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Geometric scaling and QCD evolution

J. Kwieciński
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We study the impact of the QCD Dokshitzer-Gribov-Lipatov-Altarelli-Parisi~DGLAP! evolution on the
geometric scaling of gluon distributions that is expected to hold at smallx within the saturation models. With
this aim we solve the DGLAP evolution equations with the initial conditions provided along the critical line
Q25Qs

2(x) with Qs
2(x);x2l and satisfying geometric scaling. Both fixed and running coupling cases are

studied. We show that in the fixed coupling case the geometric scaling at lowx is stable against the DGLAP
evolution for sufficiently large values of the parameterl, and in the double logarithmic approximation of the
DGLAP evolution this happens forl>4Ncas /p. In the running coupling case geometric scaling is found to
be approximately preserved at very smallx. The residual geometric scaling violation in this case can be
approximately factored out and the corresponding form factor controlling this violation is found.

DOI: 10.1103/PhysRevD.66.014013 PACS number~s!: 12.38.Bx
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I. INTRODUCTION

Perturbative QCD predicts a very strong power-law r
of the gluon densityxg(x,Q2) in the limit x→0, where, as
usual,x denotes the momentum fraction carried by the glu
andQ2 is the scale at which the distribution is probed. Th
strong rise can eventually violate unitarity and so it has to
tamed by screening effects. Those screening effects are
vided by multiple parton interactions which lead to the no
linear terms in the Balitski�-Fadin-Kuraev-Lipatov~BFKL!
and/or Dokshitzer-Gribov-Lipatov-Attarelli-Parissi~DG-
LAP! equations@1–13#. These nonlinear terms reduce th
growth of gluon distributions and generate instead par
saturation at sufficiently small values ofx and/orQ2 @1–20#.

The increase of the gluon distribution and emergence
the saturation effects imply similar properties of the meas
able quantities which are driven by the gluon, such as
deep inelastic structure functionF2(x,Q2). This can be most
clearly seen in the dipole picture of deep inelastic scatte
in which the virtual photon-proton total cross secti
sg* p(x,Q2) @sg* p(x,Q2);F2(x,Q2)/Q2)] is linked with
the cross sectionsdp(x,r ) describing the interaction of th
qq̄ color dipole with the proton, wherer denotes the trans
verse size of the dipole@3,21–23#. The dipole-proton cross
section is determined by the gluon distribution in the pro
and in leading order approximation we just havesdp(x,r )
;as(1/r 2)r 2xg(x,1/r 2). An increase and/or saturation of th
gluon distribution in the smallx limit implies a similar in-
crease and/or saturation of the dipole-proton cross sec
and of the cross sectionsg* p(x,Q2).

The successful description of all inclusive and diffracti
deep inelastic data at the DESY of collider HERA by t
saturation model@22# suggests that the screening effec
might become important in the energy regime probed
present colliders. The important property of the dipole cr
section which holds in this model is its geometric scalin
0556-2821/2002/66~1!/014013~9!/$20.00 66 0140
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i.e., dependence upon the single variablet5r 2Qs
2(x), where

Qs(x) is the saturation scale. This leads to the geome
scaling of sg* p(x,Q2) itself, i.e., sg* p(x,Q2)
5 f „Q2/Qs

2(x)…, which is well supported by the experiment
data from HERA@24#. Geometric scaling of the dipole cros
section should imply similar scaling of the quanti
as(Q

2)xg(x,Q2)/Q2. This type of scaling is also found to b
an intrinsic property of the nonlinear evolution equatio
@6,8,11–20#. It turns out that for equations of the type

]f~x,k!

] ln~1/x!
5āsK ^ f2āsf

2~x,k!,

S ās[
Ncas

p D , ~1!

where K is a linear evolution kernel~for example of the
BFKL type!, there exists a region inx andk space such tha

f~x,k!5f„Qs
2~x!/k2

… for k2,Qs
2~x!. ~2!

For example in the case of the Balitsky-Kovchegov equat
@11,12#, where K is the BFKL kernel, the saturation sca
Qs

2(x) has been found to have a general powerlike dep
dence onx, Qs

2(x)5Q0
2x2l. The coefficientl, which is ap-

proximately equal to 4ās in this case, is then a universa
quantity and does not depend on the initial conditions for
evolution @16–20#.

The main purpose of this paper is to analyze poss
compatibility of this scaling with the DGLAP evolution
equations. It is expected that the nonlinear shadowing eff
should be weak in the region ‘‘to the right’’ of the critica
line defined by the saturation scaleQs

2(x), i.e., for Q2

.Qs
2(x) ~see Fig. 1!. In order to study the possible impact o

the DGLAP evolution we shall therefore assume geome
scaling parametrization along the critical line and inspect
structure of the solution of the DGLAP equation with tho
©2002 The American Physical Society13-1
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initial conditions. This way of providing the initial condi
tions along the critical lineQ25Qs

2(x) rather than atQ2

5Q0
2 with x the independent reference scaleQ0

2 is the char-
acteristic feature of the saturation effects@1#.

The content of our paper is as follows. In the next sect
we give a semianalytical insight into the solution of the D
LAP equation with the starting distributions provided alo
the critical line. We study separately the fixed and runn
coupling cases. In Sec. III we present a numerical analysi
our solutions and finally in Sec. IV we give our conclusion

II. SOLUTION OF THE DGLAP EQUATIONS FROM THE
STARTING DISTRIBUTIONS PROVIDED ALONG

THE CRITICAL LINE

We wish to understand the possible effects of the DGL
evolution on the geometric scaling at lowx. This scaling
means that certain quantities controlling deep inelastic s
tering at lowx, like the dipole-proton cross sectionsdp(x,r
51/Q) or the virtual photon-proton cross sectionsg* p ,
which are in principle functions of two variables, depe
upon the single variableQ/Qs(x). The saturation scale
Qs(x), which also specifies the critical line, increases w
decreasingx:

Qs
2~x!5Q0

2x2l. ~3!

Let us assume these following.
~1! For Q2,Qs

2(x) the linear evolution is strongly per
turbed by nonlinear effects which generate geometric sca
for the dipole cross sectionsdp(x,r 51/Q) and for related
quantities.

~2! Geometric scaling for the dipole cross section impl
geometric scaling foras(Q

2)xg(x,Q2)/Q2, whereg(x,Q2)
denotes the gluon distribution. This follows from the leadi
order~LO! relation between the dipole cross section and
gluon distribution, i.e.,s(x,r 2);r 2as(1/r 2)xg(x,1/r 2).

FIG. 1. Phase diagram in (ln 1/x, ln Q/L) space. Thick line is the
critical line Q25Qs

2(x) which divides the saturation scaling regim
~to the left! and the linear DGLAP regime~to the right!.
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~3! Geometric scaling foras(Q
2)xg(x,Q2)/Q2 holds at

the boundaryQ25Qs
2(x).

~4! For Q2.Qs
2(x) the nonlinear screening effects can

neglected and evolution of parton densities is governed
the DGLAP equations.

We wish to study possible effects of the DGLAP evol
tion upon the geometric scaling in the regionQ2.Qs

2(x)
after solving the linear DGLAP evolution equations starti
from the gluon distribution satisfying this scaling and d
fined along the critical lineQs

2(x) ~see point 3 above!. We
shall discuss the fixed and running coupling cases separa

A. Fixed coupling case

Let us consider the standard leading order evolution of
gluon distributionxg(x,Q2):

]xg~x,Q2!

] ln~Q2/L2!
5

as

2pEx

1dz

z
Pgg~z!xg~x/z,Q2!, ~4!

where, as usual,Pgg is the gluon-gluon splitting function
For simplicity we have neglected possible contributions
the quark distributions. In the moment space this equa
has the following form:

]gv~Q2!

] ln~Q2/L2!
5

as

2p
ggg~v!gv~Q2!, ~5!

where we have defined the Mellin transform to be

gv~Q2!5E
0

1

dxxvg~x,Q2!, ~6!

and the gluon anomalous dimension is defined as

ggg~v!5E
0

1

dzzvPgg~z!. ~7!

The solution of Eq.~5! is straightforward and given by

gv~Q2!5g0~v!S Q2

Q0
2D (as/2p)ggg(v)

. ~8!

We will now seek the equation for the moment functio
g0(v) using the following initial condition:

as

2p
xg„x,Q25Qs

2~x!…5
as

2p
r 0x2l, ~9!

whereQs
2(x) is given by Eq.~3!. The parameterr 0 specifies

the normalization of the gluon distribution along the critic
line. This boundary condition follows from the geometr
scaling condition of the dipole-proton cross sectionsdp(r
51/Q,x) which is proportional toasxg(x,Q2)/Q2.

In order to find solution forg0(v) we use the inverse
Mellin transform

xg~x,Q2!5
1

2p i E dvx2vgv~Q2!, ~10!
3-2
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where the integration contour should be located to the r
of the singularities ofgv(Q2) in thev plane. Inserting in Eq.
~10! the DGLAP solution~8! for gv(Q2), we get

xg~x,Q2!5
1

2p i E dvx2vg0~v!S Q2

Q0
2D (as/2p)ggg(v)

.

~11!

We now setQ25Qs
2(x) with the saturation scaleQs

2(x) de-
fined by Eq.~3!, and require the geometric scaling initi
condition along the critical lineQ25Qs

2(x) @see Eq.~9!#.
From Eqs.~3!, ~9!, and~11! we get

1

2p i E dvg0~v!x2v2l(as/2p)ggg(v)5r 0x2l. ~12!

This equation can be regarded as the equation for the f
tion g0(v), i.e., for the moment of the gluon distribution
the (x independent! scaleQ0

2. In order to solve this equation
we take the moment of both sides of Eq.~12!, i.e. we inte-
grate both sides of this equation overdx for 0,x,1 with
the weightxv121 and get

1

2p i E dv
g0~v!

@v12v2l~as/2p!ggg~v!#
5

r 0

v12l
.

~13!

We now change the integration variables

z5v1l
as

2p
ggg~v!, ~14!

which after inversion specifies the functionv(z). Equation
~13! in the new variablez then takes the following form:

1

2p i E dz
dv~z!

dz

g0„v~z!…

~v12z!
5

r 0

v12l
. ~15!

We can easily perform the contour integration in Eq.~15!
and get

dv~z!

dz U
z5v1

g0„v~z5v1!…5
r 0

v12l
. ~16!

We still need to solve this equation forg0(v) and in order to
do this we write

v15v1l
as

2p
ggg~v!, ~17!

and finally from Eq.~16! we obtain

g0~v!5F11l
as

2p

dggg~v!

dv G
3

r 0

@v1l~as/2p!ggg~v!2l#
, ~18!

which defines the solution forg0(v).
01401
t

c-

In what follows it is convenient to use directly the red
fined functiong̃0(z),

g̃0~z![
dv~z!

dz
g0„v~z!…, ~19!

where from Eq.~16! we see that

g̃0~z!5
r 0

z2l
. ~20!

The solution of the DGLAP equation with the initial cond
tion specified by Eq.~9! then reads

xg~x,Q2!5
1

2p i E dzx2zg̃0~z!S Q2

Qs
2~x! D

(as /2p)ggg(v(z))

~21!

where the integration contour is located to the right of t
singularities ofg̃0(z) and ofv(z). If the leading singularity
is a pole ofg̃0(z) at z5l then the leading contribution to
xg(x,Q2) at smallx is given by

xg~x,Q2!.r 0x2lS Q2

Qs
2~x! D

(as /2p)ggg(v0)

, ~22!

where

v05v~l!. ~23!

It should be noted thatv0 defines the position of the pole o
g0(v). In general we havev0<l. From Eq.~22! we get the
following leading smallx behavior for the gluon density
(as/2p)xg(x,Q2)/Q2:

as

2p

xg~x,Q2!

Q2 .
r 0

Q0
2 S as

2p D S Q2

Qs
2~x! D

(as /2p)ggg(v0)21

,

~24!

which respects the geometric scaling, i.e., is a function
only one combined variableQ2/Qs

2(x). Violation of this
scaling by the contribution of the~branch point! singularity
of v(z) is a nonleading effect at lowx.

The requirement that the pole ofg̃0(z) at z5l is the
leading singularity imposes certain constraints uponl. In
general they are difficult to find exactly since the inversi
of Eq. ~14! cannot be performed analytically when using t
complete form ofggg(v). The analytic solution of Eq.~14!
is possible, however, in the double logarithmic approxim
tion in which ggg(v)5ggg

DL(v), where

ggg
DL~v!5

2Nc

v
~25!

is the most singular inv→0 part of the gluon anomalou
dimensionggg(v). In this approximation we get

v~z!5
z1Az224āsl

2
, ~26!
3-3
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where

ās5
Ncas

p
. ~27!

We also have

v05
l1Al224āsl

2
. ~28!

The condition that the pole ofg̃0(z) at z5l is the leading
singularity, i.e. that it is located to the right of the branc

point singularity ofv(z) at z52Aāsl, gives the following
constraint upon the parameterl:

l>4ās . ~29!

For l,4ās the leading singularity is the branch point

v(z) at z52Aāsl and the geometric scaling becomes v
lated.

It may be interesting to confront our results for the fix
coupling with the properties of the exact solution of the no
linear Balitsky-Kovchegov equation@20#. In this case geo-
metric scaling holds forQ2<Qs

2(x) and the nonlinear effect
can be neglected forQ2.Qs

2(x). The parameterl specifying
the critical line is, however, not an independent quantity a
depends upon the~fixed! coupling as . In the double loga-
rithmic approximation it is given byl54ās . It follows from
Eq. ~29! that this is a limiting value of the parameterl for
the geometric scaling to hold asymptotically in the smalx

limit and so forl54ās we expect violation of this scaling
for Q2.Qs

2(x) down to very small values ofx @20#.

B. Running coupling case

We now pass to the more realistic case with running c
pling. In this case the evolution equation for the mome
function takes the form

]gv~Q2!

] ln~Q2/L2!
5

as~Q2!

2p
ggg~v!gv~Q2!, ~30!

where the running coupling in leading order is given by

as~Q2!

2p
5

b

ln~Q2/L2!
, ~31!

with

b5
2

1122/3Nf
, ~32!

with Nf being the number of flavors. In this section we co
sider only the gluonic channel and therefore we setNf50.
The solution of Eq.~30! reads

gv~Q2!5g0~v!S ln~Q2/L2!

ln~Q0
2/L2! D

bggg(v)

. ~33!
01401
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From the above solution we obtain

as~Q2!

2p
gv~Q2!

5
as~Q0

2!

2p
g0~v!S ln~Q2/L2!

ln~Q0
2/L2! D

bggg(v)21

, ~34!

and so the result for the gluon distributionxg(x,Q2) in x
space reads in this case

as~Q2!

2p
xg~x,Q2!

5
1

2p i E dvx2v f 0~v!S ln~Q2/L2!

ln~Q0
2/L2! D

bggg(v)21

,

~35!

where

f 0~v!5
as~Q0

2!

2p
g0~v!. ~36!

We now impose the geometric scaling condition~9! onto
this solution to get

1

2p i E dvx2v f 0~v!S 11
l ln~1/x!

ln~Q0
2/L2! D

bggg(v)21

5r 0x2l, ~37!

which is an equation forf 0(v). Solution of this equation is
complicated, i.e., the exact solution generates a complic
~branch point! singularity of f 0(v) at v5l. The only obser-
vation which we can make is that it should generatex2l

behavior softened by inverse powers of ln(1/x). In order to
obtain some insight into what is going on we have to ma
some approximations. To be precise let us make the appr
mation by settingv5l in the argument ofggg(v), which
gives

1

2p i E dvx2v f 0~v!

.S 11
l ln~1/x!

ln~Q0
2/L2! D

2(bggg(l)21)

r 0x2l. ~38!

Making the same approximation in the inverse Mel
transform~35! we get the solution

as~Q2!

2p
xg~x,Q2!.x2lr 0S ln~Q2/L2!

ln~Q0
2/L2! D

bggg(l)21

3S 11
l ln~1/x!

ln~Q0
2/L2! D

2(bggg(l)21)

.

~39!

Multiplying and dividingQ2 by Q0
2x2l we finally obtain
3-4
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as~Q2!

2p
xg~x,Q2!

5x2lr 0S ln~Q2xl/Q0
2!

ln~Q0
2/L2!1l ln~1/x!

11D bggg(l)21

.

~40!

The factor proportional to ln(1/x) in the denominator of the
expression on the right-hand side~RHS! of Eq. ~40! gener-
ates violation of the geometric scaling. Thus in the case
running of the couplingas(Q

2) the scaling behavior get
violated; it is possible, however, to factor out the effect
this violation. We can also rewrite Eq.~40! by using the
definition of the saturation scale and the running coupling
get

as~Q2!

2p

xg~x,Q2!

Q2

5
r 0

Q0
2

Qs
2~x!

Q2 F11
as~Qs

2~x!!

2pb
ln@Q2/Qs

2~x!#Gbggg(l)21

,

~41!

where we see that the violation is proportional to the value
the running coupling evaluated at the saturation scale. C
sequently, whenx!1, that is, whenQs(x)@1, the geometric
scaling is restored, provided of course th
as@Qs

2(x)# ln@Q2/Qs
2(x)#!1 as well. This condition is equiva

lent to ln@Q2/Qs
2(x)#!ln@Qs

2(x)/L2#. The same condition defin
ing the region in which the geometric scaling holds abo
the saturation scale has recently been found in Ref.@25#.

III. NUMERICAL RESULTS

In this section we present numerical results for the evo
tion of ordinary DGLAP equations for the integrated glu
distribution function with special boundary conditions set
the critical lineQs

2(x) as described in Sec. I.

A. Fixed coupling case

We start with the simplest case, which is the fixed stro
coupling. We assume also in the first approximation
double leading-log approximation~DLLA ! limit, that is, we
only keep the most singular part of thePgg splitting function
in our simulation, i.e.,

Pgg~z!5
2Nc

z
, Nc53, ~42!

which results in the following form for the anomalous d
mension of Eq.~7!:

ggg~v!5
2Nc

v
. ~43!
01401
f

f

o

f
n-

t

e

-

g
e

The initial condition for the evolution of the gluon density
assumed to be of the form~9!. We take l50.5 and as
50.1. In Fig. 2 we show the results of the calculation in th
case. We illustrate the scaling behavior of the gluon den
by plotting xg(x,Q2)/Q2 versus the scaling variablet
5Q2/Qs

2(x) for different values of rapidityY5 ln 1/x. From
Eq. ~24! we see that this function should scale witht
5Q2/Qs

2(x). The geometric scaling would correspond in th
plot ~Fig. 2! to the perfect overlap of all curves for differen
values ofY, so that they would form one single line. We s
that up to a good accuracy this function does not dep
dramatically onY and thus onx. We do however observe tha
there is some violation of the scaling at largex. This is due to
the fact that the geometric scaling expression defined by
~24! is only expected to hold asymptotically in the smallx
limit. At finite x this leading behavior is perturbed by th
nonleading contribution given by the branch-point singul

ity of v(z) at z52Aās @see Eq.~26!#.
To illustrate better the scaling and its violation we ha

plotted xg(x,Q2)/Q2 versus scaling variablet5Q2/Qs
2(x)

using a double-logarithmic scale@see Fig. 3~a!#. One clearly
sees that with increasing rapidityY the curves do not chang
and reach an asymptotic straight line. We have also sele
the very lowx range of Fig. 3~a!, which is Fig. 3~b!. One can
see that in this case the geometric scaling is nearly prese
~we see nearly a single line for different rapidities!.

The behavior ofxg(x,Q2)/Q2 versus t5Q2/Qs
2(x) is

clearly governed by a power law, with a power which w
estimate to be approximately20.77. From Eqs.~24! and
~28!, and using the values ofl andas quoted above, we ge
that the power should be (as/2p)ggg(v0)21520.74,
which is in very good agreement with the numerical resu

Let us note that in the case of the DLLA Eq.~43! v0 is a
solution of the quadratic equation and is given by Eq.~28!.
As previously noticed, the real solution exists only forl

FIG. 2. Functionxg(x,Q2)/Q2 in the DLLA fixed coupling case
plotted versus scaling variablet5Q2/Qs

2(x) for different values of
rapidities Y5 ln 1/x, from Ymin56.0 to Ymax546.0 ~solid curves
from bottom to top! in stepsDY52. Dashed curve is the inpu
distribution;1/t.
3-5
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>lmin54ās with ās5asNc /p. We have numerically
checked that forl<lmin our solution no longer exhibits
geometric scaling. It is interesting to note, as we have
ready observed at the end of Sec. II A, that exactly the sa
value of l5lmin for a power of the saturation scale wa
obtained from the studies of the nonlinear Balitsk
Kovchegov equation@11,12# performed in@16–20#.

We next abandon the DLLA and consider the more g
eral case with the full gluon-gluon splitting functionPgg
which gives the following anomalous dimension:

ggg~v!52NcF 1

v
2

1

v11
1

1

v12
2

1

v13

2gE1
11

12
2c~v12!G , ~44!

wherec is the Polygamma function. In this case Eq.~14!
with z5l can no longer be solved analytically and has to
analyzed numerically. However, one can get insight into
allowed values ofl by making the expansion of the anom
lous dimension aroundv50. In this caseggg(v)/(2Nc)
.1/v1A1(0)1O(v) where A1(0)52 11

12 . Using this ap-
proximation in Eq.~14! one finds that now geometric scalin
will hold if the following condition is satisfied:

l>lmin5
4ās

@12āsA1~0!#2
. ~45!

We have checked numerically that the above approxima
works very well and gives results very close to the solut
of Eq. ~14! with full v dependence of the anomalous dime
sion ggg(v).

In Fig. 4~a! we plot xg(x,Q2)/Q2 as a function of the

FIG. 3. Functionxg(x,Q2)/Q2 in DLLA fixed coupling case
plotted versus scaling variablet5Q2/Qs

2(x) for different values of
rapidities Y5 ln 1/x. Solid curves, solutions; dashed curve, inp
distribution ;1/t. On upper plot~a! solid curves from bottom to
top are forY rapidities ranging fromYmin56.0 to Ymax546.0 in
steps DY52. In lower plot ~b! rapidities ranginge fromYmin

526.0 toYmax546.0 in stepsDY52.
01401
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scaling variableQ2/Qs
2(x) in the case of calculation with the

full anomalous dimension~44!. We have takenl50.5 and
ās50.1. We see that the function exhibits geometric scal
~although there is some residual violation at larger values
x). The calculated value of the exponent from numeri
calculation is20.85, which is again in nearly perfect agre
ment with the analytical estimate based on the approxima
described above, which gives20.86. We also present in Fig
4b the calculation in the case ofl50.3 which is below the
critical value ~45!, equal in this case tolmin50.33 for ās
50.1. We clearly see that the geometric scaling is ne
present in that case.

One can study the scaling and its violation in a mo
quantitative way by examining the following expression:

D~Y,t!5
1

h

]h~Y,t!

]Y U
t5fixed

, ~46!

where

h~Y,t![
ās

Q2
xg~x,Q2!. ~47!

The derivativeD(Y,t) should vanish in the region wher
geometric scaling is satisfied. Consequently its deviat
from zero will characterize the scaling violation of the sol
tion ~47!.

We present the quantityD(Y,t) in Fig. 5 for the case of a
calculation with complete anomalous dimension and two
lected values ofl:0.3 and 0.5. The derivativeD(Y,t) in Fig.
5 therefore illustrates the scaling and its violation for t
solution shown in Fig. 4. From Fig. 5 it is clear that inl
50.5 the scaling is always reached, even for high values
t, which is very far right of the critical line. On the othe
hand, in the casel50.3 the derivativeD(Y,t) never van-

FIG. 4. Fixed coupling case with complete gluon anomalo
dimensionggg(v). Functionxg(x,Q2)/Q2 plotted versus scaling
variable t5Q2/Qs

2(x) for different values of rapiditiesY5 ln 1/x
from Ymin56.0 toYmax546.0 in stepsDY52. Upper plot~a!, scal-
ing exponentl50.5; lower plot~b!, scaling exponentl50.3.
3-6
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ishes, meaning that forl,lmin the solution of the DGLAP
equation in the fixed coupling case does not exhibit geom
ric scaling.

B. Running coupling case

We consider now the case in whichas is running and
study the impact of the scaling boundary condition~9! on the
evolution. We consider the full expression for the anomalo
dimension in that case,ggg(v), given by Eq.~44!. The run-
ning of the coupling requires that the evolution is taken
the region well above the Landau pole. In our case t
means that one has to evolve withQ2.Qs

2(x) and we would
like to haveQs

2(x) big enough for all values ofx. For the
purpose of illustration we takeQs

2(x)5Q0
2(x/x0)2l where

Q0
251.0 GeV2 and x051.0. This means that atx51 the

saturation scale isQs
251.0 GeV2. This assumption migh

seem artificial considering the present phenomenology
lepton-nucleon scattering, which suggests that the satura
scale could be of the order of 1 GeV2 at x.1024 for the
most central collisions at the HERA collider@22,26#. How-
ever, we use it here for the purpose of the illustration of ba
effects of the evolution with special scaling boundary con
tions. We concentrate here on presenting general prope
of the solution rather than trying to describe the experime
data. We also takeNf50, that is, we are considering the pu
gluonic channel. In Fig. 6a we present the results of
calculation by plottingas(Q

2)xg(x,Q2)/Q2 versus the scal-
ing variable t5Q2/Qs

2(x) in the case with a full gluon
anomalous dimension. For comparison we also show the
culation performed in the DLLA~Fig. 6b!. We see that the
geometric scaling is mildly violated in the running couplin
case, and more strongly in the DLLA due to the faster e
lution. This fact can be understood on the basis of Eq.~41!
where the numerical value of the exponent of expression
the RHS is much bigger in the DLLA case:bggg(l50.5)
50.18 in the case with full anomalous dimension a
bggg(l50.5)513/11 in the DLLA case.

FIG. 5. The derivativeD(Y,t) from Eq. ~46! as a function of
rapidity Y for various values of the scaling variablet. Upper plot,
scaling exponentl50.5; lower plot, scaling exponentl50.3.
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We have tried to estimate whether the violation is cons
tent with the analytical prediction of formula~40!. In Fig. 7a
we present the same quantity as in Fig. 6a but multiplied
the scaling variablet5Q2/Qs

2(x). The solid black curves in
Fig. 7a from top to bottom are for decreasing values ofx.
One can see that the solution exhibits some small viola
of the geometric scaling and that the magnitude of this v
lation is smaller for smaller values ofx ~the curves are be
coming closer and closer asx decreases!. This is consistent
with the general behavior predicted by Eq.~40! where the
scaling violating factor on the RHS tends to unity wh
ln(1/x)@1. We stress that the observed scaling violation
very small in this kinematical regime. For example, at a ve
high value oft5103 the violation of the scaling is about 5%
in a huge rapidity range fromY56 to Y546.

It follows from Eqs.~40! and~41! that the violation of the
geometric scaling can be approximately factored out.
checked this approximate prediction by considering
quantity

as~Q2!xg~x,Q2!/Qs
2~x!VF~x!

with

VF~x!5F ln~Q2/Qs
2~x!!

ln~Q0
2/L2!1l ln~1/x!

11G 12bggg(l)

~48!

which according to Eq.~40! should be constant with respe
to t5Q2/Qs

2(x). The results for the above quantity a
shown in Fig. 7b@which is Fig. 7a multiplied byVF(x)#
where now we see that the geometric scaling is appro
mately restored~the curves form a very narrow band! at high
values of rapidity.

Also in the case of running coupling we have studied
features of the geometric scaling using the method of
derivative; see Eq.~46!. The results are shown in Fig.
where it is clear that there is always a region where
geometric scaling is~approximately! preserved in the run-

FIG. 6. The solutionas(Q
2)xg(x,Q2)/Qs

2(x) in the running
coupling case. Rapidity range fromYmin56.0 to Ymax546.0 in
stepsDY52. Upper plot~a!, case with full anomalous dimensio
ggg(v); lower plot ~b!, case in DLLA approximation.
3-7
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ning coupling case, even at very high values oft. This is
consistent with formula~41! provided we haveās(Qs

2)ln t
!1 andx!1, and also with the conclusions of Refs.@25,27#.
We have also illustrated in Fig. 8 the sensitivity of the resu
to the variation of the normalization for the saturation sca
i.e., Q0

2. Changing the parameterQ0
2 from 1 ~upper plot in

Fig. 8! to 0.1 GeV2 ~lower plot in Fig. 8! influences the size
of the violation of the scaling. One can see that the geome
scaling is postponed to higher values of rapidity.

IV. SUMMARY AND CONCLUSIONS

In this paper we studied the effects of the DGLAP evo
tion upon the geometric scaling. We solved the DGLAP e
lution equation for the gluon distribution with the initial con
dition respecting the geometric scaling and provided alo
the critical lineQ25Qs

2(x). In the case of fixed QCD cou
pling we obtained an analytic solution of the DGLAP equ
tion with those boundary conditions, Eq.~21!. We also
showed that for sufficiently large values of the parametel
defining the critical line this solution of the DGLAP equatio
preserves the geometric scaling for the leading term at s
x @see Eq.~22!#. In the double-logarithmic approximation o
the DGLAP equation this happens forl>4ās , whereās is

FIG. 7. The solutionas(Q
2)xg(x,Q2)/Qs

2(x) in the running
coupling case. We have selected the high rapidity range f
Ymin518.0 to Ymax546.0 in steps DY52. Upper plot ~a!,
as(Q

2)xg(x,Q2)/Qs
2(x); lower plot ~b!,

as(Q
2)xg(x,Q2)/Qs

2(x)VF(x) where the factorVF(x) is a scaling
violation factor defined in Eq.~48!.
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defined by Eq.~27!. Geometric scaling is, however, violate
by effects which are subleading at small values ofx. We have
also obtained an approximate solution of the DGLAP eq
tion with the running coupling starting again from the boun
ary conditions respecting geometric scaling along the crit
line. In the running coupling case geometric scaling is mild
violated for arbitrary values of the parameterl, yet this vio-
lation can be approximately factored out. The size of t
small violation is controlled by the quantityās(Qs

2)ln Q2/Qs
2 .

Thus in the region wherex!1 and lnQ2/Qs
2!ln Qs

2/L2 the
geometric scaling in the running coupling case is preserv
Results of the detailed numerical analysis confirmed all th
expectations. We conclude that the geometric scaling
very useful regularity following from the saturation mode
We believe that it might be interesting to incorporate th
‘‘DGLAP improved’’ geometric scaling in the phenomeno
logical analysis of the data.
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FIG. 8. The derivativeD(Y,t) defined in Eq.~46! as a function
of rapidity Y for different values oft and different choices of nor-
malizationQ0

2. The scaling exponentl was set to bel50.5.
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