
PHYSICAL REVIEW D 66, 014005 ~2002!
Reaction operator approach to multiple elastic scatterings
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We apply the Gyulassy-Levai-Vitev reaction operator formalism to compute the effects of multiple elastic
scatterings of on-shell partons propagating through dense matter. We derive the elastic reaction operator and
demonstrate that the recursion relations have a closed form solution that reduces to the familiar Glauber form.
We also investigate the accuracy of the Gaussian dipole approximation for the parton transverse momentum
broadening.
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I. INTRODUCTION

New experiments at the BNL Relativistic Heavy Ion Co
lider ~RHIC! will provide high-statistics high-pT measure-
ments of photon, lepton, and hadron production inA1A
reactions@1,2#. These observables provide novel tests of p
turbative QCD~PQCD! multiple scattering theory. Quantita
tive comparisons@3–5# to data require an understanding
nuclear effects such as parton shadowing@6#, the Cronin ef-
fect @7–10#, and non-Abelian jet energy loss@11–13#. In this
paper we apply the reaction operator method@13#, developed
to solve the radiative energy loss problem, to derive the w
known multiple elastic Glauber distribution@14# in order to
illustrate the power of this recursion technique. The summ
tion to all orders in the opacity,x5*s(z)r(z)dz5L/l, of
the matter is given in closed form. In addition we evalua
the accuracy of the dipole approximation, leading to
Gaussian approximation to Moliere scattering, for the cas
moderate opacitiesx,10 relevant for applications in nuclea
physics.

This work is focused on the case of fastp2.0 on-shell
partons with zero virtuality asymptotically prepared at tim
t052`. It is in this context in which we use the term ‘‘jet
throughout the paper. We here only discuss elastic inte
tions inside a nuclear medium that conserve the initial in
grated jet flux. The dynamical evolution of the jet cone~that
includes inelasticity! for a highly virtual parton is beyond th
scope of the present study. A physical situation that co
sponds to our calculation is realized in heavy ion reacti
where the partons in the nuclear wave function may inte
semisoftly several times before the ‘‘hard’’ collision verte
The scattering of gluons on a classical Yang-Mills syst
was discussed in@15#.

We describe multiple jet scattering as a series expan
in x, the mean number of interactions that a fast parton
dergoes along its trajectory@13,16#. Jet production is mod-
eled here by an initial wave packetj (p) for a spinless parton
in the color representationR prepared at timet0 and centered
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at x¢05(z0 ,x0). The momentum space amplitude in the a
sence of interactions is then given by

M0[ ieipx0 j ~p!1dR3dR
, ~1!

where thedR dimensional unit matrix accounts for the je
colors. Multiplying uM0u2 by the invariant one particle phas
space elementd3p¢ /@(2p)32up¢ u# and taking the color trace
one arrives at the unperturbed inclusive distribution of jets
the wave packet

d3N05TruM0u2
d3p¢

2up¢ u~2p!3
5u j ~p!u2

dRd3p¢

2up¢ u~2p!3
. ~2!

For asymptotically prepared (t0→2`) partonic states, the
wave function is dominated by its on-shell momentum sp
Fourier components.

In the presence of nuclear matter the multiple interactio
of a fast projectile propagating through the medium are m
eled by a scattering potential assumed to be of the form

Vn5v~qn!eiqnxnTan
~R! ^ Tan

~n!

52pd~q0!v~q¢n!e2 iq¢n•x¢nTan
~R! ^ Tan

~n!, ~3!

whereTan
(R) is the generator ofSU(Nc) in the dR dimen-

sional representation of the jet, andTan
(n) is the correspond-

ing generator in thedn dimensional representation of th
target. The scattering center is localized at positionx¢n , and

v(q¢n) is the Fourier transform of the spatial part of the p
tential. We here usep¢ to denote the 3D spatial part of
vector p and p represents its 2D transverse compone
While there are noa priori limitations on the functional form
of the scattering potential and the corresponding differen
elastic scattering cross section
©2002 The American Physical Society05-1



e
o

am

t
le

-
uc

-

io
a

. I
io
n
e
c

e

n
w
-
je

n
on

-

ate
le
ate
nal
e
ne-

le
the

il-

is

he
in-
ion
tter-
. At

.
as

sic
n

ith

M. GYULASSY, P. LEVAI, AND I. VITEV PHYSICAL REVIEW D 66, 014005 ~2002!
dsel~R,T!

d2q
5

CRC2~T!

dA

uv~q!u2

~2p!2
, ~4!

we here consider potentials with a range 1/m!l, the mean
free path of the jet in the medium. This condition togeth
with the hard jet approximation ensures the path ordering
the successive scatterings along the jet trajectory. Diagr
with crossed momentum transfers~at points typically sepa-
rated by zn2zn21.l) are suppressed by factors;exp
(2lm). One particular example used in Refs.@11,13# is the
Yukawa color-screened potential

v~q¢n![
4pas

q¢n
21m2

5
4pas

~qnz1 imn!~qnz2 imn!
, ~5!

wheremn
25mn'

2 5m21qn
2 andlm@1.

This paper is organized as follows. In Sec. II we presen
systematic recursive way of keeping track of the multip
collision Feynman diagrams in terms of ‘‘direct’’ and ‘‘vir
tual’’ interactions. We discuss the color and kinematic str
ture of the single Born~direct! operatorD̂ and the double
Born ~virtual! operatorV̂. In Sec. III the corresponding elas
tic reaction operatorR̂5D̂†D̂1V̂†1V̂ is computed. We find
a recursion relation for the observed inclusive jet distribut
at any fixed order in opacity and use impact parameter sp
resummation to recover a classical Glauber-like formula
Sec. IV we discuss the implications of our results in relat
to the frequently employed Gaussian approximation of tra
verse momentum redistribution of jets. We show, howev
that forx,10 the Gaussian approximation fails to reprodu
the power law tails of the jetpT broadening as well as th
; logpT max

2 enhancement of̂pT
2&.

II. TENSORIAL BOOKKEEPING AND DIAGRAMMATIC
CALCULUS

The interaction Hamiltonian in a medium withN scatter-
ing centers in the high jet energy spinless approximation
given by

HI~ t !5E d3x¢(
i 51

N

v~x¢2x¢1!Ta~ i !f†~x¢,t !

3Ta~R!D̂~ t !f~x¢,t !, ~6!

where D̂(t)5 i ] t
↔. Each interaction of the colored parto

propagating through the nuclear matter results in one po
of the scattering potential Eq.~3! in the diagrammatic expan
sion. There is no limit on the number of scatterings the
can have at a particular scattering center at positionzn . Us-
ing the terminology of Ref.@13# we call such interactions
single Born, double Born, etc. It can be seen from Eq.~4!
that two momentum transfers resulting from two interactio
with the scattering potential are needed to produce
power of the elastic scattering cross sectionsel . In perform-
ing the average over the transverse~relative to the jet trajec-
tory! position of the scattering center̂•••&A'

5*d2b/
01400
r
f
s

a

-

n
ce
n
n
s-
r,
e

is

er

t

s
e

A'(•••) one order in the optical thickness~opacity! Nsel /
A'5L/l is thus generated in three ways:~a! single Born or
‘‘direct’’ interaction in the amplitude and the complex con
jugate amplitude;~b! double Born or ‘‘virtual’’ interaction in
the amplitude and no interaction in the complex conjug
amplitude; ~c! no interaction in the amplitude and doub
Born interaction in the complementary complex conjug
amplitude. More momentum transfers at a fixed longitudi
position zn , e.g. a triple Born interaction, will produc
O(as

2) corrections to the opacity expansion and are here
glected.

It is therefore sufficient to consider single and doub
Born terms in the opacity expansion approach, i.e. when
jet propagates by a scattering center at positionzn it can
either miss the center, interact once, or interact twice as
lustrated in Fig. 1.

The kinematic and color structure of the scatterings
contained in the unit (Î ), direct (D̂), and virtual (V̂) opera-
tors. The path ordering of the projectile interactions in t
medium in the high energy eikonal regime facilitates the
troduction of a convenient tensorial bookkeeping notat
that classifies the diagrams according to the type of sca
ings that the parton has experienced along its trajectory
ordern in the opacity expansion there are 3n possible ampli-
tudes classified by a set ofn indices i 1••• i n . Here i m50
indicates that the jet misses themth target,i m51 means that
it scatters once, andi m52 indicates that it scatters twice
The diagrams in Fig. 1 can be algebraically represented
follows:

Ai 1••• i n21,0~p,c![ ÎAi 1••• i n21
~p,c!,

Ai 1••• i n21,1~p,c![D̂Ai 1••• i n21
~p,c!, ~7!

Ai 1••• i n21,2~p,c![V̂Ai 1••• i n21
~p,c!.

The set of amplitude indices in Eq.~7! thus encodes the
complete history of the jet interactions. Repeating the ba
operator steps in Eq.~7! any amplitude that includes parto

FIG. 1. The diagrammatic representation of the interactions w
a fixed scattering center located atzn up to the double Born term

( Î nAi 1••• i n21
, D̂nAi 1••• i n21

, andV̂nAi 1••• i n21
) are shown.
5-2
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scatterings inside the medium can be iteratively derived fr
the unperturbed jet production amplitude

Ai 1••• i n
~p,c!5 )

m51

n

@d0,i m
1d1,i m

D̂m1d2,i m
V̂m#M0~p,c!.

~8!

Time ~or longitudinal coordinate! ordering is implicit in the
above formula for the high energy eikonal limit under co
sideration here.

To proceed we need to know the color and kinema
structure of the direct and virtual interactions. We use
notationD(p)[(p21 i e)21 and G(p)5p0 for the momen-
tum space representation of the propagator and
vertex factor. The vertex factor is treated here in t
high energy spinless limit. The direct iteration step~with
zn.zn21.•••) in Eq. ~7! reads

Ai 1••• i n21,1~p,c!5E d4qn

~2p!4
Ai 1••• i n21

~p2qn ,c!

3D~p2qn!v~qn!G~2p2qn!

3eiqn(xn2x0)Tan
~n!Tan

~R!, ~9!

where we have taken into account that the amplitude of o
n21 has to be evaluated at momentump2qn if the jets
emerges on shell with momentump. The double Born am-
plitude at thesameexternal potential is similarly given by

Ai 1••• i n21,2~p,c!5E d4qn

~2p!4

d4qn8

~2p!4
Ai 1••• i n21

~p2qn2qn8 ,c!

3D~p2qn2qn8!G~2p22qn82qn!

3v~qn!D~p2qn8!G~2p2qn8!

3v~qn8!ei (qn1qn8)(xn2x0)

3Tan
~R!Tbn

~R!Tan
~n!Tbn

~n!. ~10!

III. ELASTIC RECURSION OPERATOR

The observed jet inclusive distributiondN(p,c)
5(n50

` dN(n)(p,c) is expanded in the opacity series, whe
01400
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the contribution to orderxn is given by

dN(n)~p,c!5Cn
NĀi 1••• i n~p,c!Ai 1••• i n

~p,c!

[Cn
N Tr (

i 150

2

••• (
i n50

2

Āi 1••• i n~p,c!

3Ai 1••• i n
~p,c!. ~11!

The amplitudesĀi 1••• i n(p,c) in Eq. ~11! are the complemen
tary amplitudes given by

Āi 1••• i n~p,c![M0
†~p,c! )

m51

n

@d0,i m
V̂m

† 1d1,i m
D̂m

† 1d2,i m
#.

~12!

The trace is taken over the color matrices and the binom
coefficientCn

N5N!/n!(N2n)!'Nn/n! is introduced to take
into account the number of combinations ofn scattering sites
out of the totalN.

Performing the sum over the firstn21 interaction points
and using Eqs.~8!,~12! we obtain a simple recursion identit
which relatesdN(n) to dN(n21) through the reaction operato
R̂:

dN(n)5Cn
NĀi 1••• i n21R̂nAi 1••• i n21

,

~13!

R̂n5D̂n
†D̂n1V̂n1V̂n

† .

Consider first the direct part dN(n)(Dir.)
}Āi 1••• i n21D̂†D̂Ai 1••• i n21

of the reaction operator. Perform
ing the color traces we take into account the ident
Tr Ta( i )Tb( j )5d i j dabC2(T)dT /dA , which enforces that the
positions of the ordered scattering centers in the amplit
and its complementary are identical. We use the form of
scattering potential specified by Eq.~3! as well as the high
energy eikonal approximation where the deviations due
the in-medium interactions from the initial jet trajectory a
small andE1.2E:
e short

. This
dN(n)~Dir.!5Cn
NE dqznd

2qn

~2p!3

dqzn8 d2qn8

~2p!3
Āi 1••• i n21~p2qn8!Ai 1••• i n21

~p2qn!
CRC2~T!

dA
v~q¢n!v* ~q¢n8!

3
E1

E1qzn2qzn
2 2qn

21 i e

E1

E1qzn8 2qzn8
22qn8

22 i e
^e2 i (q¢n2q¢n8)•(x¢n2x¢0)&A'

. ~14!

The qzn ,qzn8 integral can be performed by closing the contour in the lower or upper half plane. We note that due to th
range of the scattering potential relative to the mean free path the residues from theqzn52 iAqn

21m2 and qzn8 5

1 iAqn8
21m2 poles are exponentially suppressed and only the residues atqzn'2 i e1qn

2/E1 andqzn8 '1 i e1qn8
2/E1 contrib-

ute. In the high energy limitE1@m@qn
2/E1 the quadratic terms from the residues in the exponent can be neglected
5-3
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removes the correlations between the scattering centers and there are no coherence effects at the jet level. We note
an important difference from the case of induced gluon radiation discussed in Ref.@13#. Emitted gluons are much softer tha
the parent parton and non-negligiblef;(xi2xj )•(k2Q)2/k1 phases control the non-Abelian analogue of the Land
Pomeranchuk-Migdal effect@17#. Taking into account that the Glauber thickness function~at a fixed impact parameterb0)
T(b0)5*dzr(b0,z)5N/A' is expected to vary slowly with the impact parameter:

^e2 i (qn2qn8)•(b2b0)&A'
.

T~b0!

N
~2p!2d2~qn2qn8!. ~15!

Equation~15! is a key simplifying relation valid in the caseAA'@1/m because it diagonalizes Eq.~14! in the transverse
momentum variables.

This leads to a simple recursion relation for the direct contribution to the jet spectrum to the momentum-shifted dist
of ordern21,

dN(n)~Dir.!5Cn
NE d2qnĀi 1••• i n21~p,c!Fdsel~R,T!

d2qn

T~b0!

N
e2 iqn•b̂†

^ eiqn•b̂GAi 1••• i n21
~p,c!, ~16!

whereb̂5 i¹p
\

is the impact parameter operator conjugate to the transverse momentump acting to the right, andb̂†52 i¹p
]

its
Hermitian conjugate acting to the left.

Next consider the virtual contributiondN(n)(Vir.) 5Cn
NĀi 1••• i n21(V̂1V̂†)Ai 1••• i n21

of the reaction operator, Eq.~13!,

dN(n)~Vir. !5Cn
N2 ReE dqznd

2qn

~2p!3

dqzn8 d2qn8

~2p!3
Āi 1••• i n21~p!Ai 1••• i n21

~p2qn2qn8!v~q¢n!v~q¢n8!
CRC2~T!

dA

3
E1

E1~qzn1qzn8 !2~qzn1qzn8 !22~qn1qn8!21 i e

E1

E1qzn8 2qzn8
22qn8

21 i e
^e2 i (q¢n1q¢n8)•(x¢n2x¢0)&A'

. ~17!

One notes that the momentum space integrations in this case could have been performed already at the amplitude
~10!. Using the same set of approximations as for the Direct part we first perform theqzn integral as well as the impac
parameter average and note that the latter constrainsqn1qn850. Picking the residue atqzn'2qzn8 2 i e:

dN(n)~Vir. !5Cn
N2 ReE dqzn8 d2qn8

~2p!3
Āi 1••• i n21~p!Ai 1••• i n21

~p!~2 i !
T~b0!

N

CRC2~T!

dA
v~q¢n8!v~2q¢n8!

E1

E1qzn8 2qzn8
22qn8

21 i e
.

~18!

It was shown in Ref.@13# that for a broad class of real spherically symmetric potentials of short range!l the remainingqzn8
integral can be performed. The screened Yukawa potential, Eq.~3!, belongs in this category whenml@1. We note that the
contour integration produces a real result and a factor of1

2 that cancels the factor of 2 arising from the virtual terms in b
the amplitude and its complementary. The recursion relation for the virtual part of the reaction operator can then be w

dN(n)~Vir. !5Cn
NE d2qnĀi 1••• i n21~p,c!Fdsel~R,T!

d2qn

T~b0!

N
~21!GAi 1••• i n21

~p,c!. ~19!

Combining Eqs.~16!,~19! one recovers the full structure of theelastic reaction operator

dN(n)~p,c!5Cn
NE d2qnĀi 1••• i n21~p,c!Fdsel~R,T!

d2qn

T~b0!

N
~e2 iqn•b̂†

^ eiqn•b̂21!GAi 1••• i n21
~p,c!

5
1

n! E )
i 51

n

d2qiFT~b0!
dsel~R,T!

d2qi

~e2qi•¹
→

p21!GdN(0)~p,c!, ~20!
014005-4
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where we used theCn
N/Nn'1/n! ~Poisson! approximation.

Equation~20! is the main result of this paper and has
transparent physical interpretation illustrated in Fig. 2. T
first term in the kinematic structure of the reaction opera
corresponds to the direct elastic scattering part that lead
the deflection of the fact parton from its trajectory. The ne
two terms have delta function strength in the forwardp50
direction and correspond to the virtual corrections~in the
amplitude and its complementary complex conjugate!. These
terms enforce unitarity in the Gyulassy-Levai-Vitev~GLV!
reaction operator formalism. Given any initial parton dist
bution one can then recursively solve from Eq.~20! for the
final inclusive distribution of jets that have penetrated
medium characterized here by its Glauber thickness func
T(b0). The method used here is quite general and has sev
important advantages. Within the eikonal approximation
provides exact answers to problems related to multiple e
tic and inelastic processes in QCD media. In particular it w
applied to the case of gluon radiation1 from jets produced in
heavy ion reactions@13#. For more details on its uses in je
tomography see Refs.@4,5#. Since the solution is known to
all orders in opacity, cases ranging from thin media with
few scatterings to thick media with a formally very larg
number of scatterings can be studied.

In the case of multiple elastic scatterings, the react
operator is so simple that it is possible to sum over all ord
in closed form. As usual it is most convenient to perform t
summation in impact parameter space. The distribution in
impact parameter space conjugate to the transverse mo
tum p is

dN~b!5 (
n50

`
1

n!
$T~b0!@s̃el~b!2sel#%

ndN(0)~b!

5eT(b0)(s̃el(b)2sel
tot)dN(0)~b!, ~21!

1In the case of medium-induced gluon bremsstrahlung the reac

operatorR̂ retains its general operator form Eq.~13! but its color
and kinematic structures are different since the on-shellt51` cuts
~see Fig. 2! go through both the jet and gluon lines that interact w
the double Born term.

FIG. 2. The graphical structure of the reaction operatorR̂

5D̂†D̂1V̂1V̂† is illustrated. It represents all possible (t51`)
on-shell cuts through a new double Born insertion.
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where the Fourier transform of the differential cross sect
was denoted by (2p)2ds̃el /d

2q(b)[s̃el(b) and s̃el(0)
5sel , the total elastic scattering cross section. The imp
parameter space representation Eq.~21! depends only on the
differences̃el(b)2s̃el(0). Transforming back to momentum
space, we recover the parton version of the Glauber mult
collision series@14#

dN~p!5e2selT(b0)E d2beip•bes̃el(b)T(b0)dN(0)~b!

5 (
n50

`

e2x
xn

n! E )
i 51

n

d2qi

1

sel

dsel

d2qi

dN(0)

3~p2q12•••2qn!, ~22!

where x5selT(b0)5L/l. Equation ~22! has the familiar
physical interpretation of a Poisson random walk in tra
verse momentum space distributed according todsel /sel .

on

FIG. 3. The final partonpT distribution is shown versuspT for
two different opacitiesx53 ~a! andx510 ~b!. We compare the full
result~without the delta function contribution atpT;0) to the Mo-
liere Gaussian approximation withj51 andj5 log x. In this ex-
ample we usem250.25 GeV2.
5-5
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IV. DISCUSSION

Impact parameter space resummation is often used in
junction with the small impact parameter approximation
the differential cross section, Eq.~4!. We show below that
although such an approach is analytically appealing, it gi
jet distributions that may differ substantially from the exa
formula.

The Fourier transform of thenormalizedcross section is
given by

ds̃el

d2q
~b!5E d2q

~2p!2
e2 iq•b

1

p

m2

~q21m2!2

5
mb

4p2
K1~mb!

'
1

4p2 S 12
jm2b2

2
1O~b3! D , ~23!

where b5ubu and in the quadratic term in Eq.~23! the
log 2/(1.08mb) multiplicative factor has been absorbed in
a b-independent constantj due to its small logarithmic varia
tion. We consider the transverse momentum broaden
@18,19# of a fast parton propagating in the ‘‘ẑ’’ direction, i.e.,
dN(0)/d2p5d2(p). In the approximation that dominantl
small impact parameter scatterings are important, the
mentum space distributions from Eqs.~21!,~22! reduce to the
classic Moliere form@16#

FIG. 4. The transverse momentum broadening of jets is sh
versuspT max

2 for two different opacitiesx53,10 as in Figs. 3~a! and
3~b!. We here usem250.25 GeV2 for illustration.
01400
n-
f

s
t

g

o-

dN~p!5E d2beip•b
1

~2p!2

e2xm2jb2/2

xm2j
5

1

2p

e2p2/2xm2j

xm2j
.

~24!

The resulting distribution is of Gaussian form and has
width of xm2j, i.e., ^p2&5xm2j.

To assess the accuracy of the Gaussian ansatz for finx
relevant in nuclear physics, we compare the Fourier tra
form of Eq.~21! to Eq.~24!. Note that in going from Eq.~21!
back to momentum space, ane2xd2(p) component arises
This component is of course not displayed, and for finitep
numerical integration converges much more rapidly if un
is subtracted from exp@s̃(b)T(b0)# in the integrand~22!.

In Figs. 3~a! and 3~b! numerical results are shown fo
opacitiesx53 and x510. For large opacitiesx>10 @see
Fig. 3~b!# the Gaussian approximation gives better resu
than for small onesx<5. However, as is well known, a
larger transverse momenta it fails to account for the pow
law pT tail of the inclusive distribution. Unlike familiar Mo-
liere scattering in atomic matter, there are no form factors
limit the growth of the high-pT Rutherford tail out to the
kinematic limitpT max

2 ;E0m in the case of QCD. Our result
for the rms transverse momentum kick shown in Fig. 4 de
onstrate that in semihard and hard PQCD processes there
logarithmic in pT max

2 enhancement of the mean squar
transverse momentum,^p2&.xm2 log(11pT max

2 /xm2) that is
missed in the dipole approximation. Of course for lar
pT max

2 radiative energy loss also contributes substantially
thepT broadening of jets and should be taken into accoun
applications.

In summary, we showed that the reaction operator form
ism developed in@13# easily recovers the well known
Glauber limit for elastic multiple collisions in PQCD matte
and sheds light on the accuracy of the dipole approximat
In the future it would be interesting to combine both elas
and the Landau-Pomeranchuk-Migdal~LPM! suppressed in-
elastic processes in this method and apply the results to
jet acoplanarity observables suggested in Refs.@18,19#.

ACKNOWLEDGMENTS

A helpful discussion with X.-N. Wang is gratefully ac
knowledged. This work was supported by the Director, O
fice of Science, Office of High Energy and Nuclear Physi
Division of Nuclear Physics, of the U.S. Department of E
ergy under Contract No. DE-FG02-93ER40764 and by
U.S. NSF under INT-0000211 and OTKA No. T029158.

n

.

@1# K. Adcox et al., Phys. Rev. Lett.88, 022301~2002!; PHENIX
Collaboration, G. David, Nucl. Phys.A698, 227 ~2002!;
PHENIX Collaboration, J. Velkovska,ibid. A698, 507 ~2002!;
PHENIX Collaboration, A. Bazilevsky, RIKEN Rev.28, 15
~2000!.
@2# C. Adler et al., Phys. Rev. Lett.87, 112303 ~2001!; STAR
Collaboration, R. Snellings, hep-ph/0111437.

@3# A. Dumitru, L. Frankfurt, L. Gerland, H. Stocker, and M
Strikman, Phys. Rev. C64, 054909~2001!.

@4# I. Vitev and M. Gyulassy, Phys. Rev. C65, 041902~2002!;
5-6



ai,

.

. C
s.

R

ai

g,

.

SR

REACTION OPERATOR APPROACH TO MULTIPLE . . . PHYSICAL REVIEW D 66, 014005 ~2002!
hep-ph/0108045; I. Vitev, M. Gyulassy, and P. Lev
hep-ph/0109198.

@5# M. Gyulassy, I. Vitev, and X. N. Wang, Phys. Rev. Lett.86,
2537 ~2001!; M. Gyulassy, I. Vitev, X. N. Wang, and P
Huovinen, Phys. Lett. B526, 301 ~2002!.

@6# K. J. Eskola, V. J. Kolhinen, and C. A. Salgado, Eur. Phys. J
9, 61 ~1999!; K. J. Eskola, J. W. Qiu, and X. N. Wang, Phy
Rev. Lett.72, 36 ~1994!.

@7# J. W. Cronin, H. J. Frisch, M. J. Shochet, J. P. Boymond,
Mermod, P. A. Piroue, and R. L. Sumner, Phys. Rev. D11,
3105 ~1975!.

@8# Y. Zhang, G. Fai, G. Papp, G. G. Barnafoldi, and P. Lev
Phys. Rev. C65, 034903~2002!; G. Fai, G. G. Barnafoldi, M.
Gyulassy, P. Levai, G. Papp, I. Vitev, and Y. Zhan
hep-ph/0111211.

@9# A. Accardi and D. Treleani, Phys. Rev. D64, 116004~2001!.
@10# Xin-Nian Wang, Phys. Rev. Lett.81, 2655~1998!.
@11# X. N. Wang and M. Gyulassy, Phys. Rev. Lett.68, 1480
01400
.

,

~1992!; M. Gyulassy and X. N. Wang, Nucl. Phys.B420, 583
~1994!.

@12# R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigne, and D
Schiff, Nucl. Phys.B483, 291 ~1997!; R. Baier, Yu. L. Dok-
shitzer, A. H. Mueller, and D. Schiff,ibid. B531, 403 ~1998!;
B. G. Zakharov, JETP Lett.63, 952 ~1996!.

@13# M. Gyulassy, P. Levai, and I. Vitev, Nucl. Phys.B571, 197
~2000!; Phys. Rev. Lett.85, 5535 ~2000!; Nucl. Phys.B594,
371 ~2001!; Phys. Lett B538, 282 ~2002!.

@14# R. J. Glauber and G. Matthiae, Nucl. Phys.B21, 135 ~1970!.
@15# A. Dumitru and J. Jalilian-Marian, hep-ph/0111357.
@16# U. A. Wiedemann, Nucl. Phys.B588, 303 ~2000!; U. A.

Wiedemann and M. Gyulassy,ibid. B560, 345 ~1999!.
@17# L. D. Landau and I. J. Pomeranchuk, Dokl. Akad. Nauk SS

92, 92 ~1953!; A. B. Migdal, Phys. Rev.103, 1811~1956!.
@18# J. P. Blaizot and L. D. McLerran, Phys. Rev. D34, 2739

~1986!; D. A. Appel, ibid. 33, 717 ~1986!.
@19# S. Gupta, Phys. Lett. B347, 381 ~1995!.
5-7


