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For any perturbative series that is known keubleading orders of perturbation theory, we utilize the
process-appropriate renormalization-graifi5) equation in order to obtain all-orders summation of series
terms proportional tax"log" (%) with k={0,1,2,3, corresponding to the summation to all orders of the
leading and subsequent-three-subleading logarithmic contributions to the full perturbative series. These meth-
ods are applied to the perturbative series for semileptordecays in bottMS and pole-mass schemes, and
they result in RG-summed series for the decay rates which exhibit greatly reduced sensitivity to the renormal-
ization scalew. Such summation via RG methods of all logarithms accessible from known series terms is also
applied to perturbative QCD series for vector- and scalar-current correlation functions, the perturbative static
potential function, thésingle-doublet standard-modiéliggs decay amplitude into two gluons, as well as the
Higgs-mediated high-energy cross sectionWst W~ — ZZ scattering. The resulting RG-summed expressions
are also found to be much less sensitive to the renormalization scale than the original series for these processes.
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I. INTRODUCTION ,U«Z
L(,u)EIog( —2> . (1.2
The renormalization group equatiofRGE) has long m
proven useful as a means of improving and extending results .
obtained from perturbative quantum field theory. In addition/f Mis a running mass, then
to giving rise to scale-dependent running parameteosi-

pling constants and mass$esd concomitant scale properties dm ) 3
(e.g. asymptotic freedomthe RGE can also be utilized to 4" 5 =Mym[X(w)]= =ML yoX+ 71 X"+ yx°+ - - - ].
determine scale-dependent portions of higher-order contribu- . 1.3

tions to perturbative expressions. For example, if the two-

loop contribution to a physical process has been determinegl 1, j5 4 pole massor for scattering processes, a kinematic
via explicit computation of pertinent Feynman diagrams, thevariable theny,, as defined by Eq1.3 is zero
) m e .

RGE then determines leading-log and next-to-leading contri- - 4 example, in the modified minimal-subtraction scheme
butions toall subsequent orders of perturbation theory. We,—

denote such logarithms to be “RG accessible.” In the presenQMS)d (;.'Xpl‘ef&?SIOH :‘_or ;lhe semlltat;;tonh:ﬁulfm rate ob-
paper we demonstrate how closed-form summation of sucfpined from five active flavorsnis the running massi,(4),

RG-accessible logarithm contributions is obtained for a num-

ber of physical processes whose field-theoretical series are GEVyp/? 5
known to two or more nonleading orders of perturbation I'= 19272 [Mp() PIxX(p), L(1)] (1.4
theory.

Consider a perturbative series of the form and the successive-order series coefficients wighiL ], as

defined by Eq(1.1), are[1]

©

% n
Ix(p),L(w)]=> x”sn[xl_]=n§0 go T X LK Too=1, T10=4.25360,T; =5, T,,=26.7848,

n=0
(1.7) T,.,=36.9902, T, ,=17.2917. (1.5

occurring within a physical decay rafeor measurable cross The five active-flavor pole-mass expression for the same rate
sectiono, wherex(u) is the running coupling constaffor  is obtained by replacingn,(w) with the renormalization-
QCD X(u)=ag(x)/ 7] and where_ () is a logarithm regu-  scale independent pole masf®'® in Egs.(1.4) and(1.2), as
lated by the renormalization mass scaleéhat may or may well as a concomitant alteration of the following series co-
not also depend on a running mass: efficients[1]:
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T10=—2.41307,T1,=0, T,o=—21.2955, SalX(m)L(p)]=Taot+ T4 XL+ Tsx2L2+ -
(1.6) o0
T2,1=—4.62505, T, ,=0. = 23 Ton_a(xL)" 3. (1.19
“

Suppose for a given scattering or decay process that the
seriesS[x,L] is known to some order of perturbation theory: The appropriate RGEx?(d/du?)(I" or ¢)=0] is seen to
determine all series coefficients 8f in terms of its leading

S =T ot (Ty ot Toal)x (1.7 coefficientT, o, thereby facilitating the construction &G-
summed RGY,) perturbative expressions to any given order
GNNL_ SNL+(-|—2’O+ T211L+T2,2L2)x2 (1.9 of perturbation theory:
XL]+xS[xL (1.1
SV = SN (T ot T L+ T AL 2+ T g 3% Shes = SXLI xS [xL]
49 S = S XL+ XSXLI+ S XL] (117
SV = SV (T gt Tagl+ Tl 2+ Tad 3+ Tyl )X
(Taot Tadb ¥ Tad HTad T O ) Sha= “SIXLISHU SIS,
' 11

These next-to-leadin@NL) and higher-order expressions ex-

hibit scale dependence as the magnitudeLoincreases. These RG@ expressions are seen to exhibit reduced sensitiv-

However, higher order polynomial coefficients Iofcan be ity to thel renormalization scalﬁ.even when the Iogarithms.
determin,ed via an appropriate RGE. For example,bin L are quite large. Compared with the truncated perturbative
- o : ' series, these resummed expressions more effectively imple-
—Uul” v the application of the RGE to the knowfi] two-  ment the underlying idea behind the RGE, namely that the
loop (NNL) MS expression for the rate is sufficient to deter- exact(all-orders expression for any physical quantity is nec-
mine the three-loop coefficientss3, T3,, and T3;: for  essarily independent of the scale-paramgter
ni=5, T33=50.914, T;,=178.76, andT;,=249.59 [2]. Although RGE determinations of higher-order terms have
This procedure is taken a step further in R}, in which  peen known for some time to be of value in extracting diver-
the four loop coefficientS, 4, T,3, andT,,are determined gent parts of bare paramet¢d, the principle of incorporat-
via the RGE for this same process. EstimatesTthare also ing all higher-order RG-accessible terms available to a given
seen to determing&, 4, yielding anSV’L expression charac- Feynman-diagram order of perturbation theory was, to the
terized by only two unknown coefficientsT{, and T,  best of our knowledge, first articulated by Maxwg] as a
whose parameter space can be limited by the constrajnt method for eliminating unphysical renormalization-scale de-

that successive orders of perturbation theory decrease @endence. The all-orders summation of leading logarithms
magnitude: has been subsequently applied by Maxwell and Mirj&6li

to moments of QCD leptoproduction structure functions and
|SN4L_SN3L|S|SN3L_SNNL|S|SNNL_ SV, (11D to N_NL-order_ correlatio_n fl_Jnctions. Such a summation of

leading-logarithm contributions to all orders has also been
explicitly performed by McKeon to extract one-loop RG
functions from the effective actions @f*-field theory in four
dimensions and®-field theories in three dimensiofig]. In
Sec. |l of the present work, we extend McKeon’s summation
procedure to derive closed-form expressions for all-orders
summations of leading1.12, NL(1.13, NNL(1.14, and
NL logarithms(1.15 by using the RGE appropriate to the
perturbative serie§l.l) within the QCD expression for the
inclusive semileptonid3-decay rate. Such summations en-
=> Ty ax"L" (1.12  able one to construct REsperturbative expressions inclusive

n=0 of up to three nonleading logarithmic contributions to all
orders of the perturbative seri€k.1).

In the present work, we wish to show hoall RG-
accessible logarithms may be summedSifs known to a
given order. Specifically, we shall obtain explicit all-orders
summations for the following four series, as defined by the
intermediate expression in E€L.1):

SolX()L()1=To ot Ty XL+ Ty X2L2+ T3 3L 3+ - - -

— 2y 2 _
SiX()L(m)]=Ty ot To XL+ Ty XL - In Sec. I, these results are applied to the-ul v, rate
o computed to NNL order by van Ritbergéh], later extended
= 2 Tono1(xL)" 1 (1.13 via Padeapproximant methods to a subsequiiAt. predic-
n=1 '

tion [2]. The renormalization-scale dependence of the un-
summed perturbative rate truncated to a given order is shown
SolX()L(p)]=To ot T XL+ Ty X?L2+ - - - to be much greater than that of the R@ates obtained from
the same perturbative expression.
In Sec. IV, R& expressions are obtained for the decays

b—ul~», and b—cl », in the “pole mass” scheme in

:22 Tn,n—Z(XL)n72 (1.14)
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which only the couplantx(w)/7 exhibits renormalization- Finally, an alternative all-orders summation procedure to
scale dependence. This scheme, already known to have dilat of Sec. Il is presented in the Appendix.
ficulties for theb—u case[1], exhibits a rate which in-
creases with the renormalization Sca}.e, making the II. RG SUMMATION OF LOGARITHMS
identification of a “correct” or optimal value of. problem- FOR SEMILEPTONIC B DECAYS
atical. However, RG summation is shown effectively to re-
move suchu dependence, leading to reliable order-by-order For semileptonid decays, theu-sensitive portion of the
pole-mass-scheme predictions for the-u semileptonic rate  rate (1.4 must, as a physically measurable quantity, exhibit
consistent with théo— u rate obtained from amMS scheme rénormalization scale invariance:
inclusive of a runningo-quark mass. RS expressions are g
also obtained for thé&— c semileptonic rate based upon its 2 5 _
(approximately known NNL series[8] and its Pade M d_luz{[mb('“)] SIX(u),L(m)]}=0. 2.1
estimated\3L series in the pole-mass schepgg.

The RGE appropriate for the perturbative series for semiThis constraint is easily seen to lead to the RGE
leptonicB decays in the pole mass scheme is also the appro-
priate RGE for the fermionic vector-current correlation func- 9S 9S
tion utilized to obtain QCD corrections to the cross-section [1-2yn(X)]= + B(X) == +5y,5=0, (2.2
ratio o(e* e~ —hadrons)é(e"e  —utu). In Sec. V we L X
obtain RG-summation expressions for the QCD series em: here
bedded within the vector-current correlation function that in-
clude all higher-order logarithmic contributions that are ac- q
cessible from the three fully known nonleading orders of - 2 - - 2 3 4y,
perturbative corrections in tHdS scheme. We are thus able Ax)=u d,uzx('u) (Box™+ B+ Bx+ ),
to compare directly the renormalization-scale dependence of (2.3

the unsummed serigs™ (1.7), S™ (L9 ands'*™ (1.9 1o [x(u) (w)/ 7] and where the anomalous mass dimen
thei di ionsShLy (1.16), SNNL M) =as\p)lm i
eir corresponding RE expressionsSyey (116, Srex sion is the series defined by E€L.3). Substitution of the

N3L . -
(1.17, and Sgey (1.18. We find that the latter expressions geries expansiofl.1) into the RGE yields the following se-
provide a set of virtually scale-independent order-by-ordet;qg equation:
perturbative predictions for the vector correlator.

In Sec. VI, we show how the use of process-appropriate ® n
RGE's can be used to obtain RGperturbative expressions =1+ 29X+ 2y x2+ 2y,x3+ - - .)2 T, kxLk—2
for a number of other processes. We obtain full RG summa- n=1k=1 "
tions for: ® n

(1) the momentum-space series for perturbative contribu-  _ 2+ B3+ BoxAt ... T onx" 1Lk
tions to the QCD static-potential function, (Bo & & )Z’l k§=:O nk

(2) the gluonic scalar-current correlation function charac- % n
terising scalar gluonium states in QCD sum rules, B 2 3 m ok

(3) the (standard-model- Higgs-mediated cross section S(yoxt ypX Xt - ')ngo go ToiXLE (2.4
W/ W_ —Z,Z, at high energies, which is characterized by
the two physical scale parameterandM,

(4) the decay of a standard-model Higgs boson into two A. Bvaluation of S

gluons[a process also characterized by two physipalle- To evaluateSy[ xL], as defined by Eq1.12), we use Eq.
mas$ scales M andM,) in addition to the renormalization (2.4) to extract the aggregate coefficient diL"~* and to
scaleu], and obtain the recursion formulan&1)

(5) the fermionic scalar-current correlation function that
characterises both Higgs-bb decays and scalar-meson-

channel QCD sum rules. . _

We also discuss how RG summation of the two scalar'Ve r_nultlply _Eq.(2.5) by u” .l and sum from=1 to = to
current correlators considered in Sec. VI removes much o?btam the differential equation,
the unphysical dependence of the unsummed series at low
s that Would_qtherwise percola_te through QCD sume-rule in- (1— Bou) dSp[ul —59,S[u]=0, (2.6)
tegrals sensitive to the low+egion. d

In Sec. VIl we summarize our paper. We discuss not only
the reduction ofu dependence via RG summation, but alsowhereSy[u] is given by Eq.(1.12 with xL replaced byu.
the comparison of RS results with those of unsummed se- The solution of Eq.(2.6) for the initial condition Sy[ 0]
ries when minimal sensitivity or fastest apparent conver=Tgg s
gence criteria are used to extract an optimal value for the

renormalization scale. Solu]=Too(1— Bou) 370k, 2.7

nTn,n_[IBO(n_l)+570]Tn—l, n-1=0. (2.5
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For the special case of pole-mass renormalization schemes
[ym[x]=0], So=To =1, corresponding to the complete ab-

sence ofx"L" terms from the perturbative seri€k.1) when
n=1.

B. Evaluation of S;

To evaluateS;[u], as defined by Eq(1.13 with u

=x(u)L(u) we first extract the aggregate coefficient of

Xx"L""2 from the RGE(2.4) for n=2:
0=(n— 1)Tn,n—l+270(n_ 1)Tn—l,n—l
_Bo(n_ 1)Tn—1,n—2_,81(n_ 2)Tn—2,n—2

_570Tn71,n72_571Tn72,n72- (2.9
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C. Evaluation of S,

The aggregate coefficient of'L" "2 in Eq. (2.4) is (n
=3)

0=(N=2)Tpn-2+2y(N—=2)Ty-1n-2
T2y1(N=2)Th_2n-2=Bo(N=L)Ty-15-3
—B1(N=2)Ty 203 B2(N=3)Ty-3n-3
~5%Th-1n-375Y1Tn-2n-375¥2Tn-3n-3-
(2.17

If one multiplies Eq.(2.17 by u"~2 and sums froon=3 to
infinity, one finds from the definitions

so[u]:1+n§1 T,

If one multiplies Eq.(2.8) by u" 2 and then sums from (2.18
=2 to infinity, one obtains the differential equation
d . .
(1_,30U)d—i1—(,30+570)31[u] Silul= 2, Top-at" Y (2.19
=5 + 2 1% 2.9 <
- 71SO[U] (,Blu_ ’}’o)m ( ) Sz[u]:nzz Tn,n—2un_2 (22(»
We find it convenient to reexpress this equation in terms Offollowing from Egs.(1.12—(1.14] that
the variable
dS, (2Bo+5y0)
w=1-Bou (2.10 W_W
and the constant (BlU=2y9) dS;  (Bou—2y1) S (B1+5y1)
c T 1-Bou du  1-Bou du 1-pBou *
Y
= B—O". (2.1 5y, .,
eyt (220
We see from Eq(2.7) that if To =1, then i , ) )
a2 00 If we incorporate the change of variakl2.10 in conjunc-
Sp=w A (2.12 tion with the solutiong2.12 and (2.16 for S, and S, re-

and find from Eq.(2.9) the following differential equation
for S;:

i—?v“r 1;LVA51:BW*A*1+CW*A*2 (2.13

where
B=(AB1—5v1)/Bo (2.14
C=A(2y0= B1!Bo)- (2.19

For initial conditionS;|,-o=S;|w=1=T1,0, the solution to
Eq.(2.13 is
S1=Bw A+[T;o—B+Clogw)]w A1 (2.1

with w, A, B andC respectively given by Eq$2.10), (2.11),
(2.14 and(2.15.

spectively, we find that

(;—jlz + (Z:;IA) S,=Dw A 1+ Ew A 2+ Fw A ?log(w)
+GW A 3+HW A 3log(w),  (2.22
where the constan{D,E,F,G,H} are given by
D=[B1AB+BA—(B1+5y1)B=5y2]/Bo (2.23

27’0_[;_;
271_%

E:

AB+[(1+A)(Tyo— B)—C]Z)—;

+ A+(B-T10(B1+571)/By (2.24

F=(AB1—571)ClBg (2.29

G=[(1+A)(T1,0— B)—C](Z“yo— &)

By (2.26

014010-4
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B1

B (1+A)C

(2.27

H:(Z’}/o_

with constants{A,B,C} given by Egs.(2.11, (2.14 and
(2.15. The solution to the differential equatig®.21) with
initial condition Sy|y—0=S,|w=1=T20iS

D
SZZEW*AJr (E-F)w A1+ Fw A Yog(w)

+

D
Too~ 5 —E+ F) w A 2+ Gw A 2log(w)

N| I

+ =w A 2log?(w).

(2.28

D. Evaluation of S
The aggregate coefficient afL""* in Eq. (2.4) is
0=(n=3)[Thn-3+2¥Tn-1n-3+t271Tn-2n-3
+2y5Th-3n-3]=Bo(N—L)T_1p-4—B1(N—2)
XThoon-a=B2(N=3)Th_3n-2—B3(N=4)T_4n-4

=9Y0Th-1n-4=5Y1Tn-2n-4=9Y2Th-3n-4

—5y3Th-4n-1- (2.29
To evaluate the series
Solul= 2, Ton-au"?, (2.30

we multiply Eq.(2.29 by u"~4, sum fromn=4 to infinity,
and, as before, make the E@®.10 change of variablev
=1-Byu. We then find that

ds; 3+A

dw W
=Kw A 1+ Mw A 2+ Nw A 2log(w) + Pw A3
+Qw A %log(w) +Rw A 3log?(w) + Uw~A~*

(2.3)

+Vw A 4log(w) + YW A *log?(w),

by utilizing the explicit solution$2.12), (2.16) and(2.28 for
{$,S:,S,}, as defined by Eq$2.18), (2.19 and(2.20. The
new constants within Eq2.31) are

A 1
K=—(B3+BB,+DB1/2)— —[573+(5‘}’2+ B2)B
Bo Bo

D
+(5y1+ 2,31)5} (2.32

PHYSICAL REVIEW D 66, 014010 (2002

D
B+(2~y0— %)E}A

e[z

Bo

+ 271_%

1
+[(5y2+B2)(B=T1 9+ (5y1+ 2,31)(F_E)]%

+[(T1’0—B)(1+A)—C]%+[E(1+A)
0
—F(2+A)]& (2.33
Bo
1
N={(AB,—57,)C+[(A— 1)31_571]F}E (2.39
P= 271—@ [(L+A)(T10—B)-C]+ 270—&)
Bo Bo
X[(1+A)E—(2+A)F]—M
Bo
D
x| Toom 5 —E+F —%[G—(ZJrA)
D
x| Tog- 5 —E+F (2.35
1
_[(571+2,31)G+(H—(2+A)G),31]'8—0 (2.30
_ H
R—(,BlA—571)2—Bo (2.37
T ——
U=| 29— 22| (2+A)| Tro- = —E+F |-G
Bo T2
(2.39
_( B1
V=|2y,——|[(2+A)G—H] (2.39
Bo
B1 H
Y=(2yO—E (2+A) 5 (2.40

The constant§A,B,C,D,E,F,G,H} within Eq. (2.3) are

respectively given by Eqgs{(2.11), (2.14), (2.19, (2.23-

(2.27}. The solution to Eq(2.31), subject to the initial con-
dition S3|W:1:T3’0, iS
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K, /M N, N Ay o 1865 L 23 . 60123
Sg=gW | Wt oW og(w) 1=~ 3174| 17 pX(WIL(K)
+(P—Q+2R)W A2+ (Q—-2R)w " ?log(w) 1020 23
Al o K M N
+Rw |Og (W)+ _5_?+Z_P 23 _g3/23
X 1= 5% ()L (w) (3.5
+Q—2R+T3,0)WA3+ Uw A 3log(w)
\V Y 23 —60/23
+ EW_A_3|092(W) + §W_A_3|093(W), (2.41) S,= 13.223{1— —x(,u)L(,u)}
wherew=1- Byu as in Eq.(2.10. 3171350 23
—147.4897 279841Iog (,u)L(,u)
Ill. SEMILEPTONIC b—ul~» DECAY IN THE MS 23 8323
SCHEME 1— 1—2x(M)L(u)}
In mis section, we consider the semileptonic deday
—ul” v, in the MS scheme. The decay rate is given by Eq. n _ E)’
(1.4) in terms of the serie$l.1). The coefficients in this 61.051525.5973log1 12X(’u)|‘(’u“)
series are fully known to two loop order and are given by Eq.
(1.5. The logarithmsL(w) within the series are character- 71961(1)09 1— 2_3)(( () ]
ized by a runnings-quark mass, as given by Eq4..2) and 27984 12
(1.3. 23 ~106/23
The coefficients(1.5) are listed for five active flavors, 1__X(M)L(M)} (3.6)
appropriate to analysis in an energy region containing

my(my). Consequently, the runningquark massn, () and

the running couplank(u)= as(u)/7 should be character-

ized byn;=5 values for the RG functiong,[x] and B[x]: We first wish to compare thg dependence of the 2-loop
order expression

253
Yo=1, v1="75, 7,=7.41986, y;=11.0343 (3.1
FNNL
23 29 9769 = =[My() [ 1+ (4.25360r 5L (1))X(1n) +(26.7848
Bo= 15 Bi=13 Br=3zes Ps=18.8522 (32

+36.9902 () +17.291T.%(w))x*(w)] 3.7

Given the computed values @f oandT, o [1], it is straight-

forward to calculate the NL and NNL RG summations for

the seriesS, as defined in Eqg(1.16 and (1.17). The con-  for the reduced ratek(=Gg|V,;,|/1927°) to that of the
stants {A,B,C, ... H} that characterize the summations corresponding RG-summed expression

Sy,S; and S, are obtained via Eq93.1), (3.2 and (1.5

from their definitions in Sec. Il:

NNL
2
A 60 . 18655 o 1020 D= 26,4461 T = [my() [ So+ Six(w) + SxE(w)]  (3.9)
“23 BT 3m7a ©T s DT20440L
E— 588224 F=_ 3171350 G=255973 with Sy, S; andS, given by Egs(3.4), (3.5 and(3.6). To
' 279841’ ' make this comparison, we evolve the running coupling and
mass from initial valuesx(4.17 GeV)=0.0715492 and
1439220 3.3 my(4.17 GeV)=4.17 GeV [2], where the former value
T 279841° (33 arises fromn;=5 evolution of the running coupling from an

assumed anchoring valug(M;)=0.118000# [10], and

Equationg2.12), (2.16) and(2.28 then lead to the following where the latter value is th& =5 central value in Ref.11]
closed-form expressions for the summati&@s S; andS,: for my(my). Thusx(w), my(w), andL(w) are fully deter-
mined via Eq.(1.2) and the RG equationgl.3) and (2.3),

(3.4) \(/gtg) vm- and B-function coefficients given by Eq§3.1) and

—60/23

2
So= [1__X(,U~)|-(M)

014010-6
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2600 3000
2400{ 2500 1
22001 ! 2000
w —
> >
[0} [0}
S 2000 - S 1500 -
X X
= =
1800 - 1000 -
1600 | 500
1400 T T T T T T T 0 T T T T T T T
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
p(GeV) u (Gev)
FIG. 1. Comparison of the next-to-next-to-leadirfNL-) or- FIG. 2. Comparison of unsumméx-ul ~ v, decay rates in the

der unsummeo(dotted_line) and RG-_summedsoIid line) decay fully MS scheme i1f;=5) truncated after NL ordefsolid line),
ratesI'/IC for b—ul™~ v, in the fully MS scheme with five active N order (dotted ling, and N'L order (dashed ling
flavors (y=5). The quantityC=G2|V,,|%/1927°.
In Fig. 1 the,=5 evolution ofx(x) andmy(x), L
n |g. ,We use ef= evolution o M an mb M), =Im 5 1+ 425360"5'- X
as described above, to compdi®Nt (3.7) to TREs (3.8). It K~ Melw) L+ C ()X(1)

is clear from the figure thatRgs is almost perfectly flat. By 2 2

. ' . +(26.7848+36.9902 +17.291L
contrast, the naive ratBN\" is strikingly dependent on the ( (w) (W)
renormalization scalg., and does not exhibit any local ex- +(206+249.592 (u)+178.75%.%(u)

tremum point of minimal sensitivity. Thus RG summation of

leading, next-to-leading and next-to-next-to-leading loga-
rithms is seen to remove the substantial theoretical uncer-
tainty associated with the choice @ffrom the(fully known)  can then be compared to its RG-summation version

two-loop orderb—ul~ y, rate.

+50.9144 3(u))x3(u)} (3.11)

It is useful to examine how the reducéd-ul~», rate FQE'GLE
develops in successive orders of perturbation theory. For ex- e =[mp( ) 1[Sp+ Six() + Spx3(w) + Sex3(w) ]
ample, the one-loop rates (3.12
NL

T=[mb(,u)]5[1+(4.25360+ 5L(u))x(w)] (3.9  with Sy, S; and S, respectively given by Egqg3.4), (3.5
and(3.6). The RG-summatiors; is obtained via Eq(2.40).
Given the estimatel; =206, the known value$3.3) of

I'Res . {A,B, ... H}and values ofK,M,N,P, . ...Y} defined via
© —LMo(m) LS+ Six(w)] (310  Egs.(2.32-(2.40,
can be compared to the corresponding higher precision re- K=—14.3686, M =146.729, N=50.9925,
sults of Eqs(3.7) and(3.8). Three-loop orderN3L) reduced
rates can be estimated through incorporation of an P=—317.085 Q= —148.520 (3.13

asymptotic Padapproximant prediction of the three-loop
coefficientT 3 o= 206[2]. The three-loop order expression for

the reduced rate R=-15.1138, U=189.048,V=383.3941,
'Only the non-logarithmic three-loop coefficient 206 is estimated:; Y=8.75961,

the remaining three logarithmic coefficients in E§.11) are ob-

tained via RG methods in Ref2]. we find that

014010-7
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23
4.7895 [60.617—# 25.496 |04 1— 1—2X L)
== sorzat 83723
(1—1—2XL) (1—1—2XL)
198.79-118.291og 1 23 L 15.1141 é 1 23 L

—1098. 29log 1 - 5xL | -15. 0g| 1— 35X

+ >3 | 106723
(1— 1—2XL
23 23 23

348.96+ 189.05log 1— 1—2XL +41.697 |0§ 1— 1—2XL +2.9199 |Oj 1- 1—2XL

+ . 23 ] 129123 (3.19

The bold-face humbeB48.96is the only coefficient in the

convergence criteria for extracting, even theN>L rate ex-

above expression dependent upon the asymptotic -Padhibits a +8% spread of values over the rangg/2=<u

approximant estimate fof;,. We have included this esti- <2m,.
mate in order to demonstrate RG summation incorporating a RG summation eliminates renormalization scale depen-
three-loop diagrammatic contribution T;5; when such a dence as a cause of theoretical uncertainty. In Fig. 3, we

calculation is performed, the factor 348.96 in H.14
should then be replaced By; g+ 142.96.
We consider theu dependence of three non-leading or-

compare RG-summed versions of the reduced gy

(3.10, TN (3.8) andT'Nek (3.12. These three rates exhibit
virtually no x dependence whatsoever; rather, RG summa-

ders of perturbation theory first for the case in which loga-ion is seen to lead to clear order-by-order predictions of the

rithms arenot summed to all orders. Figure 2 displays a
comparison of the “unsummed” one-, two- and three-loop

order reduced rateENY/K, TNNYKC and TN'Y/K, respec-
tively given by Egs.(3.9), (3.7 and (3.11). The w depen-
dence of all three orders is evident from the figure. Such
dependence can be used to extract NL Bt values forl’
via the minimal-sensitivity criterion of Ref12]. Curiously,

3 ..
I'Nt and TNt are both seen to have comparable minimal-

sensitivity extrema (1801 Gé\and 2085 GeV) at values
of u much less tham,(m,). I'NN' exhibits some flattening
between these extrema=(1900 Ge\?) over the same range

of u, but with a continued negative slope. Indeed, one car3.1D: I

employ fastest apparent convergeridé&] to chooseu for
I'NNE such that| TNNY () —TNY(w)| is @ minimum, and to
choosep for TNt such that TNt () — TNNY(w)|=0. As
evident from Fig. 2, the former criterion leads to a value for
wu (2.85 GeV) quite close to that value at whiEN"(x) has
an extremum (2.7 GeV), corresponding t&6NNYKC
—1888 Ge\V. The latter criterion indicates th&’" should

be evaluated at the point whef&Nt and"™°t cross, a point
noted previously[2] to be virtually indistinguishable from
the minimal-sensitivity extremum farN"L ().

The point we wish to make here, however, is that all sucHO0P rate, is quite clos

values extracted fop differ substantially frommg(my), in
which case progressively large powers of large logarithm
L () =log[ 1?/mg(1)] enter the successive expressi¢ds),
(3.7 and(3.11) for the NL, NNL andN>L rateI'. Moreover,
in the absence of minimal-sensitivity or fastest-apparent

rate that are insensitive ta. We see from Fig. 3 that

I'Res/K=1646:2 Ge\P, TRas/K=1816-6 Ge\P, and

FQZLE/IC=1912t4 Ge\P over the(more or less physical
range ofu considered in Fig. 3. Theoretical uncertainty in
the calculated rate is now almost entirely attributable to trun-
cation of the perturbation series to known contributions, an
error which is seen to diminish as the order of known con-
tributions increases.

It is important to realize, however, that these scale-
independent predictions necessarily coincide with liig)
=0 predictions of the unsummed raté3.9), (3.7 and
NL and TN equilibrate wherw=1, i.e., when
L(n)=0. Thus one can argue that the summation we have
performed here of all RG-accessible logarithms supports the
prescription of identifying as “physical” those perturbative
results in whichu-sensitive logarithms are set equal to zero.
We must nevertheless recognize the possibility that the
p-sensitivity of the unsummed rates, when exploited by
minimal-sensitivity or fastest-apparent-convergence criteria,
is capable of leading to more accurate order-by-order esti-
mates of the true rate than corresponding scale-independent
RGX rates. In comparing Figs. 2 and 3, it is noteworthy that
the 1801 GeV extremum of 'NY/KC, the unsummecbne-
e thRns/K, the RG-summedwo-

RGX

loop rate. Similarly, the 1888 GeV fastest-apparent-

gonvergence value atNNL/ K, the unsummed two-loop rate,

is close torg}z. This train of argument would suggest that
the (2085 GeV) extremum (or fastest-apparent-

convergence valyef the unsummed ratBN’L/KC may be a

014010-8
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8000 S [XL]=To o1~ BoxL) "+ G(1—BoxL) 2
X log(1— BoxL) (4.7)

2500 -

Si[xL]=P(1—BoxL) 2+ (T30~ P)+Ulog(1—BoxL)

2000 -+

(1—BoxL) 2. (4.9

v 2
1500 - + Elog (1—pBoxL)

T/ K (GeV?®)

In this section, we apply the above results toward the decay

b—ul” v, andb—cl™ »,. The former rate is known fully to
two-loop order in the pole mass scheme, though the result is
500 - argued to be of limited phenomenological utilifg]. The
latter rate has been estimated within fairly narrow errors to
two-loop order as well8], and has been extended to a three-
0 T T T T T T T loop order estimated rate via asymptotic Pageroximate
1 2 3 4 5 6 7 8 9 methods[9].

1 (GeV)

1000 -

FIG. 3. Comparison of RG-summation expressions for the fully A. Pole scheme semileptonib—ul ~», decay

MS b—ul~, decay rateif;=5) obtained from the NIsolid line),

NNL (dotted ling, and NL (dashed ling perturbative series. The two-loap orderb—ul '» rate in the pole mass

scheme is given by substitution of known values of the co-
) NL efficients {T10,T11,T20,T21,T22, as listed in Eq.(1.6),
more accurate estimate of theie rate thanl'ggy . Such an  jnio the serieg(1.1) within the rate(1.4), with my(x) re-

argument, however, requires substantiation via explicit threeg|5ceq bym,‘jo'e as noted earlier. Although the reliability of

and four-loop order calculations, computations which are no he pole-mass scheme for this process is suspect because of

yet available. the proximity of a renormalon polel], we have plotted this
series for a range of(u) = a(w)/ 7 and a choice fomP°'®
IV. APPLICATION TO SEMILEPTONIC B DECAYS that will facilitate comparison with phenomenology already

IN THE POLE-MASS SCHEME obtained from the correspondingS process. We choose

In the pole-mass renormalization scheme, the masp- N;=5 active flavors in order to explore the dependence of
pearing in logarithmg1.2) is independent of the renormal- the NNL rate in a region in which is considerably larger
ization mass scalg. Thus the coefficients,, as defined in thanmf°'®. Corresponding results for four active flavors are
Eqg. (1.3 are all zero. The constanfA,B,C,D,E,F,H, easily obtainable as well. The evolution xfu) = ag(u)/ 7
K,M,N,Q,R,Y}, as defined in Sec. Il, are all zero as well. for five active flavors ultimately devolves fromg(M,)

The nonzero constants are =0.118 and leads to the samg=5 benchmark value
X(4.17 GeV)=0.071549 as noted in Sec. lll. Similarly we
Ge—T b1 4.1 employ a value fomP°'®=4.7659 consistent to two-loop or-
108, ' der with our use of the running mass value,(my)
, =4.17 GeV, as obtained from th&=5 relation between
Bi\ 1 mp°'® andmy(m,) of Refs.[11,14):
P= T1,0<,32__ o (4.2) i
Bo/ Bo 4
8 P mpo'e=4.17 Ge\Jtl+ §x(4.17)+9.27793<2(4.17) .
1 1
U=|-Ti05—2T,0| = 4.3 4.9
[ Y8, 2'0} Bo “3 “.9
,32; We then see from Fig. 4 that the-sensitive portion of the
V=2T;0— (4.9  known two-loop rate in the pole mass scheme,
0
and the corresponding RGE summations appearing within NNL
3 —1_ _
SNL. SNNL andSNek [Egs.(1.16), (1.17) and(1.18)] are S"WH(u)=1-2.4130%(u)+| —21.2955
S=1 (4.5 u |\
—4.62505lo ( po|e> x2( ), (4.10
Sl[x L] :Tl’ol(l_ ﬁox L) (46) mb
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FIG. 4. Comparison of the large-behavior of the NNL un-
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1 (GeV)

FIG. 5. Comparison of the NNL unsummeédotted ling and
RG-summedsolid line) decay rates fob—ul~ v, (ns=5) within

b—ul~ v, within the RG-invariant pole-mass scheme with five ac- the pole-mass scheme over the rang'%/2< u=<2mp'".

tive flavors.

NNL rate, thereby obviating any need to define a physically

is indeed highly scale dependent. Specifically, we see th
SVNL(w) increases monotonically with without exhibiting

aa{ppropriate value ofx to compute a meaningful two-loop
order result. We also note that the asymptotic laugeesult

an extremum identifiable with a “physical” point of minimal | .o Jptain for the “reduced rate”

sensitivity[12].
In Fig. 4 we have also plotted the RG-summed version of

the 2-loop rate
u 2
X(M)|09[(mgo|e) ”

e |

with x(u) andmf®'® as obtained above. The summatids
and S, are obtained via Eq94.6) and (4.7) using then;
=5 pole-mass scheme value$, o= —2.41307, T, o=
—21.2955[1] and n;=5 QCD gB-function coefficientsB,
=23/12, 3,=29/12, andB,=9769/3456. It is evident from

Skax =1+ x(1)S;

+X%() S| X()log (4.1

RGX —_

|
(mﬁe

Ros — 1829 GeV

(4.12

“=My

is surprising close to the 1817 G&WS two-loop order
(“unsummed” NNL) estimate obtained atu=m,(w)
=4.17 GeV, indicative of the utility of the pole-mass
scheme when leading and next-to-leading logarithms are
summed to all orders. In the absence of such summation the
pole mass expressid®N'(«) spans values for the reduced
rate between 1420 GéVand 2060 GeV as u increases
from 1 GeV toM,y, reflecting the problems with the pole-
mass scheme already noted in Héf. By contrast, the RG-
summed reduced rate varies only from 1774 Gedd

the figure that renormalization scale dependence is considek829 GeV over the same region of.

ably reduced by the summation of all orders of leading and
next-to-leading logarithms in Eq3.11). The increase of

SReas with increasingu is minimal compared to that of

SYNL(L), the unsummed expression.

In Fig. 5, the comparison betweermf{®'®)>S"Nt and
(mP°'9)5Shas is exhibited over the physically relevant re-
gion mp®'®¥2< u<2mp°'®. The crossing point between the
two curves necessarily occurs whiew) =0, corresponding
to u=mp%"®. SinceSkas is insensitive tou, this crossover
supports the expectation discussed in the previous section
that the “physical” NNL rate isSNN" with . chosen to make

B. Pole scheme semileptonib—»cl‘?, decay

[(b—cl v)=

G|2:|Vcb|2
19272

The semileptonic decay dB into a charmed hadronic
state is given by the following decay rate in the pole-mass
renormalization schem]:

m2
F(—Z) maS{x(p),L(1)].
m
b
(4.13

In (4.13, m, and m, are u-invariant pole massed,(u)

all logarithms vanish. We would prefer, however, to argue=log(u?mym), x(u) = as(u)/, andF(r) is the form fac-

that SRes is an almost scale-independent formulation of thetor

014010-10
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1350

F(r)=1-8r—12r%log(r)+8r3—r4. (4.14 "
All sensitivity to the renormalization scale resides in the

seriesS[ x,L ], which may be expressed in the usual form

1300

INL

SIX,L]=1+ (T g+ Tyl )X+ (Tt Togl + Tp A 2)x? < 1250 1 NNL
+(Taot Taab + Tl 24+ T 3)x3+- .. 8
, ) , , x 1200 N°L
(4.19 P INL
For four active flavors, the perturbatively calculated coeffi- 11501
cients of(4.15 areT; o= — 1.67 and thepartially estimateg N
coefficient T, ;= —8.9(=0.3) [8,15]. Except forT;q, the 1100

remaining coefficients in Eq4.15 are accessible from the

RG equation 1050

0= S[x,L]. (4.19

1000 T T T T T
6 10

H (GeV)

14 N 14
aL p (X)ax 12
These coefficients areT,,=0 [n=1],T,1=T1080
- 3479, T3’1: 2T2’0ﬂ0+T11(]B]_: _424(i 13), andT3’2
— 2_ _ i Y, i i-

_Tl-OB?_If _72‘;%9]1 énzzésyrr?ptot:c Ptz;’)tdapprgxmagt_esg f decay ratesI'/IC (ny=4) in the pole-mass scheme, wheke
mate 0fT3o=—50.1(*2.6) has also been obtained in Ref. =GZ|V,p|?/1927%. The curves representing the unsummed rates

[9]- Consequently, one may "_St three orders for theare labeled by NL, NNL and L indicating the order at which they
u-dependent portion of the—cl™ v, rate: are truncated. Similiarly, the RG-summed curves are labeled by
SNL, SN°L and SN3L.

FIG. 6. Comparison of unsummed and RG-sumrbech’;

SMUx() L ()] =1~ 1.6%(p), (4.17) _ _ , o
4.9 GeV consistent with phenomenological estiméfies.
SN (), L ()] The couplantx(u)=ag(x)/ 7 is chosen to devolve from
ag(m,)=0.33 [17] via four active flavors, whereB,
=1—-1.6%(u)+[—8.9-3.479% (u)]x?(u), (4.18 =25/12, B,=77/24, B,=21943/3456 andB;=31.38745.
These choices permit careful attention to the 1.5 &eV
SN3L[X(M)’L(M)] =m, low-scale region anticipated to correspond to the
physical rate, although we have chosen to extend the range
=S"NY'x(w),L(u)]+[—50.1-42.4_(u) of u to ~2my in Fig. 6.
—7.28.2(1) ] ). 4.19 Figure 6 demonstrates that the rate expressions appear to

progressively flatten with the inclusion of higher order cor-

, ) . rections, but that the residual scale dependence of each order
with the caveat that NNL andl expressions have increas- 1emains comparable to the difference between successive or-
ing theoretical uncertainty arising from tiemal) estimated  yers. Figure 6 also displays rates proportional to the corre-
error inT, o and con(_:omitant error in the estimation™f . sponding RG-summed expressidds20), (4.21) and (4.22)

As before, we will compare thg. dependence of EQs. pased upon the same phenomenological inputs. The expres-
(4.17, (4.18 and (4:19) to that of the corresponding gjons forS,, S, and S, are given by Eqs(4.6), (4.7 and
RG-summed expressions (4.8). It is evident from Fig. 6 that the scale dependence of
RG-summed expressions to a given order is dramatically re-
duced from the scale dependence of the corresponding non-
summed expressions.

SRes = L+ X() Sy x(p)L ()] (4.20

Skas = L+ X(1) SiX ()L () ]+ X3(1) Sl (1)L ()] Thus SYL; , SNNE and S¥ek are approximately scale-
(4.2 independent formulations of the one-, two- and three-loop

3 perturbative series within thie—cl™ v, rate; once again the
SRas = Skoas +X3(1) Salx(m)L ()], (4.22  summation of progressively less-than-leading logarithms in

the perturbative series is seen effectively to remove the
in order to illustrate how RG summation of higher loga- choice of renormalization scaje as a source of theoretical
rithms affects the order-by-order renormalization-scale deuncertainty to any given order of perturbation theory.
pendence of a perturbative series. Figure 6 displays a plot of
the u-sensitive portions of the decay rate considered to NL

(4.17), NNL (4.18 and N’L (4.19 orders. As in(8,9], m. is
assumed to bm, /3. We have chosen the pole masgto be

2Such an estimate is slightly larger than that based uport4®),
as Eq.(4.9 is truncated after two-loop order.
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V. THE VECTOR-CURRENT CORRELATION FUNCTION TABLE |. Constants for determining th&(N3L) RG summa-
AND R(s) tion of the N3L-order vector-current correlation function.
The imaginary part of théMS vector-current correlation n;=3 ni=4 ni=5
function for massless quarks can be extracted from the Adler
function [18]. This procedure is explicitly given ifl9] and o 9/4 25/12 23/12
leads to an expression in the following form: B1 4 77124 29/12
Bo 3863/384 21943/3456 9769/3456
1 4
SmiL(9)=- 5 3 QGsix(w logus)], 6 1 Y P .
T3 —10.2839 —11.6856 —12.8046
wherex(u)=ag(u)/7 ands is the kinematic variable? Tas 11.3792 9.56054 7.81875
[i.e., the square of the invariant massdhe™ — hadrons. Tas 81/16 625/144 529/144
The seriesS[x,L] appearing in Eq(5.1) is fully known to g —16/9 —77/50 —29/23
N3L order: p _ 3397 _ 121687 17521
2592 180000 152352
SNsL[X L]= 14X+ (Tt T L)X2+ (Too+ Tadl U —8.99096 —7.06715 —5.14353
’ 200 121 300 131 \% 512/81 5929/1250 1682/529

+T3,L2)x%5. (5.2)

The full series is, of course, identifiable with the genericto changes in the choice of QCD renormalization-sgale
series(1.1) [or Eq. (4.15] providedToo=T;0=1 andT, , [20].
=0[n=1]. Values for the remaining vector correlation func-  Equation(5.4) is just the RGE2.2) with y,,(x) set equal
tion constants in Eq5.2) are tabulated in Table | for three, tg zero—precisely the same RG equation as applicable to the
four and five flavors. The coefficiens, , and T3 are ob-  pole-mass scheme semileptomiclecay rates considered in
tained from the results of R€[f18], and are well known from  the previous section. Consequently, the RG summation of the
the standard expression for perturbative contributions tgeriesg[x,L] within Eq. (5.1) involves thesameseries sum-
R(s). The remaining coefficients mationsS,,S,; ,S, andS; as those given by Eq#4.5), (4.6),
(4.7) and (4.8). The (nonzerg constantsG,P,U andV ap-

Toa=Bo. Taa=2BoT2otBr, Ts=B5 (5.3 pearing in these equations are found in termgdfinction
coefficientsBy, 81,8, and series coefficients; o(=1), T,
and T3 q via Egs.(4.1)—(4.4). These constants are all tabu-
lated in Table I, and are seen to fully determine ¢eN>L)
RG-summed version of the seri&€px,L],

are easily determined from the renormalization scale invari
ance of the vector-current correlation functignl),

J J _
N +’8(X)<9_x gx,L]=0.
(5.4 SV [x,L]= 14 XS XL]+ x2S xL]+ X3Sy xL],

This equation, of course, can be interpreted to reflect the
imperviousness of the physical quantity

d
p?— SIx(p),log(n?/s)]=

du
(5.6)

. wherex=x(u) andL =log(u?/s). For example, ifiy=5, we
R(s)= o(e’e —hadrony i|m1-[ (s), (5.5 seefromEqsi4.6), (4.7 and(4.8) and the Table | entries for
glefe —utu) A7 G,P,U,V,T,oand T, that

S[xL]= ﬁ (5.7
23
1.49024-1.26087 |Oé 1— 1—2X L)
12.9196-5.14353log 1 23 L|+1.589791I é 1 23 L
0115003 | = : i og 1= 1%
( 1—- 1—2XL ( 1—- 1—2XL
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FIG. 7. Comparison of the followingh;=5 vector-current
correlation-function series wheyfs=15 GeV: S\ (solid ling), the

MS perturbative serieS[x(u),log(u?s)] truncated after NL-order
contributions; SYN- (dotted lin@, the same series truncated after

NNL-order contributions; an&\’t (dashed ling the same series

FIG. 8. Comparison of the following RG summations of the
perturbativeM_S series within then;=5 vector-current correlation
function when s=15 GeV: Sygs (solid ling), the summation
based upon the perturbative ser@s(u),log(u?s)] truncated after

o atter RL ord utions. At the | gty NL-order contributions;Syes (dotted ling, the summation based
truncated aiter RL-order contributions. At the intersection upon the perturbative series truncated after NNL-order contribu-

. N3L — . L
with SN't, the NPL-order contribution to the perturbative series is tions: andSEZLZ (dashed ling the summation based upon the per-

zero, corresponding to the point of fastest apparent convergenGg haive series truncated aftefINorder contributions.
(FAC).

3
. this FAC value forS¥'" is quite close to the RG-summation
In Figs. 7 and 8, we compare the dependence of the un- q

3 ..
summed (5.2 and summed (5.6 expressions for value Sge"z a result anticipated by Maxwe|b]. In other

S[x(w),log(u?/s)], with the choices=(15 GeV}. The run- words, if one were to use the FAC criterion to reduce the
ning coupling constank(x) is assumed to evolve via the theoretical uncertainty arising fronp dependence in the

.. . 3
n;=5 (four-loop-ordef B-function from an initial value original expression(5.2 for SN'“(u) over the ys/i2<pu
x(M,)=0.11800#r.2 Although Fig. 7 does show a flattening <2 /s range considered, the specific value one would obtain
of the unsummed expressions upon incorporation of SUCCG?SQZ"C=SN3'-(26 GeV)=1.05409 corresponds very nearly

. . . 3
sively higher orders of perturbation thedi§"'",S"™, SY™*], " {5 the RG-summation value extracted from E.6) [SYek
Fig. 8 demonstrates that the corresponding RG-summed ex= 1 g5372+ 0.00004.

pressions are order-by-order much less despendent on the This pehavior is not peculiar to the choicein Figs. 7
renormalization scalg. In particular, the fullN°L summed and 8. In Figs. 9 and 10, we considgN., oL andSQBGLE

expression5.6) exhibits virtually no dependence qn, but .
eXp 5.6 T y P 3L o for 's=30 GeV andys=45 GeV. The FAC point in each
is seen to maintain a constant vaIL@GE=1.05372 figure occurs at the value ofx for which SVNY(u)

+ i ~ ~ = . . - . .

._0200004 over th? entirgs/2< u<2ys range of renormal =SN3L(,u), as discussed above. In both figures it is evident
ization scale considered. By contrast the unsummed expresr—] ML b . o 0 th NCL
sion SVt of (5.2) is seen to increasémodestly over this thatS as substantially more variation withthanSge; ,

same range from 1.0525 to 1.0540. The point marked FAC iHVh'Ch 's virtually independent (_),&. N;aLv_ertheIess, both fig-
Figure 7 is the intersection of the unsummed expressions fd#res also show that the FAC point 8™ is very close to the

3 . 3 3
SNNL and SN, This point is the particular choice of at  Skex-level value. For/s=30 3(3eV[F|g. 9 Stac=S""(u
which theO(x®) contribution to(5.2) vanishes, i.e., the point =52 GeV)=1.04700 and Sha = 1.0468%0.00002. For
of fastest apparent convergen@®C). It is noteworthy that Js=45 GeV [Eig' 10, NzI_C:SN’é’L(M:?? GeV)
=1.04369, andBR s = 1.04360- 0.00001.
3For purposes of comparing the dependence &L andsg‘gz, Similarly, the PMS points in all three figures, correspond-

. . NEL .
we are assumingas in Secs. IIl and Iythere to be no uncertainty M9 to maxima ofS™ ~(u), are ver3y near the FAC points and
in the value ofag(x). also quite close to theSyas level. In Fig. 7
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FIG. 9. Comparison oB'Nt (dotted ling, SV (dashed ling

and ngLz (solid line) expressions for the seri&}x(u),log(u?/s)]
within the n;=5 vector-current correlation function whegls
=30 GeV.

[Vs=15 GeV], SNit=SV’L(23 GeV)=1.05403; in Fig. 9
[V5=30 GeV], Shi=5S\L(46 GeV)=1.04701; and in
Fig. 10 [s=45 GeV], s’;?&%zstL(m GeV)=1.04370.
Of course, equality betweeB" (1) and Syas is necessar-

ily exact whenL =0, i.e., whenu? is chosen equal ta This
is indeed the prescription employed in the standafi pre-

scription relatingSN’t to R(s) [18]:

R(S)=1+xX(\S)+Tp0 X3(V/s)+ Tgo x°(\s),  (5.10

whereT,,and Tz are given in Table | fon;={3,4,3. The
point here, however, is that this prescription is justifieat

PHYSICAL REVIEW D 66, 014010(2002
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FIG. 10. Comparison o8"Nt (dotted ling, SN’ (dashed ling
and sg‘;g (solid line) expressions for the seri&$x(u),log(u?/s)]

within the n;=5 vector-current correlation function whexis
=45 GeV.

by the x invariance ofS¥’L[x(x),log(u2/s)], the truncated

. . 3 .
perturbative series, but by that 8k , the perturbative se-
ries incorporating the closed-form summation of all RG-
accessible logarithms within higher-order terms. Moreover,

the nearly u-independent resulB.5 appears to be quite
close to the result one would obtain from
SNL[x(w),log(?s)] either by imposing FAC or PMS crite-
ria to establish an optimal value @f, as graphically evident
from Figs. 9 and 10. That optimal value for, however, is
not u=1/s, but a substantially larger value @f for each
case considered.

These results are not peculiar to the chaige5. Using
the Table | entries for the parametérsg,, T3 0,G,P,U andV
appearing in Eqs4.7) and(4.8), we find forn;=3 that

) 16 9 4 339
X 1.63982—§Iog 1—ZXL +X T 5597
3
SRex[X,L]=1+ + g 2
(1—ZXL (1_ZXL>
3| —8.97333-8.99096 log 1 9 L +256| 2l 1 9 L
X~ —o. . (o] _ZX ﬁog _ZX

+

and forn;=4 that

(l— ZXL)
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21 1.52453- 77| (1 25 L) + 3( 121683
x4 1. —log| 1— =X xX°| —
Sga*l_ X L]=1+ . 50 12 18000
= 1 L 1 25 L i
—1—2X —1—2X
8| —11.0096-7.06715 log 1 2 L +5929 21 25 L
X©| — . . (0] —1—2X ﬁog —1—2X
+ o5 3 (5.12
(1—1—2XL>

In Figs. 11 and 12 we display the expressiri2) for SNes

together with(unsummedn;=4 expressions fc)rSNs'- and
S'NL for s=4 GeV and\s=8 GeV. To generate these
figures, we evolve x(x) using an initial condition
X(4.17 GeV)=0.07162142] appropriate fon;=4 and ob-
tained from the threshold matching conditiofsl] to the
n{=5 running couplani(4.17 GeV)=0.0715492 evolved
from x(M,)=0.1184r [10]. As in Figs. 9 and 10 we see that

SV and SY.L. are both close to the very nearly constant
SQZLE level, although the PMS and FAC values for are
substantially larger thag's in each case.

To conclude, the primary result of interest is that closed- The momentum space expression for the perturbative por-
form summation of all RG-accessible logarithms to anytion of the QCD static potential function

choosingu = \/s in the unsummed seri€ [ 42, log(u¥s)],
since the summed and unsummed series coincide at this

value of . However, the unsummed seri®’* still exhibits
noticeable scale dependence. The use of FAC and PMS cri-

teria to find an optimal value fo for SN'L leads to values
for this unsummed series which are quite close to its RG-
summation value.

VI. OTHER PERTURBATIVE APPLICATIONS

A. Momentum space QCD static potential

given order of perturbation theory leads to expressioag.
Fig. 8 that order-by-order are substantially less scale-
dependent than the corresponding truncated séFigs 7).

The scale independence SRZ"E supports the prescription of
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3 . 2
V(r)=f a eiq'r(—m—w)w

(2m)3 392
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log

2
M
52

(6.9

1.065

1.064 1

1.063 1

1.062 1

1.061 1

1.0860 A

1.059 -

FIG. 11. Comparison o8"Nt (dotted ling, SN’ (dashed ling

3 - . .
and Shas (solid line) expressions for the seri€x(u),log(u?s)]
within the ny=4 vector-current correlation function whegis

=4 GeV.

u (GeV)

————

1.058

=8 GeV.
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within the ng=4 vector-current correlation function whegfs



M. R. AHMADY et al.

is given by the integrand series
WX, L]= X+ (To 0t Toal)X?

+ (T3t Taal+ T3 L2)x3+ - (6.2

wherex= ag(u)/m, L=log(x?q?), and where the series co-
efficients within Eq.(6.2) are[22]

TZ,O: 31/12_ 5I’lf /18, T2,l: ﬁoz 11/4_ nf /6,

PHYSICAL REVIEW D 66, 014010(2002

The functionW[x,L] is shown in[23] to satisfy the same
RG equation(5.4) as the semileptonib— u andb—c decay

rate in the pole mass scheme. Consequently, the closed form
summation of all RG-accessible logs is given by Egs6)—

(4.8), with the constants5,P,U and V as given by Egs.
(4.1)—(4.4). SinceT, o, as defined by the generic series form
(1.1, is zero for the series(6.2, the series S

=3 _oTnn(XxL)"is trivially zero. Thus, the RG summation

of W[x,L] is

T3,0=28.5468—4.147141f+25n]?/324, (6.3 Wres =XS[XL]+X2S,[ xL]+ x3S5[ xL]. (6.4)
Ty1=247/12- 22N /72+5n5/54, T3,= 5. Noting thatT; o= 1 in Eq.(6.2), we find forn;={3,4,5 that
|
J43 29 (28 17521
- X X’ 36~ 2399 1~ 1 15235
W =5= +
e 1- 20 1- 20 i
BT BT
Joppsyy 23019 (L 23 | 841 o 23
: 952209\ 1~ XL |+ 55d0d"| 1 X ]
12%
53 77 25 /12168
—Jog| 1— —=xL||-
. X ‘36 50 12 ’ 18000
WA= +
RGE 25 25 \?
1—1—2XL 1—1—2XL
L 12a68s. 77093 [, 25 |, 5929 o 5
N : 1125099 17 XL | + 550009 | 1~ 12X .
12%
716 (09 ] 43397
- X X%~ glog 1- ¥ 2592
Wi 3= +
RGY, 9 9 2
(1—ZXL (1_ZXL)
181104—760I 9 L 56| 21 o L
—og ZX +ﬁ09 ZX
(1_ZXL

In Fig. 13 we plot both the truncated serdd8'Nx,L],
consisting of the terms explicitly appearing in E§.2), as

well as the corresponding RG-summed sefi@$) for the

n;=5 case witiq|=4 GeV. As before, we determing )
from Eq. (2.3 with the initial conditionay(4.17 GeV)hr

=0.071549 devolving fromag(M,)=0.118000. Although
the truncated series varies only modegt.0856=WNNE

=0.0795 over the rangéq|/2< u<2|q|, the RG-summed
series is seen to exhibit less than 10% of the unsummed
series’ variation over this same range @f [0.08295
=Wpges =0.08233.
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0.086 TABLE Il. NNL-order series coefficients within the gluonic sca-
lar current correlation function.
0.085 "
nf:2 nf:3 nf:4 nf:5 nf:6
0.084
W 0083 T 29 9 25 23 z
\\ 11 6 2 6 6 2
0.082 1 Tao 246.434 197.515 150.210 104.499  60.3685
- Taa e 4 e = e
T 841 243 625 529 147
0.080 2,2 48 16 4 48 1
0078 » s . 5 s 7 8 Upon substituting Eq(6.10 into (6.12), it is straightforward

to show that the aggregate coefficients>8t."~ 1 x"L""?2

K (GeV) andx"L""2 respectively vanish provided

FIG. 13. The momentum-spaecg=>5 static-potential function

seriesWNNL (dotted ling, and the corresponding RG summation

NNL

7 NThn—Bo(N+1)T,_1,-1=0, 6.1
Wrgs (solid line) with |g|=4 GeV. nn Bl MTa-1n-3 612

) ) ) (n_1)Tn,nfl_:80(n+1)Tnfl,n72_,BlnTnfz,nfzzov
B. Gluonic scalar correlation function

The imaginary part of the correlator for gluonic scalar (6.13
currents
, Bx(w)) N—2)Tyn 2= Bo(N+1)Tn 1, 53— BTy on-
JG(y): WX(M)IB Giv(y)G,uV,a(y) (68) ( ) n,n—2 ﬂO( ) n—-1n-3 Bl n—-2n-3
° =Bo(N=1)Ty_g5-3=0. (6.14

enters QCD sum rules pertinent to scalar glueball properties
[24], and is given by s=p? x(u)=as(u)/ 7] We employ the definition$2.18), (2.19 and (2.20 for Sy,
S, andS,. By multiplying Eq.(6.12 by u"~ %, Eq.(6.13 by
_ u""2 and Eq.(6.14) by u""2 and summing froom=1,2 and
ImHG(s)zlm{if d*y€ePY(0|Tjg(y)ig(0)|0) 3, respectively, we obtain the following three linear differen-
tial equations

2 2 2
= %A;)SS[X(M),IOQ(MZ/S)] (6.9 ds,
(1_ﬂou)m_23050:0 (6.15
where
S (1-8 )dsl 30S ﬁ- dSOﬁLZSo- (6.16
—pol) 7 9P = P U+ ) .
- npm d d
Sx,L] 1+n§=)l m2=0Tn,mx|_. (6.10 u | du ]

The leading coefficientd,, ,, within Eqg. (6.10 can be ex- _ d__ _ e
tracted from a three-loop calculation by Chetyrkin, Kniehl (1= Bol) gy ~ 4o ,81_u du +3Sl_
and Steinhausd19,25 and are tabulated in Table II.

The correlator Imlg(s) is RG  invariant: +8,
w?dimIlg(s)/du?=0. Consequently the serig6.10 can
be shown to satisfy the RG equation

uz—i"jtzso}. (6.17)

Given theu=0 initial conditionsSy=1,5,=T;(,5,=Ty
_ and settingu=xL, we obtain the following RG-summed ver-
Sx,L]=0. (6.1 sion of the serie$6.10 to NNL order:

J d  2B(X)
L HBX)—+ —
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SRS = SolXL]+ XSy [XL]+ x2S, xL]

PHYSICAL REVIEW D 66, 014010(2002

2B 2B 28

i L +x Tio— ﬁ—;Iog(l—ﬁoxL) +x? /5’_(2)1_'8_02
 (1—BoxL)? (1 BoxL)?
285 2 3T 232

( zo——;+ﬁ)—( l,OBl+_21 log(1— BoxL) + (382 B2)l0g?(1— BoxL)
5 By Po Bo Bo
iy (6.18
(1-BoxL)*

wherex=a¢(u)/7 and L=log(u?/s), as before, and where S"N:[as in Eq.(6.19] be replaced by Eq6.18 within sum

the B, are as defined in E¢2.3). In Fig. 14 we compare the
w dependence ok?(u)Shts to that of the corresponding
truncated series

x*(p) SN x, L]
= X2[ l + (leo+ lelL)X“' (T2’0+ T2,1L + T2’2L2)X2]
6.19

for then;=3 case withys=2 GeV. The evolution ok(u)

is assumed to follow am;=3 B function with the initial
condition ag(m,)/ 7= 0.33Ar [17]. As evident from the fig-
ure, the severe. dependence at?SNN is considerably di-

rule approaches to the lowest-lying scalar gluonium state.

C. Cross sectiono(W;f W, —27,7,)

The scattering of two longitudinal’s into two longitu-
dinal Z's is mediated by the Higgs particle of standard-model
electroweak physics. Assuming a single Higgs partide-
volving from the single doublet responsible for electroweak
symmetry breaking one finds the cross section for this pro-
cess at very high energiesEéMﬁ) to be

2

8
0(9)= 55021 0(w) log( 7)), (620

minished by RG summation. The RG-summed expression

[Eq. (6.18 multiplied by x?(u)] falls from 0.056 to 0.041 as

u increases from 1 GeV to 4 GeV. By contrast, the un-

summed expressio(6.19 falls precipitously from 0.259 to
0.017, a factor of 15, over the same rangewofThis un-

whereg(u) =6\ ys( 1)/ 1672, the quartic scalar couplant of
the single-doublet standard modeind where the serie®is
[26]

physical dependence on renormalization scale suggests that

0.30

0.25 1,

0.20 -

Im (IT)

0.15 -

0.10 4

0.05 -

0.00 T T T T T
25

u (Gev)

FIG. 14. The imaginary part of the gluonic scalar-current corre-

lation function(6.9), as obtained fromx?(x) SVN* (dotted ling and
from x?(u) Shes (solid line) with n;=3 and\s=2 GeV.

© n

Sg,L]=1+2 > Tomg"L"

n=1 m=0

(6.21

with g=g(u) andL=log(u?/s). The constant3, ., are fully
known to NNL order[26]

2
Tl,O: - 100, T1’1: _4, T2,0: 93553"’ glog(S/Ma),

T2,l: 68.667,1—2’2: 12. (622

The RG invariance of the physical cross sectnmplies
that the serie§ satisfies the RG equation

ad Jd 2B(9)

I+B(g)@+T Sg,L]=0. (6.23

“\ws(u) is perturbatively related to its on-mass-shell value
GeM?2/4/2, as discussed if26].
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This is the same RG equation as E811) characterizing the
gluonic scalar correlator, but with th@ function appropriate
for the single-Higgs-doubletMS quartic scalar couplant

9(w) [27]:

d
I"‘Zd_iz: B(9)=—Bog’— B19°—B9* ..., (6.24

PHYSICAL REVIEW D 66, 014010 (2002

13
Bo=—2, ﬂ1=§, B,=—27.803.

Consequently the RG-summed versionSois given by Eq.
(6.18:

13
g[ —10+ —log(1+2g L)} —18.41417

1
Sras = +
RE (14 2gL)? (1+2gL)3
2 111967#2I > 1339| 1+2gL +169| 2(1+2gL
g9 : 3109 M2 1g 109(1+2gL)+ 77log"(1+2gL)
4 (6.25
(1+2gL)*
D. Higgs decayH —gg 9 J  2B(X) B
Higher-order expressions for the decay of a Higgs boson (1—27m(x))1+,8(x)5+ X Sx.LTI=0.
into two gluons have been obtained and studied both outside (6.28

[28] and within[25,29,3Q the context of a standard-model

single-doublet Higgs field. In the limiMZ<4M2, M,

=0 the latter decay rate is of the form
I'=[2GM}/727]

X3 ) S[X( ) Jog(u?/mE( ), log MEIME)].
(6.26

Capitalized massesMy,M,) denote RG-invariant pole
masses, whereas,(u) is the runningt-quark mass. The
seriesS within Eq. (6.26) is of the generic form(1.1) with
L=log(x?/m?(w)), but the coefficient3 , ., are now depen-
dent upon the RG-invariant logarithf=log(MZ/M32). Us-
ing six active flavors to accommodate the runningrpfw),
one can extract from Ref25] the following two subleading
orders of series coefficients withB[29]:

215 23 7
Too=1, leo(T)=§—€T, T1,1:§'
T,4(T)=146 8912—4903T 529T2 6.2
2dT)= . 18 +E , (6.27
. T_1445 161T . 147
2D =g "5 T Ter 715

RG invariance of the physical decay rate?fI'/du?=0)
implies the following RG equation for the seri€px,L,T]
within Eq. (6.26):

Then;=6 values for theMS g and y,, functions are

B(X)=—(BoX*+ BrX3+ Box+ -+,
Bo=T714, Bi=13/8, B,=—65/128
Ym(X) = = (yoX+ Y1 X2+ yx3+ - -+,

Yo— 1,'}’1: 27/8, Vo= 4.83866.
(6.29

Upon substituting the serie as described above, into Eq.
(6.28), one finds that the net coefficients "1, x"L" "2
andx"L""3 on the left-hand side of Eq6.28 vanish pro-
vided the following recursion relations are respectively up-
held:

nTn,n_BO(n+1)Tn—l,n—1:0 (6-30)

(N=D)Tnn-1Ft2¥%N=D)Th1p-1=Bo(N+ )Ty 152
_,BlnTnfz,n72:0 (6.30

0=(N=2)Tyn 2t 2¥(N=2)Tp 15>
+2y1(N=2)Ty 25 2= Bo(N+1) Ty 153
—BiNTh_on—3—Bo(N—1)T,_35_3. (6.32
By multiplying Eq. (6.30 by u""!, Eq. (6.31) by u""? and
Eq. (6.32 by u"" 3, and by summing each equation fram
=1,2 and 3, respectively, we obtain the following linear dif-

ferential equations for the summatioBg (2.18, S; (2.19
andS, (2.20:
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dS
(1_,30U)m_2,30$o:0 (6.33
d d d
(1—,30U)d_il_3:3031231(ud_i0+250 _Zyod_i) (6.39
d d d d d
(1_30U)d_i2_4,3052231<ud_i1+351 _270%+32(Ud_i0+250 _2Y1d_?' (6.39

Given theu=0 initial conditionsS;=1,5,=T;«(T),S,=T,(T), one can solve foiSe[u],S;[u] and S;[u]. As before,
all-orders summation of the RG-accessible logarithms within the s8fies, T] is now possible, given the explicit form of
T1o(T) and T, ((T) in Eq. (6.27 and the explicit3- and y-function coefficients in Eq(6.29. We thus find that

215 23T+ 15I . 7 s 9479 ,
- , 1 X127 6 "7 784"
SREE = SolXL]+ XS[XL]+ xSy xL]= 2+ -3
(1_ZXL (1_ZXL>
2 134 801 4903T+ 529 2, 21675 345_|_ odl 1 7 . +675 o[ 4 7 .
X 13480 - T 2 T+ 395 ~ g T)109[ 1 g%k +1g00| 17 2%
+ =7 : (6.36
( 1- ZXL)
|

E. Fermionic scalar correlation function wherelL =log(u?/s), x=ag(w)/, B(X) is the B-function series
The imaginary part of the RG-invariant correlator for the (2.3 andyn(x) is the y-function serieg1.3). Substitution of
fermionic scalar current Eqg. (1.1 into Eq. (6.39 leads to the following recursion

formulas for the elimination of terms proportional to
XnLn—l XnLn—Z XnLn—3 ananLn—4:

js(Y)=m¥(y)¥(y) (6.37
is 0=nTnn=Bo(N= )Ty 10-1-2%Tn 101 (6.40
_ - 4y, 4Py . . TABLE 1ll. NSL-order series coefficients within the fermionic
ImII(s) Im[IJ d’ye <O|TJS(y)]S(O)|0> scalar current correlation function, as calculate@i3in]. Also listed

are the four-loopB-function [33] and y-function [34] coefficients
B3 and y; required for the evaluation of the serigs.

3s
= gmz(ﬂ)S[X(u),log(MZ/S)], (6.39

ng=3 ni=4 n{=5
where the serie§[x,L] is of the form(1.1) and has been Too 1 1 1
fully calculated toN>L order[31]. Forn;={3,4,5 the series Tio 1713 17/3 17/3
coefficientsT,, , are tabulated for,m)=<3 in Table Ill.  Ti1 2 2 2
This correlation function is relevant both for QCD sum-rule T2, 31.8640 30.5054 29.1467
analyses of scalar mesons, a topic of past and present interdst, 95/3 27419 263/9
[32], and for the decay of a single-doublet standard-moder, 17/4 49/12 47/12
Higgs boson into @b pair [29,31]. RG invariance of the Tso 89.1564 65.1980 41.7576
correlator[ u2dImII(s)/du?=0] implies the following RG ~ Ts: 297.596 267.589 238.381
equation for the serieS[x,L] within Eq. (6.38 [19]: T3z 229/2 22547/216 10225/108
T33 221/24 1813/216 1645/216
J 9 B3 47.2280 31.3874 18.8522
I + B(X) & +2vym(X) |9[x,L]=0, (6.39 V3 44.2628 27.3028 11.0343
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0=(N=1D)Tyn-1=Bo(N=1)T_1p-2—B1(N—2)
XTh-2n-2=2%0Tn-1n-2—2¥1Tn-2n-2 (6.41)

0=(N=2)Tyn-2=Bo(N=1)T_15-3—B1(N—2)
XTn-2n-37B2(N=3)Tn-3n-3=2%0Tn-1n-3
—2¥1Th-2n-3=2%2Th-3n-3 (6.42

0=(N=3)Thn-3=Bo(N=L)Ty—_15-4—B1(N—-2)
XTn-2n-4=B2(N=3)Th_3n-4— Ba(N—4)
XTn-an-2=2Y0Tn-1n-4=2¥1Th-2n-4
—2%2Tn-3n-2=2¥3Th-4p-2- (6.43

We follow the usual procedure of

(1) multiplying Eq. (6.40 by u"~! and summing fromm
=1 too,

(2) multiplying Eq. (6.41) by u"~2 and summing fromn
=2 too,

(3) multiplying Eq. (6.42 by u"~2 and summing fromm
=3 tox, and

(4) multiplying Eq. (6.43 by u"~* and summing fromm
=4 to .

Using the definitiong2.18), (2.19), (2.20 and (2.30 for

{%,S1,S,,S3}, we then obtain the following four linear dif-

ferential equations for these summations:

Sol u]= (1~ Bou) ~*

[T10—C1+Calog(1—Bou)]

Si[u]=Cy(1-Bou) A+ (1= g~

PHYSICAL REVIEW D 66, 014010 (2002
dsy
(1= Bou) g ~2%%=0, S[0]=1 (6.4

d d
(1_,30U)d_il_(ﬁo+ 270)51:,31Ud_i)+27150:

S$[0]=T1p (6.49

ds,
(1_50U)E_(2ﬂ0+270)52

d d
:31U%+32U%+(31+271)5ﬁ‘ 27,9,

S[0]=Typ (6.49

dS;
(1_,30U)m_(3,30+ 270)Ss

ds, ds,  d
:ﬁlum +/32Um +/33Ud_i) +(2B1+271)S;

(B2t 272)S1+2y3Sy,  S3[0]=Tsp.
(6.4

The solutions to these equations are

(6.48

(6.49

Dl D5 2
5 D,+ D3+ Dylog(1— Bgu) + 7log (1—Bou)

D
Slul=— (1~ Bou) A+

[D,—D3+Dslog(1—Bou)] N [

(1= Bow)A*t (1—Bou)A*?
(6.50
F, F3 F3
1 F e o A 2~z T 1091 Bow) , Fa—Fo+ 2+ (Fs—2Fg)log(1— Bol) + Felog’(1~ fou)]
u]=—+(1-Boeu
SUl= 5o (1— o)A (1= Bow)A*?
F, F, F F F
T3,0—?1—72+ZS—F4+F5—2F6+F7Iog(1—,80u)+ ?Blogz(l—ﬁou)+?glog3(1—,80u)
, 6.5
" (1= Bou)”+e (659
[
where Co=—2B170! B2 (6.54
A=2v0p0 (6.52
D1=[C1(AB1— B1—271) +ABs—27,]/
C1=2B170/ B2~ 271/ Bo 6.53 1=[C1(AB1=B1=271) +AB2—27,]/ Bo (6.5
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D,=[C1(2y1—2AB1)—Cy81—AB; 20
+T1AB1—271)]1/Bo (6.56
D3=Cy(AB1—2y1)/ Bo (6.57
D4=B1[Co—(A+1)(T10=C1/Bo (6.58
Ds=—Cofy(A+1)/Bq ©59 7 "'
F1=[C1(AB2—2v,— B2) + D1(AB1/12— y1— B1) 16 1
+AB3—2v3l/ Bo (6.60 i
15 4:
1 :
FZ:,B_ D3(2y1—AB1) +Do(AB1—B1—2v1)
0 1.4 4
D,
- 7A31_C2,32+ C1(2y,—2AB,) 13 : . : : :
10 15 2.0 25 3.0 35 40

FIG. 15. The imaginary part of the fermionic scalar-current cor-
F3=[D3(AB1—B1—271) +Ca(AB2—272) ]/ Bo relation function(6.38), as obtained fronm?(x)SNVt (dotted ling
(6.62 and frommz(,u)SgaGLz (solid line) with n;=3 and+s=2 GeV.

1

Fu=—[(Tog—D1/2—D,+D3)(AB1—271) In Fig. 15 we compare the. dependence of the RG-
Bo summed scalar fermionic-current correlator,
—D4B1+D3(A+2)B,—Dy(A+1)B:1+Cy06; NL NL

IMmITR s ~M?( 1) SRes (6.70
+C1(A+1)Bo— Ty o(A+1)B,] (6.63
to that of the correlato¢6.38 when truncated after its fully
Fs=[Da(AB1=271)~D3(A+1)51~Dsp1 known O(x%) contributions,
—Cy(A+1)B,]/Bo (6.64 s n
N3L__ a2 n m "
Fo=Ds(AB/2— 71)/Bo (6.69 MY ~me(p) 20 20 To ()| log| )|

(6.7
F7=B1D4s—(A+2)(T,0—D1/2=D,+D3) ]/ B

660 Gver the range/s/2< u<2./s with s=2 GeV. The coef-
_ _ ficients T, ,,, appearing in Eq(6.71) are given in Table III.
Fg=p81Ds—D4(A+2)]/ 6.6 n,m
8= F1lDs~Dal )1/ Bo (667 We choose to work in thg's=2 GeV, n;=3 regime appro-
Fo=— B1Ds(A+2)/(28,). (6.69 priate for QCD sum rule applications, where the couplant

X(w) is large. The evolution ok(w) is assumed to proceed
The O(N3L) RG summation of the series Via the ni=3 four-loop 8 function with initial condition
S x(),log(?/s)] appearing in the correlatd6.38 is then ~ X(M,;)=0.33/7 [17]. The running mass(u) is normalized

found to be to 1 GeV atu=m, to facilitate comparison of Eq$6.70 to
(6.7D. In Fig. 15, the unsummed correlator is seen to
N3L w? w? achieve a sharp maximum near 1.5 GeV, followed by a pre-
Srax = So| X(w)10g| ~~ | | +X(1) Sy x(u)log| — cipitous fall asu approaches 1 GeV from above. By con-

trast, the RG-summed correlator exhibits a much flatter pro-
u? file, falling from 1.88 GeV to 1.75 GeV as u increases
5 from 1 to 4 GeV. As in Sec. VI B for the gluonic scalar-
) current correlator, these results indicate that eNén-order
x( w)log| 2 (6.69 expressions for the perturbative contribution to QCD corre-
®)1og s ' lation functions exhibit substantial dependence. Such de-
pendence, which we have shown to be largely eliminated via
where the RG summation$,,S;,S, and S; are given by the RG-summation process, would otherwise percolate
Eqs.(6.489—(6.51) with u=x(u)log(u%s). through QCD sum-rule integrals as spurious sensitivity to the

+x3(w)S;

X(M)|09<

+x3(u)S3
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In this paper we have explicity summed all RG-
accessible logarithms within a number of perturbative pro- APPENDIX: AN ALTERNATIVE CLOSED-FORM
cesses known to at least two nonleading orders, a procedure SUMMATION PROCEDURE
originally advocated by Maxwel[5]. As anticipated, we
have found the dependence on the renormalization gcate The body of our paper has addressed the evaluation of
every case examined to be considerably diminished over tha& [xL]=3y_T,. . «(XL)¥, where the full perturbative se-
of the original series’ known terms. _ ries isS(x,L)=2;_oSu[xL]X". It is, however, also possible
In semileptonicb—u decays in the fullyMS scheme to group the terms withirS(x,L), as defined by Eq(1.1),

(Sec. 1), we observe the intriguing possibility that PMS- gych that the dependence of each series termammiL fully
FAC criteria for the unsummed series truncated to a giveRactorizes:

order may anticipate the RG-summed series for the next or-

der of perturbation theory.This behavior, however, is not w

evident in the other processes we consider. For the vector S(x,L)= > Ry(x)L", (A1)
correlation function(Sec. \j, PMS-FAC criteria for the un- n=0

summed series truncated to a given order coincide closely

with the RG-summed series for that same order, but do not *

anticipate the level of the next-order RG summation. In the R,(X)= Z Tk,nxk. (A2)
pole-mass scheme version of semileptoBidecays(Sec. k=n

IV), PMS and FAC criteria do not appear applicable to the o
unsummed series, which monotonically increase with thd-€t us suppose, for example, that the sefigs,L) satisfies
renormalization scalg:. Indeed, one of the virtues of RG the RGE(2.2) appropriate to semileptonkdecays. By sub-
summation is the sensible scale-independent results it pr&fituting Eq.(A1) into Eq.(2.2), we find that

vides for inclusive semileptoniB decays in the pole mass

scheme, a scheme whose unsummed expressiorts—far . d
are already known to be problematit]. R+ 1(X)= n+1|2y(x)—1 ﬁ(x)&+5y(x) Ra(X),
The n independence of RG summation, particularly for (A3)

the vector-current correlation functiof®ec. V), is seen to

justify the prescription of zeroing all logarithms by setting where we have relabeled the anomalous mass dimension

the renormalization scale t@? equal to the kinematic vari- y,,(x)— y(X) to avoid any misinterpretation of the label

ables. This prescription necessarily equates the unsummeds a subscript. If

and RG-summed series, and, since the RG-summed series is

virtually independent oju, the zeroing of logarithms in the X 5y(x")

unsummed series equilibrates it to the flat RG-summation Rn(x)zexp( _J’

level we obtain. B(x")
In Sec. VI, RG summation is also applied to the perturba-

tive contributions to the momentum-space QCD static potenthen the recursion relatiofA3) implies that

tial, the decay rate of a standard-model Higgs boson to two

gluons, the Higgs-mediated cross secticiwW—ZZ), and 1

to two scalar-current correlation functions. Examination of Pnia(X)= N+l

these last two quantities in the losvregion appropriate for

QCD sum rules suggests the utility of RG summation N one defines to be implicitly a function ofy via the equa-

reducing the unphysical scale dependence of the perturbatl\{ n

QCD contributions to the field-theoretical side of sum rules

in these channels.

dx’

Pn(X), (A4)

B(X)
2y(x)—l)d_xpn(x)'

(A5)

d B(X)
XY= 5o (A6)
ACKNOWLEDGMENTS dy 2vy(x)—1
We are grateful for research support from Leadership Mt .
Allison, the International Collaboration Program of Enter- then Eq.(A5) simplifies to
1 d
5 , , — PriaX(y)= 7 gy PnX(y), (A7)
Although this result incorporates a Padstimate for an RG- n y

inaccessible)(x®) coefficient, this estimate occurs in both the un-
summed and RG-summed expression. in which case
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©

> Pax(y)L"= >
n=0 n=0

n

1 d
aiL" gyp | Pox()

=Po(x(y+L)). (A8)

This last result implies via EqA4) that the serie§(x,L) is

fully determined by knowledge of the log-free summation

Ry, i.e. that
x(y+L) 5y(x")
S(x,L)=ex f dx’ [Ro(x(y+L))
x(y) B(xX")
(A9)
wherex(y) is defined implicitly by the constraint
x2y(x")—1
= f 20014 (A10)
B(x")

obtained by integrating EqAG).
Using lowest-order expressiomx) = — Box? and y(x)
= — yoX, we find from Eq.(A10) that

yzﬂio(—;+2yolog(x))+K. (A11)
If we set
X= ! , K= %Iog(Zyo) (A12)
2yoW Bo
we find from Eq.(A1l) that
weVV= exp( - @) . (A13)
2o

Equation(A13) is the defining relationship for the Lambert

W-function W[ exp(—Byy/27y,) ], as discussed in Ref35].
Since

1
2yoW[ exp(— Boy/2y0)]

x(y)= (A14)

PHYSICAL REVIEW D 66, 014010(2002

in the approximation3(x)= — Box?, y(X)=— yoX, we then
find from Eq.(A9) that

| WIexp(— Boy/2y0)] 570/Bo
S = W exp(—= Boly + L)/2yo)]
1
*Ro ZyOW[exp(—ﬁo<y+L>/2yo>])’ (AL3)

where

Ro(x)zgo Ty ox¥=S(x,0) (A16)
and where

——i+@| 29X) (A17)

Y="3x " B, 09(2yoX).

For the RGE(4.16), corresponding to EQ(2.2) with
vm(X) chosen to be zero, the solutioA9) still applies pro-
vided x(y) is defined implicitly via the constraint

y:_fxﬁ(ijw'

In the approximation8(x) = — Byx?, one can choose

(A18)

1
X(y)=- Boy (A19)
in which case
X
S(x,L)= RO(—l—,BOLx , (A20)

where the functiorR, is as defined via EqA16).
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