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Hard scattering factorization from effective field theory
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In this paper we show how gauge symmetries in an effective theory can be used to simplify proofs of
factorization formulas in highly energetic hadronic processes. We use the soft-collinear effective theory, gen-
eralized to deal with back-to-back jets of collinear particles. Our proofs do not depend on the choice of a
particular gauge, and the formalism is applicable to both exclusive and inclusive factorization. As examples we
treat thewr-y form factor (yy* — %), light meson form factors* M—M), as well as deep inelastic scat-
tering (" p—e~ X), the Drell-Yan process ;XE—>XI+I’), and deeply virtual Compton scattering/*(p

—y*)p).
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[. INTRODUCTION advantages in using an effective field thedBFT). For in-
stance, the EFT makes any symmetries which emerge in the

The principle of factorization underlies all theoretical pre- Q— o limit manifest in the Lagrangian and operators, and
dictions for hadronic processes. Simply put, factorization isallow statements to be made to all orders in perturbation
the statement that short and long distance contributions ttheory. The calculation of hard coefficients reduces to simple
physical processes can be separated, up to corrections sugatching calculations, where subtracting the EFT graphs au-
pressed by powers of the relevant large scale in the procesgmatically removes all infrared divergences from the QCD
The predictive power gained from this result stems from thezalculation. Perhaps most importantly, it provides a frame-
fact that the incalculable long distance effects are universalNork for systematically investigating power corrections. Fi-
defined in an unambiguous way in terms of matrix elementsnally, the EFT framework allows standard renormalization
As a consequence, the nonperturbative long distance effecioup techniques to be used for the resummation of loga-
can be extracted in one process and then used in another. fithms that are often necessary in calculating rates for certain
general, proving factorization is a difficult tagi]. The  high energy scattering everii,10,14,1%. The factorization
proof of factorization in Drell-Yan processes, for instance,formulas that we prove in this paper are not new, but serve to
took several years to sort o] (for reviews on factorization jljustrate our approach in familiar settings. The results are
see[3-5]). Indeed, there are still some processes sucB as valid to all orders ines and leading order in the power ex-
— mm where a proof of factorization only exists at one l0op pansion. The simplicity of our approach lies in the fact that
[6]. factorization occurs at the level of the SCET Lagrangian and

Given that we would like to retain our predictive power gperators, and is facilitated by gauge symmetry in the EFT.
over the largest possible range of energies, we are compellerhis provides the advantage that our proofs do not rely on
to understand power corrections to the factorized ratesmaking use of Ward identities and induction, or on specify-
These corrections are not necessarily universal, and as suGRg a particular gauge. Furthermore, it becomes rather
the relevant size of the power corrections is process deperimple to derive factorization formulas for a myriad of pro-
dent. In processes for which there exists an operator produgksses, since many results are universal. The examples given
expansion(OPB), there is a systematic way in which to in- here serve to illustrate these simplifications. Developments
clude power corrections. However, for a majority of observ-on the issues of power corrections and resummations are left
ables we do not have an OPE at our disposal, and the natugg future publicationg.
of the power correction is not always known. For instance, in  |n Sec. Il we review the construction of the SCET. The
the case of shape variables there is still some ongoing digormalism developed in Ref§9—12] is extended to include
cussion about the form of subleading correctipns]. two types of collinear particles moving in opposite directions

The purpose of this paper is to show that an effectivein Sec. II B, and factorization fop* to two collinear states is
theory framework can be used to simplify proofs of factor-discussed as an example. In Sec. Il C we define the nonper-
ization and describe processes with an operator formalismyrbative matrix elements such as the parton distribution
To do this we extend the soft-collinear effective theoryfunctions that will be needed for the processes presented in
(SCET) developed in Ref§9-13], to high energy processes. the paper, and in Sec. Il D we discuss some of the symme-
It should be emphasized that there are several other useftfies in SCET that may be used to place restrictions on ma-

*Electronic address: bauer@einstein.ucsd.edu Un fact our factorization proofs rely heavily on the gauge sym-
"Electronic address: fleming@kayenta.phys.cmu.edu metry structure of SCET. When a gauge fixing term is required for
*Electronic address: pirjol@bose.ucsd.edu explicit calculations we use general covariant gauges.

$Electronic address: ira@cmuhep2.phys.cmu.edu 2For recent work on subleading corrections in SCET for heavy-
IElectronic address: iain@schwinger.ucsd.edu to-light transitions see Ref16].
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trix elements. In the remaining sections we give various exout one at a time. A classical example is integrating out the
amples on how factorization theorems emerge in théV boson to obtain the effective electroweak Hamiltonian
effective theory language. In Sec. Ill we prove factorizationwith 4-fermion operators. However, in some situations we
theorems for two exclusive processes, namely#the form  are interested in integrating out large momentum fluctuations
factor, and meson form factorgt M— M) for arbitrary spin  without fully removing the corresponding field. The simplest
and isospin structure. In Sec. IV two inclusive processes arexample of this is heavy quark effective the¢HQET) [17],
treated, namely deep inelastic scatterif®lS) (e p  which is constructed to describe the low energy properties of

—e~X) and the Drell-Yan processpp— XI*17), and we Mesons with a heavy quark. Here the heavy anti-quarks are
also give results for deeply virtual Compton scatteringintegrated out and only heavy quarks with fluctuations close
(y*p—9™)p). In these processes we include all leadingt© their mass-shell are retained. This is accomplished by re-
power contributions in the factorization proofisven if the ~Moving fluctuations of order the heavy quark mags with
operators are only matched onto at higher orders in pertui field redefinition18]

bation theory such as for the gluon distribution functjons

Our conclusions are given in Sec. V. In the Appendix we l/,(x)zz e M’ *h (x), (1)
show how auxiliary fields can be used to prove the simulta- v

neous factorization of soft fields from collinear fields for

particles in back-to-back directions. wherev is the heavy quark velocity arfd, is the field in the

EFT. While ¢“¥(x)~mgq #(x), the effective field has
[l. FORMALISM d*h,(X)~Aqcph,(X), indicating that it no longer describes
L . . . short-distance fluctuations about the perturbative scgje
Effect_|v_e field th_eor_|es provide a S|mpl_e_and t_alegan'; WaY|hstead these effects are encoded in calculable Wilson coef-
of organizing physics in processes containing widely dlsparfi
ate energy scales. In constructing an EFT, some degrees
freedom are eliminated, and the remaining degrees of free-
dom must reproduce all the infrared physics of the full
theory in the domain where the EFT is valid. The EFT is
organized by an expansion \y defined as the ratio of small
to large energy scales. As a useful guideline the followin
steps are used to identify the infrared degrees of freedbm: g A —
Determine the relevant scales in a problem from the size of ""P @ndp~=n-p wheren®=n“=0 andn-n=2. Heren
the momenta and masses of all particles that can make up tfR@rametrizes a light-cone direction close to that of the col-
initial and final states(2) Construct all momenta from these linear particle anah the opposite directiofe.g. for motion in
scales whose components correspond to propagating degretée z direction n,=(1,0,0,1) andn,=(1,0,0,-1)]. For a
of freedom, and which have off-shellness less than the largparticle of massn=p, <Q, we havep™ ~Q, and a small
scale, i.ep?—m?<Q?. Effective theory fields are then con- parametern~p, /Q. The scaling of thep™ component is
structed for each unique set of these momenta. then fixed by the equations of motign"p~+ p? =m?, so

We will be interested in an EFT with particles of ene@y that (p*,p~,p,)~Q(A%,1\).

much greater than their mass. The dynamics of these par- The appearance of two small scal€\?><QN<Q, is
ticles can be described by constructing a soft-collinear effecsimilar to the situation in nonrelativistic QCINRQCD),
tive theory(SCET). This theory is organized as an expansionwhich is an EFT for systems of two heavy quarks with an
in powers ofA~p, /Q, and off-shell fluctuations wittp?>  expansion in their relative velocitg. In a nonrelativistic
>(QA\)? are integrated out. In Sec. Il Awe begin by describ-hound state the momentum of a heavy quarismg, but
ing this procedure and comparing the construction to othethe equations of motiorE=p2/(2mQ) make the energ{
EFT’s. We then give a brief review of the soft-collinear ef- NmQ/g{ giving Sca|egnQB2< MoB<mMg. The two low en-
fective theory developed in Ref®-13. We do not attempt  ergy scales can be distinguished by following EY.with a
to give a comprehensive treatment, but instead emphasize thgrther field redefinition[19] h, (x)= Epei PXy(X), so that
main results and refer the reader to the literature for detailsjerivatives ony, only pick out thempB? scale. The on-shell
In Sec. Il B we extend the formulation of SCET to describedegrees of freedom are then the heavy quarkS, soft quarks

processes with collinear particles moving in back to backgng gluons witho2~(va)2, and ultrasoft quarks and glu-
directions, and prove the factorization formula {6t to two  gns with pzw(vaz)Z_

collinear states as an example. In Sec. Il C we define the
nonperturbative matrix elements that are needed for our ex-

ients. The HQET degrees of freedom with off-shellness
~AéCD are the heavy quarks, soft gluons, and soft quarks.
Similarly, for collinear particles with energ@>m, one
needs to remove momentum fluctuation® while retaining
effective theory fields to describe smaller momenta. How-
ever, unlike heavy quarks the collinear particles have two
Yow energy scales. Consider the light-cone momepta,

amples, then in Sec. Il D we discuss some of the symmetry SCET fields
properties of collinear fields and currents. For collinear particles the analogous field redefinitions are
(10,19
A. Soft-collinear effective theory
In th_e standard construction _of an EFT one removes the ¢(X):z 2 efip-xd)n’p(x), )
short distance scales and massive fields by integrating them n p
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where the collinear fieldg, , are labeled b}/ Iight—gone vec- f(P#)((bgl. .. ¢gm¢p1. .. ¢Pn)

torsn and label momenturp. Herep contains then- p~Q

and p, ~Q\ momenta so that*¢, ,~(Q\?) ¢, ,. The =f(pi+ ... +ph—af—...—ak)

field ¢, can either be a quark or gluon field. Similardg, T N

the missing~Q fluctuations are described by Wilson coef- X (b, - ba,bp, - bp,) (4)

ficients and the~ QA labels simplify the power counting by

distinguishing theQ\ andQ\? scales. Now so conjugate field labels come with a minus sign. The opera-

tor P, acts to the right, while the conjugate operalbf[ acts

N B to the left. As explained in Ref11] the label operator allows
Dnp=Pnpt dn—p: (3 all large phases to be moved to the front of operators with a

factor exptix-P). This phase and the label sums can then

so collinear particles and antiparticles are contained in th&€ Suppressed if we impose that interactions conserve label

same effective theory field, but have momentum labels witfnomenta and that the momentum indices on fields are im-

the opposite sign. In the large energy limit the four compo-Plicitly summed over. Basically, for labefsandp’ and re-

nent fermion spinors contain two large and two small com-Sidual momenta andk’,

ponents. One therefore defines collinear quark fieddg

which only retain the large components for motion in the j d4xe (P —PHK' —k)-x— 5(p—p')J dxe® ~kx (5

direction and satisfyn¢, ,=0. For these fieldsgrflplgr;p

destroy/create the particles/antiparticles with large momensg that the label and residual momenta are individually con-

tum n-p>0 [11]. For collinear gluonsA4t=A% .. and  served[Although technically the label momenta are discrete

(AR g)TI(AR )~ destroy/create gluons with- g>0. we abuse notation and us¥p—p’) rather thans, ,» be-

For simplicity we will ignore quark masses and only con- cause it makes the subscripts easier to figaat. convenience
sider massless andd quarks. For the processes consideredye define the operatd? to pick out only the ordek® labels
here SCET then requires three types of degrees of freedorsn collinear fields, and the operatB* to pick out only the
collinear, soft, and ultrasoftusofy fields. These are distin- order\ labels. For the matrix element of any collinear op-
guished by the scaling of the light cone componems,(  erator®, momentum conservation constrains the sum of field
p~, pt) of their momenta: X2,1,\) for collinear modes in labels[11], giving
then direction A, o, &n,p), (NN, \) for the soft modes/(\z, o o
d;), and (%, \%,\?) for the usoft modesAys, dys). The soft (M [[F(PYOIM o) =F(N-(P2=P1)){(Mp p [OIMy ),
modes are labeled by their ord@\ momenta, s&\; andqj, ©)
are essentially just momentum space fields. The usoft fields _
have no labels and depend only on the coordinatghe  for any functionf.

fields are assigned a scaling withto make the action for For a singlen the Lagrangian can be broken up into three
their kinetic terms ordem® [9,10,12. For instance¢,,  Sectors: collinear, usoft, and soft. We therefore write

~\, A¥ ~(N2 1)), Ai~\, andA%~\?. At leading order
' 7in,g o) Mg us - N iz H
only order\? vertices are necessary to correctly account for L= Lonl&np An g Alsl T Lud Qus Ausl + Lol bsp As g

all order\® Feynman diagrams. (7)

In HQET only external currents with momenta of order where we have made the field content of each sector explicit.

m;, can change the label Thus the Lagrangian has a super- we will discuss each of these terms separately.
selection rule forbidding changes in the four-velocity of the

heavy quarK17,18. In NRQCD thev labels are also con- Collinear sector
served, but the smaller momentum labglsre changed by
operators in the effective theory such as the Coulomb potens
tial. A novel feature of SCET is that interactions in the lead-
ing action can change both the large and small parts of th
momentum labelp*. However, only external currents can
change the direction of a collinear particle, so this label is

As explained in detail in Refl12], gauge invariance in
CET restricts the Lagrangian and allowed form of opera-
tors. Only local gauge transformations whose action is closed
6n the effective theory fields need to be considered. These
include collinear, soft, and usoft transformations. Each of

- S these vary over different distance scales, with collinear
conserved. Thus, for each distinct directiora separate set y

) : . . . . _gauge transformations satisfying  9#U(X)
of collinear fields is needed. In the remainder of this se_zctlorgQ()\g’l’)\)Un(X)' soft satisfying?V(x) ~ QAV4(x), and
we will restrict ourselves to collinear particles with a single usoft transformations with?“V,,(x) ~ O\2V,(x). All par-
n. We will generalize the discussion to the case of two back- us usis P

to-back directions and discuss the factorization of collinea/¢/€S transform undev,(x) and usoft gluons act like back-

parices wih iferenns i Sec. 16 e o P, et et
Since in SCET interactions can change the oi@dabel Iq fields[10.1

momenta it turns out to be very useful to introduce a lapeP'ON M€ s[10,11

operator, P* [11], for which the collinear fields satisfy

PHEN =P Enp. More generallyP# acts on a product of W, (X) =

labeled fields as

. (8)

E exp( — g%ﬁ- An,q(x))

perms
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Here the operato?acts only inside the square brackets, the Y.(x)=P ex;{ » J‘x ) | 12

n on W, refers to the direction of the collinear quanta, and _wdsn-Aus(sn)
W, is local with respect to (corresponding to the residual

momentd Taking the Fourier transform of(w—P)W,(0)  where the subscript on Y, labels the direction of the Wil-
with respect tow gives the more familiar path-ordered Wil- son line[we emphasize that this is different from the mean-
son line W, (y,—»)=Pexgigf’.ds n-A,(sn)]. Under a ing of the subscript oW, in Eq. (8)]. A usoft gauge trans-
collinear gauge transformationW, transforms asw, formation takesy,—V,sY,. In Ref.[12] it was shown that
—U,W,. An invariant under collinear gauge transforma- the field redefinitions

tions can therefore be formed by combining a collinear fer-

— (0) - (O)unst
mion ¢, , and the Wilson linéV, in the form €np= Ynénp:  Anp=YnAnp Y, (13

WI(X) &np(X). @  imply W,=Y WY! and decouple the usoft gluons from
the collinear particles in the leading order Lagrangian

This combination still transforms under a usoft gauge trans-
formation, W&, ,— VX)Wl &, ;. We will often suppress Lonl&np Ay Aysl=Le [ £0,ALH0]. (14
the x dependence of the combinatiwlfn,p. . ] ) ]

Integrating out hard fluctuations gives Wilson coefficients Ihus, the new collinear fields with superscript (0) no longer
in the effective theory that are functions of the lamgyep; Interact W'th USOft. gluons or ”a”SfO”.“H”der a usoft gauge

. — : . transformation. Since the field redefinitions do not change
collinear momentaC(n- p;). However, collinear gauge in-

variance restricts these coefficients to only depend on th hysical S matrix elements, the new fields give an equally
. S } y aep alid parametrization of the collinear modes. The leading
linear combination of momenta picked out by the ordér

g - s SCET Lagrangian therefore factors into separate collinear
operator? [11]. In general the Wilson coefficients are then anq usoft sectors. This alone does not guarantee factorization
functions C(P,P") which must be inserted between gaugein operators and currents, since after the field redefinition
invariant products of collinear fields. In general the Wilsonthese operators may still contain both usoft and collinear
coefficients also depend on the large momentum scales inf&lds. However, the field redefinition makes factorization
process such a® and the renormalization scaje. transparent since identities such€${n=1 may be applied
To construct the collinear Lagrangian one can match fulldirectly to the operators. This will become clear in the ex-
QCD onto operators with collinear fields that are invariantamples in Secs. Il and IV.
under usoft and collinear gauge transformations. The collin- The coupling of soft gluons to collinear particles differs
ear Lagrangian at ordex® is [10-17 from the usoft-collinear interactions. Interactions of a soft
gluon with a collinear particle results in a particle with mo-
mentump~Q(\,1\), so soft gluons cannot appear in the
collinear Lagrangian. These off-shell particles hapé
~Q2?\ and sinceQ?\>(Q\)? these off-shell quarks and
N 1 N " gluons can be integrated out. At leading order\irit was
+H(PL+gAL JW=W'(P +gA] ) 5énp shown in Ref[12] that in operators with collinear fields this
P simply builds up factors of a soft Wilson lin§, involving
the n- A component of the soft gluon field,

Lon=Enplin-D+gn-A,,

1
+ —tr{[iD#+gAL ID +gAL 1A+, (10
29 '

n,q 1
S,=| > ex —9n 5N Asql |- (15)
where£ 2" are gauge fixing termsD#=i*+gA%,, and perms
ni__ Py The factors ofS,, appear outside gauge invariant products of
iD#=—P+P*+—in-D. (11 collinear fields, and their location is restricted by soft gauge
2 2 invariance.
Since usoft gluons act as background fields in the collinear _ _
gauge transformation the couplingg,u), for both types of B. SCET for n and n collinear fields
gluons must be identical. In this section we extend SCET to include the possibility
of collinear fields moving in different light-cone directions:
Usoft and soft sectors Ny, Ny, Ng, ... . These directions can be considered to be

The usoft and soft Lagrangians for gluons and masslesgistinct provided thani-nj>)\2 for i #j. This follows from
quarks are the same as those in QCD. From(Bgwe see the fact that ifn;- n,~\? then the directionsi; andn, are
that collinear quarks and gluons interact with usoft gluonstoo close to be distinguished. For example, a momentum
however at ordeh® only then-A, s component appears in p,=Qn, can be considered to be collinear in the direc-

Eq. (10). In order to prove factorization formulas it is essen-tion if n;-p,=Qn,-n,~Q\?, since this is the correct scal-
tial to disentangle the collinear and usoft modes. This can bing for the small momentum component of ag-collinear
done by introducing a usoft Wilson line particle.
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For simplicity we will only consider the case of back-to- processes such as forward scatteyif@r the Drell-Yan pro-
back jets corresponding to collinear particles moving inrthe cess more quantitative arguments can be found in Refs.
and n directions. These are clearly distinct sinaen=2.  [2,39]. o _ _ _
Collinear particles in then direction have ¢,—,1) mo- At order\° it is not possible to construct a gauge invari-
menta~Q(1\?\), and then-p~1 andp, ~\ momenta ant kinetic Lagrangian with terms that involve batrandn
appear as labels on the corresponding fiefds; and A#,p' fields. Thus, then and n collinear mode_s are described by
Emission of a collinear particle moving in thedirection  independent Lagrangiarieowevern andn modes may still
from a collinear particle in tha direction results in a particle both appear in an external operatdrhe collinear sector of
with momentumk~Q(1,1)\) and off-shellnessk?~Q?2.  the SCET Lagrangian is therefore
These off-shell modes are integrated out to construct the —

SCET, so collinear modes in thedirection do not directly Ecvn[gn,p’A#,q’”'Aus]Jrﬁc,F[fﬁp*Aﬁq’n'AUS]' (18)
couple to collinear modes in thredirection. A distinct set of

! ; . . . Making the field redefinitions
collinear gauge transformations is associated with eaah of 9

andn, and fields in one direction do not transform under the & pzynggol)), A#p=YnAﬁ°3ﬂY§,
gauge symmetry associated with the opposite direction. Two ’ ' ' (19)
Wilson linesW,(x) andW(x) are necessarjdefined as in Erp= nf% A#p:YFA%)F))P-Y%,

Eq. (8)], and they appear in a way that makes collinear op-
erators gauge invariant. For instance the combinations  givesw, =Y, WY], W= Y WYL, and usoft degrees of
t freedom once again decouple from the collinear modes since
ngn,p ) Wﬁgﬁ,p (16) g P

) ) ) . . Ec,n[gn,p-A#,qan‘Aus]"'Ec,ﬁ[gﬁ,paAﬁqin'Aus]
are invariant under collinear gauge transformations inrthe

— _ 0 0 (0) A(0)
andn directions, respectively. We also require two types of _Ec,n[fg,% 'Ag,éﬂ’o]“Lﬁcﬂgﬁ,p 'AEqM’O]' (20)

label operatorsP as before, and an operatrto pick out  p ¢ soft gluons are removed from the collinear Lagrang-
n-p labels that are ordex®. Thus,P andP act only on the  jan at the expense of inducing, and Y- factors in operators
nandn collinear fields respectivelyThe label operatoP*  with collinear fields. In certain cases the identitisy =1

still picks out ordelx momentum components and therefore 5 Y%Y;:l can be used in these operators to cancel usoft
acts on botn andn fields) With two collinear directions,  gluon interactions. Perturbatively these cancellations would
decoupling usoft gluons requires introducing b¥thandY,  occur by adding an infinite set of Feynman diagrams.
Wilson lines, defined as in Eq12), but along then or n To see in more detail how this works consider the simple
paths respectively. Finally, integrating ottQ?\ fluctua-  example of they*-production of back-to-back collinear
tions at leading order induces bo8y and Sy soft Wilson  gtates X, and X. The full theory currenty(x)T" ¢(x)
lines defined analogous to E@LS). This is discussed in  matches onto an effective theory operafy;. Naively one
greater detail in the Appendix where we show explicitly to might guess that the SCET operator mediating this process is
all orders ing that integrating out theQ?\ fluctuations

causes Onn= ajpll’gﬁpz. (22)

Wkn,p—’snwkn,p, En,an—En,anSE, However, this operator is not invariant under th.e pollinear
17 gauge transforma_ltlorﬁn and Uy, so the process is instead
R ) o o ! mediated by the invariant operator
Wignp—SiWiénp,  &npWa— &0 pWaS;- _ )
Omn= gn,plwnFWHgﬁ,pz- (22)
Relations for operators with collinear gluon fields are also S
derived in the Appendix. A hard matching coefficien€(P,P",P,P") can be inserted
Note that we have not included “Glauber gluons” with in any location in the operator that does not break apart the
momentap®~ (\2,A2,\), which are kinematically allowed gauge invariant combinations of fields in E6). The op-
in t-channel “Coulomb” exchange betwearandn collinear  eratorsP andP in the coefficient only pick out momenta that
quarks. In determining the relevant degrees of freedom ware orden° in the power counting. Thug? does not act on
have assumed that Glauber gluons are not necessary to dgelds in then direction andP does not act on fields in the
scribe the infrared for the processes considered in this papefirection, and the most general result is
Intuitively, this can be seen from the fact these gluons are
instantaneous in_ both time and Iong@_dinal separation, and Onn= En’plwnrc(f’fp)w%g;’pz, (23
only could contribute when tha andn jets overlap for a
duration of order 1Q\? in a space-time diagram. In pro- Next, we integrate out the off-she@?\ fluctuations which
cesses with a hard interaction the overlap scale is alwaysiduces additional soft Wilson lines in the operator. This is
much shorter than thighowever this need not be the case indiscussed in detail in the Appendix and from E#j7) gives
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_En ) WnSTFC(ﬁT,P)Sﬁng;p _ (24) poth X,.1 and X;; can b_e d.escr.ibed entirely.by collipear par-
ticles in the n and n directions respectively. Since the

Note thatP andP do not act on the fields in the soft Wilson Lagragg;]ans for the collinear, |50ft and IUSOft fleollds are fac-
lines since soft gluons carry only ordermomenta. Finally, tonzel the re][namlngr;] rr;atrlx (]::Aemgnt 51[_)h|ts into |st|n(|:t ma-
we can make the usoft gluon couplings explicit by swnchmgmx elements for each class of modes. These matrix elements

to the(0) fields using Eq(19):

0= £°) W‘O)YTSnFC(ﬁ,P)S;Yﬁ\N%’”g%?gZ. (25) In(@) =(Xa(QI2)[ £} W S(P~ w)[0),
This operator is manifestly invariant under collinear gauge Jn(w")={X;(QI2)| 5(P— ’)WT(O)g(O) |0)
transformation in theé andn direction, as well as under soft
and usoft gauge transformations. sn‘<o|y snsnyﬂ(» (29

To separate the short distance Wilson coefficient from the
long-distance operator one introduces convolution variablegand are matrices whose color, spin, and flavor indices are

w andw’ to give suppressed Note thatl,,, J,;, andS,; are explicitly invari-
ant under the collinear, soft, and usoft gauge transformations
Onﬁ=f dode’ C(w,0 )0, w,0), [12_] of SCET, t_)ut still transform globally unde_:r a_color_ ro-
tation. Now using the momentum conservation identity in

Eqg. (6), the large momentum of th¥, and X;; states sets

Omn(w,0")= [5510;),1\/\/(0)5 ~w)YSIr P—Q andP'— Q. Label conservation also implies that the
o (0) 4(0) total perpendicular momentum of eachJpf, J,;, andS, is
XSYno(P— o )W 1. (26)  zero. The sum ovew ande’ can then be performed to give

the final factorized form
The functionC(w,w") contains all the short distance physics

and is determined by matching the full theory onto this ef- C(Q,Q)I(QI'S;In(Q). (30
fective theory operato©O,;(w,®") contains all the infrared
long-distance QCD contributions at leading ordeiin Although rather idealized, the above example illustrates

Now consider the matrix element of the production Cur-the main steps needed to derive a factorization formula. Tak-

rent betweer XX and the vacuum. Taking thg* to have  ing X, andX; to be single quark states, the result in E2f)

large time-like momentuny*=(Q,0,0,0) (and zero residual @also agrees with the factorization formula for the on-shell
momentum we have production form factor forq[20,21).2 In the above example
the factors ofS and Y in the operator in Eq(25) do not
cancel. In the examples we will consider in Secs. Il and IV
there are several operators at leading order, however the fac-
tors of Sand Y cancel in observable matrix elements. The
. 4 collinear matrix elements of long-distance operators, such as
_J A% (X X5 Onr(x)|0) those in EQ.(29), are the ones that have interpretations as
structure functions or wave functions. In the next section we
give the operator definitions for these functions that will be
needed in the remainder of the paper.

| axe Xl ulo)

= f d*x e X((XyX7) (K)| Opr(x=0)| 0)

=((XX) (0)[Onir( 0)[0). @7 C. Non-perturbative matrix elements
In the first step the conservation of the large label momentum Predictions for hadronic processes depend on universal
g was made implicit in the matrix elemefdf. Eq.(5)]. Since  matrix elements that are not computable in perturbation
we are in the center-of-mass frame #ighas large momen- theory. For exclusive processes these include light-cone
tum n-p=Q, and theX;; has momentumm-p’=Q. Now
using translation invariance, we see that the remaixing
tegral forces théX, X;) state to have zero residual momen- 3In this case depending on the choice of infrared regulsitoit
tum. Using Eq.(26) this matrix element is equal to may not be possible to distinguish tig, and S, Wilson lines in
S.n(w). For instance if one choosésg~ QA then the usoft gluons
= ive scaleless loop integrals and can be dropped, so that
f dodw’C(w,0")(XXq|Onn(w,')|0) g{ﬁsnaw —Slsy. If Fljnsteao(‘ljj one chooses g~ QA2 thgg the soft
gluons give scaleless loop integrdteey simply act to pull-up the
. , , N , ultraviolet divergences in the usoft integrals to the hard scale
_f dode’Clw, ") In()I'Syiyln(w’), (28) [22,23), so the £ioft Wilson lines can be guppressed. This is why
one only findsSﬁSg for this operator in the literature. For typical
where the functionC, J,,, Ji, and S also depend on the regulator choices the other gluons are simply not required to repro-
renormalization pointw. Here we have used the fact that duce the infrared structure of the full theory result.
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wave functions and form factors, while for inclusive pro- In some situations it is convenient to have delta functions
cesses they include parton distribution functions and fragwnhich fix the labels of bothW'&, 0 andé, oW. In this case a
mentation functions. In this section we define matrix ele-yseful field is ' ’

ments in SCET that are needed for our examples. All the

collinear operators considered here decouple from usoft glu- () — _ st el

ons since they are local in the residual coordinasnd be- Xno=L0(@=P)Waénp]- (35

T =
causeY(x)Y(x)=1. Thus Herei is the flavor index and will be omitted if the flavor

En JWTWTE, :E(O),W(O)FW(O)Tg(O), (31) doublet field is implied. Note that unlike thein &, , the
P PoEnp np label w on x,, ,, is not summed over. A matrix element with
n.» fields is related to a matrix element like the one in Eq.

and expressions with and without the (0) superscript ar 34) through

equal. For convenience we will write the collinear fields
without the superscript in the remainder of this section.

Consider first the light-cone wave functions. For the pion <Mn,p|;1,wFXn,w’|Mn,p’>
isotriplet 72, the wave functionp.(x) is conventionally de- — —
fined by[24] =20(w-=n-p_)(Mpp|&np,W
b XF5(w+_7?+)WT§n,p2|Mn,p'>1 (36)

— T
(m(p)|y(y) 7“y57Y(y,X)t/f(X)|0>
2 wherew..=w*w’ andp_=p—p’. Thus, with they nota-
[ tion the momentum conserving delta functions become ex-
= —ifwéabp“f dzelzPy+(=2px g (4.7). (32)  plicit. The factor of 2 appears from treating thes as con-
0 tinuous variables, and in the final results cancels with a
factor of 1/2 from a Jacobian.

Heref,~131MeV and the QCD field denotes the isospin For inclusive processes such as DIS it is the proton parton

(C)RAC)] i ; 2_
dogblet{z//” ¥} The coordinates s_ausfyy&x) __O’ distribution functions for quarks of flavar, f;;,(2), anti-
which ensures that the path fropt to x* is along the light- — .
cone, and¥(y,x) is a Wilson line along this path. In SCET duarksfip(2), and gluons.fg,(2) which are lr:eed_elﬁi. The
we require the matrix elements of highly energetic pionsStandard coordinate space definitid@s] are *=yn*)
which therefore have collinear constituents. Boosting the

hm;;ngx element in Eq(32) and lettingy*=yn*, x*=xn* we fip(2)= f Ze i2zn py<p|l//(|)(y)Y(y,_y)
— W) (— )
(8 ol Eny TEW(Y,X) €0 4/ O) XAYE(=Y)IP)|spinave,
n-psdd ! dn-plzy+(1-2)x] 2 dy
=—if,n- jdz ' N +(,2), _ 1YY iompyT
p 0 $r(p,2) fg/p(z)_ ZﬁpJ Zwe i2zn pynlun
(33

X (p|GEN(Y) Y22y, ~y)
wherel"'j’7=mysrb/\/§, andé, , is a collinear field with po- XG)?V(_pr)lspin avgs (37)

sition space labetr#. For our purposes it is more useful to

use the operator with momentum space lahes f_i/p(z):_fi/p(_z)- Here sz(y) is the gluon field

strength,Y(y,—y) andY3®(y,—vy) are path-ordered Wilson

- b D t . - o .
(0 pl énp, WL 2 0(0 =P )W'E, |, |O) lines in the fundamental and adjoint representations,|phd
dy is the proton state with momentum In SCET these distri-
= | Zeioviga (£ TOW — 1o bution functions can be defined by the matrix elements of
JZTr (.l ény 7 WY, =) 60, [0) collinear fields with collinear proton states
=—if,n.ps fo dzélw—(2z=1)n-pldn(x.2), 5 2 (Pl Xt [Po)
spin '

(39

_ 1 _
whereP. =P+ P. In Eq.(34) the delta function fixes» to =an- pfo dzé(w-) 8w = 2zn-p)fisp(2)

the sum of labels pickEd out by the, operator. The com- 1

bination picked out byP_ is equivalent to -P) acting on —4n- pf dzé(w_)8(w, +2zn-p)fin(2),
the entire operator, and using E@®) is fixed to then-p 0

momentum of the pion state. (39
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1 o’ Both operators in Eq(38) are order\? since én0~Bno
§§n<pn|Tf[BﬁwB,¢ 11Pn) ~X\. Note that the matrix element of a single operator

(X, Ax{,) contains both the quark and antiquark distribu-

_wn-p — tions. This is due to Eq(3), from which we see that fow
-T2 jo dzé(w-)d(w.—2zN-p)fyp(2), =w'>0 (w=w'<0) this operator reduces to the number
operator for collinear quark@ntiquark$ with momentunw.
wherew. =w*w', andB¥ = V(gn’w)vu with the collinear Processes other than DIS sometimes depend on more
gauge invariant f|e|d strength complicated distribution functions. In deeply virtual Comp-
ton scattering DVCS) we will need to parametrize the ma-
(Gn,o)"'=— _[ Sw— D) YW DE+gAF 0 trix element of an operator between proton states with differ-
ent momenta. In terms of QCD fieldg the nonforward
] ) parton distribution functiotNFPDB defined by Radyushkin
iDp+gA, ¢ 1W]. B9 in Eq. (4.1 of Ref.[26] is (up to a trivial translation

("o [POWY(y, =y (=y)|p,0)=e(o’ ,0) foldz[e"T'P<22*0yf§>(z;t)—e*iﬁ(zﬂ)yfg‘)(z;t)]

1 — . — .
+h(o’,0) f dz e PV D(z;t) —e M P VKD ()], (40)
0

wheret=(p—p’)?, and{=1—n-p'/n-p. Heree(o,o') andh(o,o') are matrix elements which respectively preserve or flip
the proton spin. They are defined in terms of the proton spinors

_ — 1 — —
e(o’,0)=U(p’,0"JAU(p, ), h(o',0)= 5—u(p’,c")[A,B—B'Tu(p,0), (41
p

wherem, is the proton mass. The NFPDF for gluons is similarly giver{2§]

Fﬁ”(lo’,cr’IGé;A(y)Yf"b(y,—3/)Gi’y(—y)l|o,cr>—7 e(o’ cr)f dZ N PEz- OV e In PRz OV FY7;1)

n- 1 — —
+Tph(0",0')f dzf e Pz Oy eI P22 OY]ICY(Z;it). (42
0

In SCET the definition of the NFPDFs in terms of collinear fields is
(Ph.' XX a0y =28(w_+n-po) f dz{e(o’, ) 8w, — (22— O)n-p)FI(z;t) = 8w, + (22— {)n-p)
X F(zt) ]+ (" o) 8w, — (22— )n-pK P (z;t) = 8w, + (22— Hn- p)KP(z:1) ]},
(43
n-p _ 1 _
(pn,o'| T B} By ]Ipn,o>=—75(w7+n~p£)f0dZ{e(a’,cr)é(m—(Zz—é)n-p)fg(z;t)

+h(o',0)8(w,— (22— )n- PK(z,1)},

where the spinors ie(¢',0) andh(o’,0) are two component effective theory spinors, so thatu, wherehu,=0. Note
that for p’—p both {—0 andt—0. In this limit the NFPDFs reduce to the standard PDFs:
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lim f(gi):fi/p(z), The presence of labels on the effective theory fields
makes their transformation properties under the discrete
symmetriesC, P, and T slightly different from QCD. For
lim /?) |/p(Z) (44)  example undeP or T we haven«n so these transforma-
tions relate collinear fields for different directions. Under

p—p’

p—p’
charge conjugation, parity, and time-reversal the collinear

lim F$9=zfy,(2). fields transform as

p—p'

C 0 p(0C=—[&, p00CI",
D. Symmetries for collinear fields

. . . . . c- lAlni p(x _[A p(x ]
In this section we discuss spin and discrete symmetry
constraints on operators involving collinear fields. P1¢, (X)P=yoérr(Xp)
The possible spin structures of currents with, fields is P P
restricted by the fact that they have only two components, P1AL (x)P=g,, A ~(Xp)
nén p=0. The four most general spin structures for currents nP mrenp 48
with two collinear particles moving in the same or opposite T, SO0 T=Té5(x7) (48)

directions are

— [ -1
EnpTiénp Ta={fhys Ay, AR OIT= 0, A lx).
49 where ¢ ly,C=—y and 7=9°C, while if x*
=(x",x",x") and p*=(p*,p~,p") then p*=(p~,p",
—p.), Xp=(x",x",—x*), and x{=(—x",—x",x"). The
transformation properties &, can be worked out using Eqg.
(48), for instanceC ™ *W,C=[W!]".

The collinear effective Lagrangiaii0) is invariant under

Eﬁ,p’rzgn,p F2:{1175 ) ')’f}

Other choices fot'; andT’, either vanish between the fields
or are related to those in E@45). This result can be ex-
pressed in a compact way by the trace formulas

En Tén o, the transformations in Eq48) (adding then—n terms.
P P These symmetries also constrain the form of nonperturbative
'y Wy Wyﬂ matrix elements. As an example, for a meson which is an
= gTr[yﬁ[‘]— ?5-””,75“_ ?LTr[vﬁth], eigenstate oCC one finds

and (M| &n pWohys8(w— P, )WiE, o[0)
E_ e = _1)C<M”l(C\Nkn,p)TWVS‘S("’_77+)(€n,p/WnC)T|O)
n,p’ n,p - " B

=(— 1My |&n o Walhys8(w+ P )WIE, ,[0). (49

1 = — —
= ZTHAAC ]+ T yshAl 1+ 2T ySAAT], (46)  For the isotriplet pion state{1)°=+1 so combining Eq.
8 8 8 # . ;
(49 with Eq. (34) gives
which reduce a generdl to a linear combination of the

-~ a ¢ b ) t
terms in Eq.(45). For instance, it implies thatiZ,oc*"¢, (70,pl&npWI'7 (0= P )Wk, p,|O)

= nygnwyfgn_ n”gnwﬂ ¢,, and %yfysgn: [ eiwgﬁﬁ én . . —
where e/"’=€“"*Pn,n,/2. Furthermore, each of the two =-if.8° nopJO ol —w=(2x=1)n-plh4(X)
components of,, and alsa&,, can be chosen to be eigenstates

. . -V _ (1 _
of their hel|(_:|ty op_erators_h= p-S with elger_walues:_llz. =—if _&n. pJ dxo[w—(2x—1)n-p]d(1—x).
For these fieldsh is equivalent to the chiral rotatiorh 0

= y5/2. The structures in Eq45) split into two classes de- (50)
pending on whether they conserve or flip the helicity
_ _ Together with Eq(34), charge conjugation therefore implies
chiraleven: &, o {h.Aysténp,  &np viénp, that ¢.(1—X) = ().
o o (47)
chiralodd: &, hy¥é, . &np{lystény- ll. EXCLUSIVE PROCESSES
Since gluon interactions in QCD preserve helicity, integrat- A. -y form factor
ing out hard QCD fluctuations results in effective theory op- The pion-photon form factdFm(Qz) is perhaps the sim-
erators with the same helicity structure as the original operaplest setting for factorization since there is only one hadron
tors at leading order in. in the external state. The form factor is measurable in single-
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tagged two photoe e —e~ e~ #° reactions. This process Y NN v v -
involves the scattering of a highly virtual photon and a d P + — /‘
quark—anti-quark constituent pair off an on-shell photon. The J\%\J Py, v el

photon scatters the quark pair away from the incoming pho-
ton into a pion, so thay* y— 7. The matrix element for
this transition defines the-y form factor

(m°(P)3,(0)]¥(py.€)

FIG. 1. Tree level matching ont®; in the Breit frame. The
graphs on the left includa andd quarks.

in Eq. (13). As discussed in Sec. Il A, this moves all cou-

_ lings intoO; , and usingY'Y.=1 gives
Sieet [ dize P a0(p, 0, 00,200) PO Fafn= 29

_i_ L £(0)\p/(0) D pt (0)1£(0)
=—ieF,,(Q%e€,,, ,Preq’. (51 o= QE’”[gnvPW IPCPPLwIWTE L ] (54)

=uC - i Thus, usoft gluons also decouple.
HereJ,= 4 Qvy,¢ is the full theory electromagnetic current g P

with isodoublet fieldy and charge matriQ= r4/2+ 1/6, and In Lhe Breit frame the _plon momentum satisfigs;
a2 2>Aéco where q=p,—p, is the virtual photon fEWn +O(_)\),Oand comparing Eq51) with the SCET ma-
momentum. It has been shown that the form factor can & elementi(my, , |O0-,|0), gives
written as a one-dimensional convolutionc[of ]a hard coeffi- Q2 i
cient with the light-cone pion wave functid27]. Here we x 2y _ /0 0\ /(0) Dot
show how this factorization takes place in the SCET. 2 Fay(Q)= Q<7T”|§"'pw FCPP.um)
In the Breit frameg”=Q(n*—n*)/2, the real photon’s
momentum igp%=En*=Qn*/2, and the pion is made up of
collinear particles with momenta- p;=Q. The particles ex-
changed between the two currents in Egll) have hard mo- , . . .
menta and can be integrated out, At leading ordex ithe from the outside on the fields. Using E®) it can thereE)re
time ordered product of the two currents in Efl) matches P€_Set equal to the momentum label of the state,
onto a single operator in the effective theory. For simplicity=n-P-=Q. Suppressing this dependence we write
we restrict ourselves to the tensor and spin structures that a@(P, ', u)=C,(P, ,u) leaving
relevant when the meson is a pion,

X WO o). (55)

Defining 77t =PI+ P, the operatorﬁ_ is related tdﬁacting

2i _
(@)= 5 (mlEPWOTCy (P, m)WOTED |0)

i — _ F,
0= g €u LenpWITC(PP WIW' e,y ], (52 ! Q?®
where &, is an |§odoublgt coll!near qgark fleld, an(#-j?p = Z | doCy(w.p)
=ewpﬁnpnﬁ. O, is of dimension 2, just like the time- Q3

ordered product in Eq51), and a power of 1) is included

to makeC(u,P,P") dimensionless. The time-ordered prod-
uct in Eq.(51) is even under charge conjugation, so the op-
erators in Eq.(52) must also be even. This implies
Coy(u,P,PY)=C, (1, —P',—P). The location of theN's

in Eq. (52) is fixed by gauge invariance, afddcontains the

X (o EWOT (o — 77+)W(°”§§fg,, |0). (56)

Using Eq.(34) the remaining matrix identity in Eq56) can
be written in terms of the light-cone pion wave function

spin and flavor structure = y(QZ)z &f deldxﬁ(w—(ZX—l)ZE )
B R m Q2 0 .
I'=(fys)(31207). (53) X Col ) oo 12)
1 [l T [l
Since the off-shellness of the collinear particles in the

pion is p2~AéCD we can also integrate out off-shell modes B 2f, (1

with p?~QAqcp Which come from soft-collinear interac- g decl((zx_l)Q’“)d’ﬁ(X”“)'
tions. For the collinear operatof3;, Eq. (17) implies that (57)

factors of the soft Wilson lin&, are induced. However, the

location is such tha5;5n= 1, so no coupling to soft gluons This is the final result and is valid to leading orderirand

occurs at leading order. The coupling of the collinear fieldsall orders inas. From Eq.(50) charge conjugation implies

to usoft gluons can be simplified with the field redefinitionsthat ¢,.(x)=¢,(1—x) and C;(w)=C,(— ). Equation
(57) agrees with the Brodsky-Lepad@4] result that the
form factor can be written as the convolution of a short dis-

“Note that a pure glue operator would not have the same isospitence function with the light-cone pion wave function. The
as the pion state. SCET formalism gives a concise derivation of this result and
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defines the short distance function in terms of the WiIsonCharge matrix@=diag(2/3,— 1/3), which can be written in
coefficient of an effective theory operator. terms of the up and down quark charges @s(Q
As an illustrative example consider the tree level match-_Q )74/2+(Q +pQ )1/2 q 9 u

ing ontoC illustrated in Fig. 1. Since trEEcation Of tfé's V\(}e \?vill be i%teredsted .in the asymptotic form of the form
in'O s fixed by gauge'invariancé;(,u,P,'P*) can be deter- 50101 in the region witl?>m3 , where it can be expanded
mined by mat(_:hmg W'tm.lzl' Expanding the full theory in a power series in Q2 [24]. It is convenient to work in the
graphs 1o leading order gives Breit frame, where the momentum transfer has the light-cone
componentsi=(q*,q7,q,)=(Q,—Q,0). In this frame the

i(Fig. 1)256 6VFpnB(ﬂ,y ) meson momenta afe=(Q,m3/Q,0), p’=(m3/Q,Q,0), so
2 “Hvep 27° the partons in the incoming/outgoing meson are collinear
1 along then,, /n,, direction.
x(@z)(_— _ __) , (58) The electromagnetic current in E@1) is matched in the
n n-p' effective theory onto the most general combination of opera-

tors constructed from collinear fields which are compatible
where we have dropped isosinglet terms, contributions wittwith collinear gauge invariance. Operators such as the di-
opposite parity to the pion, as well as those proportional tanension 3 current
hys sincené, ,=0. Comparing Eq(58) to Eq. (52) gives

o) [EWRITC(p, P T, P)IWEE,], (62

— 1 1
C(M,P,PT)=—(§— 7—3) +0(as(Q)), (59

612
can contribute, but only overlap with the asymmetric meson
so that states with one energetic collinear quark and one usoft or soft
quark. Often this overlap is referred to as the tail of the wave
function contribution or the Feynman mechanism of gener-
+0(as(Q)). ating the form factof30,31. There are other operators with
(60) significant overlap with more symmetric meson stdtesere
all the constituents are allowed to be energefitie leading

This result is again in agreement with R¢4], and the Such operators have the form

order a¢(Q) corrections to this Wilson coefficient can be

read off from the results in Reff28,29. An identical analy- 1

sis applies for operators with different spin structures such as o T oot +
the ones contributing tg* y— p°. 3L&np, Wl Wi p, IC(1. PP PP

1+ 1
X 1-x

1
Ciln,0=(2x-1)Q)= —=

62

e gt
B. The large Q2 meson form factor X[ &np,Wal"Wién p, 1, (63

Another example of an exclusive process which can be
treated in the effective theory is the classic case of the eIe(?/'\/ith C a dimensionless Wilson coefficient. As usual, collin-

tromagnetic pion form factor at large space-like momentumear gauge invariance is enforced by the location ofFein

:ransfer. I?orfgenefralltty W? con;ltder in this secﬂc:jn theleleCEqs.(GZ) and(63). There is some argument about the relative
romagnetic form factors for arbitrary mesofseudoscalar size of Eqs(62) and(63) in the literaturd 30,31]. Often it is

P or vectorV), defined as arguedzthat the tail of the wave function is suppressed by an
o _ 2 / extra A 5o/ Q? [30], in which case the operator in E(63)
(P"(PIIILIP(P) =Fe(Q)(Put P, domina?es by two powers d®. An analysis of the tail of
L . el B wave function contributions has not yet been performed in
(V'(p",e")|J,P(p)=G(Q?)i€,app"P %/ the effective theory framework. Therefore, we choose to ig-
nore the operator in Eq62), and below only analyze the
(V' (p'e")|3,IV(p,e))=F1(Q})(e *-&)(p+p'), operator in Eq(63). We emphasize that we do not claim to
) have shown that this is justified by the effective theory power
+F2(Q9)[(e *-ple, counting.
e There are two different structures possible for the operator
+(e-pe, ], (62) in Eq. (63), and we write the general matching for the elec-

tromagnetic current as
whereg?=—Q?,q=p—p’. For simplicity we suppress the
dependence of the form factors on the isospin of the two———
mesons. We will restrict ourselves in the following to the stpere are also gluon operators that can contribute when one or
case of hadrons made up only ofd quarks. The electro-  more of the mesons is a neutral isosinglet, however for simplicity
magnetic current is defined as usual by=qQy,q, with  these are not discussed here.
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4

JV_’éf doj[Co(p,0) To( ), 1) COJ0+ng8=(n”+FV)§l CiJ, (67)
+Cq(u, @) Tg(p, )], 64 \where
wherej=1,2,3,4. The SCET currents are dimension-6 opera- — — ,
ors T= Do, D Xm0 ) X 0,7 X, - (68)
Jg:?n,wlr)ﬁwz;ﬁ,%r'xn,% The spin, flavor, and color structures are

_(FHF/,Q’LZ‘—)_&’AQ: 1 . 3bes b
IeTi=-7(Qu=Quie™ (e )

T5= X0l TXm o Xmosl T 0, _
—(F=T 02— w43, (65

1
where they fields are defined in Eq35). In terms of the r,er;= Z[(Qu+ Qu(1®1+ 2@ )

charge matrixQ, the spin and flavor structure is
+(Qu—Qu)(1®7°+ r*®1)]
Iel’'=(n"+n")(y.0®y"1). (66) X [h@h+Rys@hy®], (69)
The Wilson coefficients<Cy g can be computed in a power
series inag(Q). They are functions ofx, Q, and thew;
which are the sum of momentum labels for gauge invarian
products of collinear fields in the SCET currents. i
The current operators in Eq65) are the most general 1
allowed operators which are gauge invariant, transform the Calp,0))= §( 1- N2
same way ad* under charge conjugation and satisfy current - ¢
and helicity conservation. To see how these properties con- + (w1 — w43,
strain the form of the allowed operators, we begin by noting
that Eq. (45) implies thatl,I'"={1,ys,y/} are the most

while I'; ,=T?I'; , andI"; ,=T?I'} ,. The new Wilson coef-
[icients are

1
Co(p, ) + 4_NCCO(M’wj)

. 1 1

general allowed spin structures. For massless quarks the ¢ wi == 1= — | Cu(w. )+ —— Cn( 1.
electromagnetic and QCD couplings preserve helicity, 2l ) |8 N2 sl ) 4N ol# ')_
whereas{,{1,ys} &y cause the helicity to flip. Thus, only the (10— w49, (70)

structureé, y\'&y is allowed. Current conservatiayt 7,=0,
together withq”=Q(n”—n")/2 implies 7,=(n,+n,). Un-
der charge conjugatiod*— — J* so the same must be true

0,8+
for the SCE.T currents. In the current operators,’charge con-"A few general predictions follow from the form of the
jugation switchesv;— — w4, wy— — w3, andl'—T"’", as can

A operators in Eq(68).° For mesons with spin, only helicity
be seen from Eq(48). Thus, the second term i0og IS conserving form factors appear, and furthermore no off-
r_equwed to make these operators odd under cha_rge CoNjUddagonal(e.g.,P— V) matrix elements are present at leading
tion. The operatorg/ g and the full electromagnetic current 5 der in 10Q2. These results agree with RE27]. We also see
are invariant under a combind®lT transformation. This re-  that the form factors between arbitrary meson states are de-

with similar relations forC; 4, which are also in terms of

quires that the Wilson coefficients are real. ~ termined at leading power by only two hard coefficierts,
The operatorg/y s are responsible for thB,— P, transi-  gnqc,,
tion, while the reverse transitioR,— Py is described by Now consider what factorization tells us about the matrix

similar operators witm«n. Parity invariance requires the element of the operators in E¢68). For the decoupling of
Wilson coefficients of these operators to be identical tousoft and soft gluons we will follow Sec. Il A. Integrating
Cog(w;). Demanding Hermiticity of the electromagnetic cur- out off-shell modes withp?~QA ocp induces soft Wilson
rent in the effective theory then gives the relationlines S, and Sy, while the field redefinitions in Eq(13)
Cog(w1,wy,03,w4)=Cj g wy,0w1,04,w3). Since the coef- make all couplings to usoft gluons explicit in the operators.
ficients are real they must therefore satisfy Together these give
Cog(w1,w2,03,w4) =Co (w2, w1,04,w3).

To compute the matrix elements in the effective theory, it———
is convenient to Fierz transform the four-quark operators in ®These predictions depend on the dominance of the operators in
Eq. (65). This gives Eq. (63) over those in Eq(62).
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P_Z,_g_,_®+ﬂ P_Z,_®_)_g_,ﬂ 5’2\ /P; The required matrix elements can be obtained from EByb.
S = St and(36) with | 7*)= F (7' +i#7?)/\2. The momentum con-
o + > == XL . . . —
S S AT TN serving delta functions fixo;—w,=n-p’'=Q and w,— w3

ps Pa P 2 Ps Ps =n-p=Q, while thew=w;+ w, andw’ = w3+ w, integra-

tions can be done with the delta functions. This leaves
FIG. 2. Tree level matching ontG,g. The QCD graphs on the

left plus the analogous graphs with the current on the bottom quark £2
line are matched onto the collinear operator on the right. F,e=*(Qu— Qd)—’;
Q
=X, Yasi 1S Yax ), ] 1(1
X @] dYTa(Y, ) da(Xo ) by, o),
0 Tty 0
X Dxiyn, Yasil'| SaYaxics, 1 7D

(79
Consider first the color singlet currents-1,2. Here theY’s
and S's all cancel using unitarity of the Wilson lines. Since
EeAﬁ,q andAﬁ’q gluons only interact with fields in theand T1i(xy)=Ci(xQ,yQ,(y—1)Q,(x—1)Q). (76)
n directions respectively, collinear gluons are not exchanged
between then andn quark bilinears. Thus, the matrix ele-

ment between states with particles moving in thand n
directions factors

whereT(x,y) is defined in terms 0€ (w1 ,w,,w3,w,4) as

The coefficientsC;(u,w;), and therefore alsd@;(x,y),
can be obtained at the scale= Q by a matching calculation,
as illustrated in Fig. 2. For this purpose, it is sufficient to
compute the matrix element of the currents with free collin-
ear quarks. To lowest order i(Q), only Cg(w;,u=Q) is

N =/n|(0) (0) 0 o 0) 5y
<n|u71,2|n>_<ann,wlrl,QXn,w4|0><O|Xn,w3F1,QXn,w2|n>' nonvanishing

(72)
. . Co(wj,u=Q)=0,
Next consider the currents; 4, which have color structure (77)
Te®T%in I'j® '] . In this case the usoft and soft gluons do 2
not cancel, but can all be moved into one quark bilinear Cs(w; -M=Q):4Was(Q)w3w4-
using the color identity YS/T2S Y, @ YisITas v =T2
®Yisls Y, T2YIsIs ;. After this rearrangement it is This implies
# ©

ntoract wih he fielgs i one of the quari blinears, Thus,  To(xy.um@y= QL 1 |

. y X, s = = _ .

s 9 |xy I-x(-y)

the matrix elementn| 75 J n) factors, similar to Eq(72). For

color singlet states, however, the matrix element of an octet

operator vanishes identically since Using the asymptotic light-cone pion wave functign.(x)
=6x(1—x) we find agreement with Ref24],

(78)

(nlx{, 1)), 10)y=0. (73

n,w
10y
2

L. 87 2ayQ)[ (1 (X

Thus, the effective theory current 4 do not contribute to Fr=(Q%)= iT fo ax— —
the form factors at any order in perturbation theory. Q

Equation(72) shows that for arbitrary meson states fac- 872 (Q)
torization occurs. It remains to show that the matrix elements —=* L
in Eq. (72) are given by a two-dimensional convolution with Q?
the light-cone meson wave functions. To do this we consider ) ) )
the simple example of the 0" —0~* form factor for the ~The orderag(Q) corrections to Eq(77) can be found in
charged pion. It should be obvious that the same steps ggefs.[32-34.
through for other meson states.

The symmetry of the pion wave functiog(x) under IV. INCLUSIVE PROCESSES
charge conjugationx— 1—Xx) implies that only the7; cur-
rent contributes. Thus,

(79

A. Deep inelastic scattering

DIS is a process which is both simple and rich in physics.

) 2 As such it provides an ideal introduction to inclusive factor-

F.=(Q )=—4f dw;Cy(u,w;) ization in QCD, which we study from an effective field

Q theory point of view in this section. The aim is to prove that
X<7Tr?(p/)|;r(1(,)c)olrl)($1(,)¢)u4|o> to all orders inag and leading order i the DIS forward

scattering amplitude can be written as an integral over hard
coefficients times the parton distribution functions. This is

10 . (0) *
X<O|X“'w3F1X 2|ﬂ?(p)>. (74) done by matching onto local operators in SCET. The proper-

n,
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ties of SCET are used to show that matrix elements of thehis is built into the formalism automatically. To match we

leading local operator can be written as a convolution of awvrite down the most general leading operator in SCET which

hard coefficient with the parton distribution functions for the contains collinear fields moving in the* direction, and en-

proton. force the condition from current conservatlcnﬁ‘T =0.
The first step is to understand the kinematics of the proThis leads to

cess. The hard sca@?= —g? is set by the invariant mass of

the photon, anck=Q?/(2p-q) is the Bjorken variable. In - I 0 5

the Breit frame the momentum of the virtual photongi$ T’”*ﬁ Z Oy’ + )

=Q(n*—n*)/2, and the incoming proton momentumg4 B

=n*n-p/2+n“m3/(2n- p)=n“Q/(2x) + n“xn;/(2Q)  up (N“+nk)(n"+n”)

to terms~ 2/Q2 wherem, is the proton mass. By momen- + Q

tum conservatlon the final state momentunPis=qg*+ p*,

which gives an invariant mas®%=(Q%x)(1-x)+mj.  Wwhere

Values 1-x=Aqcp/Q correspond to the end point region .

where the p?rtlclezs iX are collimated into a jet, whllt_a val- 0(')=31')er‘(3§')(7’+ P )WT§§1',)p,

ues 1-x=Agq-p/Q“ correspond to the resonance region. We P2

will consider the standard OPE region where—x o o

> Aqcp/Q so that the final state has virtuality of ord@f O?=nﬂn,,tr[WT(Gn)“WC?(P+ P OWN(G,) W],

and can be integrated out. In contrast, although the incoming (84)

proton has a large momentum component inrtheirection

it has a small invariant magg’=m ~AQCD, and therefore

S o+ o
i

wherei labels the flavor of the fermions angG~*=[iD*

A
is described by collinear fields in the effective theory. +gAL . IDN+JA, . The Wilson coefficients are dimen-
Consider the spin-averaged cross section for DIS whictsionless funct|ons 0ﬂ>+, P_, Q, and u. As in previous
can be written as sections we can separate the hard coefficients from the long
distance operators by introducing trivial convolutions. This
d*k’  we? LKW o(p.0),  (80) gives
= T o~ 2 g Y 14 p1q 1
2lk’|(27)® sQ* a "
(i) — (i) () (i)
wherek andk’ are the incoming and outgoing lepton mo- O; f doydopCi(e@. o)) Xn, w12 Xno,

menta withq=k’ —k, L*” is the lepton tensor, ans=(p (85)
+k)?. The hadronic tensoV*” can be related to the imagi- g_ g g2
nary part of the DIS forward scattering amplitude: Of=— | dwydw,Ci(w, ,0)t[By, B, ],

where o, = w;* w,, and BY ,=n (G, ,)"* with (G, ,)**
defined in Eq.(39). Next we factor the coupling of usoft
gluons from the collinear fields using the field redefinitions
1 . in Eq. (13). The operatoO{" has the structure in E¢31) so
TMV(p,q)=§ %n (p|TM,,(q)|p>, (82) the Y’s cancel trivially, while forOjg we find

1
WMV(p!q) :glmT,uv(pvq)v

B“=Y,BAOy!, (86)

T, =ifd4zéq'ZTJ 2)J,(0)],
wA ) [u(2)3,(0)] and the factors of cancel in the trace. It is easy to see that

soft gluons also decouple using E@.7) or by noting that

where for an electromagnetic curref)f we can write there is no nontrivial soft gauge invariant way of adding soft

Wilson linesS, to Of" or 0. Under charge conjugation the
TP @) =| —gu,+ 9.9 ) T1(x,Q3?) full theory electromagnetic curredt,— —J, and therefore
the operatoﬂ' *)T . This implies relations for the effec-

tive theory Wllson coefﬂuents since the operatﬁ}“é) must

p,+ Tz(x Q%). (82 also respect this symmetry. Thus charge conjugation gives

e

As explained above, the |ntermed|ate hadronic state has 0 i) 0
invariant mas$%~ Q2. Therefore, one can perform an OPE doydw,Ci (@, - ) xp, wlﬁxf‘ ®2
and matchT#*(q) onto operators in SCET. All fields in the
resulting operators are evaluated at the same residual space- © 0 =0 (.)
time point, however, the presence of Wilson lines and label == | do1dwCi (0,0 ) Xp" 0 X0 -0,
momenta make the operators nonlocal along a particular
light cone direction. These nonlocal operators sum the infi- _ N0 (i)
nite set of purely local operators of a given twist, however _f dwydw[ = C (=@ 0-)1xnu,MXnw, (87
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In the second line we changed varialbe— —w, and w,  tensor structures we find that the delta functions in (B8)

— —w, Which takesw, ——w, andw_—w_. Thus, to all setw,=*2Qé&/x andw_=0. Since charge conjugation re-

orders in  perturbation  theory C](i)(_w+ w_)= lates negative and positive valueswf , only coefficients,

—C(w. ,w_). This relates the Wilson coefficients for Cj(w..0), with positivew ., are needed in the formulas for

quarks and anti-quarks. Note that the above results are df!S. Therefore we define

;rc;(rjri;;%ndent of the collinear hadron on which DIS is per- H,(2)=C;(2Qz,0Q, 1), (89)
Next we take the matrix element between proton stateswhere here we have made the dependenc®@md u ex-

Using the definitions of the nonperturbative matrix elementslicit. Combining this with Egs(82), (83), (85), and (38),

given in Sec. Il C, and picking out the coefficients of the gives the final result

11 . —
T1<x,Q2)=—;fodf[H&"(g)[fup<§)+n,p<f>]+z—iH%(é)fg,p@)},
(89)
4x (1 ) . —
T2<x,Q2>=Q—X2 OdeleS) 5)—H§'> 5) [fup<§>+fi,p<§>]+2—i{4H% 5)—%(5) fg,p<§)],

where a sum over is implicit. The hadronic tensor compo- rection and the incoming antiproton to move in tifedirec-
nentsW; (x,Q%) =1mT, (x,Q?)/7 and therefore are deter- tion. The hard scales in the DY process &® and the in-
mined by the imaginary part of the Wilson coefficients. The, 4riant mass of the collidingﬁpairs=(p+ﬁ)2. The lepton
Wilson coefficients are dimensionless and therefore can Onl}ﬁair has an invariant mas3?, and the invariant mass of the
have as(Q)In(x/Q) dependence oR. This reproduces the o1 hadronic state is
Bjorken scaling of the structure functions.

Finally, consider the tree level matching onto the Wilson

coefficients shown in Fig. 3. From these graphs only the 2=Q2(1+£— 11 91)
quark coefficient functioné:}') can be nonzero and we find Px X1 Xp)'
ImH{)(2)=-Q?78(z—1), IMHP=0, (90  where
whereQ; is the charge of partoh The vanishing of Irh{)
at tree level reproduces the Callan-Gross relawep/W, 5 ) )
=Q%/(4x%). T:Q—, X1= Q . Xp= 8 . (92)
S 2p-q 2p-q

B. Drell-Yan, pp—I*1—X

Next we will extend the DIS analysis to the Drell-Yan we are interested in the kinematic region wheée~Q?,
(DY) processpp—1*1~X. Specifically we consider th@2  which implies that bottx; andx, are far away from 1. As
distribution, whereQ? is the invariant mass of the lepton approaches 1 the invariant mass becomes too small for the
pair. The Drell-Yan process is more complicated than DIStreatment given here to apply. However, the effective theory
because one has two hadrons in the initial state. In the centectan be used to deal with this region as well. It is also pos-
of-mass frame the incoming proton and anti-proton move irsible to study theg, distribution, but this again requires a
opposite lightlike directions, and to prove factorization wegeneralization of the discussion given below.
use the fact that collinear modes in different lightlike direc- The spin averaged cross section for the Drell-Yan process
tions can only couple to each other in external operators iis
SCET. We take the incoming proton to move in tié di-

v \qn q/' \ v
&\ K ' t 327202 A%, dk,
—_— dO':—4L#VW”V 3 0 3 N (93)
. . , B,/;U(Of,\\f Q% (2m)%(2K9) (27m)3(2K0)

FIG. 3. Tree level matching onto the opera®)’ in DIS. where
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1 s _ over final hadron spins is included in the sum o¥@r Inte-
W=7 > 2 (2m)*s(p+p—g—py) grating Eq.(93) over the emission angles of the final leptons
spins X one obtains

X (pplI#(0)[X)(X|3*(0)|pp)

1
-2 >

spins

. o . do 2a% 1 2 S0 o5
Jd4Xe_'q-X<pp|J“(X)JV(O)|pp)_ d_Qz_3stZspins<pp| lpp), (95)

(99

where we have neglected the lepton masses and defined the
The sum over spins refers to the initial hadron sggthe sum  operator

d*q

(27)

As we discussed above in the region of phase space under consid@%ﬁi@?, so these hard fluctuations can be integrated

out. Operationally this means we matdhonto local operators in the effective theory. We would like to show that the minimal
set of order* operators that contribute to the Drell-Yan process are

Q%)= [ L oaf)a(a- @) [ dixe 94(3,(0) (96

L1 N I =
e [ Qoo QU 2 I, a2, 1- = [ 4o Cagton QUL 2, TTH B, 55

1 v ) 0) 1 ” nwy B Mg
_a dwngq(wi,Q)Tr[Bn'wle ][XE%V‘XFM]JF& dwngg(wi,Q)Tr[Bn’wlBV ]Tr[l%n’wsBB 1, (97)

where the powers d@ are included to make the coefficients wherea,b are quark colorsA,B are gluon colors, and, 8
dimensionless. The operators displayed in By) are just are spinor indices for the quarkﬁ.itf;ﬁ% is some tensor that
products of the operators that occurred in DIS, so for thesgonnects the indices in an arbitrary way. In the contraction of
terms the decoupling of soft and usoft gluons occurs in & j andA,B there are two possible ways to make an overall
straightforward manner. To show that the operators in Eqeg|or singlet, one where both the quarks and gluons are in a

(97) are the most general set f?e?ded we must show that glpor singlet, and another where both the quarks and gluons
other operators that are ordef either reduce to these or e jn 3 color octet. We will discuss both of these possibili-

vanish between the matrix elements in Ep). For instance, ties in turn
7 X >k ’ )
A" operators also exist wherel, , field is contracted with In the color singlet case, including the soft and ultrasoft

a Bﬁw, field, or the colqr stru;tures of the operators in Eq.\wiison lines is trivial, since using Eqél7), (19), and (A6)
(97) could be arranged in a different way. we see that they cancel due to unitarity/orthogonality of the
We now give a general argument for why we can alwaysarious Wilson lines in the fundamental or adjoint represen-

rewrite an arbitrary operator in the form of E§7) or show  (4iions. Thus, there are no soft, usoft, or collinear interac-
that it does not contribute to the DY process. All operators.. — . .
tions that connect th@ and then fields. As in previous

relevant for the DY process contain four ordercollinear - ; . . .

fields chosen frome, . & B . or B . Furthemore sections, this leads to a factorization of the matrix element in
o 2Py Snpe Enpe Tnpr TR 2 EQ. (98), namely

two must move in directiom and two in the directiom

(other possibilities end up vanishing by baryon number con- (0a,a (0)b,B 1 12(0)A, 1 15(0)B, v\ A ab;AB
servatign or because thzy involvegayset ())/f fields between (Pol X0, "X, |p”><pﬁl%”""3 Bnos [P A uvias
physical states that cannot possibly form a color singlet op- (99
erato). For operators with 4 quark fields, Fierz transforma—Since the proton spins are summed over, we can \itth
tions can always be made to arrange the fields such that th0ﬁ$e help of Eq.(46)] '

in the same direction sit in the same bilinear. Using as an '
example the operator with two collinear quarks in thdi-
rections and two gluons in thedirection and leaving out the
soft Wilson lines for the moment, the most general matrix
element is

(Pl X X Py o 870(1) g g Pl Xl TR ),
(100

so that spin and color are summed over in the matrix ele-

—Taa b PR : b;AB ment. Similarly the antiproton matrix element can be simpli-
<pnmeﬁ,ngn,gZB%ﬁ38Rw4|pnpmsz;aﬁ’ (98 fied to y P P
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1 12(0)A, 1 5(0)B, v AB~ 1LY/ (0) 15 (0)N, w47 color singlet states still vanishes so the proof for the 4 gluon
<pml%nws %w [P g (pﬁTr[&wsBa 1pw). operatoréJ also goes through in an identhaI way. ’
(101 Thus we have shown that the matrix element of an opera-
for with an arbitrary contraction of indices either vanishes or
can be written in terms of a product of a matrix element
which is related to a proton PDF and a matrix element which
is related to an antiproton PDF as in the example in Eq.
(102). This is the result we want. To see how the final for-

Here we used the fact that the matrix element is symmetric i
u andv, and that only the perpendicular indgxof the field
B* is order\. Using Eqs(100) and(102) the original matrix
element in Eq(98) can be written as

{2 (DB pAR By Ty A abiAB mulas are derived, note that we can write the matrix element
(PaPrlXn o, Xno, nwg ”"”4|p”pﬁ> wviap of Eq. (97) in the form of a convolution
_ 0)v 0 7,0) —_
T AR (Pl LB B 1 b 1

2 <pnaﬂw|pn5#):;) fdwica,b(wi)

- 4 spins
X(Pal X, X, Pr), (102 |

. . . . X<pnloﬁ(w+yw—)|pn>
where the trace oA is over spin and color, and just gives an — _
overall constant. The final result in E(L02) is identical to X (Pl O(@’ ,@” )| pp), (105
the matrix element of the second operator in By).

If each of then andn field bilinears involve color octet Where w.=w;* w, and ', = w3+ w,. The operators here
structures, then the soft and usoft Wilson lines do not cancefre the same as in DIS, with= (i) for the quark operator,
since they do not commute with the &) generators. How- anda=g for the gluon operator
ever, one can use the color identity

. 1—, #h
viSiT*SYaw YiSiTrs Y, = X 5, v, YislTrs v, vis! O+ ) =G| Xty 5 Xt
(103 (108
where eachr™, S, andY factor is in the appropriate repre- 0%w, ,0_)=— itr[B" B™2].
n 2 Moy~ p

sentation of the color group. Equatigh03 moves all the

soft and ultrasoft interactions between either ther then’ Apart from the dependence on the labels, the Wilson coeffi-
collinear fields. Thus, again the fields in one bilinear cannotiants in Eq.(105 can also depend on the renormalization
be contracted with fields in the other bilinear and the matrixpoinw and the kinematic variabl®. Using Eq.(38) we see
element factors. However this time the factored matrix ele-that the matrix elements in EG106) seto =w’ =0 and

ment vanishes. For the example discussed above,
P w, =257, o', =2\/sz, wherez; andz, are the convolu-

O)aC (0B85 v _ g 10 tion variables. Since all kinematic variables aside frQrh
(PolXn,o T Xn,or[P) =0, (104 are integrated over in Eq96) the only other variable that

since a color octet operator vanishes between color singlelan appear in the Wilson coefficient is the center of mass
states. The same holds true for the matrix element of an OCt%tnergy which produces the' 1~ pair, namely $=o , o’
1 B shads S

gluon operator. . . ,
An identical proof of decoupling goes through for the Thus, the Vyll_son coeff|C|e.nt.s only depend an. o
=4sz,z,. Defining new coefficients

case of 4 quarks, where we again either have two color sin-
glet or twg color octeh andn b|I|nears._VV.|th 4 gluon fields HaP(z,2,) = C2(w, ', =452,2,,Q, 1) (107)
we can either have the two and twon fields coupled as

singlets, or coupled in the same higher representdfor8,  we can replace the matrix elements in Et06) with parton
{10, 10}, or 27). In the latter case the matrix element betweendistribution functions using Eq38) to obtain

1 - . — 111 o _ _
2 > {PaPalW|papm) = fodzldzz[_H(')(')(_2122)[fi/p(21)fj/322)+fi/p(Zl)fJ/F(ZZ)]

spins T

o _ _ z _
+HOO(Z,2)[f5(20) F1ip(22) + Firp(20) Fi/p(22) 1+ ﬁH(')9(2122)fi/p(Zl)fg/E(Zz)
T

22 . — Zl .
- ﬁ_ HO9( = 212,) fip(20) f gip(22) + 2—\/; HOU)(242,) f gy p(20) T}/ 22)

Z . — YAVA
— L HI(= 212,) o 20) Fin(22) + 2 HIY(202,) Foy(20) Fgr(22) | - (108
2\/; 41
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P reactiony* p— y*)p, where the incoming photon is highly
virtual, the final photon is either off-shell or real, and
the incoming and outgoing protons have different momenta.
The reason we have included this process in the inclusive
section is that DVCS has the remarkable property that

> the nonperturbative physics is described by a so called

FIG. 4. Tree level matching onto the operators in the Drell-vannon-forward parton distribution functiodNFPDP. The

NFPDF is a more general distribution function that reduces

to the standard parton distribution functiofamiliar from

DIS) for some values of the momentum fraction, and

This is the final convolution formulas for the Drell-Yan pro- behaves like a lightcone wave functigfamiliar from the

cess and is valid to all orders g, and leading order in the pion examples for other values. Deeply virtual

power expansion. At tree level the matching calculationCompton scattering was first studied in perturbative QCD in
shown in Fig. 4 yields zero for all the Wilson coefficients Refs.[36—-38, and proofs of factorization to all orders in
except perturbation theory were later presented in RE39,40. In
addition properties of NFPDFs were studied in Ref6].
Here we present a proof of factorization for DVCS based on
o 27T
HOO(=212))= - —=Qfa(r-2zz,), (109  SCET. _ -
3 As with the previous proofs it is important to understand
the kinematics of the process. We take the incoming

N . - (yg  Proton and photon momenta to e and g respectively,
where Q; is the charge of parton The coefficientsH with x=Q2(2p-q) and q2:_Q2>AéCD' The out-

(£22;) and H9)(+z,7,) start at orderag(Q), while
H®OO(z,2,) andH99(z,2,) start at orden?(Q).

process.

going proton and photon momentum a@ and q'
respectively, with @q’?=—Q?. It is convenient to define
a paramete¢=1—n-p’/n-p, which measures the change
C. Deeply virtual compton scattering, y*p—y*’p’ to the proton’s large momentum. Working in the Breit
Next we examine deeply virtual Compton scatteringframe and neglecting contributions that a@XéCD/Q we
(DVCS). To be more precise we examine the exclusivehave

Label Momenta Residual Momenta
q“= 9(Wt—nﬂ) +0
2
Q X _
p’= Z(n" +Em,2)(n“+n“)
p'H= g(1—g)nf*+ " +i[nﬁ(1—g)nﬂ+{nﬁ(1+g)—t}ﬁq
2X pl 2Q P
X _
o= %()_é( 1l gﬁl_piﬂ + ogLEmpn (= dmp)rv]

(110

Here the label momenta are ord@ror Q\, while the re-  1—x>Aqcp/Q the intermediate state can be integrated out.
sidual momenta are ord€&x? and depend orp>2=m,2) and We will proceed in a manner analogous to the analysis
t=(p'—p)®=(p;°—¢*>m))/(1—-¢), which are both for DIS. The amplitude(up to an overall momentum
~AéCD. The invariant mass of the intermediate hadronicconservings-function) is given by a time ordered product of
state is p+q)°~Q?(1—x)/x just like DIS, so for currents:
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T,,(p.0,0")=(p",¢’|T,(a.0")|p,o)

Tw(q,q’):if d4zda+a’)-z2

XT[J,(—2/2)3,(212)]. (112
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where the ellipses are spin dependent terms and the dis-
played operators are

. - [ [P — .
Of) =0, W5 CU(P, PW!el),

(115

This time ordered product is contracted with a lepton tensor

to obtain the amplitude. Now current conservation requires O?

q“T,,=d'"T,,=0, however the DVCY ,, is not symmet-
ric under,m—w For electromagnetic currends, we have

a,d,
T,U.V: - ( g,u.v_ qﬂq, Tl

a.p-q q,p-q’

+(p:u_ - ’ - ' TZ
q-q q-q

, q,p-q’

+1,10Ta+1,| p— - T,

+(pﬂ— q"p',q | Tet (112
q-q

where the functionsT;=T;(x,{,Q% 1), and the vectors ,

=q,— q5+p{(q2—q’2+t)/(2p-q) and |,=q,—q,
+p.(Q'°—q°+1)/(2p-q’) are defined so thay-1=q"-I’

NN AWH(G)MPWCE(P.  P)WT(G,) W]

We have suppressed the dependence of the Wilson coeffi-

cientsC(P, ,P_) onQ, «, andu. The form of the operators

in Eq. (115 looks the same as the DIS operators given in Eq.
(84), however the operators here are more general because
the Wilson coefficients depend an In the limit a—1 the
DVCS operators reduce to the DIS operators. However, since
the field structure of the DVCS operators is identical to DIS
several results follow immediately. For instance, the steps
which factorize soft and usoft gluons and leave fields with
superscript (0) are the same and are not repeated here:

o) —x 0> A

X0 5P Py

no'

(116

09=—t[BCYP, ,P_) (B ), 1.

=0. In Eq.(112) and below the ellipses denote spin depen-The restrictions on the DVCS Wilson coefficients from
dent terms. For simplicity we will show how factorization is charge conjugation are the same as in E®7),

achieved for the spin independent contributions shown in E
(112 with the understanding that it is no more difficult to

also include the other terms.
It is convenient to define a parametec@<1, by q'?

=—aQ? The DIS hadronic time-ordered product is ob-

tained in the limitp’ —p, wherea— 1 and{—0. From Eq.
(110 we see that

t ms

Q)

(=xX(1-a)+ 0| = (113

so these parameters are not independent. Since the interngelta functions in Eq(43) then setw =

diate hadronic state has invariant mé¥€Q?) we can match
T,, onto operators in SCET. Requiring“T,,=0 and

v
q'"T,,=0 for the orderQ label momenta leads to

. g 5 Of
To——7 o)+ —
Q( 'Q
+£(nﬂ+ﬁﬂ)(anV+HV) o<i>+o—g +e-
Q °Q ’

(114

% (P+,77 )=—Cj(— P, ,P_), however becausep#p’

thls is not S|mply a relation between quark and anti-quark
Wilson coefficients. The way in which DVCS is unique is
that the matrix elements involve nucleon states with different
momenta. This is what leads to results in terms of non-
forward parton distribution functions.
The definition of the NFPDFs is given in E¢3), and

can be used along with the relations above to obtain expres-
sions for theT; in terms of the NFPDFs. Before we give this
result we note that the Wilson coefficients depend on the

operatorS‘J?t which become the variables.. after introduc-
ing trivial convolutions and th@(n,wi fields in Eq.(35). The

—Q¢/Ix andw, =
*Q(2&—¢)/x, where ¢ is the convolution variable. Note
that {/x=1—«, and just like DIS it is the combinatio&/x
which appears. Since charge conjugation relates the Wilson
coefficients forw ., >0 andw, <0 it is convenient to define

HJ(§/X)EC](Q(2§/X—1+a),Q(a—1),Q,a,,u),

117

where in the last three arguments we have made the depen-
dence onQ, «, and u explicit. Combining Eqs(43), (116),
and (117 then gives
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e(o’,o) (1 , , — 1
T=- 25 fodé[H&”(5)[fz<§;t>+fg<g;t>]+57%%(5)?%(5;0

X

+...,

x2(1+ )

3

1 . . ) —
6(0’,o)f0deZ(lJra)HS)(;) —H&')(é)}[ﬂ(&:tﬁf}(f:t)]

1 ¢ ¢ ,
+ oy 20+ MY Sl =H| S FUED [+ (118

X X

T3:0, T4:0, TSZO,

which are the final convolution results valid to all orders in more general processes than previously considered. Further-
as and leading order in the power expansion. The structurenore, the factorization proofs presented are perhaps simpler
functionsT; 4 5 vanish since the vectot$=1'#=0 at lead- than those previously givefcertainly they are more con-
ing order in the power expansion. The terms with ellipses areise. We believe that within the confines of the SCET, more
for the spin flip terms and involve the NFPDE defined in  difficult, and unresolved problems can be addressed, such as
Eq. (43). The results for these terms have a similar form topower corrections in cases without an OPE, and proofs of
those in Eq.(118). factorization for more complex processes.
Finally we match at tree level. The tree level diagram in
QCD is the same as in Fig. 3 except the outgoing photon and ACKNOWLEDGMENTS
proton have momentg’ andp’ respectively. Only the quark
Wilson coefficients are nonzero at tree level. We find This work was supported in part by the Department of
. Energy under the grant DOE-FG03-97ER40546.
C(l')(w+ yo_,Q,a)
20 20 ) APPENDIX: FACTORIZATION OF SOFT

:eZQi2 AND COLLINEAR n AND n MODES

2Q0tw,—~w_. 2Q0—w,—w_
This appendix discusses the simultaneous factorization of
(;(Zi)(w+ ,w_,Q,a)=0, (119 the soft \,\,\) modes,n-collinear (\?,1\) modes, and
n-collinear (172 \) modes. These three classes of modes
which gives cannot interact with each other in a local manner and there-
fore do not couple through the SCET Lagrangian. However,
H(i)(g) _ —e2Q-2( 1 1 ) they can couple in a gauge invariant way through external
Tlx "N1-¢é/x 1+ (E-0)Ix operators and currents. These interactions in currents are
(120 built up by integrating out off-shell fluctuations witp?
>(QM\)?. For the special case of factorization of soft form
n-collinear modes this was shown in detail in the Appendix
of Ref.[12]. There it was shown that integrating out certain
Since§)=0 at tree level, DVCS also obeys a Callan-GrossModes with off-shellnesp®~Q*\ causes the Wilson lines
relation. W, and S, to appear in operators in a gauge invariant way.
Here we will extend this approach to the factorization of
modes for cases involving two classes of collinear particles.
For simplicity we restrict ourselves to the case where the
What we hope we have demonstrated here is the power @figinal operators involve only collinear quark or gluon
effective field techniques in the context of factorization for fields. This type of factorization was used for the pion form
hard scattering processes. The explicit separation of moddactor example discussed in Sec. Ill B and the Drell-Yan pro-
and the implementation of gauge invariance for these mode&ess presented in Sec. IV B.
greatly simplifies seemingly complex problems. What is nor- The basic idea is to first match onto a Lagrangian with
mally accomplished by diagrammatic Ward identities and in-couplings between on-shell and off-shell modes that give all
duction techniques now falls out as a consequence of therder \° diagrams. The off-shell modgsvith p*>(Q\)?]
gauge symmetry of operators in a low energy soft-collinea€an then be integrated out, so that all operators are expressed
effective theory. entirely in terms of the on-shell degrees of freedom. In Table
As we have emphasized, the factorization formulas del, @ summary is given of the three types of off-shell momenta
rived in this paper are not new. The purpose here was simplthat are induced by adding soft;collinear, andn-collinear
to extend the formalism introduced j8—13] to cases with momenta. For each type auxiliary quark and gluon fields are
back-to-back collinear particles, and apply these ideas tdefined, and for convenience momentum labels are sup-

H‘;’(g

=0.

V. CONCLUSION
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TABLE |. Summary of the on-shell modes discussed in Sec. Il A, and the auxiliary fields introduced to
represent the off-shell fluctuations that are integrated out in this appendix.

Type Momenté+,—, 1) Fields Wilson lines

on-shell collineam ph~(\2,1,\) Eny A W,
collinearn’ ps~(1,\%\) & AL Wr

soft a*~(N,NN) s AS Sn Sy

usoft ki~ (N2 N2 \2) Qus Al Yo, Yo

off-shell p=pi+p2 p#~(1,1\) 4//LQ, Axg Xg(, Xi

p:p1+q pHN()\vlv)\) l/jnv An# Wn! Sn

p=pz+q P~ (1A \) g, AR WX, sk

pressed in this section. For example, the quarks are cre- Lagrangians and construction of their solutions are very
ated by the interaction of am-collinear quark with an similar to the case presented in REE2], to which we refer
n-collinear gluon, whereas thg- quarks are created when a for a more detailed presentation.

collinear quarké, is knocked off-shell by a soft gluon. For From Table | we see that addingand n-collinear mo-

the field /o we write o= Yo+ l!fng, whereyQ= %mﬁ/jQ and menta givegp?~Q?, whereas adding soft and collinear mo-
lﬂ%: %WWQ- Then we havdnpf?:ﬁp%:o andmﬂh=ﬁzﬂﬁ— menta glvesp2~Q2)\.. Loqps that are QOmlnated by off—shell
=0. Various Wilson lines are also required and are listed "{nomentq only modify Wilson coefﬁuents and not the infra-
the table. It is convenient to define a generic Wilson line"®d Physics. Therefore, to determine the structure of SCET

L[a,A] along directiona with field A by the solution of fields in an operator it is sufficient to integrate out the off-
shell fields at tree level. For convenience we can integrate

(a-P+ga-A)L[a,A]=0. (A1) out the fluctuations starting with those with the largest off-

] ) ) ] ) shellness. Recall that we only wish to consider off-shell
With_this notation the on-shell Wilson lines ar&/,  pyropagators connected to external operators. A subtlety for
=L[n,Aql, We=L[nAql, S;=L[n,Aq], andS=L[n,As].  quarks is that distinct auxiliary fields are needed for the in-
(Recall_ that the su_bscrip_ts & andS mean different thir_19$. coming and outgoing off-shell propagators. However, the so-
The Wilson lines involving off-shell fields that we will re- |ytion for the outgoing field turns out to be the conjugate of
quire are the incoming field, so to avoid a proliferation of notation we
simply denote the outgoing terms in the Lagrangian by
+H.c., and present a solution for the incoming fields. Fi-
nally, note that for the gluon field,, the fieldsA,, Ay, AX,
A%, andAg appear as background fields while for the fields

S'=L[n,AX+A], S;(—= L[F,A§+ Al ?ffldandAﬁ it is Ay, Ay, andAq that appear as background

ields.

Below we discuss the results which allow us to integrate out The terms in the auxiliary Lagrangian involving tipé
off-shell fluctuations. The structure of the auxiliary ~Q? fields are

Xo=L[NAq+tAX+A],  Xp=L[nAg+AX+A],

WX=L[n,AX+A,], WX=L[n,Ax+AG], (A2)

n=

h nh
L30= URAN- (A AT+ AD5 (U En) + YR[N- P+gn- (Ag+ AT+ A 15 4
_ 1 , 1
+(n—n)+H.c+ Ftl’{[l D&+gAL.iDG+gAS] + a—tr{[ng Agul?t, (A3)
g Q
whereiDg= %n"[77+ gn- (A§+An)]+ InH[P+gn- (A%-i- Ar)]. The solutions of the equations of motion for these modes are

YQ=(Xa—1)(gh+ &), 2= (Xo— D+ &), XX =WWAT (A4)

(In addition to the last equation a constraint on the componems, andn- AQZaIso comes from the gauge fixing term, but
will not be needed.The terms in the auxiliary Lagrangian involving tpé~ Q?\ fields are[12]
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n nh _
'C;(uxzai_ngn' (A§+As)§§n+%[n'P+gn'(A?1(+As)]§ $h+(n‘_>n)+H-C-

1 MM X iy v Xvq2 1 Y% X 92 N
+2_gztr{[|an+gAn ADnxt9A, ] }+a_ntr{[|DanAn,u] }"'(an), (A5)
|
where iD= in#[P+gn-A,]+in*[n-P+gn-A;]. The I (Ent Yh+ DT (&t vt D). (A7)

solutions for these modes are
Integrating out thep?~Q? fluctuations with Eq.(A4) and
inserting a hard Wilson coefficie@ which depends on label
(A6)  operators turns EqA7) into

Ph=(S-1)&,, SWri=w,S],

L X . Y. T
Ui=(S- D& S Wa=WqST.

Tyt L
+ X-CI'X +
Together Eqs(A4) and (A6) can be used at leading order to (Gt )X (ént v
eliminate the fields representing off-shell fluctuations with = (£ + IHWCTWET (e ub). A8
p?>(Q\)?2. For collinear quarks this leads to the rules in Eq. (&nt ¥n)Wn n (6t d) (A8)

(17). Note that we did not need to use the gauge fixing termrq construct the first operator we used the equations of mo-
to resolve the ambiguity in the implicit solution for the tion for ¢S andzp%, and in the second operator we used the

n-Aandn-A auxillary fields. equation of motion identity for the gluons K, andX;. In

As an iIIustr'atio'n of these resultg, we diicus§ th? SOft ‘similar fashion we can now integrate out th&~Q2\
collinear factorization for the production ofcgdn pair with  fiyctuations with Eq(A6) to give

a large invariant mas®?2. This process is mediated in the
full theory by the electromagnetic curredt=yI'y (I a ESSWICT WA S =6 W, SICISiWi. (A9)
color singlej. This current will match onto a current in

SCET that is built entirely out of on-shell fields. Using the The operator on the right is the final result used in &4),
results in this appendix this current can be systematicallyand is soft, collinear, and usoft gauge invariant. It should be
derived. To start, the quark field ihmatches ont@, plus all  obvious from this example how the equations of motion in
possible fields which the auxiliary Lagrangian can createEgs.(A4) and (A6) can be used to determine the factorized
starting fromé&,, so form of a general leading order operator.
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