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Joint resummation in electroweak boson production
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We present a phenomenological application of the joint resummation formalism to electroweak annihilation
processes at a measured boson momentumQT . This formalism simultaneously resums at next-to-leading
logarithmic accuracy large threshold and recoil corrections to partonic scattering. We invert the impact param-
eter transform using a previously described analytic continuation procedure. This leads to a well-defined,
resummed perturbative cross section for all nonzeroQT , which can be compared to resummation carried out
directly in QT space. From the structure of the resummed expressions, we also determine the form of nonper-
turbative corrections to the cross section and implement these into our analysis. We obtain a good description
of the transverse momentum distribution ofZ bosons produced at the Fermilab Tevatron collider.
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I. INTRODUCTION

The hadronic annihilation cross sections for electrowe
boson production (g* ,W,Z,H) provide important test case
for resummation techniques in QCD. This paper descri
the application of a simultaneous, joint resummation
threshold and transverse momentum singularities in th
cross sections. The application to this well-studied case
ables us to compare joint resummation to the data foZ
production at the Fermilab Tevatron. We regard it as a fi
step toward extending joint resummation to a wider range
kinematics and reactions, and toward a unified descriptio
nonperturbative contributions in hadronic reactions.

At a measured transverse momentumQT!Q, with Q the
pair or boson mass, annihilation cross sections have co
butions as

nln2n21(QT
2/Q2)/QT

2 at each order of perturbatio
theory. Although highly singular atQT50, these terms nev
ertheless organize themselves into a function that descr
the Sudakov suppression of the cross section at smallQT
@1–4#. These singularities reflect the recoil of the produc
electroweak boson against soft gluon radiation. This is tra
verse momentum resummation, or ‘‘QT’’ resummation, for
short.

Perturbative corrections in factorized inclusive ele
troweak annihilation cross sections,

dsAB
res

dQ2
5E dzE dxi dxj f i /A~xi ,mF! f j /B~xj ,mF!

3d~z2Q2/xixjS! v i j
res~z,Q,m,mF!, ~1!

have an analogous behavior atz51. In this expression, the
f ’s are parton distribution functions in hadronsA andB, with
0556-2821/2002/66~1!/014011~15!/$20.00 66 0140
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v i j
res the corresponding partonic hard-scattering functionsm

is the renormalization scale andmF the factorization scale
At z51, referred to as the partonic threshold,v i j

res(z) has
terms of the formas

nln2n21(12z)/(12z). These singular cor-
rections reflect the lack of phase space for soft radiat
when the partons have just enough energy to produce
observed final state. Like singularities atQT50, they can be
resummed to all orders@5,6#.

Unlike transverse momentum resummation, the singu
functions of threshold resummation do not appear as exp
logarithms in the physical cross section, Eq.~1!, since they
are in convolution with the parton distribution functions.
practice, transverse momentum resummation is usually
greater numerical significance at measuredQT than is thresh-
old resummation at integratedQT , simply because the typi
cal value ofz in Eq. ~1! is generally far from unity. In such
cases, threshold resummation shows that the effects of
tributions singular atz51 are under control. It also leads t
cross sections that are in general less sensitive to the fa
ization scale@7#. For this reason, and because the dynam
origins of the large corrections in both threshold and tra
verse momentum resummations are in soft gluon emissio
is attractive to develop a formalism that encompasses b
The necessary analysis for this combination, which we re
to as joint resummation, has been carried out in@8# for par-
ton distributions, and in@9# for electroweak annihilation as
well as QCD cross sections. The effects of resummation
closely bound to momentum conservation. The singular c
rections associated with soft gluon emission exponentiat
the corresponding spaces of moments, the impact param
space for transverse momentum, and Mellin~or Laplace!
moments in energy for threshold resummation. The tra
forms relax momentum and energy conservation, while th
inverses reimpose it. In joint resummation, both transve
momentum and energy conservation are respected.
©2002 The American Physical Society11-1
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In Ref. @10# a preliminary analysis of prompt photon pro
duction was carried out from the point of view of joint re
summation, with an emphasis on the role of recoil in high
order terms in the relevant hard scattering functio
Relatively substantial effects were found in that case. In
context, it is important to return to the better-understood
ample of electroweak annihilation to test the joint formalis

As mentioned above, there is a close relation betw
resummation and nonperturbative corrections. Taking i
account nonleading logarithms and the running of the c
pling, resummation leads in each case to a perturbative
pression in which the scale of the coupling reflects the va
of the transform variable. Because of the singularity of
perturbative effective coupling atLQCD, the resulting ex-
pressions are, strictly speaking, undefined. A closer lo
however, shows that singular contributions appear only
nonleading powers of momentum transfer. This is an
ample of how perturbative resummation can suggest the
nonperturbative dynamics is expressed in infrared safe h
scattering functions. In effect, perturbation theory is ambi
ous, and the resolution of its ambiguities is, by definitio
nonperturbative@11,12#. As we shall review below, these am
biguities manifest themselves as singularities in the integr
of the inverse transforms for both transverse momentum
threshold resummations. Each scheme for dealing with th
singularities constitutes a specification of perturbat
theory, and implies a parametrization of nonperturbative
fects. We hope that a joint resummation affords a more g
eral approach to this problem.

For each resummed cross section, be itQT , threshold or
joint, one must first specify how to define perturbation theo
in the transform space, and then, given a well-defined
pression, how to invert the transform. The most ‘‘conser
tive’’ approach is to expand the resummed expression
some fixed order in perturbation theory@13#. Since the re-
summation contains information on singular terms at all
ders, we may in this way get information beyond the orde
which a complete calculation has been done. To fixed or
the perturbative expression and its transform are unamb
ous. This approach is applicable to threshold resumma
for inclusive cross sections, but is not directly useful f
phenomenology at measuredQT;0, where the cross sectio
is singular. Another approach forQT resummation is to use
the exponentiation of leading logarithms in transverse m
mentum space, and incorporate the finite order impro
ments, including those due to the running coupling and m
mentum conservation, by a direct expansion@14,15#. A
similar application for threshold resummation was develop
in @16#.

Finally, in bothQT and threshold resummation, we ma
as indicated above, redefine the resummed perturba
theory in transform space, and invert the resulting transfo
numerically. For threshold resummation this has been d
by so-called principal-value@11,17# and minimal@18# pre-
scriptions for perturbation theory. Both exploit the analy
structure of the running coupling, and redefine transform
tegrals to avoid the Landau pole. ForQT resummation, the
commonly used approach~the b* prescription! @4,19–22#
introduces an infrared scale, beyond which the running of
01401
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coupling is decoupled from the transform variable. More
cently, Qiu and Zhang@23# have proposed another metho
employing a smooth extrapolation of the perturbative
summed cross section in impact parameter space to pus
Landau singularity to infinity.

In this paper we will study the jointly resummed cro
section derived in@9#, defined by a next-to-leading logarithm
approximation to the resummed exponent, and an ana
continuation of theb-space contour following@10#. We stress
that we could have made other choices, like those mentio
above, within the context of joint resummation. We find t
approach of@10#, reviewed below, attractive for its simplic
ity. It results in a redefined perturbative series with no n
dimensional scale beyondLQCD. Phenomenological param
eters then appear only as nonperturbative power correcti
In this ‘‘test case’’ for joint resummation, we shall find
consistency with the data from Z production that we belie
is comparable to that of other approaches. We hope that
will serve as a starting point for further development.

We note that different treatments of the perturbative
ponent may differ markedly in pure threshold resummati
due to different treatments of nonleading logarithm
@17,18,24#. This important question applies to joint resum
mation as well, but we shall not explore these differences
this paper. This is because the vector boson cross sec
discussed here are in the kinematic region described ab
wherez is far from unity in Eq.~1!, and where we expect th
effect of pure threshold resummation to be small in a
scheme.

We begin our technical discussion with a review of t
joint resummation formalism of Ref.@9#, applied toZ pro-
duction, including a comparison to the exactO(as) cross
section. We develop the phenomenological evaluation of
resulting expressions in Sec. III. This includes the specifi
tion of resummed perturbation theory through contour in
grals in the two transform spaces, the matching to finite or
calculations, and the parametrization of nonperturbative
fects. In Sec. IV, we compare the resulting expressions
Collider Detector at Fermilab~CDF! and D0 data, fitting the
necessary nonperturbative parameter. Following this,
give a few preliminary conclusions on the status and pr
pects of the joint resummation program. In Appendix A w
present some well-known formulas that are relevant for
calculation, and in Appendix B we sketch the simple nume
cal method that enables us to evaluate resummed mom
space integrals for parton distribution functions that a
specified only inx space.

II. THE JOINTLY RESUMMED CROSS SECTION

Within the formalism of@9#, the jointly resummed cross
sectionds res/dQ2 dQT

2 for electroweak annihilation is ob
tained as a double inverse Mellin and Fourier~impact param-
eter! transform:

dsAB
res

dQ2 dQT
2

5(
a

sa
(0) E

CN

dN

2p i
t2N E d2b

~2p!2
eiQW T•bW

3Ca/A~Q,b,N,m,mF!exp@Eaā
PT

~N,b,Q,m!#

3Cā/B~Q,b,N,m,mF!. ~2!
1-2
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Here, t5Q2/S, and sa
(0) is a normalization containing th

appropriate electroweak charges occurring in the basic
derlying processaā→V. For completeness, and because t
is the process we will study numerically in this paper, w
give sa

(0) for Z production in Appendix A.
Compared to the expression given in@9#, we have brought

the cross section into a form that is closer to the standard
@4# in QT resummation. Resummation of soft-gluon effects
achieved through the flavor-diagonal Sudakov expon
Eaā

PT(N,b,Q,m), while the ‘‘C coefficients’’ contain the par-
ton distribution functions and provide resummation of ad
tional logarithms of soft-collinear and collinear origin. W
will discuss the various terms in turn.

A. The Sudakov exponent

We now develop an expression for the exponentEaā
PT,

valid to next-to-leading logarithms~NLL ! in N andb, based
on the results of Ref.@9#. Compared to that reference, w
will absorb some terms in the exponent that are associ
with parton evolution into theC-coefficients. We begin with
the exponent derived in@9# for the eikonal approximation to
aā annihilation to an electroweak boson,Eaā

eik . It is given by

Eaā
eik

~N,b,Q,m,mF!52E
0

Q2dkT
2

kT
2 Aa„as~kT!…

3FJ0~bkT! K0S 2NkT

Q D1 lnS N̄kT

Q
D G

22 ln~N̄!E
mF

2

Q2dkT
2

kT
2 Aa„as~kT!…. ~3!

Here,J0 andK0 are the usual Bessel functions, and we d
fine

N̄5NegE, ~4!

with gE the Euler constant. The functionAa(as) is a series in
as ,

Aa~as!5
as

p
Aa

(1)1S as

p D 2

Aa
(2)1 . . . , ~5!

in terms of the familiar coefficients@25#

Aa
(1)5Ca ~Cq5CF ,Cg5CA!,

Aa
(2)5

Ca

2
K, K5CAS 67

18
2

p2

6 D2
10

9
TRNF . ~6!

Dependence on the renormalization scale is implicit in E
~3! through the expansion ofas(kT) in powers ofas(m).

Following Refs.@9,4,26#, we approximate the exponent i
Eq. ~3! by a ‘‘minimal’’ form that is accurate to next-to
leading logarithms in both transform variables:
01401
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Eaā
eik

~N,b,Q,m,mF!52E
Q2/x2

Q2 dkT
2

kT
2 Aa„as~kT!…lnS N̄kT

Q
D

22 ln~N̄!E
mF

2

Q2dkT
2

kT
2 Aa„as~kT!…. ~7!

Here, the functionx(N̄,b̄) organizes the logarithms ofN and
b in joint resummation,

x~N̄,b̄!5b̄1
N̄

11h b̄/N̄
, ~8!

whereh is a constant, and where, by analogy toN̄ of Eq. ~4!,
we have defined

b̄[bQegE/2. ~9!

To anticipate, we will chooseh51/4 below. We will discuss
the particular expression~8! for x in Sec. III B.

We now regroup Eq.~7! as

Eaā
eik

~N,b,Q,m,mF!52E
Q2/x2

Q2 dkT
2

kT
2 Aa„as~kT!…lnS kT

Q D
22 ln~N̄!E

mF
2

Q2/x2dkT
2

kT
2 Aa„as~kT!….

~10!

Next, we make contact with standardQT resummation by
writing

Eaā
eik

~N,b,Q,m,mF!

52E
Q2/x2

Q2 dkT
2

kT
2 FAa„as~kT!…lnS Q2

kT
2 D 1Ba„as~kT!…G

1E
mF

2

Q2/x2dkT
2

kT
2 @22Aa„as~kT!…ln~N̄!

2Ba„as~kT!…#. ~11!

Here we have introduced

Ba~as!5
as

p
Ba

(1)1S as

p D 2

Ba
(2)1 . . . , ~12!

with

Bq
(1)52

3

2
CF , Bg

(1)52
1

6
~11CA24TRNF!. ~13!

Equation~11! follows from Eq. ~10! to NLL accuracy inN
andb. The coefficientsBa

(2) are also known@19,27#, but con-
tribute only beyond NLL.

The first term in Eq.~11!,

2E
Q2/x2

Q2 dkT
2

kT
2 FAa„as~kT!…lnS Q2

kT
2 D 1Ba„as~kT!…G , ~14!
1-3
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has the classic form of the Sudakov exponent in electrow
annihilation, the only new ingredient being the quantityx
that depends onN and b and represents the joint resumm
tion. As shown in Sec. III A of Ref.@9#, the term withBa
accounts for the difference between the eikonal approxi
tion and the full partonic cross sections in the threshold
gion. Equation~14! will be our choice for the exponentEaā

PT

in Eq. ~2!. Its expansion in leading and next-to-leading log
rithms gives

Eaā
PT

~N,b,Q,m!5
2

as~m!
ha

(0)~b!12ha
(1)~b,Q,m!, ~15!

where

ha
(0)~b!5

Aa
(1)

2pb0
2 @2b1 ln~122b!#, ~16!

ha
(1)~b,Q,m!5

Aa
(1)b1

2pb0
3 F1

2
ln2~122b!1

2b1 ln~122b!

122b G
1

Ba
(1)

2pb0
ln~122b!

1
1

2pb0
FAa

(1)lnS Q2

m2D 2
Aa

(2)

pb0
G

3F 2b

122b
1 ln~122b!G . ~17!

In these equations,

l5b0 as~m!ln~N̄!,

b5b0 as~m!ln~x!, ~18!

and

b05
11CA24TRNF

12p
,

b15
17CA

2210CATRNF26CFTRNF

24p2
. ~19!

In order to interpret the second term in Eq.~11!, we note
that the combination in its square brackets,

22Aa~as!ln~N̄!2Ba~as!, ~20!

corresponds to the leading~logarithmic plus constant! terms
at largeN in the one-loop diagonalq→q ~or, g→g) anoma-
lous dimension. To be more precise, the way we have
tained Eq.~11!, the second term in Eq.~11! matches the
anomalous dimension to NLL accuracy only, since the c
stant~in N) part of the two-loop anomalous dimension is n
identical to the customary@19–22# coefficient Ba

(2) ~even
though it is related to it@27,28#!. As mentioned above, con
tributions related toBa

(2) enter only beyond NLL and are
01401
k

a-
-

-

b-

-
t

outside the presently developed reach of the joint resum
tion formalism. We are therefore indeed free to associate
combination in Eq.~20! with the leading terms in the anoma
lous dimension. It then follows that the second term in E
~11! represents the evolution of the parton densities fr
scale mF to scaleQ/x in the large-N limit, that is, near
threshold. Note that indeed all dependence of the expon
Eaā

eik on mF is contained in this term. The evolution term w
have identified in Eq.~11! will become part of the functions
Ca/H introduced in Eq.~2!. We shall therefore pursue it fur
ther when discussing theCa/H in Sec. II C.

B. The function x„N̄,b̄…

We have definedx(N̄,b̄) in Eq. ~8!. There is an elemen
of choice in the actual form ofx(N̄,b̄), the only requirement
being that the leading and next-to-leading logarithms ofN̄

and b̄ are correctly reproduced in the limitsN̄→` or b̄
→`, respectively. In Ref.@9#, the somewhat simpler choic

x~Ref. @9#!5b̄1N̄ ~21!

was made. While this is a legitimate option, we found it to
less convenient for phenomenological studies. The reason
this is that this form ofx introduces sizable subleading term
into perturbative expansions of the resummed expon
which are not present in full fixed-order perturbative resu
For instance, expanding the exponentEaā

PT(N,b,Q,m) in Eq.
~15! to O„as(m)… one finds

exp@Eaā
PT

~N,b,Q,m!#

'12
2as~m!

p
CFF ln2~x!2

3

2
ln~x!G . ~22!

If we are assuming thatb̄@N̄, relevant at smallQT far away
from threshold, then this is approximately

exp@Eaā
PT

~N,b,Q,m!#

'12
2as~m!

p
CFF ln2~ b̄!2

3

2
ln~ b̄!

12
N̄

b̄
ln~ b̄!1OS 1

b̄
D G . ~23!

On the other hand, the fixed orderO(as) result for the par-
tonic cross section for flavora is given ~at QTÞ0) by @2#

dŝO(as)

dQ2 dQT
2

5sa
(0) as~m!

p
CFF ln~Q2/QT

2!

QT
2

2
3

2QT
2

1O„ln~Q2/QT
2!…G , ~24!

where we have indicated the functional form of the fi
QT-suppressed correction. It is easy to show that upon F
1-4
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rier transformation of theO(as) in Eq. ~23! back to QT

space, the first two terms ln2(b̄)23
2ln(b̄) reproduce the first

two contributions todŝ/dQ2 dQT
2 in Eq. ~24!. The term

} ln(b̄)/b in Eq. ~23!, however, yields a subleading contrib
tion to the cross section, which is of the form ln(QT

2/Q2)/QT ,
that is, down with respect to the leading and next-to-lead
logarithms, but more singular than the first suppressed
rection to the fixed order cross section in Eq.~24! which is
just } ln(QT

2/Q2). In other words, the choice~21! introduces
new dependence of the resummed cross section onQT , not
present in the cross section calculated at fixed order. E
though this affects only subleading, integrable terms, wh
are beyond the reach of our resummation anyway, this m
match between Eqs.~22! and ~24! at O(1/QT) produces a
spurious logarithmic singularity inds/dQ2 dQT , which is
the cross section we will compare to the data. This prob
is avoided to all orders by choosingx as in Eq.~8! with any
h.0.

The functionx in Eq. ~8! is only a slight modification of

Eq. ~21!, but it has the property that at largeb̄ corrections to

the leading term are suppressed as 1/b̄2. In this way, no de-
pendence of the form ln(QT

2/Q2)/QT can arise in the cros

section in QT space. Obviously, the general limits forb̄

→` andN̄→` are the same as in Eq.~21!. It also turns out

that this form ofx(N̄,b̄) leads to analytic properties of th
exponent in Eq.~15! that are consistent with the metho
described below for performing the inverse transform inb.

We will analyze expansions of our final resummed cro
section to one loop in more detail in Sec. II D. Before doi
so, we need to specify the coefficientsCa/H(Q,b,N,m,mF) of
Eq. ~2!.

C. The coefficientsCaÕH„Q,b,N,µ,µF…

The coefficientsCa/H(Q,b,N,m,mF) in Eq. ~2! are chosen
to correspond to the jointly resummed cross section in@10#
for large N and arbitraryb, and toQT resummation forb
→`, N fixed:

Ca/H~Q,b,N,m,mF!

5(
j ,k

Ca/ j„N,as~m!…Ejk~N,Q/x,mF! f k/H~N,mF!.

~25!

Here thef j /H(N,mF) are again the parton distribution func
tions for hadronH at factorization scalemF . In principle, by
analogy with standardQT resummation@4#, the scale for the
strong coupling in theCa/ j (N,a) would beQ/x; however, at
the NLL level we are considering here, it is legitimate
choose the ‘‘large’’ renormalization scalem;Q and to ex-
pand theCa/ j (N,a) to a finite order inas . To first order,
matching Eq. ~25! to the large-b behavior of the
QT-resummed cross section@2,4,19,28#, one has
01401
g
r-

en
h
s-

m

s

Cq/q~N,as!511
as

4p
CFS 281p21

2

N~N11! D
5Cq̄/q̄~N,as!, ~26!

Cq/g~N,as!5
as

2p

1

~N11!~N12!

5Cq̄/g~N,as!. ~27!

Note that the coefficientCq/g is off-diagonal in flavor. It is
indeed a well-known feature inQT resummation@4,19,2,28#
that such non-diagonal terms also contribute to singular
havior atQT50. On the other hand, they do not incorpora
singularities at threshold, which is visible from the fact th
Cq/g is suppressed at largeN.

The evolution matrixE(N,Q/x,mF) in Eq. ~25! results
from the second term in Eq.~11! that we chose to absorb int
theC coefficients. Compared to the large-N limit used in that
equation and relevant near threshold, we can make an
provement here and replace the leading-N part of the diago-
nal anomalous dimension in Eqs.~20! and ~11! by the full
anomalous dimension relevant for the scale evolution of p
ton densities, containing also all terms subleading inN:

22Aa~as!ln~N̄!2Ba~as! → gN~as!. ~28!

At the NLL level, whereAa
(1) ,Ba

(1) ,Aa
(2) contribute, we need

the first two terms in the perturbative expansion of t
anomalous dimension@29#, gN5(as /p)gN

(0)1(as /p)2gN
(1) .

Since thegN
( i ) are~in general! matrices, this procedure intro

duces terms that are parton non-diagonal, and thus lead
the matrix structure ofE in terms of an ordered exponentia
As mentioned above, the interpretation ofE is simply the
evolution of the parton densities from scalemF to scaleQ/x,
within the NLL approximation. In this way, it leads to
resummation of collinear logarithms, some of which are
sociated with partonic threshold, that is, are also proportio
to ln(N̄), while others are suppressed byO(1/N) or more,
due to partonic mixing. Such a procedure is also famil
from standardQT resummation@4,28#, and the substitution in
Eq. ~28! thus provides a natural extension of our formalis
for joint resummation away from threshold. We may al
interpretCa/H(Q,b,N,m,mF) as the Fourier-Mellin transform
of a generalized parton distribution, at measured transv
momentum and energy fraction@9#. Equation~25! then has
the interpretation of a refactorization ofCa/H into a coeffi-
cient functionCa/ j and light cone parton distribution func
tions, f j /H , at the scaleQ/x.

Explicit expressions for the solution of the standard ev
lution equations for parton densities between scalesmF and
Q/x can be found in@30,31# and can be used to determin
the elements of the matrixE. To achieve the exponentiatio
of the evolution terms—despite the fact that the matricesgN

(0)

andgN
(1) do not commute—the iterative procedure derived

Ref. @31# is particularly useful. The parameter that gover
the evolution between scalesmF andQ/x is
1-5
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lnS as~mF!

as~Q/x! D5 ln~122b!1as~m!Fb1

b0

ln~122b!

122b

1b0lnS Q2

m2D 2b

122b
1b0lnS Q2

mF
2 D G ,

~29!

where the right-hand side is the expansion to NLL accura
consistent with our approximation. It should be emphasi
that in the above expression the scalemF appears through a
single explicit logarithm that will serve to approximate
cancel themF dependence of the parton distributions in E
~25!, resulting in a decrease inmF dependence for the fina
resummed cross section in Eq.~2!, as compared to a fixed
order calculation.

In all of these procedures, working in Mellin-N moment
space is a great convenience, because it enables us to e
itly express the evolution between the scalesmF andQ/x in
terms of the parameter ln@as(mF)/as(Q/x)# in Eq. ~29!. In this
way, we avoid the problem normally faced inQT resumma-
tion that one needs to call the parton densities at scales
below their range of validity, so that some sort of ‘‘freezing
~or related prescription! for handling the parton distribution
is required. As is evident from Eq.~25!, we only need the
parton distribution functions at the ‘‘large’’ scalemF;Q,
whereas normally in QT resummation the produc

(kEjk(N,Q/b̄,mF) f k/H(N,mF) is identified with

f k/H(N,Q/b̄). An organization of theC coefficients in a form
similar to ours was first proposed in@28#. We finally note that
the moment variableN and, as will be discussed below, als
the impact parameterb are in general complex valued in ou
approach, so that it is even more desirable to separate
complex scaleQ/x from that in the parton densities. In th
way, it is not even necessary~albeit convenient! to have the
parton densities in Mellin-N moment space, as provided
the code of@32#. In fact, we can generalize our analysis
any set of distribution functions, even if specified only inx
space. Details are discussed in Appendix B.

D. Finite-order O„as… expansions of the resummed cross
section

In this section we compare expansions of our jointly
summed cross section to ‘‘exact’’ expressions for the el
troweak annihilation cross section atO(as). We discuss first
the limitsN→`,b50 andb→`,N fixed separately. In thes
cases, all results can be given analytically.

The limit N→`,b50 corresponds to pure threshold r
summation for the total cross section. It is realized by in
grating overQT in Eq. ~2!, which setsb50 there. The ex-
pansion of Eq.~2! to O(as), using Eqs.~15!, ~26!, ~27! and
the parton distribution functions evolved according to E
~29!, then gives for the partonic cross sections in theqq̄ and
qg scattering channels:
01401
y,
d
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he
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.

ŝqq̄5sq
(0) as

2p
CF H 24 ln2N̄16 ln N̄281p21

2

N~N11!

1F 2

N~N11!
1324S1~N!GF22 ln N̄1 lnS Q2

mF
2 D G J ,

ŝqg5sq
(0) as

2p
TR H N21N12

N~N11!~N12!F22 ln N̄1 lnS Q2

mF
2 D G

1
2

~N11!~N12!J , ~30!

where S1(N)5( j 51
N j 215c(N11)1gE , with c the di-

gamma function. Since we are interested in the ne
threshold region, we can expand this further to the largeN
limit. Using c(N11)5 ln N11/(2N)1O(1/N2), we find

ŝqq̄5sq
(0) as

2p
CF H 4 ln2N̄14

ln N̄

N
281p2

1F32
2

N
24 lnN̄G lnS Q2

mF
2 D J 1OS ln N̄

N2 D , ~31!

ŝqg5sq
(0) as

2p
TR

1

N F22 ln N̄1 lnS Q2

mF
2 D G1OS ln N̄

N2 D .

The Mellin moments of the ‘‘exact’’O(as) partonic cross
sections can be found in@33# and read

ŝexact
qq̄ 5sq

(0) as

2p
CF H 4S1

2~N!2
4

N~N11!
S1~N!

1
2

N2
1

2

~N11!2
281

4p2

3
1F 2

N~N11!
13

24S1~N!G lnS Q2

mF
2 D J ,

ŝexact
qg 5sq

(0) as

2p
TR H 22

N21N12

N~N11!~N12!
S1~N!

1
N4111N3122N2114N14

N2~N11!2~N12!2

1
N21N12

N~N11!~N12!
lnS Q2

mF
2 D J . ~32!

At large N, this gives
1-6
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ŝexact
qq̄ 5sq

(0) as

2p
CF H 4 ln2N̄14

ln N̄

N
281

4

3
p2

1F32
2

N
24 ln N̄G lnS Q2

mF
2 D J 1OS ln N̄

N2 D , ~33!

ŝexact
qg 5sq

(0) as

2p
TR

1

N F22 ln N̄1 lnS Q2

mF
2 D G1OS ln N̄

N2 D .

Comparing Eqs.~31! and ~33!, we see that at largeN the
expansion of the resummed cross section correctly re
duces theO(as) result, including even all terms that ar
down by 1/N. The only difference between Eqs.~31! and
~33! is in the term}p2. This difference is due to our choic
of the coefficientCq/q in Eq. ~26!, for which we employed a
form that is more standard inQT , rather than in threshold
resummation. A closer inspection of our resummed eiko
exponent, Eq.~3!, reveals that its Bessel functions result
different contributions}p2 in the two limits N→` and b
→`, just as needed to explain the deficiency between E
~31! and ~33!. In other words, we could modify our expan
sion of the exponent into logarithms somewhat~by suitably
redefiningx), so that Eq.~31! would automatically have the
correct coefficient ofp2. On the other hand, the terms ass
ciated withp2 are beyond NLL, which is the scope of th
present anlysis, and we therefore do not implement
change here.

It is worth pointing out that the reason why we correc
reproduce all terms suppressed as 1/N in Eqs.~31! and ~33!
is our treatment of evolution in Eq.~28!. As was discussed in
@34#, the leading ln(N̄)/N terms are associated with colline
non-soft emission; it is therefore natural that they can
generated from evolution of the parton densities between
scalesmF andQ/N̄, as embodied in Eq.~29! at b50. In this
way, our joint resummation correctly includes the leadi
as

kln2k21N̄/N terms to all orders. Because threshold resumm
tion has a relatively modest effect for vector boson prod
tion in the kinematic region explored at the Tevatron,
leave for future work a more complete comparison of o
resummed expression to fixed order, beyond theseO(as)
considerations.

In the limit b→`, N fixed, our formulas smoothly turn
into those for standardQT resummation. For the one-loo
expansion of the jointly resummed cross section we find

ŝqq̄5sq
(0) as

2p
CF H 24 ln2b̄16 ln b̄281p2

1
2

N~N11!
1F 2

N~N11!
1324S1~N!G

3F22 ln b̄1 lnS Q2

mF
2 D G J 1O~ ln b̄/b2!, ~34!
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ŝqg5sq
(0) as

2p
TR H N21N12

N~N11!~N12!

3F22 ln b̄1 lnS Q2

mF
2 D G1

2

~N11!~N12!J
1O~ ln b̄/b2!,

in full agreement with the expressions for the large-b limit of
the ‘‘exact’’ O(as) result derived in@2#.

We do not present closed expressions for arbitrary largN
and b, but we can easily compare numerically the exa
O(as) result with the expansion of Eq.~2! to O(as). Figure
1~a! shows the fractional deviation

D[Fdsfixed(1)

dQT
2

dsexp(1)

dQT
G Y dsfixed(1)

dQT
, ~35!

wheredsfixed(1)/dQT is the ‘‘exact’’O(as) cross section and
dsexp(1)/dQT denotes the one-loop expansion of the
summed expression. Figure 1~b! comparesdsfixed(1)/dQT
and dsexp(1)/dQT individually. Note the excellent agreemen
in the regionQT,10 GeV where resummation is necessa
Beyond 10 GeV, the agreement is naturally less exact
still good. This is the region where matching to finite order
appropriate, to which we will turn now.

FIG. 1. ~a! Fractional deviationD @as defined in Eq.~35!# be-
tween the ‘‘exact’’O(as) result and theO(as) expansion of the
jointly resummed cross section. We consider hereZ boson produc-
tion at the Tevatron; the cross section has been integrated ove
,Q,116 GeV. ~b! A comparison ofdsfixed(1)/dQT ~solid! and
dsexp(1)/dQT ~dashed! on an absolute scale.
1-7
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III. INVERSE TRANSFORMS AND MATCHING

In this section we take the remaining steps necessar
apply the joint resummation formalism phenomenologica
This includes specifying a prescription for performing t
inverse integrals in Eq.~2!, as well as implementing a pro
cedure for matching resummed and finite-order results
addition, we will consider nonperturbative effects resulti
from the strong coupling at small momentum scales.

A. Inverse transforms

When performing the inverseN andb transforms, specia
attention has to be paid to the singularity in the resumm
exponent, Eqs.~15!–~17!, at b51/2. Forh51/4, the singu-
larity occurs for

x~N̄,b̄!5b̄1
N̄

11
b̄

4N̄

5exp@1/~2b0as~m!!#[rL , ~36!

and is a manifestation of the Landau pole in the strong c
pling. The exponent is also ill defined whenx50 and infin-
ity, i.e., atb̄522N̄ andb̄524N̄, respectively. We note tha
the choiceh51/4 is made simply to reducex50 to a linear
relation betweenb̄ and N̄. This is not an essential simplifi
cation, but it makes the following analysis slightly more co
venient. In the following we sketch the application of th
method of@10# to this jointly resummed cross section. As f
as the Landau pole is concerned, it is simultaneously in
spirit of both the ‘‘minimal’’ prescription proposed for pur
threshold resummation in@18#, and the ‘‘principal value re-
summation,’’ described in@11#.

The contour for the inverse Mellin transform is chosen
be bent at an anglef with respect to the real axis and
parametrized as follows~see Fig. 2!:

N5C1ze6 if, ~37!

where the upper~lower! sign applies to the upper~lower!
branch of the contour, with 0<z<` (`>z>0). For f
.p/2, this results in an exponentially convergent integ

FIG. 2. Choice of contour for the Mellin inversion.
01401
to
.

In

d

-

-

e

l

overN in the inverse transform, Eq.~2! for all t,1 @16,18#.
For the moment, we do not specify the constantC, except
that it has to lie to the right of the rightmost singularity of th
parton distribution functions. At any finite order in perturb
tion theory, all values ofC.0, and all p.f.p/2 are
equivalent. In the resummed cross section, however, the
gularity at x5rL introduces a power-suppressed ambigu
in the transform, which we resolve by choosingC,rL @18#.

As mentioned above, the position of the Landau pole
pends on bothN and b. The d2b integral in Eq.~2! can be
written as

E d2b eiQW T•bW f ~b!52p E
0

`

db bJ0~bQT! f ~b!, ~38!

where J0 is the Bessel function. Hence, as it stands,
integration overb lies on the positive real axis. This woul
imply that one would never be able to avoid hitting the La
dau pole, since for any choice of the parameterC in Eq. ~37!

there is ab.0 for which x(N̄,b̄)5rL . This problem is of
course well known from standardQT resummation. The pro-
cedure usually adopted is to preventb from becoming too
large by evaluating the resummed cross section atb*
5b/A11b2/bmax

2 @4,3,19–22#, at the expense of introducin
a new parameterbmax. To avoid introducing a new param
eter, we treat theb integral in a manner analogous to theN
integral above, avoiding the Landau singularity on a cont
that produces an exponentially convergent integral for
QT.0.

Were the Landau pole not present we could, instead
performing theb integral along the real axis, use Cauchy
theorem and divert it into complexb space along either o
the two solid lines in Fig. 3, under the condition that t
integrand falls off sufficiently fast at largeubu and that there
be no contribution to the integral at infinitely large real pa
To achieve this, we have to split up Eq.~38! as @10#

2p E
0

`

db b J0~bQT! f ~b!

5p E
0

`

db b@h1~bQT ,v !1h2~bQT ,v !# f ~b!,

~39!

FIG. 3. Choice of contour forb integration~thick solid lines!.
The straight sections of the contour from 0 tobc are to be inter-
preted as on the positive real axis. The remaining curves repre
lines of singularity discussed in the text.
1-8
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where we introduce two auxiliary functionsh1,2(z,v), related
to Hankel functions and defined in terms of an arbitrary re
positive parameterv by integrals in the complexu plane
@35#:

h1~z,v ![2
1

pE2 ivp

2p1 ivp

du e2 iz sin u,

h2~z,v ![2
1

pEp1 ivp

2 ivp

du e2 iz sin u . ~40!

For h1, we parametrizeu52 ivp1xup(2112iv) (0
<xu<1), while for h2 , u52 ivp1xup(112iv) (1>xu
>0). Theh1,2 become the usual Hankel functionsH1,2(z) in
the limit v→`. We note that this convergence to the Hank
functions is extremely rapid, since the dependence on
variablev is suppressed by the exponential of an exponen
for all finite z. Theh1,2 are finite for any finite values ofz and
v. Their sum is alwaysh1(z,v)1h2(z,v)52J0(z), indepen-
dent of v. The utility of theh functions is that they distin-
guish positive and negative phases in Eq.~39!, making it
possible to treat theb integral as the sum of the two contou
in Fig. 3, the one associated withh1 (h2) corresponding to
closing the contour in the upper~lower! half plane.

The virtue of this technique for theb integration is that we
can choose the contours to avoid the Landau pole. We sim
need to make sure that theb contour never intersects th
trajectories defined byx(N̄,b̄)5rL , shown by the two light
solid curves in Fig. 3. As mentioned earlier, singularities a
arise forb̄522N̄ and b̄524N̄. These contours are show
in Fig. 3 by the dotted line and the dash-dotted line, resp
tively. Parametrizing the upperb contour as

C1 : b5H t ~0<t<bc!

bc2te2 ifb ~0<t<`!
~41!

and the lower one as

C2 : b5H t ~0<t<bc!

bc2teifb ~0<t<`!
~42!

we choose the parametersbc and fb such that none of the
branches intersects any of the ‘‘forbidden’’ lines in Fig. 3.
typical choice is also shown in Fig. 3 by the thick solid line
The parametersC in Eq. ~37! and bc in Eqs. ~41!, ~42! are
arbitrary as long as

0,S C

11bcQ/8C
1

bcQ

2 DegE,rL .

In this way, our full expression for the cross section in ter
of inverse transforms, Eq.~2!, becomes
01401
l,

l
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dsAB
res

dQ2 dQT
2

5(
a

sa
(0) E

CN

dN

2p i
t2N

3H E
C1

db b

4p
h1~bQT ,v ! W̄AB

(a)~Q,b,N,m,mF!

1E
C2

db b

4p
h2~bQT ,v ! W̄AB

(a)~Q,b,N,m,mF!J ,

~43!

with

W̄AB
(a)~Q,b,N,m,mF!5exp@Eaā

PT
~N,b,Q,m!#

3(
j ,k

Ca/ j„N,as~m!…

3Ejk~N,Q/x,mF! f k/A~N,mF!

3(
j̄ k̄

Cā/ j̄ „N,as~m!…

3E j̄ k̄~N,Q/x,mF! f k̄/B~N,mF!,

~44!

for initial hadronsA andB.
This choice of contours in complex transform space

completely equivalent to the original form, Eq.~38!, when
the exponent is evaluated to finite order in perturbat
theory. It is a natural extension of theN-space contour re-
definition above@16,18#, using a generalized ‘‘minimal’’@18#
exponent, Eq.~15!. As we stressed earlier, joint resummatio
with its contour integration method provides an alternative
the standardb space resummation. Joint resummation h
built-in perturbative treatment of largeb values, eliminating
the need for ab* or other prescription for the exponent, o
for a freezing of the scale of parton distributions at largeb or
low QT .

To examine the relevance of the large-b contributions, we
now compare the jointly resummedQT distribution matched
to the O(as) perturbative result@2# and theQT space re-
summed@15# distribution also matched to theO(as) distri-
bution ~see the next section for details of the matching p
cedure!. The QT space resummation formalism originat
from b space resummation and can be viewed as a very g
approximation of the latter. Unlike the standardb space tech-
nique, directQT resummation, like the contour method ju
described, yields a result even without any nonperturba
input for nonzero values ofQT . The two approaches ar
compared in Fig. 4 for the case of Z boson production
Tevatron energy. As expected, the two distributions dif
mostly at the very low-QT end of the spectrum.
1-9
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B. Matching to finite order

A resummedQT distribution provides theoretical predic
tions for the smallQT region; in the largeQT regime one
mainly relies on fixed-order perturbation theory. Thus a
scription of the intermediateQT region requires a consisten
matching between the two results that avoids double co
ing. For the joint resummation we adopt a matching presc
tion first proposed in standardb space resummation@20#:

ds

dQ2dQT
2 5

ds res

dQ2dQT
2

2
dsexp(k)

dQ2dQT
2

1
dsfixed(k)

dQ2dQT
2

, ~45!

where ds res/dQ2dQT
2 is given in Eq. ~2! and, as before

dsexp(k)/dQ2dQT
2 denotes the terms resulting from the e

pansion of the resummed expression in powers ofas(m) up
to the order k at which the fixed-order cross sectio
dsfixed(k)/dQ2dQT

2 is taken„in practice,k51 ~see@2#! or k
52 ~see@37#!….

Alternatively, one can formulate the matching procedu
in the following way@4,2#:

ds

dQ2dQT
2 5

ds res

dQ2dQT
2

1Yfinite , ~46!

Yfinite standing for the finite part of the fixed-order distrib
tion, i.e. the part remaining after the singular behav
}as

klnm(Q2/QT
2)/QT

2 ,(2k21>m>0) at kth order of perturba-
tion theory ~in our case,k51,2) has been taken out of th
fixed-order cross section. For pureQT resummation, there is
no difference between the two ways of matching in E
~45!, ~46!, as long asdsexp(k)/dQ2dQT

2 coincides identically
with the singular part of the fixed-order cross section. F
our joint resummation, however,dsexp(k)/dQ2dQT

2 also con-
tains terms that are non-singular inQT @as in Eq. ~23!#,

FIG. 4. QT distribution forZ production atAs51.8 TeV calcu-
lated using the narrow width approximation (Q5MZ). The QT

space method result and the joint resummation method resul
matched to the cross section atO(as). The CTEQ5M@36# parton
distributions have been used.
01401
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which implies that the matching is most naturally perform
according to Eq.~45! in conjugate (b,N) space, in order to
avoid double counting.

Notably, joint resummation with the choice ofx(N̄,b̄) in
Eq. ~8! and the matching prescription~45! returns a positive
cross section even in the highQT regime. This is in contras
to pureQT resummation, which notoriously yields a negati
answer at largeQT . To avoid the latter feature, usually a
additional switch between the matched cross section and
fixed-order result is implemented in pureQT resummation. A
nice feature of joint resummation is that this is not necess
here; Eq.~45! is all we need all the way toQT of orderQ.
~Of course, forQT@Q a further resummation is necessa
@38#.! The improved large-QT behavior of the matched cros
section can be traced back to the behavior of the join
resummed partds res/dQ2dQT

2 itself, which also remains
positive for all values ofQT . This in turn results from the
behavior of the functionx(N̄,b̄) at the small values ofb
relevant to highQT .

A simple argument shows how the small-b behavior ofx
ensures that the cross section remains positive at largeQT for
the jointly resummed cross section, and also why it go
negative in pureQT resummation in impact parameter spac
Consider first pureQT resummation, which is equivalent t
the choicex5b̄. For anyx, the one-loop expansion of th
resummed exponent in impact parameter space is given
Eq. ~22!. Whenx5b̄ simply @N̄50 in Eq.~23!#, this expres-
sion is just as singular atb50 as forb→` @39#. This pro-
duces a spurious suppression forb small compared to 1/Q,
which is present as well in the full exponent. Because thb
integral is dominated byb;1/QT , this effect is unimportant
whenQT is small. On the other hand, whenQT is large, of
the same order asQ, the suppression of smallb removes an
important contribution from theb integral. Along the de-
formed contours of Fig. 3, the situation is particular
simple. Referring to Eq.~43!, the sum of the functions
h1(bQT ,v) andh2(bQT ,v) starts out at 2 forb50, but both
begin to oscillate and to decrease exponentially, whenb

;1/QT . A spurious suppression timesW̄AB
(a)(Q,b,N,m,mF)

for b<1/Q;1/QT will thus eliminate positive contributions
to the transform, leaving over negative contributions, in
limited range ofb in which h1 and h2 are themselves o
order unity. If, on the other hand, we pickx as in Eq.~8!,
then we ensure that the spurious suppression at smallb char-
acteristic of pureb-space resummation is absent. The res
is a positive cross section for largeQT .

C. Nonperturbative input

In most applications ofb space resummation, the pertu
bative component is supplemented by aQ-dependent Gauss
ian in impact parameter space, to tune the overall influe
of nonperturbative dynamics@4,19–22#. Joint resummation
implies similar effects in theQT distribution at smallQT .
The starting point is the full NLL exponent@9# given in Eq.
~3!. We expand the Bessel functions in Eq.~3! to derive an
explicit form for the leadingb and N dependence of the

re
1-10
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JOINT RESUMMATION IN ELECTROWEAK BOSON PRODUCTION PHYSICAL REVIEW D66, 014011 ~2002!
resummed exponent, times an integral of the anomalous
mensionAa over soft transverse momenta, defined by a c
off l.LQCD,

Eaā
eik

~N,b,Q,m,mF ,l!

;S 2
b2

2
1

2N2

Q2 D E
0

l2

dkT
2Aa„as~kT!…lnS Q

N̄kT
D . ~47!

In this way we derive a standard Gaussian form inb for a
multiplicative, nonperturbative smearing function inb space,
to account for effects from smallkT . The new feature here i
that the coefficient ofb2 is essentially identical to that of th
threshold-related power correction (N/Q)2. In our numerical
applications below, we will be rather far away from thres
old, and as a result we will be mainly sensitive to moderat
smallN. Hence we will retain only the term;b2 in Eq. ~47!.
Thus our nonperturbative smearing function reverts to
purely Gaussian one usually used inQT resummation, and
we will make the following replacement in the resumm
cross section:

Eaā
PT

~N,b,Q,m!→Eaā
PT

~N,b,Q,m!2gb2, ~48!

whereg is a parameter to be determined by comparison
data. Note that Eq.~47! implies that, as usual,g has a com-
ponent that depends logarithmically onQ @4,19–22,40#.

IV. VECTOR BOSON PRODUCTION IN THE
FRAMEWORK OF JOINT RESUMMATION

With the developments discussed above, the joint res
mation formalism becomes a practical tool for the desc
tion of electroweak annihilation. Here we consider Z bos
production at the Tevatron collider. Recent data on theQT
distribution of the produced Z bosons are available from b
CDF @41# and D0@42# experiments and have reached a go
level of precision. The overall normalization of the data w
be treated as a free parameter in our analysis, and wil
varied within the quoted experimental errors.

All results are obtained using CTEQ5M parton distrib
tion functions@36#, in the manner described in Appendix B
We choose the factorization and renormalization scalem
5mF5Q. The numerical values of the electroweak para
eters we use are as follows:MZ591.187 GeV, sin2uW
50.224, GZ52.49 GeV. Note that the experimental da
sets have been integrated over finite regions inQ, 66,Q
,116 GeV for CDF and 75,Q,105 GeV for D0. The
inverse transforms are performed as described in Sec. II
with the following choice of the contour parameters in Fig
1 and 2:f5fb525/32p, C51.3, bc50.2/Q. Of course we
are free to choose these parameters differently, as lon
they are such that the structure of the contours as depicte
Fig. 3 is maintained. Finally, as mentioned above, we cho
h51/4 in Eq. ~8!. We have checked that the result is qu
insensitive to this choice, at the order of a percent whenh is
changed by a factor of 2 atQT54 GeV.
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As we pointed out before, an attractive feature of the jo
resummation with transforms defined as above is that we
obtain predictions that have no dependence on any additi
nonperturbative parameter. Results of this form are shown
the dashed lines in Figs. 5 and 6. In both cases we h
adjusted the normalization of the theory curve so that thex2

of the comparison between data and theory becomes m
mal. For the CDF data, this normalization factor is 1.035,
D0 it is 0.96. It is evident from Figs. 5 and 6 that our ‘‘pure
perturbative’’ predictions correctly reproduce the trend of t
data over most of the measured region inQT , but peak at too
small QT . This is no surprise of course, since we expe
nonperturbative effects to play a non-negligible role at lo
QT . For comparison, Fig. 5 also displays the fixed-ord

FIG. 5. CDF data@41# on Z production compared to joint re
summation predictions@matched to theO(as) result according to
Eq. ~45!# without nonperturbative smearing~dashed! and with
Gaussian smearing using the nonperturbative parameteg
50.8 GeV2 ~solid!. The normalizations of the curves have be
adjusted in order to give an optimal description; see text. The do
and dash-dotted lines show the fixed-order results atO(as) and
O(as

2), respectively. The lower plot makes the largeQT region
more visible.
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@O(as), dotted lines;O(as
2), dash-dotted lines1# results for

the cross section, with their well-known divergent behav
at smallQT .

Interestingly, the fixed-orderO(as) result misses the dat
also atlarge QT , where it remains too low even if the no
malization is adjusted within the errors quoted in experime
Joint resummation, with the choice Eq.~8! for x(N̄,b̄) and
the matching procedure described in Eq.~45!, adds an im-
portant contribution to the cross section also here: the dif
enceds res/dQ2dQT

22dsexp(1)/dQ2dQT
2 in Eq. ~45! remains

numerically significant also at largeQT and appears to be
crucial for bringing the theoretical calculation to the data.
can be seen from Fig. 5, the cross section atO(as

2),
dsfixed(2)/dQ2dQT

2 , is larger thandsfixed(1)/dQ2dQT
2 . As ex-

pected, the differenceds res/dQ2dQT
22dsexp(2)/dQ2dQT

2 is
smaller than ds res/dQ2dQT

22dsexp(1)/dQ2dQT
2 , so that the

full cross section in Eq.~45! depends only little on whethe
matching is performed atO(as) or at O(as

2). We take this

1We have used subroutines of theRESBOSpackage of Ref.@22# in
order to calculate the cross section atO(as

2).

FIG. 6. Same as Fig. 5, but compared to the D0 data@42#.
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feature as an indication that our approach for matching,
~45!, is justified and reasonable even at largeQT;Q.

To improve the low-QT behavior further, we introduce a
nonperturbative function as described in Eq.~48!. Since most
of the cross section comes from the regionQ;MZ , we ne-
glect the mild~logarithmic! dependence of the nonperturb
tive parameterg on Q. We then fitg to the CDF and D0 data
simultaneously, allowing again the normalizations to vary
the two data sets. Sinceg should be determined from th
low-QT region, we include only the data points withQT
,50 GeV in this fit. The results of the fit do, however, n
depend much on this choice. The optimal result is obtain
for g50.8 GeV2 and the normalization factors 1.06
~0.975! for CDF ~D0!. The x2 for the 42 ~20! data points
from CDF ~D0! included in the fit is 31.3~23.4!. Even better
fits would be possible by using a more refined nonpertur
tive function, as suggested by Eq.~47!, resulting in extra
parameters. As can be seen from the solid lines in Figs. 5
6, with these parameters a very good agreement betwee
jointly resummed cross section, matched with the fixed-or
cross section atO(as), and the data is achieved. We note th
our nonperturbative parameterg50.8 GeV2 is very similar
to that determined in Ref.@23#, where an extrapolation of the
perturbation theory result to largeb was made. Referenc
@23# argued that theb integral in pure-QT resummation is
dominated by the saddle point. Our method and theirs lea
somewhat smaller values of the nonperturbative param
than when ab* prescription is used@21#.

V. CONCLUSIONS

The transverse momentum distribution of theZ is by now
a well-studied problem, to which a number of success
analyses have been applied@14,15,21–23#. We have come
back to this topic because we believe that the method of j
resummation offers additional insight on the interplay of p
turbative and nonperturbative corrections in this, and ot
hadronic reactions. Joint resummation, implemented
above, provides a convenient definition of the perturbat
cross section at any nonzeroQT , without the introduction of
additional dimensional scales~beyondLQCD! to define either
the perturbative resummation or the parton distributions
low scales.

Treated this way, the jointly resummed cross section
tains its original perturbative asymptotic expansion order
order. It also suggests the functional form of nonperturbat
corrections. Because perturbative and nonperturbative c
ponents of a QCD cross section are linked at the leve
power corrections@11,12#, it will be necessary, and useful, t
reanalyze the functional and phenomenological aspect
nonperturbative corrections in this formalism, relying on t
available range of data for the Drell-Yan mechanism. Tow
the high-energy side, a further application to Higgs bos
production @28,43# at the CERN Large Hadron Collide
~LHC! will also be of interest. In the same spirit, we inten
as well to return to the application of joint resummation
semi-inclusive processes, such as direct photon produc
@9,10#.
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APPENDIX A: SOME USEFUL FORMULAS

For Z boson production one has in Eq.~2! the standard
tree-level cross sections~see@44#!:

sa
(0)5

4p2a2

9tS2
êa

2

êa
25ea

222eav lvak
Q2~Q22MZ

2!

~Q22MZ
2!21MZ

2GZ
2

1~al
21v l

2!~aa
21va

2!k2
Q4

~Q22MZ
2!21MZ

2GZ
2

k5
A2GFMZ

2

4pa
~A1!

al52
1

2
, v l52

1

2
12 sin2uW ,

aa5Ta
3 , va5Ta

322 easin2uW .

APPENDIX B: USING x-SPACE PARTON DISTRIBUTIONS

The above formulas are directly applicable if the part
densities, including their evolution, are treated in Mellin m
ment space. In this context, it is convenient to use the e
lution code of @32# which is set up in moment space. I
practical applications, however, one may prefer to be m
flexible concerning the choice of parton densities and be a
to make direct use of any (x-space! parametrization on the
market@36,45#. One way of achieving this was presented
Ref. @18#. Here we propose a new simple method. Let us fi
rewrite Eqs.~2!, ~25! as
01401
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ds res

dQ2 dQT
2

5
1

2p i ECN

dN t2N (
i , j

3 f i /H~N,mF! f j /H~N,mF! ŝ i j
res~N,Q,QT ,m,mF!,

~B1!

which is obtained after performing thed2b integration in Eq.
~2!. The ŝ i j

res are then resummed partonic cross sections,
ferential inQT .

The inverse-moment expression in Eq.~B1! is of course
identical to anx-space convolution of the parton densiti
with the resummed cross section:

ds res

dQ2 dQT
2

[ (
i , j

E
t

`dz

z Et/z

1 dy

y
f̃ i~y,mF!

3 f̃ j S t

yz
,mFD s̃ i j

res~z,Q,QT ,m,mF!, ~B2!

wherez5Q2/ ŝ, the f̃ i(x,mF) are thex-space parton densi
ties, ands̃ i j

res(z,Q,QT ,m,mF) is given by the inverse Mellin

transform of the momentsŝ i j
res(N,Q,QT ,m,mF),

s̃ i j
res~z,Q,QT ,m,mF!

5
1

2p i ECN

dNz2N ŝ i j
res~N,Q,QT ,m,mF!. ~B3!

As was pointed out in@18#, and as is indicated by the uppe
limit ` in Eq. ~B2!, the functions̃ i j

res(z,Q,QT ,m,mF) de-
fined in the ‘‘minimal’’ prescription is non-vanishing also a
z.1 due to the presence of the Landau pole to the righ
the N space contour~see Fig. 2!, even though it rapidly de-
creases with increasingz. At z.1, the anglef of the
N-space contour has to be decreased to belowp/2 to obtain
a convergent result.

The right-hand side of Eq.~B2! in principle allows for
using x-space parton distributions. However, a proble
arises from the fact that the resummed cross section is hi
singular@16# at z→1 ~even though it is regularized in term
of plus distributions!, which makes the convolution with th
parton densities numerically very tedious@18#. A convenient
way of eliminating this problem is to trivially rewrite Eq
~B1! as

ds res

dQ2 dQT
2

5
1

2p i ECN

dNt2N(
i , j

@~N21! f i /H~N,mF!#

3@~N21! f j /H~N,mF!#

3
ŝ i j

res~N,Q,QT ,m,mF!

~N21!2
. ~B4!

The Mellin-inverse ofŝ i j
res(N,Q,QT ,m,mF)/(N21)2,
1-13
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S i j
res~z,Q,QT ,m,mF!

5
1

2p i ECN

dNz2N
ŝ i j

res~N,Q,QT ,m,mF!

~N21!2
,

~B5!

is now sufficiently well behaved at largez thanks to the extra
suppression by 1/(N21)2. For the inverse of (N
21) f i /H(N,mF) one finds, making use of the fact that th
x-space parton densities vanish atx51:

1

2p i ECN

dNx2N ~N21! f i /H~N,mF!

52
d

dx
@x f̃ i~x,mF!#[Fi~x,mF!. ~B6!
tt.
s.

.

n

.

o
gy
.
1

.

gy

-

01401
We thus arrive at

ds res

dQ2 dQT
2

[(
i , j

E
t

`dz

z Et/z

1 dy

y
Fi~y,mF!

3Fj S t

yz
,mFDS i j

res~z,Q,QT ,m,mF!, ~B7!

which has good numerical behavior. The standard s
@32,36,45# of the parton distributions allow taking the firs
derivative numerically. Depending on the large-N behavior
of the resummed cross section in moment spa
ŝ i j

res(N,Q,QT ,m,mF), it may be necessary to divide by
higher power ofN21 in Eq.~B5!, resulting in higher deriva-
tives of the parton distributions in Eq.~B6!. This turns out to
be the case for the gluon-gluon initial state in inclusi
Higgs production viagg→HX @46#.
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