

with

X185E
0

R

r 2dr@ua~r !vb~r !1va~r !ub~r !#

3@uc~r !vd~r !1vc~r !ud~r !#,
~B6!

X285E
0

R

r 2dr@ua~r !ub~r !2va~r !vb~r !#

3@uc~r !ud~r !2vc~r !vd~r !#.

For numerical estimates of the bag integrals, we shall use
bag parameters

mu5md50, ms50.279 GeV, mc51.551 GeV,

mb55.0 GeV,
~B7!

xu52.043, xs52.488, xc52.948,

xb53.079, R55.0 GeV21.
K
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