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We present a phenomenological application of the joint resummation formalism to electroweak annihilation
processes at a measured boson momer@ym This formalism simultaneously resums at next-to-leading
logarithmic accuracy large threshold and recoil corrections to partonic scattering. We invert the impact param-
eter transform using a previously described analytic continuation procedure. This leads to a well-defined,
resummed perturbative cross section for all nonZgfg which can be compared to resummation carried out
directly in Q¢ space. From the structure of the resummed expressions, we also determine the form of nonper-
turbative corrections to the cross section and implement these into our analysis. We obtain a good description
of the transverse momentum distributionbosons produced at the Fermilab Tevatron collider.
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I. INTRODUCTION w;;* the corresponding partonic hard-scattering functigns,
is the renormalization scale ang- the factorization scale.
The hadronic annihilation cross sections for electroweakat z=1, referred to as the partonic threshold;(z) has
boson production ¥*,W,Z,H) provide important test cases terms of the forma[In®"~Y(1—2)/(1—2). These singular cor-
for resummation techniques in QCD. This paper describegections reflect the lack of phase space for soft radiation
the application of a simultaneous, joint resummation ofyyhen the partons have just enough energy to produce the
threshold and transverse momentum singularities in thesgpserved final state. Like singularities@t=0, they can be
cross sections. The application to this well-studied case efpsymmed to all orders, 6.
ables us to compare joint resummation to the dataZor  yplike transverse momentum resummation, the singular
production at the Fermilab Tevatron. We regard it as a firstynctions of threshold resummation do not appear as explicit
sf[ep tOV\_/ard extendin_g joint resummation t(_)_a wider range "]ogarithms in the physical cross section, Eg), since they
kinematics and reactions, and toward a unified description 0f e jn convolution with the parton distribution functions. In
nonperturbative contributions in hadronic reactions. practice, transverse momentum resummation is usually of
At a measured transverse moment@y<Q, with Q the greater numerical significance at measuggdthan is thresh-

pair or boson mass, annihilation cross sections have contrdId resummation at integrate@, , simply because the typi
H n~2n—-1r2/2 2 H T -
butions aIn™(Q/Q)/Qr at each order of perturbation cal value ofz in Eq. (1) is generally far from unity. In such

theory. Although highly Smgmar.@T:O’ the_se terms nev- cases, threshold resummation shows that the effects of dis-
ertheless organize themselves into a function that descrlbet‘s . .
ributions singular az=1 are under control. It also leads to

the Sudakov suppression of the cross section at s@wll . . .
qcross sections that are in general less sensitive to the factor-

[1-4]. These singularities reflect the recoil of the produce ; | hi db he d ical
electroweak boson against soft gluon radiation. This is transZation scalg7]. For this reason, and because the dynamica
origins of the large corrections in both threshold and trans-

wn

verse momentum resummation, oQ1” resummation, for

short. verse momentum resummations are in soft gluon emission, it
Perturbative corrections in factorized inclusive elec-iS attractive to develop a formalism that encompasses both.
troweak annihilation cross sections The necessary analysis for this combination, which we refer

to as joint resummation, has been carried oui8hfor par-
ton distributions, and if9] for electroweak annihilation as
well as QCD cross sections. The effects of resummation are
:f dzf dx; dx; fiya(Xi me) Fis(Xjme) closely bound to momentum conservation. The singular cor-
rections associated with soft gluon emission exponentiate in
the corresponding spaces of moments, the impact parameter
X 8(z= Q%% %;S) wii\z,Q,m.pr), (1)  space for transverse momentum, and Mellar Laplace
moments in energy for threshold resummation. The trans-
forms relax momentum and energy conservation, while their
have an analogous behaviorzat 1. In this expression, the inverses reimpose it. In joint resummation, both transverse
f's are parton distribution functions in hadroAsndB, with momentum and energy conservation are respected.
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In Ref.[10] a preliminary analysis of prompt photon pro- coupling is decoupled from the transform variable. More re-
duction was carried out from the point of view of joint re- cently, Qiu and Zhan{23] have proposed another method,
summation, with an emphasis on the role of recoil in higheremploying a smooth extrapolation of the perturbative re-
order terms in the relevant hard scattering functionsSUmmed cross section in impact parameter space to push the

Relatively substantial effects were found in that case. In thid-andau singularity to infinity.

context, it is important to return to the better-understood exy eé?iotr?ldserr)i?/ggrirg]a gvélgi:élédg tg?l é?(ltt]tttl))flégzlijnmToedar(i:trr?ris
ample of electroweak annihilation to test the joint formalism. ' y 9109

As mentioned above, there is a close relation betweeappr_oxm_atlon to the resummed exponent, and an analytic
: ’ ) . PEWEEH  htinuation of théb-space contour followin10]. We stress

resummation anq nonper_turbatwe corrections. Taking NGt we could have made other choices, like those mentioned
account nonleading logarithms and the running of the couzpye “within the context of joint resummation. We find the
pling, resummation leads in each case to a perturbative &4pnr0ach 0f10], reviewed below, attractive for its simplic-
pression in which the scale of the coupling reflects the valugy |t results in a redefined perturbative series with no new
of the transform variable. Because of the singularity of thegimensional scale beyonilocp. Phenomenological param-
perturbative effective coupling atqcp, the resulting ex-  eters then appear only as nonperturbative power corrections.
pressions are, strictly speaking, undefined. A closer lookin this “test case” for joint resummation, we shall find a
however, shows that singular contributions appear only atonsistency with the data from Z production that we believe
nonleading powers of momentum transfer. This is an exis comparable to that of other approaches. We hope that this
ample of how perturbative resummation can suggest the wawill serve as a starting point for further development.
nonperturbative dynamics is expressed in infrared safe hard We note that different treatments of the perturbative ex-
scattering functions. In effect, perturbation theory is ambigu{fonent may differ markedly in pure threshold resummation,
ous, and the resolution of its ambiguities is, by definition,due to different treatments of nonleading logarithms
nonperturbativé11,12. As we shall review below, these am- [17,18,24. This important question applies to joint resum-
biguities manifest themselves as singularities in the integranfation as well, but we shall not explore these differences in
of the inverse transforms for both transverse momentum antis paper. This is because the vector boson cross sections
threshold resummations. Each scheme for dealing with thesdiScussed here are in the kinematic region described above,

singularities constitutes a specification of perturbationVNerezis far from unity in Eq.(1), and where we expect the

theory, and implies a parametrization of nonperturbative ef_effect of pure threshold resummation to be small in any

. : scheme.
fects. We hope that a joint resummation affords a more gen We begin our technical discussion with a review of the

eral approach to this problem. - ; . ;
Forme)ach resumme%l cross section, b@+t, threshold or joint resummation formalism of Ref9], applied toZ pro-
, DR, duction, including a comparison to the exa@{«) cross

joint, one must first specify how to define perturbation theoryse tion " \we develop the phenomenological evaluation of the

in the trar;]sform space, :nd thep, g|v<1a_rr1] a well-defined exzoqiing expressions in Sec. I1l. This includes the specifica-
prefsmn, Oow to invert the transform. The most "consenVvay;q, of resummed perturbation theory through contour inte-
tive” approach is to expand the resummed expression t

X . . . rals in the two transform spaces, the matching to finite order
some fixed order in perturbation thedry3]. Since the re- % b g

calculations, and the parametrization of nonperturbative ef-

summation contains information on singular terms at all or, (s 1n Sec. IV we compare the resulting expressions to

der.s, we may in this way g_et information beyond the order akollider Detector at FermilabtCDF) and DO data, fitting the
which a complete calculation has been done. To fixed Ordehecessary nonperturbative parameter. Following this, we

the p%e_rr:grbatlve exrﬁwlessmnl_angl Its trar?sforrlml dare unamblg jive a few preliminary conclusions on the status and pros-
ous. This approach Is applicable to threshold resummatiofje i of the joint resummation program. In Appendix A we

fohr mcluswel cross sections, but |shnot dr:rectly useful_ forpresent some well-known formulas that are relevant for our
phenomenology at measur@d~0, where the Cross section ¢|cjation, and in Appendix B we sketch the simple numeri-

is singular. Another approach f@ resummation is t0 US€ 5| method that enables us to evaluate resummed moment
the exponentiation of _Ieadmg Iogarlthm_s n transverse mo'space integrals for parton distribution functions that are
mentum space, and incorporate the finite order |mprove-speciﬁed only inx space.

ments, including those due to the running coupling and mo-

mentum conservation, by a direct expansigi4,15. A Il. THE JOINTLY RESUMMED CROSS SECTION
similar application for threshold resummation was developed . o
in [16]. Within the formalism of[9], the jointly resummed cross

Finally, in bothQ+ and threshold resummation, we may, Section do™9dQ?dQ? for electroweak annihilation is ob-
as indicated above, redefine the resummed perturbatidi@ined as a double inverse Mellin and Fou(ienpact param-
theory in transform space, and invert the resulting transforngte transform:
numerically. For threshold resummation this has been done res 5
by so-called principal-valu¢l1,17] and minimal[18] pre- dong = 0(0)f ﬂT_Nf db aiQr-b
scriptions for perturbation theory. Both exploit the analytic Q2 dQ% & Jey2mi (2m)2
structure of the running coupling, and redefine transform in-

tegrals to avoid the Landau pole. FQx resummation, the ><Ca,A(Q,b,N,M,MF)eXQEg(N,b,Q,,u)]
commonly used approactihe b, prescription [4,19-27
introduces an infrared scale, beyond which the running of the X Cqg(Q,b, N, ). 2
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Here, 7=Q?/S, and ¢?) is a normalization containing the y 02 did Nk;
appropriate electroweak charges occurring in the basic un- Ez'g(N,b,Q,,u,MF)=2J — A (ag(ky)In| —
. — . Q22 kT Q
derlying processa— V. For completeness, and because this
is the process we will study numerically in this paper, we — [q2dk2
give ¢{?) for Z production in Appendix A. —2In( )f ) k__?_Aa(as(kT))- 7
KE

Compared to the expression giver[#], we have brought
the_cross section m_to a form that is closer to the standard qnlglere, the functior)((ﬁ,g) organizes the logarithms f and
[4] in Q7 resummation. Resummation of soft-gluon effectsis,. . =’ ;

. . In joint resummation,
achieved through the flavor-diagonal Sudakov exponenl?
EE(N,b,Q,,u), while the “C coefficients” contain the par- L
ton distribution functions and provide resummation of addi- X(N,b)=b+
tional logarithms of soft-collinear and collinear origin. We
will discuss the various terms in turn.

I 8
1+ nb/N ©
wheren is a constant, and where, by analogﬁ«nf Eq.(4),
we have defined

A. The Sudakov exponent

We now develop an expression for the exponEﬁf}, b=bQe”#/2. ©

valid to next-to-leading logarithm@\LL ) in N andb, based  1q anticipate, we will choose=1/4 below. We will discuss
on the results of Refl9]. Compared to that reference, we he particular expressiof8) for y in Sec. 11 B.

will absorb some terms in the exponent that are associated \we now regroup Eq(7) as

with parton evolution into th&€-coefficients. We begin with

trf exponent derived iff] for the eikonal approximation to cik Q2 dk% ket
aa annihilation to an electroweak bosdfﬁ%. It is given by EaZ(N'b'Q"““”“F)ZZJ'Qz,sz_gAa(aS(kT))m Q
. dek.2r — (0% zdkz
EZE(N,b,Q,u,uF)=2J —7 Aalas(kp) —2In(N) | 57 = Ag(ars(kp).
o kT ng kT
2Nk; NKy (10)
X| Jo(bky) Kol —=—| +In| —— . ,
Q Q Next, we make contact with standaf@k resummation by
2 10 [T A (i 3 e
n(N) 21 alas(kr)). (3 Ez%(N,QQ,M,MF)
Here,J, andK, are the usual Bessel functions, and we de- Q? dk% Q’
Here, ' = |2 2 Aaadkoin] 5z + Butastn
o 2, zdk2 _
N=Ne’E, (4) + f S~ 2A0(agke)In(N)
ME kT
ith yg the Euler constant. The functi is a series in
i e fhe B unctidy(es) Is a series | ~Balas(kn)]. (11
5 Here we have introduced
As as
Ajag)=—AD+|=| AP+ 5 2
a(a’s) T a T a ( ) Ba(as)= %Bgl)‘f' %5 B(aZ)+ e (12)

in terms of the familiar coefficient5] with

AV=C, (Cq=Cg,C4=Cp), 1 3 1 1
BS)Z_ECF’ Bg):_g(lch—ﬂRNF). (13

Ca
AP = S5 Ko K=Cy ~5 TrNe.  (6)  Equation(11) follows from Eq.(10) to NLL accuracy inN
andb. The coefficientngz) are also known19,27, but con-

Dependence on the renormalization scale is implicit in EqlfiPute only beyond NLL.
The first term in Eq(11),

(3) through the expansion af (k) in powers ofag(w).
Following Refs[9,4,26, we approximate the exponent in 2 dK2
PR " ; Q T
Eq. (3) by a “minimal” form that is accurate to next-to- — f

-z , (14
leading logarithms in both transform variables: k

+ Ba(as( kT))

2
Aa(as( kT))'”( %
T

Q%Ix* Ky
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has the classic form of the Sudakov exponent in electroweatutside the presently developed reach of the joint resumma-
annihilation, the only new ingredient being the quantity tion formalism. We are therefore indeed free to associate the
that depends oiN andb and represents the joint resumma- combination in Eq(20) with the leading terms in the anoma-
tion. As shown in Sec. Il A of Ref[9], the term withB, lous dimension. It then follows that the second term in Eq.
accounts for the difference between the eikonal approximacll) represents the evolution of the parton densities from
tion and the full partonic cross sections in the threshold rescale ug to scaleQ/y in the largeN limit, that is, near

gion. Equation(14) will be our choice for the exponerﬁ — threshold Note that indeed all dependence of the exponent
in Eq. (2). Its expansion in leading and next-to-leading Ioga- o on uf is contained in this term. The evolution term we
rithms gives have identified in Eq(11) will become part of the functions

Cyn introduced in Eq(2). We shall therefore pursue it fur-

EZE(N,b,Q,,uF L W(B,Q,u), (15 ther when discussing the,,, in Sec. Il C.
S
where B. TFEEnctlon x(N,b)
@) We have defined((N,b) in E&(_B). There is an element
h©)(g) = [2B8+In(1-2p8)] (16) of choice in the actual form o¢(N,b), the only requirement
: ' belng that the leading and next-to-leading IogarlthmsNof
A and b are correctly reproduced in the limitd—c or b
by|1 2B+In(1-2p) — o, respectively. In Ref[9], the somewhat simpler choice
(1) _ Ag by NPT cpTINL™ep) p y. p
(B.Quu)= bs[zlnu 20135 T
0 x(Ref.[9]))=b+N (21
B
In(1—2p8) was made. While this is a legitimate option, we found it to be
less convenient for phenomenological studies. The reason for
Qz A this is that this form ofy introduces sizable subleading terms
4+ A(1>| a into perturbative expansions of the resummed exponent,
mho ,u2 Wbo which are not present in full fixed-order perturbative results.
For instance, expanding the exponEriE(N,b,Q,M) in Eq.
X 1-25 +In(1—2/3)}. (17 (15) to O(as(p)) one finds
PT,
In these equations, exXH Eg5(N.D.Q,x)]
— 2 3
N =bg ag()IN(N), ~1— QS(“) Ce/ 20— 5In(x)|. (22
B=bg as(p)In(x), (18) — —
o If we are assuming thd> N, relevant at smalQ; far away
and from threshold, then this is approximately
_11C,—4TeNe equ;’g(N,b,Q,m
0 127 ’
17C2— 10C,TrNg — 6Cr TrNe =~ Ce| In*(b) = 5In(b)
24r? _

(23)

N 1
In order to interpret the second term in Edl), we note +2§In(b)+(’)(§) '
that the combination in its square brackets,

On the other hand, the fixed ordéX «s) result for the par-

—2A,(ag)IN(N)—By(as), (200 tonic cross section for flavaa is given (at Q1#0) by [2]
corresponds to the leadin@pgarithmic plus constapterms ~ O(ag) In(02/02
at largeN in the one-loop diagonaj— q (or, g—g) anoma- do 5 =ag°> as(p) Cr (Q ZQT)
lous dimension. To be more precise, the way we have ob- dQ*dQ? m QT

tained Eq.(11), the second term in Eql1l) matches the
anomalous dimension to NLL accuracy only, since the con-
stant(in N) part of the two-loop anomalous dimension is not
identical to the customary19—22 coefficient B{*) (even
though it is related to if27,28)). As mentioned above, con- where we have indicated the functional form of the first
tributions related toBgz) enter only beyond NLL and are Qi-suppressed correction. It is easy to show that upon Fou-

(24)

- on(QQ)
2Q? )
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rier transformation of thed(«a) in Eq. (23) back to o
(as) a. (23 Qr Cq,q(N.as)=l+ﬁCF —8+ 7+

space, the first two terms 3b)—32In(b) reproduce the first N(N+1)

two contributions todo/dQ?dQ? in Eq. (24). The term —Co(N.ay), 26
«In(b)/b in Eq. (23), however, yields a subleading contribu-

tion to the cross section, which is of the formGﬁ(Qz)/QT, o 1

that is, down with respect to the leading and next-to-leading Cyg(N,ag)= N

logarithms, but more singular than the first suppressed cor- 2m (N+1)(N+2)

rection to the fixed order cross section in E84) which is =Cgig(N, ay). (27)

just ocIn(Q%/Qz). In other words, the choic€1) introduces

L dep.endence of the rgsummed Cross se_cno@ﬂnnot Note that the coefficienC,q is off-diagonal in flavor. It is
present in the cross section calculated at fixed order. Evepgeed a well-known feature i@ resummatiorf4,19,2,28
though this affects only subleading, integrable terms, whichhat such non-diagonal terms also contribute to singular be-
are beyond the reach of our resummation anyway, this mishavior atQ;=0. On the other hand, they do not incorporate
match between Eq€22) and (24) at O(1/Qr) produces a singularities at threshold, which is visible from the fact that
spurious logarithmic singularity io/dQ?dQy, which is Cyq is suppressed at lardé:
the cross section we will compare to the data. This problem The evolution matrix€(N,Q/x,ur) in Eq. (25 results
is avoided to all orders by choosingas in Eq.(8) with any  from the second term in Eq11) that we chose to absorb into
7>0. theC coefficients. Compared to the largjelimit used in that

The functiony in Eq. (8) is only a slight modification of ~equation and relevant near threshold, we can make an im-
Eq. (21), but it has the property that at largecorrections to  Provement here and replace the leadigart of the diago-

nal anomalous dimension in EqR0) and (11) by the full

anomalous dimension relevant for the scale evolution of par-
ton densities, containing also all terms subleadingin

the leading term are suppressed a5 1In this way, no de-
pendence of the form IQ%/QZ)/QT can arise in the cross

section inQ space. Obviously, the general limits fér
—o andN—o are the same as in E(1). It also turns out —2A,(ag)IN(N) —Ba(as) — yn(as). (28)
that this form of y(N,b) leads to analytic properties of the

exponent in Eq.(15) that are consistent with the method a¢ the NLL level, whereAgl),Bgl),Agf) contribute, we need
described below for performing the inverse transformbin e first two terms in the perturbative expansion of the

We will analyze expansions of our final resummed cross;nomalous dimensiof29], yy=(a./) YO+ (gl m) 2y
section to one loop in more detail in Sec. Il D. Before doinggjce they

' " &i) are(in general matrices, this procedure intro-
so, we need to specify the coefficielg, (Q,b,N,x, u¢) Of  gyces terms that are parton non-diagonal, and thus leads to

Eq. (2). the matrix structure of in terms of an ordered exponential.
As mentioned above, the interpretation &fis simply the
- evolution of the parton densities from scale to scaleQ/ y,
C. The coefficientsCy (Q.b,N, 1, i) within the NLL approximation. In this way, it leads to a
The coefficient®,, 4 (Q,b,N, ., ug) in Eq.(2) are chosen resummation of collinear logarithms, some of which are as-
to correspond to the jointly resummed cross sectiofi socia‘@d with partonic threshold, that is, are also proportional
for large N and arbitraryb, and toQ+ resummation forb  to In(N), while others are suppressed B(1/N) or more,

—oo, N fixed: due to partonic mixing. Such a procedure is also familiar
from standard); resummatiori4,28], and the substitution in
Can(Q,D,N, ;) Eq. (28) thus provides a natural extension of our formalism
for joint resummation away from threshold. We may also
zzk Caj(N, as( ) Ej(N,Q/ x, ) Fiyn(N, ). interpretC,,4(Q,b,N, u, ug) as the Fourier-Mellin transform
I,

of a generalized parton distribution, at measured transverse
(255  momentum and energy fractid®]. Equation(25) then has

the interpretation of a refactorization 6f, into a coeffi-

cient functionC,;; and light cone parton distribution func-
Here thef;;;(N, 1¢) are again the parton distribution func- tions, f;;, at the scaleQ/.
tions for hadrorH at factorization Sca|¢LF_ In princip|e, by EXp|ICIt expressions for the solution of the standard evo-
analogy with standar@ resummatiorj4], the scale for the lution equations for parton densities between scalesand
strong coupling in the,/;(N, a) would beQ/y; however, at  Q/x can be found i{30,31 and can be used to determine
the NLL level we are considering here, it is legitimate to the elements of the matri& To achieve the exponentiation
choose the “large” renormalization scaje~Q and to ex-  Of the evolution terms—despite the fact that the matriyq‘éé
pand theC,;(N,) to a finite order inas. To first order, and ¥ do not commute—the iterative procedure derived in
matching Eg. (250 to the largeb behavior of the Ref.[31] is particularly useful. The parameter that governs
Qr-resummed cross secti§8,4,19,28, one has the evolution between scalgs: andQ/y is

014011-5
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as(ur) _ by In(1-2p) ~qq_ (0) %s o — 2
In(m)—ln(l—Zﬁ)—l—as(M) b—ow o= 0y 27TCF 4In°N+6INnN—8+ 7 +N(N+1)
QZ) Zﬁ Q2 |: 2 o 2
+bgln| — | ——==+boln| — | |, +| = +3—=4S(N) || =2 InN+In| — | | {,
wu?1-2p w? N(N+1) u?
(29)
a9 (0 %5 1 | NZ+N+2 . 2
V=0 = Tri\ sy —2In nl —
where the right-hand side is the expansion to NLL accuracy, e N(N+1)(N+2) ME
consistent with our approximation. It should be emphasized 5
that in the above expression the scale appears through a R —— (30)
single explicit logarithm that will serve to approximately (N+1)(N+2)

cancel theug dependence of the parton distributions in Eq.

(25), resu(ljting in a det_:rea_se e dependencedfor thef_fingl where Sl(N)=E}\‘:1j‘l=¢(N+1)+yE, with ¢ the di-
resummed cross section in BQ), as compared to a fixed- 5 ma “function. Since we are interested in the near-
order calculation. threshold region, we can expand this further to the Iaige-

In all of these procedures, working in Mellld-moment it Using #(N+ 1)=In N+1/(2N) + O(1/N?), we find
space is a great convenience, because it enables us to explic- ’

itly express the evolution between the scalgsandQ/ y in
terms of the parameter[layug)/ as(Q/x)] in Eq. (29). In this
way, we avoid the problem normally faced @y resumma-

- — InN

qa— (0)%s 2 _ 2
oci=0y 2WCF‘4In N+4N 8+
tion that one needs to call the parton densities at scales far

below their range of validity, so that some sort of “freezing” 2 — 2 InN

(or related prescriptionfor handling the parton distributions + 3_ﬁ_4|”N In| =] (+0O N_J (31)
is required. As is evident from Ed25), we only need the KF

parton distribution functions at the “large” scaler~Q,

whereas normally in Qf resummation the product . (©0) s 1 _ 2 InN

S €N QD ) fgn(Nog)  is identified  with o¥9=0g" 5 Try| —2INN+1n pr o7 )

fiun(N,Q/b). An organization of th& coefficients in a form
similar to ours was first proposed [iB8]. We finally note that
the moment variabl®&l and, as will be discussed below, also
the impact parametdr are in general complex valued in our
approach, so that it is even more desirable to separate the

The Mellin moments of the “exactO(«ag) partonic cross
sections can be found ii83] and read

complex scal€/y from that in the parton densities. In this ) as
way, it is not even necessafglbeit convenientto have the T og")ﬁ Cr{ 4S3(N)— msl(’\l)
parton densities in MellilN moment space, as provided in
the code of{32]. In fact, we can generalize our analysis to 2 2 A2 2
any set of distribution functions, even if specified onlyxin +—+ -8+ —+|——+3
space. Details are discussed in Appendix B. NZ  (N+1)? 3 N(N+1)
2
. ) =4S (N) | In| = | ¢,
D. Finite-order O(as) expansions of the resummed cross M|2: ]
section

In this section we compare expansions of our jointly re- 2 5
summed cross section to “exact” expressions for the elec-  ;ag :U(O)&T _2—N +N+ S,(N)
troweak annihilation cross section @ ). We discuss first exact 74 277 'R N(N+1)(N+2) ™t
the limitsN—,b=0 andb—,N fixed separately. In these
cases, all results can be given analytically. N*+1IN3+22N?+ 14N+ 4

The limit N—oo,b=0 corresponds to pure threshold re- + N2(N+1)2(N+2)2
summation for the total cross section. It is realized by inte-
grating overQ+ in Eq. (2), which setsbh=0 there. The ex- N2+ N+2 Q?
pansion of Eq(2) to O(ay), using Eqs(15), (26), (27) and + W'” - (32
the parton distribution functions evolved according to Eg. M

(29), then gives for the partonic cross sections in qTIqsand
gg scattering channels: At large N, this gives
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— 3
- as — InN 4 S S L B I B A
UgEaC‘:(TgO)ﬁCF[4|nzN+4W_8+§W2 : do/dQ; (pb/GeV) |
102 - E
3= 24Nl 2 +0 ™ (33 E
———=4InN|In| — —, 1L
N 7% N? al:
100;—
“ @ 1 — 2 InN
Uggactzo'((;]O)ﬁTR_ —2InN+In — +O(N—Z) 10-1 3
He - (b)
A RACL R R NS RERYI B R SRR
Comparing Egs(31) and (33), we see that at largdl the LA

expansion of the resummed cross section correctly repro *®°F
duces theO(«s) result, including even all terms that are
down by 1N. The only difference between Eq&1) and
(33) is in the termec 2. This difference is due to our choice
of the coefficientC,q in Eq. (26), for which we employed a
form that is more standard i®Q+, rather than in threshold, _j.sf
resummation. A closer inspection of our resummed eikonal
exponent, Eq(3), reveals that its Bessel functions result in _gsp
different contributionsx 72 in the two limits N—« andb (a)
—oo, just as needed to explain the deficiency between Eqs-o.s ' L ' L L
(31) and (393). In other words, we could modify our expan- o o8 10 80 100 Q (GeV) s00. 1000
sion of the exponent into logarithms somewfkiay suitably
redefiningy), so that Eq(31) would automatically have the FIG. 1. () Fractional deviationA [as defined in Eq(35)] be-
correct coefficient ofr?. On the other hand, the terms asso-tween the “exact’O(as) result and theO(as) expansion of the
ciated with 72 are beyond NLL, which is the scope of the jpintly resummed cross section. We_ consider @ita_nson produc-
present anlysis, and we therefore do not implement thidion at the Tevatron; the cross section r}sjd(k;)een |ntegr§ted over 66
Change here. B <(g$(11)/16 GeV. (b) A comparison ofdd /dQr (solid) and

It is worth pointing out that the reason why we correctly 47° " 7dQr (dashed on an absolute scale.
reproduce all terms suppressed a¥ i Egs.(31) and(33)

025

0.00

is our treatment ofgvolution in E28). As was discussed in ~qg_ (0).%s N2+ N+2

[34], the leading In{)/N terms are associated with collinear 77" % 2 'R N(N+1)(N+2)

non-soft emission; it is therefore natural that they can be

generated from evolution of the parton densities between the — 2 2
scalesur andQ/N, as embodied in Eq29) atb=0. In this X|=2Inb+In M_E +(N+1)(N+2)}

way, our joint resummation correctly includes the leading

aﬁlnz"*lN/N terms to all orders. Because threshold resumma- +0O(Inb/b?),
tion has a relatively modest effect for vector boson produc-
tion in the kinematic region explored at the Tevatron, weinh full agreement with the expressions for the lalgmit of
leave for future work a more complete comparison of ourthe “exact” O(as) result derived ir2].
resummed expression to fixed order, beyond th@¢e.) We do not present closed expressions for arbitrary large
considerations. and b, but we can easily compare numerically the exact

In the limit b—o, N fixed, our formulas smoothly turn O(as) result with the expansion of E) to O(as). Figure
into those for standar®@; resummation. For the one-loop 1(&) shows the fractional deviation
expansion of the jointly resummed cross section we find dofedl)  ggye gofxed(1)

aQr 4% / agr ¥

A a _ —
o= 080)2—; Cr [ ~41n°b+6 Inb—8+ 7 wheredo™e4(1)/dQ; is the “exact” O(as) cross section and
do®PM)dQ; denotes the one-loop expansion of the re-

summed expression. Figurgbl comparesdo™edL/dQ,

+3—4Sl(N)} and do®P1dQ; individually. Note the excellent agreement
in the regionQ+<<10 GeV where resummation is necessary.

o Beyond 10 GeV, the agreement is naturally less exact but

+O(Inb/b?), (34 still good. This is the region where matching to finite order is

appropriate, to which we will turn now.

A=

2
+N(N+1)+[N(N+1)

2

x| —2Inb+In| =
ME
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FIG. 3. Choice of contour fob integration(thick solid lines.
The straight sections of the contour from 0 lig are to be inter-
preted as on the positive real axis. The remaining curves represent
lines of singularity discussed in the text.

FIG. 2. Choice of contour for the Mellin inversion. overN in the inverse transform, Eq2) for all 7<1 [16,18§.
For the moment, we do not specify the const@ntexcept
Il INVERSE TRANSFORMS AND MATCHING that it has to lie to the right of the rightmost singularity of the
arton distribution functions. At any finite order in perturba-
ion theory, all values ofC>0, and all #>¢>n/2 are
equivalent. In the resummed cross section, however, the sin-
gularity at y=p, introduces a power-suppressed ambiguity
r'gn the transform, which we resolve by choosi@g p, [18].
As mentioned above, the position of the Landau pole de-
pends on botiN andb. The d?b integral in Eq.(2) can be
written as

In this section we take the remaining steps necessary t
apply the joint resummation formalism phenomenologically.
This includes specifying a prescription for performing the
inverse integrals in Eq2), as well as implementing a pro-
cedure for matching resummed and finite-order results. |
addition, we will consider nonperturbative effects resulting
from the strong coupling at small momentum scales.

A. Inverse transforms

2 AiQ7-b _ -
When performing the inverss andb transforms, special f d*b €~ 1(b) =27 fo db b(bQy) f(b), (38)

attention has to be paid to the singularity in the resummed
exponent, Eqs(15)—(17), at 8=1/2. For p=1/4, the singu- Where J, is the Bessel function. Hence, as it stands, the
larity occurs for integration ovelb lies on the positive real axis. This would
o imply that one would never be able to avoid hitting the Lan-
—_ N dau pole, since for any choice of the param&en Eq. (37)
x(N,b)=b-+ b =exf U(2boas(u))1=pL. (38)  thare is ab>0 for which y(N.b)=p, . This problem is of
1+ —= course well known from standaf@; resummation. The pro-
4N cedure usually adopted is to prevémfrom becoming too
large by evaluating the resummed cross sectionbat
=b/\1+b?/bZ_, [4,3,19-22, at the expense of introducing
o — = — . a new parametel, .. To avoid introducing a new param-
ity, i.e., atb=—2N andb=—4N, respectively. We note that ger \ve treat thé integral in a manner analogous to the
the choice=1/4 is made simply to reduce=0 to alinear  jniaqral above, avoiding the Landau singularity on a contour
relation betweerb andN. This is not an essential simplifi- that produces an exponentially convergent integral for all
cation, but it makes the following analysis slightly more con-Q,>0.
venient. In the following we sketch the application of the  Wwere the Landau pole not present we could, instead of
method of{10] to this jointly resummed cross section. As far performing theb integral along the real axis, use Cauchy’s
as the Landau pole is concerned, it is simultaneously in théheorem and divert it into complelx space along either of
spirit of both the “minimal” prescription proposed for pure the two solid lines in Fig. 3, under the condition that the
threshold resummation i8], and the “principal value re- integrand falls off sufficiently fast at lardé| and that there

summation,” described if11]. be no contribution to the integral at infinitely large real part.
The contour for the inverse Mellin transform is chosen toTo achieve this, we have to split up E®8) as[10]

be bent at an anglée with respect to the real axis and is

and is a manifestation of the Landau pole in the strong cou
pling. The exponent is also ill defined whgr=0 and infin-

arametrized as followgsee Fig. 2 *
P g+_ 2 JO db b 3(bQy) f(b)
N=C+ze"'?, (37
where the uppeflower sign applies to the uppetowen =7Tf db b[hy(bQr,v)+hy(bQr,v)]f(b),
branch of the contour, with €z=<o (©0=z=0). For ¢ 0
> /2, this results in an exponentially convergent integral (39
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where we introduce two auxiliary functiois 5(z,v), related do'es
to Hankel functions and defined in terms of an arbitrary real, _—
positive parameter by integrals in the compleX plane dQ?dQf
[35]:
=2 a'gO)J d—I\.IFN
1 (—w+ivm a CN27TI
hl(Z,U)E—— - dae—izsine, db b .
Tl m X[f 4—h1(bQT,v)WS_\a%(Q,b,N,,u,,u,:)
c, 4m
—lvm
ha(z0)=— = doe'zsn?, (40) +f Mm(bQT,v)W&aé@,b,N,M,MF) ,
T)rtive C, A
(43)
For hy, we parametrized=—ivm+Xym(—1+2iv) (O
<Xg=<1), while for hy,, 0=—ivm+x,m(1+2iv) (1=X, ]
=0). Theh, , become the usual Hankel functioHs 4z) in with
the limit v — . We note that this convergence to the Hankel
functions is extremely rapid, since the dependence on the __ -
variableu is suppressed by the exponential of an exponential ~ WiB(Q,b,N, i, ) =exg E_(N,b,Q,u)]
for all finite z. Theh, , are finite for any finite values afand
v. Their sum is alway$i,(z,v) + h,(z,v) =2J3y(2), indepen- x> Caj (N, ag( 1))
dent ofv. The utility of the h functions is that they distin- ik
guish positive and negative phases in E89), making it
possible to treat thb integral as the sum of the two contours X E(N,Qlx, ) Fiya(N, iep)
in Fig. 3, the one associated with (h,) corresponding to
closing the contour in the uppéower) half plane. X2, Caij(N,ag(p))
The virtue of this technique for theintegration is that we Ik

can choose the contours to avoid the Landau pole. We simply X ERN,Qlx, ) Figs(N, ),
need to make sure that the contour never intersects the (42

trajectories defined by(N,b)=p, , shown by the two light
solid curves in Fig. 3. As mentioned earlier, singularities also
arise forb=—2N andb= —4N. These contours are shown for initial hadronsA andB.
in Fig. 3 by the dotted line and the dash-dotted line, respec- This choice of contours in complex transform space is
tively. Parametrizing the uppdr contour as completely equivalent to the original form, E(8), when
the exponent is evaluated to finite order in perturbation
t (0<t<b,) the_or_y_. It is a natural extgnsion of tmlxspace contour re-
i (41) definition abovd 16,18, using a generalized “minimall'18]
b.—te"'? (Ost=x) exponent, Eq(15). As we stressed earlier, joint resummation
with its contour integration method provides an alternative to
and the lower one as the standardb space resummation. Joint resummation has
built-in perturbative treatment of largevalues, eliminating
the need for &, or other prescription for the exponent, or
t (0O=<t<b,) 4p  forafreezing of the scale of parton distributions at labgs
b—téd? (0<t=o) 42w Q.
To examine the relevance of the largesontributions, we
now compare the jointly resummeg; distribution matched
we choose the parametens and ¢, such that none of the 5 the O(ay) perturbative resulf2] and theQ; space re-
branches intersects any of the “forbidden” lines in Fig. 3. Asummed[ls] distribution also matched to th@(a) distri-
typical choice is a_lso shown in Fig. 3 by the thick solid lines. jy tion (see the next section for details of the matching pro-
The parameter€ in Eq. (37) andb, in Egs.(41), (42) are  cequre. The Q; space resummation formalism originates
arbitrary as long as from b space resummation and can be viewed as a very good
approximation of the latter. Unlike the standdrdpace tech-
C b.Q nique, directQ; resummation, like the contour method just
erT eE<p, . described, yields a result even without any nonperturbative
c )
input for nonzero values oQ;. The two approaches are
compared in Fig. 4 for the case of Z boson production at
In this way, our full expression for the cross section in termsTevatron energy. As expected, the two distributions differ
of inverse transforms, Ed2), becomes mostly at the very low@+ end of the spectrum.

Cl: b:{

C2: b:[

0<
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s YT T T T T T which implies that the matching is most naturally performed
S . ] according to Eq(45) in conjugate b,N) space, in order to
S 25 | ---- CTEQSM, Qy —space, resummed matched with NLO, no NP - avoid double Counting_

& [ 1 _

N ——CTEQSM, joint, resummed matched with NLO, no NP ] Notably, joint resummation with the choice g{N,b) in

® ] Eq. (8) and the matching prescriptidd5) returns a positive

cross section even in the highy regime. This is in contrast

to pureQ+ resummation, which notoriously yields a negative

1 answer at larg&;. To avoid the latter feature, usually an

] additional switch between the matched cross section and the
] fixed-order result is implemented in pu@s resummation. A

7] nice feature of joint resummation is that this is not necessary
] here; Eq.(45) is all we need all the way tQ of orderQ.
R (Of course, forQ+>Q a further resummation is necessary
Qy (GeV) [38].) The improved larged behavior of the matched cross
section can be traced back2 to the behavior of the jointly
lated using the narrow width approximatio®€ M;). The Q¢ resummed pardgreslszdQT itself, which also remains

space method result and the joint resummation method result at‘()—.-OSitiYe for all VaIUES.OQT'_ZhiS in turn results from the
matched to the cross section @f«s). The CTEQ5M[36] parton ~ behavior of the functiony(N,b) at the small values ob

FIG. 4. Q+ distribution forZ production at/s=1.8 TeV calcu-

distributions have been used. relevant to highQ+.
A simple argument shows how the smhlbehavior ofy
B. Matching to finite order ensures that the cross section remains positive at @sder

T , h ical . the jointly resummed cross section, and also why it goes
A resummedQy distribution provides theoretical predic- e qative in pure); resummation in impact parameter space.

tions for the smallQy region; in the largeQr regime one  cqnqjder first pure), resummation, which is equivalent to
mainly relies on fixed-order perturbation theory. Thus a de- —

scription of the intermediat®; region requires a consistent '€ ChO'CZX:b' Forta.ny.x, thet one-loopty expansion of the b
matching between the two results that avoids double counf>>UMMEed Exponent in impact parameter space IS given by
ing. For the joint resummation we adopt a matching prescripEd- (22). Wheny=b simply[N=0 in Eq.(23)], this expres-

tion first proposed in standattspace resummatioi20]: sion is just as singular at=0 as forb— o [39]. This pro-
duces a spurious suppression fbsmall compared to @,
do do'es do®P®) g fixedk) which is present as well in the full exponent. Becausekihe

(45  integral is dominated b~ 1/Q+, this effect is unimportant
whenQ+ is small. On the other hand, whépy, is large, of
the same order a®, the suppression of smdllremoves an

where do"®¥dQ2dQ? is given in Eq.(2) and, as before, important contribution from thev integral. Along the de-

do®M/dQ2dQ2 denotes the terms resulting from the ex- fc_ered contours of Fig. 3, the situation is part|c_ularly
pansion of the resummed expression in powera.gfi) up simple. Referring to Eq(43), the sum of the functions
to the orderk at which the fixed-order cross section hl(b_QT'U) an_dhz(bQT,v)starts out at2f0b:O_, but both

do_fixed(k)/szdQ_Zr is taken(in practice,k=1 (see[2]) or k begin to oscillate and to decrease exponentially, when

dQ%dQ?  dQdQ? dQZdQ$+dQ2dQT‘

—2 (see[37))). ~1/Qr. A spurious suppression tima&‘3(Q,b,N, u, ur)
A|ternative|y, one can formulate the matching procedurefor b< 1/Q~1/QT will thus eliminate pOSitiVe contributions
in the following way[4,2]: to the transform, leaving over negative contributions, in the

limited range ofb in which h; and h, are themselves of
order unity. If, on the other hand, we pigkas in Eq.(8),
do do'®® then we ensure that the spurious suppression at snclhr-
dO2dOZ ~ 402402 +Yiinite (46) acteristic of purdb-space resummation is absent. The result
is a positive cross section for largg; .

Yinite Standing for the finite part of the fixed-order distribu-
tion, i.e. the part remaining after the singular behavior C. Nonperturbative input

o adn™(QYQ))/QF (2k—1=m=0) at kth order of perturba- In most applications ob space resummation, the pertur-
tion theory (in our casek=1,2) has been taken out of the pative component is supplemented b@alependent Gauss-
fixed-order cross section. For pugg resummation, there is jan in impact parameter space, to tune the overall influence
no difference between the two ways of matching in Egsof nonperturbative dynamicst, 19—22. Joint resummation
(45), (46), as long aglo®*®/dQ?d Q% coincides identically  implies similar effects in the; distribution at smallQs-.

with the singular part of the fixed-order cross section. ForThe starting point is the full NLL exponef®] given in Eq.

our joint resummation, howevedo®*/dQ2dQ3 also con-  (3). We expand the Bessel functions in E8) to derive an
tains terms that are non-singular @ [as in Eq.(23)], explicit form for the leadingb and N dependence of the
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T T T T T

resummed exponent, times an integral of the anomalous di-
mensionA, over soft transverse momenta, defined by a cut-
Oﬁ )\>AQCD' 80

[\ do/da; (pb/GeV) T cor A

I 66 < Q < 116 Gev

Ega(Nb, Q.6 N)

b% 2N?\ e Q
~<—?+F> o dk—l—Aa(a’S(kT))In(N_kT)- (47)

In this way we derive a standard Gaussian fornbifor a
multiplicative, nonperturbative smearing functiondrspace,
to account for effects from smatl.. The new feature here is
that the coefficient ob? is essentially identical to that of the
threshold-related power correctioNAQ)?. In our numerical 50
applications below, we will be rather far away from thresh- Qr (GeV)
old, and as a result we will be mainly sensitive to moderately
smallN. Hence we will retain only the term b? in Eq. (47).
Thus our nonperturbative smearing function reverts to the :
purely Gaussian one usually used@t resummation, and 160 L
we will make the following replacement in the resummed
cross section:

101

do/dQ; (pb/GeV)
66 < Q < 116 GeV

1071 L

PT PT
E..(N.b,Q.u)—E(N.b,Qu)—gb?, (49
-2 L
whereg is a parameter to be determined by comparison to °
data. Note that Eq47) implies that, as usuagj has a com- .
ponent that depends logarithmically @n[4,19-22,40. 10-3 L I ]

IV. VECTOR BOSON PRODUCTION IN THE 1o-4 ) ! T O A T
FRAMEWORK OF JOINT RESUMMATION 20 30 50 70 100

Qr (GeV) 200

With the developments discussed above, the joint resum- FIG. 5. CDF datd41] on Z production compared to joint re-

r_nation formalism becor_n(_as a practical tool for_ the descrip'summation predictiongmatched to thed(as) result according to
tion of electroweak annihilation. Here we consider Z bosonEq. (45)] without nonperturbative smearingiashedl and with

production at the Tevatron collider. Recent data on@€  Gaussian smearing using the nonperturbative parameter
distribution of the produced Z bosons are available from both=0.8 Ge\? (solid). The normalizations of the curves have been
CDF [41] and D0[42] experiments and have reached a goodadjusted in order to give an optimal description; see text. The dotted
level of precision. The overall normalization of the data will and dash-dotted lines show the fixed-order result©ét,) and

be treated as a free parameter in our analysis, and will be&(«?), respectively. The lower plot makes the lar@g region
varied within the quoted experimental errors. more visible.

All results are obtained using CTEQ5M parton distribu-
tion functions[36], in the manner described in Appendix B.
We choose the factorization and renormalization scales
= ur=Q. The numerical values of the electroweak param-
eters we use are as followdV,=91.187 GeV, sifé
=0.224,T,=2.49 GeV. Note that the experimental data
sets have been integrated over finite regioniN66<Q
<116 GeV for CDF and 75Q<105 GeV for DO. The

As we pointed out before, an attractive feature of the joint
resummation with transforms defined as above is that we can
obtain predictions that have no dependence on any additional
nonperturbative parameter. Results of this form are shown by
the dashed lines in Figs. 5 and 6. In both cases we have

inverse transforms are performed as described in Sec. IlI A"f‘dIUSted the nprmallzatlon of the theory curve so thathe .
with the following choice of the contour parameters in Figs.O the comparison between data and theory becomes mini-
1 and 2:¢p= ¢, = 25/327, C=1.3, b,=0.21Q. Of course we mal_. I_:or the CE_)F df_;\ta, this norr_nahzanon factor is 1.035, for
are free to choose these parameters differently, as long &0 itis 0.96. Itis evident from Figs. 5 and 6 that our “purely
they are such that the structure of the contours as depicted Rerturbative” predictions correctly reproduce the trend of the
Fig. 3 is maintained. Finally, as mentioned above, we choosgata over most of the measured regioiQ, but peak at too
»=1/4 in Eq.(8). We have checked that the result is quite Small Q7. This is no surprise of course, since we expect
insensitive to this choice, at the order of a percent whés ~ nonperturbative effects to play a non-negligible role at low
changed by a factor of 2 @;=4 GeV. Q+. For comparison, Fig. 5 also displays the fixed-order
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! ' ' ' feature as an indication that our approach for matching, Eq.
do/dQ; (pb/GeV) (45), i§ justified and reasonable_even at IaerQ.

8o { po To improve the lowQ+ behavior further, we introduce a

75 < Q < 105 Gev nonperturbative function as described in E8). Since most

of the cross section comes from the regi@r-M,, we ne-

glect the mild(logarithmig dependence of the nonperturba-

7 tive parameteg on Q. We then fitg to the CDF and DO data

simultaneously, allowing again the normalizations to vary for

the two data sets. Sinog should be determined from the

low-Q+ region, we include only the data points witQ

- <50 GeV in this fit. The results of the fit do, however, not

depend much on this choice. The optimal result is obtained

for g=0.8 GeV¥ and the normalization factors 1.069

(0.975 for CDF (D0). The x? for the 42(20) data points

; from CDF(DO) included in the fit is 31.323.4). Even better

0 10 20 30 40 Q (cev)5° fits would be possible by using a more refined nonperturba-

T tive function, as suggested by E@17), resulting in extra

parameters. As can be seen from the solid lines in Figs. 5 and

10l L do/dQ; (pb/GeV) J 6, with these parameters a very good agreement between the

75 < Q < 105 GeV jointly resummed cross section, matched with the fixed-order

cross section ab(«g), and the data is achieved. We note that

our nonperturbative parametgr=0.8 Ge\ is very similar

to that determined in Ref23], where an extrapolation of the

N perturbation theory result to large was made. Reference

[23] argued that théo integral in pureQ; resummation is

dominated by the saddle point. Our method and theirs lead to

somewhat smaller values of the nonperturbative parameter

than when &, prescription is use@21].

T T T T T T T T T

100

10~

10~%

10-3 4
. , o , [ V. CONCLUSIONS
10
20 30 50 70 100 200 o .
Qy (GeV) The transverse momentum distribution of thes by now
_ a well-studied problem, to which a number of successful
FIG. 6. Same as Fig. 5, but compared to the DO {423 analyses have been appligt¥4,15,21-238 We have come

back to this topic because we believe that the method of joint

[O(ay), dotted lines;O(a?2), dash-dotted liné$ results for resummation offers additional insight on the interplay of per-
the cross section, with their well-known divergent behaviorturbative and nonperturbative corrections in this, and other
at smallQ. hadronic reactions. Joint resummation, implemented as
Interestingly, the fixed-orde®(a.) result misses the data @POVe, provides a convenient definition of the perturbative
also atlarge Qr, where it remains too low even if the nor- CrOSS Section at any nonze@, without the introduction of
malization is adjusted within the errors quoted in experimentadditional dimensional scalébeyondA ocp) to define either
Joint resummation, with the choice E@) for y(N.b) and the perturbative resummation or the parton distributions at

the matching procedure described in E45), adds an im- low scales.

= . . . Treated this way, the jointly resummed cross section re-
portant contribution to the cross section also here: the d'ﬁerfains its original perturbative asvmototic expansion order b
encedo™YdQ?dQ3— do™*dQdQ? in Eq. (45 remains gina’ p ymp b y

) T order. It also suggests the functional form of nonperturbative
num_erlcally §|gp|f|cant also at larg@r anq appears to be corrections. Because perturbative and nonperturbative com-
crucial for bringing the _theoretlcal calculation to the dgta. Asponents of a QCD cross section are linked at the level of
can Bez seen frzom Fig. 5, the ross se2ct|0r21 @ws),  power correction§l1,17, it will be necessary, and useful, to
do™4@/dQ?dQ7, is larger thardo™ 1 /dQ’d Q7 . Asex-  yeanalyze the functional and phenomenological aspects of
pected, the differencelo™YdQ*dQ7—do®P@?)dQPdQf is  nonperturbative corrections in this formalism, relying on the
smaller than do"®Yd Q?d Q5 — do®PWdQ?dQE, so that the available range of data for the Drell-Yan mechanism. Toward
full cross section in Eq(45) depends only littte on whether the high-energy side, a further application to Higgs boson
matching is performed ab(«,) or at (’)(ai). We take this production [28,43 at the CERN Large Hadron Collider

(LHC) will also be of interest. In the same spirit, we intend
as well to return to the application of joint resummation to
We have used subroutines of thkessospackage of Ref[22] in semi-inclusive processes, such as direct photon production
order to calculate the cross section((ta?). [9,1Q].
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APPENDIX A: SOME USEFUL FORMULAS <F
J

T ~
y_znlu/F) 0’:’jeS(Z|Q|QT”ufuu'F)1 (BZ)
For Z boson production one has in E() the standard

tree-level cross sectiorisee[44)): - - .
wherez=Q“/s, the f;(x,ug) are thex-space parton densi-

ties, and?ri'fs(z,Q,QT,;L,MF) is given by the inverse Mellin

2 2 -~
o_ 47, transform of the moments{i(N,Q,Qr,u, ug),
Oy '= > e
97S
U{jeS(ZlQ!QT llu’ilu’F)
n Q%(Q*-M3%) 1 YR
e§=e§—2eav|va;< 5 75 22 > ey dNz NU'ir]eS(N,Q,QT',U«:,U«F)- (B3)
(Q°=M2)“+MzI'7 ™ Jen
As was pointed out if18], and as is indicated by the upper
+(a|2+v|2)(a§+v§)l<2 Q . p 18] . ~re y PP
(Q*—M2)2+M2r2 limit <« in Eq. (B2), the functlonaijs(z,Q,QT,,u,,uF) de-
fined in the “minimal” prescription is hon-vanishing also at
z>1 due to the presence of the Landau pole to the right of
\/EGFN@ the N space contoufsee Fig. 2, even though it rapidly de-
K= =g (Al)  creases with increasing. At z>1, the angle¢ of the
N-space contour has to be decreased to betd#vto obtain
a convergent result.
1 1 The right-hand side of EqB2) in principle allows for
a|=—5, v|=—§+2 Sirt Oy, using x-space parton distributions. However, a problem

arises from the fact that the resummed cross section is highly
singular[16] at z—1 (even though it is regularized in terms
a.=T2, —T3-2e.sirPhn. of plus d|str|_b_ut|on$ wh_lch makes thg convolution Wlt.h the
a=lar Pa~la azll oW parton densities numerically very tediofis8]. A convenient
way of eliminating this problem is to trivially rewrite Eq.

(B1) as

APPENDIX B: USING x-SPACE PARTON DISTRIBUTIONS

The above formulas are directly applicable if the parton do'es 1 N
densities, including their evolution, are treated in Mellin mo- W: > JC dN7 .2 [(N=1) fiu(N,up)]
ment space. In this context, it is convenient to use the evo- T N !
lution code of[32] which is set up in moment space. In X[(N=1) fi(N,up)]
practical applications, however, one may prefer to be more
flexible concerning the choice of parton densities and be able (}{Jes(N,Q,QT Moy JLE)
to make direct use of anyx{space parametrization on the X 2 (B4)
market[36,45. One way of achieving this was presented in (N-1)
Ref.[18]. Here we propose a new simple method. Let us first .
rewrite Egs.(2), (25) as The Mellin-inverse ofo{?{N,Q,Qr, . ue)/(N—1)?,
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Si71z,Q.Qr 1) We thus arrive at
- res o
2 )y (N—1)? , dQ°dQs Wi Jr ZJuzy
B5 T
(®9 XFj },_Z'MF)SirJ?S(ZaQaQT-MyMF). (B7)

is now sufficiently well behaved at largehanks to the extra
suppression by 1M—1)2. For the inverse of N which has good numerical behavior. The standard sets
—1)f;,u(N,ug) one finds, making use of the fact that the [32,36,43 of the parton distributions allow taking the first
x-space parton densities vanishxat 1: derivative numerically. Depending on the lalyebehavior

of the resummed cross section in moment space,

1 ~re . ..
| ANV (N=1) (N ) O'IJS(N,Q,QT,,U,,,LLF), it may be necessary to divide by a

27 ) ey, higher power oN—1 in Eq.(B5), resulting in higher deriva-
d tives of the parton distributions in E¢B6). This turns out to
~ be the case for the gluon-gluon initial state in inclusive
= axX iome) = Filpe). (B6) Higgs production viaggg—> HXg[46].
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