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Calculation of the chiral Lagrangian coefficients from the underlying theory of QCD:
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We calculate the coefficients in the chiral Lagrangian approximately from QCD based on a previous study
of deriving the chiral Lagrangian from the first principles of QCD in which the chiral Lagrangian coefficients
are defined in terms of certain Green'’s functions in QCD. We first show that, in theNarlj@it, the anomaly
part contributions to the coefficients are exactly cancelled by certain terms in the normal part contributions, and
the final results of the coefficients only concern the remaining normal part contributions depending on QCD
interactions. We then do the calculation in a simple approach with the approximations of taking thiJarge-
limit, the leading order in dynamical perturbation theory, and the improved ladder approximation; thereby the
relevant Green’s functions are expressed in terms of the quark self-ebépdy. By solving the Schwinger-
Dyson equation fok (p?), we obtain the approximate QCD predicted coefficients and quark condensate which
are consistent with the experimental values.
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[. INTRODUCTION action, up toO(p*), contributed from the normal part is of
the form[3]

Because of its nonperturbative nature, studying low en-
ergy hadron physics in QCD is a long standing difficult prob-
lem. For low lying pseudoscalar mesons, a widely used aps‘(a?form):f d*x tr[ Fag + FoBosq — K[ d ,af 12— Ko(d“ag
proach is the theory of the effective chiral Lagrangian based
on the consideration of the global symmetry of the system —d’af)(d,ag ,—d,aq,,)+Ks[af]?
and the momentum expansion without dealing with the non-

maV 2 2
perturbative dynamics of QCEL,2]. In the chiral Lagrang- +R4303080, 80, Ked il a0]

ian approach, the coefficients in the Lagrangian are all un- +Kgakag trf[aﬂyﬁaﬂvy]+lc75§+lcssﬂ tre[ S ]
known phenomenological parameters which should be ) )
determined by experimental inputs. The number of unknown +Kopo + KioPo trilpal+ KiiSoag

parameters increases rapidly with the increase of the preci-
sion in the momentum expansion. Therefore studying the
relation between the chiral Lagrangian and the fundamental +ik1 Vi ag a0+ IC15de’uaﬁ]+O(p6), D
principles of QCD will not only be theoretically interesting

for a deeper understanding of the chiral Lagrangian, but willyere() is related to the nonlinearly realized meson field
also be helpful for reducing the number of unknown paramyy y=02: s,, pg, vo, anda, are, respectively, the ex-

eters and increasing the predictive power of the chiral Laierng| scalar, pseudoscalar, vector, and axial-vector sources
grangian. _ _ rotated by(Q); and theK's are terms with different Lorentz
In a previous paper, Reff3], certain techniques were de- sgryctures in the relevant QCD Green’s functions. The ob-

veloped, with which the chiral Lagrangian was formally de-tained expressions for the chiral Lagrangian coefficients are
rived from the first principles of QCD without taking ap- O(p?):

proximations. The chiral Lagrangian coefficients are

contributed both by the anomaly pdftom the quark func- i

tional measureand the normal paffrom the QCD Lagrang- F2— J d4x[ DA0) vEve (0
ian). In Ref.[3], all the chiral Lagrangian coefficients con- 0 8(N?—1) (L0 y5y(0)]
tributed from the normal part of the theory are expressed in

+ K8 tri[ad,]— K1aVE™Va, uv

terms of certain Green’s functions in QCD, which can be 5 a _i — po 1A
regarded as exact QCD definitions of the chiral Lagrangian X[ 7 ys¥(X)]) Nf<[w (0) 7" ys¢7(0)]
coefficients. After expanding the effective action in powers _ _

of the rotated source@nomentum expansionthe effective X[P(X) 7, v54P() 1) = (#2(0) y* y54°(0))

— 1
b a _ a 0) y* a 0
«Maiing address. XY (X) ¥, ys97(X)) + Nf<‘/’( )y*ys4%(0))
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o(p*):

X(PP(X) ¥, v54°(X)) |,

2 1 —
FOBOZ - N_f<¢¢>’

1 1 1 1
L= gt 7t 7t e

1 1 1
L= 16Kat Ke) + gKas— 7614,

1
L(snorm): 1_6(IC3_ 24— 6K131+3K14),

[ (norm)_ K12
4 16B,’
[ (norm)_ K1 (norm)_ Ke
° 168," ° 1682
L(norm):_ Kl _ ’Clo _ ’C15
7 16Nf 168% 1680Nf ’
1 1 1 1
(norm)_ . _ I
Lg =16 Kit+ BSK7 Bg/CQ-I— BOIC15

)

1 1
L§em= 8 (4K15—Ky), L™= 2 (K2~ K13,

H(norm):_E(IC +KC )
1 4 2 13/

1
H(norm): -
2 8

/C+1IC+1/C 1/C
1837839 BOlS'

)
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normal part contributions on equal footing, a certain new
regularization technique feasible for the calculations of both
parts should be developed. In this paper, we use the general-
ized Schwinger proper time regularization technique devel-
oped in Ref[5] to regularize the system, which keeps the
local chiral symmetry at every step in the calculation, and
can be applied to the calculations of both the contributions
from the anomaly part and from the normal part. Thus, in
this paper, the contributions from the anomaly part and the
normal part are calculated by means of the same technique.
As the first conclusion of this unified treatment, we show that
the anomaly contributions to the chiral Lagrangian coeffi-
cients given in Ref. [4], which are independent of QCD in-
teractions, will actually be cancelled by certain terms in the
normal part contributions, and the final expressions for the
coefficients concern only the remaining terms from the nor-
mal part contributions related to QCD interactions should

be so since the coefficients indicate meson interactions
which should be residual interactions between quarks and
gluons, and thus should depend on QCD interactions. These
contributions have not been carefully calculated in the litera-
ture. It has been shown in R¢8] that in the approximations

of largeN,. limit, leading order in dynamical perturbation,
and improved ladder approximation, the formula fe§ in

Egs. (2) reduces to the well-known Pagels-Stokar formula
[6] in which all dynamical effects from QCD are represented
by the quark self-energ¥ (p?) in the formula. In this paper,
we take the same approximations to calculate the chiral La-
grangian coefficientgthe relevant QCD Green’s functions
as an illustration of the main feature of how QCD predicts
the chiral Lagrangian coefficients. Similar to the case of the
Pagels-Stokar formula, the relevant QCD Green’s functions
can all be expressed as functions of the quark self-energy
3. (p?). By solving the Schwinger-Dyson equation, we obtain
3 (p?), and thus the approximate QCD predicted values of
the coefficients. We shall see that the obtained coefficients
Lq,...,L1p and quark condensate are consistent with the
experimental values. The calculation is checked by the ab-
sence of divergences in the larbe-limit as it should be
since the divergent meson-loop contributions are of next-to-
the-leading order in the M expansion. Although the
present approximation is rather crudereveals the main

Together with the anomaly part contributions, the completdeature of QCD predictions for the chiral Lagrangian coeffi-
coefficients are given by

where the superscript§anon) and (norm) denote the
anomaly part and normal part contributions, respectively.

Lj=L@memy (rorm) =19 . 10,

H= Hi(anom)+ Hi(norm), i=1,2,

(4)

cients

This paper is organized as follows: In Sec. Il, we calculate
the anomaly part contributions to ti@(p*) coefficients us-
ing the Schwinger proper time regularization technique, and
the results coincide with those in R¢&] in the chiral limit.
Then, in Sec. lll, we apply the same technique to the normal
part, and show generally that, in the lafyg-limit, the
anomaly part contributions to the chiral Lagrangian coeffi-

In the literature, the anomaly part contributions are usu<ients are exactly cancelled by the contributions from a piece
ally calculated by means of the heat kernel regularizatiorin the normal part independent of the quark self-energy, and
technique[4]. However, this technique is difficult to imple- the contributions from the remaining piece in the normal part
ment in the calculation of the normal part contributionsdepending on the quark self-energy play the real role in the
which contain complicated functions of the momentum, saychiral Lagrangian coefficients. Specific approximations in
the quark self-energy; (p?), reflecting nonperturbative QCD the calculation of the normal part contributions and the for-
dynamics(which are even unspecified in the analytical partmulas for the complete chiral Lagrangian coefficients in
of the calculation In order to treat the anomaly part and the terms of the quark self-energy are given in Sec. IV. In Sec. V,
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we present the numerical calculations of the quark self- Inthe Schwinger proper time regularization, the anomaly
energy and the obtained values of the chiral Lagrangian copart does not contribute to the coefficients of B¢p?)

efficients. Section VI is a concluding remark. terms in the case corresponding to the result Witg=0 in
Ref. [4].1 Therefore we are only going to calculate the
Il. ON THE CONTRIBUTIONS FROM THE ANOMALY anomaly contribution to the coefficients of ti¥p*) terms.
PART The anomaly term in the path-integral formalism is

In order to see the relation between the anomaly part and

. . i 4 (anom)_ __
the normal part contributions to the chiral Lagrangian coef- S — —1Xanomaly terms

ficients, we present here the calculation of the anomaly part = —iNJTrin(id+J)
contributions by means of the Schwinger proper time regu- ¢
larization. We shall see that the obtained results exactly co- —Trin(ié+Jq)]

incide with those obtained from the heat kernel technique
[4]. Our present approach is different from that in Réf.in

the sense that the constant constituent quark miksss not

put in by hand as is done in R¢#l] but is naturally included The Q-independent term is independent of tbefield, so

in the normal part solution through the dynamical quarkthat it is irrelevant to the chiral Lagrangian coefficients. We
mass reflecting chiral symmetry breaking. Therefore our reshall only evaluate th€-dependent term in Eg5). To have

sult of the anomaly part contribution is to compare with thata unified parametrization, we can parametrize the anomaly
in Ref.[4] in the chiral limit. contributed effective action similar to that in EQ), i.e.,

=iN[TrIn(id+Jq)+ Q-independent term (5)

stanom— f d*x try[ — K 2™ d a4 12— K 8™ d“ag —d¥ak)(d a0 ,—d,aq )+ K £ ad 12+ K §"akagaq a0,

+ KPR trag ]+ K L°Magay tr ag, w20, ] K (anomisg + 1 2™, try[ s ]+ K §"™p3

+ K8 ™po tr pol+ K 3™l + K 5 Msq trifag 1 — K 13"V Vo, v HIK Eromvgrag, 280, v

+K (1a5”°m)pﬂdﬂa5] +O(p®) + U-independent source terms. (6)
|
The Q) -dependent term in Eq5) suffers from ultraviolet N 2
divergence, and we take the Schwinger proper time regular- K§nM=—="1lim lim | In— +y+4],
ization with an ultraviolet cutoff parametér to regularize it. 247 k—0r—e| A

To apply this regularization, we first work in the Euclidean
space-time, and analytically continue the results to the Ne . K?

: : : : ; KEmM=— —=lim lim | In— + y+2
Minkowskian space-time after the evaluation. The main pro- 4 2472 on A2 Y
cedure of evaluating the general functional determinant in- e
cluding the quark self-energy is described in Appendix A.

In the case oS&™™ there is no%-dependence in Eq5).
However, for regularizing the infrared divergence, we should

K ganom): K ganom): 0,

replace theX, in Egs. (A1) and (A3) by an infrared cutoff jc (anom)_ ,C(anom):&"m A2
parameterc. The momentum integration in EGA3) can be ! o 87
explicitly carried out with a lengthy but elementary calcula-
tion. After expanding in powers of the external sources, we JC @nom= jc (anom)_ j- (anom)_ j- (anom_ g
can identify the expressions fo "™, .. . @™ py
comparing with the form of Eq6), and we obtain N pr
K™=~ —=lim lim ( In—+y]|,
k—0A—
IC(lanom): _ NC ,
247° 1If one takes a momentum cutoff to regularize the divergent

integrals as was done in Rédf}] before putting in the constituent
quark masMgq, the o(p?) coefficienth will be proportional to
N, ( 2 ) A? (cf. Ref.[4]). As has been pointed out in R¢B], this term is
——Ilim lim ,
487 0N —oo

K
(anom)_ _ |n—2 +y+1 exactly cancelled by a corresponding term in the normal part con-
A

tribution [cf. Eq. (74) in Ref.[3]].
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N 2 The numbers in Eqg9) are close to the experimental results
KEoM= — —=lim lim | In—+y+2|, of Egs.(10) exceptL, andLg are of wrong signs. This gives
127 —0n—= people an impression that the coefficiehts . . . Lo might

mainly be contributed by the anomaly part, and the normal
fc@nom=, (7)  part might only contribute small correctiof4,7]. However,
we note that the results in Eg®) are independent of QCD
Comparing with the standard form of momentum expan-nteractions, i.e., these terms remain unchanged when we
sion to identify theO(p*) chiral Lagrangian coefficients, we switch off the QCD gauge coupling constamg. This is

obtain the anomaly contribution to these coefficients somewhat confusing since these coefficients indicate meson
interactions which should be residual interactions between
| (anom)_ N, | (anom)_ N¢ quarks a_md gluons. We shall see in the next sectiontlitiese _
T 38452 2 T 19272 terms will actually be completely cancelled by the terms in-

dependent of the quark self-energy in the normal part con-
tribution, so that they do not really appear in the final form
L {enom)— _ Ne L (@nom)— | (anom)_ (anom)_ ¢y of the coefficients. What appear in the coefficients are the

9672’ remaining terms in the normal part contribution which de-
pend on the quark self-energy and hence on the QCD inter-
N N actions as it should beAnother feature of the terms in Egs.
L(7a”°m)=—°2, Lga”"m)z——cz, (8) indicating that they should be exactly cancelled and
11527 384 should not appear in the final formulas for the coefficients is
the divergence oH; andH, when takingA — 0. We know
| (anom)_ N. | (anom)_ _ Nc fro'm Ref.[2] that the qltraviolet divergences in ti@(p*)
9 = @ o =7 ge 2 chiral Lagrang|an cpefﬂments come mer_ely from the meson-
loop corrections with thed(p?) interactions. In the N,
) expansion, the meson-loop corrections belongin@ ta/N.)
 (@nom)_ ﬁlim lim (InK—+y+ E) will not take place in the largé. limit. Therefore, in the
! 962, 0N o0 2 2)’ largeN, limit, the final expressions for th©(p*) coeffi-
cients should be finite wheh —co. Now the ultraviolet di-
N N.A2 vergences irH,; andH, in Egs.(8) have nothing to do with
(2anom): ¢ i . (8)  the meson-loop corrections, so that they should be exactly
19272 ) _32m?Bj] cancelled by other terms and should not appear in the final

expressions for th®(p*) coefficients.
These exactly coincide with the results with,=0 in Ref.

[4] Note that the final eXpI’eSSionS of the coefficients IIl. ON THE CONTRIBUTIONS EROM THE NORMAL

Ly, ... Lipare independent of the infrared cutoff parameter PART
x and the ultraviolet cutofi\ although these cutoff param-
eters appear ifiC 2™, ... K (fénom), while H; andH, de- In this section we use the same regularization technique

pend on the cutoff parameters. This implies tHatandH,  @s in Sec. Il to calculate the normal part contributions to the
are not measurable quantities. With= 3, the values of the chiral Lagrangian coefficients. We start from the effective

coefficients ardin units of 10 3) action S{*™ given in Ref.[3],
L,=0.79, L,=1.58, Ly=—3.17, eisgf‘{‘""):f DEeif[l,ag,E,ch,HQ]
L4: L5: L6:0,

:f DED(DQGXF{iro[JQ,(DQ,HQC]+iF|[®Q]
L,=0.26, Lg=—0.79,

. e (%)
Ly=6.33, L1p=—3.17. (9 +iNg [ d*trs| 2(X)| —i smN—
f
These are to be compared with the experimental valines 9(x)
units of 10 %) [2] + 5 COS 5 — D (x,X) ] (12)
f

L,;=0.9£0.3, L,=1.7+0.7, Ly=—4.4%2. . e .
1=09203, L, 0.7, Ls S which satisfies a useful relatidig]

L,=0+0.5, Lg=2.2+0.5, Lg=0+0.3, dinorm)
7 NDREX0.  (12)
L;=-0.4£0.15, Lg=1.1+0.3, Ly=7.4+0.7, ngp(X)

U fix, anomaly ignored

Lio=—6.0+0.7. (100  The symbols are defined in RéB].
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—i[(i6+ 30— Tlao) 1177 (X)) =PZR(XX).  (18)

carried out by the saddle point approximation with the saddle

point equations

@E?é”“’“(x,y>=—i[(iﬁ+JQ—Hm)—l]“@(a’?)(y,x)’( )
13

TF(xy) = — E7°(x) 8*(x—y)
- 2 d*x,
n=1

(=)™ H(NgH)"
X—
n!

4 4,1 4,1
—-d*Xad*Xq - - dX

X_‘T‘Tl""’n ’ ’
Gppl"'pn (vaixlvxlv ,Xn,Xn)

1Pl(X1 Xl) ‘TnPn(Xn 'Xr’1)'

(14

NIRRT 1C)
I’| ISII’IN— '}/5COSN_

(I) (X,x)|=0, (15

whereZ is a short notation for the following quantity:

e _ 4 - c(y)
=] ”(x)=mf d“ytnf[:c(y){ |smN—
e
+75003% q)s)c(y,Y)] (16)

=, fixed
Then the obtaine@J°™ in this approximation is

SMOM_T1130 ,Ec,Poc,Pocl=—iNeTrIn[i 4+ g

—HQC]+NCJ d*xd*x" ® I (x,x" VTZL(X,X")

(—1)"(Ng2)"

4.1
d*x;, o

+N D f d*x,
n=2

~01...0p ’ ’
prl__.pn (X1,X1, «+« Xn»Xp)

o1p onp

Xq)ﬂt 1(X1!Xi) T (DQQ: n(xn !XrIW)
Jc(X)

—i smN—

+ich d4X tr”lEc(X)

7

To(X)
f

<I>5,c<x,x>],

in which theO(1/N.) termT’, is neglected. Note that the last
term in Eq.(17) actually vanishes due to E(L5). We keep it
here for showing the relation between the effective actio

S and its stationary conditions Eq&.3)—(15).
In the largeN, limit, ® .=

of Eq. (12) in this approximation is

d ;. on the right-hand side of
Eq. (12). The left-hand side of Eq12) can be carried out
from Eg. (17) using Egs.(13)—(15). Then the explicit form

We see thall. and® . play the roles of the quark self-
energy and the quark propagator, respectively, in the case
with Jo#0.

Now we decomposé&{i®™ into a partindependent of
ITg. and a par'dependlng orT[QC. The part independent of
I, can be extracted frorB{i°™ by settingll,.=0, i.e.,

sirormiac=0) = —iN_ Trin[id+Jq]

(—1)"(Negd)" "

n!

<)
c E d4Xl’ o d4xr’1
n=2

><G"1

”“(xl,xl, e XX

ag1p onp
xq)gt l(Xer:’L)' ! CI)QT; n(xn ,Xr’\)

I,=0
(19

Here we have ignored the last term in E#7) which actu-
ally vanishes due to Eq15). We show in Appendix B that
the last term in Eq(19) is actuallyQ) independent. There-
fore, Eq.(19) can be written as

S(e?formHm:O)z —iN[TriIn(id+Jq)

+Q-independent ternjs (20
Comparing thely-dependent terms in Eq&) and (20), we

see that they are of the same form but with an opposite sign.
Thustheir contributions to the chiral Lagrangian coefficients
exactly cancel each other to all orders in the momentum
expansionThe cancellation in the case of ti¥p?) coeffi-
cient FZ has been described in footnote 1 in Sec. Il. For the
O(p*) coefficients, we have

jfamomy g Moc=0—g j=1,... 16

L(anomy. (rormilac=0)—q j—1

. ,10,

Hi(anom)+ Hi(nOVmHQc=O): 0, i=1,2.

(21)
Thus, in the largeN, limit, the anomaly part contributed chi-
ral Lagrangian coefficients in Eq8) do not really appear in
the final results of the chiral Lagrangian coefficients al-
though their values Eqg9) are close to the experimental
values.The chiral Lagrangian coefficients are actually con-
tributed from thell,.# 0 part of S7°™,

S(er;formﬂgcsﬁO)Eng}orm)_ S‘(erflform.l'IQfO) (22)
Mwhich leads to thdl, #0 part of £ ("™, . jc{pom
Ki(norm,HQC;tO):ICi(norm)_’Ci(norm,HQC=O), = 1, N .,15.
(23

This is our first new conclusion in this study
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The final chiral Lagrangian coefficients are then

Li=Lromtlac®® img 10
Hy=H{omee? ) -i—q o (24)
and
1 32,C(norml'lm¢0)+ lﬁlc(norm,l'lncio)_l_]:-l' (lr;orm,l'[msﬁo)
_ 1 (normHmstO)
3 14
L,= (K(normHQC¢O)+’C(normHQﬁO))_F K(normI[Qc#O)
1 (normHQC#O)
1 14
L3 (IC (norm Il #0) 2K (normIlg#0) 6KC (normII #0)
16 4 13

I1o.#0)
K (norm /Il )
14 !

K (norm[I1#0) e (norm Il #0)
12 11

Ly= Ls=
4 6B, ' ° 168,
’C(norm,l'[ﬂc#o)
LGZ 8—2|
1685
L Ic(lnormI[QC#O) B K(lrg)ormHQC#O) B IC(lr;ormHQC#O)
! 16N¢ 168% 16BoN¢
L8 1 K(norm,HQC#O)+ 1 K(normHQC#O)
16 0
_ ilc(normﬂﬂc¢o)+ ilc(norm,rlgcsto)
Bg 9 15 !

_ _(4K(normﬂm¢0) IC(norm.HﬂcsﬁO))

1
LlOZE(K (2normI[QC#0)_ K (lr;ormHQC#O))

Hl: _ E(IC(2norm,HQC¢0)+]C(lréorm,l'lncio))'

1 1
Ho=— _,C(1”°fmﬂ9c*0)+ — ¢ (normilgc#0)
8 Bg
1 1
= ~(normllge#0) = 4~ (norm]Ilgc#0)
T TRl (25)

0
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Since HQC|gs:0=0, theseO(p*) chiral Lagrangian coeffi-
cients will vanish if we switch off the QCD coupling con-
stantg as it should be.

IV. CALCULATION OF THE CHIRAL LAGRANGIAN
COEFFICIENTS

We see that to calculate the chiral Lagrangian coefficients

from S 1279 | we should mainly deal witS°™ given
in Eq. (17) which has never been carefully calculated in the
literature. Ignoring the vanishing last term in Ed7), there
are still rather complicated terms in it. For example, the third
term includes various ranks of gluon Green’s functions
which concern very complicated calculations of QCD dy-
namics. As the first time of doing this kind of calculation, we
shall take futher approximations to simplify the evaluation of
s We know that the pion decay constdnt has been
studied from QCD in Ref.6] by taking the approximation of
keeping only the leading order in dynamical perturbation,
i.e., taking into account only the QCD interaction in the
Schwinger-Dyson equation leading to the nonperturbative
solution of chiral symmetry breaking, and neglecting other
QCD corrections in positive powers afs (perturbative.
This approximation leads to the widely used Pagels-Stokar
formula which is reasonable though not perfect. In the large-

¢ limit, f_is just theO(p?) chiral Lagrangian coefficient
F, given in Egs.(2). So, as in Ref{6], we take the approxi-
mation of keeping only the leading order in dynamical per-
turbation to calculate the chiral Lagrangian coefficients from
S In this spirit, we neglect the complicated third term
in Eq. (17) which contains only positive powers gf. Fur-
thermore, we see from E@l4) that the second term in Eq.
(17) is of the same order as the third term, so that we neglect
the second term in Eq17) as well. With this approximation,
st is simplified as

SO = —iN Trin[id+Jq— o] (26)

Now the concerned QCD dynamics resides in lthg. term
which is related to the quark self-enerff. Eq. (18)]. We
expect such a simple approximation may also lead to reason-
able results of th@©(p*) chiral Lagrangian coefficients since
reasonable values of th®(p*) chiral Lagrangian coeffi-
cients have been obtained in a model by Hold@&hconsid-
ering only the quark self-energy contribution with certain
phenomenological ansatz. We shall see in Sec. V that our
obtained O(p*) chiral Lagrangian coefficients are indeed
reasonable. Although this approximation is crude, it provides
a simple illustration of the main feature of how QCD pre-
dicts the chiral Lagrangian coefficients. Further improved
study beyond this simple approximation taking into account
the second and third terms in E@.7) is of course needed.
That will be presented in a later paper. Now we need to
calculatel13%(x,y) and carry out the explicit expression for
s in Eq. (26).

We have noticed thatldf is related to the quark self-
energy. If we find out the relation betweétf)?.(x,y) and the
conventional quark self-energy(— p?), then we can obtain
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3 (—p?) by solving the well-known Schwinger-Dyson equa-

tion. As in the literature, we shall write down the Schwinger- J dp| (—235-p?S,S X5+ (23]
Dyson equation in the Landau gauge which is stable against
the gauge parameter. In the same approximation of taking the

leading order in dynamical perturbation theory and with the +p2s zf)ﬁ (35)
improved ladder approximation, the Schwinger-Dyson equa- P ’
tion in the Euclidean space-time red@s-11]
X2 Xp
. dq af(p-a)] (0’ K&”°’"“’=2J dp| — 28X+ 2R, — Ay —252 2
MO e s R :
2
(27) _ p_E 12x2
This equation can be solved numerically and the details will 270
be presented in Sec. V. Naively, we may expect that
120 (x,y) = 6773 (32) 8*(x—y). But this is not correct. Un- - . X2 Xy o X
der a local chiral transformatioh(x) (hidden symmetry ’C(znorm):f dp —ZBpo+ZBpA2 BPA4 _Ep Az'
transformatior{3]), 113 transforms as
: P’
Moc(X,Y) =I5 (%,Y) =hT(x)Tg(x,y)N(y), (28 —72p2X,23 .
while 5‘”’2(&5) 5*(x—y) does not transform like this. The
correct relation can be found by replacing the ordinary de- (norm) - 42;‘J 2p22f, p* 4 6X§
rivative 94 by the covariant derivative Ks7r=2 f d 3 3 * 18 6Xp— A2
UM — gt i 2 2
Vi=adk—ivhH(X). (29 %_ﬁ (_422+p_2) —2X3+%
4 6 p p 2
Since the external sourag;(x) transforms as A A 2
, X Xp
vi(x)—vh ()=hT(x)vE00h(x) +ihT(x)[9*h(x)], -2 +X51,
(30) A4 A2
i ivativa’ 4 232 3
the covariant derivativ& transforms as ICE{“’”“)ZJ i ( —43) 2pE; N p_4) B4 — %
_ _ 3 3 18 P 2
V4 VE =hT(x)VEh(X). (3D A
X6 Xo| L ago| _onas 2o X
Thus the correct identification is — — — | +43| —2XI+ —
A4 6 p p 2 A4
Y =[2(V]7P 5" (x—y). (32 %,
X2
Then the effective actiof26) can be written as AZ
SUP™= —iN Trin[id+Jq—3(V?)]. (33 K{em=jcnorm—gq,
Next we evaluate the effective actiof83) using the
Schwinger proper time regularization as bef¢cé Appen- IC(7”°”“)=2f dp| (332+2p%8 ;3 /)X3
dix A) to obtain the expressions for the chiral Lagrangian

coefficients. This is not trivial since usually this regulariza- X
tion scheme is u_sed in the case thais a c_o_nstant, gnd thus +[_22'2)_ p2(1+22926)]_p ,
the momentum integration can be explicitly carried out to

check the local gauge invariance of the result. Now we leave

3(V?) as an unspecified function in E¢33), so that the K {°™=0,
momentum integration cannot be carried out explicitly. Or-

ganizing terms to guarantee local chiral invariance is rather 5
tedious and the details are given in RE]. Our obtained /cgm"m:zj dp (2§+ 2p22p2,’))xf,
expressions in the Minkowskian space-time are
2 I; —p?(1+23 2')ﬁ
I:080:4 dpszp, (34) p p=p A2 ’
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’C(norm):o' 2
10 Bp=— 3P 2,3 (—1-23,3))
2
iom— g [ | (— 4331 p25 X3+ (433 p25 ) 2 IS 1-23, S0+ S pPA- 3-8
11 p pT P 2p)Ap pppAz 3<p p=p) T3P 2T 2p T 2p2p
a1 oo | % 2 —ip“(—E’z—E E”)—Epz(—l—ZE >0
—22p—§p2 A+32 —33 X 18 P PPl 6 PP
c -1 12 3 ! 23,12
’C(lgorm):o' PT3 3P P_Ep p
D =1p22’2——p22 Sh(—1-25,3))
,C(norm)_ d~ 1 22/2//+12 E// X +(C.—D Xp P2 P
13— | AP} | gP 2p2pF 32p2p | Xp (G p)P 5
e x — P (- 1253y
_(cp—Dp)xg—2prg+2EpA—‘2’—E,DA—f1 : 5
—gP (-3t 53
X2 X 1 ’ 12 "
ic(l’;°fm>=—4f dp| —2F X3+ 2F, A——F F —gPPEpEp(— 2535,
X 1 : ,
_Erz_p_p_zrzxz =g PSS p(—1-25,30)°
A2 2
L 43 12(—1-23,3/)?
K™= -4 j db[— zp+§pzzé)A—2
Fp=— 22 2p+ pZ(E EP)Z——22+ 232’
1
T A2% 2
! Ep+2p Ep)x (36) 1 25 2 12 ” 4 12 ”
+§p (=222 )——p( 35— 2%p)
in which the short notationgin the Minkowskian space- 1, 1,
time) are —3P (—1—22p2,’))—§p ) (38

EpEE(—pz), (37) For the coefficiemFS, Eq. (35) is just the well-known
Pagels-Stokar formul§6] when taking the regularization
cutoff parameter\ — .,

“p (P2 32)/A2 It is easy to check that these("™™ (i=1,...,15) do

f dp=iN, f )49 P contain thell,-independent X, ,-independentpiece which
2m exactly cancel the anomaly contributions in E¢#. men-

tioned in Sec. lll. This can be done by taking a constapt

1 to carry out the momentum integrations, and picking up the

<
|

=5 <2 2 ,-independent terms which are just thk,.-independent
p _Ep terms mentioned in Sec. lll. Subtracting these
I1,-independent terms from the obtaingd{"™ in Egs.
(36), we get the desireﬂ:f”ormﬂﬂc#o) in Eq. (23), which is
Ap=— §P2§p2,§(— 1-25,3)) needed in the final expressions for the chiral Lagrangian co-
efficients in Eqs(25).
1, B P " , We can also check that the regularization cutdffdoes
B §Ep(_1_22p2p)+ 3P Ep(—2p —2p%p) not appear inc "™2<*% 50 that the obtained chiral La-
grangian coefficients, . .. L, are all finite as it should be
p4( 2’2 3,8 ", since there is no divergence in the lafgglimit [the diver-
gent meson-loop corrections are ©f 1/N,) ].
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a
s
)
38

Z(p°) (MeV)
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()" (GeV)

FIG. 2. The obtaine® (p?) from the Schwinger-Dyson equa-
FIG. 1. a(p) for Model A[Eq. (40)], Model B[Eq. (41)], and  tion (27) with Model A[Eq. (40)], Model B[Eq. (41)], and Model
Model C [Eq. (42)]. The solid, dashed, and dotted lines are for C [Eq. (42)] for the running coupling constants. The solid,

(P> (GeV)

Models A, B, and C, respectively. dashed, and dotted lines are for Models A, B, and C, respectively.
V. NUMERICAL CALCULATIONS
. L . 478 > 022 127 1
The last step in the calculation is to solve the Schwinger- C: as(p)=—2p e P p0+(33—2N ) YTV
Dyson equation(27) numerically to obtain3 (p?). In the M t)In(2+p*/ Aqep)
integrand in the Schwinger-Dyson equati@T), there is still (42)
the QCD running coupling constami(p—q) unspecified.
The high momentum behavior af is well known. The ] ]
one-loop level formula is They all have the asymptotic behavi@9). In Eq. (40), there
is only one parametek ocp, while in Egs.(41) and(42), in
pPoes 127 1 39 addition toAqcp, there are extra parametess w, andpy,
as(p) —— : 39  respectively. We shall determine the parameters in the fol-
° (33=2Ny) In(p?/A2cp) pectively P

lowing way. In the present approach, there are no meson-
The low momentum behavior afy(p) is not known yet due 100p corrections. Thus we should identify=o=f,
to the ignorance of nonperturbative QCD. Inevitably, we =93 MeV[2], andF, is given by the Pagels-Stokar formula.
have to take a certain QCD motivated model for it as in theChanging the parameters will cause a chang® (p?), and
literature. We shall take the following Model A from R¢@],  thus a change ifrg. We takeF,=93 MeV as a requirement
and Model B and Model C from Ref10] as examples to do to determine the parameters. In the case of Model A, the

the calculation. They are determinedA ocp is Agcp=484 MeV [9]. In the cases of
12 Model B and Model C, there are extra parameters. We take
- - B — :
A alp)=7 e for In(pzlAéCD)S _2: the original valuespo—380 MeV anQAQCD— 230 MeV asin
( £) Ref. [10], and determiney and w in the above way. The

determined values are=290 MeV and u=1160 MeV?
12mw The running coupling constanis(p) in the three cases are
(33=2Ny)’ plotted in Fig. 1. We see that they are different mainly in the
low momentum region.
To solve the Schwinger-Dyson equati@@i/), we further
take the usual approximatioag(p—q)~ 6(p2—g?) as(p?)

4
=17 g[2+In(p? Agep)®

for —2<In(p?*Adcp)=<0.5;

B 1 127 + 6(9°— p?) as(9?) [12] with which the angular integration
_ln(pz//\éco) (33—2N¢)’ can be easily carried out, and the integral equation can be
for 0.5<In(p?/ Adcp)- (40)
2The original values of and u in Ref. [10] are 7
127 1 =920 MeV, u=600 MeV which are different from ours. The rea-
B: ay(p)=4m52p?s*(p)+ 339N TR son is that in Ref[10] the number of quark flavors is taken ks
( ) In(2+p /AQCD) =6 rather tharN;= 3, and the formula fof _ is more complicated

(42 than the Pagels-Stokar formula.
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TABLE I. The obtained values of th@(p*) coefficients.,, . . . L, for Model A[Eq. (40)], Model B[Eq. (41)], and Model JEq. (42)]
with A,A— o together with the experimental valugsq. (10)] for comparisonA ocp is in MeV, and the coefficients are in units of 10

AQCD Ll L2 L3 L4 I-5 L6 I-7 LS L9 LlO
A: 484 1.10 2.20 —7.82 0 1.62 0 —-0.70 1.75 5.07 —7.06
B: 230 0.921 1.84 —6.73 0 1.43 0 —0.673 1.64 3.80 —6.22
C: 230 0.948 1.90 —6.90 0 1.29 0 —0.632 1.56 3.95 —-6.21
Expt: 0.9-0.3 1.7/#0.7 —-44*25 0+x05 2205 0+£03 -04+0.15 1.*03 7.40.7 -6.0=0.7
converted into the following differential equatibn Ly, ...,Lo[2] are of the order of M., and are neglected
in this approach. Thus the predicted number& of. . . L1
d 3'(p? 3N¢ , >(p?) 43 can be directly compared with the experimental values. We
- p - = s .
dp? [ayp)|’ 87" p2+32(p?) see from Table I_that. N
. (i) these coefficients are not so sensitive to the forms of
P as(p); | |
. N (ii) all the obtained.,, ... Lo are of the right orders of
with boundary conditions: magnitude and the right signs:

(i) Ly, Ly, L, Lg, andLqq are consistent with the ex-

3N; a(A?) (2, ¢?2(q?) periments at the & level;

2 _
2(A% 8m A2 Jo q a2 +32(g?) =0. 44 (iv) L3, Ls, Ly, andLg are consistent with the experi-
ments at the @ level; and
3N, (v) only Lg deviates from the experimental value (8~
16, 4s(0) 4)o.
3/ (0)+ —=——=—=0, (45) Considering the large theoretical uncertainty in this
2(0) simple approachthe obtained L, ... Ly are consistent

— o ) with the experiment3ie see that the nonperturbative quark
whereA is a momentum cutoff regularizing the integral. We seif-energy plays an important role in QCD contributions to

shall eventually take\ — . the chiral Lagrangian coefficients. This supports the phenom-
We know that the asymptotic behavior®{p?) reflecting  enological model of Holdon8].
chiral symmetry breaking is In addition toL,, ...,L;o, we can also calculate the

quark condensat@yy) from the O(p?) coefficientF2B, in
Eq. (34). In the simple approach in this paper, the relation

between( ) andF2By, is [3]

P~ In""Y(p?Adcp)

e (46)

3(p?)

wherey=(9N,;)/[2(33—2N;)]. We have found the numeri- <Z¢>: —N{F2B,. (47)
cal solution of Eqs(43)—(45) satisfying this asymptotic be- 0

havior. The obtained solution with — (a large enough e know that, in this simple approadhy=f_=93 MeV is
number which can be regarded as infipity the three cases fjnite. But F2B, in Eq. (34) is divergent,

are plotted in Fig. 2. Again they are different mainly in the

low momentum region. A2

_Wlth the ot_)talnedE(p_z), we can calculate th®©(p*) FgBO(AZ’AéCD)oc InV( > ) (48)
chiral Lagrangian coefficients from Eq25), (23), and(36). oco
The obtained values df;, ... Ly are listed in Table | to-
gether with the experimental valug®] for comparison. Note so that it needs to be renormalized. We take a simple renor-
that there is no running of 4, ... Lo in this simple ap- malization scheme by taking the counter term as

proach since the meson-loop effects causing the running df3Bo(A?,1?), in which u is the renormalization scafe.
Thus the renormalized quantity

3In the case of Model B, there is a term containisfigp) which is MZ
not a function ofp?, and the integration can be directly carried out. FSBO,M In7< > ) . (49
Therefore, in this case, the differential equation and boundary QCD
conditions are different from Egs. (43)-(45. They
are d/dp?d/dp?S (p?)[1—3N/2/p?+32(p?)]/d/dp?B8/ p?In(2  Then the renormalizet7) is
+p? Adcp) — 3N/Bmp?3 (p?)/p? +32(p?) =0, S(AH[1-3
No/2/A2+3(A?)] — 3N/Brag(A?) /A2 de?e2S (g?)/g? + 3 o
(g9 =0, and  [d/dp*{S(p*)[1-3N/2/p*+2(p?)1}Hp2—0 “This corresponds to the modified minimal subtractidS)
+3N,/16may(0)/3(0)=0, respectively. schem¢[13].
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TABLE Il. The same as in Table | but with =1 GeV instead ofA — .

I-l I-2 L3 L4 LS L6 L? L8 L9 I-10 FO
A: 0.403 0.805 —3.47 0 1.47 0 —0.792 1.83 2.28 —4.08 88.7
B: 0.281 0.563 —2.71 0 1.44 0 —0.836 1.83 1.46 —3.69 89.6
C: 0.304 0.608 —2.86 0 1.43 0 —0.855 1.87 1.56 —3.64 89.4
<Z¢> —_ NfFéBo (50) tion theory, and the improved ladder approximation based on
r r-

the QCD formulas given in Ref3] to illustrate the main
We take the renormalization scale to pe=1 GeV to define feature of how QCD predicts the chiral Lagrangian coeffi-
the quark condensate. The obtained value(s%,t/)r for the cients. In the calculation, we use the same regularization

three forms ofa(p) are technique, the generalized Schwinger proper time regulariza-
tion, in the calculations of the contributions from both the
A (Yh),=—(296 MeV)®, anomaly part and the normal part, so that the relation be-
tween the contributions from the two parts can be clearly
B: (4yh),=—(296 MeV)3, (51  seen.
We first take the larg®&, limit to evaluate the effective
C: <E¢>r: —(301 MeV)®. action in QCD. Ouir first conclusion in this study is that,

the large-N. limit, to all orders in momentum expansion, the
These are to be compared with the experimentally deteranomaly part contributions to the chiral Lagrangian coeffi-
mined value( i) o= — (250 MeV)? from the QCD sum cients [cf. Egs. (8)] given in the literature [4] from the effec-
rule at the scale of the typical hadronic mfs4]. Consider- tive action $°™ [cf. Eq. (5)] are exactly cancelled by the
ing the large theoretical uncertainty in this calculation, thecontributions from the piece of the effective action
predicted quark condensate is also consistent with the expel*sgf‘form‘nmzo) [cf. Eq. (19)] in the normal part contributions,

ment. _ so that the chiral Lagrangian coefficients are eventually con-
The above results show thtte present simple approach tributed by the remaining piece of the normal part effective

does reveal the main feature of the QCD predictions for the, (o nomitac* 0 [cf. Eq. (22)]. The final QCD expres-

chiral Lagrangian coefficientalthough the approximations sions forﬁtheO(p“) coefficients are given in Eq&25)

in this approach are rather crude. Of course, further improve- ! .

n this app u v u 'mprov S(erf‘rormﬂﬂ‘?#o), we further make the approxi-

ments of the approximations beyond this simple approach T_O simplif){ ] . ) ;
are needed. This kind of study is in progress. mation of taking the leading order in dynamical perturbation

. . . . . +0) . . .
Finally, we would like to mention that, in our calculation, theory. ThenSi’;°rmH“° 'is reduced to the simple form in

we have taken the ultraviolet cutoff parameteofsx_,oc, Eqg. (33), and all the chiral Lagrangian coefficients are ap-
i.e., we have taken account of the QCD contributions in theProximately expressed in terms of the quark self-energy
whole momentum range. Note that this has nothing to de(P?) shown in Egs.(34)—(36). To solve the Schwinger-
with the validity range of the chiral Lagrangian determinedDyson equation for%(p®), we further take the improved
by the range in which the expansion in the meson momenladder approximation. Lacking the knowledge about the run-
tum makes sense, i.e., up fo,~4mxf .. To see the role of Ning coupling constank(p) in the nonperturbative region,
the QCD contributions from the high momentum region, saywe take certain models for it from the literatur@ 10] [cf.
above 1 GeV, we have made a check by doing the calculaEds.(40)—(42)], and we further take the usual approximation
tions with the sam& (p2) but takingA =1 GeV instead of as(P— )= 6(p*— ) as(p?) + 6(q*— p?) as(g?) to sim-
A—o. The results are listed in Table Il. Comparing the non-Plify the calculation. The quark self-energy reflecting chiral
vanishing results in Table Il with the correspondingA symmetry breaking is obtained by solving the simplified
—oo results in Table I, we see that this change\ofloes not Sfc?r\:vmger-A‘Dysonfsquatlon nurpenga]ly. Tr;j obtained resuc;ts
cause much difference g, L;, Lg, andF, while it causes of the O(p") coefficients are listed in Table I. Compare

Ly, Ly, Ls, L, andL 5 to reduce by at least a factor of 2. with the experimental values &f;, ... ,Lio[2], the agree-

Therefore, we see thats, L, Lg, andFy are mainly con- ment of Iy, Lz, L, Le, and Ly is of the level oflo, and

tributed by the QCD dynamics in the low momentum region,that_ of Lg, Ls, L7, and LB is of the level of2o- Only Lo
while high momentum region contributions kg, L,, Ls deviates from the experimental value {8~4)o. Consider-
Lo, andL ,, are not negligible e T ing the large theoretical uncertainty in this simple approach,

all the obtained coefficientsl, . . . Lo are consistent with
the experimentsWe have also calculated the renormalized

quark condensai@j), from the obtained(p?) coefficient

In this paper, we have calculated the coefficients in thdcf. Eq. (51)] which is also consistent with the experiment
Gasser-Leutwyler Lagrangian from the underlying theory of  Although the approximations in this simple approach are
QCD in a simple approach with the approximations of takingrather crude, the above results show tki@s simple ap-
the largeN, limit, the leading order in dynamical perturba- proach does reveal the main feature of QCD predictions for

VI. CONCLUSIONS

014019-11



HUA YANG, QING WANG, YU-PING KUANG, AND QIN LU PHYSICAL REVIEW D 66, 014019 (2002

the chiral Lagrangian coefficient$or studying physics not APPENDIX A: FUNCTIONAL DETERMINANT

requiring high precision, this simple approach may already CONTAINING QUARK SELF-ENERGY

be useful. Of course further improvements of the approxima-

tions beyond this simple approacheflecting more about In this appendix, we take the Schwinger proper time regu-

QCD dynamicgare needed. This kind of study is in progress|ation to regularize the one-loop functional determinant in

and will be presented in another paper. o2 )
The approach can also be applied to electroweak theorleﬂshIg?eglkemgug::essegl ae: ee gy (V") reflecting chiral symme

to study how the coefficients in the electroweak chiral La- For convenience, the evaluation is done in the Euclidean

grangian are predicted by various kinds of underlying gauge pace-time, and will be analytically continued to the

theories of the electroweak symmetry breaking mechanisnfy.". _ . . .
Y y 9 inkowskian space-time after the evaluation. The functional

This kind of study is also in progress, and will be presente , , . : C
in separate papers. determinant is complex. The imaginary part is just the Wess-

Zumino-Witten term, and its expression in termsXfhas
already been given in Rdf15] which exactly coincides Wit-
ten’s result{16]. The phenomenology of the Wess-Zumino-

This work is supported by the National Natural ScienceWitten term is well-known and is not related to the main
Foundation of China, the Foundation of Fundamental Repurpose of this paper. So we shall ignore the imaginary part
search Grant of Tsinghua University, and a special granhere and concentrate on the evaluation of the following real
from the Ministry of Education of China. part of the functional determinant
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RelnDefD+3(—V?)]= ETI’In[[DT-I—E(—VZ)][D-I—E(—VZ)]]

:__“mf —Tre HE-V2+32(=V2) + {13 (- V) + (= V)l — 43 (- V?)] (A1)
A—»oo
|
where (x|e” HE-V2+32(=V2) +103 (- VA +3 (- VIl —d3(~ V)]|X>
d4p =y 2 H 2 2 2
D=Y—sq+ipgys, = (277)4exp{—T[E(x)—Vx—2|p~VX+p +24(=V
Vi E%_ivnu_iamysz_vly —2ip- Vet p?)+i 3 (—V2—2ip-V,+p?)+3 (- V2

VA=t —ivk(X), —2ip- Vit pA)To—d3(—Vi-2ip-V+p)]}.  (A3)

E—V2+32(=V2) 4133 (= V2)+3 (- V)l —d3 (- V?)
Then after lengthy but elementary calculations and expand-
ing in powers of the external sources, we can identify the
i expressions foF3, F3By, K™ ... K™ by com-
lo=—1dqys—Sa—iPa7Ys, paring with the form of Egs(1), and the obtained results in
the Minkowskian space-time are just those given in Egs.
(35), (34), and(36) in the text. The details are given in Ref.
[5].

For the evaluation of the effective acti®f"™®™in Eq. (5)
in the Minkowskian space-time, we note that there is no
3(—V? term in Eq.(Al), but we still have to replace
—i[vg,.2(=V3)D. (A2)  3(—V?) by an infrared cutoff parameter in Eq. (Al) to

regularize the infrared divergence. Then the momentum in-

The matrix element in EqAL) can be evaluated in the mo- tegration can be explicitly carried out, and we obtain the
mentum representation results in Eqs(7) in the text.

=[DT+3(-V?)][D+3(-V?)],

lo=—idoys—SaTipaYs,

[d3(—V2)]=y*[d,S(— V) ]=y*(3,2(—V?)
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APPENDIX B: Q-INDEPENDENCE OF THE LAST TERM
IN EQ. (19)

Here we show that the last term in E3.9),

PHYSICAL REVIEW D 66, 014019 (2002

is Q)-independent. Th€)-rotated quantities in Eq$B1) and
(B2) are defined by3]

Jo()=[QX)Pr+QT(x)P] [I(x)+i4]

) X[Q(X)Pr+ QT (x)P],

N 2 f PUPPW G LGP i " )

e = o n! O (x,y)=[QT(X)Pr+Q(X)PIPT(x,y)
xgzll_‘ff;’n”(xl,xi, e XnaXp) X[Q(y)Pr+Q(Y)P], (B3)
xq)glpl(xl X)) - -(IJ (X XD |11, —o, (B1) and the 2-point Green'’s function

c ' n.X Qc~
with the saddle point equatideef. Eq. (13)] 6511 Pn TN(X1, X1, - Xn X))
DY g —0=—1[([14+30) 1 17(y.x)  (B2) i defined by[3]
i - —a )\il a 4 )\in a,
Gﬂl1 L (XL Xn) wall(xl) > » VM“ﬁﬁi(Xl) o Y ()| 5 » YA (Xn)
= f dp- - d*g2 Gy XX X XU (X)WL (XD) - g () 0 (%) (B4)
First we see from Eqg¥B3) that Eq.(B2) can be written as
q)?)’é(xay)hm:o:((I)T)fﬁ(y,xﬂnmzo:[[QT(y)PR+Q(Y)PL]CDI(Y:X)[QT(X)PR+Q(X)PL]]"U|HC:0
= —i[[QN(Y)Pr+ Q(Y)PLI[(4+3) 1y, [ QT(X)Pr+ Q(X)P ]]*”
= —i[Q(Y)Pr+Q(Y)PLI? [(i16+3) 711" (y,)[ QT () P+ Q(X)P ]
= —i[%Vayel " (YL(i6+3) 717 7 (y, ) VE (), (B5)
in which
Vo () =QT(x)Pr+Q(X)P, (B6)
satisfies
YoVH(X) Y0¥, = Y. VH(X), (B7)
and
DIy, X) |, =0=—i[({4+I)"1(y,X) (B8)

is )-independent.

With the expressioriB5) for ®g%(x, y)|HQ -0, EQ. (B1) becomes
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s(G) 4 4 r(_i)n(Ncgg)nil_vlmﬂn / o101 ffnpn
s{P=N 2 A% A G X X - X X RO (X X)) (Xn X |11, =0
H n
c (DN ,
=NCHZZ j d*x, -~d4anGpll_“p:(xl,xl, e XnaXD)
X(¥oV§h70) (%) - - (VOVQYO)U”U”(X )Vplpl(xi)' : 'V?{]pn(xﬁ)q)glpl(xl,xi)‘ DI (Xq %)
m,=0
S (=D (NGD" 1oy o o
=N, | d¥xge G TN (xg X1, X X PI(Xg X]) - DI x) ,
=, n! Vapy by ,=0
Cc
(B9)
whereG,, G (xl X715 -« Xn,Xp) IS
Q'pl
g/; Py (X1=X1= C X X0) = (oY ¥0) T1Xe) - - - (YoV ¥0) TN (Xn)
XG0 X X XAVETIOK) V(). (B10)
!
Next, we look at this transformed Green’s funct@i1 (xl,xl, ... Xn,X,). From the definition(B4) and the

property(B7) we have

d4X/ . 'd4X’ n726171 on
J 1 ngs Va.p1

= f d*xy- -

n—2 (rl -0,
ng G ‘ n(xlxl,...

- Xn, X n)‘/’o—l(xl) Y (x1) .. U”(Xn)tlfp”( Xn)

!
pn(xl,xl, .

X X0) ($70Vh Y0) (%) (Vo) 2 (X3) - .- (h70Vh 70) 70%) (V) 7 (%)

— A _
=G (Xay e X0) (l/f’)’oV;rl?’o)zll(Xl)(?l) YUV (%) |- | ($70Vhy0) 7 (%)
a1y
)\in
Sy “(anﬁ) " (Xn)
anB
n=n
ip--in el A w,1,21 “r@n A n fn,/2n
=G (s X U0 5| YR [ O 5t e (%)
@18, anfn
= f A1 d'gE 26,1 T (Xe X X X)W X)WL (XD - () WD ().
ie.,
{'/(11 o In o XLXT, ,xn,x;)zgzll_'_'f;’n"(xl,xi, e Xn X)) (B11)
Thus the transformed Green’s functi@@i}";l'f’ﬁp in Eq. (B9) can be replaced bgf;'llgn and Eq.(B9) becomes
(G) 4 4.1 _I) (Ncgs)n ' ~01 0 ’ o1p1 ’ anp ’
Set =N E d*xy- - -d?x TGP n(xl,xl, o X X)) P (X X ) - D (X X)
! M,=0
° (B12

which is independent of).
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