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Closed-form summation of renormalization-group-accessible logarithmic contributions
to semileptonicB decays and other perturbative processes

M. R. Ahmady,1 F. A. Chishtie,2 V. Elias,3 A. H. Fariborz,4 N. Fattahi,3 D. G. C. McKeon,3 T. N. Sherry,5 and T. G. Steele6
1Department of Physics, Mount Allison University, Sackville, New Brunswick, Canada E4L 1E6

2Newman Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14853
3Department of Applied Mathematics, The University of Western Ontario, London, Ontario, Canada N6A 5B7

4Department of Mathematics/Science, State University of New York Institute of Technology, Utica, New York 13504-3050
5Department of Mathematical Physics, National University of Ireland, Galway, Ireland

6Department of Physics & Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E
~Received 25 March 2002; published 29 July 2002!

For any perturbative series that is known tok-subleading orders of perturbation theory, we utilize the
process-appropriate renormalization-group~RG! equation in order to obtain all-orders summation of series
terms proportional toanlogn2k(m2) with k5$0,1,2,3%, corresponding to the summation to all orders of the
leading and subsequent-three-subleading logarithmic contributions to the full perturbative series. These meth-
ods are applied to the perturbative series for semileptonicb decays in bothMS and pole-mass schemes, and
they result in RG-summed series for the decay rates which exhibit greatly reduced sensitivity to the renormal-
ization scalem. Such summation via RG methods of all logarithms accessible from known series terms is also
applied to perturbative QCD series for vector- and scalar-current correlation functions, the perturbative static
potential function, the~single-doublet standard-model! Higgs decay amplitude into two gluons, as well as the
Higgs-mediated high-energy cross section forW1W2→ZZ scattering. The resulting RG-summed expressions
are also found to be much less sensitive to the renormalization scale than the original series for these processes.
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I. INTRODUCTION

The renormalization group equation~RGE! has long
proven useful as a means of improving and extending res
obtained from perturbative quantum field theory. In additi
to giving rise to scale-dependent running parameters~cou-
pling constants and masses! and concomitant scale propertie
~e.g. asymptotic freedom!, the RGE can also be utilized t
determine scale-dependent portions of higher-order contr
tions to perturbative expressions. For example, if the tw
loop contribution to a physical process has been determ
via explicit computation of pertinent Feynman diagrams,
RGE then determines leading-log and next-to-leading con
butions toall subsequent orders of perturbation theory. W
denote such logarithms to be ‘‘RG accessible.’’ In the pres
paper we demonstrate how closed-form summation of s
RG-accessible logarithm contributions is obtained for a nu
ber of physical processes whose field-theoretical series
known to two or more nonleading orders of perturbati
theory.

Consider a perturbative series of the form

S@x~m!,L~m!#5 (
n50

`

xnSn@xL#5 (
n50

`

(
k50

n

Tn,kx
nLk

~1.1!

occurring within a physical decay rateG or measurable cros
sections, wherex(m) is the running coupling constant@for
QCD x(m)[as(m)/p# and whereL(m) is a logarithm regu-
lated by the renormalization mass scalem that may or may
not also depend on a running mass:
0556-2821/2002/66~1!/014010~25!/$20.00 66 0140
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L~m![ logS m2

m2D . ~1.2!

If m is a running mass, then

m2
dm

dm2
5mgm@x~m!#52m@g0x1g1x21g2x31•••#.

~1.3!

If m is a pole mass~or for scattering processes, a kinema
variable!, thengm as defined by Eq.~1.3! is zero.

For example, in the modified minimal-subtraction sche
(MS) expression for the semileptonicb→ul2n̄ l rate ob-
tained from five active flavors,m is the running massmb(m),

G5
GF

2 uVubu2

192p3
@mb~m!#5S@x~m!,L~m!# ~1.4!

and the successive-order series coefficients withinS@x,L#, as
defined by Eq.~1.1!, are@1#

T0,051, T1,054.25360, T1,155, T2,0526.7848,

T2,1536.9902, T2,2517.2917. ~1.5!

The five active-flavor pole-mass expression for the same
is obtained by replacingmb(m) with the renormalization-
scale independent pole massmb

pole in Eqs.~1.4! and~1.2!, as
well as a concomitant alteration of the following series c
efficients@1#:
©2002 The American Physical Society10-1
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T1,0522.41307, T1,150, T2,05221.2955,
~1.6!

T2,1524.62505, T2,250.

Suppose for a given scattering or decay process that
seriesS@x,L# is known to some order of perturbation theor

SNL5T0,01~T1,01T1,1L !x ~1.7!

SNNL5SNL1~T2,01T2,1L1T2,2L
2!x2 ~1.8!

SN3L5SNNL1~T3,01T3,1L1T3,2L
21T3,3L

3!x3

~1.9!

SN4L5SN3L1~T4,01T4,1L1T4,2L
21T4,3L

31T4,4L
4!x4.

~1.10!

These next-to-leading~NL! and higher-order expressions e
hibit scale dependence as the magnitude ofL increases.
However, higher order polynomial coefficients ofL can be
determined via an appropriate RGE. For example, inb

→ul2n̄ l the application of the RGE to the known@1# two-
loop ~NNL! MS expression for the rate is sufficient to dete
mine the three-loop coefficientsT3,3, T3,2, and T3,1: for
nf55, T3,3550.914, T3,25178.76, andT3,15249.59 @2#.
This procedure is taken a step further in Ref.@3#, in which
the four loop coefficientsT4,4, T4,3, andT4,2 are determined
via the RGE for this same process. Estimates forT3,0 are also
seen to determineT4,1, yielding anSN4L expression charac
terized by only two unknown coefficients (T3,0 and T4,0)
whose parameter space can be limited by the constrain@3#
that successive orders of perturbation theory decreas
magnitude:

uSN4L2SN3Lu&uSN3L2SNNLu&uSNNL2SNLu. ~1.11!

In the present work, we wish to show howall RG-
accessible logarithms may be summed ifS is known to a
given order. Specifically, we shall obtain explicit all-orde
summations for the following four series, as defined by
intermediate expression in Eq.~1.1!:

S0@x~m!L~m!#[T0,01T1,1xL1T2,2x
2L21T3,3x

3L31•••

5 (
n50

`

Tn,nxnLn ~1.12!

S1@x~m!L~m!#[T1,01T2,1xL1T3,2x
2L21•••

5 (
n51

`

Tn,n21~xL!n21 ~1.13!

S2@x~m!L~m!#[T2,01T3,1xL1T4,2x
2L21•••

5 (
n52

`

Tn,n22~xL!n22 ~1.14!
01401
he
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e

S3@x~m!L~m!#[T3,01T4,1xL1T5,2x
2L21•••

5 (
n53

`

Tn,n23~xL!n23. ~1.15!

The appropriate RGE@m2(d/dm2)(G or s)50# is seen to
determine all series coefficients ofSn in terms of its leading
coefficientTn,0 , thereby facilitating the construction ofRG-
summed(RGS) perturbative expressions to any given ord
of perturbation theory:

SRGS
NL 5S0@xL#1xS1@xL# ~1.16!

SRGS
NNL5S0@xL#1xS1@xL#1x2S2@xL# ~1.17!

SRGS
N3L 5S0@xL#1xS1@xL#1x2S2@xL#1x3S3@xL#.

~1.18!

These RGS expressions are seen to exhibit reduced sens
ity to the renormalization scalem even when the logarithms
L are quite large. Compared with the truncated perturba
series, these resummed expressions more effectively im
ment the underlying idea behind the RGE, namely that
exact~all-orders! expression for any physical quantity is ne
essarily independent of the scale-parameterm.

Although RGE determinations of higher-order terms ha
been known for some time to be of value in extracting div
gent parts of bare parameters@4#, the principle of incorporat-
ing all higher-order RG-accessible terms available to a giv
Feynman-diagram order of perturbation theory was, to
best of our knowledge, first articulated by Maxwell@5# as a
method for eliminating unphysical renormalization-scale d
pendence. The all-orders summation of leading logarith
has been subsequently applied by Maxwell and Mirjalili@6#
to moments of QCD leptoproduction structure functions a
to NNL-order correlation functions. Such a summation
leading-logarithm contributions to all orders has also be
explicitly performed by McKeon to extract one-loop R
functions from the effective actions off4-field theory in four
dimensions andf6-field theories in three dimensions@7#. In
Sec. II of the present work, we extend McKeon’s summat
procedure to derive closed-form expressions for all-ord
summations of leading~1.12!, NL~1.13!, NNL~1.14!, and
N3L logarithms~1.15! by using the RGE appropriate to th
perturbative series~1.1! within the QCD expression for the
inclusive semileptonicB-decay rate. Such summations e
able one to construct RGS perturbative expressions inclusiv
of up to three nonleading logarithmic contributions to
orders of the perturbative series~1.1!.

In Sec. III, these results are applied to theb→ul2n̄ l rate
computed to NNL order by van Ritbergen@1#, later extended
via Pade´-approximant methods to a subsequentN3L predic-
tion @2#. The renormalization-scale dependence of the
summed perturbative rate truncated to a given order is sh
to be much greater than that of the RGS rates obtained from
the same perturbative expression.

In Sec. IV, RGS expressions are obtained for the deca
b→ul2n̄ l and b→cl2n̄ l in the ‘‘pole mass’’ scheme in
0-2
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which only the couplantas(m)/p exhibits renormalization-
scale dependence. This scheme, already known to have
ficulties for the b→u case @1#, exhibits a rate which in-
creases with the renormalization scalem, making the
identification of a ‘‘correct’’ or optimal value ofm problem-
atical. However, RG summation is shown effectively to
move suchm dependence, leading to reliable order-by-ord
pole-mass-scheme predictions for theb→u semileptonic rate
consistent with theb→u rate obtained from anMS scheme
inclusive of a runningb-quark mass. RGS expressions are
also obtained for theb→c semileptonic rate based upon i
~approximately! known NNL series @8# and its Pade´-
estimatedN3L series in the pole-mass scheme@9#.

The RGE appropriate for the perturbative series for se
leptonicB decays in the pole mass scheme is also the ap
priate RGE for the fermionic vector-current correlation fun
tion utilized to obtain QCD corrections to the cross-sect
ratio s(e1e2→hadrons)/s(e1e2→m1m2). In Sec. V we
obtain RG-summation expressions for the QCD series
bedded within the vector-current correlation function that
clude all higher-order logarithmic contributions that are a
cessible from the three fully known nonleading orders
perturbative corrections in theMS scheme. We are thus ab
to compare directly the renormalization-scale dependenc
the unsummed seriesSNL ~1.7!, SNNL ~1.8!, andSN3L ~1.9! to
their corresponding RGS expressionsSRGS

NL ~1.16!, SRGS
NNL

~1.17!, andSRGS
N3L ~1.18!. We find that the latter expression

provide a set of virtually scale-independent order-by-or
perturbative predictions for the vector correlator.

In Sec. VI, we show how the use of process-appropr
RGE’s can be used to obtain RGS perturbative expression
for a number of other processes. We obtain full RG summ
tions for:

~1! the momentum-space series for perturbative contri
tions to the QCD static-potential function,

~2! the gluonic scalar-current correlation function chara
terising scalar gluonium states in QCD sum rules,

~3! the ~standard-model-! Higgs-mediated cross sectio
WL

1WL
2→ZLZL at high energies, which is characterized

the two physical scale parameterss andMH ,
~4! the decay of a standard-model Higgs boson into t

gluons@a process also characterized by two physical~pole-
mass! scales (MH andMt! in addition to the renormalization
scalem#, and

~5! the fermionic scalar-current correlation function th
characterises both Higgs→bb̄ decays and scalar-meso
channel QCD sum rules.

We also discuss how RG summation of the two sca
current correlators considered in Sec. VI removes much
the unphysicalm dependence of the unsummed series at
s that would otherwise percolate through QCD sum-rule
tegrals sensitive to the low-s region.

In Sec. VII we summarize our paper. We discuss not o
the reduction ofm dependence via RG summation, but al
the comparison of RGS results with those of unsummed s
ries when minimal sensitivity or fastest apparent conv
gence criteria are used to extract an optimal value for
renormalization scale.
01401
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Finally, an alternative all-orders summation procedure
that of Sec. II is presented in the Appendix.

II. RG SUMMATION OF LOGARITHMS
FOR SEMILEPTONIC B DECAYS

For semileptonicb decays, them-sensitive portion of the
rate ~1.4! must, as a physically measurable quantity, exh
renormalization scale invariance:

m2
d

dm2
$@mb~m!#5S@x~m!,L~m!#%50. ~2.1!

This constraint is easily seen to lead to the RGE

@122gm~x!#
]S

]L
1b~x!

]S

]x
15gmS50, ~2.2!

where

b~x![m2
d

dm2
x~m!52~b0x21b1x31b2x41••• !,

~2.3!

@x(m)[as(m)/p# and where the anomalous mass dime
sion is the series defined by Eq.~1.3!. Substitution of the
series expansion~1.1! into the RGE yields the following se
ries equation:

05~112g0x12g1x212g2x31••• ! (
n51

`

(
k51

n

Tn,kkxnLk21

2~b0x21b1x31b2x41••• ! (
n51

`

(
k50

n

Tn,knxn21Lk

25~g0x1g1x21g2x31••• ! (
n50

`

(
k50

n

Tn,kx
nLk. ~2.4!

A. Evaluation of S0

To evaluateS0@xL#, as defined by Eq.~1.12!, we use Eq.
~2.4! to extract the aggregate coefficient ofxnLn21 and to
obtain the recursion formula (n>1)

nTn,n2@b0~n21!15g0#Tn21, n2150. ~2.5!

We multiply Eq.~2.5! by un21 and sum fromn51 to ` to
obtain the differential equation,

~12b0u!
dS0@u#

du
25g0S0@u#50, ~2.6!

whereS0@u# is given by Eq.~1.12! with xL replaced byu.
The solution of Eq.~2.6! for the initial condition S0@0#
5T0,0 is

S0@u#5T0,0~12b0u!25g0 /b0. ~2.7!
0-3
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For the special case of pole-mass renormalization sche
@gm@x#50#, S05T0,051, corresponding to the complete a
sence ofxnLn terms from the perturbative series~1.1! when
n>1.

B. Evaluation of S1

To evaluateS1@u#, as defined by Eq.~1.13! with u
5x(m)L(m) we first extract the aggregate coefficient
xnLn22 from the RGE~2.4! for n>2:

05~n21!Tn,n2112g0~n21!Tn21,n21

2b0~n21!Tn21,n222b1~n22!Tn22,n22

25g0Tn21,n2225g1Tn22,n22 . ~2.8!

If one multiplies Eq.~2.8! by un22 and then sums fromn
52 to infinity, one obtains the differential equation

~12b0u!
dS1

du
2~b015g0!S1@u#

55g1S0@u#1~b1u22g0!
dS0

du
. ~2.9!

We find it convenient to reexpress this equation in terms
the variable

w[12b0u ~2.10!

and the constant

A[
5g0

b0
. ~2.11!

We see from Eq.~2.7! that if T0,051, then

S05w2A ~2.12!

and find from Eq.~2.9! the following differential equation
for S1:

dS1

dw
1

11A

w
S15Bw2A211Cw2A22 ~2.13!

where

B[~Ab125g1!/b0 ~2.14!

C[A~2g02b1 /b0!. ~2.15!

For initial conditionS1uu505S1uw515T1,0, the solution to
Eq. ~2.13! is

S15Bw2A1@T1,02B1C log~w!#w2A21 ~2.16!

with w, A, B andC respectively given by Eqs.~2.10!, ~2.11!,
~2.14! and ~2.15!.
01401
es

f

C. Evaluation of S2

The aggregate coefficient ofxnLn23 in Eq. ~2.4! is (n
>3)

05~n22!Tn,n2212g0~n22!Tn21,n22

12g1~n22!Tn22,n222b0~n21!Tn21,n23

2b1~n22!Tn22,n232b2~n23!Tn23,n23

25g0Tn21,n2325g1Tn22,n2325g2Tn23,n23 .

~2.17!

If one multiplies Eq.~2.17! by un23 and sums fromn53 to
infinity, one finds from the definitions

S0@u#511 (
n51

`

Tn,nun, ~2.18!

S1@u#5 (
n51

`

Tn,n21un21, ~2.19!

S2@u#5 (
n52

`

Tn,n22un22 ~2.20!

@following from Eqs.~1.12!–~1.14!# that

dS2

du
2

~2b015g0!

12b0u
S2

5
~b1u22g0!

12b0u

dS1

du
1

~b2u22g1!

12b0u

dS0

du
1

~b115g1!

12b0u
S1

1
5g2

12b0u
S0 . ~2.21!

If we incorporate the change of variable~2.10! in conjunc-
tion with the solutions~2.12! and ~2.16! for S0 and S1, re-
spectively, we find that

dS2

dw
1

~21A!

w
S25Dw2A211Ew2A221Fw2A22log~w!

1Gw2A231Hw2A23log~w!, ~2.22!

where the constants$D,E,F,G,H% are given by

D5@b1AB1b2A2~b115g1!B25g2#/b0 ~2.23!

E5S 2g02
b1

b0
DAB1@~11A!~T1,02B!2C#

b1

b0

1S 2g12
b2

b0
DA1~B2T1,0!~b115g1!/b0 ~2.24!

F5~Ab125g1!C/b0 ~2.25!

G5@~11A!~T1,02B!2C#S 2g02
b1

b0
D ~2.26!
0-4
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H5S 2g02
b1

b0
D ~11A!C ~2.27!

with constants$A,B,C% given by Eqs.~2.11!, ~2.14! and
~2.15!. The solution to the differential equation~2.21! with
initial condition S2uu505S2uw515T2,0 is

S25
D

2
w2A1~E2F !w2A211Fw2A21log~w!

1S T2,02
D

2
2E1F Dw2A221Gw2A22log~w!

1
H

2
w2A22log2~w!. ~2.28!

D. Evaluation of S3

The aggregate coefficient ofxnLn24 in Eq. ~2.4! is

05~n23!@Tn,n2312g0Tn21,n2312g1Tn22,n23

12g2Tn23,n23#2b0~n21!Tn21,n242b1~n22!

3Tn22,n242b2~n23!Tn23,n242b3~n24!Tn24,n24

25g0Tn21,n2425g1Tn22,n2425g2Tn23,n24

25g3Tn24,n24 . ~2.29!

To evaluate the series

S3@u#5 (
n53

`

Tn,n23un23, ~2.30!

we multiply Eq.~2.29! by un24, sum fromn54 to infinity,
and, as before, make the Eq.~2.10! change of variablew
512b0u. We then find that

dS3

dw
1

31A

w
S3

5Kw2A211Mw2A221Nw2A22log~w!1Pw2A23

1Qw2A23log~w!1Rw2A23log2~w!1Uw2A24

1Vw2A24log~w!1Yw2A24log2~w!, ~2.31!

by utilizing the explicit solutions~2.12!, ~2.16! and~2.28! for
$S0 ,S1 ,S2%, as defined by Eqs.~2.18!, ~2.19! and~2.20!. The
new constants within Eq.~2.31! are

K5
A

b0
~b31Bb21Db1/2!2

1

b0
F5g31~5g21b2!B

1~5g112b1!
D

2 G ~2.32!
01401
M5F S 2g22
b3

b0
D1S 2g12

b2

b0
DB1S 2g02

b1

b0
DD

2 GA
1@~5g21b2!~B2T1,0!1~5g112b1!~F2E!#

1

b0

1@~T1,02B!~11A!2C#
b2

b0
1@E~11A!

2F~21A!#
b1

b0
~2.33!

N5$~Ab225g2!C1@~A21!b125g1#F%
1

b0
~2.34!

P5S 2g12
b2

b0
D @~11A!~T1,02B!2C#1S 2g02

b1

b0
D

3@~11A!E2~21A!F#2
~5g112b1!

b0

3S T2,02
D

2
2E1F D2

b1

b0
FG2~21A!

3S T2,02
D

2
2E1F D G ~2.35!

Q5F S 2g12
b2

b0
DC1S 2g02

b1

b0
DF G~11A!

2@~5g112b1!G1~H2~21A!G!b1#
1

b0
~2.36!

R5~b1A25g1!
H

2b0
~2.37!

U5S 2g02
b1

b0
D F ~21A!S T2,02

D

2
2E1F D2GG

~2.38!

V5S 2g02
b1

b0
D @~21A!G2H# ~2.39!

Y5S 2g02
b1

b0
D ~21A!

H

2
. ~2.40!

The constants$A,B,C,D,E,F,G,H% within Eq. ~2.31! are
respectively given by Eqs.$~2.11!, ~2.14!, ~2.15!, ~2.23!–
~2.27!%. The solution to Eq.~2.31!, subject to the initial con-
dition S3uw515T3,0, is
0-5
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S35
K

3
w2A1S M

2
2

N

4 Dw2A211
N

2
w2A21log~w!

1~P2Q12R!w2A221~Q22R!w2A22log~w!

1Rw2A22log2~w!1S 2
K

3
2

M

2
1

N

4
2P

1Q22R1T3,0Dw2A231Uw2A23log~w!

1
V

2
w2A23log2~w!1

Y

3
w2A23log3~w!, ~2.41!

wherew512b0u as in Eq.~2.10!.

III. SEMILEPTONIC b\ulÀn̄ l DECAY IN THE MS
SCHEME

In this section, we consider the semileptonic decayb

→ul2n̄ l in the MS scheme. The decay rate is given by E
~1.4! in terms of the series~1.1!. The coefficients in this
series are fully known to two loop order and are given by E
~1.5!. The logarithmsL(m) within the series are characte
ized by a runningb-quark mass, as given by Eqs.~1.2! and
~1.3!.

The coefficients~1.5! are listed for five active flavors
appropriate to analysis in an energy region contain
mb(mb). Consequently, the runningb-quark massmb(m) and
the running couplantx(m)5as(m)/p should be character
ized bynf55 values for the RG functionsgm@x# andb@x#:

g051, g15
253

72
, g257.41986, g3511.0343 ~3.1!

b05
23

12
, b15

29

12
, b25

9769

3456
, b3518.8522. ~3.2!

Given the computed values ofT1,0 andT2,0 @1#, it is straight-
forward to calculate the NL and NNL RG summations f
the seriesS, as defined in Eqs.~1.16! and ~1.17!. The con-
stants $A,B,C, . . . ,H% that characterize the summation
S0 ,S1 and S2 are obtained via Eqs.~3.1!, ~3.2! and ~1.5!
from their definitions in Sec. II:

A5
60

23
, B52

18655

3174
, C5

1020

529
, D526.4461,

E5258.8224, F52
3171350

279841
, G525.5973,

H5
1439220

279841
. ~3.3!

Equations~2.12!, ~2.16! and~2.28! then lead to the following
closed-form expressions for the summationsS0 , S1 andS2:

S05F12
23

12
x~m!L~m!G260/23

~3.4!
01401
.

.

g

S152
18655

3174 F12
23

12
x~m!L~m!G260/23

1H 10.13101
1020

529
logF12

23

12
x~m!L~m!G J

3F12
23

12
x~m!L~m!G283/23

~3.5!

S2513.2231F12
23

12
x~m!L~m!G260/23

2H 47.48971
3171350

279841
logF12

23

12
x~m!L~m!G J

3F12
23

12
x~m!L~m!G283/23

1H 61.0515125.5973logF12
23

12
x~m!L~m!G

1
719610

279841
log2F12

23

12
x~m!L~m!G J

3F12
23

12
x~m!L~m!G2106/23

. ~3.6!

We first wish to compare them dependence of the 2-loo
order expression

GNNL

K 5@mb~m!#5@11„4.2536015L~m!…x~m!1„26.7848

136.9902L~m!117.2917L2~m!…x2~m!# ~3.7!

for the reduced rate (K[GF
2 uVubu2/192p3) to that of the

corresponding RG-summed expression

GRGS
NNL

K 5@mb~m!#5@S01S1x~m!1S2x2~m!# ~3.8!

with S0 , S1 andS2 given by Eqs.~3.4!, ~3.5! and ~3.6!. To
make this comparison, we evolve the running coupling a
mass from initial valuesx(4.17 GeV)50.0715492 and
mb(4.17 GeV)54.17 GeV @2#, where the former value
arises fromnf55 evolution of the running coupling from a
assumed anchoring valuex(MZ)50.118000/p @10#, and
where the latter value is thenf55 central value in Ref.@11#
for mb(mb). Thusx(m), mb(m), andL(m) are fully deter-
mined via Eq.~1.2! and the RG equations~1.3! and ~2.3!,
with gm- andb-function coefficients given by Eqs.~3.1! and
~3.2!.
0-6
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In Fig. 1, we use thenf55 evolution ofx(m) andmb(m),
as described above, to compareGNNL ~3.7! to GRGS

NNL ~3.8!. It
is clear from the figure thatGRGS

NNL is almost perfectly flat. By
contrast, the naive rateGNNL is strikingly dependent on the
renormalization scalem, and does not exhibit any local ex
tremum point of minimal sensitivity. Thus RG summation
leading, next-to-leading and next-to-next-to-leading log
rithms is seen to remove the substantial theoretical un
tainty associated with the choice ofm from the~fully known!

two-loop orderb→ul2n̄ l rate.
It is useful to examine how the reducedb→ul2n̄ l rate

develops in successive orders of perturbation theory. For
ample, the one-loop rates

GNL

K 5@mb~m!#5@11„4.2536015L~m!…x~m!# ~3.9!

GRGS
NL

K 5@mb~m!#5@S01S1x~m!# ~3.10!

can be compared to the corresponding higher precision
sults of Eqs.~3.7! and~3.8!. Three-loop order (N3L) reduced
rates can be estimated through incorporation of
asymptotic Pade´-approximant prediction of the three-loo
coefficientT3,05206@2#. The three-loop order expression fo
the reduced rate1

1Only the non-logarithmic three-loop coefficient 206 is estimat
the remaining three logarithmic coefficients in Eq.~3.11! are ob-
tained via RG methods in Ref.@2#.

FIG. 1. Comparison of the next-to-next-to-leading-~NNL-! or-
der unsummed~dotted line! and RG-summed~solid line! decay

ratesG/K for b→ul2n̄ l in the fully MS scheme with five active
flavors (nf55). The quantityK[GF

2 uVubu2/192p3.
01401
-
r-

x-

e-

n

GN3L

K 5@mb~m!#5$11„4.2536015L~m!…x~m!

1„26.7848136.9902L~m!117.2917L2~m!…x2~m!

1„2061249.592L~m!1178.755L2~m!

150.9144L3~m!…x3~m!% ~3.11!

can then be compared to its RG-summation version

GRGS
N3L

K 5@mb~m!#5@S01S1x~m!1S2x2~m!1S3x3~m!#

~3.12!

with S0 , S1 and S2 respectively given by Eqs.~3.4!, ~3.5!
and ~3.6!. The RG-summationS3 is obtained via Eq.~2.41!.
Given the estimateT3,05206, the known values~3.3! of
$A,B, . . . ,H% and values of$K,M ,N,P, . . . ,Y% defined via
Eqs.~2.32!–~2.40!,

K5214.3686, M5146.729, N550.9925,

P52317.085, Q52148.520, ~3.13!

R5215.1138, U5189.048, V583.3941,

Y58.75961,

we find that

;

FIG. 2. Comparison of unsummedb→ul2n̄ l decay rates in the
fully MS scheme (nf55) truncated after NL order~solid line!,
NNL order ~dotted line!, and N3L order ~dashed line!.
0-7
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S352
4.7895

S 12
23

12
xLD 60/231

F60.617125.496 logS 12
23

12
xLD G

S 12
23

12
xLD 83/23

1

F2198.792118.29 logS 12
23

12
xLD215.114 log2S 12

23

12
xLD G

S 12
23

12
xLD 106/23

1

F348.961189.05 logS 12
23

12
xLD141.697 log2S 12

23

12
xLD12.9199 log3S 12

23

12
xLD G

S 12
23

12
xLD 129/23 . ~3.14!
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The bold-face number348.96 is the only coefficient in the
above expression dependent upon the asymptotic P´-
approximant estimate forT3,0. We have included this esti
mate in order to demonstrate RG summation incorporatin
three-loop diagrammatic contribution toT3,0; when such a
calculation is performed, the factor 348.96 in Eq.~3.14!
should then be replaced byT3,01142.96.

We consider them dependence of three non-leading o
ders of perturbation theory first for the case in which log
rithms arenot summed to all orders. Figure 2 displays
comparison of the ‘‘unsummed’’ one-, two- and three-lo

order reduced ratesGNL/K, GNNL/K and GN3L/K, respec-
tively given by Eqs.~3.9!, ~3.7! and ~3.11!. The m depen-
dence of all three orders is evident from the figure. Suchm
dependence can be used to extract NL andN3L values forG
via the minimal-sensitivity criterion of Ref.@12#. Curiously,

GNL and GN3L are both seen to have comparable minim
sensitivity extrema (1801 GeV5 and 2085 GeV5) at values
of m much less thanmb(mb). GNNL exhibits some flattening
between these extrema ('1900 GeV5) over the same rang
of m, but with a continued negative slope. Indeed, one
employ fastest apparent convergence@13# to choosem for
GNNL such thatuGNNL(m)2GNL(m)u is a minimum, and to

choosem for GN3L such thatuGN3L(m)2GNNL(m)u50. As
evident from Fig. 2, the former criterion leads to a value
m (2.85 GeV) quite close to that value at whichGNL(m) has
an extremum (2.7 GeV), corresponding toGNNL/K
51888 GeV5. The latter criterion indicates thatGN3L should

be evaluated at the point whereGNNL andGN3L cross, a point
noted previously@2# to be virtually indistinguishable from

the minimal-sensitivity extremum forGN3L(m).
The point we wish to make here, however, is that all su

values extracted form differ substantially frommb(mb), in
which case progressively large powers of large logarith
L(m)[ log@m2/mb

2(m)# enter the successive expressions~3.9!,
~3.7! and~3.11! for the NL, NNL andN3L rateG. Moreover,
in the absence of minimal-sensitivity or fastest-appare
01401
e

a

-

-

n

r

h

s

t-

convergence criteria for extractingm, even theN3L rate ex-
hibits a 68% spread of values over the rangemb /2&m
&2mb .

RG summation eliminates renormalization scale dep
dence as a cause of theoretical uncertainty. In Fig. 3,
compare RG-summed versions of the reduced rateGRGS

NL

~3.10!, GRGS
NNL ~3.8! andGRGS

N3L ~3.12!. These three rates exhib
virtually no m dependence whatsoever; rather, RG summ
tion is seen to lead to clear order-by-order predictions of
rate that are insensitive tom. We see from Fig. 3 tha
GRGS

NL /K5164662 GeV5, GRGS
NNL/K5181666 GeV5, and

GRGS
N3L /K5191264 GeV5 over the~more or less! physical

range ofm considered in Fig. 3. Theoretical uncertainty
the calculated rate is now almost entirely attributable to tr
cation of the perturbation series to known contributions,
error which is seen to diminish as the order of known co
tributions increases.

It is important to realize, however, that these sca
independent predictions necessarily coincide with theL(m)
50 predictions of the unsummed rates~3.9!, ~3.7! and

~3.11!: GNkL and GRGS
NkL equilibrate whenw51, i.e., when

L(m)50. Thus one can argue that the summation we h
performed here of all RG-accessible logarithms supports
prescription of identifying as ‘‘physical’’ those perturbativ
results in whichm-sensitive logarithms are set equal to ze
We must nevertheless recognize the possibility that
m-sensitivity of the unsummed rates, when exploited
minimal-sensitivity or fastest-apparent-convergence crite
is capable of leading to more accurate order-by-order e
mates of the true rate than corresponding scale-indepen
RGS rates. In comparing Figs. 2 and 3, it is noteworthy th
the 1801 GeV5 extremum ofGNL/K, the unsummedone-
loop rate, is quite close toGRGS

NNL/K, the RG-summedtwo-
loop rate. Similarly, the 1888 GeV5 fastest-apparent
convergence value ofGNNL/K, the unsummed two-loop rate

is close toGRGS
N3L . This train of argument would suggest th

the O(2085 GeV5) extremum ~or fastest-apparent
convergence value! of the unsummed rateGN3L/K may be a
0-8
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more accurate estimate of thetrue rate thanGRGS
N3L . Such an

argument, however, requires substantiation via explicit thr
and four-loop order calculations, computations which are
yet available.

IV. APPLICATION TO SEMILEPTONIC B DECAYS
IN THE POLE-MASS SCHEME

In the pole-mass renormalization scheme, the massm ap-
pearing in logarithms~1.2! is independent of the renorma
ization mass scalem. Thus the coefficientsgk , as defined in
Eq. ~1.3! are all zero. The constants$A,B,C,D,E,F,H,
K,M ,N,Q,R,Y%, as defined in Sec. II, are all zero as we
The nonzero constants are

G52T1,0

b1

b0
~4.1!

P52T1,0S b22
b1

2

b0
D 1

b0
~4.2!

U5F2T1,0

b1

b0
22T2,0G b1

b0
~4.3!

V52T1,0

b1
2

b0
2

~4.4!

and the corresponding RGE summations appearing wi

SRGS
NL ,SRGS

NNL , andSRGS
N3L @Eqs.~1.16!, ~1.17! and ~1.18!# are

S051 ~4.5!

S1@xL#5T1,0/~12b0xL! ~4.6!

FIG. 3. Comparison of RG-summation expressions for the fu

MS b→ul2n̄ l decay rate (nf55) obtained from the NL~solid line!,
NNL ~dotted line!, and N3L ~dashed line! perturbative series.
01401
e-
t

in

S2@xL#5T2,0~12b0xL!221G~12b0xL!22

3 log~12b0xL! ~4.7!

S3@xL#5P~12b0xL!221F ~T3,02P!1U log~12b0xL!

1
V

2
log2~12b0xL!G~12b0xL!23. ~4.8!

In this section, we apply the above results toward the de
b→ul2n̄ l andb→cl2n̄ l . The former rate is known fully to
two-loop order in the pole mass scheme, though the resu
argued to be of limited phenomenological utility@1#. The
latter rate has been estimated within fairly narrow errors
two-loop order as well@8#, and has been extended to a thre
loop order estimated rate via asymptotic Pade´-approximate
methods@9#.

A. Pole scheme semileptonicb\ulÀn̄ l decay

The two-loop orderb→ul2n̄ l rate in the pole mass
scheme is given by substitution of known values of the
efficients $T1,0,T1,1,T2,0,T2,1,T2,2%, as listed in Eq.~1.6!,
into the series~1.1! within the rate~1.4!, with mb(m) re-
placed bymb

pole as noted earlier. Although the reliability o
the pole-mass scheme for this process is suspect becau
the proximity of a renormalon pole@1#, we have plotted this
series for a range ofx(m)5as(m)/p and a choice formb

pole

that will facilitate comparison with phenomenology alrea
obtained from the correspondingMS process. We choos
nf55 active flavors in order to explore them dependence of
the NNL rate in a region in whichm is considerably larger
thanmb

pole . Corresponding results for four active flavors a
easily obtainable as well. The evolution ofx(m)5as(m)/p
for five active flavors ultimately devolves fromas(Mz)
50.118 and leads to the samenf55 benchmark value
x(4.17 GeV)50.071549 as noted in Sec. III. Similarly w
employ a value formb

pole54.7659 consistent to two-loop or
der with our use of the running mass valuemb(mb)
54.17 GeV, as obtained from thenf55 relation between
mb

pole andmb(mb) of Refs.@11,14#:

mb
pole54.17 GeVF11

4

3
x~4.17!19.27793x2~4.17!G .

~4.9!

We then see from Fig. 4 that them-sensitive portion of the
known two-loop rate in the pole mass scheme,

SNNL~m!5122.41307x~m!1F221.2955

24.62505 logH S m

mb
poleD 2J Gx2~m!, ~4.10!

y

0-9
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is indeed highly scale dependent. Specifically, we see
SNNL(m) increases monotonically withm without exhibiting
an extremum identifiable with a ‘‘physical’’ point of minima
sensitivity @12#.

In Fig. 4 we have also plotted the RG-summed version
the 2-loop rate

SRGS
NNL511x~m!S1F x~m!logH S m

mb
poleD 2J G

1x2~m!S2F x~m!logH S m

mb
poleD 2J G ~4.11!

with x(m) andmb
pole as obtained above. The summationsS1

and S2 are obtained via Eqs.~4.6! and ~4.7! using thenf
55 pole-mass scheme valuesT1,0522.41307, T2,05
221.2955@1# and nf55 QCD b-function coefficientsb0
523/12, b1529/12, andb259769/3456. It is evident from
the figure that renormalization scale dependence is cons
ably reduced by the summation of all orders of leading a
next-to-leading logarithms in Eq.~3.11!. The increase of
SRGS

NNL with increasingm is minimal compared to that o
SNNL(m), the unsummed expression.

In Fig. 5, the comparison between (mb
pole)5SNNL and

(mb
pole)5SRGS

NNL is exhibited over the physically relevant re
gion mb

pole/2&m&2mb
pole . The crossing point between th

two curves necessarily occurs whenL(m)50, corresponding
to m5mb

pole . SinceSRGS
NNL is insensitive tom, this crossover

supports the expectation discussed in the previous sec
that the ‘‘physical’’ NNL rate isSNNL with m chosen to make
all logarithms vanish. We would prefer, however, to arg
that SRGS

NNL is an almost scale-independent formulation of t

FIG. 4. Comparison of the large-m behavior of the NNL un-
summed~dotted line! and RG-summed~solid line! decay rates for

b→ul2n̄ l within the RG-invariant pole-mass scheme with five a
tive flavors.
01401
at

f

er-
d
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e

NNL rate, thereby obviating any need to define a physica
appropriate value ofm to compute a meaningful two-loop
order result. We also note that the asymptotic large-m result
we obtain for the ‘‘reduced rate’’

GRGS
NNL

K >~mb
pole!5SRGS

NNL →
m5MW

1829 GeV5 ~4.12!

is surprising close to the 1817 GeV5 MS two-loop order
~‘‘unsummed’’ NNL! estimate obtained atm5mb(m)
54.17 GeV, indicative of the utility of the pole-mas
scheme when leading and next-to-leading logarithms
summed to all orders. In the absence of such summation
pole mass expressionSNNL(m) spans values for the reduce
rate between 1420 GeV5 and 2060 GeV5 as m increases
from 1 GeV toMW , reflecting the problems with the pole
mass scheme already noted in Ref.@1#. By contrast, the RG-
summed reduced rate varies only from 1774 GeV5 to
1829 GeV5 over the same region ofm.

B. Pole scheme semileptonicb\clÀn̄ l decay

The semileptonic decay ofB into a charmed hadronic
state is given by the following decay rate in the pole-ma
renormalization scheme@8#:

G~b→cl2n̄ l !5
GF

2 uVcbu2

192p3
FS mc

2

mb
2D mb

5S@x~m!,L~m!#.

~4.13!

In ~4.13!, mb and mc are m-invariant pole masses,L(m)
[ log(m2/mbmc), x(m)5as(m)/p, andF(r ) is the form fac-
tor

-

FIG. 5. Comparison of the NNL unsummed~dotted line! and

RG-summed~solid line! decay rates forb→ul2n̄ l (nf55) within
the pole-mass scheme over the rangemb

pole/2&m&2mb
pole .
0-10
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F~r !5128r 212r 2log~r !18r 32r 4. ~4.14!

All sensitivity to the renormalization scalem resides in the
seriesS@x,L#, which may be expressed in the usual form

S@x,L#511~T1,01T1,1L !x1~T2,01T2,1L1T2,2L
2!x2

1~T3,01T3,1L1T3,2L
21T3,3L

3!x31•••.

~4.15!

For four active flavors, the perturbatively calculated coe
cients of~4.15! areT1,0521.67 and the~partially estimated!
coefficient T2,0528.9(60.3) @8,15#. Except for T3,0, the
remaining coefficients in Eq.~4.15! are accessible from th
RG equation

05F ]

]L
1b~x!

]

]xGS@x,L#. ~4.16!

These coefficients are Tn,n50 @n>1#,T2,15T1,0b0
523.479, T3,152T2,0b01T1,0b15242.4(61.3), andT3,2

5T1,0b0
2527.25@9#. An asymptotic Pade´-approximant esti-

mate ofT3,05250.1(62.6) has also been obtained in Re
@9#. Consequently, one may list three orders for t
m-dependent portion of theb→cl2n̄ l rate:

SNL@x~m!,L~m!#5121.67x~m!, ~4.17!

SNNL@x~m!,L~m!#

5121.67x~m!1@28.923.479L~m!#x2~m!, ~4.18!

SN3L@x~m!,L~m!#

5SNNL@x~m!,L~m!#1@250.1242.4L~m!

27.25L2~m!#x3~m!, ~4.19!

with the caveat that NNL and N3L expressions have increas
ing theoretical uncertainty arising from the~small! estimated
error inT2,0 and concomitant error in the estimation ofT3,0.

As before, we will compare them dependence of Eqs
~4.17!, ~4.18! and ~4.19! to that of the corresponding
RG-summed expressions

SRGS
NL 511x~m!S1@x~m!L~m!# ~4.20!

SRGS
NNL511x~m!S1@x~m!L~m!#1x2~m!S2@x~m!L~m!#

~4.21!

SRGS
N3L 5SRGS

NNL1x3~m!S3@x~m!L~m!#, ~4.22!

in order to illustrate how RG summation of higher log
rithms affects the order-by-order renormalization-scale
pendence of a perturbative series. Figure 6 displays a plo
the m-sensitive portions of the decay rate considered to
~4.17!, NNL ~4.18! and N3L ~4.19! orders. As in@8,9#, mc is
assumed to bemb /3. We have chosen the pole massmb to be
01401
-

-
of
L

4.9 GeV consistent with phenomenological estimates@16#.2

The couplantx(m)5as(m)/p is chosen to devolve from
as(mt)50.33 @17# via four active flavors, whereb0
525/12, b1577/24, b2521943/3456 andb3531.38745.
These choices permit careful attention to the 1.5 GeV&m
&mb low-scale region anticipated to correspond to t
physical rate, although we have chosen to extend the ra
of m to ;2mb in Fig. 6.

Figure 6 demonstrates that the rate expressions appe
progressively flatten with the inclusion of higher order co
rections, but that the residual scale dependence of each o
remains comparable to the difference between successiv
ders. Figure 6 also displays rates proportional to the co
sponding RG-summed expressions~4.20!, ~4.21! and ~4.22!
based upon the same phenomenological inputs. The exp
sions forS1 , S2 and S3 are given by Eqs.~4.6!, ~4.7! and
~4.8!. It is evident from Fig. 6 that the scale dependence
RG-summed expressions to a given order is dramatically
duced from the scale dependence of the corresponding
summed expressions.

Thus SRGS
NL , SRGS

NNL and SRGS
N3L are approximately scale

independent formulations of the one-, two- and three-lo
perturbative series within theb→cl2n̄ l rate; once again the
summation of progressively less-than-leading logarithms
the perturbative series is seen effectively to remove
choice of renormalization scalem as a source of theoretica
uncertainty to any given order of perturbation theory.

2Such an estimate is slightly larger than that based upon Eq.~4.9!,
as Eq.~4.9! is truncated after two-loop order.

FIG. 6. Comparison of unsummed and RG-summedb→cl2n̄ l

decay ratesG/K (nf54) in the pole-mass scheme, whereK
[GF

2 uVcbu2/192p3. The curves representing the unsummed ra
are labeled by NL, NNL and N3L indicating the order at which they
are truncated. Similiarly, the RG-summed curves are labeled
SNL, SN2L and SN3L.
0-11



dl

ric

c-
,

t

ar

th

the
n
the

-

r

M. R. AHMADY et al. PHYSICAL REVIEW D 66, 014010 ~2002!
V. THE VECTOR-CURRENT CORRELATION FUNCTION
AND R„s…

The imaginary part of theMS vector-current correlation
function for massless quarks can be extracted from the A
function @18#. This procedure is explicitly given in@19# and
leads to an expression in the following form:

1

p
ImPv~s!52

4

3 (
q

Qq
2S@x~m!, log~m2/s!#, ~5.1!

where x(m)5as(m)/p and s is the kinematic variablep2

@i.e., the square of the invariant mass ine1e2→ hadrons#.
The seriesS@x,L# appearing in Eq.~5.1! is fully known to
N3L order:

SN3L@x,L#511x1~T2,01T2,1L !x21~T3,01T3,1L

1T3,2L
2!x3. ~5.2!

The full series is, of course, identifiable with the gene
series~1.1! @or Eq. ~4.15!# providedT0,05T1,051 andTn,n
50@n>1#. Values for the remaining vector correlation fun
tion constants in Eq.~5.2! are tabulated in Table I for three
four and five flavors. The coefficientsT2,0 and T3,0 are ob-
tained from the results of Ref.@18#, and are well known from
the standard expression for perturbative contributions
R(s). The remaining coefficients

T2,15b0 , T3,152b0T2,01b1 , T3,25b0
2 ~5.3!

are easily determined from the renormalization scale inv
ance of the vector-current correlation function~5.1!,

m2
d

dm2
S@x~m!, log~m2/s!#5F ]

]L
1b~x!

]

]xGS@x,L#50.

~5.4!

This equation, of course, can be interpreted to reflect
imperviousness of the physical quantity

R~s![
s~e1e2→hadrons!

s~e1e2→m1m2!
52

3

4p
ImPv~s!, ~5.5!
01401
er

o
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e

to changes in the choice of QCD renormalization-scalem
@20#.

Equation~5.4! is just the RGE~2.2! with gm(x) set equal
to zero—precisely the same RG equation as applicable to
pole-mass scheme semileptonicb decay rates considered i
the previous section. Consequently, the RG summation of
seriesS@x,L# within Eq. ~5.1! involves thesameseries sum-
mationsS0 ,S1 ,S2 andS3 as those given by Eqs.~4.5!, ~4.6!,
~4.7! and ~4.8!. The ~nonzero! constantsG,P,U and V ap-
pearing in these equations are found in terms ofb-function
coefficientsb0 ,b1 ,b2 and series coefficientsT1,0(51), T2,0
and T3,0 via Eqs.~4.1!–~4.4!. These constants are all tabu
lated in Table I, and are seen to fully determine theO(N3L)
RG-summed version of the seriesS@x,L#,

SRGS
N3L @x,L#511xS1@xL#1x2S2@xL#1x3S3@xL#,

~5.6!

wherex5x(m) andL5 log(m2/s). For example, ifnf55, we
see from Eqs.~4.6!, ~4.7! and~4.8! and the Table I entries fo
G,P,U,V,T2,0 andT3,0 that

TABLE I. Constants for determining theO(N3L) RG summa-
tion of theN3L-order vector-current correlation function.

nf53 nf54 nf55

b0 9/4 25/12 23/12
b1 4 77/24 29/12
b2 3863/384 21943/3456 9769/3456
T2,0 1.63982 1.52453 1.40924
T2,1 9/4 25/12 23/12
T3,0 210.2839 211.6856 212.8046
T3,1 11.3792 9.56054 7.81875
T3,2 81/16 625/144 529/144
G 216/9 277/50 229/23
P 2

3397
2592 2

121687
180000

17521
152352

U 28.99096 27.06715 25.14353
V 512/81 5929/1250 1682/529
S1@xL#5
1

S 12
23

12
xLD ~5.7!

S2@xL#5

1.4902421.26087 logS 12
23

12
xLD

S 12
23

12
xLD 2 ~5.8!

S3@xL#5
0.115003

S 12
23

12
xLD 2 1

F212.919625.14353 logS 12
23

12
xLD11.58979 log2S 12

23

12
xLD G

S 12
23

12
xLD 3 . ~5.9!
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In Figs. 7 and 8, we compare them dependence of the un
summed ~5.2! and summed ~5.6! expressions for
S@x(m), log(m2/s)#, with the choices5(15 GeV)2. The run-
ning coupling constantx(m) is assumed to evolve via th
nf55 ~four-loop-order! b-function from an initial value
x(Mz)50.11800/p.3 Although Fig. 7 does show a flattenin
of the unsummed expressions upon incorporation of suc
sively higher orders of perturbation theory@SNL,SNNL,SN3L#,
Fig. 8 demonstrates that the corresponding RG-summed
pressions are order-by-order much less dependent on
renormalization scalem. In particular, the fullN3L summed
expression~5.6! exhibits virtually no dependence onm, but

is seen to maintain a constant valueSRGS
N3L 51.05372

60.00004 over the entireAs/2<m<2As range of renormal-
ization scale considered. By contrast the unsummed exp
sion SN3L of ~5.2! is seen to increase~modestly! over this
same range from 1.0525 to 1.0540. The point marked FAC
Figure 7 is the intersection of the unsummed expressions
SNNL and SN3L. This point is the particular choice ofm at
which theO(x3) contribution to~5.2! vanishes, i.e., the poin
of fastest apparent convergence~FAC!. It is noteworthy that

3For purposes of comparing them dependence ofSN3L andSRGS
N3L ,

we are assuming~as in Secs. III and IV! there to be no uncertainty
in the value ofas(m).

FIG. 7. Comparison of the followingnf55 vector-current
correlation-function series whenAs515 GeV:SNL ~solid line!, the
MS perturbative seriesS@x(m), log(m2/s)# truncated after NL-order
contributions;SNNL ~dotted line!, the same series truncated aft

NNL-order contributions; andSN3L ~dashed line!, the same series
truncated after N3L-order contributions. At the intersection ofSNNL

with SN3L, the N3L-order contribution to the perturbative series
zero, corresponding to the point of fastest apparent converg
~FAC!.
01401
s-
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in
or

this FAC value forSN3L is quite close to the RG-summatio

value SRGS
N3L , a result anticipated by Maxwell@5#. In other

words, if one were to use the FAC criterion to reduce t
theoretical uncertainty arising fromm dependence in the
original expression~5.2! for SN3L(m) over the As/2<m
<2As range considered, the specific value one would obt

@SFAC
N3L 5SN3L(26 GeV)51.05402# corresponds very nearly

to the RG-summation value extracted from Eq.~5.6! @SRGS
N3L

51.0537260.00004#.
This behavior is not peculiar to the choice ofs in Figs. 7

and 8. In Figs. 9 and 10, we considerSNNL, SN3L andSRGS
N3L

for As530 GeV andAs545 GeV. The FAC point in each
figure occurs at the value ofm for which SNNL(m)
5SN3L(m), as discussed above. In both figures it is evid

thatSN3L has substantially more variation withm thanSRGS
N3L ,

which is virtually independent ofm. Nevertheless, both fig
ures also show that the FAC point ofSN3L is very close to the

SRGS
N3L -level value. ForAs530 GeV @Fig. 9# SFAC

N3L 5SN3L(m

552 GeV)51.04700 andSRGS
N3L 51.0468960.00002. For

As545 GeV @Fig. 10#, SFAC
N3L 5SN3L(m577 GeV)

51.04369, andSRGS
N3L 51.0436060.00001.

Similarly, the PMS points in all three figures, correspon
ing to maxima ofSN3L(m), are very near the FAC points an

also quite close to the SRGS
N3L level. In Fig. 7

ce

FIG. 8. Comparison of the following RG summations of th
perturbativeMS series within thenf55 vector-current correlation
function whenAs515 GeV: SRGS

NL ~solid line!, the summation
based upon the perturbative seriesS@x(m), log(m2/s)# truncated after
NL-order contributions;SRGS

NNL ~dotted line!, the summation based
upon the perturbative series truncated after NNL-order contri

tions; andSRGS
N3L ~dashed line!, the summation based upon the pe

turbative series truncated after N3L-order contributions.
0-13
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@As515 GeV#, SPMS
N3L 5SN3L(23 GeV)51.05403; in Fig. 9

@As530 GeV#, SPMS
N3L 5SN3L(46 GeV)51.04701; and in

Fig. 10 @As545 GeV#, SPMS
N3L 5SN3L(70 GeV)51.04370.

Of course, equality betweenSN3L(m) andSRGS
N3L is necessar-

ily exact whenL50, i.e., whenm2 is chosen equal tos. This
is indeed the prescription employed in the standard@10# pre-
scription relatingSN3L to R(s) @18#:

R~s!511x~As!1T2,0 x2~As!1T3,0 x3~As!, ~5.10!

whereT2,0 andT3,0 are given in Table I fornf5$3,4,5%. The
point here, however, is that this prescription is justifiednot

FIG. 9. Comparison ofSNNL ~dotted line!, SN3L ~dashed line!,

and SRGS
N3L ~solid line! expressions for the seriesS@x(m), log(m2/s)#

within the nf55 vector-current correlation function whenAs
530 GeV.
01401
by the m invariance ofSN3L@x(m), log(m2/s)#, the truncated

perturbative series, but by that ofSRGS
N3L , the perturbative se-

ries incorporating the closed-form summation of all R
accessible logarithms within higher-order terms. Moreov
the nearlym-independent resultSRGS

N3L appears to be quite
close to the result one would obtain from
SN3L@x(m), log(m2/s)# either by imposing FAC or PMS crite
ria to establish an optimal value ofm, as graphically evident
from Figs. 9 and 10. That optimal value form, however, is
not m5As, but a substantially larger value ofm for each
case considered.

These results are not peculiar to the choicenf55. Using
the Table I entries for the parametersT2,0,T3,0,G,P,U andV
appearing in Eqs.~4.7! and ~4.8!, we find fornf53 that

FIG. 10. Comparison ofSNNL ~dotted line!, SN3L ~dashed line!,

and SRGS
N3L ~solid line! expressions for the seriesS@x(m), log(m2/s)#

within the nf55 vector-current correlation function whenAs
545 GeV.
SRGS
N3L @x,L#511

x

S 12
9

4
xLD 1

x2F1.639822
16

9
logS 12

9

4
xLD G1x3S 2

3397

2592D
S 12

9

4
xLD 2

1

x3F28.9733328.99096 logS 12
9

4
xLD1

256

81
log2S 12

9

4
xLD G

S 12
9

4
xLD 3 ~5.11!

and fornf54 that
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SRGS
N3L @x,L#511

x

S 12
25

12
xLD 1

x2F1.524532
77

50
logS 12

25

12
xLD G1x3S 2

121687

180000D
S 12

25

12
xLD 2

1

x3F211.009627.06715 logS 12
25

12
xLD1

5929

2500
log2S 12

25

12
xLD G

S 12
25

12
xLD 3 . ~5.12!
e

t

n
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f
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In Figs. 11 and 12 we display the expression~5.12! for SRGS
N3L

together with~unsummednf54 expressions for! SN3L and
SNNL for As54 GeV andAs58 GeV. To generate thes
figures, we evolve x(m) using an initial condition
x(4.17 GeV)50.0716218@2# appropriate fornf54 and ob-
tained from the threshold matching conditions@21# to the
nf55 running couplantx(4.17 GeV)50.0715492 evolved
from x(MZ)50.118/p @10#. As in Figs. 9 and 10 we see tha

SPMS
N3L and SFAC

N3L are both close to the very nearly consta

SRGS
N3L level, although the PMS and FAC values form are

substantially larger thanAs in each case.
To conclude, the primary result of interest is that close

form summation of all RG-accessible logarithms to a
given order of perturbation theory leads to expressions~ e.g.
Fig. 8! that order-by-order are substantially less sca
dependent than the corresponding truncated series~Fig. 7!.

The scale independence ofSRGS
N3L supports the prescription o

FIG. 11. Comparison ofSNNL ~dotted line!, SN3L ~dashed line!,

and SRGS
N3L ~solid line! expressions for the seriesS@x(m), log(m2/s)#

within the nf54 vector-current correlation function whenAs
54 GeV.
01401
t

-

-

choosingm5As in the unsummed seriesSN3L@m2,log(m2/s)#,
since the summed and unsummed series coincide at
value ofm. However, the unsummed seriesSN3L still exhibits
noticeable scale dependence. The use of FAC and PMS
teria to find an optimal value form for SN3L leads to values
for this unsummed series which are quite close to its R
summation value.

VI. OTHER PERTURBATIVE APPLICATIONS

A. Momentum space QCD static potential

The momentum space expression for the perturbative
tion of the QCD static potential function

V~r !5E d3q

~2p!3
eiqW •rWS 2

16p2

3qW 2 D WFas~m!

p
, logS m2

qW 2 D G
~6.1!

FIG. 12. Comparison ofSNNL ~dotted line!, SN3L ~dashed line!,

and SRGS
N3L ~solid line! expressions for the seriesS@x(m), log(m2/s)#

within the nf54 vector-current correlation function whenAs
58 GeV.
0-15
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is given by the integrand series

W@x,L#5x1~T2,01T2,1L !x2

1~T3,01T3,1L1T3,2L
2!x31••• ~6.2!

wherex[as(m)/p, L5 log(m2/qW 2), and where the series co
efficients within Eq.~6.2! are @22#

T2,0531/1225nf /18, T2,15b0511/42nf /6,

T3,0528.546824.14714nf125nf
2/324, ~6.3!

T3,15247/122229nf /7215nf
2/54, T3,25b0

2 .
01401
The functionW@x,L# is shown in@23# to satisfy the same
RG equation~5.4! as the semileptonicb→u andb→c decay
rate in the pole mass scheme. Consequently, the closed
summation of all RG-accessible logs is given by Eqs.~4.6!–
~4.8!, with the constantsG,P,U and V as given by Eqs.
~4.1!–~4.4!. SinceT0,0, as defined by the generic series for
~1.1!, is zero for the series ~6.2!, the series S0

5(n50
` Tn,n(xL)n is trivially zero. Thus, the RG summatio

of W@x,L# is

WRGS5xS1@xL#1x2S2@xL#1x3S3@xL#. ~6.4!

Noting thatT1,051 in Eq.~6.2!, we find fornf5$3,4,5% that
WRGS
nf55

5
x

S 12
23

12
xLD 1

x2F43

36
2

29

23
logS 12

23

12
xLD G1x3F 17521

152352G
S 12

23

12
xLD 2

1

x3F9.625112
43819

9522
logS 12

23

12
xLD1

841

529
log2S 12

23

12
xLD G

S 12
23

12
xLD 3 ~6.5!

WRGS
nf54

5
x

S 12
25

12
xLD 1

x2F53

36
2

77

50
logS 12

25

12
xLD G2x3F121687

180000G
S 12

25

12
xLD 2

1

x3F13.86882
77693

11250
logS 12

25

12
xLD1

5929

2500
log2S 12

25

12
xLD G

S 12
25

12
xLD 3 ~6.6!

WRGS
nf53

5
x

S 12
9

4
xLD 1

x2F7

4
2

16

9
logS 12

9

4
xLD G2x3F3397

2592G
S 12

9

4
xLD 2

1

x3F18.11042
760

81
logS 12

9

4
xLD1

256

81
log2S 12

9

4
xLD G

S 12
9

4
xLD 3 . ~6.7!
ed
In Fig. 13 we plot both the truncated seriesWNNL@x,L#,
consisting of the terms explicitly appearing in Eq.~6.2!, as

well as the corresponding RG-summed series~6.5! for the

nf55 case withuqW u54 GeV. As before, we determinex(m)
from Eq. ~2.3! with the initial conditionas(4.17 GeV)/p
50.071549 devolving fromas(Mz)50.118000. Although
the truncated series varies only modestly@0.0856>WNNL

>0.0795# over the rangeuqW u/2,m,2uqW u, the RG-summed
series is seen to exhibit less than 10% of the unsumm
series’ variation over this same range ofm @0.08295
>WRGS>0.08233#.
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B. Gluonic scalar correlation function

The imaginary part of the correlator for gluonic sca
currents

j G~y!5
b„x~m!…

px~m!b0
Gmn

a ~y!Gmn,a~y! ~6.8!

enters QCD sum rules pertinent to scalar glueball proper
@24#, and is given by@s[p2,x(m)5as(m)/p#

ImPG~s!5ImH i E d4yeip•y^0uT jG~y! j G~0!u0&J
5

2x2~m!s2

p3
S@x~m!, log~m2/s!# ~6.9!

where

S@x,L#511 (
n51

`

(
m50

n

Tn,mxnLm. ~6.10!

The leading coefficientsTn,m within Eq. ~6.10! can be ex-
tracted from a three-loop calculation by Chetyrkin, Knie
and Steinhauser@19,25# and are tabulated in Table II.

The correlator ImPG(s) is RG invariant:
m2dImPG(s)/dm250. Consequently the series~6.10! can
be shown to satisfy the RG equation

S ]

]L
1b~x!

]

]x
1

2b~x!

x DS@x,L#50. ~6.11!

FIG. 13. The momentum-spacenf55 static-potential function
seriesWNNL ~dotted line!, and the corresponding RG summatio

WRGS
NNL ~solid line! with uqW u54 GeV.
01401
s

l

Upon substituting Eq.~6.10! into ~6.11!, it is straightforward
to show that the aggregate coefficients ofxnLn21,xnLn22

andxnLn23 respectively vanish provided

nTn,n2b0~n11!Tn21,n2150, ~6.12!

~n21!Tn,n212b0~n11!Tn21,n222b1nTn22,n2250,

~6.13!

~n22!Tn,n222b0~n11!Tn21,n232b1nTn22,n23

2b2~n21!Tn23,n2350. ~6.14!

We employ the definitions~2.18!, ~2.19! and ~2.20! for S0 ,
S1 andS2. By multiplying Eq.~6.12! by un21, Eq. ~6.13! by
un22 and Eq.~6.14! by un23 and summing fromn51,2 and
3, respectively, we obtain the following three linear differe
tial equations

~12b0u!
dS0

du
22b0S050 ~6.15!

~12b0u!
dS1

du
23b0S15b1Fu

dS0

du
12S0G , ~6.16!

~12b0u!
dS2

du
24b0S25b1Fu

dS1

du
13S1G

1b2Fu
dS0

du
12S0G . ~6.17!

Given the u50 initial conditions S051,S15T1,0,S25T2,0
and settingu5xL, we obtain the following RG-summed ve
sion of the series~6.10! to NNL order:

TABLE II. NNL-order series coefficients within the gluonic sca
lar current correlation function.

nf52 nf53 nf54 nf55 nf56

T1,0
6919
348

659
36

4999
300

4123
276

367
28

T1,1
29
6

9
2

25
6

23
6

7
2

T2,0 246.434 197.515 150.210 104.499 60.368

T2,1
7379

48
2105

16
1769

16
4355

48
1153

16

T2,2
841
48

243
16

625
48

529
48

147
16
0-17
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SRGS
NNL5S0@xL#1xS1@xL#1x2S2@xL#

5
1

~12b0xL!2
1

xFT1,02
2b1

b0
log~12b0xL!G1x2F2b1

2

b0
2

2
2b2

b0
G

~12b0xL!3

1x2

F S T2,02
2b1

2

b0
2

1
2b2

b0
D 2S 3T1,0b1

b0
1

2b1
2

b0
2 D log~12b0xL!1~3b1

2/b0
2!log2~12b0xL!G

~12b0xL!4
~6.18!
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wherex5as(m)/p and L5 log(m2/s), as before, and wher
thebk are as defined in Eq.~2.3!. In Fig. 14 we compare the
m dependence ofx2(m)SRGS

NNL to that of the corresponding
truncated series

x2~m!SNNL@x,L#

5x2@11~T1,01T1,1L !x1~T2,01T2,1L1T2,2L
2!x2#

~6.19!

for thenf53 case withAs52 GeV. The evolution ofx(m)
is assumed to follow annf53 b function with the initial
conditionas(mt)/p50.33/p @17#. As evident from the fig-
ure, the severem dependence ofx2SNNL is considerably di-
minished by RG summation. The RG-summed express
@Eq. ~6.18! multiplied byx2(m)# falls from 0.056 to 0.041 as
m increases from 1 GeV to 4 GeV. By contrast, the u
summed expression~6.19! falls precipitously from 0.259 to
0.017, a factor of 15, over the same range ofm. This un-
physical dependence on renormalization scale suggests

FIG. 14. The imaginary part of the gluonic scalar-current cor
lation function~6.9!, as obtained fromx2(m)SNNL ~dotted line! and
from x2(m)SRGS

NNL ~solid line! with nf53 andAs52 GeV.
01401
n
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hat

SNNL @as in Eq.~6.19!# be replaced by Eq.~6.18! within sum
rule approaches to the lowest-lying scalar gluonium state

C. Cross sections„WL
¿WL

À\ZLZL…

The scattering of two longitudinalW’s into two longitu-
dinal Z’s is mediated by the Higgs particle of standard-mod
electroweak physics. Assuming a single Higgs particle~de-
volving from the single doublet responsible for electrowe
symmetry breaking!, one finds the cross section for this pr
cess at very high energies (s@MH

2 ) to be

s~s!5
8p2

9s
g2~m!S@g~m!, log~m2/s!#, ~6.20!

whereg(m)56lMS(m)/16p2, the quartic scalar couplant o
the single-doublet standard model,4 and where the seriesS is
@26#

S@g,L#511 (
n51

`

(
m50

n

Tn,mgnLm ~6.21!

with g5g(m) andL5 log(m2/s). The constantsTn,m are fully
known to NNL order@26#

T1,05210.0, T1,1524, T2,0593.5531
2

3
log~s/MH

2 !,

T2,1568.667,T2,2512. ~6.22!

The RG invariance of the physical cross sections implies
that the seriesS satisfies the RG equation

S ]

]L
1b~g!

]

]g
1

2b~g!

g DS@g,L#50. ~6.23!

4lMS(m) is perturbatively related to its on-mass-shell val
GFMH

2 /A2, as discussed in@26#.

-
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This is the same RG equation as Eq.~6.11! characterizing the
gluonic scalar correlator, but with theb function appropriate
for the single-Higgs-doubletMS quartic scalar couplan
g(m) @27#:

m2
dg

dm2
5b~g![2b0g22b1g32b2g4 . . . , ~6.24!
so
si
el

01401
b0522, b15
13

3
, b25227.803.

Consequently the RG-summed version ofS is given by Eq.
~6.18!:
SRGS5
1

~112gL!2
1

gF2101
13

3
log~112gL!G218.4141g2

~112gL!3

1

g2F111.9671
2

3
logS s

MH
2 D 2

1339

18
log~112gL!1

169

12
log2~112gL!G

~112gL!4
. ~6.25!
.

p-

if-
D. Higgs decayH\gg

Higher-order expressions for the decay of a Higgs bo
into two gluons have been obtained and studied both out
@28# and within @25,29,30# the context of a standard-mod
single-doublet Higgs field. In the limitMH

2 !4Mt
2 , Mb

50 the latter decay rate is of the form

G5@A2GFMH
3 /72p#

3x2~m!S@x~m!, log„m2/mt
2~m!…, log~MH

2 /Mt
2!#.

~6.26!

Capitalized masses (MH ,Mt) denote RG-invariant pole
masses, whereasmt(m) is the runningt-quark mass. The
seriesS within Eq. ~6.26! is of the generic form~1.1! with
L[ log„m2/mt

2(m)…, but the coefficientsTn,m are now depen-
dent upon the RG-invariant logarithmT[ log(MH

2 /Mt
2). Us-

ing six active flavors to accommodate the running ofmt(m),
one can extract from Ref.@25# the following two subleading
orders of series coefficients withinS @29#:

T0,051, T1,0~T!5
215

12
2

23

6
T, T1,15

7

2
,

T2,0~T!5146.89122
4903

48
T1

529

48
T2, ~6.27!

T2,1~T!5
1445

16
2

161

8
T, T2,25

147

16
.

RG invariance of the physical decay rate (m2dG/dm250)
implies the following RG equation for the seriesS@x,L,T#
within Eq. ~6.26!:
n
de

F „122gm~x!…
]

]L
1b~x!

]

]x
1

2b~x!

x GS@x,L,T#50.

~6.28!

The nf56 values for theMS b andgm functions are

b~x!52~b0x21b1x31b2x41••• !,

b057/4, b1513/8, b25265/128

gm~x!52~g0x1g1x21g2x31••• !,

g051,g1527/8, g254.83866.
~6.29!

Upon substituting the seriesS, as described above, into Eq
~6.28!, one finds that the net coefficients ofxnLn21,xnLn22

and xnLn23 on the left-hand side of Eq.~6.28! vanish pro-
vided the following recursion relations are respectively u
held:

nTn,n2b0~n11!Tn21,n2150 ~6.30!

~n21!Tn,n2112g0~n21!Tn21,n212b0~n11!Tn21,n22

2b1nTn22,n2250 ~6.31!

05~n22!Tn,n2212g0~n22!Tn21,n22

12g1~n22!Tn22,n222b0~n11!Tn21,n23

2b1nTn22,n232b2~n21!Tn23,n23 . ~6.32!

By multiplying Eq. ~6.30! by un21, Eq. ~6.31! by un22 and
Eq. ~6.32! by un23, and by summing each equation fromn
51,2 and 3, respectively, we obtain the following linear d
ferential equations for the summationsS0 ~2.18!, S1 ~2.19!
andS2 ~2.20!:
0-19
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~12b0u!
dS0

du
22b0S050 ~6.33!

~12b0u!
dS1

du
23b0S15b1S u

dS0

du
12S0D22g0

dS0

du
~6.34!

~12b0u!
dS2

du
24b0S25b1S u

dS1

du
13S1D22g0

dS1

du
1b2S u

dS0

du
12S0D22g1

dS0

du
. ~6.35!

Given theu50 initial conditionsS051,S15T1,0(T),S25T2,0(T), one can solve forS0@u#,S1@u# and S2@u#. As before,
all-orders summation of the RG-accessible logarithms within the seriesS@x,L,T# is now possible, given the explicit form o
T1,0(T) andT2,0(T) in Eq. ~6.27! and the explicitb- andg-function coefficients in Eq.~6.29!. We thus find that

SRGS
NNL5S0@xL#1xS1@xL#1x2S2@xL#5

1

S 12
7

4
xLD 2 1

xF215

12
2

23

6
T1

15

7
logS 12

7

4
xLD G1

9479

784
x2

S 12
7

4
xLD 3

1

x2F134.8012
4903

48
T1

529

48
T21S 21675

392
2

345

28
TD logS 12

7

4
xLD1

675

196
log2S 12

7

4
xLD G

S 12
7

4
xLD 4 . ~6.36!
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E. Fermionic scalar correlation function

The imaginary part of the RG-invariant correlator for t
fermionic scalar current

j s~y!5mC~y!C~y! ~6.37!

is

ImP~s!5ImF i E d4yeip•y^0uT js~y! j s~0!u0&G
5

3s

8p
m2~m!S@x~m!, log~m2/s!#, ~6.38!

where the seriesS@x,L# is of the form ~1.1! and has been
fully calculated toN3L order@31#. Fornf5$3,4,5% the series
coefficientsTn,m are tabulated for (n,m)<3 in Table III.
This correlation function is relevant both for QCD sum-ru
analyses of scalar mesons, a topic of past and present int
@32#, and for the decay of a single-doublet standard-mo
Higgs boson into abb̄ pair @29,31#. RG invariance of the
correlator@m2dImP(s)/dm250# implies the following RG
equation for the seriesS@x,L# within Eq. ~6.38! @19#:

F ]

]L
1b~x!

]

]x
12gm~x!GS@x,L#50, ~6.39!
01401
est
el

whereL5 log(m2/s), x5as(m)/p, b(x) is theb-function series
~2.3! andgm(x) is theg-function series~1.3!. Substitution of
Eq. ~1.1! into Eq. ~6.39! leads to the following recursion
formulas for the elimination of terms proportional t
xnLn21, xnLn22, xnLn23, andxnLn24:

05nTn,n2b0~n21!Tn21,n2122g0Tn21,n21 ~6.40!

TABLE III. N3L-order series coefficients within the fermion
scalar current correlation function, as calculated in@31#. Also listed
are the four-loopb-function @33# and g-function @34# coefficients
b3 andg3 required for the evaluation of the seriesS3.

nf53 nf54 nf55

T0,0 1 1 1
T1,0 17/3 17/3 17/3
T1,1 2 2 2
T2,0 31.8640 30.5054 29.1467
T2,1 95/3 274/9 263/9
T2,2 17/4 49/12 47/12
T3,0 89.1564 65.1980 41.7576
T3,1 297.596 267.589 238.381
T3,2 229/2 22547/216 10225/108
T3,3 221/24 1813/216 1645/216
b3 47.2280 31.3874 18.8522
g3 44.2628 27.3028 11.0343
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05~n21!Tn,n212b0~n21!Tn21,n222b1~n22!

3Tn22,n2222g0Tn21,n2222g1Tn22,n22 ~6.41!

05~n22!Tn,n222b0~n21!Tn21,n232b1~n22!

3Tn22,n232b2~n23!Tn23,n2322g0Tn21,n23

22g1Tn22,n2322g2Tn23,n23 ~6.42!

05~n23!Tn,n232b0~n21!Tn21,n242b1~n22!

3Tn22,n242b2~n23!Tn23,n242b3~n24!

3Tn24,n2422g0Tn21,n2422g1Tn22,n24

22g2Tn23,n2422g3Tn24,n24 . ~6.43!

We follow the usual procedure of
~1! multiplying Eq. ~6.40! by un21 and summing fromn

51 to `,
~2! multiplying Eq. ~6.41! by un22 and summing fromn

52 to `,
~3! multiplying Eq. ~6.42! by un23 and summing fromn

53 to `, and
~4! multiplying Eq. ~6.43! by un24 and summing fromn

54 to `.
Using the definitions~2.18!, ~2.19!, ~2.20! and ~2.30! for

$S0 ,S1 ,S2 ,S3%, we then obtain the following four linear dif
ferential equations for these summations:
01401
~12b0u!
dS0

du
22g0S050, S0@0#51 ~6.44!

~12b0u!
dS1

du
2~b012g0!S15b1u

dS0

du
12g1S0 ,

S1@0#5T1,0 ~6.45!

~12b0u!
dS2

du
2~2b012g0!S2

5b1u
dS1

du
1b2u

dS0

du
1~b112g1!S112g2S0 ,

S2@0#5T2,0 ~6.46!

~12b0u!
dS3

du
2~3b012g0!S3

5b1u
dS2

du
1b2u

dS1

du
1b3u

dS0

du
1~2b112g1!S2

1~b212g2!S112g3S0 , S3@0#5T3,0.

~6.47!

The solutions to these equations are
S0@u#5~12b0u!2A ~6.48!

S1@u#5C1~12b0u!2A1
@T1,02C11C2log~12b0u!#

~12b0u!A11
~6.49!

S2@u#5
D1

2
~12b0u!2A1

@D22D31D3log~12b0u!#

~12b0u!A11
1

FT2,02
D1

2
2D21D31D4log~12b0u!1

D5

2
log2~12b0u!G

~12b0u!A12

~6.50!

S3@u#5
F1

3
~12b0u!2A1

FF2

2
2

F3

4
1

F3

2
log~12b0u!G

~12b0u!A11
1

F42F512F61~F522F6!log~12b0u!1F6log2~12b0u!]

~12b0u!A12

1

FT3,02
F1

3
2

F2

2
1

F3

4
2F41F522F61F7log~12b0u!1

F8

2
log2~12b0u!1

F9

3
log3~12b0u!G

~12b0u!A13
, ~6.51!
where

A52g0b0 ~6.52!

C152b1g0 /b0
222g1 /b0 ~6.53!
C2522b1g0 /b0
2 ~6.54!

D15@C1~Ab12b122g1!1Ab222g2#/b0
~6.55!
0-21
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D25@C1~2g122Ab1!2C2b12Ab2

1T1,0~Ab122g1!#/b0 ~6.56!

D35C2~Ab122g1!/b0 ~6.57!

D45b1@C22~A11!~T1,02C1!#/b0 ~6.58!

D552C2b1~A11!/b0 ~6.59!

F15@C1~Ab222g22b2!1D1~Ab1/22g12b1!

1Ab322g3#/b0 ~6.60!

F25
1

b0
FD3~2g12Ab1!1D2~Ab12b122g1!

2
D1

2
Ab12C2b21C1~2g222Ab2!

1T1,0~Ab222g2!2Ab3G ~6.61!

F35@D3~Ab12b122g1!1C2~Ab222g2!#/b0
~6.62!

F45
1

b0
@~T2,02D1/22D21D3!~Ab122g1!

2D4b11D3~A12!b12D2~A11!b11C2b2

1C1~A11!b22T1,0~A11!b2# ~6.63!

F55@D4~Ab122g1!2D3~A11!b12D5b1

2C2~A11!b2#/b0 ~6.64!

F65D5~Ab1/22g1!/b0 ~6.65!

F75b1@D42~A12!~T2,02D1/22D21D3!#/b0
~6.66!

F85b1@D52D4~A12!#/b0 ~6.67!

F952b1D5~A12!/~2b0!. ~6.68!

The O(N3L) RG summation of the serie
S@x(m), log(m2/s)# appearing in the correlator~6.38! is then
found to be

SRGS
N3L 5S0Fx~m!logS m2

s D G1x~m!S1Fx~m!logS m2

s D G
1x2~m!S2Fx~m!logS m2

s D G
1x3~m!S3Fx~m!logS m2

s D G ~6.69!

where the RG summationsS0 ,S1 ,S2 and S3 are given by
Eqs.~6.48!–~6.51! with u5x(m)log(m2/s).
01401
In Fig. 15 we compare them dependence of the RG
summed scalar fermionic-current correlator,

ImPRGS
N3L ;m2~m!SRGS

N3L ~6.70!

to that of the correlator~6.38! when truncated after its fully
known O(x3) contributions,

ImPN3L;m2~m! (
n50

3

(
m50

n

Tn,mxn~m!F logS m2

s D Gm

,

~6.71!

over the rangeAs/2<m<2As with As52 GeV. The coef-
ficients Tn,m appearing in Eq.~6.71! are given in Table III.
We choose to work in theAs52 GeV, nf53 regime appro-
priate for QCD sum rule applications, where the coupla
x(m) is large. The evolution ofx(m) is assumed to procee
via the nf53 four-loop b function with initial condition
x(mt)50.33/p @17#. The running massm(m) is normalized
to 1 GeV atm5mt to facilitate comparison of Eqs.~6.70! to
~6.71!. In Fig. 15, the unsummed correlator is seen
achieve a sharp maximum near 1.5 GeV, followed by a p
cipitous fall asm approaches 1 GeV from above. By co
trast, the RG-summed correlator exhibits a much flatter p
file, falling from 1.88 GeV2 to 1.75 GeV2 as m increases
from 1 to 4 GeV. As in Sec. VI B for the gluonic scala
current correlator, these results indicate that evenN3L-order
expressions for the perturbative contribution to QCD cor
lation functions exhibit substantialm dependence. Such de
pendence, which we have shown to be largely eliminated
the RG-summation process, would otherwise perco
through QCD sum-rule integrals as spurious sensitivity to

FIG. 15. The imaginary part of the fermionic scalar-current c

relation function~6.38!, as obtained fromm2(m)SN3L ~dotted line!

and fromm2(m)SRGS
N3L ~solid line! with nf53 andAs52 GeV.
0-22
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Borel parameter on the theory side. The incorporation
RG-summed correlators within QCD sum-rule extractions
lowest-lying scalar resonances is currently under invest
tion.

VII. SUMMARY

In this paper we have explicitly summed all RG
accessible logarithms within a number of perturbative p
cesses known to at least two nonleading orders, a proce
originally advocated by Maxwell@5#. As anticipated, we
have found the dependence on the renormalization scalem in
every case examined to be considerably diminished over
of the original series’ known terms.

In semileptonicb→u decays in the fullyMS scheme
~Sec. III!, we observe the intriguing possibility that PMS
FAC criteria for the unsummed series truncated to a gi
order may anticipate the RG-summed series for the next
der of perturbation theory.5 This behavior, however, is no
evident in the other processes we consider. For the ve
correlation function~Sec. V!, PMS-FAC criteria for the un-
summed series truncated to a given order coincide clo
with the RG-summed series for that same order, but do
anticipate the level of the next-order RG summation. In
pole-mass scheme version of semileptonicB decays~Sec.
IV !, PMS and FAC criteria do not appear applicable to
unsummed series, which monotonically increase with
renormalization scalem. Indeed, one of the virtues of RG
summation is the sensible scale-independent results it
vides for inclusive semileptonicB decays in the pole mas
scheme, a scheme whose unsummed expressions forb→u
are already known to be problematic@1#.

The m independence of RG summation, particularly f
the vector-current correlation function~Sec. V!, is seen to
justify the prescription of zeroing all logarithms by settin
the renormalization scale tom2 equal to the kinematic vari
able s. This prescription necessarily equates the unsumm
and RG-summed series, and, since the RG-summed ser
virtually independent ofm, the zeroing of logarithms in the
unsummed series equilibrates it to the flat RG-summa
level we obtain.

In Sec. VI, RG summation is also applied to the pertur
tive contributions to the momentum-space QCD static pot
tial, the decay rate of a standard-model Higgs boson to
gluons, the Higgs-mediated cross sections(WW→ZZ), and
to two scalar-current correlation functions. Examination
these last two quantities in the low-s region appropriate for
QCD sum rules suggests the utility of RG summation
reducing the unphysical scale dependence of the perturb
QCD contributions to the field-theoretical side of sum ru
in these channels.

ACKNOWLEDGMENTS

We are grateful for research support from Leadership
Allison, the International Collaboration Program of Ente

5Although this result incorporates a Pade´ estimate for an RG-
inaccessibleO(x3) coefficient, this estimate occurs in both the u
summed and RG-summed expression.
01401
f
f
a-

-
re

at

n
r-

or

ly
ot
e

e
e

o-

d
s is

n

-
-
o

f

ive
s

t.

prise Ireland, a Faculty Summer Grant from SUNY Institu
of Technology, and the International Opportunity Fund of t
Natural Sciences and Engineering Research Council
Canada. We also acknowledge the hospitality of the H
Energy Theory Group at KEK, Tsukuba, Japan, where t
research was initiated.

APPENDIX: AN ALTERNATIVE CLOSED-FORM
SUMMATION PROCEDURE

The body of our paper has addressed the evaluation
Sn@xL#5(k50

` Tn1k,k(xL)k, where the full perturbative se
ries isS(x,L)5(n50

` Sn@xL#xn. It is, however, also possible
to group the terms withinS(x,L), as defined by Eq.~1.1!,
such that the dependence of each series term onx andL fully
factorizes:

S~x,L !5 (
n50

`

Rn~x!Ln, ~A1!

Rn~x!5 (
k5n

`

Tk,nxk. ~A2!

Let us suppose, for example, that the seriesS(x,L) satisfies
the RGE~2.2! appropriate to semileptonicb decays. By sub-
stituting Eq.~A1! into Eq. ~2.2!, we find that

Rn11~x!5
1

n11 F 1

2g~x!21GFb~x!
d

dx
15g~x!GRn~x!,

~A3!

where we have relabeled the anomalous mass dimen
gm(x)→g(x) to avoid any misinterpretation of the labelm
as a subscript. If

Rn~x![expS 2Ex 5g~x8!

b~x8!
dx8D Pn~x!, ~A4!

then the recursion relation~A3! implies that

Pn11~x!5
1

n11 S b~x!

2g~x!21D d

dx
Pn~x!. ~A5!

If one definesx to be implicitly a function ofy via the equa-
tion

d

dy
x~y!5

b~x!

2g~x!21
, ~A6!

then Eq.~A5! simplifies to

Pn11„x~y!…5
1

n11

d

dy
Pn„x~y!…, ~A7!

in which case
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(
n50

`

Pn„x~y!…Ln5 (
n50

` S 1

n!
Ln

dn

dynD P0„x~y!…

5P0„x~y1L !…. ~A8!

This last result implies via Eq.~A4! that the seriesS(x,L) is
fully determined by knowledge of the log-free summati
R0, i.e. that

S~x,L !5expF E
x(y)

x(y1L) 5g~x8!

b~x8!
dx8GR0„x~y1L !…

~A9!

wherex(y) is defined implicitly by the constraint

y5Ex 2g~x8!21

b~x8!
dx8 ~A10!

obtained by integrating Eq.~A6!.
Using lowest-order expressionsb(x)52b0x2 and g(x)

52g0x, we find from Eq.~A10! that

y5
1

b0
S 2

1

x
12g0log~x! D1K. ~A11!

If we set

x5
1

2g0W
, K5

2g0

b0
log~2g0! ~A12!

we find from Eq.~A11! that

WeW5expS 2
b0y

2g0
D . ~A13!

Equation~A13! is the defining relationship for the Lambe
W-function W@exp(2b0y/2g0)#, as discussed in Ref.@35#.
Since

x~y!5
1

2g0W@exp~2b0y/2g0!#
~A14!
ys

.

01401
in the approximationb(x)>2b0x2, g(x)>2g0x, we then
find from Eq.~A9! that

S~x,L !5F W@exp~2b0y/2g0!#

W@exp„2b0~y1L !/2g0…#
G5g0 /b0

3R0S 1

2g0W@exp„2b0~y1L !/2g0…#
D , ~A15!

where

R0~x!5 (
k50

`

Tk,0x
k5S~x,0! ~A16!

and where

y52
1

b0x
1

2g0

b0
log~2g0x!. ~A17!

For the RGE ~4.16!, corresponding to Eq.~2.2! with
gm(x) chosen to be zero, the solution~A9! still applies pro-
vided x(y) is defined implicitly via the constraint

y52Ex dx8

b~x8!
. ~A18!

In the approximationb(x)52b0x2, one can choose

x~y![2
1

b0y
~A19!

in which case

S~x,L !5R0S x

12b0LxD , ~A20!

where the functionR0 is as defined via Eq.~A16!.
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