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We present a systematical study of two-body and three-body charmless baByde@ays. The branching
ratios for two-body modes are in general very small, typically less tharf,1éxcept thatB(B‘apK“)
~1x107%. In general,B~NA>B—NN due to the large coupling constant fii,—BA. For three-body
modes we focus on octet baryon final states. The leading three-dominated modgg—aﬁw‘(p‘),
npm*(p*) with a branching ratio of order 810°° for B°~pnz~ and 8<10°® for B—~pnp~. The
penguin-dominated decays with strangeness in the mesonBe.g:ppK ~*) andB%—pnK ~*), nnK°*),
have appreciable rates and H& mass spectrum peaks at low mass. The penguin-dominated modes contain-
ing a strange baryon, e.g§0_>206w+, S nxt, have branching ratios of the order of (14307 ©. In
contrast, the decay rate E'O—>Aa77+ is smaller. We explain why some of the charmless three-body final
states in which baryon-antibaryon pair production is accompanied by a meson have a larger rate than their
two-body counterparts: either the pole diagrams for the former have an antitriplet bottom baryon intermediate
state, which has a large coupling to tBemeson and the nucleon, or they are dominated by the factorizable
externalW-emission process.
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[. INTRODUCTION the final state. Under this argument, the three-body decay, for
example,B— ppn, will dominate over the two-body mode

InsplrEd by the_cla|m of the observation of the decayB% pﬁsince the ejected meson in the former decay carries
modespp7™ andppz 7 in B decays by ARGUS1] i away much energy and the configuration is more favorable
the late 1980s, baryoniB decays were studied extensively for paryon production because of reduced energy release
around the early 19902-13] with the focus on the tree- compared to the lattgd.8]. This is in contrast to the mesonic
dominated two-body decay modes, e.g., the charmful decays decays where the two-body decay rate is generally compa-
B—AcN, 2N, and charmless oneB—pp, AA. Up to  rable to the three-body one. The large rateB8f-D* “pn
now, none of the two-body baryoniB decays have been 4.4 B°—>D*‘p377+ observed by CLEQ19] indicates that
observed 14,15. Many of thg earlier model predictions are the decaysB— baryons receive comparable contributions
t_oo. Iarge_((:)omp_ared to ei[?erlment. For example, the previoug B— A.pX andB— DNN’X, as originally advoca_ted by
limit on B®—pp<7x10~" set by CLEO[};J has been re- Dunietz[16]. A theoretical study of the dec&— D* pn has
cently pushed down to the level of XG0 ° by Belle[15],  peen carried out recently by Chegal.[20]. In [21] we have

whereas the model predictions are either too large or marginspqwn explicitly that the three-body charmful decBy

Ia(\)llly\/l)comparable to the experimental limgee Table Il be- —>Aca7'f(/f) has indeed a magnitude larger tha?

The penguin-induced charmless baryoBidecays such —Ap as seen experimental[22]. By the same token, it is

asB—3p, SA have been studied by Chernyak and zhit-€XPected that for charmless baryoniB decays, B
nitsky [7] based on the QCD sum rule analysis. They ob-—(,p)B15, are the dominant modes induced by tree op-
tained the branching ratios of the order of (0.3—XQp °.  erators an®— (,p) By B2, B—K*)B, B, are the leading
Experimentally, only the upper limits onB™—Ap, modes induced by penguin diagrams. The recent first obser-
Aﬁwﬂ-r‘, AOE pK“ (K“ being the antiparticle of vationgc the penguin-dominated charmless baryonic decay

AT, and§°—>AE7r+ have been set. B~ —ppK™ by Belle[23] clearly indicates that it has a much

As pointed out by Duniet¢16] and by Hou and Sorfil 7], larger rate than the two-body counterp@f—pp. Of

the smallness of the two-body baryonic de@y: 5,5, has course, this Eoes not necessarily imply that the three-body
to do with a straightforward Dalitz plot analysisee Sec. Iv ~ final state3;3,M always has a branching ratio larger than
for a detailed discussigror with the large energy release. the two-body onef3;5,. We shall examine under what cir-
Hou and Soni conjectured that in order to have larger baryeumstance that the above argument holds.

onic B decays, one has to reduce the energy release and at In the present paper we will give a systematical study of
the same time allow for baryonic ingredients to be present inwo-body and three-body charmless baryoRidecays. The
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factorizable W-exchange onW-annihilation contribution to should be easily accessible by the existBdactories.

two-body decay modes is very small and hence negligible. The layout of the present paper is organized as follows. In

For nonfactorizable contributions to two-body final states,Sec. Il the issue of renormalization scheme and scale depen-

we will calculate the corresponding pole diagrams at the haddence of Wilson coefficients is addressed. We then study

ron level. We will apply the bag model to evaluate the charmless two-body baryoni decays in Sec. Ill and com-

baryon-baryon matrix elements and find that the baryonpare our results with the literature and experiment. In Sec. IV

strange baryon weak transition is indeed dominated by persome important three-body modes are analyzed. Section V

guin operators. Branching ratios for two-body baryonicgives discussions and conclusions. A short summary of the

modes are found to be in general very smalD(10 %) relevant baryon wave functions and the bag model evalua-

except for the decays with & resonance in the final state. tion of baryon-baryon matrix elements are presented in Ap-
The study of three-body baryonic decays is more complipendixes A and B.

cated. Though it in general receives factorizable contribu-

tions, some of them involve three-body matrix elemer_lts and Il. HAMILTONIAN

hence are not ready to evaluate. Therefore, pole diagrams

still play an essential role. The baryonic decay with a vector The relevant effectivdB=1 weak Hamiltonian for had-

meson in the final state normally has a large rate whictronic charmles® decays is

Ge
Heﬁ(AB=1)=\/§[ VbVl €1() 05 (1) + o) O5( ) 1+ VepV e C1( 1) OF (1) +Ca( 1) O5( 1) ]

10

—VmV?ing ci(m)Oi(p) [ +H.c., 2.1)

whereq=d,s, and
Of=(ub), (qu), ,, O5=(usbp) (dgua), ,.

0f=(ch), ,(qc), ,, 05=(cubp), ,(dsca), .

Og(5=(ab),_, > (9'q") . Oue)=(dabp), 2 (g0 , (2.2
q q

v-alv+a) v-alvea)

3 — P 3 — P
07(9):§(qb)v7A§ eq’(q q ) ( )' OB(lO)ZE(QQbIB)VfAZ eq’(Qﬁqa)

V+AlWW-A q V+A(V7A)

with O;—0¢ being the QCD penguin operatof8;—-0,othe  cal amplitude is renormalization scale afmgtscheme inde-
electroweak penguin operators, amh‘ﬂz)WAE ql'yM(]_ pendent, we include vertex and penguin corrections to

* v¥5)(0,. The scale dependent Wilson coefficients caIcuIateti1adron|c matrix elements of four- quark operatprs,26.
at next-to-leading order are renormalization scheme deper-iS @mounts to modifying; (w)—ci" and

dent. We use the next-to-leading Wilson coefficients evalu-
ated in the naive dimensional regularization schéa

> c(w(Qi(w)=2 cfQi)via, (2.9
c,=1.082, c,=—0.185, c;=0.014,

c,=—0.035, ¢5=0.009, cg=—0.041, where the subscript VIA means that the hadronic matrix el-
(2.3 ement is evaluated under the vacuum insertion approxima-
c;/a=—0.002, cg/a=0.054, cq/a=-—1.292, tion. Numerical results foc®™ are shown in Table [(for
details, se¢25]). It should be stressed the;”fff are renormal-
Ci0/@=0.263, cy=—0.143, ization scale and scheme independent. For the mesonic decay

_ B—M M, with two mesons in the final state, two of the
at w=my(m,)=4.40 GeV forA{>l=225 MeV taken from  four quarks involved in the vertex diagrams will form an
Table XXII of [24] with « being an electromagnetic fine- ejected meson. In this case, it is necessary to take into ac-
structure coupling constant. In order to ensure that the physeount the convolution with the ejected meson wave function.
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TABLE |. Numerical values of the effective Wilson coefficiemfé' forb—s, b—d, andb— d transitions
evaluated afu;=m, and k?=m?2/2 taken from Table | 0f26], where use ofV,,/V | =0.085 has been
made. The numerical results are insensitive to the unitarity apgle

b—s, bos b—d bod
s 1.169 1.169 1.169
s -0.367 -0.367 -0.367
cef 0.022710.0045 0.0226-10.0038 0.023610.0051
s —0.0463-10.0136 —0.0460-i0.0114 —0.0470-i10.0154
cef 0.0134+i0.0045 0.0133i0.0038 0.0137i0.0051
e —0.0600-i0.0136 —0.0597-i0.0114 —0.0608-i0.0154
M a —0.0309-10.0367 —0.0305-10.0324 —0.0326-i0.0403
e 0.070 0.070 0.070
M a —1.428-i0.0367 —1.428-i0.0324 —1.430-10.0403
e a 0.48 0.48 0.48

The penguin matrix element of scalar and pseudoscalawherep, is the c.m. momentunt; andm; are the energy

densities, (B,58,|q1(1* v5)q,|0), is usually evaluated by and mass of the baryofi;, respectively. For the decay
applying the equation of motion and it is renormalization — B;(3*)B,(3 ") with a spin3 baryon in the final state, the
scale and scheme dependent. Since the factorization scalegeneral amplitude reads

set at us=m, to obtain the effective Wilson coefficients

listed in Table I, we will therefore evaluate the penguin ma- 418 B,(p,)B,(p,)]=iq U4(p1)(C+Dys)va(pa),

trix element of scalar and pseudoscalar densities atthe a (3.3
scale.

For quark mixing matrix elements, we will use whereu* is the Rarita-Schwinger vector spinor for a sgin-
|Vub/Vep| =0.085 and the unitary angte=60°. In terms of  particle,q=p,— p,, andC, D correspond to parity-violating
the Wolfenstein parameterd=0.815 andA=0.2205 we p-wave and parity-conserving-wave amplitudes, respec-

have tively. The corresponding decay rate is
p=0.385siny, #7=0.385co0sy, (2.5 T[B— By(3/27)By(1/2%)]
wherep and » are the parameters in the Wolfenstein param- 3 E.+ E.+ 1 p212
etrization[27] of the quark mixing matrix. _Pe iz |c|2[( 1+ M) (Eo+ M) p2°]
67T ml (E1+ ml)(E2+m2)mB
lll. CHARMLESS TWO-BODY BARYONIC DECAYS , (mg+my+my)?p?
+|D . 3.4
The charmlesB decays into two light baryons can be Dl (Ex+my)(Ex+ mz)mé 9

classified into two categories: the ones induced by lithe

—u tree transition, and the ones by thess penguin tran- As shown in Fig. 1, the quark diagrams for two-body bary-
sition. The decay amplitude cB—>Bl(%+)§2(%*) has the ©nic B decays consist of internalv-emission diagramp
form —d(s) penguin transitiony-exchange for the neutr& me-

son andW-annihilation for the chargeB. Just as mesoniB
decays ,W-exchange andV-annihilation are expected to be
helicity suppressed and the former is furthermore subject to
color suppressioh.In the language of the pole model, the
M *) B, B, form factor is expected to be largely suppressed at

g’=m3. As estimated by[5,10,13, the W-exchange or
We-annihilation contribution is very insignificant and hence

can be neglected. The tree-dominated decays, &0.,

—pp, pK‘ are mainly induced by the interng¥-emission
via b—u transition, while penguin-dominated modes, e.g.,

A(B—B1B,)=Uy(A+Bys)vy, (3.9)
where A and B correspond tq-wave parity-violating(PV)

ands-wave parity-conservingPC) amplitudes, respectively.
The decay rate is given by

[[B—By(1/24)By(1/24)]

2.2
~ Pec A2 (mg+mg+m,)“pg
P 2

4ar (El+ ml)(E2+ m2)mB
lin contrast,W-exchange plays an essential role in nonleptonic

decays of baryons as it is no longer subject to color and helicity
suppression.

[(Ei+my)(Ex+my)+ pg]z
(Eq+my)(Ey+my)m3

+|BJ? , (3.2

014020-3



HAI-YANG CHENG AND KWEI-CHOU YANG PHYSICAL REVIEW D 66, 014020 (2002

5 (By|Hegl Bp) = Up,85,8,UB,:
B1
\ZT B B @B (Ba| Mt BY ) =iu s, iy s, Uy (3.6
B2 - AN *
- are PC and PV matrix elements, respectively.

b
3 Since the weak transition does not involve momentum
i\ transfer, it can be evaluated using the quark model. Conven-
tionally, baryon matrix elements are evaluated using the bag
By model or the harmonic oscillator model. In the present work
(@ we prefer to employ the MIT bag modg30] to compute the
weak baryon-baryon transition for several reasons. First, it
b has been applied successfully to describeptveave ampli-
—o B tudes of hyperon nonleptonic decays and it is much simpler
B @ = than the harmonic oscillator model for computing the PC
matrix elements. Second, it is relatively easy to incorporate
b B penguin operators in calculations. Third and most impor-
—'—‘\\—;Z—'— B B M® tantly, the bag model calculation gives predictions consistent
B @ . —_< with experiment, whereas the calculated results based on the

harmonic-oscillator model are too large compared to the

data. This will be clearly demonstrated below when we dis-

b — _
- (— B1 cussB—pp andpA.
o B> However, it is known that the bag model is considerably

less successful for describing the physical noncharm and
®) nonbottom; ~ resonancef30], not mentioning the charm or
) e bottom3 ~ baryon states. Therefore, we will not evaluate the
FIG. 1. Quark and pole diagrams fBr B,5, where the sym-

. PV matrix elemenbg« 5z and the strong couplingz* _,g5. as
bol @ denotes the weak verteta) corresponds to the nonfactoriz- . i BB 9 Pings; BB,
able internaM emission or theb—d(s) penguin transition, while  their calculations in the bag model are much more involved

(b) to the W-exchange contribution for the neutraB or  and are far more uncertain than the PC cp2®. Fortu-

W-annihilation for the chargeB, or penguin-induced weak annihi- nately, there are some decay modes that are purely parity-

lation. conserving within the framework of théP, quark-pair-
creation model to be mentioned shortly. Examples Bre

B~ —Ap, 3% proceed througtb—s penguin transition. — NP andB—NA, which will be discussed below.

These amplitudes are nonfactorizable and thus very difficult FOF Strong couplings we will follow10,31 to adopt the

to evaluate directly. This is the case in particular for baryonsPo quark-pair-creation model in which tregg pair is cre-
which being made out of three quarks, in contrast to twoated from the vacuum with vacuum quantum numb#?g.
quarks for mesons, bring along several essential complicae shall apply this model to estimate the relative strong
tions. In order to circumvent this difficulty, it is customary to coupling strength and chooﬂgggﬂgop|=5 as a bench-

assume that the decay amplitude at the hadron level is domli'narked value for the absolute Coup“ng Stren@ee be|ow
nated by the pole diagrams with low-lying one-particle inter-presumably, théP, model works in the nonperturbative low
mediate states. More precisely, PC and PV amplitudes argnergy regime. In contrast, in the perturbative high energy
dominated by; " ground-state intermediate states &d  region where perturbative QCD is applicable, it is expected
low-lying baryon resonances, respectivél0].> This pole  that the quark pair is created perturbatively via one gluon
model has been applied successfully to nonleptonic deca@(change with one-gluon quantum numbég;. Since the
of hyperons and charmed baryof28,29. In general, the |ight baryons produced in two-body baryorcdecays are
pole diagram leads to very energetic, it appears that tH&, model may be more
relevant. However, in the present paper we adopt ¥Rg
model for quark pair creation for the following two reasons.

A=—S 9s5; —88,055 5, B 95,~B5,35,8, First, it is much simpler to estimate the relative strong cou-
Y meme | H ompemg pling strength in the’P, model rather than in théS, model
b b (3.5 where hard gluons arise from four different quark legs and

generally involve infrared problems. Second, this model is
presumably reliable for estimating ti% 5B coupling when
where all particles are on their mass shell. Of course, the interme-
diate pole state3, in the two-body baryonic decay is far
from its mass shellbut not quite so in the three-body degay
2The s-channel meson pole states correspond to weak annihilatioln principle, one can treat the intermediate state as an on-
diagramdsee Fig. 1b)]. shell particle and then assume that off-shell effects of the
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TABLE II. Predictions of the branching ratios for some charmless two-body bargdgrays classified
into two categories: tree-dominated and penguin-dominated. In this work, some branching ratios denoted by
“t"are calculated only for the parity-conserving part. For comparison some other predictions in the literature
are also shown. We have normalized the branching ratio€ fg/V.,| = 0.085. The predictions given [11]
are carried out in two different quark-pair-creation models: local and nonlocal. The line separates tree- and
penguin-dominated charmless baryoBiclecays and experimental limits are taken frg4,15].

Ref.[11]

Ref.[3] Ref.[7] Ref.[10]  nonlocal local This work Expt.
B'~pp 42x107% 1.2x10°° 7.0x10°% 2.9x107°% 2.7x10°° 1.1x107""T <1.2x10°®
B°—nn 35x1077 7.0x10°® 29x10°% 2.7x10°° 1.2x10° 7"
B —np 6.9x10° 7 1.7x10°° 0 0 5.0<10°7
B AA 2x10°7 of <1.0x10°©
B-—pA ~ 15x10°% 29x10°7 3.2x10% 24x10° 87x10°° 14x10° <15x10*
BY—pA- 7x1078  1.0x10* 1.0x10°® 4.0x10°% 4.3x10°7
B-—nA- 1.1x10°% 2.7x107 1x107 4.6x10°7
BO— AP 1.0x10*% 1.0x10°® 4.0x10°°% 4.3x10°7
B~ —Ap =3x10°° 2.2x107""T <2.2x10°¢
B’ An 2.1x10° 77
B3 ‘p 6x10°° 1.8x10 8t
B —3% 3x10°¢ 5.8x10 8
B-S*tA 6x10°6 2.0x10°7
B3 *A- 6x10°° 6.3x10°8
B~ 3 A0 2x10°° 6.7x10°8

pole can be parametrized in terms of form factors. Such forncouplings at large momentum transfer as elaborated before.
factors are basically unknown, though they are expected tédnother difference is related to the quark model evaluation
become smaller as the intermediate state is more away frowf baryon matrix elements: We employ the bag model rather
its mass shell due to less overlap of initial and final hadrorthan the harmonic oscillator model.

wave functions. Since we are interested in the relative For the reader’s convenience, in Table Il we give a sum-
strength of strong couplings rather than the absolute strengtimary of the calculational results presented in Secs. Il A and
it seems plausible to assume that the relative couplingll B below. For comparison, some other predictions in the
strengths are essentially not affected by the off-shell extrapditerature are shown in the same table.

lation; that is, the strong form factors are assumed to be
universal. We then use the experimental result Br

—>Ac5w* to fix the absolute coupling strength gf\JrﬁEOp -
0
or g - gop [21]. 3 In the future, it is important to carry out 1. B'—pp

the more sophisticated pQCD analysis to gain a better under- AS discussed before, we can negl¥é¢exchange contri-

standing of the underlying decay mechanism for barydhic butions to BO—>pp and simply focus on the internal

decays. W-emission which is manifested as the pole diagram at the
At this point, we would like to stress that although we hadron level with the low-lying intermediate stat®g ()

employ the same pole-model framework as Jetrfil.[10]to  [see Fig. 1a)]. The PV and PC wave amplitudes read

discuss baryoni® decays, the calculational detail is differ-

ent. While Jarfiet al. evaluated baryon matrix elements at B B

large momentum transfer and strong couplings at small trans- O3/ *—-B% bE; “p B Os;—-8opas/p

A. Tree-dominated two-body decays

fer, we consider weak transition at zero transfer and strong T m—m ' m.—m - (37
p 2; p Eb

3The nonresonant dec® — A p#~ receives its main contribu- Neglecting penguin contributions to the matrix element due
tions from Figs. 2a) and 4d) shown in Sec. IM(see[21]). In the  to the smallness of penguin coefficients, we have
pole model, the contribution of the former is governed by the
pole. Therefore, a measurement of the decay rate of this mode en- G
ables us to determine the off-shell coupllgggHBop. For detalils, as+p= _FvubV:d(Cl —Czﬁ)<p|opc|2b> (3.8
see[21]. b J2
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for the PC matrix element, whe@;=(ub) _ (du) _, and pair-creation model, it follows thags - gop| ~4.4, which is
(p|O4|3{). The latter close to the above-mentioned model estimate.

Note that a similar pole model calculation by Jafial.
[10] yields a branching ratio of order 20L0° after scaling
their original result(see Table | of[10]) to |Vu/Vcy|
0.085 and to the current world averageBlifetimes[32].

use has been made @§|O,|3 . )= —
relation holds because the combination of the four-quark op-
eratorsO;+ O, is symmetric in color indicegsmore pre-
cisely, it is a color sexteétand hence it does not contribute to

the baryon-baryon matrix element since the baryon- color
wave function is totally antisymmetric. In contrast, the op->NC€l'py/I'pc=0.79 is obtained by the same authors, and a

eratorO;— 0, is a color antitriplet and has isospin=1  Strong couplinglgs - _gop| =10 is used by them, it follows

because the diquankd is isoscalar due to antisymmetriza- that
tion. The latter feature will lead to somkl =3 rule rela-
tions, see, for example, E(3.26) below.
We shall employ the MIT bag modgB0] to evaluate the B(B’—pp)id=1.0x10"°
baryon matrix elementtsee, e.g.[28,29 for the methodl

From the Appendix of21] or [28] we obtain the PC matrix

2
92+~>B0p

—5 (3.19

is predicted by Jarfét al.[10] using the harmonic oscillator

element wave functions for baryons. Evidently, the estimate of the PC
(p|OPIs )= —6X(4) (3.9 matrix elementaggp in the harmonic oscillator model is
b/~ ' . . . :
' about three times as big as the one calculated in the bag
where model?

R 2. B’=nn, B"—np
><=f r2dr[uy(r)Us(r) + 0y (1)vp(r)] | o e |
0 The relevant intermediate states in the pole diagrams for
X [Ug()Uuy(F) 0 g(Noy(1)] (310 the decay8’—nnandB~—npareA{") and=g™). Con-
sider the former decay first. The PV and PC wave amplitudes
is a four-quark overlap bag integral ang(r), v4(r) are the read
large and small components of the quark wave functions in

the ground (B,,,) state(see, for exampld21]). As stressed 9x0% _Bon bzg*n iz _Bonb A¥n
in passing, we will not evaluate the PV matrix elembgt , A=— - ;

. o . b My — My m,— My *
as its calculation in the bag model is much more involved b b
and considerably less reliable than the PC ditowever, (3.19
see[28,29 for the evaluation of PV matrix elements in 939-8%@s0n QA —BOn@A,n

. . B=
charmed baryon decaysNumerically, we obtain m,—my_ m,—m,_
X=1.52x10"* Ge\~. (3.11

Applying the bag model leads to the PC matrix elements
Collecting everything together leads to

(n|oY9s Dy =32X(4m), (n|Of9AL)=6X(4m).

|95y 80| ? (3.16
5 For strong couplings, théP, quark-pair-creation model im-
and hence plies[31]
o Jas; -t Gron _ (Pui(129950(35| Py [(123D1ad 45)
BB —pp)=22<1071 =5, G138  gio g, (Oi(124P50(35)|P501(123 Dyl 45)

(3.17

where the upper limit corresponds i, /I'pc=1. There-
fore, the above result is consistent with the experimentalvhere the®’s are the spin-flavor wave functions and the
limit 1.2 108 [15]. vacuum wave function has the expression

We have chosevhgggﬁgop|=5 as a benchmarked value
for the strong coupling for two reasons. First, a calculation 1 - - — 1
based on théP, quark-pair-creation model yields a value of @Vac—ﬁ(uu+dd+ss)® E(TVFH)' (3.18
6—10 for this coupling10]. Second, we have computed the
decayB™ — A .pm  in[21]. A fit to the measured branching
ratio for this mode implies a strong couplimg pb—B7Pp with “It is not clear to us how to make a direct comparison of our result
the strength in the vicinity of order 16. USIng the relation for ax+p, Which has a dimension of mass, with the numerical value
lga yB- o|=3V3 2|92+—>Bop| derived from the®P, quark-  of as +p shown in Table Il of 10] which seems to be dimensionless.
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Using the baryon wave functions given in E41) and theB
meson wave function

¢Bo=bﬁ®%m—m, (319
we obtain

Oa, 8% =~ 33050 5on. (3.20
Consequently,

3V3ay,,  ash )

=
B(B—nn)= gzgm)n(mn_mAb

mn_mEb

(3.21
Likewise, forB~—np we have
_ 3V3ay, - ash
B(B™—n - 0*)7 ’
( p) gEb BOn mp_mAb mp_mEb
(3.22

where use has been made of

O, -5-p=3V300 50, 050 .5p=0s0 50

(3.23
Using the relations
1
gngEOn: - Egzgﬂﬁop (3.249
and
1
azgn:_ﬁaigp (3.29

derived from Eqgs.(3.9) and (3.16, we find thatB—NN
amplitudes satisfy tha |l =1/2 relation[5,10]

A(B°—pp)—A(B°—nn)=A(B"—np). (3.26

As mentioned before, thidl =1 relation arises because the
weak operato,— O, has isospirl = 3.

From Egs.(3.16, (3.21), and (3.22, it is evident that
B~ —np has a larger rate tha— nn. In contrast, the QCD
sum rule analysis if7] predicts thatl'(B°—pp)>T'(B~
—np)>T(B°-nn). Moreover, as pointed out {i5,10], the
decay B_HnB is purely parity-conserving, namely, its

parity-violating amplitude vanishes provided that tﬁpair
is created from the vacuum. As pointed out byrier 5], if

PHYSICAL REVIEW D66, 014020(2002

We are ready to compute branching ratios and obtain

— |2
gEgHBOp

B(EO—) nﬁ)pc=12>< 1077 5

(3.27

2
b

5

J— gE*agop
B(B~—np)=5.0x10 /| ———

3. B> AA

Let us consider the PC amplitude?—u\K. In the pole
model it receives pole contributions from the antitripE}

and sextefs?

=0_.R0AAz0 ='0_,goprd=’0
B 9=0-80A220A  Uz/0-B0ARZ0A

(3.28

mA—mEb mA—mEé

Using the wave functions given in Appendix A, we obtain

(A|OT9ER) = —2X(4m),
(3.29
(A|OFIE L) =—23X(4m)
for PC matrix elements, and
9=0-B0A= — \/59560_50/\ (3.30

for strong couplings. Then it is clear that the PC amplitude
vanishes as the mass difference betwggnand =/, is neg-
ligible. That is, this decay is purely parity violating in the
3P, quark-pair-creation model as noticed byrder[5] and
Jarfiet al.[10] some time ago. As noted in passing, we will
not compute the PV amplitude within the framework of the
bag model.

4.B"—pA~", nA~, B’>pA~, nA°
The relevant pole diagram consists of the intermediate
states *) for pA~~, pA~ modes A~ being the anti-
particle ofA** and likewise for otheA particles and=2*)

the quark pair is created perturbatively via one gluon ex-as well asAE,*) for nA~, nA° final states. However, it is

change with one-gluon quantum numbéS{ mode), the
neutron inB~ —np will have a positive longitudinal polar-

straightforward to show that, in th&P, quark-pair-creation
model, the strong coupling fok,— NA vanishes and hence

ization. Therefore, a polarization measurement of the neutrothe A, pole makes no contribution. Moreover, the parity-
by studying its subsequent weak decay can be used to test thimlating part vanishes in the same quark-pair-creation model

3P, and 3S, quark-pair-creation models.

[5,10]. Therefore,

014020-7
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- Os+ .g-a++astp other modes can be calculated using E8.33 and are
D(B_—>PA")=#, shown in Table IIl. Experimentally, the dec&®/ —pA~ "~
P should be readily accessible Byfactories BaBar and Belle.

0 — 0
9s0-B-a+8s0n

D(B’—>nK’)= —_— B. Penguin-dominated two-body decays
mn,— mgb o o
(3.31) 1. B"—Ap, B°>An
D(B0_ pA- _gESHEOM asyp This decay receives intern&ll-emission andb—s pen-
(B"—pA7)= Mp— My, ' guin contributiongsee Fig. 1a)]. As we shall see below, it is
a penguin-dominated mode. The pole diagramBor— Ap
. Os0 g0a0dx0 consists of the intermediate statéf*) and3,2*)
D(B°—-nA%)= ———|
m,— mzb
where the PC matrix elements 1, and aso, have been A gAEﬂB*pbAEA_ 905 _g-pbx0sp
evaluated before. The relative strong couplings are My =My My — My '
Os;_p-a++=—V30ys5oa+=— V32050 5os0 (3.39
= \/3/2g28ﬂ31+=2\/€g2gﬂ§op. (3.32 B A, B paapa N 9x0-B-pasia
my—my, my—-ms

This together with the baryon matrix elemen({.9 and
(3.16 leads to the relation
. . To evaluate the hadronic matrix elements, we notice that the
I'(B"—pA~")=3I'(B"—nA") combinations of the operato®,;,,+ O, (i=0,...,4)
are symmetric in color indices and hence they cannot con-
=3I'(B%->pA~)=3r(B°~nA?), (3.33 tribute to the baryon-baryon matrix element. From this we
can write the PC matrix elemea'p\bA as
as first pointed out by Jarét al. [10]. In the diquark model
of [11], nA~ has a rate different fromA~ andnA°. Hence,
experimentally it is important to test the relati¢®33). Ge
If we apply Eq.(3.32 and use|gs:gop| =5, we will aAbA:E{VUbV:s(Ciﬁ_ cSM(A|OTGAL)
obtain|gs+ .g-5++/=24 andB(B~ —pA~")=5.8X 10°8. o . o
_ _ _ * eff_ e eff_ e
Because of the strong decdy ~—pm~, the resonant con- VipVid (€57~ 3 )(A|O59Ap) + ("~ cg)
tribution from A~ " to the branching ratio oppz~ would X(A|OEGA L)+ (cS™cEM(A|OFGAL)
be 6x 10 . This already exceeds the recent Belle measure-
ment B(B~—ppm )=(1.933+0.3)x10°% or the upper
limit of B(B-—ppm )<3.7x10 ® [23]. Therefore, the
coupling of theA to the B meson and the octet baryon is Since the bag model implies
smaller than what is expected from H.32 probably due
to the different off-shellness oA. Recall that the parity-

conserving transition to thA corresponds to & =2 partial ( Al(gb) (ad)
wave. Therefore, the off-shell suppression on the three-point VA

+(c§"—cSh(A|OFGA LT} (3.36

|Apypc=(A|(sb),_,(uu)_[Ap)ec,

VA

coupling of 2 ,—BA is likely to be different from that of (3.37

Ap—BN. For definiteness, we will choos@E;HBqu

=12 and obtain the baryon matrix elements @5 and O4 can be related to
0O, while the matrix element 0D, is related toOg, for

o Os: p-a+ 2 example,
B(B-—pA~")=1.4x10°© B (3.39

Thus this charmless decd —pA-~ can have a large  (AlO3FAR)=(A[(sb), [(uu), ,+(dd), ,IIAp)ec
branching ratio of order I¢ owing to the large coupling _ P
constantgzg_,szH. In sharp contrast, this mode is pre- __2<A|01C1Ab>' (333

dicted to be only at the level of>810"7 in the QCD sum
rule analysig7] (see also Table )] The branching ratios of Hence, Eq(3.36) can be recast as
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Ge
aAbA:EHVUbVSS(Cl —c5N = Vi Vis

of |(AlOT9AL)

off 1 1

1 1
thvts( ce'—cg+ 5 5 cs— icgﬁ)

><<A|o§%b>]. (3.39

Likewise, the relation

(Al(sb),, ,(dd)yalZ0)pc=—(A[(sb), ,(uu),, [SD)pc

(3.40

implied by the bag model leads to

azoA:& Vib (c1 —cz)
ot 2

3
ff+c)

3
—vtbv:;( -3¢ (A|OF95E)

—VipVi(cS"—c§ ><A|o?‘128>]- (3.41

Therefore, the PC matrix element for tB§— A weak tran-
sition does not receive QCD penguin contributions.
Applying Egs.(B2) and(B5) we obtain

4
(A|OFT9A) :§X1(4Tf).

<A|oPC1Ab>_ (2Y1+2Y,— Y1+ Y5)(4m),

(3.42

i(x1+ 3Xz)(4m),

<A|quzg>: - \/§

3
(Alo7935)=- \[E[Y1+Yz—2(Yi—Yé)](47T)

in the bag model, where

PHYSICAL REVIEW D66, 014020(2002

R
X1= JO rzdr[us(r)vu(r)_Us(r)uu(r)]
X[uy(Nvp(r)=vy(ruy(r)],
R
Xo= fO rzdr[us(r)uu(r)+vs(r)vu(r)]
X[uy(r)up(r) +ovu(r)vp(r],
R
Y= J;) r2drus(rop(r) —vs(rup(r)]
X[uy(rvy(r)—ovy(ruy(rl,
o (3.43
Yi:fo r2dr{ug(rvp(r) +vs(r)uy(r)]
X[uy(Noy(r)+oy(ruy(r)l,
R
Yo= fo r2drus(rup(r)+ovs(rovp(r]
X[uy(Nuy(r)+ovy(rvy(r)],

R
Yngo r2drlus(r)up(r)—vs(rvp(r)]

X[uu(r)uu(r)_vu(r)vu(r)]

are four-quark overlap bag integrals. Finally we arrive at

B(B~—Ap)= — — (3J§aAbA
—AP)= = —=0sF Bop|
\/E b P mpy mAb
a2z
+—, (3.44
my—Ms,

where use has been made of E@23 and (3.24).
The bag integrals have the values

X;=—4.6x10°% GeV®, X,=1.7x10 *Ge\?,
Ge\s, (3.45
Ge\.

It is easy to check thaiAbA and hence the decay is penguin
dominated. For the branching ratio we find

Y,=0, Y;=45x10"°

Y,=1.7x10* Ge\®, Y,=1.2x10"*

— |2
gE;ﬂBop

B(B~—Ap)pc=2.2X10"7 (3.4

For B®—An, it has the same rate & — Ap.
2.B'»3*p

We consider the pole diagram with the intermediate states
N +(x)

014020-9
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92;* HEOpbz; p gz;HEOpazgz
A: -, B: _—
my — mzé my —

. (3.4

mgg

The PC weak matrix element for the, —3" transition

reads

Gk
s s+ = E{[Vu pVie(e3' = e5") — Vi Vi

cg'+cip (= |oT93 )
g |0Eq= )}

X(— c3 +04

—VipVi(cg - g+ cS—

(3.48
In the bag model,
<2+IOE‘12;>=§(X1—9xz)<4w>,
5 (3.49
(371|059 ) =3[ Yo+ Yot 4(Yi=Yy))(4m).
We obtain numerically
_ _ s BO% 2
B(B°—3*p)pc=1.8x10"8 bs (3.50

Note that the branching ratio is predicted to be B¢

the QCD sum rule analysis ¢¥], which is larger than our

result by two orders of magnitudsee Table Il.

3.B"=3%

The intermediate low-lying pole states for this decay are

AJ®) and 3 0)

_ 0 — 0
9rr—B pbA;EO 9x2* 8 prb*Eo

A=— - ,
mz_mAg mz_mz;
(3.5)
gap,—B-pan,z0  Ox)op-pasixo
- My — My, my—Ms,
The PC matrix elements are given by
Gr ff ff
asgsom || ViVt Vi
1 1 o|AP
x| —2c8™+2¢5" —Ecg += c10 (2°/0793,)
1 1
~VipVi| o8- o8+ 55— S
2 2
><<2°|O§‘izb>], (352

and

PHYSICAL REVIEW D 66, 014020 (2002

G
aAOEOZ_FH VupVis(ct _Czﬁ) VipVis
2

X (390T9AD) — Vip Vi

3 3
— ECQ + = ClO

X (5= c§ﬁ><2°|05’%8>] : (353
where in the bag model
(3908 Ay = — = (Xy+ 3X) (47,
V3
0|~ P 3 ’ ’
(291079 Ap) == \[5LY1+ Y2=2(Y1 = Y))](4m),
(3.59
1
(2007925 =5 (X1 =9Xz) (4m),
2
(20052 =5 [Ya+ Y2+ 4(Y] = Y)](4m).
Hence,
1 B 3\/§aAb20 azgzo
B=— Egzg—ﬁop my—m, + ms—ms, |’ (3.59

where use of Eq¥3.23 and(3.24) for strong couplings has
been made. We obtain

_ 2
BB —300)0c5.8¢ 108 0" 3
(B —2"p)pc="5.8% 5 (3.56

Again, the QCD sum rule prediction for this mode is much
higher[7].

4, B =3FAT, 37A0 BOSItAT

As stated before, the decaps —3"A~ ", SA?, B
—3"A~ only receive parity-conserving contributioft 10]
so that

—_ Osr—p-at+as/s+
D(B™—3*A™ )= = ,
my— My,

— s I3y oBoarAyIyE

D(B AT)y=——F—"—

(B°=X7A7) me—m ,
s~ My,

(3.57

— Oz, a8y s~
D(B"—3 A%= )
my—Ms,
The PC matrix elemerazgy has been evaluated before and
Ay y-=asiy+. For strong couplings we get
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gE;%A“'B‘:_\/ggE;HA”’EO: ﬁgngAOB— discussed if33]). In contrast, the sum rule approach pre-
dicts branching ratios of order (2—-8Y0 © for B—Ap,

:Zﬁgzgﬂpﬁo, (358 s, SA. In our work, the decay rates of penguin-dominated
decays are in general small.

. 3 . . . — —
in the *Po model. Collecting all the results gives In short, measurements of the relative ratesBef NN,

2 EE SA will suffice to differentiate between the above-
gEJrﬂAJrJrB* .
b mentioned three models.

- L StATTY = —7
B(B™—3%"A"7)=2.0x10 1 ,
) IV. CHARMLESS THREE-BODY BARYONIC DECAYS

_ _ Osfat+B-
B(B°-3 A )=6.3x10 8 DT ., (3.59 As noted in the Introducti@, the_study and search of the
three-body baryoni® decayB— 3,8,M with M being a

meson are mainly motivated by the experimental observation
that B(B-—Apm )>B(B°—A.p) [22] and B(B~
—ppK™)>B(B°—pp) [23]. Theoretically, it has been ar-
gued that the emitted mesd in the three-body final state
carries away much energy and the configuration is more fa-
vorable for baryon production because of reduced energy
release compared to the latiel8]. Roughly speaking, the

C. Comparison with other models reason that the two-body baryonic de(&y»Blgz is smaller

As discussed in passing, though we adopt the same polédan the mesonic counterp@t-M;M, stems from the fact
model framework as Jarét al.[10] for describing two-body that one needs an additional quark pair production in the
baryonicB decays, a crucial difference is that weak baryoninternal\W-emission diagraniFig. 1(a)] and twoqq pairs in
matrix elements are evaluated by Jatfal. at large momen- weak annihilation diagramfgFig. 1(b)] in order to form a
tum transfer and strong couplings at small transfer, whereagaryon-antibaryon pair. Aqa production is suppressed by
the weak transition is computed at zero transfer and strongither a strong coupling when it is produced perturbatively
couplings at large momentum transfer in our case. In generalia one gluon exchange or by intrinsic softness of nonpertur-
the difference in numerical results shown in Table Il comespative pair creatio17]. In the three-body baryonic decay,

mainly from the fact that we use the bag model rather thaﬂhe emission of the mesol will carry away energies in

g?ﬁouzrmonlc oscillator model to evaluate weak baryon trang ., 4 way that the invariant mass/f3, becomes smaller

. . ) and hence it is relatively easier to fragment into the baryon-
In the following we compare our results with the diquark y g y

tib ir.
model by Ball and Doschll] and the QCD sum rule analy- antbaryon parr

: o One can also understand the above feature more con-
SIS by_Chernyak and Zhitnitsk}7] (see also Table JI For cretely by studying the Dalitz plot. Due to thé— A nature
B— NN decays, the diqguark model has one unique predic T

it of theb—udu process, the invariant mass of the diquarck
tion, namely, there is n®~ —np decay, whilepp andnn eaks at the highest possible values in a Dalitz plot for the
final states have the same rates. In contrast,_the sum ru Hudatransition(see[34] and footnotd 91] in [35]). If the
approach predicts thal’(B°—pp)>TI'(B"—np)>I'(B°  d forms a nucleon, then the very massiveq objects will
—nn) (see Table N, while in our casel'(B~—np) intend to form a highly excited baryon state suchAasnd
>TI'(B°—pp)~TI'(B°—nn). Therefore, a measurement of N* and will be seen adinm(n=1) [16]. This explains the
the relative rates oB— NN (especiallyB~—np) will serve ~ nonobservation of théN final states and why the three-
to test the three models. body modeNﬁw(p) is favored. Of course, this does not
As for the tree-dominated mod&—NA, they are sup- necessarily imply that the three-body final st&e3,M al-

pressed in the diquark model because the oper&rand  \yays has a larger rate than the two-body @, In this

O, can only generate scalar diquarks whereas the decuplgkction we will study some leading charmless three-body
baryons are made of a vector diquark and a quark. LikewiseyaryonicB decays and see under what condition the above
they are also suppressed in the sum rule analysis. In shagygument holds.

Contrast, these modes have sizable branching ratios in the The quark diagrams and the Corresponding po'e diagrams

pole model, namely’(B—NA)>T'(B—NN), owing to the  for decays o8 mesons to the baryonic final staeB3,M are
large coupling of the intermediate stalg with theB meson  more complicated. In general there are two external
and theA resonance. W-diagrams, Figs. @) and 2b), four internalW-emissions,
__The penguin-dominated decays have smaller rates tharigs. 2c)—2(f), and oneW-exchange, Fig. @) for the neu-
B— pp in the diquark model as the penguin operators are notral B meson and onéMN-annihilation, Fig. 2h), for the
included in the original calculations by Ball and Dost¢he  chargedB. Because of space limitations, penguin diagrams
effect of the penguin operators in this model was recentlyare not drawn in Fig. 2; they can be obtained from Figs.

2
gzg—»A++87

- ~A0) S
B(B~—3 A% =8.7x10 - ,

where we have followed the discussion®f:NA to choose
the coupling|gzg_,A++Bf| =12 as a benchmarked value.
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\T contributions,(c) and (d) to factorizable internal
B> B B M B B M W-emission,(e) and (f) to nonfactorizable inter-
b - —T< nal W-emission,(g) to W-exchange, andh) to
B ‘f 3 3, B 3 B W-annihilation. Penguin contributions are ob-
\ | M tained from(c)—(g) by replacing theb—u tree
Q_ transition by theb— s(d) penguin transition.
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Bo : & 5 — B2
d M
()
B1
B1
b ( B ' _
B Cfﬁz — ﬁL<<Bz
T\=. N
(h)
2(c)—2(g) by replacing theb—u tree transition by theb The tree-dominated three-body modes of interest are

—s(d) penguin transition. Under the factorization hypoth-

esis, the relevant factorizable amplitudes are — — = — — =
P BO— 7t (p"){np,AS ", 3% S"AEEC,

Figs. 2a),2(c): A=(M|(d30,)|0)(B:5,|(q1b)|B), oA, ),

Figs. 2b),2(d): A=(B,B,|(0102)|0)(M]|(gsb)[B), (4.1 B

- B B =7 (p ){pnS A SOAS A YD, ...}, (42
Figs. 29),2(h): Ax(B1B,M|[(q;0,)|0)(0[(qzh)|B).

Since the three-body matrix elements are basically unknown, B*Hw*(p*){pa nn,S3,AAAA, .. 3
only the factorizable amplitudes for Figs(b2 or 2(d) are
calculable in practice. while some interesting penguin-dominated decays are
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B~ a (p){Ap,2%, 2 nETASTAT, L 1 3
—m AR | FYAD=FPAD+ 5F1A0, DYst)=—>Fit),

B —m (p ){S"p,An,3%,EA,S7A, ...}, y y 4.7
F3()=D3(1)=0,

§0—>K7(*) H +K’ +_0,A_+,EOE+,A++_,...,
{pnX7AZTE0AZ P (4}3) with t=g2. At t=0 we have
B~ =K~ ™)pp,nn,33,AAAA, ...}, 1
FI(0)=1, D}(0)=0, F3(0)=rp+5«y,
BY—K%*){pp,nn,33,AAAA, .. .}, @9
o _ o . 3
B*—>K°(*){np,A2’,202’,2’A,pA”,...}. D\Z/(O):—EKny

In the present paper we will focus on octet baryon ﬁna'wherexpzl.?Q andk,= — 1.91 are the anomalous magnetic
states. _ . _ moments of the proton and neutron, respectively.

To evaluate the factorizable amplitude for FigbRor The experimental data are customarily described in terms
2(d) we need to know the octet baryon form factors deflnedof the electric and magnetic Sachs form fact@%(t) and

by G (t) which are related t&) andF} via

(B1(p1) Ba(p2)|(V£A) ,|0) t
GEM(O)=F (D) + ;= FE"(1),
N

_ f5:2(0%)
= ul(pl){ 115202y, Hi ————0,,0" (4.9
m; +m, BNy _ P N
Gr(H)=FI(t)+FY ().
flez(qz)
Wq”i gleZ(qZ)yM A recent phenomenological fit to the experimental data of
1rie nucleon form factors has been carried ouf20] using the
-glzngZ(qZ) ) gngz(qz) ] following parametrization:
i—0,, E—
my+m, 4T mm, k)7 ) X1, X X3 X X[ t]”
GhO=|z+F3+7+=+5|In=| ,
sz(p2)1 (44) | M( )| t2 t3 t4 t5 t6 Qg
(4.10
where q=p;+p,. For octet baryons one can apply QU . Vi Ya Y
symmetry to relate the vector form factofglg2 to the IGu(D]= t_2+t_3 InQ_S '
nucleon magnetic and electric form factors. In general 33U
symmetry implies where Qp=Aqcp~300 MeV and y=2+4/(33)=2.148.

We will follow [20] to use the best fit values
17152(q?) = d™152DY (g?) + 515 2F ()
I 1 I L]
45 X1=429.88 GeV, x,=-10783.69 Ge¥,

B1Ba( 12y = gB1B82DA(g2) + fB1B82FA( g2

g, Ha”) (@) Ha, x3=109738.41 GeV, x,=—448583.96 Ge¥’, (4.1)
whered?1%2 and f51% are the well-known Clebsch-Gordon
coefficients and:iv(qz) and DiV(qZ) are reduced form fac- X;=635695.29 Ge¥,
tors. The nucleon matrix element of the electromagnetic Curénd
rent is given by

y,=236.69 GeV, y,=-579.51 GeV, (4.12
<N(p1)N(pz)IJi"‘|0>=uN(pl)[Fl(qz)yﬂ _
extracted from neutron data under the assumptiGg|
=|Gpy|. Note that the form factors given by E(.10 do
un(P2)- satisfy the constraint from perturbative QCD in the limit of
larget [20]. Also as stressed ir20], time-like magnetic form
(4.6)  factors are expected to behave like space-like magnetic form
factors, i.e., real and positive for the proton, but negative for
SinceJ§"=V5 + (1/y3) VS, SUB3) symmetry allows us to  the neutron.

= 2
i 2(9%)
2my

v
0w

determineF}/zqz) and D}/Zqz) separately. The results are A new empirical fit to the reanalyzed data fGf,(t) in
(see, e.g.[36]) the region 0<t<30 Ge\? is recently given irf37]:
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& (0F)= Hp (7 (p,)l(ub), [B%pg))
1+2,Q+2,Q%+ 2,Q3+ 2,Q*+ z:Q"’
(4.13 =F2"(q)(pg+P.) .+ (F§7(0?)
. 2 2
with CFET(QR) g, 4.17)

7,=(0.116+0.040 GeV !,

(2.874:0.0.098 GeV-> and form factors/,Aq,Aq,A, for the B—p transition
22: . U, e y

+ T RO
2,=(0.241+0.107 GeV 3, 414 (P (Pl(Ub),  [B%(pe))
2
z,=(1.006-0.069 GeV *, R * vyanBy\/Bp( 2
4 ( 9 mB+mp E,uvaﬁs popV (q )
25=(0.345-0.017 GeV °, &% Py
—i{(mg+m)ehAP(q%) — T
andu,=2.79. An empirical fit to the proton electromagnetic Mg+ m
form factor ratio is also presented [i87] X (pa+ pp)#Agp(qZ)
GR(1) et p
MpGp—(t)zl.o—(o.lsor 0.005[t—(0.04+0.09], —2m,——2q, [A%(q?) — A (g?)]|, (4.18
M
(4.15
N with g=pg— P, and
for the range 0.04t<5.6 Ge\?, indicating that the form
factor ratio decreases with increasig.
As for the axial form factors, no useful information can be Bf’(q2) = EABP(g?)— EABP(g?).
extracted from S(B) symmetry. Nevertheless, perturbative mp mp a1
QCD indicates that, in the range of higt, the form factors (4.19

f1(t) and g4(t) dominate att— and all others are sup-
pressed by powers af/Q [38]. Moreover, all octet-octet
and octet-decuplet form factors at larfgean be related to the

The factorizable amplitude for the pion emission reads

magnetic form factors of the nucleoBf, and Gy, (see =0 Gr
Tables 1I-IV of [38]). Hence, the axial form factog, at A(B®—np7 ) oo \/EV“dVUbalu“[(ap”+b)
large momentum transfer is fixed.
—(cp,+d)ys]vp, (4.20
A. Tree-dominated three-body decays
_ where
1. Bo%—=np#t(p*)
This decay receives factorizable contributions from Figs.  a=2f1P()F7(t)+4f5P()FT7(1),
2(b) and 2d) with a b—d penguin transition, @) and a
nonfactorizable contribution from Fig(&). As the two-body b=—2f3P(t)FE(t)(p,— Pp) - P/ (2my)
baryonic decay, we can neglect theexchange contribution.
Moreover, we shall assume that this mode is dominated by + 3P FE™(t) (m3—m2)/(2my),
the factorizable term from Fig.(B) as it is governed by the (4.2
parametei;: c= Zglp(t)FBW( ),
A[BO"an-F(P-F)]faCt
G, d=2myg} P(t){F (1) +[FG()
=5 VuVisaa(m (p)I(ub), | B) 2
- —FE(0) 1= |~ 293 F27(1)
x(npl(du),_|0), (4.16

o X(Pn=Pp)- P~/ (2mMy)
whereal—cl +c¢5'/3 and we have neglected penguin con-

tributions because the penguin Wilson coefficients +ggP(FGT () (Mma—m2)/(2my),

Cs, . . .,Cipare numerically very small. The two-body meson

matrix elements are parametrized in terms of the form factorandt=qg?= (pg— p,)?=(pn+ pg)z. The amplitude for the
Fo andF, for the B— 7 transition meson case is more cumbersome.
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TABLE IlI. Branching ratios ofB®—npm'(p*) in two different form-factor models for 8— m(p)
transition. Two distinct empirical fits for the proton magnetic form factor given in E§40 and (4.13),
denoted by CHT and BKLH respectively, are utilized. The neutron form factors are taken fron(4Eds.
and(4.12. Branching ratios in the first entry are without contributions from the axial form fagft¥¢) and
those in the second entry take into account contributions from the asymptotic formda¥rgiven by Eq.

(4.24.
GP (CHT) GP (BKLH)
MS BSW MS BSW
B~ nprt 1.7x10°8 1.8x10°° 8.0x10 7 8.5x10 7
1.7x10°8 1.9x10°° 1.1x10°° 1.3x10°6
B —npp* 3.3x10°°® 4.8x10°6 4.2x10°8 5.5x10°®
3.4x10°° 4.9x10°° 4.6x10°° 5.9x10°°

Since the relevant Clebsch-Gordon coefficients dite
=f"P=1, it follows from Egs.(4.5 and(4.7) that the weak
form factors have the form

I =F )+ DY ()=F () —Fl(t). (4.22

the constituent quark pictufé0].®> The BSW model assumes
a monopole behavior for all the form factors. However, this
is not consistent with heavy quark symmetry for heavy-to-
light transitions. For example, the form factdts,V,Ay,A,

in the infinite quark mass limit should have the sagfe
dependence and they differ froRy andA; by an additional

In terms of the nucleon magnetic and electric form factorspole factor[42]. Nevertheless, we apply this model for com-

the weak form factors read

N
t/(4m3)—1 t/(4m2)—1

t t
a2 Gh(D—GE(1) mG&(t)—GE(t)
= -

] ) (4.23
Gh(H—GR(t) G (H)—GE(t)

npey— +
=" Y am -1 T u@mg) -1

parison.

Considering only the vector-current contribution to the
baryon matrix element, we obtain the results shown in the
first entry of Table Ill. Our calculations are in agreement
with [18] when the BSW model and CHT form factors are
used. However, we see from Table Il that the branching ratio
for B—npp™ in the BSW model is slightly larger. This is
ascribed to the monopole form factqf dependence for all
the B—p form factors. If one changes the form factor mo-
mentum dependence from monopole to dipole form Agr

According to perturbative QCD, the weak form factors in theand V (sometimes referred to as the BSWII model in the

larget limit have the expression$8|

fIP(t) =GR (t) — Gu(1),
(4.24
5
91°(t) = 3 GR(D) + Gy ().

It is easily seen that this is consistent with the lardpehav-
ior of f1P given by Eq.(4.23.

The total decay rate for the proce@(pB)—m(pl)
+p(p,) + 7+ (ps) is computed by

r—iifw?d 7,dmp (4.29
~(2m3 328 my UM, .
where mi2]-=(pi+pj)2 with p;=p,.. To make a numerical
estimate, we apply two different empirical fits G, (t): Eq.
(4.10 denoted by CHT(Chua-Hou-Tsaiand Eq.(4.13 de-
noted by BKLH (Brash-Kozlov-Li-Hubey. For the proton
electric form factor, we shall folloW20] to assumdGE(t)|
=|G}(t)| for CHT form factors and Eq(4.15 for BKLH
form factors. That is, we assume that E4.15 is applicable
also to the large region. As forB— w(p) form factors, we
consider two distinct models: the Bauer-Stech-WirlB$W)
model [39] and the Melikhov-StectiMS) model based on

literature, the resulting branching ratios are very similar to
that in the MS model.

To estimate the contribution from the axial vector current,
we might assume thag,(t) takes the asymptotic form
S Gh()+Ghy(t) [see Eq.4.24)]. It turns out that the con-
tribution due tog4(t) is very small for the CHT form factor
G}y but not negligible_forG’,\’A(BKLH). It is interesting to
notice that the rate afpp™ is larger than that ofip7* by a
factor of 2-3 if the CHT parametrization fdB}, is em-
ployed, whereas the ratio becomes as large as 5 for
GR(BKLH).

Since bothB® andB® can decay intmp#*(p™), experi-
mentally one hasE) disentangle the “background” contribu-
tion from theB®— B mixing or to tag theB meson. There-
fore, we will give an estimate d°—pnw (p~) next.

2. B'=pna(p")
This decay receives contributions from Fig$a)2 2(e),
and 2g). As the previous decay, we will assume that it is

5The QCD sum rule method based on the light-cone sum rule
analysis[41] is also one of the popular form-factor models. How-
ever, we found that some divergence occurs in the phase space
integration when applying this model.
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dominated by the factorizable contribution from Figa)2 240P(g2) =g *P(g2)=0.86,
Unfortunately, as shown in E¢4.1), it involves a three-body Looamee s

matrix element that cannot be evaluated directly. Instead, we A A

will evaluate the low-lying pole diagrams Withythe strong fsz(qﬁ“):ge»bp(qﬁ*):_o'g’l' (4.28
processB®—{A{*),39¢)"n followed by the weak deca§s
{AL) 3060, 7-p. Consider thet* intermediate poles.
Applying factorization toA,— 7~ p yields the pole ampli-

137 (k) =0,""(a7) = - 0.22,

tude for the A, — p transition at zero reco'qrznz (mAb— mp)z, and
— — 0 0
A(B—pnm™) £30°(q2)=1.65, f,°°(q2)=1.92,
Ge * - T S0P, 2 S0P, 2
:_EvudvubgAbHBonfwalup f3P(am=—-1.72, g7 (qy)=—0.17, (4.29
0 0
X {1 P(M2)[2p Pyt Ba(Ma, — M) T7s 0,°°(q2)=0.04, g;*"(g2)=0.10,
A 2 _
+0; P (M2)[2p - Pp— BA(My, +Mp) T}ur for the X~ p transition atqg,=(my, —m;)?. Since the cal-
1 culation for theq? dependence of form factors is beyond the
X—2+(Ab—>28), (4.26 scope of the nonrelativistic quark model, we will follow the

conventional practice to assume a pole dominance for the
form-factorg? behavior:

where we have employed the heavy-light baryon form fac-
tors defined by

(Pp+P)?—my,

1-g2/m2\"
f(q2)=f<qfn>(—v) ,

B 1-g%/mg
(P(pp)[(ub), . [Ap(py,)) (4.30
Aep 2 (o) =gteiy| o)
_ f20P(p2) 9(99)=9(An)| 7—2,—= | -
— App, 2 .2 m Y 1—qg“/my
up| F 7 (P7) vt m, T m, 7P

wherem,, (m,) is the pole mass of the vect@axial-vectoy

fgbp(pi) Ao, 2 g;\bp(pfr) meson with the same quantum number as the current under
> + ; v . . .
My, Pru®| 91 (PR) Yyt m, T m, o,,Pz  consideration. The function

Abp 2 1_q2/m2 n
g (pw) 2\ m' ''pole

: pﬂ',u Vs UA,» (427) G(q )_( 1— 2/m2 (431)
mAb+ Mp b q pole

ith D.=p, — plays the role of the baryon Isgur-Wise functitfw) for the
Wt Pr=Pay ™ Pp- Ao—Ag transition, namely,G=1 at g°=q>. Previous

For the heavy-light form factor™**2 andg®"2 , we will Qe Y - i Y, 8 d = Gm- FTC
vy-lig g g% model calculations of (w) [45—-49 indicates that it is con-

follow [43] to apply the nonrelativistic quark model to evalu- gjstent withG(qg?) with n=2. However, a recent calculation
ate the weak current-induced baryon form factors at zergs /() in [50] yields

recoil in the rest frame of the heavy parent baryon, where the

guark model is most trustworthy. This quark model approach

has the merit that it is applicable to heavy-to-heavy and {(w)=
heavy-to-light baryonic transitions at maximugA. Follow-
ing [44] we havé

2 1.23+ 0.4/

1+w

(4.32

and this clearly favori=1. As we shall below, the recent
first observation oB~—ppK ™~ by Belle[23] also favors a
monopoleq? dependence for baryon form factors.

The calculation 0B%— pﬁp‘ is similar to that OprW_
except that the vacuum-matrix element now reads

5There is another pole diagram with the weak deddy
—a m"(p") followed by the strong process*(p™)—pn [see
Fig. 2(@)]. However, this pole amplitude is expected to be sup-
pressed as the intermediate pion state is far off its mass shell. Con- _
sequently, the nucleon-nucleon-pion coupling is subject to a large <P_|d’)’ﬂu|0>: fpmpez 1 (4.33
suppression due to the form-factor effects at layge

"The form factors for the\,—p transition atq?=0 are given in  and that the computation is much more tedious than the pion
Table | of [44]. For 39— p form factors at zero recoil, it can be case, though it is straightforward. Using the pole masses
evaluated using Eq(22) of [43]. Note that the spin factor ig my=5.32 GeV, my=5.71 GeV, and the decay constant
= — £ and the flavor factor ib\lzgp=1/\/§ for theSp—p transition.  f,=216 MeV, we obtain
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B(B®—pnm)=2.8x10"% (2.7x10°7),

(4.39

B(B°—pnp )=8.2x10"° (8.2x1077),

for a monopolgdipole) g% dependence for baryon form fac-
tors. SincegAb_,gon=—3\/§gzg_,§on [cf. Eq. (3.20], the

contribution due to theé, and={ poles is destructive. In the
calculation we have used,, _gon| =16 [21].

PHYSICAL REVIEW D66, 014020(2002

A(B™— p;'“'_)fact

=—ZVVigday(m|(du), |0)(ppl(ub), [B7)

V2
+ay(w|(db), [B”)(ppl(uu),_[0)}

EA1+A2, (437)

Three remarks are in order. First, in the calculation wewherea, ,=c$h+c5"/3. In analog to the previous mode, we
have neglected other nonfactorizable contributions from Figwill evaluate the corresponding low-lying pole diagrams for

2(e). For the pole diagrams, we did not evaluate $hepole

the factorizable external-emission amplitude, namely, the

contributions owing to the technical difficulties for the bag strong procesﬁf—>{A§)*) ’Eg(*)}a followed by the weak

model in dealing with the negative-parity baryon states. Se

Cdecay{A) 306N p7~. Its amplitude governed by the

ond, sincen=1 is favored by the recent measurement of they +

decayB*—>pBK*, as we shall see below, it turns out that

B°—npp™ has a large branching ratio of ordex1.0~° for
n=1. Third, the decaygoepﬁw‘ receives the resonant
contribution B~ pA~ followed by the strong decay ~
—n7. Since the branching ratio faB0— pK‘ is only of
order 6x 102 (see Table I, the resonant contribution due
to the A is thus negligible.

3.B°={3%3", 37A, ETE% =T (p*)
The calculation for the decay8°—{3°S~, XA,
E-E%7*"(p") is the same as that f@°—npz*(p*) ex-

57 poles is given by

Apm— Evry f_a,u [f P(m2)[2
1= E ud ubgAbHB‘p walup{ 1 (mw)[ pw'pp

+ P (my, — M) Tys+9, *P(M2)[2p,, pp— B

T =
p T b
+(Ap—3D), (4.38

where we have applied factorization to the weak decay

cept for different baryonic form factors in the final states.qA, s% .7~ To evaluate the factorizable amplitude,
The relevant Clebsch-Gordon coefficients for weak form facy,e apply the isospin symmetry relatiéns

tors are(see, e.g9.[36])

dA2+=\[§, d**'=0, d¥°='=1,

+ Oy + =0+ (435)
fAST=0, 3 =\2, fFE =-1.
Then Egs(4.5 and(4.7) lead to
3
N
13 (h=— \[EF'I,z(t).
=0z +
f- = —FiA—2F] 1), (4.36

O + 1
15" (t):\/EFg,z(t)"‘EFT,z(t)-

A straightforward calculation give$S(B°—3 " Aw*)=2.9
x1077, B(B°—-E E°#*)=2.0x10"7, and B(B°
—395 " 7")=6.4x10"°. Compared to thenpm™ mode,

(nl(uw), Iny=(pl(dd), ,[p),
o o (4.39
(n[(dd),, ,[my=(pl(uw), [p),

to relate the form factorg?? andf5P appearing in the vector
currentpp matrix element

(p(p1)p(p2)|uy,ul0)

PP( 2
f2

2—mp0’”qv vp(P2),

=up(py)| FP(G?)y, +i (4.40

to the electromagnetic form factoFs andF, defined in the
nucleon matrix element E¢4.6). We find
FEP(t) =2F () + F1(1),
(4.41
f5P(t) =2F5(t) + F5(t).

A straightforward calculation indicates that the contribution

the decay rates of the above three decays are suppressgg a, is small and negligible due mainly to the small vec-

owing to smaller baryon form factors and less three-body,, torm factorsf?®?

phase spaces available.

4. B~ ={pp,nn,2*X7, .. law(p)

Let us first consider the dec@*apaw*. It receives
factorizable contributions from Figs(&@ and Zd):

1»- Thea; contribution gives a branching
ratio of order 3.& 10 © for n=1 and 2.% 10 ’ for n=2.

8This isospin relation amounts to assumifi (gs)v_A|N)=0, an
assumption supported by the Okubo-Zweig-lizk¥xl) rule.
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As we shall see below, as far as the factorizabjecontri- B~ {pp,nn,3*3~,...}7 (p~) decays in a separate

bution is concerned, the tree- domina&d—>ppw* and the  publication. It appears to us thBt —>p§q-r should have a
penguin-dominated dec@ — ppK ~ have almost the same branching ratio at least of order 18 based on the recent
rate and the latter has been observed recg@8y. In some  measurement 8~ — ppK ~ to be discussed below.

sense this is very similar to the mesonic decBysKm and Thus far we have focused on the nonresonant decay of

IOZSV\QEZO\%IItEZvCe:Ira|>(la<nha?ﬁgmeinte:lcr’r:e?ﬁglggtlans:r?/gzg)# pva_ It also receives resonant contributions, for example,
TR P - pA and B~ —>pN°(1440) As discussed in Sec.

- _+ -+ KO, _— 0,_— ; i
[51] thatK ™7™ >7"7" andK’a>= 'w" clearly implies IIIA the branching ratio of the former is of order (1-2)
the importance of penguin chiral enhancement. It is quite, 10°°, to be compared with the recent measurement by
possible that for baryoni® decay we also have pK ~ Belle [23]

>ppm . Note that thea, contribution top pw‘ is destruc-

tive and it is subject to many uncertainties. For example, the B(B_Hpaﬂ-_)z(l.gfé:gi 0.3 X106  (4.42
axial-vector current contribution to thep matrix element

has been neglected so far and the valuaofs numerically  Therefore, the direct nonresonant contribution is probably
very small if a,=c5"+cS"3. A large value ofa, of order  smaller than the resonant ones. Experimentally, it is thus im-
0.40-0.55[52], as indicated by the recent observation of portant to study the resonance effects through the Dalitz plot
B%—D%#0 [53], and an inclusion of axial form factor con- analysis.

tributions may suppresppw‘ relative to ppK Another

effect we have neglected thus far is the penguin contribution. B. Penguin-dominated three-body decays

Just as thé8— 7r7r decay, the tree-penguin interference for
B™—ppm~ may turn out to be destructive for a certain o
range of the phase angte In view of the aforementioned The decayB™— ppK ~*) is mainly governed by the dia-
considerations, we will prefer to carry out a full analysis of grams Figs. &) and Zc) with the factorizable amplitude

1. BNNK®)

A(B™—ppK ™))y

G _ _ _ _
= {VpVida(K~®(su)_ [0)(ppl(ub), [B)+ay(ppl(uu), [OXK *)|(sb) [B~)

V2
~VypVilag(ppl(uu+dd+ss) [0)(K~®)|(sb) _ [B7)+as(pp|(uu+dd+ss) [0}K C)|(sb) [B")
+(agt a10)<K7(*)|(§J)V7A|O)(pﬂ(ab)viJBf)—2(ae+ ag) (K~ )[s(1+ y5)u[0)(pp|u(1~ys)b[B")

+(ag+a) (K~ *)pp|(su),_[0)(0](ub) _ |B~)—2(as+ag(K *)pp[s(1+ ys)u|0)(0lu(1-ys)b[B")

[ 1 1 _
+ag<pp|(uu— 3dd— §ss) [0)(K™®)|(sb),, BT, (4.43
V+A
with
|
ay=coiy — ! cef ay_1=cSf 4+ —c&ff -
a2t N Cai-1 821 1 N (K™ p|Hw|Ap) = \/— [VupVisd1— VipVis(as+as) ]
(4.44

In Eq. (4.43 the last two terms correspond to weak annihi- X(K~[(su),, [0)(p[(ub), [Ap)
lation. As in the deca;BOHpmr since we do not know m2
how to evaluate the three-body hadronic matrix element, we +2V,VE(ag+ ag)
will instead evaluate the corresponding low-lying pole dia- ' myMg
grams with the strong proceBs —{A{*),32®)}p followed B B
by the weak decay$A (), 301 K ~()p [cf. Figs. 2a) X(K~[(su),, [0)(p|(ub)  [Ap)(,
and 2c)]. Consider the; ™ intermediate poles and the final
stateK ™ first. Applying factorization toA,— K™ p yields (4.45
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where we have applied equations of motion

—i0"(017,92) = (M1~ M,)qs10z,
- o (4.46
—10*(d17,Y592) = (M +My)d1 50>

The pole amplitude then has the form
A(B~—ppK™)

- \/EgAgeB‘prup
)PP (MR N[ 2Py P+ Bic(My, —Mp) 175

+9, (M) [2pic- Py plic(my, + my) Ty

1
X (A 3D), (4.47

(PptPr)Z—my,

with

2
+a,9t+2(ag+ag) <
as+a ,
41310 6T ) m,

(4.48

h=V, bvzsal - thst

2
K
h'=V Vi@~ VipVis| as+ a0~ 2(ag+ ag)_mbm ] -

S

Sinceg,, g p= 3\/§gzgﬂ5—p [Eq.(3.23], it is evident that
the pole contributions arising from the, and3} interme-

PHYSICAL REVIEW D66, 014020(2002
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FIG. 3. The differential decay rate cB‘—>pEK‘ where t
=(Pp+Pp)°=(Ps—Pk)*.

This is the first ever measurement of the penguin-dominated
charmless baryoniB decay. Evidently, the model prediction
is in good agreement with experiment provided that the
baryon form factorg? dependence is of the monopole form
(i.e.,n=1). However, in view of many assumptions and un-
certainties involved in the calculation, the statement about
the monopoleg? dependence for heavy-to-light baryonic
form factors should be regarded as a suggestion rather than a
firm one. The absence of penguin contributionagfindag
to K* production explains why thepK* ~ rate is smaller
thanppK ~, contrary to the case @°—npn*(p*) where
the ratio ofp*/7* can be as large as 5.

In Fig. 3 we show the differential decay rati’/dt of
B~ —ppK~ where t=(p,+pp)?=(ps—Px)> Evidently,
the spectrum peaks &t-5.5 Ge\#, indicating a threshold
enhancement for baryon production and a fast recoil kaon
accompanied by a baryon pair with low invariant mass.

For otherNNK®*) modes, it is easily seen that the pole

diate states are constructive and dominated by the formeamplitude of§°—>pFK*(*) is very similar to that ofB™

one.

The amplitude oB™ — pEK* ~ is similar to that oprK‘
except that there are rag; andag penguin contributions th
or h’ given

we use the running quark masses,(m,)=4.4 GeV,
mg(m,) =90 MeV and the decay constaht- =221 MeV.

in Eqg. (4.48 owing to the fact that
(K*~|su|0)=0. For numerical calculations of decay rates

—ppK~*) except theA, and3.2 poles contribute destruc-
tively owing to the reIationgAbﬁgon= _3\/§g2g*>§0n [EqQ.

(3.20]. Repeating the same calculation as before gives
B(B®—pnK~)=1.9x10"°% (1.5x1077),
(4.5

B(B°—pnK*)=1.8x10"° (1.9x1077),

Note that the corresponding running strange quark mass at -
w=1 GeV is 140 MeV. Applying the baryon form factors for n=1 (n=2). As forB°—~nnK°*) its pole amplitude is

given by Eqs(4.28 and(4.29 we obtain
BB —ppK )=4.0x10"° (2.3x10°7),
(4.49

B(B~—ppK*)=2.3x10"% (2.1x10°7),

for n=1 (n=2), where use of the strong coupling

the same a8°—pnK~*) except that the electroweak pa-
rametersag anda, in Eq. (4.48 are replaced by ;a5 and
—1a,,, respectively. Since these parameters are very small,
the modennK®*) has a similar rate agnk =),

As for the decay8°— ppK°*) andB~—nnK ~*) their
branching ratios are suppressed, of order a few times of 10
for K production and % 10 8 for K*. This is attributed to

949-8-p| =16 has been made. As stressed before, the 1arg@\e fact that only thes, pole contributes and its coupling
chiral enhancement of penguin contributions characterizediith the B meson and the nucleon is smaller compared to

by the mﬁﬁmbms) term accounts for the sizable decay rateAb_ The current limit isB(§°—> pp_K°)<7.2>< 1076 [23].

of B-—ppK™.

An observation of this mode has recently been reported

by Belle[23]

B(B~—ppK™)=(4.3"11+0.5%x10°%.  (4.50

2. B Apat(p*)
This decay receives contributions from Figgb)2 2(d),

2(e), and 2g). The factorizable amplitude from Figs(22
and Zd) including tree and penguin transitions is

014020-19



HAI-YANG CHENG AND KWEI-CHOU YANG PHYSICAL REVIEW D 66, 014020 (2002

AB AP (p))tact

G _
==L VWi (pH)](ub),_ [BO(API(su), ,[0)—VipVis

V2

X(Apl(su), ,[0)=2(a+ag)(m" (p*)|u(1~ y5)b[B°)(Ap[s(1+ys)u0)+|a

(as+a)(m" (p")|(ub),_[BY)

1
) aip

<w*(p*>AWs<1+ys>d|0><0|€(1—y5>b|§°>“,

(4.52

N — — 1
X (7" (p")API(sd), ,0)(0](db), [B%) 2| ag— Saq

where the first term corresponds to exteraemission, the behavior in the zero light quark mass linmit;,m,—0. Ap-
second and third terms to the—s penguin transition, and plying equations of motion again yields
the last two terms to penguin-induced weak annihilation. We

shall neglect the weak-annihilation contributions in the prac- L o Mg—mZ
tical calculation. Applying equations of motion we obtain (7" u(1-ys)b|B%) = . Fo™(1),
4.56
— (Pa+pPp)* (
Ap|s(1+ ys)ul0 —Ast — = .m
(ApIs(L T 75)u/0)= (Apl=,bl0) (b [u 1 y5)b[B%) =21 [LAS(1)(e* - po).
(Pat DH) —
“mam (ApIsy.¥sb|0) where use of Eqs4.19—(4.19 has been made. Therefore,
SH the third term in Eq(4.52 is reduced to
my—m — _ _
= m, 11 (DU (" [u(1= y5)b[B)ApIs(1+ 75)ul0)
2 2
m3—m> —[my—m,
=——F5"(t f1P(t
ot | (Mt gD m, 0 (U m i, T
N _ mA+ mp mK o
+ mA+ mpr p(t) uAstHl (453) - ms+ mu t— 2 gl ( )75 Upv

wheret=(p, +pp)* and we have taken the $8) symmetry  (p*|u(1— y5)b|B°){Ap|s(1+ ys)u|0)
resulthp(t) 0 [see Eqgs(4.5 and (4.7)]. Since the pseu-

- m m
d_oscalar form fa(_:togg cqrresponds tg a kaon pole contribu — i _pAgp(t)( PB)UA m, pr(t)
tion to the A p axial matrix element, it follows that m ms—
2
+m, m
(my+mp)? _ My tmp My
p(t)__t—pr gie(t). (4.54) merm, = 291 P(t) ys|vp- (4.57
Consequently, ';rhee Clebsch-Gordon coefficients for wedlp form factors
—_— mA_mp A _
Ap|s(1+ ys)ul0)= frP(Du vy
(Ap|s(1+ ys)u|0) Me—my, 1 (Duyvy dAP:_i, pr:_i. (458
) NG 6
_ WM TR e (tuy yevy
mg+m, t—m3~* AYsUp- Hence,
(4.595
fP(t)=— \ﬁFF’(t) f2P(t) =~ \/EF”(t)
It is easily seen that the first term on the right-hand side L 2 2 2 2V
satisfies the relation of vector current conservation in the (4.59

SU(3) limit, while the second term respects the PCAC rela-
tion. Therefore, the above expression has a smooth chirdh the larget regime, the dominated axial form factor[i38]
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TABLE IV. Same as Table Il except f@°— Apz*(p™). The axial form factog)P(t) is taken to be the
asymptotic form given by Eq4.60.

Gy (CHT) Gp (BKLH)
MS BSW MS BSW
B~ Apnt 2.2x10°7 3.4x10°7 8.0x10° 8 1.2x10°7
2.9x10°7 4.3x10°7 8.5x1078 1.3x10°7
B~ App* 2.3x10°7 3.3x10°7 6.6x10°8 9.2x10° 8
4.8x10°7 6.4x1077 8.5x1078 1.2x10°7
Ap B 3 0 o. 1 0 1 -
g1 (H)— 5Gm(b). (4.60 d*P=—, f¥P=—— d* "=1,
2 2 V2
. - — 1 — 3
As the B>—np#w*(p™) decays, we consider two distinct fEn=—1, df A=——, % A=—, (4.61)
empirical fits for the proton magnetic form factors denoted G G
by CHT and BKLH. Using the same running quark masses
as before we show the results of branching ratios in Table IV z-s0_ i FE780_ i
with and without the contributions from the axial form factor J2' V2
gfp. When including the contribution from axial form fac-
tors we shall assume the validity of the relati@gn60 for the  Hence,
whole range ot. We see that the predictions are quite sen-
sitive to the baryonic form factor§'? andg;*? . It is evident 5% _ i(Fp +2F" )
from Table IV that the factorizable contributions ®° L2 J2 L2 L
—Apw*(p*) are generally smaller than<i10 6, while the B
current limit is 1.3< 10 ° [32]. Thus far we have neglected f§12”= —(FP,+2F7)),
the nonfactorizable contributions from Fige2 The corre- (4.62)
sponding pole diagrams invol®, andX* poles. Unfortu- =, 3 |
nately, it is not easy to evaluate the nonfactorizable weak fI"= %(Ff,ﬁ Fi2),
matrix elements. It is conceivable that the total decay rate
will be enhanced by a factor of 2. At any rate, we conclude 1
that the branching ratios ®@°— Apx* are at most on the fE30_

12 (FP,—F1).
verge of 10°. V2

In Sec. IV C below we shall explain why this penguin- domi d axial f in the | .
dominated decay does not have a large rate. In contrast, tHa'e dominated axial form factors in the largeegime are

radiative baryonic decaﬁ*—u\ﬁy is likely to have an ap-

. . | 1
preciable decay rate for two reasons. First, the main pole g%op(t)ﬂ—(G&-{—ﬁGnM),
diagram for this radiative decay comes from the strong pro- 3\/5
cessB™—A,p followed by the weak radiative transition (4.63
Ab—>Ay. Since the latter is_ induced by th.e electromagnetic g?n(t)H E(GEAJFGG?A)-
penguin mechanismh— sy, it has a magnitude of order 1 3

X 10 ° [54]. Second, the coupling of thd, with the B _
meson and the nucleon is large. Our study indicates thdPPViously,

B(B~—Apy)~(1-5)x10"° [55]. Therefore, experimen- RO S -ty R0 N0+, +
tally it would be quite interesting to measure the radiative AB*—~Z"nm (p")]=2A[B"~ X% (p1)].

baryonicB stateApy and compare it withpm* (p"). It turns out that the branching ratios oB°
- L —E A% 7", being of order 51078, are even smaller
3. B—3%#*(p*) and B> "nw*(p*) than theApn™ final state. Therefore, only the results for

There are several other interesting penguin-dominate&ﬁw*(p*) are shown in Table V. We see th@t branching
modes as listed in Eq.(4.3, for example, B® ratios of 3 nw"(p™) lie in the ranges of (1082.2)

. {3%,35"n,E"A,E 3%t (p"). The calculations are X107 °and (0.6-1.6x10° respectively. Thus the ratio of

very similar to that ofB°—Ap=*. The relevant Clebsch- p /7" is not greater than unity, contrary to the caseB8f
Gordon coefficients for weak form factors are —pnm (p~). (i) The decay rate o n7*(p™) is two
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TABLE V. Same as Table Il except f(EOHEﬁWJr(pJF). The axial form factog,(t) is taken to be the
asymptotic form given by Eq4.63).

GP, (CHT) GP, (BKLH)
MS BSW MS BSW
B3 %" 1.0x10°° 1.6x10°° 1.4x10°° 2.0x10°°
1.1x10°° 1.8x10°° 1.2x10°° 2.2x10°8
—30pp* 6.9x10 ' 6.0x 10"’ 1.0x10°° 1.0x10°°
1.2x10°° 1.0x10°° 1.6x10°° 1.5x10°6
S nat 1.9x10°° 3.3x10°° 2.4x10°° 4.1x10°°6
2.2x10°° 3.7x10°° 2.7x10°° 4.5x10°©
=3 npt 1.4x10°° 1.2x10°° 2.0x10°® 2.0x10°°
2.4x10°° 2.1x10°° 3.2x10°° 3.0x10°°

times as large as that &°px*(p™), but the latter will be  invariant mass of thegK™) system can be large enough in

more easy to detect experimentally. the former decay so that the propagator in the pole diagram
is no longer subject to the samemﬁ/ suppression. Second,
4. B°=5'Ap Ay (and the antitriplet bottom baryds ) has a much larger

_ o coupling to theB meson and the light octet barydéhthan.,
It has been argued ifl7] that B— 7' BB could be the [see Eq(3.23]. These two effects will overcome the three-
most promising charmless baryonic modes; they may béody phase space suppression to render the three-body mode

comparable to the;’K and a crude estimate yieldé(gi dominant. The other examples in this category E(&°
— ' Ap)~0.3T'(B— %'K). Of course, the study of’ Ap  —pnw )>I'(B"—np) as shown before andl'(B~
is much more complicated than'K: The factorizable am- A p7~)>TI'(B°—~A.p) as discussed ifizl]. We have
plitudes for the former involves several three-body ma”ixshown before thatF(§°—>nE7r*)>F(B*—>nB) even

_ L nthough the pole diagram for the former does not have,a
'S th_at the role played by the 9'“0” anomaly is St'”. Co.ntro'pole. This can be comprehended from the observation that
versial and not cIear, even foy'K _modes, nothenu,onEg the former is dominated by the externAtemission contri-
the three-body onep’BsB. A detailed study oB—#»"Ap  pution governed by the parametar, while the latter pro-

will be presented elsewhere. ceeds via the internalV emission process. If the aforemen-
tioned conditions are not satisfied, then the three-body mode
C. When do we havel (B—B,8,M)>T(B—B,B,)? will not necessarily have larger branching ratios than the

As discussed in the beginning of this section, the uestioﬁorresmnding two-body ones. For example, the penguin-
ginning e d dominated decay8°— ppK®, nnK° proceed through the

of why some three-body baryonidecays in which baryon- ', | | d h hei d Th
antibaryon pair production is accompanied by a meson haveb =~ Pole only and hence their rates are suppressed. The

larger rates than their two-body counterparts can be qualitg?€nguin-dominated Eeca)goﬁAaWWf) are also sup-
tively understood in terms of the Dalitz plot analysis which pressed relative tppK*) modes due to the lack af,
indicates that, for example, the diquarkl has a very large poles. Indeed, we found their magnitude does not exceed 1

invariant mass due to thé— A nature of theb—udu pro- X 10°°.
cess[34,35. If the ud forms a nucleon, then it will tend to
form a highly excited baryon and will be seen E&im(n V. DISCUSSIONS AND CONCLUSIONS

=1). This explains whyNﬁ final states have small rates, _
why pK and SA states are leading tree-dominated and We have presented a systematical study of two-body and
penguin-dominated two-body baryoricdecay modes, and three-body charmless baryorBcdecays. We first draw some

why the three-body modtiNm(p) is favored over the two- conclusions from our gnaIyS|s anq 'ghen pr_oceed to discuss

X . the sources of theoretical uncertainties during the course of

body one. From the calculations in Secs. Il and IV, we can .

. o calculation.
give a more quantitative statement.

The experimental fact that the penguin-dominated decay (1) The two-body baryonid® decayB— 5,5, receives
- = . main contributions from the intern&li~emission diagram for
B~ —ppK™ has a magnitude larger than the two-body coun- . PR ;
= = . } . tree-dominated modes and the penguin diagram for penguin-
terpartB”—pp can be easily explained in the Iang)]uage of yominated processes. We evaluate the corresponding pole
the pole model. The intermediate pole states A and  giagrams to calculate the nonfactorizable contributions. The
30 for the above-mentl(_)ned three-body final state A parity-conserving baryon matrix elements are estimated us-
for the two-body one. First, th&,, propagator in the pole ing the MIT bag model. We found that the bag-model esti-

amplitude for the latter is of order ¢—m%), while the mate of baryon matrix elements is about three times as
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small as the preViOUS calculation based on the harmonic OStominated decays Containing a Strange baryon' ga,
cillator model. The predicted branching ratios for two—body_)zo

+0 .+ — +0 + +0 +
modes are in general very small, typically less than®10 - PT (p—)'E nm (e, APW (p7). are calculable.
except for the case with A resonance in the final state. While the IN7" state has a_5|zabIE rate, of order (1-3)
Physically, this is because the diquark systerb arecay has < 10”°, the branching ratios @°— Ap=*(p*) are in gen-
a very large invariant mass and hence it tends to form &ral smaller than 10°.
highly excited baryon state such as thend will be seen as (8) Some charmless three-body final states have a larger
Nnm(n=1), for example. This also explains the nonobser-rate than their two-body counterparts beca(is¢he propa-
vation of the NN final states. We found that the tree- 930" In the pole dlagram§ fgrthe three-body fmall state Is not
dominated deca)B*—>pK” can be of order 10° due to suppressed by tf, and(ii) in general the pole diagram of

. . the former contains &, or =, intermediate state which has
the large coupling of thes with the B meson and the octet b 7 =b

baryon. This charmless two-body baryonic mode should bg large coupling to thé8 meson and the light barlon, for

readily accessible b factories BaBar and Belle. example, I'(B°—pn7")>I'(B”—np), T'(B"—ppK")

(2) Owing to large theoretical uncertainties with parity- =T (B°—pp), or (iii) some three-body baryonic decays are
violating matrix elements, we focus only on the parity- dominated by the factorizable exterr\glemls_smn governed
conserving contributions for two-body final states. Nevertheby the parametes;, for example,I'(B—npm™)>T(B~

less, B-—np, B—NA and A are purely parity- —np). ) ) )
conserving, whereaB°—AA is purely parity-violating, Needless to say, the calculation of baryoBidecays is

provided that the quark pair is created from the vacuum wit{ather complicated and very much involved and hence it suf-
vacuum quantum numberdR, mode). These features can fers from several possible theoretical uncertainties. Though

be tested by measuring decay asymmetries or IongitudinéT‘OSt of them have been discussed before, it is useful to make
polarizations. a short summary heré) Since it is very difficult to evaluate

(3) Although three-body modes in general receive factor_nonfactorizable and even some of factorizable amplitudes,

izable contributions, not all of them are calculable in practice/V€ have relied on the pole approximation that, at the hadron

due mainly to the lack of information for three-body had- Ie_vel, theS(_a amplitudeg are manifesf[ed as the pole diagrams
ronic matrix elements. Therefore, in many cases we still havi/ith low-lying one-particle intermediate states. We use the

to rely on the pole approximation to evaluate the factorizabl?29 Model to evaluate the baryon matrix elements. Owing to
amplitudes the technical difficulties and the unreliability of the model

(4) For three-body modes we focus on octet baryon finafor describing negative parity resonances, we limit ourselves

states. The tree-dominated mod@&—npr*(p*) have a to 37 poles and hence consider only parity-conserving am-
branching ratio of order (14910 for the =" producti_on

plitudes. In the future we need a more sophisticated method
- to evaluate both PC and PV weak baryon matrix elements.
and (3-5)10°° for the p* production. Moreover3(B°  Another important issue is that the intermediate pole state
—pnm )~3x10 ¢ and B(B—pnp )~8x10 © are pre- may be far from its mass shell and this will affect the appli-
dicted. There are some theoretical uncertainties for the prezability of the quark-model estimate of baryonic matrix ele-
diction of B~ —ppm~ and it is conjectured to have a branch- ments. (i) We have applied the’P, quark-pair-creation
ing ratio of order 10°. model to estimate relative strong coupling strengths. This
(5) Assuming a monopole? dependence for heavy-to- amounts to treating the stror3,5 coupling as point-like
light baryon form factors, we predict thaB(B‘—»pEK‘) or assuming its relative magnitude not being affected by the
~4x10°® and the other penguin-dominated deca®s momentum dependence. However, it is not clear to us how
— e D0 TL— b s good this approximation is. In the future, it is important to
—PppK*™, B —pnK~, and B"—pnK*" all have the | e 5 solid pQCD analysis to understand this issiie.
branching ratio of order 10~° and theirNN mass spectra Heavy-to-light baryon form factors are evaluated in the non-

peak at low mass. The first one is consistent with the recerfe|ativistic quark model at zero recoil. However, theit
measurement oB~ — ppK ™ by Belle. Therefore, sever@d  dependence is basically unknown. We have resorted to the

—NNK®) decays should be easily seenibyactories at the Pole dominance approximation by assuming a simple mono-
present level of sensitivity. The study of the differential de-Pole or dipole momentum dependence. The unknown mo-
cay rate 0fB‘—>pBK‘ clearly indicates a threshold baryon mentum dependence for baryon form factors is one of the

pair production and a fast recoil meson accompanied by ajor theoretical uncertaintietv) We haV(_a applied S3)
low mass baryon pair symmetry to relate the octet-octet baryonic vector form fac-

- . —  tors to the magnetic and electric form factors of the nucleon.

(6) The predictions of tree-dominated decay8  gyjerimentally, one certainly needs measurements of
—pp/np, B—~NA and penguin-dominated mod&-2Xp,  nucleon(especially neutronelectromagnetic form factors for
S A in the QCD sum-rule approach and the diquark modek large range ofj2. Theoretically, it is important to know
are quite different from the present work. Measurements ohow important the S(B) breaking effect is and how to treat
the above-mentioned modes can differentiate between thife baryonic axial form factorgv) The three-body decays

different approaches. usually proceed through several quark diagrams. To simplify

(7) The factorizable contributions to the penguin- the calculation and to catch the main physics, we have often
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focused only on the leading factorizable quark diagrams. It
remains necessary to investigate nonfactorizable contribu-

tions to see their relevance.

To conclude, we have pointed out several promising
charmless two-body and three-body baryddidecay modes
which have branching ratios in the range of 2610°° and
hence should be measurable Byactories.
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APPENDIX A: BARYON WAVE FUNCTIONS

We list the spin-flavor wave functions of baryons relevant
for our purposes:

Agzi[(bud—bdu)XA+(12)+(13)],

PHYSICAL REVIEW D 66, 014020 (2002

1
pT=—3[dUUXs+(12)+(13)],

V3
1
nT=ﬁ[udd)(S+(12)+(13)],

AT T=uuuy,

A*Tz%[duux+(12)+(l3)],

A°T=%[uddx+(12)+(l3)],

where

abcys=(2a'b'c'—a'b'c!—alb'c!)/\6,

abcya=(a'b'cl—alblc)/y2,

abcy=(a'b'c+a'blcl+alblc)/V3,

Jg and (j) means permutation for the quark in placeith the
quark in placg. The spin-flavor wave function of th& is

i[(bus—bsu))(AJr(lz)Jr(13)],

J6

0
=

=107 _ 1
By ' =—=[(bustbsu)xys+(12)+(13)],

J6

APPENDIX B: BARYON MATRIX ELEMENTS

IN THE BAG MODEL

expressed forS,=%. The relative sign of baryon-
pseudoscalar couplings is then fixed.

Some of the details for evaluating the baryon matrix ele-

ments in the MIT bag model are already showr| 28,21].

1

55
T

[buuys+(12)+(13)],

Here we add the result for the matrix element ¥fA)(V

current. Consider the four-quark operatd®

1
ng:—6[(bud+ bdu) xs+(12)+(13)],

%

EgT=i[bddXS+(12)+(13)],

V3

2”=%[SUUXS+(12)+(13)],

EOT:%[(Sud-F sdu) xs+(12) +(13)],

E’T=i[5ddxs+(12)+(13)],

V3

AT:%[(sud—sdu)XA‘F(12)+(13)]’

%

Z(E—,lqb)va(ach)H. It can be written as O(x)

=6(dadb)}_,(dcdg)2_, where the superscripton the right-

hand side o indicates that the quark operator acts only on
theith quark in the baryon wave function. Applying the re-
lations

(q'|Volgy=u"u+v'v,
(@'|Aolay=—i(u'v—v'u)a-r,

- . . (B1)
(q'|V]g)=—(u"v+v'u)er—i(u'v—v'ur,
<Q'|A|Q>:(U'U—v’v)(;+2v'UF¢;~F,

leads to the PC matrix elements

f r2dr(a3as|(qaan)}_,(9caa)?_,1a505)pc

= X1+ Xo+ (X1=X) 0+ 05— 2X (- T) (05 T)

1 - -
=X+ X+ §(X1—3X2)01~02, (B2
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for (V—A)(V—A) current, where we have used the relationwith

A 5
dQriri=—| dQ, (B3) R
f : 3f X1= fo r2dr[ua(r)vp(r) +oa(rup(r)]
and X, ,X, are the bag integrals LU )og() + 5P U()]
c d c d ’
R 2 (B6)
X,= for drlua(r)vp(r) —va(r)uy(r)]

R
r_ 2 _
LU0 g(r) =0 e(F)Ug()], Xz—for drfua(r)up(r)—va(r)vy(r)]

B4
], (B4 % (U1 Ug(1) el )og(1)].
Xo= | rRdrTunur) - oalnos(1)]
For numerical estimates of the bag integrals, we shall use the
X[Ue(r)ug(r) +ve(rvg(r)], bag parameters

with ug(r) andv4(r) being the large and small components,
respectively, of the $,,, quark wave functionsee[21,28 m,=myg=0, ms=0.279 GeV, m,=1.551 GeV,
for detailg. Likewise, for V—A)(V+A) current we obtain

— — m,=5.0 GeV,
f r2dr(q3as|(qadn)}_,(9cda)2 . ,|a505)pc ° B7)

1 o X,=2.043, x,=2.488, x.=2.948,
=(X1+X2)+§[X1+X2—2(X1—Xé)]0'10'2,

(B5) x,=3.079, R=5.0 GeV ..
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