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Calculation of the chiral Lagrangian coefficients from the underlying theory of QCD:
A simple approach
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We calculate the coefficients in the chiral Lagrangian approximately from QCD based on a previous study
of deriving the chiral Lagrangian from the first principles of QCD in which the chiral Lagrangian coefficients
are defined in terms of certain Green’s functions in QCD. We first show that, in the large-Nc limit, the anomaly
part contributions to the coefficients are exactly cancelled by certain terms in the normal part contributions, and
the final results of the coefficients only concern the remaining normal part contributions depending on QCD
interactions. We then do the calculation in a simple approach with the approximations of taking the large-Nc

limit, the leading order in dynamical perturbation theory, and the improved ladder approximation; thereby the
relevant Green’s functions are expressed in terms of the quark self-energyS(p2). By solving the Schwinger-
Dyson equation forS(p2), we obtain the approximate QCD predicted coefficients and quark condensate which
are consistent with the experimental values.
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I. INTRODUCTION

Because of its nonperturbative nature, studying low
ergy hadron physics in QCD is a long standing difficult pro
lem. For low lying pseudoscalar mesons, a widely used
proach is the theory of the effective chiral Lagrangian ba
on the consideration of the global symmetry of the syst
and the momentum expansion without dealing with the n
perturbative dynamics of QCD@1,2#. In the chiral Lagrang-
ian approach, the coefficients in the Lagrangian are all
known phenomenological parameters which should
determined by experimental inputs. The number of unkno
parameters increases rapidly with the increase of the pr
sion in the momentum expansion. Therefore studying
relation between the chiral Lagrangian and the fundame
principles of QCD will not only be theoretically interestin
for a deeper understanding of the chiral Lagrangian, but
also be helpful for reducing the number of unknown para
eters and increasing the predictive power of the chiral
grangian.

In a previous paper, Ref.@3#, certain techniques were de
veloped, with which the chiral Lagrangian was formally d
rived from the first principles of QCD without taking ap
proximations. The chiral Lagrangian coefficients a
contributed both by the anomaly part~from the quark func-
tional measure! and the normal part~from the QCD Lagrang-
ian!. In Ref. @3#, all the chiral Lagrangian coefficients con
tributed from the normal part of the theory are expressed
terms of certain Green’s functions in QCD, which can
regarded as exact QCD definitions of the chiral Lagrang
coefficients. After expanding the effective action in powe
of the rotated sources~momentum expansion!, the effective
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action, up toO(p4), contributed from the normal part is o
the form @3#

Seff
(norm)5E d4x trf@F0

2aV
2 1F0

2B0sV2K1@dmaV
m #22K2~dmaV

n

2dnaV
m !~dmaV,n2dnaV,m!1K3@aV

2 #2

1K4aV
m aV

n aV,maV,n1K5aV
2 trf@aV

2 #

1K6aV
m aV

n trf@aV,maV,n#1K7sV
2 1K8sV trf@sV#

1K9pV
2 1K10pV trf@pV#1K11sVaV

2

1K12sV trf@aV
2 #2K13VV

mnVV,mn

1 iK14VV
mnaV,maV,n1K15pVdmaV

m #1O~p6!, ~1!

whereV is related to the nonlinearly realized meson fieldU
by U5V2; sV , pV , vV , andaV are, respectively, the ex
ternal scalar, pseudoscalar, vector, and axial-vector sou
rotated byV; and theKs are terms with different Lorentz
structures in the relevant QCD Green’s functions. The
tained expressions for the chiral Lagrangian coefficients
O(p2):

F0
25

i

8~Nf
221!

E d4xF ^@c̄a~0!gmg5cb~0!#

3@c̄b~x!gmg5ca~x!#&2
1

Nf
^@c̄a~0!gmg5ca~0!#

3@c̄b~x!gmg5cb~x!#&2^c̄a~0!gmg5cb~0!&

3^c̄b~x!gmg5ca~x!&1
1

Nf
^c̄a~0!gmg5ca~0!&
©2002 The American Physical Society19-1



et

.
su
io
-
ns
a

ar
e

ew
oth
eral-
el-

he
nd
ns
in

the
que.
at

fi-
in-
he
he
or-

ons
and
ese
ra-

,

la
ed
,
La-

ts
the
ns
rgy
in
of
nts

the
ab-

-to-

fi-

ate

nd

al

ffi-
ece
and
art
the
in

or-
in

. V,

HUA YANG, QING WANG, YU-PING KUANG, AND QIN LU PHYSICAL REVIEW D 66, 014019 ~2002!
3^c̄b~x!gmg5cb~x!&G ,
F0

2B052
1

Nf
^c̄c&, ~2!

O(p4):

L1
(norm)5

1

32
K41

1

16
K51

1

16
K132

1

32
K14,

L2
(norm)5

1

16
~K41K6!1

1

8
K132

1

16
K14,

L3
(norm)5

1

16
~K322K426K1313K14!,

L4
(norm)5

K12

16B0
,

L5
(norm)5

K11

16B0
, L6

(norm)5
K8

16B0
2

,

L7
(norm)52

K1

16Nf
2

K10

16B0
2

2
K15

16B0Nf
,

L8
(norm)5

1

16FK11
1

B0
2
K72

1

B0
2
K91

1

B0
K15G ,

L9
(norm)5

1

8
~4K132K14!, L10

(norm)5
1

2
~K22K13!,

H1
(norm)52

1

4
~K21K13!,

H2
(norm)5

1

8 F2K11
1

B0
2
K71

1

B0
2
K92

1

B0
K15G .

~3!

Together with the anomaly part contributions, the compl
coefficients are given by

Li5Li
(anom)1Li

(norm), i 51, . . .,10,

Hi5Hi
(anom)1Hi

(norm), i 51,2, ~4!

where the superscripts~anom! and ~norm! denote the
anomaly part and normal part contributions, respectively

In the literature, the anomaly part contributions are u
ally calculated by means of the heat kernel regularizat
technique@4#. However, this technique is difficult to imple
ment in the calculation of the normal part contributio
which contain complicated functions of the momentum, s
the quark self-energyS(p2), reflecting nonperturbative QCD
dynamics~which are even unspecified in the analytical p
of the calculation!. In order to treat the anomaly part and th
01401
e

-
n

y

t

normal part contributions on equal footing, a certain n
regularization technique feasible for the calculations of b
parts should be developed. In this paper, we use the gen
ized Schwinger proper time regularization technique dev
oped in Ref.@5# to regularize the system, which keeps t
local chiral symmetry at every step in the calculation, a
can be applied to the calculations of both the contributio
from the anomaly part and from the normal part. Thus,
this paper, the contributions from the anomaly part and
normal part are calculated by means of the same techni
As the first conclusion of this unified treatment, we show th
the anomaly contributions to the chiral Lagrangian coef
cients given in Ref. [4], which are independent of QCD
teractions, will actually be cancelled by certain terms in t
normal part contributions, and the final expressions for t
coefficients concern only the remaining terms from the n
mal part contributions related to QCD interactions. It should
be so since the coefficients indicate meson interacti
which should be residual interactions between quarks
gluons, and thus should depend on QCD interactions. Th
contributions have not been carefully calculated in the lite
ture. It has been shown in Ref.@3# that in the approximations
of large-Nc limit, leading order in dynamical perturbation
and improved ladder approximation, the formula forF0

2 in
Eqs. ~2! reduces to the well-known Pagels-Stokar formu
@6# in which all dynamical effects from QCD are represent
by the quark self-energyS(p2) in the formula. In this paper
we take the same approximations to calculate the chiral
grangian coefficients~the relevant QCD Green’s functions!
as an illustration of the main feature of how QCD predic
the chiral Lagrangian coefficients. Similar to the case of
Pagels-Stokar formula, the relevant QCD Green’s functio
can all be expressed as functions of the quark self-ene
S(p2). By solving the Schwinger-Dyson equation, we obta
S(p2), and thus the approximate QCD predicted values
the coefficients. We shall see that the obtained coefficie
L1 , . . . ,L10 and quark condensate are consistent with
experimental values. The calculation is checked by the
sence of divergences in the large-Nc limit as it should be
since the divergent meson-loop contributions are of next
the-leading order in the 1/Nc expansion. Although the
present approximation is rather crude,it reveals the main
feature of QCD predictions for the chiral Lagrangian coef
cients.

This paper is organized as follows: In Sec. II, we calcul
the anomaly part contributions to theO(p4) coefficients us-
ing the Schwinger proper time regularization technique, a
the results coincide with those in Ref.@4# in the chiral limit.
Then, in Sec. III, we apply the same technique to the norm
part, and show generally that, in the large-Nc limit, the
anomaly part contributions to the chiral Lagrangian coe
cients are exactly cancelled by the contributions from a pi
in the normal part independent of the quark self-energy,
the contributions from the remaining piece in the normal p
depending on the quark self-energy play the real role in
chiral Lagrangian coefficients. Specific approximations
the calculation of the normal part contributions and the f
mulas for the complete chiral Lagrangian coefficients
terms of the quark self-energy are given in Sec. IV. In Sec
9-2
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we present the numerical calculations of the quark s
energy and the obtained values of the chiral Lagrangian
efficients. Section VI is a concluding remark.

II. ON THE CONTRIBUTIONS FROM THE ANOMALY
PART

In order to see the relation between the anomaly part
the normal part contributions to the chiral Lagrangian co
ficients, we present here the calculation of the anomaly
contributions by means of the Schwinger proper time re
larization. We shall see that the obtained results exactly
incide with those obtained from the heat kernel techniq
@4#. Our present approach is different from that in Ref.@4# in
the sense that the constant constituent quark massMQ is not
put in by hand as is done in Ref.@4# but is naturally included
in the normal part solution through the dynamical qua
mass reflecting chiral symmetry breaking. Therefore our
sult of the anomaly part contribution is to compare with th
in Ref. @4# in the chiral limit.
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n
th
ro
in
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In the Schwinger proper time regularization, the anom
part does not contribute to the coefficients of theO(p2)
terms in the case corresponding to the result withMQ50 in
Ref. @4#.1 Therefore we are only going to calculate th
anomaly contribution to the coefficients of theO(p4) terms.

The anomaly term in the path-integral formalism is

Seff
(anom)[2 i 3anomaly terms

52 iNc@Tr ln~ i ]”1J!

2Tr ln~ i ]”1JV!#

5 iNc@Tr ln~ i ]”1JV!1V-independent term#. ~5!

The V-independent term is independent of theU field, so
that it is irrelevant to the chiral Lagrangian coefficients. W
shall only evaluate theV-dependent term in Eq.~5!. To have
a unified parametrization, we can parametrize the anom
contributed effective action similar to that in Eq.~1!, i.e.,
Seff
(anom)5E d4x trf@2K 1

(anom)@dmaV
m #22K 2

(anom)~dmaV
n 2dnaV

m !~dmaV,n2dnaV,m!1K 3
(anom)@aV

2 #21K 4
(anom)aV

m aV
n aV,maV,n

1K 5
(anom)aV

2 trf@aV
2 #1K 6

(anom)aV
m aV

n trf@aV,maV,n#1K 7
(anom)sV

2 1K 8
(anom)sV trf@sV#1K 9

(anom)pV
2

1K 10
(anom)pV trf@pV#1K 11

(anom)sVaV
2 1K 12

(anom)sV trf@aV
2 #2K 13

(anom)VV
mnVV,mn1 iK 14

(anom)VV
mnaV,maV,n

1K 15
(anom)pVdmaV

m #1O~p6!1U-independent source terms. ~6!
t
t

on-
The V-dependent term in Eq.~5! suffers from ultraviolet
divergence, and we take the Schwinger proper time regu
ization with an ultraviolet cutoff parameterL to regularize it.
To apply this regularization, we first work in the Euclidea
space-time, and analytically continue the results to
Minkowskian space-time after the evaluation. The main p
cedure of evaluating the general functional determinant
cluding the quark self-energyS is described in Appendix A.
In the case ofSeff

(anom), there is noS-dependence in Eq.~5!.
However, for regularizing the infrared divergence, we sho
replace theS in Eqs. ~A1! and ~A3! by an infrared cutoff
parameterk. The momentum integration in Eq.~A3! can be
explicitly carried out with a lengthy but elementary calcu
tion. After expanding in powers of the external sources,
can identify the expressions forK 1

(anom), . . . ,K 15
(anom) by

comparing with the form of Eq.~6!, and we obtain

K 1
(anom)52

Nc

24p2
,

K 2
(anom)52

Nc

48p2
lim
k→0

lim
L→`

S ln
k2

L2
1g11D ,
r-

e
-
-

d

e

K 3
(anom)5

Nc

24p2
lim
k→0

lim
L→`

S ln
k2

L2
1g14D ,

K 4
(anom)52

Nc

24p2
lim
k→0

lim
L→`

S ln
k2

L2
1g12D ,

K 5
(anom)5K 6

(anom)50,

K 7
(anom)5K 9

(anom)5
Nc

8p2
lim

L→`

L2,

K 8
(anom)5K 10

(anom)5K 11
(anom)5K 12

(anom)50,

K 13
(anom)52

Nc

48p2
lim
k→0

lim
L→`

S ln
k2

L2
1g D ,

1If one takes a momentum cutoffL to regularize the divergen
integrals as was done in Ref.@4# before putting in the constituen
quark massMQ , the O(p2) coefficientF0

2 will be proportional to
L2 ~cf. Ref. @4#!. As has been pointed out in Ref.@3#, this term is
exactly cancelled by a corresponding term in the normal part c
tribution @cf. Eq. ~74! in Ref. @3##.
9-3
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K 14
(anom)52

Nc

12p2
lim
k→0

lim
L→`

S ln
k2

L2
1g12D ,

K 15
(anom)50. ~7!

Comparing with the standard form of momentum expa
sion to identify theO(p4) chiral Lagrangian coefficients, w
obtain the anomaly contribution to these coefficients

L1
(anom)5

Nc

384p2
, L2

(anom)5
Nc

192p2
,

L3
(anom)52

Nc

96p2
, L4

(anom)5L5
(anom)5L6

(anom)50,

L7
(anom)5

Nc

1152p2
, L8

(anom)52
Nc

384p2
,

L9
(anom)5

Nc

48p2
, L10

(anom)52
Nc

96p2
,

H1
(anom)5

Nc

96p2
lim
k→0

lim
L→`

S ln
k2

L2
1g1

1

2D ,

H2
(anom)5

Nc

192p2
1 lim

L→`

NcL
2

32p2B0
2

. ~8!

These exactly coincide with the results withMQ50 in Ref.
@4#. Note that the final expressions of the coefficien
L1 , . . . ,L10 are independent of the infrared cutoff parame
k and the ultraviolet cutoffL although these cutoff param
eters appear inK 1

(anom), . . . ,K 15
(anom), while H1 and H2 de-

pend on the cutoff parameters. This implies thatH1 andH2
are not measurable quantities. WithNc53, the values of the
coefficients are~in units of 1023)

L150.79, L251.58, L3523.17,

L45L55L650,

L750.26, L8520.79,

L956.33, L10523.17. ~9!

These are to be compared with the experimental values~in
units of 1023) @2#

L150.960.3, L251.760.7, L3524.462.5,

L45060.5, L552.260.5, L65060.3,

L7520.460.15, L851.160.3, L957.460.7,

L10526.060.7. ~10!
01401
-
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The numbers in Eqs.~9! are close to the experimental resu
of Eqs.~10! exceptL7 andL8 are of wrong signs. This gives
people an impression that the coefficientsL1 , . . . ,L10 might
mainly be contributed by the anomaly part, and the norm
part might only contribute small corrections@4,7#. However,
we note that the results in Eqs.~8! are independent of QCD
interactions, i.e., these terms remain unchanged when
switch off the QCD gauge coupling constantas . This is
somewhat confusing since these coefficients indicate me
interactions which should be residual interactions betw
quarks and gluons. We shall see in the next section thatthese
terms will actually be completely cancelled by the terms
dependent of the quark self-energy in the normal part c
tribution, so that they do not really appear in the final for
of the coefficients. What appear in the coefficients are
remaining terms in the normal part contribution which d
pend on the quark self-energy and hence on the QCD in
actions as it should be.Another feature of the terms in Eqs
~8! indicating that they should be exactly cancelled a
should not appear in the final formulas for the coefficients
the divergence ofH1 andH2 when takingL→`. We know
from Ref. @2# that the ultraviolet divergences in theO(p4)
chiral Lagrangian coefficients come merely from the mes
loop corrections with theO(p2) interactions. In the 1/Nc
expansion, the meson-loop corrections belonging toO(1/Nc)
will not take place in the large-Nc limit. Therefore, in the
large-Nc limit, the final expressions for theO(p4) coeffi-
cients should be finite whenL→`. Now the ultraviolet di-
vergences inH1 andH2 in Eqs.~8! have nothing to do with
the meson-loop corrections, so that they should be exa
cancelled by other terms and should not appear in the fi
expressions for theO(p4) coefficients.

III. ON THE CONTRIBUTIONS FROM THE NORMAL
PART

In this section we use the same regularization techni
as in Sec. II to calculate the normal part contributions to
chiral Lagrangian coefficients. We start from the effecti
actionSeff

(norm) given in Ref.@3#,

eiSeff
(nrom)

5E DJei G̃[1,JV ,J,FV ,PV]

5E DJDFVexpH iG0@JV ,FV ,PVc#1 iG I@FV#

1 iNcE d4x trl f FJ~x!S 2 i sin
q~x!

Nf

1g5 cos
q~x!

Nf
DFV

T ~x,x!G J ~11!

which satisfies a useful relation@3#

dSeff
(norm)

dJV
sr~x!

U
U fix, anomaly ignored

5NcFVc
sr ~x,x!. ~12!

The symbols are defined in Ref.@3#.
9-4



d

t

io

f
t

-
ase

f

-

ign.
ts
um

the

-

al-
l

n-

CALCULATION OF THE CHIRAL LAGRANGIAN . . . PHYSICAL REVIEW D 66, 014019 ~2002!
In the large-Nc limit, the integrations in Eq.~11! can be
carried out by the saddle point approximation with the sad
point equations

FVc
(ah)(bz)~x,y!52 i @~ i ]”1JV2PVc!

21# (bz)(ah)~y,x!,
~13!

PVc
sr ~x,y!52J̃sr~x!d4~x2y!

2 (
n51

` E d4x1•••d4xnd4x18•••d4xn8

3
~2 i !n11~Ncgs

2!n

n!

3Ḡrr1•••rn

ss1•••sn~x,y,x1 ,x18 , . . . ,xn ,xn8!

FVc
s1r1~x1 ,x18!•••FVc

snrn~xn ,xn8!, ~14!

trlF S 2 i sin
q~x!

Nf
1g5 cos

q~x!

Nf
DFVc

T ~x,x!G50, ~15!

whereJ̃ is a short notation for the following quantity:

J̃sr~x![
]

]FVc
sr ~x,x!

E d4y trl f H Jc~y!F2 i sin
qc~y!

Nf

1g5 cos
qc~y!

Nf
GFVc

T ~y,y!J U
Jc fixed

. ~16!

Then the obtainedSeff
(norm) in this approximation is

Seff
(norm)5G̃@1,JV ,Jc ,FVc ,FVc#52 iNc Tr ln@ i ]”1JV

2PVc#1NcE d4xd4x8FVc
sr ~x,x8!PVc

sr ~x,x8!

1Nc(
n52

` E d4x1•••d4xn8
~2 i !n~Ncgs

2!n21

n!

3Ḡr1•••rn

s1 . . . sn~x1 ,x18 , . . . ,xn ,xn8!

3FVc
s1r1~x1 ,x18!•••FVc

snrn~xn ,xn8!

1 iNcE d4x trl f H Jc~x!F2 i sin
qc~x!

Nf

1g5 cos
qc~x!

Nf
GFV,c

T ~x,x!J , ~17!

in which theO(1/Nc) termG I is neglected. Note that the las
term in Eq.~17! actually vanishes due to Eq.~15!. We keep it
here for showing the relation between the effective act
Seff

(norm) and its stationary conditions Eqs.~13!–~15!.
In the large-Nc limit, FVc5FVc on the right-hand side o

Eq. ~12!. The left-hand side of Eq.~12! can be carried ou
from Eq. ~17! using Eqs.~13!–~15!. Then the explicit form
of Eq. ~12! in this approximation is
01401
le

n

2 i @~ i ]”1JV2PVc!
21#rs~x,x!5FVc

sr ~x,x!. ~18!

We see thatPVc and FVc play the roles of the quark self
energy and the quark propagator, respectively, in the c
with JV5” 0.

Now we decomposeSeff
(norm) into a part independent of

PVc and a partdepending onPVc. The part independent o
PVc can be extracted fromSeff

(norm) by settingPVc50, i.e.,

Seff
(norm,PVc50)

52 iNc Tr ln@ i ]”1JV#

1NcF (
n52

` E d4x1•••d4xn8
~2 i !n~Ncgs

2!n21

n!

3Ḡr1•••rn

s1•••sn~x1 ,x18 , . . . ,xn ,xn8!

3FVc
s1r1~x1 ,x18!•••FVc

snrn~xn ,xn8!G
PVc50

.

~19!

Here we have ignored the last term in Eq.~17! which actu-
ally vanishes due to Eq.~15!. We show in Appendix B that
the last term in Eq.~19! is actuallyV independent. There
fore, Eq.~19! can be written as

Seff
(norm,PVc50)

52 iNc@Tr ln~ i ]”1JV!

1V-independent terms#. ~20!

Comparing theJV-dependent terms in Eqs.~5! and~20!, we
see that they are of the same form but with an opposite s
Thustheir contributions to the chiral Lagrangian coefficien
exactly cancel each other to all orders in the moment
expansion. The cancellation in the case of theO(p2) coeffi-
cient F0

2 has been described in footnote 1 in Sec. II. For
O(p4) coefficients, we have

K i
(anom)1K i

(PVc50)
50, i 51, . . . ,16

Li
(anom)1Li

(norm,PVc50)
50, i 51, . . .,10,

Hi
(anom)1Hi

(norm,PVc50)
50, i 51,2. ~21!

Thus, in the large-Nc limit, the anomaly part contributed chi
ral Lagrangian coefficients in Eqs.~8! do not really appear in
the final results of the chiral Lagrangian coefficients
though their values Eqs.~9! are close to the experimenta
values.The chiral Lagrangian coefficients are actually co
tributed from thePVcÞ0 part of Seff

(norm),

Seff
(norm,PVcÞ0)

[Seff
(norm)2Seff

(norm,PVc50)
~22!

which leads to thePVcÞ0 part of K 1
(norm), . . . ,K 15

(norm),

K i
(norm,PVcÞ0)

5K i
(norm)2K i

(norm,PVc50) , i 51, . . .,15.
~23!

This is our first new conclusion in this study.
9-5
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The final chiral Lagrangian coefficients are then

Li5Li
(norm,PVcÞ0) , i 51, . . .,10,

Hi5Hi
(norm,PVcÞ0) , i 51,2, ~24!

and

L15
1

32
K 4

(norm,PVcÞ0)
1

1

16
K 5

(norm,PVcÞ0)
1

1

16
K 13

(norm,PVcÞ0)

2
1

32
K 14

(norm,PVcÞ0) ,

L25
1

16
~K 4

(norm,PVcÞ0)
1K 6

(norm,PVcÞ0)
!1

1

8
K 13

(norm,PVcÞ0)

2
1

16
K 14

(norm,PVcÞ0) ,

L35
1

16
~K 3

(norm,PVcÞ0)
22K 4

(norm,PVcÞ0)
26K 13

(norm,PVcÞ0)

13K 14
(norm,PVcÞ0)

!,

L45
K 12

(norm,PVcÞ0)

16B0
, L55

K 11
(norm,PVcÞ0)

16B0
,

L65
K 8

(norm,PVcÞ0)

16B0
2

,

L752
K 1

(norm,PVcÞ0)

16Nf
2

K 10
(norm,PVcÞ0)

16B0
2

2
K 15

(norm,PVcÞ0)

16B0Nf
,

L85
1

16FK 1
(norm,PVcÞ0)

1
1

B0
2
K 7

(norm,PVcÞ0)

2
1

B0
2
K 9

(norm,PVcÞ0)
1

1

B0
K 15

(norm,PVcÞ0)G ,

L95
1

8
~4K 13

(norm,PVcÞ0)
2K 14

(norm,PVcÞ0)
!,

L105
1

2
~K 2

(norm,PVcÞ0)
2K 13

(norm,PVcÞ0)
!,

H152
1

4
~K 2

(norm,PVcÞ0)
1K 13

(norm,PVcÞ0)
!,

H25
1

8 F2K 1
(norm,PVcÞ0)

1
1

B0
2
K 7

(norm,PVcÞ0)

1
1

B0
2
K 9

(norm,PVcÞ0)
2

1

B0
K 15

(norm,PVcÞ0)G . ~25!
01401
Since PVcugs5050, theseO(p4) chiral Lagrangian coeffi-
cients will vanish if we switch off the QCD coupling con
stantgs as it should be.

IV. CALCULATION OF THE CHIRAL LAGRANGIAN
COEFFICIENTS

We see that to calculate the chiral Lagrangian coefficie
from Seff

(norm,PVcÞ0) , we should mainly deal withSeff
(norm) given

in Eq. ~17! which has never been carefully calculated in t
literature. Ignoring the vanishing last term in Eq.~17!, there
are still rather complicated terms in it. For example, the th
term includes various ranks of gluon Green’s functio
which concern very complicated calculations of QCD d
namics. As the first time of doing this kind of calculation, w
shall take futher approximations to simplify the evaluation
Seff

(norm). We know that the pion decay constantf p has been
studied from QCD in Ref.@6# by taking the approximation o
keeping only the leading order in dynamical perturbatio
i.e., taking into account only the QCD interaction in th
Schwinger-Dyson equation leading to the nonperturba
solution of chiral symmetry breaking, and neglecting oth
QCD corrections in positive powers ofgs ~perturbative!.
This approximation leads to the widely used Pagels-Sto
formula which is reasonable though not perfect. In the lar
Nc limit, f p is just theO(p2) chiral Lagrangian coefficien
F0 given in Eqs.~2!. So, as in Ref.@6#, we take the approxi-
mation of keeping only the leading order in dynamical p
turbation to calculate the chiral Lagrangian coefficients fro
Seff

(norm). In this spirit, we neglect the complicated third ter
in Eq. ~17! which contains only positive powers ofgs . Fur-
thermore, we see from Eq.~14! that the second term in Eq
~17! is of the same order as the third term, so that we neg
the second term in Eq.~17! as well. With this approximation
Seff

(norm) is simplified as

Seff
(norm)52 iNc Tr ln@ i ]”1JV2PVc#. ~26!

Now the concerned QCD dynamics resides in thePVc term
which is related to the quark self-energy@cf. Eq. ~18!#. We
expect such a simple approximation may also lead to rea
able results of theO(p4) chiral Lagrangian coefficients sinc
reasonable values of theO(p4) chiral Lagrangian coeffi-
cients have been obtained in a model by Holdom@8# consid-
ering only the quark self-energy contribution with certa
phenomenological ansatz. We shall see in Sec. V that
obtained O(p4) chiral Lagrangian coefficients are indee
reasonable. Although this approximation is crude, it provid
a simple illustration of the main feature of how QCD pr
dicts the chiral Lagrangian coefficients. Further improv
study beyond this simple approximation taking into acco
the second and third terms in Eq.~17! is of course needed
That will be presented in a later paper. Now we need
calculatePVc

sr (x,y) and carry out the explicit expression fo
Seff

(norm) in Eq. ~26!.
We have noticed thatPVc

sr is related to the quark self
energy. If we find out the relation betweenPVc

sr (x,y) and the
conventional quark self-energyS(2p2), then we can obtain
9-6
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S(2p2) by solving the well-known Schwinger-Dyson equ
tion. As in the literature, we shall write down the Schwinge
Dyson equation in the Landau gauge which is stable aga
the gauge parameter. In the same approximation of taking
leading order in dynamical perturbation theory and with
improved ladder approximation, the Schwinger-Dyson eq
tion in the Euclidean space-time reads@9–11#

S~p2!2
3Nc

2 E d4q

4p3

as@~p2q!#

~p2q!2

S~q2!

q21S2~q2!
50.

~27!

This equation can be solved numerically and the details
be presented in Sec. V. Naively, we may expect t
PVc

sr (x,y)5dsrS(]x
2)d4(x2y). But this is not correct. Un-

der a local chiral transformationh(x) ~hidden symmetry
transformation@3#!, PVc

sr transforms as

PVc~x,y!→PVc8 ~x,y!5h†~x!PVc~x,y!h~y!, ~28!

while dsrS(]x
2)d4(x2y) does not transform like this. Th

correct relation can be found by replacing the ordinary
rivative ]x

m by the covariant derivative

¹̄x
m5]x

m2 ivV
m ~x!. ~29!

Since the external sourcevV
m (x) transforms as

vV
m ~x!→vV

m8~x!5h†~x!vV
m ~x!h~x!1 ih†~x!@]mh~x!#,

~30!

the covariant derivative¹̄x
m transforms as

¹̄x
m→¹̄x

m85h†~x!¹̄x
mh~x!. ~31!

Thus the correct identification is

PVc
sr ~x,y!5@S~¹̄x

2!#srd4~x2y!. ~32!

Then the effective action~26! can be written as

Seff
(norm)52 iNc Tr ln@ i ]”1JV2S~¹̄2!#. ~33!

Next we evaluate the effective action~33! using the
Schwinger proper time regularization as before~cf. Appen-
dix A! to obtain the expressions for the chiral Lagrang
coefficients. This is not trivial since usually this regulariz
tion scheme is used in the case thatS is a constant, and thu
the momentum integration can be explicitly carried out
check the local gauge invariance of the result. Now we le
S(¹̄2) as an unspecified function in Eq.~33!, so that the
momentum integration cannot be carried out explicitly. O
ganizing terms to guarantee local chiral invariance is rat
tedious and the details are given in Ref.@5#. Our obtained
expressions in the Minkowskian space-time are

F0
2B054E dp̃SpXp , ~34!
01401
-
st
he
e
-

ll
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-

-

e

-
r

F0
252E dp̃F ~22Sp

22p2SpSp8!Xp
21~2Sp

2

1p2SpSp8!
Xp

L2G , ~35!

K 1
(norm)52E dp̃F22ApXp

312Ap

Xp
2

L2
2Ap

Xp

L4
1

p2

2
Sp8

2 Xp

L2

2
p2

2
Sp8

2Xp
2 G ,

K 2
(norm)5E dp̃F22BpXp

312Bp

Xp
2

L2
2Bp

Xp

L4
1

p2

2
Sp8

2 Xp

L2
,

2
p2

2
Sp8

2Xp
2G ,

K 3
(norm)52E dp̃F S 4Sp

4

3
2

2p2Sp
2

3
1

p4

18D S 6Xp
42

6Xp
3

L2

1
3Xp

2

L4
2

Xp

L6D 1S 24Sp
21

p2

2 D S 22Xp
31

2Xp
2

L2

2
Xp

L4D 2
Xp

L2
1Xp

2G ,

K 4
(norm)5E dp̃F S 24Sp

4

3
1

2p2Sp
2

3
1

p4

18D S 6Xp
42

6Xp
3

L2

1
3Xp

2

L4
2

Xp

L6D 14Sp
2S 22Xp

31
2Xp

2

L2
2

Xp

L4D
1

Xp

L2
2Xp

2G ,

K 5
(norm)5K 6

(norm)50,

K 7
(norm)52E dp̃F ~3Sp

212p2SpSp8!Xp
2

1@22Sp
22p2~112SpSp8!#

Xp

L2G ,

K 8
(norm)50,

K 9
(norm)52E dp̃F ~Sp

212p2SpSp8!Xp
2

2p2~112SpSp8!
Xp

L2G ,
9-7
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K 10
(norm)50,

K 11
(norm)54E dp̃F ~24Sp

31p2Sp!Xp
31~4Sp

32p2Sp!
Xp

2

L2

2S 2Sp
32

1

2
p2SpD Xp

L4
13Sp

Xp

L2
23SpXp

2G ,

K 12
(norm)50,

K 13
(norm)5E dp̃F S 1

3
p2Sp8Sp91

1

3
SpSp9 DXp1~Cp2Dp!

Xp

L2

2~Cp2Dp!Xp
222EpXp

312Ep

Xp
2

L2
2Ep

Xp

L4G ,

K 14
(norm)524E dp̃F22FpXp

312Fp

Xp
2

L2
2Fp

Xp

L4

1
p2

2
Sp8

2 Xp

L2
2

p2

2
Sp8

2Xp
2G ,

K 15
(norm)524E dp̃F2S Sp1

1

2
p2Sp8 D Xp

L2

1S Sp1
1

2
p2Sp8 DXp

2G , ~36!

in which the short notations~in the Minkowskian space
time! are

Sp[S~2p2!, ~37!

E dp̃[ iNcE d4p

~2p!4
e~p22Sp

2
!/L2

,

Xp[
1

p22Sp
2

,

Ap52
2

3
p2SpSp8~2122SpSp8!

2
1

3
Sp

2~2122SpSp8!1
1

3
p2Sp

2~2Sp8
22SpSp9!

2
1

6
p4~2Sp8

22SpSp9!,
01401
Bp52
2

3
p2SpSp8~2122SpSp8!

2
1

3
Sp

2~2122SpSp8!1
1

3
p2Sp

2~2Sp8
22SpSp9!

2
1

18
p4~2Sp8

22SpSp9!2
1

6
p2~2122SpSp8!,

Cp5
1

3
2

1

3
SpSp82

1

2
p2Sp8

2 ,

Dp5
1

2
p2Sp8

22
1

6
p2SpSp9~2122SpSp8!

2
2

9
p4Sp8Sp9~2122SpSp8!

2
2

9
p4Sp8

2~2Sp8
22SpSp9!

2
1

3
p2SpSp8~2Sp8

22SpSp9!,

Ep52
1

6
p2SpSp8~2122SpSp8!2

2
1

9
p4Sp8

2~2122SpSp8!2,

Fp52
4

3
p2SpSp81

4

3
p2~SpSp8!22

2

3
Sp

21
2

3
Sp

3Sp8

1
1

3
p2Sp

2~2Sp8
22SpSp9!2

1

9
p4~2Sp8

22SpSp9!

2
1

3
p2~2122SpSp8!2

1

2
p2. ~38!

For the coefficientF0
2, Eq. ~35! is just the well-known

Pagels-Stokar formula@6# when taking the regularization
cutoff parameterL→`.

It is easy to check that theseK i
(norm) ( i 51, . . .,15) do

contain thePVc-independent (Sp-independent! piece which
exactly cancel the anomaly contributions in Eqs.~7! men-
tioned in Sec. III. This can be done by taking a constantSp
to carry out the momentum integrations, and picking up
Sp-independent terms which are just thePVc-independent
terms mentioned in Sec. III. Subtracting the
PVc-independent terms from the obtainedK i

(norm) in Eqs.
~36!, we get the desiredK i

(norm,PVcÞ0) in Eq. ~23!, which is
needed in the final expressions for the chiral Lagrangian
efficients in Eqs.~25!.

We can also check that the regularization cutoffL does
not appear inK i

(norm,PVcÞ0) , so that the obtained chiral La
grangian coefficientsL1 , . . . ,L10 are all finite as it should be
since there is no divergence in the large-Nc limit @the diver-
gent meson-loop corrections are ofO(1/Nc)#.
9-8



e

e
th

fol-
on-

.

t
the

ake

e
he

be

-

for

-

ely.

CALCULATION OF THE CHIRAL LAGRANGIAN . . . PHYSICAL REVIEW D 66, 014019 ~2002!
V. NUMERICAL CALCULATIONS

The last step in the calculation is to solve the Schwing
Dyson equation~27! numerically to obtainS(p2). In the
integrand in the Schwinger-Dyson equation~27!, there is still
the QCD running coupling constantas(p2q) unspecified.
The high momentum behavior ofas is well known. The
one-loop level formula is

as~p! ——→
p2→` 12p

~3322Nf !

1

ln~p2/LQCD
2 !

. ~39!

The low momentum behavior ofas(p) is not known yet due
to the ignorance of nonperturbative QCD. Inevitably, w
have to take a certain QCD motivated model for it as in
literature. We shall take the following Model A from Ref.@9#,
and Model B and Model C from Ref.@10# as examples to do
the calculation. They are

A: as~p!57
12p

~3322Nf !
, for ln~p2/LQCD

2 !<22;

5H 72
4

5
@21 ln~p2/LQCD

2 !#2J 12p

~3322Nf !
,

for 22< ln~p2/LQCD
2 !<0.5;

5
1

ln~p2/LQCD
2 !

12p

~3322Nf !
,

for 0.5< ln~p2/LQCD
2 !. ~40!

B: as~p!54p3h2p2d4~p!1
12p

~3322Nf !

1

ln~21p2/LQCD
2 !

;

~41!

FIG. 1. as(p) for Model A @Eq. ~40!#, Model B @Eq. ~41!#, and
Model C @Eq. ~42!#. The solid, dashed, and dotted lines are
Models A, B, and C, respectively.
01401
r-

e

C: as~p!5
4p3

m2
p2e2p2/p0

2
1

12p

~3322Nf !

1

ln~21p2/LQCD
2 !

.

~42!

They all have the asymptotic behavior~39!. In Eq.~40!, there
is only one parameterLQCD, while in Eqs.~41! and~42!, in
addition toLQCD, there are extra parametersh, m, andp0,
respectively. We shall determine the parameters in the
lowing way. In the present approach, there are no mes
loop corrections. Thus we should identifyF05 f p

593 MeV @2#, andF0 is given by the Pagels-Stokar formula
Changing the parameters will cause a change inS(p2), and
thus a change inF0. We takeF0593 MeV as a requiremen
to determine the parameters. In the case of Model A,
determinedLQCD is LQCD5484 MeV @9#. In the cases of
Model B and Model C, there are extra parameters. We t
the original valuesp05380 MeV andLQCD5230 MeV as in
Ref. @10#, and determineh and m in the above way. The
determined values areh5290 MeV and m51160 MeV.2

The running coupling constantas(p) in the three cases ar
plotted in Fig. 1. We see that they are different mainly in t
low momentum region.

To solve the Schwinger-Dyson equation~27!, we further
take the usual approximationas(p2q)'u(p22q2)as(p2)
1u(q22p2)as(q

2) @12# with which the angular integration
can be easily carried out, and the integral equation can

2The original values of h and m in Ref. @10# are h
5920 MeV, m5600 MeV which are different from ours. The rea
son is that in Ref.@10# the number of quark flavors is taken asNf

56 rather thanNf53, and the formula forf p is more complicated
than the Pagels-Stokar formula.

FIG. 2. The obtainedS(p2) from the Schwinger-Dyson equa
tion ~27! with Model A @Eq. ~40!#, Model B @Eq. ~41!#, and Model
C @Eq. ~42!# for the running coupling constantas . The solid,
dashed, and dotted lines are for Models A, B, and C, respectiv
9-9
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TABLE I. The obtained values of theO(p4) coefficientsL1 , . . . ,L10 for Model A @Eq. ~40!#, Model B @Eq. ~41!#, and Model C@Eq. ~42!#

with L,L̄→` together with the experimental values@Eq. ~10!# for comparison.LQCD is in MeV, and the coefficients are in units of 1023.

LQCD L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

A: 484 1.10 2.20 27.82 0 1.62 0 20.70 1.75 5.07 27.06
B: 230 0.921 1.84 26.73 0 1.43 0 20.673 1.64 3.80 26.22
C: 230 0.948 1.90 26.90 0 1.29 0 20.632 1.56 3.95 26.21
Expt: 0.960.3 1.760.7 24.462.5 060.5 2.260.5 060.3 20.460.15 1.160.3 7.460.7 26.060.7
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converted into the following differential equation3

d

dp2

S8~p2!

S as~p!

p2 D 8
2

3Nc

8p
p2

S~p2!

p21S2~p2!
50, ~43!

with boundary conditions:

S~L̄2!2
3Nc

8p

a~L̄2!

L̄2 E
0

L̄2

dq2
q2S~q2!

q21S2~q2!
50, ~44!

S8~0!1

3Nc

16p
as~0!

S~0!
50, ~45!

whereL̄ is a momentum cutoff regularizing the integral. W
shall eventually takeL̄→`.

We know that the asymptotic behavior ofS(p2) reflecting
chiral symmetry breaking is

S~p2! ——→
p2→` lng21~p2/LQCD

2 !

p2
, ~46!

whereg[(9Nc)/@2(3322Nf)#. We have found the numeri
cal solution of Eqs.~43!–~45! satisfying this asymptotic be
havior. The obtained solution withL̄→` ~a large enough
number which can be regarded as infinity! in the three cases
are plotted in Fig. 2. Again they are different mainly in th
low momentum region.

With the obtainedS(p2), we can calculate theO(p4)
chiral Lagrangian coefficients from Eqs.~25!, ~23!, and~36!.
The obtained values ofL1 , . . . ,L10 are listed in Table I to-
gether with the experimental values@2# for comparison. Note
that there is no running ofL1 , . . . ,L10 in this simple ap-
proach since the meson-loop effects causing the runnin

3In the case of Model B, there is a term containingd4(p) which is
not a function ofp2, and the integration can be directly carried o
Therefore, in this case, the differential equation and bound
conditions are different from Eqs. ~43!–~45!. They
are d/dp2d/dp2S(p2)@123Nc/2/p21S2(p2)#/d/dp2b/ p2 ln(2

1p2/LQCD
2 )23Nc/8pp2S(p2)/p2 1S2(p2)50, S(L̄2)@123

Nc/2/L̄21S(L̄2)# 2 3Nc/8pas(L̄
2) /L̄2*0

L̄2
dq2q2S(q2)/q2 1 S

(q2)50, and @d/dp2$S(p2)@123Nc/2/p21S(p2)#%#p250

13Nc/16pas(0)/S(0)50, respectively.
01401
of

L1 , . . . ,L10 @2# are of the order of 1/Nc , and are neglected
in this approach. Thus the predicted numbers ofL1 , . . . ,L10
can be directly compared with the experimental values.
see from Table I that:

~i! these coefficients are not so sensitive to the forms
as(p);

~ii ! all the obtainedL1 , . . . ,L10 are of the right orders of
magnitude and the right signs;

~iii ! L1 , L2 , L4 , L6, andL10 are consistent with the ex
periments at the 1s level;

~iv! L3 , L5 , L7, and L8 are consistent with the exper
ments at the 2s level; and

~v! only L9 deviates from the experimental value by~3–
4)s.

Considering the large theoretical uncertainty in th
simple approach,the obtained L1 , . . . ,L10 are consistent
with the experiments. We see that the nonperturbative qua
self-energy plays an important role in QCD contributions
the chiral Lagrangian coefficients. This supports the pheno
enological model of Holdom@8#.

In addition to L1 , . . . ,L10, we can also calculate th
quark condensatêc̄c& from theO(p2) coefficientF0

2B0 in
Eq. ~34!. In the simple approach in this paper, the relati
between̂ c̄c& andF0

2B0 is @3#

^c̄c&52NfF0
2B0 . ~47!

We know that, in this simple approach,F05 f p593 MeV is
finite. But F0

2B0 in Eq. ~34! is divergent,

F0
2B0~L2,LQCD

2 !} lngS L2

LQCD
2 D , ~48!

so that it needs to be renormalized. We take a simple re
malization scheme by taking the counter term
F0

2B0(L2,m2), in which m is the renormalization scale.4

Thus the renormalized quantity

F0
2B0r} lngS m2

LQCD
2 D . ~49!

Then the renormalized~47! is

ry

4This corresponds to the modified minimal subtraction (MS)
scheme@13#.
9-10
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TABLE II. The same as in Table I but withL51 GeV instead ofL→`.

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 F0

A: 0.403 0.805 23.47 0 1.47 0 20.792 1.83 2.28 24.08 88.7
B: 0.281 0.563 22.71 0 1.44 0 20.836 1.83 1.46 23.69 89.6
C: 0.304 0.608 22.86 0 1.43 0 20.855 1.87 1.56 23.64 89.4
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^c̄c& r52NfF0
2B0r . ~50!

We take the renormalization scale to bem51 GeV to define
the quark condensate. The obtained values of^c̄c& r for the
three forms ofas(p) are

A: ^c̄c& r52~296 MeV!3,

B: ^c̄c& r52~296 MeV!3, ~51!

C: ^c̄c& r52~301 MeV!3.

These are to be compared with the experimentally de
mined value^c̄c&expt52(250 MeV)3 from the QCD sum
rule at the scale of the typical hadronic mass@14#. Consider-
ing the large theoretical uncertainty in this calculation, t
predicted quark condensate is also consistent with the ex
ment.

The above results show thatthe present simple approac
does reveal the main feature of the QCD predictions for
chiral Lagrangian coefficientsalthough the approximation
in this approach are rather crude. Of course, further impro
ments of the approximations beyond this simple appro
are needed. This kind of study is in progress.

Finally, we would like to mention that, in our calculation
we have taken the ultraviolet cutoff parametersL,L̄→`,
i.e., we have taken account of the QCD contributions in
whole momentum range. Note that this has nothing to
with the validity range of the chiral Lagrangian determin
by the range in which the expansion in the meson mom
tum makes sense, i.e., up toLx'4p f p . To see the role of
the QCD contributions from the high momentum region, s
above 1 GeV, we have made a check by doing the calc
tions with the sameS(p2) but takingL51 GeV instead of
L→`. The results are listed in Table II. Comparing the no
vanishing results in Table II with the correspondingL,L̄
→` results in Table I, we see that this change ofL does not
cause much difference inL5 , L7 , L8, andF0, while it causes
L1 , L2 , L3 , L9, andL10 to reduce by at least a factor of 2
Therefore, we see thatL5 , L7 , L8, andF0 are mainly con-
tributed by the QCD dynamics in the low momentum regio
while high momentum region contributions toL1 , L2 , L3 ,
L9, andL10 are not negligible.

VI. CONCLUSIONS

In this paper, we have calculated the coefficients in
Gasser-Leutwyler Lagrangian from the underlying theory
QCD in a simple approach with the approximations of tak
the large-Nc limit, the leading order in dynamical perturba
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tion theory, and the improved ladder approximation based
the QCD formulas given in Ref.@3# to illustrate the main
feature of how QCD predicts the chiral Lagrangian coe
cients. In the calculation, we use the same regulariza
technique, the generalized Schwinger proper time regular
tion, in the calculations of the contributions from both th
anomaly part and the normal part, so that the relation
tween the contributions from the two parts can be clea
seen.

We first take the large-Nc limit to evaluate the effective
action in QCD. Our first conclusion in this study is that,in
the large-Nc limit, to all orders in momentum expansion, th
anomaly part contributions to the chiral Lagrangian coef
cients [cf. Eqs. (8)] given in the literature [4] from the effec
tive action Seff

(anom) [cf. Eq. (5)] are exactly cancelled by th
contributions from the piece of the effective acti
Seff

(norm,PVc50) [cf. Eq. (19)] in the normal part contributions
so that the chiral Lagrangian coefficients are eventually co
tributed by the remaining piece of the normal part effect
action Seff

(norm,P V cÞ 0! [cf. Eq. (22)]. The final QCD expres-
sions for theO(p4) coefficients are given in Eqs.~25!.

To simplify Seff
(norm,PVcÞ0) , we further make the approxi

mation of taking the leading order in dynamical perturbati
theory. ThenSeff

(norm,PVcÞ0) is reduced to the simple form in
Eq. ~33!, and all the chiral Lagrangian coefficients are a
proximately expressed in terms of the quark self-ene
S(p2) shown in Eqs.~34!–~36!. To solve the Schwinger-
Dyson equation forS(p2), we further take the improved
ladder approximation. Lacking the knowledge about the r
ning coupling constantas(p) in the nonperturbative region
we take certain models for it from the literature@9,10# @cf.
Eqs.~40!–~42!#, and we further take the usual approximatio
as(p2q)'u(p22q2)as(p2)1u(q22p2)as(q

2) to sim-
plify the calculation. The quark self-energy reflecting chir
symmetry breaking is obtained by solving the simplifi
Schwinger-Dyson equation numerically. The obtained res
of the O(p4) coefficients are listed in Table I. Compare
with the experimental values ofL1 , . . . ,L10 @2#, the agree-
ment of L1 , L2 , L4 , L6, and L10 is of the level of1s, and
that of L3 , L5 , L7, and L8 is of the level of2s. Only L9
deviates from the experimental value by~3–4)s. Consider-
ing the large theoretical uncertainty in this simple approa
all the obtained coefficients L1 , . . . ,L10 are consistent with
the experiments. We have also calculated the renormaliz
quark condensatêc̄c& r from the obtainedO(p2) coefficient
@cf. Eq. ~51!# which is also consistent with the experimen.

Although the approximations in this simple approach a
rather crude, the above results show thatthis simple ap-
proach does reveal the main feature of QCD predictions
9-11
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the chiral Lagrangian coefficients. For studying physics no
requiring high precision, this simple approach may alrea
be useful. Of course further improvements of the approxim
tions beyond this simple approach~reflecting more abou
QCD dynamics! are needed. This kind of study is in progre
and will be presented in another paper.

The approach can also be applied to electroweak theo
to study how the coefficients in the electroweak chiral L
grangian are predicted by various kinds of underlying ga
theories of the electroweak symmetry breaking mechani
This kind of study is also in progress, and will be presen
in separate papers.
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APPENDIX A: FUNCTIONAL DETERMINANT
CONTAINING QUARK SELF-ENERGY

In this appendix, we take the Schwinger proper time re
lation to regularize the one-loop functional determinant

which the quark self-energyS(¹̄2) reflecting chiral symme-
try breaking takes place.

For convenience, the evaluation is done in the Euclide
space-time, and will be analytically continued to th
Minkowskian space-time after the evaluation. The functio
determinant is complex. The imaginary part is just the We
Zumino-Witten term, and its expression in terms ofS has
already been given in Ref.@15# which exactly coincides Wit-
ten’s result@16#. The phenomenology of the Wess-Zumin
Witten term is well-known and is not related to the ma
purpose of this paper. So we shall ignore the imaginary p
here and concentrate on the evaluation of the following r
part of the functional determinant
Re ln Det@D1S~2¹̄2!#5
1

2
Tr ln@@D†1S~2¹̄2!#@D1S~2¹̄2!##

52
1

2
lim

L→`
E 1

L2

` dt

t
Tr e2t[ Ē2¹21S2(2¹̄2)1 ÎVS(2¹̄2)1S(2¹̄2) ĨV2d”S(2¹̄2)] ~A1!
nd-
the

n
qs.
f.

no

in-
he
where

D[¹” 2sV1 ipVg5 ,

¹m []m2 ivVm2 iaVmg552¹m
† ,

¹̄m[]m2 ivV
m ~x!,

Ē2¹21S2~2¹̄2!1 ÎVS~2¹̄2!1S~2¹̄2! ĨV2d”S~2¹̄2!

5@D†1S~2¹̄2!#@D1S~2¹̄2!#,

ÎV52 ia”Vg52sV2 ipVg5 ,

Ĩ V52 ia”Vg52sV1 ipVg5 ,

@d”S~2¹̄2!#[gm@dmS~2¹̄2!#5gm~]mS~2¹̄2!

2 i @vVm ,S~2¹̄2!# !. ~A2!

The matrix element in Eq.~A1! can be evaluated in the mo
mentum representation
^xue2t[ Ē2¹21S2(2¹̄2)1 Î VS(2¹̄2)1S(2¹̄2) ĨV2d”S(2¹̄2)] ux&

5E d4p

~2p!4
exp$2t@Ē~x!2¹x

222ip•¹x1p21S2~2¹̄2

22ip•¹̄x1p2!1 Î VS~2¹̄x
222ip•¹̄x1p2!1S~2¹̄x

2

22ip•¹̄x1p2! Ĩ V2d”S~2¹̄x
222ip•¹̄x1p2!#%. ~A3!

Then after lengthy but elementary calculations and expa
ing in powers of the external sources, we can identify
expressions forF0

2 , F0
2B0 , K 1

(norm), . . . ,K 15
(norm) by com-

paring with the form of Eqs.~1!, and the obtained results i
the Minkowskian space-time are just those given in E
~35!, ~34!, and~36! in the text. The details are given in Re
@5#.

For the evaluation of the effective actionSeff
(anom) in Eq. ~5!

in the Minkowskian space-time, we note that there is

S(2¹̄2) term in Eq. ~A1!, but we still have to replace

S(2¹̄2) by an infrared cutoff parameterk in Eq. ~A1! to
regularize the infrared divergence. Then the momentum
tegration can be explicitly carried out, and we obtain t
results in Eqs.~7! in the text.
9-12
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APPENDIX B: V-INDEPENDENCE OF THE LAST TERM
IN EQ. „19…

Here we show that the last term in Eq.~19!,

Seff
(Ḡ)[Nc(

n52

` E d4x1•••d4xn8
~2 i !n~Ncgs

2!n21

n!

3Ḡr1•••rn

s1•••sn~x1 ,x18 , . . . ,xn ,xn8!

3FVc
s1r1~x1 ,x18!•••FVc

snrn~xn ,xn8!uPVc50 , ~B1!

with the saddle point equation@cf. Eq. ~13!#

FVc
sr ~x,y!uPVc5052 i @~ i ]”1JV!21#rs~y,x! ~B2!
01401
is V-independent. TheV-rotated quantities in Eqs.~B1! and
~B2! are defined by@3#

JV~x!5@V~x!PR1V†~x!PL# @J~x!1 i ]” #

3@V~x!PR1V†~x!PL#,

FV
T ~x,y!5@V†~x!PR1V~x!PL#FT~x,y!

3@V†~y!PR1V~y!PL#, ~B3!

and the 2n-point Green’s function

Ḡr1•••rn

s1 . . . sn~x1 ,x18 , . . . ,xn ,xn8!

is defined by@3#
Gm1•••mn

i 1••• i n ~x1 , . . . ,xn!F c̄a1

a1~x1!S l i 1

2
D

a1b1

gm1cb1

a1~x1!G •••F c̄an

an~xn!S l i n

2
D

anbn

gmncbn

an~xn!G
5E d4x18•••d4xn8gs

n22Ḡr1•••rn

s1•••sn~x1 ,x18 ,•••,xn ,xn8!c̄a1

s1~x1!ca1

r1~x18!•••c̄an

sn~xn!can

rn~xn8!. ~B4!

First we see from Eqs.~B3! that Eq.~B2! can be written as

FVc
sr ~x,y!uPVc505~FT!Vc

rs ~y,x!uPVc505@@V†~y!PR1V~y!PL#Fc
T~y,x!@V†~x!PR1V~x!PL##rsuPc50

52 i @@V†~y!PR1V~y!PL#@~ i ]”1J!21#~y,x!@V†~x!PR1V~x!PL##rs

52 i @V†~y!PR1V~y!PL#rr8@~ i ]”1J!21#r8s8~y,x!@V†~x!PR1V~x!PL#s8s

52 i @g0VVg0#†rr8~y!@~ i ]”1J!21#r8s8~y,x!VV
s8s~x!, ~B5!

in which

VV~x![V†~x!PR1V~x!PL ~B6!

satisfies

g0VV
† ~x!g0gm5gmVV

† ~x!, ~B7!

and

Fc
T~y,x!uPc5052 i @~ i ]”1J!21#~y,x! ~B8!

is V-independent.
With the expression~B5! for FVc

sr (x,y)uPVc50, Eq. ~B1! becomes
9-13
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Seff
(Ḡ)5Nc(

n52

` E d4x1•••d4xn8
~2 i !n~Ncgs

2!n21

n!
Ḡr1•••rn

s1•••sn~x1 ,x18 , . . . ,xn ,xn8!FVc
s1r1~x1 ,x18!•••FVc

snrn~xn ,xn8!uPVc50

5Nc(
n52

` E d4x1•••d4xn8
~2 i !n~Ncgs

2!n21

n!
Ḡr1•••rn

s1•••sn~x1 ,x18 , . . . ,xn ,xn8!

3~g0VV
† g0!s1s18~x1!•••~g0VV

† g0!snsn8~xn!V
V

r18r1~x18!•••V
V

rn8rn~xn8!Fc
s1r1~x1 ,x18!•••Fc

snrn~xn ,xn8!U
Pc50

5Nc(
n52

` E d4x1•••d4xn8
~2 i !n~Ncgs

2!n21

n!
Ḡ

VV ,r
18•••r

n8

s18•••sn8 ~x1 ,x18 , . . . ,xn ,xn8!Fc

s18r18~x1 ,x18!•••F
c

sn8rn8~xn ,xn8!U
Pc50

,

~B9!

whereḠ
VV ,r

18•••r
n8

s18•••sn8 (x1 ,x18 , . . . ,xn ,xn8) is

ḠVV ,r1•••rn

s1•••sn ~x1 ,x18 , . . . ,xn ,xn8![~g0VV
† g0!s1s18~x1!•••~g0VV

† g0!snsn8~xn!

3Ḡ
r

18•••r
n8

s18•••sn8~x1 ,x18 , . . . ,xn ,xn8!V
V

r18r1~x18!•••V
V

rn8rn~xn8!. ~B10!

Next, we look at this transformed Green’s functionḠVV ,r1•••rn

s1•••sn (x1 ,x18 , . . . ,xn ,xn8). From the definition~B4! and the

property~B7! we have

E d4x18•••d4xn8gs
n22ḠVV,r1•••rn

s1•••sn ~x1 ,x18 , . . . ,xn ,xn8!c̄a1

s1~x1!ca1

r1~x18! . . . c̄an

sn~xn!can

rn~xn8!

5E d4x18•••d4xn8gs
n22Ḡr1•••rn

s1•••sn~x1 ,x18 , . . . ,xn ,xn8!~ c̄g0VV
† g0!a1

s1~x1!~VVc!a1

r1~x18! . . . ~ c̄g0VV
† g0!an

sn~xn!~VVc!an

rn~xn8!

5Gm1•••mn

i 1••• i n ~x1 , . . . ,xn!F ~ c̄g0VV
† g0!a1

a1~x1!S l i 1

2
D

a1b1

gm1~VVc!b1

a1~x1!G •••F ~ c̄g0VV
† g0!an

an~xn!

3S l i n

2
D

anbn

gmn~VVc!bn

an~xn!G
5Gm1•••mn

i 1••• i n ~x1 , . . . ,xn!F c̄a1

a1~x1!S l i 1

2
D

a1b1

gm1cb1

a1~x1!G •••F c̄an

an~xn!S l i n

2
D

anbn

gmncbn

an~xn!G
5E d4x18•••d4xn8gs

n22Ḡr1•••rn

s1•••sn~x1 ,x18 , . . . ,xn ,xn8!c̄a1

s1~x1!ca1

r1~x18!•••c̄an

sn~xn!can

rn~xn8!,

i.e.,

ḠVV,r1•••rn

s1•••sn ~x1 ,x18 , . . . ,xn ,xn8!5Ḡr1•••rn

s1•••sn~x1 ,x18 , . . . ,xn ,xn8!. ~B11!

Thus the transformed Green’s functionḠVVr1•••rn

s1•••sn in Eq. ~B9! can be replaced byḠr1•••rn

s1•••sn, and Eq.~B9! becomes

Seff
(Ḡ)5Nc(

n52

` E d4x1•••d4xn8
~2 i !n~Ncgs

2!n21

n!
Ḡr1•••rn

s1•••sn~x1 ,x18 , . . . ,xn ,xn8!Fc
s1r1~x1 ,x18!•••Fc

snrn~xn ,xn8!U
Pc50

~B12!

which is independent ofV.
014019-14
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