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Hard scattering factorization from effective field theory
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In this paper we show how gauge symmetries in an effective theory can be used to simplify proofs of
factorization formulas in highly energetic hadronic processes. We use the soft-collinear effective theory, gen-
eralized to deal with back-to-back jets of collinear particles. Our proofs do not depend on the choice of a
particular gauge, and the formalism is applicable to both exclusive and inclusive factorization. As examples we
treat thep-g form factor (gg* →p0), light meson form factors (g* M→M ), as well as deep inelastic scat-

tering (e2p→e2X), the Drell-Yan process (pp̄→Xl1l 2), and deeply virtual Compton scattering (g* p
→g (* )p).
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I. INTRODUCTION

The principle of factorization underlies all theoretical pr
dictions for hadronic processes. Simply put, factorization
the statement that short and long distance contribution
physical processes can be separated, up to corrections
pressed by powers of the relevant large scale in the proc
The predictive power gained from this result stems from
fact that the incalculable long distance effects are univer
defined in an unambiguous way in terms of matrix eleme
As a consequence, the nonperturbative long distance ef
can be extracted in one process and then used in anoth
general, proving factorization is a difficult task@1#. The
proof of factorization in Drell-Yan processes, for instanc
took several years to sort out@2# ~for reviews on factorization
see@3–5#!. Indeed, there are still some processes such aB
→pp where a proof of factorization only exists at one lo
@6#.

Given that we would like to retain our predictive pow
over the largest possible range of energies, we are comp
to understand power corrections to the factorized ra
These corrections are not necessarily universal, and as s
the relevant size of the power corrections is process de
dent. In processes for which there exists an operator pro
expansion~OPE!, there is a systematic way in which to in
clude power corrections. However, for a majority of obse
ables we do not have an OPE at our disposal, and the na
of the power correction is not always known. For instance
the case of shape variables there is still some ongoing
cussion about the form of subleading corrections@7,8#.

The purpose of this paper is to show that an effect
theory framework can be used to simplify proofs of facto
ization and describe processes with an operator formal
To do this we extend the soft-collinear effective theo
~SCET! developed in Refs.@9–13#, to high energy processe
It should be emphasized that there are several other us
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advantages in using an effective field theory~EFT!. For in-
stance, the EFT makes any symmetries which emerge in
Q→` limit manifest in the Lagrangian and operators, a
allow statements to be made to all orders in perturbat
theory. The calculation of hard coefficients reduces to sim
matching calculations, where subtracting the EFT graphs
tomatically removes all infrared divergences from the QC
calculation. Perhaps most importantly, it provides a fram
work for systematically investigating power corrections. F
nally, the EFT framework allows standard renormalizati
group techniques to be used for the resummation of lo
rithms that are often necessary in calculating rates for cer
high energy scattering events@9,10,14,15#. The factorization
formulas that we prove in this paper are not new, but serv
illustrate our approach in familiar settings. The results
valid to all orders inas and leading order in the power ex
pansion. The simplicity of our approach lies in the fact th
factorization occurs at the level of the SCET Lagrangian a
operators, and is facilitated by gauge symmetry in the E
This provides the advantage that our proofs do not rely
making use of Ward identities and induction, or on speci
ing a particular gauge.1 Furthermore, it becomes rathe
simple to derive factorization formulas for a myriad of pr
cesses, since many results are universal. The examples g
here serve to illustrate these simplifications. Developme
on the issues of power corrections and resummations are
to future publications.2

In Sec. II we review the construction of the SCET. T
formalism developed in Refs.@9–12# is extended to include
two types of collinear particles moving in opposite directio
in Sec. II B, and factorization forg* to two collinear states is
discussed as an example. In Sec. II C we define the non
turbative matrix elements such as the parton distribut
functions that will be needed for the processes presente
the paper, and in Sec. II D we discuss some of the sym
tries in SCET that may be used to place restrictions on m

1In fact our factorization proofs rely heavily on the gauge sy
metry structure of SCET. When a gauge fixing term is required
explicit calculations we use general covariant gauges.

2For recent work on subleading corrections in SCET for hea
to-light transitions see Ref.@16#.
©2002 The American Physical Society17-1
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trix elements. In the remaining sections we give various
amples on how factorization theorems emerge in
effective theory language. In Sec. III we prove factorizati
theorems for two exclusive processes, namely thep-g form
factor, and meson form factors (g* M→M ) for arbitrary spin
and isospin structure. In Sec. IV two inclusive processes
treated, namely deep inelastic scattering~DIS! (e2p

→e2X) and the Drell-Yan process. (pp̄→Xl1l 2), and we
also give results for deeply virtual Compton scatteri
(g* p→g (* )p). In these processes we include all leadi
power contributions in the factorization proofs~even if the
operators are only matched onto at higher orders in per
bation theory such as for the gluon distribution function!.
Our conclusions are given in Sec. V. In the Appendix
show how auxiliary fields can be used to prove the simu
neous factorization of soft fields from collinear fields f
particles in back-to-back directions.

II. FORMALISM

Effective field theories provide a simple and elegant w
of organizing physics in processes containing widely disp
ate energy scales. In constructing an EFT, some degree
freedom are eliminated, and the remaining degrees of f
dom must reproduce all the infrared physics of the f
theory in the domain where the EFT is valid. The EFT
organized by an expansion inl, defined as the ratio of sma
to large energy scales. As a useful guideline the follow
steps are used to identify the infrared degrees of freedom~1!
Determine the relevant scales in a problem from the size
the momenta and masses of all particles that can make u
initial and final states,~2! Construct all momenta from thes
scales whose components correspond to propagating de
of freedom, and which have off-shellness less than the la
scale, i.e.p22m2&Q2. Effective theory fields are then con
structed for each unique set of these momenta.

We will be interested in an EFT with particles of energyQ
much greater than their mass. The dynamics of these
ticles can be described by constructing a soft-collinear ef
tive theory~SCET!. This theory is organized as an expansi
in powers ofl;p' /Q, and off-shell fluctuations withp2

@(Ql)2 are integrated out. In Sec. II A we begin by descr
ing this procedure and comparing the construction to ot
EFT’s. We then give a brief review of the soft-collinear e
fective theory developed in Refs.@9–13#. We do not attempt
to give a comprehensive treatment, but instead emphasiz
main results and refer the reader to the literature for deta
In Sec. II B we extend the formulation of SCET to descri
processes with collinear particles moving in back to ba
directions, and prove the factorization formula forg* to two
collinear states as an example. In Sec. II C we define
nonperturbative matrix elements that are needed for our
amples, then in Sec. II D we discuss some of the symm
properties of collinear fields and currents.

A. Soft-collinear effective theory

In the standard construction of an EFT one removes
short distance scales and massive fields by integrating t
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out one at a time. A classical example is integrating out
W boson to obtain the effective electroweak Hamiltoni
with 4-fermion operators. However, in some situations
are interested in integrating out large momentum fluctuati
without fully removing the corresponding field. The simple
example of this is heavy quark effective theory~HQET! @17#,
which is constructed to describe the low energy propertie
mesons with a heavy quark. Here the heavy anti-quarks
integrated out and only heavy quarks with fluctuations clo
to their mass-shell are retained. This is accomplished by
moving fluctuations of order the heavy quark massmQ with
a field redefinition@18#

c~x!5(
v

e2 imQv•xhv~x!, ~1!

wherev is the heavy quark velocity andhv is the field in the
EFT. While ]mc(x);mQ c(x), the effective field has
]mhv(x);LQCDhv(x), indicating that it no longer describe
short-distance fluctuations about the perturbative scalemQ .
Instead these effects are encoded in calculable Wilson c
ficients. The HQET degrees of freedom with off-shellne
p2;LQCD

2 are the heavy quarks, soft gluons, and soft quar
Similarly, for collinear particles with energyQ@m, one

needs to remove momentum fluctuations;Q while retaining
effective theory fields to describe smaller momenta. Ho
ever, unlike heavy quarks the collinear particles have t
low energy scales. Consider the light-cone momenta,p1

5n•p andp25n̄•p wheren25n̄250 andn•n̄52. Heren
parametrizes a light-cone direction close to that of the c
linear particle andn̄ the opposite direction@e.g. for motion in
the z direction nm5(1,0,0,1) andn̄m5(1,0,0,21)#. For a
particle of massm&p'!Q, we havep2;Q, and a small
parameterl;p' /Q. The scaling of thep1 component is
then fixed by the equations of motionp1p21p'

2 5m2, so
that (p1,p2,p');Q(l2,1,l).

The appearance of two small scales,Ql2!Ql!Q, is
similar to the situation in nonrelativistic QCD~NRQCD!,
which is an EFT for systems of two heavy quarks with
expansion in their relative velocityb. In a nonrelativistic
bound state the momentum of a heavy quark isp;mQb, but
the equations of motionE5p2/(2mQ) make the energyE
;mQb2, giving scalesmQb2!mQb!mQ . The two low en-
ergy scales can be distinguished by following Eq.~1! with a
further field redefinition@19# hv(x)5(pe

ip"xcp(x), so that
derivatives oncp only pick out themb2 scale. The on-shel
degrees of freedom are then the heavy quarks, soft qu
and gluons withp2;(mQv)2, and ultrasoft quarks and glu
ons withp2;(mQv2)2.

SCET fields

For collinear particles the analogous field redefinitions
@10,11#

f~x!5(
n

(
p

e2 ip•xfn,p~x!, ~2!
7-2
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HARD SCATTERING FACTORIZATION FROM . . . PHYSICAL REVIEW D66, 014017 ~2002!
where the collinear fieldsfn,p are labeled by light-cone vec
tors n and label momentump. Herep contains then̄•p;Q
and p';Ql momenta so that]mfn,p;(Ql2)fn,p . The
field fp can either be a quark or gluon field. Similar tocp ,
the missing;Q fluctuations are described by Wilson coe
ficients and the;Ql labels simplify the power counting b
distinguishing theQl andQl2 scales. Now

fn,p[fn,p
1 1fn,2p

2 , ~3!

so collinear particles and antiparticles are contained in
same effective theory field, but have momentum labels w
the opposite sign. In the large energy limit the four comp
nent fermion spinors contain two large and two small co
ponents. One therefore defines collinear quark fieldsjn,p
which only retain the large components for motion in then
direction and satisfyn” jn,p50. For these fieldsjn,p

1 /jn,p
2

destroy/create the particles/antiparticles with large mom
tum n̄•p.0 @11#. For collinear gluonsAn,q

m† 5An,2q
m , and

(An,q
m )1/(An,q

m )2 destroy/create gluons withn̄•q.0.
For simplicity we will ignore quark masses and only co

sider masslessu andd quarks. For the processes consider
here SCET then requires three types of degrees of freed
collinear, soft, and ultrasoft~usoft! fields. These are distin
guished by the scaling of the light cone components (p1,
p2, p') of their momenta: (l2,1,l) for collinear modes in
then direction (An,q , jn,p!, (l,l,l) for the soft modes (Aq

s ,
qp

s), and (l2,l2,l2) for the usoft modes (Aus , qus!. The soft
modes are labeled by their orderQl momenta, soAq

s andqp
s

are essentially just momentum space fields. The usoft fi
have no labels and depend only on the coordinatex. The
fields are assigned a scaling withl to make the action for
their kinetic terms orderl0 @9,10,12#. For instancejn,p

;l, An,q
m ;(l2,1,l), Aq

s;l, andAus
m ;l2. At leading order

only orderl0 vertices are necessary to correctly account
all orderl0 Feynman diagrams.

In HQET only external currents with momenta of ord
mb can change the labelv. Thus the Lagrangian has a supe
selection rule forbidding changes in the four-velocity of t
heavy quark@17,18#. In NRQCD thev labels are also con
served, but the smaller momentum labelsp are changed by
operators in the effective theory such as the Coulomb po
tial. A novel feature of SCET is that interactions in the lea
ing action can change both the large and small parts of
momentum labelspm. However, only external currents ca
change the directionn of a collinear particle, so this label i
conserved. Thus, for each distinct directionn a separate se
of collinear fields is needed. In the remainder of this sect
we will restrict ourselves to collinear particles with a sing
n. We will generalize the discussion to the case of two ba
to-back directions and discuss the factorization of collin
particles with differentn’s in Sec. II B.

Since in SCET interactions can change the orderQ label
momenta it turns out to be very useful to introduce a la
operator, P m @11#, for which the collinear fields satisfy
P mjn,p5pmjn,p . More generally,P m acts on a product o
labeled fields as
01401
e
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f ~P m!~fq1

†
•••fqm

† fp1
•••fpn

!

5 f ~p1
m1 . . . 1pn

m2q1
m2 . . . 2qm

m!

3~fq1

†
•••fqm

† fp1
•••fpn

! ~4!

so conjugate field labels come with a minus sign. The ope
tor Pm acts to the right, while the conjugate operatorP m

† acts
to the left. As explained in Ref.@11# the label operator allows
all large phases to be moved to the front of operators wit
factor exp(2ix•P). This phase and the label sums can th
be suppressed if we impose that interactions conserve l
momenta and that the momentum indices on fields are
plicitly summed over. Basically, for labelsp and p8 and re-
sidual momentak andk8,

E d4xei (p82p1k82k)•x5d~p2p8!E d4xei (k82k)•x, ~5!

so that the label and residual momenta are individually c
served.@Although technically the label momenta are discre
we abuse notation and used(p2p8) rather thandp,p8 be-
cause it makes the subscripts easier to read.# For convenience
we define the operatorP̄ to pick out only the orderl0 labels
on collinear fields, and the operatorP m to pick out only the
order l labels. For the matrix element of any collinear o
eratorO, momentum conservation constrains the sum of fi
labels@11#, giving

^Mn,p1
u@ f ~P̄!O#uMn,p2

&5 f ~ n̄•~p22p1!!^Mn,p1
uOuMn,p2

&,

~6!

for any functionf.
For a singlen the Lagrangian can be broken up into thr

sectors: collinear, usoft, and soft. We therefore write

L5Lc,n@jn,p ,An,q
m ,Aus

m #1Lus@qus ,Aus
m #1Ls@qs,p ,As,q

m #,

~7!

where we have made the field content of each sector exp
We will discuss each of these terms separately.

Collinear sector

As explained in detail in Ref.@12#, gauge invariance in
SCET restricts the Lagrangian and allowed form of ope
tors. Only local gauge transformations whose action is clo
on the effective theory fields need to be considered. Th
include collinear, soft, and usoft transformations. Each
these vary over different distance scales, with colline
gauge transformations satisfying ]mUn(x)
;Q(l2,1,l)Un(x), soft satisfying]mVs(x);QlVs(x), and
usoft transformations with]mVus(x);Ql2Vus(x). All par-
ticles transform underVus(x) and usoft gluons act like back
ground fields for collinear particles. Invariance underUn(x)
requires a collinear Wilson line built out of the orderl0

gluon fields@10,11#

Wn~x!5F (
perms

expS 2g
1

P̄ n̄•An,q~x!D G . ~8!
7-3
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Here the operatorP̄ acts only inside the square brackets, t
n on Wn refers to the direction of the collinear quanta, a
Wn is local with respect tox ~corresponding to the residua
momenta!. Taking the Fourier transform ofd(v2P̄)Wn(0)
with respect tov gives the more familiar path-ordered Wi
son line Wn(y,2`)5P exp@ig*2`

y ds n̄•An(sn̄)#. Under a
collinear gauge transformationWn transforms as Wn
→UnWn . An invariant under collinear gauge transform
tions can therefore be formed by combining a collinear f
mion jn,p and the Wilson lineWn in the form

Wn
†~x!jn,p~x!. ~9!

This combination still transforms under a usoft gauge tra
formation,Wn

†jn,p→Vus(x)Wn
†jn,p . We will often suppress

the x dependence of the combinationWn
†jn,p .

Integrating out hard fluctuations gives Wilson coefficien
in the effective theory that are functions of the largen̄•pi

collinear momenta,C(n̄•pi). However, collinear gauge in
variance restricts these coefficients to only depend on
linear combination of momenta picked out by the orderl0

operatorP̄ @11#. In general the Wilson coefficients are the
functions C(P̄,P̄†) which must be inserted between gau
invariant products of collinear fields. In general the Wils
coefficients also depend on the large momentum scales
process such asQ and the renormalization scalem.

To construct the collinear Lagrangian one can match
QCD onto operators with collinear fields that are invaria
under usoft and collinear gauge transformations. The co
ear Lagrangian at orderl0 is @10–12#

Lc,n5 j̄n,p8H in•D1gn•An,q

1~P”'1gA” n,q
' !W

1

P̄W†~P”'1gA” n,q8
'

!J n”̄

2
jn,p

1
1

2g2
tr$@ iD m1gAn,q

m ,iD n1gAn,q8
n

#2%1L c
g. f . , ~10!

whereL c
g. f . are gauge fixing terms,iD m5 i ]m1gAus

m , and

iD m5
nm

2
P̄1P'

m1
n̄m

2
in•D. ~11!

Since usoft gluons act as background fields in the collin
gauge transformation the couplings,g(m), for both types of
gluons must be identical.

Usoft and soft sectors

The usoft and soft Lagrangians for gluons and mass
quarks are the same as those in QCD. From Eq.~7! we see
that collinear quarks and gluons interact with usoft gluo
however at orderl0 only the n•Aus component appears i
Eq. ~10!. In order to prove factorization formulas it is esse
tial to disentangle the collinear and usoft modes. This can
done by introducing a usoft Wilson line
01401
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Yn~x!5P expS igE
2`

x

dsn•Aus~sn! D , ~12!

where the subscriptn on Yn labels the direction of the Wil-
son line@we emphasize that this is different from the mea
ing of the subscript onWn in Eq. ~8!#. A usoft gauge trans-
formation takesYn→VusYn . In Ref. @12# it was shown that
the field redefinitions

jn,p5Ynjn,p
(0) , An,p

m 5YnAn,p
(0)mYn

† , ~13!

imply Wn5YnWn
(0)Yn

† and decouple the usoft gluons from
the collinear particles in the leading order Lagrangian

Lc,n@jn,p ,An,q
m ,n•Aus#5Lc,n@jn,p

(0) ,An,q
(0)m,0#. ~14!

Thus, the new collinear fields with superscript (0) no long
interact with usoft gluons or transform under a usoft gau
transformation. Since the field redefinitions do not chan
physicalS matrix elements, the new fields give an equa
valid parametrization of the collinear modes. The lead
SCET Lagrangian therefore factors into separate collin
and usoft sectors. This alone does not guarantee factoriza
in operators and currents, since after the field redefinit
these operators may still contain both usoft and collin
fields. However, the field redefinition makes factorizati
transparent since identities such asYn

†Yn51 may be applied
directly to the operators. This will become clear in the e
amples in Secs. III and IV.

The coupling of soft gluons to collinear particles diffe
from the usoft-collinear interactions. Interactions of a s
gluon with a collinear particle results in a particle with m
mentump;Q(l,1,l), so soft gluons cannot appear in th
collinear Lagrangian. These off-shell particles havep2

;Q2l and sinceQ2l@(Ql)2 these off-shell quarks and
gluons can be integrated out. At leading order inl it was
shown in Ref.@12# that in operators with collinear fields thi
simply builds up factors of a soft Wilson lineSn involving
the n•As component of the soft gluon field,

Sn5F (
perms

expS 2g
1

n•Pn•As,qD G . ~15!

The factors ofSn appear outside gauge invariant products
collinear fields, and their location is restricted by soft gau
invariance.

B. SCET for n and n̄ collinear fields

In this section we extend SCET to include the possibil
of collinear fields moving in different light-cone direction
n1 , n2 , n3 , . . . . These directions can be considered to
distinct provided thatni•nj@l2 for iÞ j . This follows from
the fact that ifn1•n2;l2 then the directionsn1 andn2 are
too close to be distinguished. For example, a momen
p25Qn2 can be considered to be collinear in then1 direc-
tion if n1•p25Qn1•n2;Ql2, since this is the correct sca
ing for the small momentum component of ann1-collinear
particle.
7-4
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For simplicity we will only consider the case of back-t
back jets corresponding to collinear particles moving in thn
and n̄ directions. These are clearly distinct sincen•n̄52.
Collinear particles in then̄ direction have (1,2,') mo-
menta;Q(1,l2,l), and then•p;1 and p';l momenta
appear as labels on the corresponding fields:j n̄,p andAn̄,p

m .
Emission of a collinear particle moving in then direction
from a collinear particle in then̄ direction results in a particle
with momentum k;Q(1,1,l) and off-shellnessk2;Q2.
These off-shell modes are integrated out to construct
SCET, so collinear modes in then direction do not directly
couple to collinear modes in then̄ direction. A distinct set of
collinear gauge transformations is associated with eachn
andn̄, and fields in one direction do not transform under t
gauge symmetry associated with the opposite direction. T
Wilson linesWn(x) andWn̄(x) are necessary@defined as in
Eq. ~8!#, and they appear in a way that makes collinear
erators gauge invariant. For instance the combinations

Wn
†jn,p , Wn̄

†j n̄,p ~16!

are invariant under collinear gauge transformations in thn
and n̄ directions, respectively. We also require two types
label operators,P̄ as before, and an operatorP to pick out
n•p labels that are orderl0. Thus,P̄ andP act only on the
n and n̄ collinear fields respectively.~The label operatorP m

still picks out orderl momentum components and therefo
acts on bothn and n̄ fields.! With two collinear directions,
decoupling usoft gluons requires introducing bothYn andYn̄

Wilson lines, defined as in Eq.~12!, but along then or n̄
paths respectively. Finally, integrating out;Q2l fluctua-
tions at leading order induces bothSn and Sn̄ soft Wilson
lines defined analogous to Eq.~15!. This is discussed in
greater detail in the Appendix where we show explicitly
all orders in g that integrating out theQ2l fluctuations
causes

Wn
†jn,p→SnWn

†jn,p , j̄n,pWn→ j̄n,pWnSn
† ,

~17!

Wn̄
†j n̄,p→Sn̄Wn̄

†j n̄,p , j̄ n̄,pWn̄→ j̄ n̄,pWn̄Sn̄
† .

Relations for operators with collinear gluon fields are a
derived in the Appendix.

Note that we have not included ‘‘Glauber gluons’’ wit
momentapm;(l2,l2,l), which are kinematically allowed
in t-channel ‘‘Coulomb’’ exchange betweenn andn̄ collinear
quarks. In determining the relevant degrees of freedom
have assumed that Glauber gluons are not necessary t
scribe the infrared for the processes considered in this pa
Intuitively, this can be seen from the fact these gluons
instantaneous in both time and longitudinal separation,
only could contribute when then and n̄ jets overlap for a
duration of order 1/Ql2 in a space-time diagram. In pro
cesses with a hard interaction the overlap scale is alw
much shorter than this~however this need not be the case
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processes such as forward scattering!. For the Drell-Yan pro-
cess more quantitative arguments can be found in R
@2,35#.

At order l0 it is not possible to construct a gauge inva
ant kinetic Lagrangian with terms that involve bothn and n̄
fields. Thus, then and n̄ collinear modes are described b
independent Lagrangians~howevern and n̄ modes may still
both appear in an external operator!. The collinear sector of
the SCET Lagrangian is therefore

Lc,n@jn,p ,An,q
m ,n•Aus#1Lc,n̄@j n̄,p ,An̄,q

m ,n̄•Aus#. ~18!

Making the field redefinitions

jn,p5Ynjn,p
(0) , An,p

m 5YnAn,p
(0)mYn

† ,
~19!

j n̄,p5Yn̄j n̄,p
(0) , An̄,p

m
5Yn̄An̄,p

(0)mYn̄
† ,

givesWn5YnWn
(0)Yn

† , Wn̄5Yn̄Wn̄
(0)Yn̄

† , and usoft degrees o
freedom once again decouple from the collinear modes s

Lc,n@jn,p ,An,q
m ,n•Aus#1Lc,n̄@j n̄,p ,An̄,q

m ,n̄•Aus#

5Lc,n@jn,p
(0) ,An,q

(0)m,0#1Lc,n̄@j n̄,p
(0) ,An̄,q

(0)m,0#. ~20!

Thus, usoft gluons are removed from the collinear Lagra
ian at the expense of inducingYn andYn̄ factors in operators
with collinear fields. In certain cases the identitiesYn

†Yn51
andYn̄

†Yn̄51 can be used in these operators to cancel u
gluon interactions. Perturbatively these cancellations wo
occur by adding an infinite set of Feynman diagrams.

To see in more detail how this works consider the sim
example of theg* -production of back-to-back collinea
states Xn and Xn̄ . The full theory currentc̄(x)Gc(x)
matches onto an effective theory operatorOnn̄ . Naively one
might guess that the SCET operator mediating this proces

Onn̄ 5 j̄n,p1
Gj n̄,p2

. ~21!

However, this operator is not invariant under the colline
gauge transformationsUn andUn̄ , so the process is instea
mediated by the invariant operator

Onn̄ 5 j̄n,p1
WnGWn̄

†j n̄,p2
. ~22!

A hard matching coefficientC(P̄,P̄†,P,P †) can be inserted
in any location in the operator that does not break apart
gauge invariant combinations of fields in Eq.~16!. The op-
eratorsP̄ andP in the coefficient only pick out momenta tha
are orderl0 in the power counting. Thus,P does not act on
fields in then direction andP̄ does not act on fields in then̄
direction, and the most general result is

Onn̄ 5 j̄n,p1
WnGC~P̄†,P!Wn̄

†j n̄,p2
. ~23!

Next, we integrate out the off-shellQ2l fluctuations which
induces additional soft Wilson lines in the operator. This
discussed in detail in the Appendix and from Eq.~17! gives
7-5
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Onn̄ 5 j̄n,p1
WnSn

†GC~P̄†,P!Sn̄Wn̄
†j n̄,p2

. ~24!

Note thatP̄ andP do not act on the fields in the soft Wilso
lines since soft gluons carry only orderl momenta. Finally,
we can make the usoft gluon couplings explicit by switchi
to the ~0! fields using Eq.~19!:

Onn̄5 j̄n,p1

(0) Wn
(0)Yn

†Sn
†GC~P̄†,P!Sn̄Yn̄Wn̄

(0)†j n̄,p2

(0) . ~25!

This operator is manifestly invariant under collinear gau
transformation in then andn̄ direction, as well as under so
and usoft gauge transformations.

To separate the short distance Wilson coefficient from
long-distance operator one introduces convolution variab
v andv8 to give

Onn̄ 5E dvdv8C~v,v8!Onn̄~v,v8!,

Onn̄~v,v8!5@ j̄n,p1

(0) Wn
(0)d~P̄†2v!Yn

†Sn
†G

3Sn̄Yn̄d~P2v8!Wn̄
†(0)j n̄,p2

(0)
#. ~26!

The functionC(v,v8) contains all the short distance physi
and is determined by matching the full theory onto this
fective theory operator.Onn̄(v,v8) contains all the infrared
long-distance QCD contributions at leading order inl.

Now consider the matrix element of the production c
rent between̂XnXn̄u and the vacuum. Taking theg* to have
large time-like momentumqm5(Q,0,0,0) ~and zero residua
momentum! we have

E d4xe2 iq•x^XnXn̄uc̄~x!Gc~x!u0&

5E d4x^XnXn̄uOnn̄~x!u0&

5E d4xeik•x^~XnXn̄!~k!uOnn̄~x50!u0&

5^~XnXn̄!~0!uOnn̄~0!u0&. ~27!

In the first step the conservation of the large label momen
q was made implicit in the matrix element@cf. Eq.~5!#. Since
we are in the center-of-mass frame theXn has large momen
tum n̄•p5Q, and theXn̄ has momentumn•p85Q. Now
using translation invariance, we see that the remainingx in-
tegral forces theuXnXn̄& state to have zero residual mome
tum. Using Eq.~26! this matrix element is equal to

E dvdv8C~v,v8!^XnX̄n̄uOnn̄~v,v8!u0&

5E dvdv8C~v,v8!Jn~v!GSnn̄Jn̄~v8!, ~28!

where the functionsC, Jn , Jn̄ , and S also depend on the
renormalization pointm. Here we have used the fact th
01401
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m

both Xn and Xn̄ can be described entirely by collinear pa
ticles in the n and n̄ directions respectively. Since th
Lagrangians for the collinear, soft, and usoft fields are f
torized the remaining matrix element splits into distinct m
trix elements for each class of modes. These matrix elem
are

Jn~v!5^Xn~Q/2!u j̄n,p1

(0) Wn
(0)d~P̄†2v!u0&,

Jn̄~v8!5^Xn̄~Q/2!ud~P2v8!Wn̄
†(0)j n̄,p2

(0) u0&,

Snn̄5^0uYn
†Sn

†Sn̄Yn̄u0& ~29!

~and are matrices whose color, spin, and flavor indices
suppressed!. Note thatJn , Jn̄ , andSnn̄ are explicitly invari-
ant under the collinear, soft, and usoft gauge transformat
@12# of SCET, but still transform globally under a color ro
tation. Now using the momentum conservation identity
Eq. ~6!, the large momentum of theXn and Xn̄ states sets
P→Q and P̄†→Q. Label conservation also implies that th
total perpendicular momentum of each ofJn , Jn̄ , andSnn̄ is
zero. The sum overv andv8 can then be performed to giv
the final factorized form

C~Q,Q!Jn~Q!GSnn̄Jn̄~Q!. ~30!

Although rather idealized, the above example illustra
the main steps needed to derive a factorization formula. T
ing Xn andXn̄ to be single quark states, the result in Eq.~30!
also agrees with the factorization formula for the on-sh
production form factor forqq̄ @20,21#.3 In the above example
the factors ofS and Y in the operator in Eq.~25! do not
cancel. In the examples we will consider in Secs. III and
there are several operators at leading order, however the
tors of S and Y cancel in observable matrix elements. T
collinear matrix elements of long-distance operators, such
those in Eq.~29!, are the ones that have interpretations
structure functions or wave functions. In the next section
give the operator definitions for these functions that will
needed in the remainder of the paper.

C. Non-perturbative matrix elements

Predictions for hadronic processes depend on unive
matrix elements that are not computable in perturbat
theory. For exclusive processes these include light-c

3In this case depending on the choice of infrared regulator~s!, it
may not be possible to distinguish theYn and Sn Wilson lines in
Snn̄(m). For instance if one choosesL IR;Ql then the usoft gluons
give scaleless loop integrals and can be dropped, so
Yn

†Sn
†Sn̄Yn̄→Sn

†Sn̄ . If instead one choosesL IR;Ql2 then the soft
gluons give scaleless loop integrals~they simply act to pull-up the
ultraviolet divergences in the usoft integrals to the hard sc
@22,23#!, so the soft Wilson lines can be suppressed. This is w
one only findsSn

†Sn̄ for this operator in the literature. For typica
regulator choices the other gluons are simply not required to re
duce the infrared structure of the full theory result.
7-6
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wave functions and form factors, while for inclusive pr
cesses they include parton distribution functions and fr
mentation functions. In this section we define matrix e
ments in SCET that are needed for our examples. All
collinear operators considered here decouple from usoft
ons since they are local in the residual coordinatex and be-
causeY†(x)Y(x)51. Thus

j̄n,p8WGW†jn,p5 j̄n,p8
(0) W(0)GW(0)†jn,p

(0) , ~31!

and expressions with and without the (0) superscript
equal. For convenience we will write the collinear fiel
without the superscript in the remainder of this section.

Consider first the light-cone wave functions. For the pi
isotriplet pa, the wave functionfp(x) is conventionally de-
fined by @24#

^pa~p!uc̄~y!gmg5
tb

A2
Y~y,x!c~x!u0&

52 i f pdabpmE
0

1

dzei [zp•y1(12z)p•x]fp~m,z!. ~32!

Here f p.131MeV and the QCD fieldc denotes the isospin
doublet $c (u),c (d)%. The coordinates satisfy (y2x)250,
which ensures that the path fromym to xm is along the light-
cone, andY(y,x) is a Wilson line along this path. In SCE
we require the matrix elements of highly energetic pio
which therefore have collinear constituents. Boosting
matrix element in Eq.~32! and lettingym5yn̄m, xm5xn̄m we
have

^pn,p
a u j̄n,yGp

b W~y,x!jn,xu0&

52 i f pn̄•pdabE
0

1

dzein̄•p[zy1(12z)x]fp~m,z!,

~33!

whereGp
b 5n”̄g5tb/A2, andjn,z is a collinear field with po-

sition space labelzn̄m. For our purposes it is more useful t
use the operator with momentum space labels@13#

^pn,p
a u j̄n,p1

WGp
b d~v2P̄1!W†jn,p2

u0&

5E dy

2p
e2 ivy^pn,p

a u j̄n,yGp
b W~y,2y!jn,2yu0&

52 i f pn̄•pdabE
0

1

dzd@v2~2z21!n̄•p#fp~m,z!,

~34!

whereP̄65P̄†6P̄. In Eq. ~34! the delta function fixesv to
the sum of labels picked out by theP̄1 operator. The com-
bination picked out byP̄2 is equivalent to (2P̄) acting on
the entire operator, and using Eq.~6! is fixed to then̄•p
momentum of the pion state.
01401
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e
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In some situations it is convenient to have delta functio
which fix the labels of bothW†jn,p andj̄n,pW. In this case a
useful field is

xn,v
( i ) [@d~v2P̄!Wn

†jn,p
( i ) #. ~35!

Here i is the flavor index and will be omitted if the flavo
doublet field is implied. Note that unlike thep in jn,p the
label v on xn,v is not summed over. A matrix element wit
xn,v fields is related to a matrix element like the one in E
~34! through

^Mn,pux̄n,vGxn,v8uMn,p8&

52d~v22n̄•p2!^Mn,pu j̄n,p1
W

3Gd~v12P̄1!W†jn,p2
uMn,p8&, ~36!

wherev65v6v8 andp25p2p8. Thus, with thex nota-
tion the momentum conserving delta functions become
plicit. The factor of 2 appears from treating thev ’s as con-
tinuous variables, and in the final results cancels with
factor of 1/2 from a Jacobian.

For inclusive processes such as DIS it is the proton pa
distribution functions for quarks of flavori, f i /p(z), anti-
quarks f̄ i /p(z), and gluons,f g/p(z) which are needed. The
standard coordinate space definitions@25# are (ym5yn̄m)

f i /p~z!5E dy

2p
e2 i2zn̄•py^puc̄ ( i )~y!Y~y,2y!

3n”̄c ( i )~2y!up&uspin avg.,

f g/p~z!5
2

zn̄•p
E dy

2p
e2 i2zn̄•pyn̄mn̄n

3^puGa
ml~y!Yab~y,2y!

3Gln
b ~2y!up&uspin avg., ~37!

f̄ i /p(z)52 f i /p(2z). Here Gml
a (y) is the gluon field

strength,Y(y,2y) andYab(y,2y) are path-ordered Wilson
lines in the fundamental and adjoint representations, andup&
is the proton state with momentump. In SCET these distri-
bution functions can be defined by the matrix elements
collinear fields with collinear proton states

1

2 (
spin

^pnux̄n,v
( i ) n”̄xn,v8

( i ) upn&

54n̄•pE
0

1

dzd~v2!d~v122zn̄•p! f i /p~z!

24n̄•pE
0

1

dzd~v2!d~v112zn̄•p! f̄ i /p~z!,

~38!
7-7
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1

2 (
spin

^pnuTr@Bn,v
m Bm

n,v8#upn&

52
v1n̄•p

2 E
0

1

dzd~v2!d~v122zn̄•p! f g/p~z!,

wherev65v6v8, andBn,v
m [n̄n(Gn,v)nm with the collinear

gauge invariant field strength

~Gn,v!mn52
i

g
@d~v2P̄!W†@ iD n

m1gAn,q
m ,

iD n
n1gAn,q8

n ]W]. ~39!
01401
Both operators in Eq.~38! are orderl2 since jn,v;Bn,v
'

;l. Note that the matrix element of a single opera
(x̄n,v

( i ) n”̄xn,v8
( i ) ) contains both the quark and antiquark distrib

tions. This is due to Eq.~3!, from which we see that forv
5v8.0 (v5v8,0) this operator reduces to the numb
operator for collinear quarks~antiquarks! with momentumv.

Processes other than DIS sometimes depend on m
complicated distribution functions. In deeply virtual Com
ton scattering~DVCS! we will need to parametrize the ma
trix element of an operator between proton states with diff
ent momenta. In terms of QCD fieldsc the nonforward
parton distribution function~NFPDF! defined by Radyushkin
in Eq. ~4.1! of Ref. @26# is ~up to a trivial translation!
flip
^p8,s8uc̄ ( i )~y!Y~y,2y!n”̄c ( i )~2y!up,s&5e~s8,s!E
0

1

dz@ein̄•p(2z2z)yF z
( i )~z;t !2e2 i n̄•p(2z2z)yF̄z

( i )~z;t !#

1h~s8,s!E
0

1

dz@ein̄•p(2z2z)yK z
( i )~z;t !2e2 i n̄•p(2z2z)yK̄z

( i )~z;t !#, ~40!

wheret5(p2p8)2, andz512n̄•p8/n̄•p. Heree(s,s8) andh(s,s8) are matrix elements which respectively preserve or
the proton spin. They are defined in terms of the proton spinors

e~s8,s!5ū~p8,s8!n”̄u~p,s!, h~s8,s!5
1

2mp
ū~p8,s8!@n”̄ ,p”2p” 8#u~p,s!, ~41!

wheremp is the proton mass. The NFPDF for gluons is similarly given by@26#

n̄mn̄n^p8,s8uGa
ml~y!Yab~y,2y!Gln

b ~2y!up,s&5
n̄•p

2
e~s8,s!E

0

1

dz@ein̄•p(2z2z)y1e2 i n̄•p(2z2z)y#F z
g~z;t !

1
n̄•p

2
h~s8,s!E

0

1

dz@ein̄•p(2z2z)y1e2 i n̄•p(2z2z)y#K z
g~z;t !. ~42!

In SCET the definition of the NFPDFs in terms of collinear fields is

^pn8 ,s8ux̄n,v
( i ) n”̄xn,v8

( i ) upn ,s&52d~v21n̄•pz!E
0

1

dz$e~s8,s!@d„v12~2z2z!n̄•p…F z
( i )~z;t !2d„v11~2z2z!n̄•p…

3F̄z
( i )~z;t !#1h~s8,s!@d„v12~2z2z!n̄•p…K z

( i )~z;t !2d„v11~2z2z!n̄•p…K̄z
( i )~z;t !#%,

~43!

^pn8 ,s8uTr@Bn,v
m Bm

n,v8#upn ,s&52
n̄•p

2
d~v21n̄•pz!E

0

1

dz$e~s8,s!d„v12~2z2z!n̄•p…F z
g~z;t !

1h~s8,s!d„v12~2z2z!n̄•p…K z
g~z,t !%,

where the spinors ine(s8,s) andh(s8,s) are two component effective theory spinors, so thatu→un wheren”un50. Note
that for p8→p both z→0 andt→0. In this limit the NFPDFs reduce to the standard PDFs:
7-8
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lim
p→p8

F z
( i )5 f i /p~z!,

lim
p→p8

F̄z
( i )5 f̄ i /p~z!, ~44!

lim
p→p8

F z
(g)5z fg/p~z!.

D. Symmetries for collinear fields

In this section we discuss spin and discrete symme
constraints on operators involving collinear fields.

The possible spin structures of currents withjn,p fields is
restricted by the fact that they have only two componen
n” jn,p50. The four most general spin structures for curre
with two collinear particles moving in the same or oppos
directions are

j̄n,p8G1jn,p G15$n”̄ ,n”̄g5 ,n”̄g'
m%,

~45!
j̄ n̄,p8G2jn,p G25$1,g5 ,g'

m%.

Other choices forG1 andG2 either vanish between the field
or are related to those in Eq.~45!. This result can be ex
pressed in a compact way by the trace formulas

j̄n,p8Gjn,p ,

G5
n”̄

8
Tr@n”G#2

n”̄g5

8
Tr@n”g5G#2

n”̄g'
m

8
Tr@n”gm

'G#,

and

j̄ n̄,p8Gjn,p ,

G5
1

8
Tr@n”n”̄G#1

g5

8
Tr@g5n”n”̄G#1

g'
m

8
Tr@gm

'n”n”̄G#, ~46!

which reduce a generalG to a linear combination of the
terms in Eq.~45!. For instance, it implies that 2i j̄nsmnjn

5nnj̄nn”̄g'
mjn2nmj̄nn”̄g'

n jn , and j̄ n̄g'
mg5jn5 i e'

mnj̄ n̄gn
'jn

where e'
mn5emnabnbn̄a/2. Furthermore, each of the tw

components ofjn and alsoj n̄ can be chosen to be eigenstat
of their helicity operators,h5 p̂•SW with eigenvalues61/2.
For these fieldsh is equivalent to the chiral rotation,h
5g5/2. The structures in Eq.~45! split into two classes de
pending on whether they conserve or flip the helicity

chiral even: j̄n,p8$n”̄ ,n”̄g5%jn,p , j̄ n̄,p8g'
mjn,p ,

~47!
chiral odd: j̄n,p8n”̄g'

mjn,p , j̄ n̄,p8$1,g5%jn,p .

Since gluon interactions in QCD preserve helicity, integr
ing out hard QCD fluctuations results in effective theory o
erators with the same helicity structure as the original ope
tors at leading order inl.
01401
y
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The presence of labels on the effective theory fie
makes their transformation properties under the disc
symmetriesC, P, and T slightly different from QCD. For
example underP or T we haven↔n̄ so these transforma
tions relate collinear fields for different directions. Und
charge conjugation, parity, and time-reversal the collin
fields transform as

C21jn,p~x!C52@ j̄n,2p~x!C#T,

C21An,p
m ~x!C52@An,p

m ~x!#T,

P21jn,p~x!P5g0j n̄,p̃~xP!,

P21An,p
m ~x!P5gmn An̄,p̃

n
~xP!,

~48!
T21jn,p~x!T5T j n̄,p̃~xT!,

T21An,p
m ~x!T5gmnAn̄,p̃

n
~xT!,

where C 21gmC52gm
T and T5g5C, while if xm

5(x1,x2,x') and pm5(p1,p2,p') then p̃m[(p2,p1,
2p'), xP

m[(x2,x1,2x'), and xT
m[(2x2,2x1,x'). The

transformation properties ofWn can be worked out using Eq
~48!, for instanceC21WnC5@Wn

†#T.
The collinear effective Lagrangian~10! is invariant under

the transformations in Eq.~48! ~adding then̄↔n terms!.
These symmetries also constrain the form of nonperturba
matrix elements. As an example, for a meson which is
eigenstate ofC one finds

^Mnu j̄n,pWnn”̄g5d~v2P̄1!Wn
†jn,p8u0&

5~21!C^Mnu~CWn
†jn,p!Tn”̄g5d~v2P̄1!~ j̄n,p8WnC!Tu0&

5~21!C^Mnu j̄n,p8Wnn”̄g5d~v1P̄1!Wn
†jn,pu0&. ~49!

For the isotriplet pion state (21)C511 so combining Eq.
~49! with Eq. ~34! gives

^pn,p
a u j̄n,p1

WGp
b d~v2P̄1!W†jn,p2

u0&

52 i f pdabn̄•pE
0

1

dxd@2v2~2x21!n̄•p#fp~x!

52 i f pdabn̄•pE
0

1

dxd@v2~2x21!n̄•p#fp~12x!.

~50!

Together with Eq.~34!, charge conjugation therefore implie
that fp(12x)5fp(x).

III. EXCLUSIVE PROCESSES

A. p-g form factor

The pion-photon form factorFpg(Q2) is perhaps the sim-
plest setting for factorization since there is only one had
in the external state. The form factor is measurable in sing
7-9
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tagged two photone2e2→e2e2p0 reactions. This proces
involves the scattering of a highly virtual photon and
quark–anti-quark constituent pair off an on-shell photon. T
photon scatters the quark pair away from the incoming p
ton into a pion, so thatg* g→p0. The matrix element for
this transition defines thep-g form factor

^p0~pp!uJm~0!ug~pg ,e!&

5 ieenE d4ze2 ipg•z^p0~pp!uTJm~0!Jn~z!u0&

52 ieFpg~Q2!emnrspp
n erqs. ~51!

HereJm5c̄Q̂gmc is the full theory electromagnetic curren
with isodoublet fieldc and charge matrixQ̂5t3/211/6, and
2q25Q2@LQCD

2 where q5pp2pg is the virtual photon
momentum. It has been shown that the form factor can
written as a one-dimensional convolution of a hard coe
cient with the light-cone pion wave function@27#. Here we
show how this factorization takes place in the SCET.

In the Breit frameqm5Q(nm2n̄m)/2, the real photon’s
momentum ispg

m5En̄m.Qn̄m/2, and the pion is made up o
collinear particles with momentan̄•pi.Q. The particles ex-
changed between the two currents in Eq.~51! have hard mo-
menta and can be integrated out. At leading order inl the
time ordered product of the two currents in Eq.~51! matches
onto a single operator in the effective theory. For simplic
we restrict ourselves to the tensor and spin structures tha
relevant when the meson is a pion,4

O5
i

Q
emn

' @ j̄n,pW#GC~P̄,P̄†,m!@W†jn,p8#, ~52!

wherejn,p is an isodoublet collinear quark field, and 2emn
'

5emnrbn̄rnb. O1 is of dimension 2, just like the time
ordered product in Eq.~51!, and a power of 1/Q is included
to makeC(m,P̄,P̄†) dimensionless. The time-ordered pro
uct in Eq.~51! is even under charge conjugation, so the o
erators in Eq. ~52! must also be even. This implie
Cpg(m,P̄,P̄†)5Cpg(m,2P̄†,2P̄). The location of theW’s
in Eq. ~52! is fixed by gauge invariance, andG contains the
spin and flavor structure

G5~n”̄g5!~3A2Q̂2!. ~53!

Since the off-shellness of the collinear particles in t
pion is p2;LQCD

2 we can also integrate out off-shell mod
with p2;QLQCD which come from soft-collinear interac
tions. For the collinear operatorsOj , Eq. ~17! implies that
factors of the soft Wilson lineSn are induced. However, th
location is such thatSn

†Sn51, so no coupling to soft gluon
occurs at leading order. The coupling of the collinear fie
to usoft gluons can be simplified with the field redefinitio

4Note that a pure glue operator would not have the same iso
as the pion state.
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in Eq. ~13!. As discussed in Sec. II A, this moves all co
plings intoOj , and usingYn

†Yn51 gives

O5
i

Q
emn

' @ j̄n,p
(0)W(0)#GC~P̄,P̄†,m!@W(0)†jn,p8

(0)
#. ~54!

Thus, usoft gluons also decouple.
In the Breit frame the pion momentum satisfiespp

m

5Epnm1O(l), and comparing Eq.~51! with the SCET ma-
trix elementi ^pn,pp

0 uOpgu0&, gives

Q2

2
Fpg~Q2!5

i

Q
^pn

0u j̄n,p
(0)W(0)GC~P̄,P̄†,m!

3W(0)†jn,p8
(0) u0&. ~55!

Defining P̄65P̄†6P̄, the operatorP̄2 is related toP̄ acting
from the outside on the fields. Using Eq.~6! it can therefore
be set equal to the momentum label of the state,P̄2

5n̄•pp5Q. Suppressing this dependence we wr
C(P̄,P̄†,m)5C1(P̄1 ,m) leaving

Fpg~Q2!5
2i

Q3
^pn

0u j̄n,p
(0)W(0)GC1~P̄1 ,m!W(0)†jn,p8

(0) u0&

5
2i

Q3E dvC1~v,m!

3^pn
0u j̄n,p

(0)W(0)Gd~v2P̄1!W(0)†jn,p8
(0) u0&. ~56!

Using Eq.~34! the remaining matrix identity in Eq.~56! can
be written in terms of the light-cone pion wave function

Fpg~Q2!5
2 f p

Q2 E dvE
0

1

dxd„v2~2x21!2Ep…

3C1~v,m!fp~x,m!

5
2 f p

Q2 E0

1

dxC1„~2x21!Q,m…fp~x,m!.

~57!

This is the final result and is valid to leading order inl and
all orders inas . From Eq.~50! charge conjugation implies
that fp(x)5fp(12x) and C1(v)5C1(2v). Equation
~57! agrees with the Brodsky-Lepage@24# result that the
form factor can be written as the convolution of a short d
tance function with the light-cone pion wave function. Th
SCET formalism gives a concise derivation of this result a
in

FIG. 1. Tree level matching ontoOj in the Breit frame. The
graphs on the left includeu andd quarks.
7-10
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defines the short distance function in terms of the Wils
coefficient of an effective theory operator.

As an illustrative example consider the tree level mat
ing ontoC illustrated in Fig. 1. Since the location of theW’s
in O is fixed by gauge invariance,C(m,P̄,P̄†) can be deter-
mined by matching withW51. Expanding the full theory
graphs to leading order gives

i ~Fig. 1!5
ie

2
emnrbenn̄rnbS n”̄

2
g5D

3~Q̂2!S 1

n̄•p
2

1

n̄•p8
D , ~58!

where we have dropped isosinglet terms, contributions w
opposite parity to the pion, as well as those proportiona
n”g5 sincen” jn,p50. Comparing Eq.~58! to Eq. ~52! gives

C~m,P̄,P̄†!5
Q

6A2
S 1

P̄†
2

1

P̄D 1O„as~Q!…, ~59!

so that

C1„m,v5~2x21!Q…5
1

6A2
S 1

x
1

1

12xD1O„as~Q!….

~60!

This result is again in agreement with Ref.@24#, and the
order as(Q) corrections to this Wilson coefficient can b
read off from the results in Refs.@28,29#. An identical analy-
sis applies for operators with different spin structures such
the ones contributing tog* g→r0.

B. The large Q2 meson form factor

Another example of an exclusive process which can
treated in the effective theory is the classic case of the e
tromagnetic pion form factor at large space-like moment
transfer. For generality we consider in this section the e
tromagnetic form factors for arbitrary mesons~pseudoscalar
P or vectorV), defined as

^P8~p8!uJmuP~p!&5FP~Q2!~pm1pm8 !,

^V8~p8,«8!uJmuP~p!&5G~Q2!i emnabpnp8a«8b,

^V8~p8,«8!uJmuV~p,«!&5F1~Q2!~«8*•«!~p1p8!m

1F2~Q2!@~«8*•p!«m

1~«•p8!«m8* #, ~61!

whereq252Q2,q5p2p8. For simplicity we suppress th
dependence of the form factors on the isospin of the
mesons. We will restrict ourselves in the following to th
case of hadrons made up only ofu,d quarks. The electro-
magnetic current is defined as usual byJm5q̄Q̂gmq, with
01401
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charge matrixQ̂5diag(2/3,21/3), which can be written in
terms of the up and down quark charges asQ̂5(Qu
2Qd)t3/21(Qu1Qd)1/2.

We will be interested in the asymptotic form of the for
factors in the region withQ2@mP

2 , where it can be expande
in a power series in 1/Q2 @24#. It is convenient to work in the
Breit frame, where the momentum transfer has the light-c
componentsq5(q1,q2,q')5(Q,2Q,0). In this frame the
meson momenta arep5(Q,mP

2 /Q,0), p85(mP
2 /Q,Q,0), so

the partons in the incoming/outgoing meson are collin
along then̄m /nm direction.

The electromagnetic current in Eq.~61! is matched in the
effective theory onto the most general combination of ope
tors constructed from collinear fields which are compati
with collinear gauge invariance. Operators such as the
mension 3 current

@ j̄ n̄Wn̄#GC~m,P †,P̄!@Wn
†jn#, ~62!

can contribute, but only overlap with the asymmetric mes
states with one energetic collinear quark and one usoft or
quark. Often this overlap is referred to as the tail of the wa
function contribution or the Feynman mechanism of gen
ating the form factor@30,31#. There are other operators wit
significant overlap with more symmetric meson states~where
all the constituents are allowed to be energetic!. The leading
such operators have the form5

1

Q3
@ j̄n,p1

WnGWn̄
†j n̄,p2

#C~m,P̄,P̄†,P,P †!

3@ j̄ n̄,p3
Wn̄G8Wn

†jn,p4
#, ~63!

with C a dimensionless Wilson coefficient. As usual, colli
ear gauge invariance is enforced by the location of theW’s in
Eqs.~62! and~63!. There is some argument about the relati
size of Eqs.~62! and~63! in the literature@30,31#. Often it is
argued that the tail of the wave function is suppressed by
extraLQCD

2 /Q2 @30#, in which case the operator in Eq.~63!
dominates by two powers ofQ. An analysis of the tail of
wave function contributions has not yet been performed
the effective theory framework. Therefore, we choose to
nore the operator in Eq.~62!, and below only analyze the
operator in Eq.~63!. We emphasize that we do not claim
have shown that this is justified by the effective theory pow
counting.

There are two different structures possible for the opera
in Eq. ~63!, and we write the general matching for the ele
tromagnetic current as

5There are also gluon operators that can contribute when on
more of the mesons is a neutral isosinglet, however for simplic
these are not discussed here.
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Jn→ 1

Q3E dv j@C0~m,v j !J 0
n~v j ,m!

1C8~m,v j !J 8
n~m,v j !#, ~64!

wherej 51,2,3,4. The SCET currents are dimension-6 ope
tors

J 0
n5x̄n,v1

Gx n̄,v2
x̄ n̄,v3

G8xn,v4

2~G↔G8,v1,2↔2v4,3!,

J 8
n5x̄n,v1

GTax n̄,v2
x̄ n̄,v3

G8Taxn,v4

2~G↔G8,v1,2↔2v4,3!, ~65!

where thex fields are defined in Eq.~35!. In terms of the
charge matrixQ̂, the spin and flavor structure is

G ^ G85~nn1n̄n!~ga
'Q̂^ g'

a1!. ~66!

The Wilson coefficientsC0,8 can be computed in a powe
series inas(Q). They are functions ofm, Q, and thev j
which are the sum of momentum labels for gauge invari
products of collinear fields in the SCET currents.

The current operators in Eq.~65! are the most genera
allowed operators which are gauge invariant, transform
same way asJm under charge conjugation and satisfy curre
and helicity conservation. To see how these properties c
strain the form of the allowed operators, we begin by not
that Eq. ~45! implies that G,G85$1,g5 ,g'

m% are the most
general allowed spin structures. For massless quarks
electromagnetic and QCD couplings preserve helic
whereasj̄n$1,g5%j n̄ cause the helicity to flip. Thus, only th
structurej̄ng'

mj n̄ is allowed. Current conservationqnJn50,
together withqn5Q(n̄n2nn)/2 implies Jn}(nn1n̄n). Un-
der charge conjugationJm→2Jm so the same must be tru
for the SCET currents. In the current operators, charge c
jugation switchesv1↔2v4 , v2↔2v3, andG↔G8, as can
be seen from Eq.~48!. Thus, the second term inJ 0,8

n is
required to make these operators odd under charge con
tion. The operatorsJ 0,8

n and the full electromagnetic curren
are invariant under a combinedPT transformation. This re-
quires that the Wilson coefficients are real.

The operatorsJ0,8 are responsible for thePn̄→Pn transi-
tion, while the reverse transitionPn→Pn̄ is described by
similar operators withn̄↔n. Parity invariance requires th
Wilson coefficients of these operators to be identical
C0,8(v i). Demanding Hermiticity of the electromagnetic cu
rent in the effective theory then gives the relati
C0,8(v1 ,v2 ,v3 ,v4)5C0,8* (v2 ,v1 ,v4 ,v3). Since the coef-
ficients are real they must therefore satis
C0,8(v1 ,v2 ,v3 ,v4)5C0,8(v2 ,v1 ,v4 ,v3).

To compute the matrix elements in the effective theory
is convenient to Fierz transform the four-quark operators
Eq. ~65!. This gives
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C0J01C8J85~nn1n̄n!(
j 51

4

CjJj , ~67!

where

Jj5@ x̄n,v1
G jxn,v4

#@ x̄ n̄,v3
G j8x n̄,v2

#. ~68!

The spin, flavor, and color structures are

G1^ G1852
1

4
~Qu2Qd!i e3bc~tb

^ tc!

3@n”̄ ^ n”1n”̄g5^ n”g5#,

G2^ G285
1

4
@~Qu1Qd!~1^ 11ta

^ ta!

1~Qu2Qd!~1^ t31t3
^ 1!#

3@n”̄ ^ n”1n”̄g5^ n”g5#, ~69!

while G3,45TaG1,2 andG3,48 5TaG1,28 . The new Wilson coef-
ficients are

C1~m,v j !5F1

8 S 12
1

Nc
2D C8~m,v j !1

1

4Nc
C0~m,v j !G

1~v1,2↔2v4,3!,

C2~m,v j !5F1

8 S 12
1

Nc
2D C8~m,v j !1

1

4Nc
C0~m,v j !G

2~v1,2↔2v4,3!, ~70!

with similar relations forC3,4 which are also in terms o
C0,8.

A few general predictions follow from the form of th
operators in Eq.~68!.6 For mesons with spin, only helicity
conserving form factors appear, and furthermore no o
diagonal~e.g.,P→V! matrix elements are present at leadi
order in 1/Q2. These results agree with Ref.@27#. We also see
that the form factors between arbitrary meson states are
termined at leading power by only two hard coefficients,C0
andC8.

Now consider what factorization tells us about the mat
element of the operators in Eq.~68!. For the decoupling of
usoft and soft gluons we will follow Sec. II A. Integratin
out off-shell modes withp2;QLQCD induces soft Wilson
lines Sn and Sn̄ , while the field redefinitions in Eq.~13!
make all couplings to usoft gluons explicit in the operato
Together these give

6These predictions depend on the dominance of the operato
Eq. ~63! over those in Eq.~62!.
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J j
n5@ x̄n,v1

(0) Yn
†Sn

†G jSnYnxn,v4

(0) #

3@ x̄ n̄,v3

(0) Yn̄
†Sn̄

†G j8Sn̄Yn̄x n̄,v2

(0)
#. ~71!

Consider first the color singlet currentsj 51,2. Here theY’s
andS’s all cancel using unitarity of the Wilson lines. Sinc
theAn,q

m andAn̄,q
m gluons only interact with fields in then and

n̄ directions respectively, collinear gluons are not exchan
between then and n̄ quark bilinears. Thus, the matrix ele
ment between states with particles moving in then and n̄
directions factors

^nuJ1,2un̄&5^nux̄n,v1

(0) G1,2xn,v4

(0) u0&^0ux̄ n̄,v3

(0) G1,28 x n̄,v2

(0) un̄&.

~72!

Next consider the currentsJ3,4, which have color structure
Ta

^ Ta in G j ^ G j8 . In this case the usoft and soft gluons d
not cancel, but can all be moved into one quark biline
using the color identityYn

†Sn
†TaSnYn^ Yn̄

†Sn̄
†TaSn̄Yn̄5Ta

^ Yn̄
†Sn̄

†SnYnTaYn
†Sn

†Sn̄Yn̄ . After this rearrangement it is

clear that the~u!soft gluons andAn,q
m and An̄,q

m gluons only
interact with the fields in one of the quark bilinears. Thu
the matrix element̂nuJ3,4un̄& factors, similar to Eq.~72!. For
color singlet states, however, the matrix element of an o
operator vanishes identically since

^nux̄n,v1

(0) Taxn,v4

(0) u0&50. ~73!

Thus, the effective theory currentsJ3,4 do not contribute to
the form factors at any order in perturbation theory.

Equation~72! shows that for arbitrary meson states fa
torization occurs. It remains to show that the matrix eleme
in Eq. ~72! are given by a two-dimensional convolution wi
the light-cone meson wave functions. To do this we consi
the simple example of the 021→021 form factor for the
charged pion. It should be obvious that the same steps
through for other meson states.

The symmetry of the pion wave functionfp(x) under
charge conjugation (x→12x) implies that only theJ1 cur-
rent contributes. Thus,

Fp6~Q2!5
2

Q4E dv jC1~m,v j !

3^pn
6~p8!ux̄n,v1

(0) G1xn,v4

(0) u0&

3^0ux̄ n̄,v3

(0) G18x n̄,v2

(0) up n̄
6

~p!&. ~74!

FIG. 2. Tree level matching ontoC0,8. The QCD graphs on the
left plus the analogous graphs with the current on the bottom qu
line are matched onto the collinear operator on the right.
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The required matrix elements can be obtained from Eqs.~34!
and~36! with up6&57(p16 ip2)/A2. The momentum con-
serving delta functions fixv12v45n̄•p85Q and v22v3

5n̄•p5Q, while thev5v11v4 andv85v31v2 integra-
tions can be done with the delta functions. This leaves

Fp656~Qu2Qd!
f p

2

Q2

3E
0

1

dxE
0

1

dyT1~x,y,m!fp~x,m!fp~y,m!,

~75!

whereT1(x,y) is defined in terms ofC1(v1 ,v2 ,v3 ,v4) as

T1~x,y!5C1„xQ,yQ,~y21!Q,~x21!Q…. ~76!

The coefficientsCj (m,v j ), and therefore alsoTj (x,y),
can be obtained at the scalem5Q by a matching calculation
as illustrated in Fig. 2. For this purpose, it is sufficient
compute the matrix element of the currents with free coll
ear quarks. To lowest order inas(Q), only C8(v j ,m5Q) is
nonvanishing

C0~v j ,m5Q!50,
~77!

C8~v j ,m5Q!54pas~Q!
Q2

v3v4
.

This implies

T1~x,y,m5Q!5
4pas~Q!

9 F 1

xy
1

1

~12x!~12y!G .
~78!

Using the asymptotic light-cone pion wave functionfp(x)
56x(12x) we find agreement with Ref.@24#,

Fp6~Q2!56
8p f p

2 as~Q!

9Q2 F E
0

1

dx
fp~x!

x G2

→6
8p f p

2 as~Q!

Q2
. ~79!

The orderas
2(Q) corrections to Eq.~77! can be found in

Refs.@32–34#.

IV. INCLUSIVE PROCESSES

A. Deep inelastic scattering

DIS is a process which is both simple and rich in physi
As such it provides an ideal introduction to inclusive facto
ization in QCD, which we study from an effective fiel
theory point of view in this section. The aim is to prove th
to all orders inas and leading order inl the DIS forward
scattering amplitude can be written as an integral over h
coefficients times the parton distribution functions. This
done by matching onto local operators in SCET. The prop

rk
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ties of SCET are used to show that matrix elements of
leading local operator can be written as a convolution o
hard coefficient with the parton distribution functions for t
proton.

The first step is to understand the kinematics of the p
cess. The hard scaleQ252q2 is set by the invariant mass o
the photon, andx5Q2/(2p•q) is the Bjorken variable. In
the Breit frame the momentum of the virtual photon isqm

5Q(n̄m2nm)/2, and the incoming proton momentum ispm

5nmn̄•p/21n̄mmp
2/(2n̄•p).nmQ/(2x)1n̄mxmp

2/(2Q) up
to terms;mp

2/Q2, wheremp is the proton mass. By momen
tum conservation the final state momentum isPX

m5qm1pm,
which gives an invariant massPX

25(Q2/x)(12x)1mp
2 .

Values 12x.LQCD/Q correspond to the end point regio
where the particles inX are collimated into a jet, while val
ues 12x.LQCD

2 /Q2 correspond to the resonance region. W
will consider the standard OPE region where 12x
@LQCD/Q so that the final state has virtuality of orderQ2

and can be integrated out. In contrast, although the incom
proton has a large momentum component in thenm direction
it has a small invariant massp25mp

2;LQCD
2 , and therefore

is described by collinear fields in the effective theory.
Consider the spin-averaged cross section for DIS wh

can be written as

ds5
d3k8

2uk8u~2p!3

pe4

sQ4
Lmn~k,k8!Wmn~p,q!, ~80!

wherek and k8 are the incoming and outgoing lepton m
menta withq5k82k, Lmn is the lepton tensor, ands5(p
1k)2. The hadronic tensorWmn can be related to the imag
nary part of the DIS forward scattering amplitude:

Wmn~p,q!5
1

p
ImTmn~p,q!,

Tmn~p,q!5
1

2 (
spin

^puT̂mn~q!up&, ~81!

T̂mn~q!5 i E d4zeiq•zT@Jm~z!Jn~0!#,

where for an electromagnetic currentJm we can write

Tmn~p,q!5S 2gmn1
qmqn

q2 D T1~x,Q2!

1S pm1
qm

2xD S pn1
qn

2xDT2~x,Q2!. ~82!

As explained above, the intermediate hadronic state
invariant massPX

2;Q2. Therefore, one can perform an OP

and matchT̂mn(q) onto operators in SCET. All fields in th
resulting operators are evaluated at the same residual sp
time point, however, the presence of Wilson lines and la
momenta make the operators nonlocal along a partic
light cone direction. These nonlocal operators sum the i
nite set of purely local operators of a given twist, howev
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this is built into the formalism automatically. To match w
write down the most general leading operator in SCET wh
contains collinear fields moving in thenm direction, and en-
force the condition from current conservationqmT̂mn50.
This leads to

T̂mn→
g'

mn

Q S (
i

O1
( i )1

O1
g

Q D
1

~nm1n̄m!~nn1n̄n!

Q S (
i

O2
( i )1

O2
g

Q D , ~83!

where

Oj
( i )5 j̄n,p8

( i ) W
n”̄

2
Cj

( i )~P̄1 ,P̄2!W†jn,p
( i ) ,

Oj
g5n̄mn̄ntr@W†~Gn!mlWCj

g~P̄1 ,P̄2!W†~Gn!l
nW#,

~84!

wherei labels the flavor of the fermions andigGn
ml5@ iD n

m

1gAn,q
m ,iD n

l1gAn,q8
l

#. The Wilson coefficients are dimen

sionless functions ofP̄1 , P̄2 , Q, and m. As in previous
sections we can separate the hard coefficients from the
distance operators by introducing trivial convolutions. Th
gives

Oj
( i )5E dv1dv2Cj

( i )~v1 ,v2!F x̄n,v1

( i ) n”̄

2
xn,v2

( i ) G ,

~85!

Oj
g52E dv1dv2Cj

g~v1 ,v2!tr@Bn,v1

m Bm
n,v2#,

where v65v16v2, and Bn,v
m [n̄n(Gn,v)nm with (Gn,v)ml

defined in Eq.~39!. Next we factor the coupling of usof
gluons from the collinear fields using the field redefinitio
in Eq. ~13!. The operatorOj

( i ) has the structure in Eq.~31! so
the Y’s cancel trivially, while forOj

g we find

Bn
m5YnBn

m(0)Yn
† , ~86!

and the factors ofY cancel in the trace. It is easy to see th
soft gluons also decouple using Eq.~17! or by noting that
there is no nontrivial soft gauge invariant way of adding s
Wilson linesSn to Oj

( i ) or Oj
g . Under charge conjugation th

full theory electromagnetic currentJm→2Jm and therefore
the operatorT̂mn→T̂mn . This implies relations for the effec
tive theory Wilson coefficients since the operatorsOj

( i ) must
also respect this symmetry. Thus charge conjugation giv

E dv1dv2Cj
( i )~v1 ,v2!x̄n,v1

( i ) n”̄xn,v2

( i )

5
C

2E dv1dv2Cj
( i )~v1 ,v2!x̄n,2v2

( i ) n”̄xn,2v1

( i )

5E dv1dv2@2Cj
( i )~2v1 ,v2!#x̄n,v1

( i ) n”̄xn,v2

( i ) . ~87!
7-14
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In the second line we changed variablev1→2v2 and v2
→2v1 which takesv1→2v1 andv2→v2 . Thus, to all
orders in perturbation theory Cj

( i )(2v1 ,v2)5

2Cj
( i )(v1 ,v2). This relates the Wilson coefficients fo

quarks and anti-quarks. Note that the above results are
independent of the collinear hadron on which DIS is p
formed.

Next we take the matrix element between proton sta
Using the definitions of the nonperturbative matrix eleme
given in Sec. II C, and picking out the coefficients of t
-
-
he
n

on
th
d

n

n
IS

nt
i
e

c
s

01401
all
-

s.
s

tensor structures we find that the delta functions in Eq.~38!
setv1562Qj/x andv250. Since charge conjugation re
lates negative and positive values ofv1 , only coefficients,
Cj (v1,0), with positivev1 are needed in the formulas fo
DIS. Therefore we define

H j~z![Cj~2Qz,0,Q,m!, ~88!

where here we have made the dependence onQ and m ex-
plicit. Combining this with Eqs.~82!, ~83!, ~85!, and ~38!,
gives the final result
T1~x,Q2!52
1

xE0

1

djH H1
( i )S j

xD @ f i /p~j!1 f̄ i /p~j!#1
j

2x
H1

gS j

xD f g/p~j!J ,

~89!

T2~x,Q2!5
4x

Q2E0

1

djH F4H2
( i )S j

xD2H1
( i )S j

xD G@ f i /p~j!1 f̄ i /p~j!#1
j

2x F4H2
gS j

xD2H1
gS j

xD G f g/p~j!J ,
e

the
ory
os-
a

ess
where a sum overi is implicit. The hadronic tensor compo
nentsW1,2(x,Q2)5ImT1,2(x,Q2)/p and therefore are deter
mined by the imaginary part of the Wilson coefficients. T
Wilson coefficients are dimensionless and therefore can o
haveas(Q)ln(m/Q) dependence onQ. This reproduces the
Bjorken scaling of the structure functions.

Finally, consider the tree level matching onto the Wils
coefficients shown in Fig. 3. From these graphs only
quark coefficient functionsCj

( i ) can be nonzero and we fin

ImH1
( i )~z!52Qi

2pd~z21!, ImH2
( i )50, ~90!

whereQi is the charge of partoni. The vanishing of ImH2
( i )

at tree level reproduces the Callan-Gross relationW1 /W2
5Q2/(4x2).

B. Drell-Yan, pp̄\ l¿lÀX

Next we will extend the DIS analysis to the Drell-Ya
~DY! processpp̄→ l 1l 2X. Specifically we consider theQ2

distribution, whereQ2 is the invariant mass of the lepto
pair. The Drell-Yan process is more complicated than D
because one has two hadrons in the initial state. In the ce
of-mass frame the incoming proton and anti-proton move
opposite lightlike directions, and to prove factorization w
use the fact that collinear modes in different lightlike dire
tions can only couple to each other in external operator
SCET. We take the incoming proton to move in thenm di-

FIG. 3. Tree level matching onto the operatorOj
( i ) in DIS.
ly

e

er-
n

-
in

rection and the incoming antiproton to move in then̄m direc-
tion. The hard scales in the DY process areQ2 and the in-
variant mass of the collidingpp̄ pair s5(p1 p̄)2. The lepton
pair has an invariant massQ2, and the invariant mass of th
final hadronic state is

pX
25Q2S 11

1

t
2

1

x1
2

1

x2
D , ~91!

where

t5
Q2

s
, x15

Q2

2p•q
, x25

Q2

2p̄•q
. ~92!

We are interested in the kinematic region wherepX
2;Q2,

which implies that bothx1 andx2 are far away from 1. Ast
approaches 1 the invariant mass becomes too small for
treatment given here to apply. However, the effective the
can be used to deal with this region as well. It is also p
sible to study theq' distribution, but this again requires
generalization of the discussion given below.

The spin averaged cross section for the Drell-Yan proc
is

ds5
32p2a2

Q4s
LmnWmn

d3k1

~2p!3~2k1
0!

d3k2

~2p!3~2k2
0!

, ~93!

where
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Wmn5
1

4 (
spins

(
X

~2p!4d (4)~p1 p̄2q2pX!

3^pp̄uJm~0!uX&^XuJn~0!upp̄&

5
1

4 (
spins

E d4xe2 iq•x^pp̄uJm~x!Jn~0!upp̄&.

~94!

The sum over spins refers to the initial hadron spins~the sum
ts

es
n
Eq
t
r

q

y

or

on
ee
op
a
ho
a

ri

01401
over final hadron spins is included in the sum overX). Inte-
grating Eq.~93! over the emission angles of the final lepto
one obtains

ds

dQ2
5

2a2

3Q2s

1

4 (
spins

^pp̄uŴupp̄&, ~95!

where we have neglected the lepton masses and define
operator
ted

mal
Ŵ~t,Q2!52E d4q

~2p!3
u~q0!d~q22Q2!E d4xe2 iq•xJm~x!Jm~0!. ~96!

As we discussed above in the region of phase space under considerationpX
2;Q2, so these hard fluctuations can be integra

out. Operationally this means we matchŴ onto local operators in the effective theory. We would like to show that the mini
set of orderl4 operators that contribute to the Drell-Yan process are

Ŵ→ 1

Q2E dv iCqq~v i ,Q!@ x̄n,v1

( i ) n”̄xn,v2

( i ) #@ x̄ n̄,v3

( i ) n”x n̄,v4

( i )
#2

1

Q3E dv iCqg~v i ,Q!@ x̄n,v1

( i ) n”̄xn,v2

( i ) #Tr@Bn̄,v3

b B b
n̄,v4#

2
1

Q3E dv iCgq~v i ,Q!Tr@Bn,v1

n B n
n,v2#@ x̄ n̄,v3

( i ) n”x n̄,v4

( i )
#1

1

Q4E dv iCgg~v i ,Q!Tr@Bn,v1

n Bn
n,v2#Tr@Bn̄,v3

b B b
n̄,v4#, ~97!
t
of

all
in a
ons
ili-

oft

the
en-
ac-

t in

le-
li-
where the powers ofQ are included to make the coefficien
dimensionless. The operators displayed in Eq.~97! are just
products of the operators that occurred in DIS, so for th
terms the decoupling of soft and usoft gluons occurs i
straightforward manner. To show that the operators in
~97! are the most general set needed we must show tha
other operators that are orderl4 either reduce to these o
vanish between the matrix elements in Eq.~95!. For instance,
l4 operators also exist where aBn,v

n field is contracted with
a Bn̄,v8

m field, or the color structures of the operators in E
~97! could be arranged in a different way.

We now give a general argument for why we can alwa
rewrite an arbitrary operator in the form of Eq.~97! or show
that it does not contribute to the DY process. All operat
relevant for the DY process contain four orderl collinear
fields chosen fromjn,p , j n̄,p , Bn,p

m , or Bn̄,p
m . Furthemore,

two must move in directionn and two in the directionn̄
~other possibilities end up vanishing by baryon number c
servation or because they involve a set of fields betw
physical states that cannot possibly form a color singlet
erator!. For operators with 4 quark fields, Fierz transform
tions can always be made to arrange the fields such that t
in the same direction sit in the same bilinear. Using as
example the operator with two collinear quarks in then di-
rections and two gluons in then̄ direction and leaving out the
soft Wilson lines for the moment, the most general mat
element is

^pnp̄n̄ux̄n,v1

a,a xn,v2

b,b Bn̄,v3

A,m Bn̄,v4

B,n upnp̄n̄&Dmn;ab
ab;AB , ~98!
e
a
.

all

.

s

s

-
n
-

-
se
n

x

wherea,b are quark colors,A,B are gluon colors, anda,b
are spinor indices for the quarks.Dmn;ab

ab;AB is some tensor tha
connects the indices in an arbitrary way. In the contraction
a,b andA,B there are two possible ways to make an over
color singlet, one where both the quarks and gluons are
color singlet, and another where both the quarks and glu
are in a color octet. We will discuss both of these possib
ties in turn.

In the color singlet case, including the soft and ultras
Wilson lines is trivial, since using Eqs.~17!, ~19!, and~A6!
we see that they cancel due to unitarity/orthogonality of
various Wilson lines in the fundamental or adjoint repres
tations. Thus, there are no soft, usoft, or collinear inter
tions that connect then and the n̄ fields. As in previous
sections, this leads to a factorization of the matrix elemen
Eq. ~98!, namely

^pnux̄n,v1

(0)a,axn,v2

(0)b,bupn&^ p̄n̄uBn̄,v3

(0)A,mBn̄,v4

(0)B,nu p̄n̄&Dmn;ab
ab;AB .

~99!

Since the proton spins are summed over, we can write@with
the help of Eq.~46!#

^pnux̄n,v1

(0)a,axn,v2

(0)b,bupn&}dab~n” !ab^pnux̄n,v1

(0)c,gn”̄xn,v2

(0)c,gupn&,
~100!

so that spin and color are summed over in the matrix e
ment. Similarly the antiproton matrix element can be simp
fied to
7-16
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^ p̄n̄uBn̄,v3

(0)A,mBn̄,v4

(0)B,nu p̄n̄&}dABg'
mn^ p̄n̄uTr@Bn̄,v3

(0)aB a
(0)n̄,v4#u p̄n̄&.

~101!

Here we used the fact that the matrix element is symmetri
m andn, and that only the perpendicular indexm of the field
Bm is orderl. Using Eqs.~100! and~101! the original matrix
element in Eq.~98! can be written as

^pnp̄n̄ux̄n,v1

a,a xn,v2

b,b Bn̄,v3

A,m Bn̄,v4

B,n upnp̄n̄&Dmn;ab
ab;AB

}Tr@Dm
mn” #^ p̄n̄uTr@Bn̄,v3

(0)n B n
(0)n̄,v4#u p̄n̄&

3^pnux̄n,v1

(0) n”̄xn,v2

(0) upn&, ~102!

where the trace ofD is over spin and color, and just gives a
overall constant. The final result in Eq.~102! is identical to
the matrix element of the second operator in Eq.~97!.

If each of then and n̄ field bilinears involve color octe
structures, then the soft and usoft Wilson lines do not can
since they do not commute with the SU~3! generators. How-
ever, one can use the color identity

Yn
†Sn

†T xSn̄Yn̄^ Yn̄
†Sn̄

†T xSnYn5T x
^ SnYnYn̄

†Sn̄
†T xSnYnYn̄

†Sn̄
†

~103!
where eachT x, S, andY factor is in the appropriate repre
sentation of the color group. Equation~103! moves all the
soft and ultrasoft interactions between either then or the n̄
collinear fields. Thus, again the fields in one bilinear can
be contracted with fields in the other bilinear and the ma
element factors. However this time the factored matrix e
ment vanishes. For the example discussed above,

^pnux̄n,v
(0)aTCxn,v8

(0)b upn&50, ~104!

since a color octet operator vanishes between color sin
states. The same holds true for the matrix element of an o
gluon operator.

An identical proof of decoupling goes through for th
case of 4 quarks, where we again either have two color
glet or two color octetn andn̄ bilinears. With 4 gluon fields
we can either have the twon and two n̄ fields coupled as
singlets, or coupled in the same higher representation~an 8,
$10, 10%, or 27!. In the latter case the matrix element betwe
01401
in

l,

t
x
-

let
tet

n-

n

color singlet states still vanishes so the proof for the 4 glu
operators also goes through in an identical way.

Thus we have shown that the matrix element of an ope
tor with an arbitrary contraction of indices either vanishes
can be written in terms of a product of a matrix eleme
which is related to a proton PDF and a matrix element wh
is related to an antiproton PDF as in the example in E
~102!. This is the result we want. To see how the final fo
mulas are derived, note that we can write the matrix elem
of Eq. ~97! in the form of a convolution

1

4 (
spins

^pnp̄n̄uŴupnp̄n̄&5(
a,b

E dv iCa,b~v i !

3^pnuOn
a~v1 ,v2!upn&

3^ p̄n̄uOn̄
b
~v18 ,v28 !u p̄n̄&, ~105!

wherev65v16v2 and v68 5v36v4. The operators here
are the same as in DIS, witha5( i ) for the quark operator,
anda5g for the gluon operator

On
( i )~v1 ,v2!5

1

Q
F x̄n,v1

( i ) n”̄

2
xn,v2

( i ) G ,

~106!

On
g~v1 ,v2!52

1

Q2
tr@Bn,v1

m Bm
n,v2#.

Apart from the dependence on the labels, the Wilson coe
cients in Eq.~105! can also depend on the renormalizati
point m and the kinematic variableQ. Using Eq.~38! we see
that the matrix elements in Eq.~106! set v25v28 50 and
v152Asz1 , v18 52Asz2 wherez1 andz2 are the convolu-
tion variables. Since all kinematic variables aside fromQ2

are integrated over in Eq.~96! the only other variable tha
can appear in the Wilson coefficient is the center of m
energy which produces thel 1l 2 pair, namely 4ŝ5v1v18 .
Thus, the Wilson coefficients only depend onv1v18
54sz1z2. Defining new coefficients

Hab~z1z2!5Cab~v1v18 54sz1z2 ,Q,m! ~107!

we can replace the matrix elements in Eq.~106! with parton
distribution functions using Eq.~38! to obtain
1

4 (
spins

^pnp̄n̄uŴupnp̄n̄&5
1

tE0

1

dz1dz2H 2H ( i )( j )~2z1z2!@ f i /p~z1! f̄ j / p̄~z2!1 f̄ i /p~z1! f j / p̄~z2!#

1H ( i )( j )~z1z2!@ f i /p~z1! f j / p̄~z2!1 f̄ i /p~z1! f̄ j / p̄~z2!#1
z2

2At
H ( i )g~z1z2! f i /p~z1! f g/ p̄~z2!

2
z2

2At
H ( i )g~2z1z2! f̄ i /p~z1! f g/ p̄~z2!1

z1

2At
Hg( j )~z1z2! f g/p~z1! f j / p̄~z2!

2
z1

2At
Hg( j )~2z1z2! f g/p~z1! f̄ j / p̄~z2!1

z1z2

4t
Hgg~z1z2! f g/p~z1! f g/ p̄~z2!J . ~108!
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This is the final convolution formulas for the Drell-Yan pro
cess and is valid to all orders inas and leading order in the
power expansion. At tree level the matching calculat
shown in Fig. 4 yields zero for all the Wilson coefficien
except

H ( i )( i )~2z1z2!52
2pt

3
Qi

2d~t2z1z2!, ~109!

where Qi is the charge of partoni. The coefficientsH ( i )g

(6z1z2) and Hg( j )(6z1z2) start at orderas(Q), while
H ( i )( i )(z1z2) andHgg(z1z2) start at orderas

2(Q).

C. Deeply virtual compton scattering,g* p\g „* …p8

Next we examine deeply virtual Compton scatteri
~DVCS!. To be more precise we examine the exclus

FIG. 4. Tree level matching onto the operators in the Drell-Y
process.
ni

01401
n

e

reactiong* p→g (* )p, where the incoming photon is highl
virtual, the final photon is either off-shell or real, an
the incoming and outgoing protons have different momen
The reason we have included this process in the inclus
section is that DVCS has the remarkable property t
the nonperturbative physics is described by a so ca
non-forward parton distribution function~NFPDF!. The
NFPDF is a more general distribution function that reduc
to the standard parton distribution functions~familiar from
DIS! for some values of the momentum fraction, a
behaves like a lightcone wave function~familiar from the
pion examples! for other values. Deeply virtua
Compton scattering was first studied in perturbative QCD
Refs. @36–38#, and proofs of factorization to all orders i
perturbation theory were later presented in Refs.@39,40#. In
addition properties of NFPDFs were studied in Ref.@26#.
Here we present a proof of factorization for DVCS based
SCET.

As with the previous proofs it is important to understa
the kinematics of the process. We take the incom
proton and photon momenta to bep and q respectively,
with x5Q2/(2p•q) and q252Q2@LQCD

2 . The out-
going proton and photon momentum arep8 and q8
respectively, with 0>q82>2Q2. It is convenient to define
a parameterz[12n̄•p8/n̄•p, which measures the chang
to the proton’s large momentum. Working in the Bre
frame and neglecting contributions that are!LQCD

2 /Q we
have
Label Momenta Residual Momenta

qm5
Q

2
~n̄m2nm! 10

pm5
Q

2x
nm 1

x

2Q
mp

2~nm1n̄m!

p8m5
Q

2x
~12z!nm1p'8

m 1
x

2Q
@mp

2~12z!nm1$mp
2~11z!2t%n̄m#

q8m5
Q

2 Szx21Dnm1
Q

2
n̄m2p'8

m 1
x

2Q
@zmp

2nm1~t2zmp
2!n̄m#

~110!
ut.
sis

f

Here the label momenta are orderQ or Ql, while the re-
sidual momenta are orderQl2 and depend onp25mp

2 and
t5(p82p)25(p'8

22z2mp
2)/(12z), which are both

;LQCD
2 . The invariant mass of the intermediate hadro

state is (p1q)2'Q2(12x)/x just like DIS, so for

c

12x@LQCD/Q the intermediate state can be integrated o
We will proceed in a manner analogous to the analy

for DIS. The amplitude ~up to an overall momentum
conservingd-function! is given by a time ordered product o
currents:
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Tmn~p,q,q8!5^p8,s8uT̂mn~q,q8!up,s&

T̂mn~q,q8!5 i E d4zei (q1q8)•z/2

3T@Jm~2z/2!Jn~z/2!#. ~111!

This time ordered product is contracted with a lepton ten
to obtain the amplitude. Now current conservation requi
qmTmn5q8nTmn50, however the DVCSTmn is not symmet-
ric underm↔n. For electromagnetic currentsJm we have

Tmn52S gmn2
qm8 qn

q•q8
D T1

1S pm2
qm8 p•q

q•q8
D S pn2

qnp•q8

q•q8
D T2

1 l ml n8T31 l mS pn2
qnp•q8

q•q8
D T4

1S pm2
qm8 p•q

q•q8
D l nT51•••, ~112!

where the functionsTi5Ti(x,z,Q2,t), and the vectorsl m

[qm8 2qm1pm(q22q821t)/(2p•q) and l m8 [qm2qm8
1pm(q822q21t)/(2p•q8) are defined so thatq• l 5q8• l 8
50. In Eq. ~112! and below the ellipses denote spin depe
dent terms. For simplicity we will show how factorization
achieved for the spin independent contributions shown in
~112! with the understanding that it is no more difficult
also include the other terms.

It is convenient to define a parameter 0<a<1, by q82

[2aQ2. The DIS hadronic time-ordered product is o
tained in the limitp8→p, wherea→1 andz→0. From Eq.
~110! we see that

z5x~12a!1OS t

Q2
,
mp

2

Q2D , ~113!

so these parameters are not independent. Since the inte
diate hadronic state has invariant massO(Q2) we can match
T̂mn onto operators in SCET. RequiringqmT̂mn50 and
q8nT̂mn50 for the orderQ label momenta leads to

T̂mn→
g'

mn

Q S O1
( i )1

O1
g

Q D
1

1

Q
~nm1n̄m!~ann1n̄n!S O2

( i )1
O2

g

Q D 1•••,

~114!
01401
r
s

-

q.

e-

where the ellipses are spin dependent terms and the
played operators are

Oj
( i )5 j̄n,p8

( i ) W
n”̄

2
Cj

( i )~P̄1 ,P̄2!W†jn,p
( i ) ,

~115!

Oj
g5n̄mn̄ntr@W†~Gn!mlWCj

g~P̄1 ,P̄2!W†~Gn!l
nW#.

We have suppressed the dependence of the Wilson co
cientsC(P̄1 ,P̄2) on Q, a, andm. The form of the operators
in Eq. ~115! looks the same as the DIS operators given in E
~84!, however the operators here are more general bec
the Wilson coefficients depend ona. In the limit a→1 the
DVCS operators reduce to the DIS operators. However, s
the field structure of the DVCS operators is identical to D
several results follow immediately. For instance, the st
which factorize soft and usoft gluons and leave fields w
superscript (0) are the same and are not repeated here:

Oj
( i )5x̄n,v

(0)(i ) n”̄

2
Cj

( i )~P̄1 ,P̄2!xn,v8
(0)(i ) ,

~116!

Oj
g52tr@Bn,v

(0)mCj
g~P̄1 ,P̄2!~Bn,v8

(0)
!m#.

The restrictions on the DVCS Wilson coefficients fro
charge conjugation are the same as in Eq.~87!,
Cj (P̄1 ,P̄2)52Cj (2P̄1 ,P̄2), however becausepÞp8
this is not simply a relation between quark and anti-qu
Wilson coefficients. The way in which DVCS is unique
that the matrix elements involve nucleon states with differ
momenta. This is what leads to results in terms of no
forward parton distribution functions.

The definition of the NFPDFs is given in Eq.~43!, and
can be used along with the relations above to obtain exp
sions for theTi in terms of the NFPDFs. Before we give th
result we note that the Wilson coefficients depend on
operatorsP̄6 which become the variablesv6 after introduc-
ing trivial convolutions and thexn,v i

fields in Eq.~35!. The

delta functions in Eq.~43! then setv252Qz/x andv15
6Q(2j2z)/x, where j is the convolution variable. Note
that z/x512a, and just like DIS it is the combinationj/x
which appears. Since charge conjugation relates the Wi
coefficients forv1.0 andv1,0 it is convenient to define

Hj~j/x![Cj„Q~2j/x211a!,Q~a21!,Q,a,m…,
~117!

where in the last three arguments we have made the de
dence onQ, a, andm explicit. Combining Eqs.~43!, ~116!,
and ~117! then gives
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T152
e~s8,s!

2Q E
0

1

djHH 1
( i )S j

xD @F z
i ~j;t !1F̄z

i ~j;t !#1
1

2x
H 1

gS j

xDF z
g~j;t !J 1•••,

T25
x2~11a!

Q3
e~s8,s!E

0

1

djH F2~11a!H 2
( i )S j

xD2H 1
( i )S j

xD G@F z
i ~j;t !1F̄z

i ~j;t !#

1
1

2x F2~11a!H 2
gS j

xD2H 1
gS j

xD GF z
g~j;t !J 1•••, ~118!

T350, T450, T550,
in
u

a

to

in
an

s

r
or
d
d
or
in
th

ea

de
p

ther-
pler
-
re
h as
of

of

n of

es
re-
er,
nal
are

m
ix
in

ay.
of
les.
the
n
m
ro-

ith
all

ssed
ble
nta

are
up-
which are the final convolution results valid to all orders
as and leading order in the power expansion. The struct
functionsT3,4,5 vanish since the vectorsl m5 l 8m50 at lead-
ing order in the power expansion. The terms with ellipses
for the spin flip terms and involve the NFPDFK defined in
Eq. ~43!. The results for these terms have a similar form
those in Eq.~118!.

Finally we match at tree level. The tree level diagram
QCD is the same as in Fig. 3 except the outgoing photon
proton have momentaq8 andp8 respectively. Only the quark
Wilson coefficients are nonzero at tree level. We find

C1
( i )~v1 ,v2 ,Q,a!

5e2Qi
2S 2Q

2Q1v12v2
2

2Q

2Q2v12v2
D

C2
( i )~v1 ,v2 ,Q,a!50, ~119!

which gives

H 1
( i )S j

xD52e2Qi
2S 1

12j/x
2

1

11~j2z!/xD
~120!

H 2
( i )S j

xD50.

SinceH 2
( i )50 at tree level, DVCS also obeys a Callan-Gro

relation.

V. CONCLUSION

What we hope we have demonstrated here is the powe
effective field techniques in the context of factorization f
hard scattering processes. The explicit separation of mo
and the implementation of gauge invariance for these mo
greatly simplifies seemingly complex problems. What is n
mally accomplished by diagrammatic Ward identities and
duction techniques now falls out as a consequence of
gauge symmetry of operators in a low energy soft-collin
effective theory.

As we have emphasized, the factorization formulas
rived in this paper are not new. The purpose here was sim
to extend the formalism introduced in@9–13# to cases with
back-to-back collinear particles, and apply these ideas
01401
re

re

d

s

of

es
es
-
-
e
r

-
ly

to

more general processes than previously considered. Fur
more, the factorization proofs presented are perhaps sim
than those previously given~certainly they are more con
cise!. We believe that within the confines of the SCET, mo
difficult, and unresolved problems can be addressed, suc
power corrections in cases without an OPE, and proofs
factorization for more complex processes.
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APPENDIX: FACTORIZATION OF SOFT
AND COLLINEAR n AND n̄ MODES

This appendix discusses the simultaneous factorizatio
the soft (l,l,l) modes,n-collinear (l2,1,l) modes, and
n̄-collinear (1,l2,l) modes. These three classes of mod
cannot interact with each other in a local manner and the
fore do not couple through the SCET Lagrangian. Howev
they can couple in a gauge invariant way through exter
operators and currents. These interactions in currents
built up by integrating out off-shell fluctuations withp2

@(Ql)2. For the special case of factorization of soft for
n-collinear modes this was shown in detail in the Append
of Ref. @12#. There it was shown that integrating out certa
modes with off-shellnessp2;Q2l causes the Wilson lines
Wn andSn to appear in operators in a gauge invariant w
Here we will extend this approach to the factorization
modes for cases involving two classes of collinear partic
For simplicity we restrict ourselves to the case where
original operators involve only collinear quark or gluo
fields. This type of factorization was used for the pion for
factor example discussed in Sec. III B and the Drell-Yan p
cess presented in Sec. IV B.

The basic idea is to first match onto a Lagrangian w
couplings between on-shell and off-shell modes that give
order l0 diagrams. The off-shell modes@with p2@(Ql)2#
can then be integrated out, so that all operators are expre
entirely in terms of the on-shell degrees of freedom. In Ta
I, a summary is given of the three types of off-shell mome
that are induced by adding soft,n-collinear, andn̄-collinear
momenta. For each type auxiliary quark and gluon fields
defined, and for convenience momentum labels are s
7-20
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TABLE I. Summary of the on-shell modes discussed in Sec. II A, and the auxiliary fields introduc
represent the off-shell fluctuations that are integrated out in this appendix.

Type Momenta~1,2,'! Fields Wilson lines

on-shell collinear-n p1
m;(l2,1,l) jn, An

m Wn

collinear-n̄ p2
m;(1,l2,l) j n̄, An̄

m Wn̄

soft qm;(l,l,l) qs, As
m Sn, Sn̄

usoft km;(l2,l2,l2) qus, Aus
m Yn, Yn̄

off-shell p5p11p2 pm;(1,1,l) cQ, AQ
m Xn, Xn̄

p5p11q pm;(l,1,l) cn
L, An

Xm Wn
X, Sn

X

p5p21q pm;(1,l,l) c n̄
L, An̄

Xm Wn̄
X, Sn̄

X

a
r

i
ne

-

ou
ry

ery

o-
ll
a-
ET
ff-
ate
ff-
ell
for

in-
so-
of
e
by

Fi-

ds

d

pressed in this section. For example, thecQ quarks are cre-
ated by the interaction of ann-collinear quark with an
n̄-collinear gluon, whereas thecn

L quarks are created when
collinear quarkjn is knocked off-shell by a soft gluon. Fo
the fieldcQ we writecQ5cn

Q1c n̄
Q , wherecn

Q5 1
4 n”n”̄cQ and

c n̄
Q

5 1
4 n”̄n”cQ . Then we haven”cn

Q5n”̄c n̄
Q

50 andn”cn
L5n”̄c n̄

L

50. Various Wilson lines are also required and are listed
the table. It is convenient to define a generic Wilson li
L@a,A# along directiona with field A by the solution of

~a•P1ga•A!L@a,A#50. ~A1!

With this notation the on-shell Wilson lines areWn

5L@ n̄,An#, Wn̄5L@n,An̄#, Sn5L@n,As#, andSn̄5L@ n̄,As#.
~Recall that the subscripts onW andSmean different things.!
The Wilson lines involving off-shell fields that we will re
quire are

Xn5L@ n̄,AQ1An
X1An#, Xn̄5L@n,AQ1An̄

X
1An̄#,

Wn
X5L@ n̄,An

X1An#, Wn̄
X
5L@n,An̄

X
1An̄#, ~A2!

Sn
X5L@n,An

X1As#, Sn̄
X
5L@ n̄,An̄

X
1As#.

Below we discuss the results which allow us to integrate
off-shell fluctuations. The structure of the auxilia
01401
n

t

Lagrangians and construction of their solutions are v
similar to the case presented in Ref.@12#, to which we refer
for a more detailed presentation.

From Table I we see that addingn and n̄-collinear mo-
menta givesp2;Q2, whereas adding soft and collinear m
menta givesp2;Q2l. Loops that are dominated by off-she
momenta only modify Wilson coefficients and not the infr
red physics. Therefore, to determine the structure of SC
fields in an operator it is sufficient to integrate out the o
shell fields at tree level. For convenience we can integr
out the fluctuations starting with those with the largest o
shellness. Recall that we only wish to consider off-sh
propagators connected to external operators. A subtlety
quarks is that distinct auxiliary fields are needed for the
coming and outgoing off-shell propagators. However, the
lution for the outgoing field turns out to be the conjugate
the incoming field, so to avoid a proliferation of notation w
simply denote the outgoing terms in the Lagrangian
1H.c., and present a solution for the incoming fields.
nally, note that for the gluon fieldAQ the fieldsAn , An̄ , An

X ,
An̄

X , andAs appear as background fields while for the fiel

An
X andAn̄

X it is An , An̄ , andAs that appear as backgroun
fields.

The terms in the auxiliary Lagrangian involving thep2

;Q2 fields are
are

ut
Laux
Q 5c̄n

Qgn•~AQ1An̄
X
1An̄!

n”̄

2
~cn

L1jn!1c̄n
Q@n•P1gn•~AQ1An̄

X
1An̄!#

n”̄

2
cn

Q

1~n↔n̄!1H.c.1
1

2g2
tr$@ iD Q

m1gAQ
m ,iD Q

n 1gAQ
n #2%1

1

aQ
tr$@ iD Q

m ,AQm#2%, ~A3!

whereiD Q
m5 1

2 nm@P̄1gn̄•(An
X1An)#1 1

2 n̄m@P1gn•(An̄
X
1An̄)#. The solutions of the equations of motion for these modes

cn
Q5~Xn̄21!~cn

L1jn!, c n̄
Q

5~Xn21!~c n̄
L
1j n̄!, Xn̄

†Xn5Wn
XWn̄

X† . ~A4!

~In addition to the last equation a constraint on the componentsn•AQ and n̄•AQ also comes from the gauge fixing term, b
will not be needed.! The terms in the auxiliary Lagrangian involving thep2;Q2l fields are@12#
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Laux
X 5c̄n

Lgn•~An
X1As!

n”̄

2
jn1c̄n

L@n•P1gn•~An
X1As!#

n”̄

2
cn

L1~n↔n̄!1H.c.

1
1

2g2
tr$@ iD nX

m 1gAn
Xm ,iD nX

n 1gAn
Xn#2%1

1

an
tr$@ iD nX

m ,Anm
X #2%1~n↔n̄!, ~A5!
to
ith
q
rm
e

of

e

n
e

al

at

l

mo-
he

be
in

ed
where iD nX
m 5 1

2 nm@P̄1gn̄•An#1 1
2 n̄m@n•P1gn•As#. The

solutions for these modes are

cn
L5~Sn

X21!jn , Sn
X†Wn

X5WnSn
† ,

~A6!
c n̄

L
5~Sn̄

X
21!j n̄ , Sn̄

X†Wn̄
X
5Wn̄Sn̄

† .

Together Eqs.~A4! and~A6! can be used at leading order
eliminate the fields representing off-shell fluctuations w
p2@(Ql)2. For collinear quarks this leads to the rules in E
~17!. Note that we did not need to use the gauge fixing te
to resolve the ambiguity in the implicit solution for th
n̄•A andn•A auxillary fields.

As an illustration of these results, we discuss the s
collinear factorization for the production of aqnq̄n̄ pair with
a large invariant massQ2. This process is mediated in th
full theory by the electromagnetic currentJ5c̄Gc (G a
color singlet!. This current will match onto a current i
SCET that is built entirely out of on-shell fields. Using th
results in this appendix this current can be systematic
derived. To start, the quark field inJ matches ontojn plus all
possible fields which the auxiliary Lagrangian can cre
starting fromjn , so
.

da

s

01401
.

t-

ly

e

J→~ j̄n1c̄n
L1c̄n

Q!G~j n̄1c n̄
L
1c n̄

Q
!. ~A7!

Integrating out thep2;Q2 fluctuations with Eq.~A4! and
inserting a hard Wilson coefficientC which depends on labe
operators turns Eq.~A7! into

~ j̄n1c̄n
L!Xn̄

†CGXn~j n̄1c n̄
L
!

5~ j̄n1c̄n
L!Wn

XCGWn̄
X†

~j n̄1c n̄
L
!. ~A8!

To construct the first operator we used the equations of
tion for cn

Q andc n̄
Q , and in the second operator we used t

equation of motion identity for the gluons inXn andXn̄ . In
a similar fashion we can now integrate out thep2;Q2l
fluctuations with Eq.~A6! to give

j̄nSn
X†Wn

XCGWn̄
X†Sn̄

Xj n̄5 j̄nWnSn
†CGSn̄Wn̄

†j n̄ . ~A9!

The operator on the right is the final result used in Eq.~24!,
and is soft, collinear, and usoft gauge invariant. It should
obvious from this example how the equations of motion
Eqs.~A4! and ~A6! can be used to determine the factoriz
form of a general leading order operator.
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