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We study the impact of the QCD Dokshitzer-Gribov-Lipatov-Altarelli-PatBiGLAP) evolution on the
geometric scaling of gluon distributions that is expected to hold at smwithin the saturation models. With
this aim we solve the DGLAP evolution equations with the initial conditions provided along the critical line
Q2=Q§(x) with Q§(X)~x’A and satisfying geometric scaling. Both fixed and running coupling cases are
studied. We show that in the fixed coupling case the geometric scaling at i®wtable against the DGLAP
evolution for sufficiently large values of the parameterand in the double logarithmic approximation of the
DGLAP evolution this happens foc=4N.«¢/7. In the running coupling case geometric scaling is found to
be approximately preserved at very smallThe residual geometric scaling violation in this case can be
approximately factored out and the corresponding form factor controlling this violation is found.
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[. INTRODUCTION i.e., dependence upon the single variabter 2Q2(x), where
Qs(X) is the saturation scale. This leads to the geometric
Perturbative QCD predicts a very strong power-law risescaling  of o«,(x,Q%) itself, ie., oxp(x,Q?)
of the gluon densitkg(x,Q?) in the limit x—0, where, as =f(Q2/Q§(x)), which is well supported by the experimental
usual,x denotes the momentum fraction carried by the gluordata from HERA 24]. Geometric scaling of the dipole cross
andQ? is the scale at which the distribution is probed. Thissection should imply similar scaling of the quantity
strong rise can eventually violate unitarity and so it has to bexs(Q?)xg(x,Q?)/Q?. This type of scaling is also found to be
tamed by screening effects. Those screening effects are prén intrinsic property of the nonlinear evolution equations
vided by multiple parton interactions which lead to the non-[6,8,11-20. It turns out that for equations of the type
linear terms in the BalitskiFadin-Kuraev-LipatouBFKL)

and/or Dokshitzer-Gribov-Lipatov-Attarelli-Parissi(DG- M = a K® p— asd?(x,k),

LAP) equations[1-13]. These nonlinear terms reduce the d1In(1/x)

growth of gluon distributions and generate instead parton . N.a

saturation at sufficiently small values ofind/orQ? [1-20. (aSE :T S), (1)

The increase of the gluon distribution and emergence of
the saturation effects imply similar properties of the measuryhere K is a linear evolution kerneifor example of the

able quantities which are driven by the gluon, such as thggk type), there exists a region ik andk space such that
deep inelastic structure functidf,(x,Q?). This can be most

clearly seen in the dipole picture of deep inelastic scattering d(x,Kk)= ¢>(Q§(x)/k2) for k2<Q§(x). (2

in which the virtual photon-proton total cross section ) ) .
T p(%, Q) [0 p(%,Q) ~F2(x,Q)/Q?)] is linked with For example in the case of the Balitsky-Kovchegov equation
the cross sectiomry,(x,r) describing the interaction of the [121'12’ whereK is the BFKL kemnel, the saturation scale
qacolor dipole with the proton, where denotes the trans- Qs(x) has been found to have a general powerlike depen-

verse size of the dipolg3,21-23. The dipole-proton cross denc_e orx, Qs(X)=Qox_ N Thg coefﬁcu.em?\, which 'S ap-
section is determined by the gluon distribution in the protonproximately equal to &g in this case, is then a universal
and in leading order approximation we just havg,(x,r) quantity and does not depend on the initial conditions for the
~ ag(1r®)r2xg(x,1/r%). An increase and/or saturation of the evolution[16-20.

gluon distribution in the smalk limit implies a similar in- The main purpose of this paper is to analyze possible
crease and/or saturation of the dipole-proton cross sectiogompatibility of this scaling with the DGLAP evolution
and of the cross sectiamy*p(x,Qz). equations. It is expected that the nonlinear shadowing effects

The successful description of all inclusive and diffractive should be weak in the region “to the right” of the critical
deep inelastic data at the DESY of collider HERA by theline defined by the saturation sca@(x), i.e., for Q?
saturation mode[22] suggests that the screening effects>Q3(x) (see Fig. 1 In order to study the possible impact of
might become important in the energy regime probed bythe DGLAP evolution we shall therefore assume geometric
present colliders. The important property of the dipole crosscaling parametrization along the critical line and inspect the
section which holds in this model is its geometric scaling,structure of the solution of the DGLAP equation with those
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In1/x (3) Geometric scaling forr(Q?)xg(x,Q?)/Q? holds at
the boundanQ?=QZ(x).
(4) ForQ?> Qg(x) the nonlinear screening effects can be
Linear DGLAP evolution region neglected and evolution of parton densities is governed by
the DGLAP equations.

We wish to study possible effects of the DGLAP evolu-
tion upon the geometric scaling in the regi@?>Q?2(x)
after solving the linear DGLAP evolution equations starting
from the gluon distribution satisfying this scaling and de-
fined along the critical lin€Q?(x) (see point 3 above We
shall discuss the fixed and running coupling cases separately.

Saturation region

Geometric scaling :
f(x,Q)=£f(Q/Q X))

A. Fixed coupling case

itical line Q= . . .
\I\mm ° Q= Let us consider the standard leading order evolution of the
gluon distributionxg(x,Q?):

InQ/A axg(x,Q?) s (1dz
%: za_wf —Pgg(2xg(X/2,Q%), (4

FIG. 1. Phase diagram in (Inx,In Q/A) space. Thick line is the x 2

critical line Q2:Q§(x) which divides the saturation scaling regime

(to the left and the linear DGLAP regiméo the righy. where, as usualPgyq is the gluon-gluon splitting function.

For simplicity we have neglected possible contributions of
the quark distributions. In the moment space this equation

initial conditions. This way of providing the initial condi- has the following form:

tions along the critical lineQ?=QZ(x) rather than aiQ?

= Q3 with x the independent reference sc&g is the char- 00,000  «
acteristic feature of the saturation effefis. — = — g ©)9,(Q), (5)
The content of our paper is as follows. In the next section JIn(Q%/A?) 27

we give a semianalytical insight into the solution of the DG-
LAP equation with the starting distributions provided along
the critical line. We study separately the fixed and running 1
coupling cases. In Sec. Il we present a numerical analysis of 9,(Q%= f dxx“g(x,Q?), (6)
our solutions and finally in Sec. IV we give our conclusions. 0

where we have defined the Mellin transform to be

and the gluon anomalous dimension is defined as
II. SOLUTION OF THE DGLAP EQUATIONS FROM THE

STARTING DISTRIBUTIONS PROVIDED ALONG 1
THE CRITICAL LINE Yool @)= fo dzZ°Pyy(2). (7)
We wish to understand the possible effects of the DGLAP
evolution on the geometric scaling at low This scaling The solution of Eq(5) is straightforward and given by
means that certain quantities controlling deep inelastic scat- 2\ (ag2m) ygq(w)
tering at lowx, like the dipole-proton cross secti@r(x,r gw(Qz):go(w)(—z) ®)
=1/Q) or the virtual photon-proton cross sectian,,, 0

which are in principle functions of two variables, depend ] ) )
upon the single variableQ/Q4(x). The saturation scale e Wwill now seek the equation for the moment function
Q«(x), which also specifies the critical line, increases with9o(®) using the following initial condition:
decreasing:
2 xg(x,Q7=QEX)= 5 1% ©
Qi(x)=Qix ™. €) 2m T s 27 T

Let us assume these following. whereQi(x) is given by Eq.(3). The parameter® specifies

(1) For Q%< Qﬁ(x) the linear evolution is strongly per- the normalization of the gluon distribution along the critical
turbed by nonlinear effects which generate geometric scalingne. This boundary condition follows from the geometric
for the dipole cross sectioory,(x,r =1/Q) and for related scaling condition of the dipole-proton cross sectiog,(r
quantities. =1/Q,x) which is proportional tarsxg(x,Q2)/Q>.

(2) Geometric scaling for the dipole cross section implies In order to find solution forge(w) we use the inverse
geometric scaling forg(Q?)xg(x,Q?)/Q?, whereg(x,Q?)  Mellin transform
denotes the gluon distribution. This follows from the leading 1
order(LO) relation between the dipole cross section and the 2 _ o 2
gluon distribution, i.e.o(x,r2)~r2a(1/r2)xg(x,1/?). Xg(x.Q%)= ﬁf dox”*g,(Q%, (10
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where the integration contour should be located to the right

of the singularities ofy,,(Q?) in thew plane. Inserting in Eq.
(10) the DGLAP solution(8) for g,,(Q?), we get

Q )(a /zw)ygg(w)

xg(x,Q%)= —j dwx™ QJo(w)(Q0

(11

We now setQ?=Q?Z(x) with the saturation scal®(x) de-
fined by Eq.(3), and require the geometric scaling initial
condition along the critical lin€Q?=Q?2(x) [see Eq.(9)].
From Egs.(3), (9), and(11) we get

dwgo(w)x™ @ Mas2mrggl@) = Ox A (12)

2mi

This equation can be regarded as the equation for the func-

tion go(w), i.e., for the moment of the gluon distribution at
the (x independentscalng. In order to solve this equation
we take the moment of both sides of E§2), i.e. we inte-
grate both sides of this equation owx for 0<x<<1 with
the weightx“1~ and get

1 Jo(w) _ ro
2qi w[wl—w—k(aSIZTr)ygg(w)] Cw— M\
(13
We now change the integration variables
Ag
Z=w+)\z'ygg(w), (14

which after inversion specifies the functies(z). Equation
(13) in the new variable then takes the following form:

do(2) go(w(z))  r°
dz (w;—2z)

We can easily perform the contour integration in E#j5)
and get

1
2i

0

dw(z)
dz

go(w(z= w1)= — (16)

Z=w1

We still need to solve this equation fgg(w) and in order to
do this we write

as
w1:w+)\ﬁ')’gg(w)v (17
and finally from Eq.(16) we obtain
Vgg(w)
r0
(18)

X[ N (ag2m) ygg@)—N]’

which defines the solution fay,(w).
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In what follows it is convenient to use directly the rede-
fined functiongy(z),

9o(2)= TZ)go(w(Z)), (19
where from Eq(16) we see that
~ 0

9o(2)= P (20)

The solution of the DGLAP equation with the initial condi-
tion specified by Eq(9) then reads

2 ) (aS/ZW)ygg(w(Z))
Q:(x)

xg(x, Qz)_—f dzX “go(2)
(21

where the integration contour is located to the right of the
singularities ofgy(z) and of w(z). If the leading singularity

is a pole ofgy(z) at z=\ then the leading contribution to
xg(x,Q?) at smallx is given by

2\ (es/2m) ygg(wo)
xg(x,Q )~r°x‘*( Qg(x)) , (22)

where
wo=w(\). (23)

It should be noted thab, defines the position of the pole of
do(w). In general we havey<\. From Eq.(22) we get the
following leading smallx behavior for the gluon density

(ag/2m)xg(x,Q)/Q*:
=

as xg(x,Q?) r°
2 Q7 QS(

which respects the geometric scaling, i.e., is a function of

only one combined variabl€? Q?(x). Violation of this

scaling by the contribution of thébranch poink singularity

of w(z) is a nonleading effect at low.

The requirement that the pole gf(z) at z=X\ is the
leading singularity imposes certain constraints uponin
general they are difficult to find exactly since the inversion
of Eq. (14) cannot be performed analytically when using the
complete form ofy,q(w). The analytic solution of Eq14)
is possible, however, in the double logarithmic approxima-
tion in which yg(®) = yg5 (), where

QZ
Qi(x)

) (ag/2m)ygg(wo) =1

(24)

2N,

‘ygg (w) - (25)
is the most singular ino—0 part of the gluon anomalous
dimensionygg(w). In this approximation we get

z+\Z2—da

w(2)= =, (26
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where
— N.a
as= ;5. (27)
We also have
A VAZ—4da\
wg=———. (28

2

The condition that the pole ai®(z) atz=\ is the leading
singularity, i.e. that it is located to the right of the branch-

point singularity ofw(z) at z=2\/gs)\, gives the following
constraint upon the parameter

(29

For )\<4Es the leading singularity is the branch point of

w(z) at z=2\/;S)\ and the geometric scaling becomes vio-
lated.
It may be interesting to confront our results for the fixed

coupling with the properties of the exact solution of the non-

linear Balitsky-Kovchegov equatiofR0]. In this case geo-
metric scaling holds fo@?< Qi(x) and the nonlinear effects
can be neglected fap?> Qﬁ(x). The parametex specifying

the critical line is, however, not an independent quantity and

depends upon théixed) coupling a¢. In the double loga-

rithmic approximation it is given by:435. It follows from
Eq. (29) that this is a limiting value of the parameterfor
the geometric scaling to hold asymptotically in the smxall

limit and so for)\=4zS we expect violation of this scaling
for Q?>Q?Z(x) down to very small values of [20].

B. Running coupling case

We now pass to the more realistic case with running cou

PHYSICAL REVIEW D 66, 014013 (2002

From the above solution we obtain

as(Qz)

5 9.(Q7)
_as(Qé) IN(Q?/A?)\Prggle) 1
i gO(w)(M(Qg/AZ)) . (34

and so the result for the gluon distributiomg(x,Q?) in x
space reads in this case

aS(QZ)
2 x9(x,Q%)
—w IN(Q%/A?))\Pragl@)~1
= dax fo(w)(m) |
(35
where
{(Q3)
fo(w)= 2 go(w). %

2

We now impose the geometric scaling conditi@ onto
this solution to get

1
ﬁj da)waO(a))( 1

0

N In(1/x)

bygg(®) 1
* In(QS/AZ))

=%, 37
which is an equation fofy(w). Solution of this equation is
complicated, i.e., the exact solution generates a complicated
(branch poink singularity offo(w) at w=X\. The only obser-
vation which we can make is that it should generaté

behavior softened by inverse powers of Ix(1/In order to

pling. In this case the evolution equation for the moment°Pt@in some insight into what is going on we have to make

function takes the form

99.,(Q%) :as(Qz)
dIn(Q%A?) 2m

‘ygg(w)gw(Qz)v (30)

where the running coupling in leading order is given by

a's(Qz) _ b
27 In(Q%A?)’ (3Y)
with
B 2
b= 11— 2/3N;’ (32)

with N¢ being the number of flavors. In this section we con-
sider only the gluonic channel and therefore we et 0.
The solution of Eq(30) reads

In(Q?%/A?)

b'ygg((”)
In(QS/M)) 59

gw(Q2)=go(w)(

some approximations. To be precise let us make the approxi-
mation by settingw =N\ in the argument ofyyy(w), which
gives

211_ifdwx_ fo(w)

1

Making the same approximation in the inverse Mellin
transform(35) we get the solution

- (b'}’gg()\) -1)
r

(14 N In(1/x) oun
In(QG/A?) '

X (38

as(Qz) 2 A0 In(QZ/AZ) bygg(h)—1
2 Xg(x,Q%)=x""r W
N In(1x) | ~(Preg®™) 1)

(39

Multiplying and dividing Q? by Qgx * we finally obtain
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as(Qz)
?XQ(X,QZ)

In(QZX)\/QS) bvgg(%)*l
+1 .

_X—)\rO
In(Q3/A?)+\ In(1/x)

(40

The factor proportional to In(%)j in the denominator of the
expression on the right-hand sid@HS) of Eq. (40) gener-
ates violation of the geometric scaling. Thus in the case of
running of the couplinge(Q?) the scaling behavior gets
violated; it is possible, however, to factor out the effect of
this violation. We can also rewrite Eq40) by using the
definition of the saturation scale and the running coupling to

T 3
get 1 10 10 - Q2/Q§(x1)0
ag(Q?) xg(x,Q?) FIG. 2. Functiorxg(x,Q?)/Q? in the DLLA fixed coupling case
> 5 plotted versus scaling variabte= Q2/Q§(x) for different values of
m Q rapidities Y=1n 1/x, from Y ;,i;=6.0 t0 Y na,=46.0 (solid curves
0 N2 2 bygg(\)—1 from bottom to top in stepsAY=2. Dashed curve is the input
r® Qe[ as(Q(x) 99 oo
= + 2102 distribution ~ 1/7.
Q(Z) QZ Ll 27b ln[Q /Qs(x)] ’

(41)  The initial condition for the evolution of the gluon density is
assumed to be of the forn®). We take A\=0.5 and aq

where we see that the violation is proportional to the value of~ 0-1- In Fig. 2 we show the results of the calculation in this
the running coupling evaluated at the saturation scale. Cor@S€: We illustrate tzhe szcallng behavior of the gluon density
sequently, whem<1, that is, wherQ¢(x)>1, the geometric Y 5"0%'”9 xg(x,Q7)/Q” versus the scaling variable
scaling ~is restored, provided of course that=Q7Qs(x) for different values of rapidity’=In 1/x. From

ad Q4(x) 1IN[Q¥Q2(x)]<1 as well. This condition is equiva- Eq.2(24; we see that this function should scale with -
lent to Ir[Qleg(x)Kln[Qg(x)/Az]. The same condition defin- =@ /Qs(x). The geometric scaling would corresponq in this
ing the region in which the geometric scaling holds aboveP!ot (Fig. 2) to the perfect overlap of all curves for different

the saturation scale has recently been found in F2&]. values ofY, so that they would fprm one single line. We see
that up to a good accuracy this function does not depend

dramatically onY and thus orx. We do however observe that
ll. NUMERICAL RESULTS there is some violation of the scaling at lasg& his is due to

In this section we present numerical results for the evolu—the fact that the geometric scaling expression defined by Eg.

tion of ordinary DGLAP equations for the integrated gluon (24) is only expected to hold asymptotically in the smell

o . . . - limit. At finite x this leading behavior is perturbed by the
distribution function with special boundary conditions set ON_onleading contribution given by the branch-point sinaular-
the critical Iinng(x) as described in Sec. I. 9 g y P g

ity of w(z) atz=2\/;S [see Eq(26)].
. . To illustrate better the scaling and its violation we have
A. Fixed coupling case plotted xg(x,Q?)/Q? versus scaling variable= Q% Q2(x)

We start with the simplest case, which is the fixed strong’sing a double-logarithmic scaleee Fig. 8a)]. One clearly
coupling. We assume also in the first approximation thesees that with increasing rapidithe curves do not change
double leading-log approximatiof®LLA ) limit, that is, we ~ and reach an asymptotig: straight .Iine_. Wg have also selected
only keep the most singular part of tRg, splitting function ~ the very lowx range of Fig. &), which is Fig. 3b). One can
in our simulation, i.e., see that in this case the geometric scaling is nearly preserved

(we see nearly a single line for different rapidifies
b (Z):% N3 42 The behavior ofxg(x,Q?)/Q? versus 7=Q?/Q%(x) is
99 z’ ¢ = clearly governed by a power law, with a power which we
estimate to be approximately 0.77. From Eqs(24) and
(28), and using the values of and o quoted above, we get
that the power should be af/2m)yy4(wo) —1=—0.74,
which is in very good agreement with the numerical result.

Let us note that in the case of the DLLA E4.3) wg is a

()= % (43) solution of the quadratic equation and is given by E2f).
Yag ' As previously noticed, the real solution exists only for

which results in the following form for the anomalous di-
mension of Eq(7):
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“o E M MR | T N M “o T T N
F e Rapidities from Y=6.0 to Y=46 in steps AY=2
'S L™ 'S I
E X a4
g0 e S0
2 2
10 F 10
10 o sl el e v 107
1 10 10’ 10°
E M M ooy T T M T E M M ooy T T
F™n_ Rapidities from Y=26.0 to Y=46 insteps AV=2
.l’ ™
10 3
.2’
10 3
10'3- ) il ) 10 . ~~
1 10 10’ L, o, 10 1 10 10’ L, o, 10
1= Q Q%) 1= Q Q%)
FIG. 3. Functionxg(x,Q?)/Q? in DLLA fixed coupling case FIG. 4. Fixed coupling case with complete gluon anomalous

plotted versus scaling variable= Q%/Q?(x) for different values of ~ dimension Yol @). Function xg(x,Q?%)/Q? plotted versus scaling

rapidities Y=In 1/x. Solid curves, solutions; dashed curve, input variable r= Q2/Q§(x) for different values of rapiditiey'=In 1/x

distribution ~1/7. On upper plot(@) solid curves from bottom to  from Y ,;;=6.0 toY ,.x=46.0 in step\Y=2. Upper plot(a), scal-

top are forY rapidities ranging fromY ,;,=6.0 t0 Y ,,,=46.0 in ing exponent =0.5; lower plot(b), scaling exponent =0.3.

stepsAY=2. In lower plot (b) rapidities ranginge fromY .,

=26.0 t0Y=46.0 in stepAY=2. scaling variabléQ?/QZ(x) in the case of calculation with the
full anomalous dimensioi44). We have takerh =0.5 and

Z\min=4as With  as=aNc/7. We have numerically 4.=0.1. We see that the function exhibits geometric scaling
checked that forx <\, our solution no longer exhibits (although there is some residual violation at larger values of
geometric scaling. It is interesting to note, as we have alx), The calculated value of the exponent from numerical
ready observed at the end of Sec. Il A, that exactly the samga|culation is—0.85, which is again in nearly perfect agree-
value of A=\, for a power of the saturation scale was ment with the analytical estimate based on the approximation
obtained from the studies of the nonlinear Balitsky-described above, which gives0.86. We also present in Fig.

Kovchegov equatio11,12 performed in[16-20. 4b the calculation in the case af=0.3 which is below the
We next abandon the DLLA and consider the more gen-. -4 value (45), equal in this case ta,;,=0.33 for o,

erﬁl t::as_,e Wittrr]‘ tfh?I fuI_I quon-qulon sglitting_fuhctidﬁgg =0.1. We clearly see that the geometric scaling is never
which gives the following anomalous dimension: present in that case.

One can study the scaling and its violation in a more

1 1 1 o - . -
= —_ _ quantitative way by examining the following expression:
Ygo(©) ZNCL) w+1+w+2 w+3
1 oh(Y,7)
11 AY,7)=-——— , (46)
et o et2)), (44) h oY | .o

where ¢ is the Polygamma function. In this case H44)  Where

with z=\ can no longer be solved analytically and has to be

analyzed numerically. However, one can get insight into the ag 5

allowed values oh by making the expansion of the anoma- h(Y,7)=—xg(x,Q%). (47)
lous dimension around=0. In this caseygyy(w)/(2N) Q
=1/w+A;(0)+O(w) where A;(0)=—1. Using this ap-
proximation in Eq(14) one finds that now geometric scaling
will hold if the following condition is satisfied:

The derivativeA(Y,7) should vanish in the region where
geometric scaling is satisfied. Consequently its deviation
from zero will characterize the scaling violation of the solu-

v tion (47).
)\Ekmin:%- (45) We present the quantit¥(Y, r) in Fig. _5 for t_he case of a
[1— aA1(0)]? calculation with complete anomalous dimension and two se-

lected values ok :0.3 and 0.5. The derivativ&(Y, ) in Fig.
We have checked numerically that the above approximatio® therefore illustrates the scaling and its violation for the
works very well and gives results very close to the solutionsolution shown in Fig. 4. From Fig. 5 it is clear that in
of Eq. (14) with full » dependence of the anomalous dimen-=0.5 the scaling is always reached, even for high values of
sion ygg(w). 7, which is very far right of the critical line. On the other
In Fig. 4@ we plot xg(x,Q%)/Q? as a function of the hand, in the casa =0.3 the derivativeA(Y,7) never van-
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02 ey T

Q%) xgx,QHIQ"

-
e

.3’
10°E

4 n I S R
10 5 3

10
1= QYQi)

Y=In 1/x

FIG. 6. The solutionas(Q?)xg(x,Q?)/Q3(x) in the running
coupling case. Rapidity range froM,;,=6.0 t0 Y,5,=46.0 in
stepsAY=2. Upper plot(a), case with full anomalous dimension
Ygo(®w); lower plot (b), case in DLLA approximation.

FIG. 5. The derivativeA(Y,7) from Eq. (46) as a function of
rapidity Y for various values of the scaling variabte Upper plot,
scaling exponenk =0.5; lower plot, scaling exponent=0.3.

ishes, meaning that for<\p;, the solution of the DGLAP We have tried to estimate whether the violation is consis-
equation in the fixed coupling case does not exhibit geometrent with the analytical prediction of formuld0). In Fig. 7a
ric scaling. we present the same quantity as in Fig. 6a but multiplied by
the scaling variable= Q2/Q§(x). The solid black curves in
B. Running coupling case Fig. 7a from top to bottom are for decreasing valuesc.of

One can see that the solution exhibits some small violation
of the geometric scaling and that the magnitude of this vio-
gation is smaller for smaller values of (the curves are be-
coming closer and closer asdecreases This is consistent
with the general behavior predicted by E40) where the
caling violating factor on the RHS tends to unity when
n(1/x)>1. We stress that the observed scaling violation is
very small in this kinematical regime. For example, at a very
high value ofr=10° the violation of the scaling is about 5%

We consider now the case in whiak is running and
study the impact of the scaling boundary conditi@non the
evolution. We consider the full expression for the anomalou
dimension in that caseyyq(w), given by Eq.(44). The run-
ning of the coupling requires that the evolution is taken in
the region well above the Landau pole. In our case thi
means that one has to evolve wiftt> Qi(x) and we would
like to havng(x) big enough for all values ok. For the

purpose of illustration we tak@2(x)=Qj(x/xo) ~* where . = huge rapidity range fronf=6 to Y — 46,

2__ _ H —
Qo=1.0 GeV and >§0—1.0. This means that at=1 the It follows from Eqs.(40) and(41) that the violation of the
saturation scale iQ;=1.0 Ge\f. This assumption might geometric scaling can be approximately factored out. We

seem artificial considering the present phenomenology Ofhecked this approximate prediction by considering the
lepton-nucleon scattering, which suggests that the saturatiogantity

scale could be of the order of 1 G&Vt x=10"* for the

most central collisions at the HERA collidg22,26. How- as(Q%)xg(x,Q)/Q2(X)VF(x)
ever, we use it here for the purpose of the illustration of basic
effects of the evolution with special scaling boundary condi-with
tions. We concentrate here on presenting general properties
of the solution rather than trying to describe the experimental
data. We also takd;=0, that is, we are considering the pure
gluonic channel. In Fig. 6a we present the results of the
calculation by plottingrs(Q?)xg(x,Q?)/Q? versus the scal- which according to Eq(40) should be constant with respect
ing variable =Q% QZ(x) in the case with a full gluon to 7=Q%/Q%(x). The results for the above quantity are
anomalous dimension. For comparison we also show the cashown in Fig. 7b[which is Fig. 7a multiplied byWF(x)]
culation performed in the DLLAFig. 6b. We see that the where now we see that the geometric scaling is approxi-
geometric scaling is mildly violated in the running coupling mately restoredthe curves form a very narrow banat high
case, and more strongly in the DLLA due to the faster evovalues of rapidity.

lution. This fact can be understood on the basis of @4) Also in the case of running coupling we have studied the
where the numerical value of the exponent of expression ofeatures of the geometric scaling using the method of the
the RHS is much bigger in the DLLA casbryyq(A=0.5)  derivative; see Eq(46). The results are shown in Fig. 8
=0.18 in the case with full anomalous dimension andwhere it is clear that there is always a region where the
bygq(A=0.5)=13/11 in the DLLA case. geometric scaling igapproximately preserved in the run-

In(Q%/Q3(x)) e
In(Q3/A?)+\ In(1/x) i

VF(X)= (48)
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1=3
---------- 1=30
---------- 1=100

(@) xg(x,QQIX)

25
Y=In 1/x
L
0.06E NPT L i T .-.-I.-..|....l....l....l....;s....io
1 10 10° . Q‘/Q,?(x;03 Y=In 1/x
FIG. 7. The solutionaS(Qz)xg(x,QZ)/Qg(x) in the running FIG. 8. The derivativeA(Y,7) defined in Eq(46) as a function

coupling case. We have selected the high rapidity range fron%)f rgpiQitszfor differen.t values ofr and different choices of nor-
Y, =18.0 10 Y,.,=46.0 in stepsAY=2. Upper plot (a), malizationQg. The scaling exponent was set to be.=0.5.
as(Q?)xg(x,Q*)/Q2(X); lower plot (b), _ . o .
as(QA)xg(x,Q2)/QZ(X) VF(x) where the factoW F(x) is a scaling ~ defined by Eq(27). Geometric scaling is, however, violated
violation factor defined in Eq(49). by effects which are subleading at small values.aie have
also obtained an approximate solution of the DGLAP equa-
ning coupling case, even at very high valuesrofThis is  tion with the running coupling starting again from the bound-

consistent with formulg41) provided we have;_vs(Qg)ln Fooay conditions rgspecting geometric scalin_g alon_g th_e cr_itical
<1 andx<1, and also with the conclusions of Reff25,27. Ilne. In the running coupling case geometric scallng is .m|IdIy
We have also illustrated in Fig. 8 the sensitivity of the resultsv'o_Iatecj for arbitrary v_alues of the paramelgryet th's vio-
to the variation of the normalization for the saturation scale &tOn can pe gpprommately factored out. Tge Sizé 2f this
i.e., Q2. Changing the paramet@? from 1 (upper plot in small violation is controlled by the quantity(Qg)In Q%/Qs.

Fig. 8 to 0.1 Ge\? (lower plot in Fig. 8 influences the size Thus in the region wherg<1 and InQ”QZ<In QJ/A? the

of the violation of the scaling. One can see that the geometrigeometric scaling in the running coupling case is preserved.

scaling is postponed to higher values of rapidity. Results of the detailed numerical analysis confirmed all those
expectations. We conclude that the geometric scaling is a
IV. SUMMARY AND CONCLUSIONS very useful regularity following from the saturation model.

We believe that it might be interesting to incorporate this
In this paper we studied the effects of the DGLAP evolu-“DGLAP improved” geometric scaling in the phenomeno-
tion upon the geometric scaling. We solved the DGLAP evo-ogical analysis of the data.
lution equation for the gluon distribution with the initial con-
dition respecting the geometric scaling and provided along
the critical IineQ2=Q§(x). In the case of fixed QCD cou- ACKNOWLEDGMENTS
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