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Reaction operator approach to multiple elastic scatterings
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We apply the Gyulassy-Levai-Vitev reaction operator formalism to compute the effects of multiple elastic
scatterings of on-shell partons propagating through dense matter. We derive the elastic reaction operator and
demonstrate that the recursion relations have a closed form solution that reduces to the familiar Glauber form.
We also investigate the accuracy of the Gaussian dipole approximation for the parton transverse momentum
broadening.
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I INTRODUCTION at >?0=(zo,x0). The momentum space amplitude in the ab-

] L sence of interactions is then given by
New experiments at the BNL Relativistic Heavy lon Col-

lider (RHIC) will provide high-statistics highp+ measure-
ments of photon, lepton, and hadron productionAir- A
reactiond 1,2]. These observables provide novel tests of per-
turbative QCD(PQCD) multiple scattering theory. Quantita- Where thedg dimensional unit matrix accounts for the jet
tive comparison$3—5] to data require an understanding of €olors. Multlply|n9|M0|2 by Ehe invariant one particle phase
nuclear effects such as parton shadowfiély the Cronin ef-  space elementi*p/[(27)32|p|] and taking the color trace
fect[7—10], and non-Abelian jet energy lo§$1—-13. In this ~ one arrives at the unperturbed inclusive distribution of jets in
paper we apply the reaction operator methb@|, developed the wave packet

to solve the radiative energy loss problem, to derive the well

known multiple elastic Glauber distributidd4] in order to d®p drd®p

illustrate the power of this recursion technique. The summa-  @*No=Tr|Mo|* —————=1j(p)|* = ——.
tion to all orders in the opacityy= [ o(z)p(z)dz=L/\, of 2|pl(2m) 2|pl(2m)
the matter is given in closed form. In addition we evaluate . )

the accuracy of the dipole approximation, leading to the©r asymptotically prepared— —) partonic states, the
Gaussian approximation to Moliere scattering, for the case of/@ve function is dominated by its on-shell momentum space

moderate opacitieg<<10 relevant for applications in nuclear Fourier components. . .
physics. In the presence of nuclear matter the multiple interactions

This work is focused on the case of fast=0 on-shell of a fast projectile propagating through the medium are mod-

partons with zero virtuality asymptotically prepared at timeeled by a scattering potential assumed to be of the form
to= —o. It is in this context in which we use the term “jet”
throughout the paper. We here only discuss elastic interac-
tions inside a nuclear medium that conserve the initial inte-
grated jet flux. The dynamical evolution of the jet cditeat
includes inelasticityfor a highly virtual parton is beyond the
scope of the present study. A physical situation that correwhereT, (R) is the generator 08 U(N,) in the dg dimen-
sponds to our calc_ulation is realized in hea\_/y ion re_actiongionm representation of the jet, afigl (n) is the correspond-
where the partons in the nuclear wave function may interach,, generator in thed, dimensional representation of the
semisoftly several times before the “hard” collision vertex. . . . =
The scattering of gluons on a classical Yang-Mills syste target. The scattering center is localized at positign and
was discussed ifiL5]. v(qy,) is the Fourier transform of the spatial part of the po-
We describe multiple jet scattering as a series expansiotential. We here usé to denote the 3D spatial part of a
in x, the mean number of interactions that a fast parton unvector p and p represents its 2D transverse component.
dergoes along its trajectoiffl3,16. Jet production is mod- While there are na priori limitations on the functional form
eled here by an initial wave packgip) for a spinless parton of the scattering potential and the corresponding differential
in the color representatidR prepared at timg, and centered elastic scattering cross section

Mo=ie"”*0j(p) 1y, @

@

Vh=v (qn)eiannTan( R) ®Tan(n)

=278()(Gre "I, (R)eT, (n), (3
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doe(RT) _ CrCa(T) [u(a)?
d%q da (2m)2’

(4)

we here consider potentials with a rangg. &\, the mean
free path of the jet in the medium. This condition together
with the hard jet approximation ensures the path ordering of
the successive scatterings along the jet trajectory. Diagram
with crossed momentum transfef@t points typically sepa-
rated by z,—z,_1=\) are suppressed by factorsexp

(=Aw). One particular example used in Ref$1,13 is the é" p’f
Yukawa color-screened potential E
g
- Amag 4rag
v(gn)== 5

2 i —j '
On+u (Gnz T 4en) (Gnz =T 42n) FIG. 1. The diagrammatic representation of the interactions with
2 2 2, 2 a fixed scattering center located ztup to the double Born term
Where.’u“_’““l._’u *an andhpu>1. (A i . DA ... ,andV.,A4. . ; ) are shown.

1 n-1 1 n—-1 1 n-1

This paper is organized as follows. In Sec. Il we present a

systematic recursive way of keeping track of the multiple
collision Feynman diagrams in terms of “direct” and “vir-

tual” interactions. We discuss the color and kinematic struc-, 3. .. 2 .
direct” interaction in the amplitude and the complex con-

ture of the single Borrdirech operatorD and the double ,gate amplitude(b) double Born or “virtual” interaction in
Born (virtual) operatorV. In Sec. Il the corresponding elas- the amplitude and no interaction in the complex conjugate
tic reaction operatoR=D'D +V'+V is computed. We find amplitude; (c) no interaction in the amplitude and double
a recursion relation for the observed inclusive jet distributionBorn interaction in the complementary complex conjugate
at any fixed order in opacity and use impact parameter spacgmplitude. More momentum transfers at a fixed longitudinal
resummation to recover a classical Glauber-like formula. Irposition z,, e.g. a triple Born interaction, will produce
Sec. IV we discuss the implications of our results in reIationO(ag) corrections to the opacity expansion and are here ne-
to the frequently employed Gaussian approximation of transglected.

verse momentum redistribution of jets. We show, however, It is therefore sufficient to consider single and double
that for y<10 the Gaussian approximation fails to reproduceBorn terms in the opacity expansion approach, i.e. when the
the power law tails of the jept broadening as well as the jet propagates by a scattering center at positignt can

A, (---) one order in the optical thicknesspacity No,/
A, =L/\ is thus generated in three ways) single Born or

~logp? ,.x €nhancement ofp?). either miss the center, interact once, or interact twice as il-
lustrated in Fig. 1.
Il. TENSORIAL BOOKKEEPING AND DIAGRAMMATIC The kinematic and color structure of the scatterings is
CALCULUS contained in the unitl(, direct ©), and virtual {/) opera-

) ) S ) ) tors. The path ordering of the projectile interactions in the
~ The interaction Hamiltonian in a medium with scatter-  agium in the high energy eikonal regime facilitates the in-
ing centers in the high jet energy spinless approximation igroqyction of a convenient tensorial bookkeeping notation
given by that classifies the diagrams according to the type of scatter-

N ings that the parton has experienced along its trajectory. At
_ 37 VY N Ry ordern in the opacity expansion there are gossible ampli-
Hi() f d Xizl v(X=x)Ta1) $7(x.1) tudes classified by a set of indicesi,---i,. Herei,=0
N R indicates that the jet misses th#h target,i,=1 means that
XTa(R)D(t) p(X,1), (6) it scatters once, anil,=2 indicates that it scatters twice.
The diagrams in Fig. 1 can be algebraically represented as

where D(t)=i4,. Each interaction of the colored parton follows:
propagating through the nuclear matter results in one power

of the scattering potential E¢B) in the diagrammatic expan- Ao PO=TA i (p,c),
sion. There is no limit on the number of scatterings the jet
can have at a particular scattering center at posijonUs- A A(P.O=DA i (po), @

ing the terminology of Ref[13] we call such interactions

single Born, double Born, etc. It can be seen from &j. .

that two momentum transfers resulting from two interactions Ai i 2dP0)=VA i (p,C).

with the scattering potential are needed to produce one

power of the elastic scattering cross sectiqn. In perform-  The set of amplitude indices in Eq7) thus encodes the
ing the average over the transvefselative to the jet trajec- complete history of the jet interactions. Repeating the basic
tory) position of the scattering centef- - ‘>AL: fd?b/ operator steps in Eq7) any amplitude that includes parton
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scatterings inside the medium can be iteratively derived fronthe contribution to ordex" is given by
the unperturbed jet production amplitude

n ) ) dN™(p,c)=CNA"n(p,c) A ...i (P.C)
Ay ()= 11 180+ 81, Dt 025, VmIMo(p.C).

=1 2 2 o
(8) ECr’:‘TrE 2 A'l""n(pic)
i1=0  in=0
Time (or longitudinal coordinageordering is implicit in the
above formula for the high energy eikonal limit under con- XAil"'in(p'C)' 1D

sideration here.

To proceed we need to know the color and kinemati
structure of the direct and virtual interactions. We use th
notation A (p)=(p?+ie) ' andI'(p)=p° for the momen-
tum space representation of the propagator and the
vertex factor. The vertex factor is treated here in the — . ot ~t At
high energy spinless limit. The direct iteration stepith At "(p,c)=M0(p,c)n£[1 [S0j, Vint 01, Dm+t 62 1.

“The amplitudes?l‘ ““In(p,c) in Eq.(11) are the complemen-
etary amplitudes given by

n

Z,>2Z,-1>---) in Eq. (7) reads (12)
d*qp, . . _—
Ail...in_l,l(p,c)=f 4Ai1--~in_1(p_qn ,C) The trace is taken over the color matrices and the binomial
(2m) coefficientC=N!/n!(N—n)!~N"/n! is introduced to take
X A(D— I'(2p— into account the number of combinationsro$cattering sites
.(p An)v (An)T(2P=0n) out of the totalN.
><e'qn(xn‘xo)Tan(n)Tan(R), (9 Performing the sum over the firgt-1 interaction points

and using Eqs(8),(12) we obtain a simple recursion identity
where we have taken into account that the amplitude of ordewhich relatesdN(™ to dN("~ %) through the reaction operator
n—1 has to be evaluated at momentym g, if the jets R
emerges on shell with momentum The double Born am-
plitude at thesameexternal potential is similarly given by -
dNMW=ClAL 1R A

-1

dq, d*ap (13)
— A (p—ga—ah.C

(277_)4 (277_)4 i |n71(p On—0dn ) ﬁ

Ailmin,l,z(pyc):f fta e o
=DID+V,+ V1.

XA(p—an—ay)T(2p—20,—0qn)

, , Consider  first the direct part dN™(Dir.
Xo(ay)A(p—apT(2p—0}) P (o)

o AlvnaDTDA; .  of the reaction operator. Perform-

xv(qé)ei(qnﬂ.'q)(xn—Xo) ing the color traces we take into account the identity
TrT,(1) Ty(j) = 6ij 6aC2(T)dr/da, which enforces that the
XTa (R)Tp (R) T4 (N)Tp (N). (100 positions of the ordered scattering centers in the amplitude
and its complementary are identical. We use the form of the
Ill. ELASTIC RECURSION OPERATOR scattering potential specified by E@®) as well as the high

energy eikonal approximation where the deviations due to
The observed jet inclusive distributiondN(p,c) the in-medium interactions from the initial jet trajectory are
=37 ,dNW(p,c) is expanded in the opacity series, wheresmall andE* = 2E:

dg,d%q, dosd%g,—. CrCy(T) . .
.\ ~N zn n zn n i A\ A ) _ ’
dN(”’(DIr-)—CnJ 2m? (2m) A=A Ay (P e v (An)v™ (an)
£ £ ~i(dn—0p) - (Xn—%0)
X <e An=dp) - (Xn 0>Al_ (14)

E*Q,n—02,—03+ie ETqy,—a,—q,’—ie

Theq,n,0., integral can be performed by closing the contour in the lower or upper half plane. We note that due to the short
range of the scattering potential relative to the mean free path the residues fromp, the-i \/qn2+ w? and q.,=

+i \/q,’12+ w? poles are exponentially suppressed and only the residugsat—ie+ qﬁ/E+ andq, .~ +ie+ q,’12/E+ contrib-

ute. In the high energy IimiE*>,u>qﬁ/E+ the quadratic terms from the residues in the exponent can be neglected. This
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removes the correlations between the scattering centers and there are no coherence effects at the jet level. We note that this i
an important difference from the case of induced gluon radiation discussed iflBefEmitted gluons are much softer than

the parent parton and non-negligibJﬁ-v(xi—xj)'(k—Q)2/k+ phases control the non-Abelian analogue of the Landau-
Pomeranchuk-Migdal effedtl7]. Taking into account that the Glauber thickness funcfiana fixed impact parameté,)
T(bg)=/fdzp(bg,z) =N/A, is expected to vary slowly with the impact parameter:

T(b
(NO) (2m)%8%(gn—ap). (15

—i(an—ap)-(b=bg)y
(™!t~ A,

Equation(15) is a key simplifying relation valid in the cas¢A, >1/u because it diagonalizes Efl4) in the transverse
momentum variables.

This leads to a simple recursion relation for the direct contribution to the jet spectrum to the momentum-shifted distribution
of ordern—1,

doe(RT) T(Bo) 0 o 4o 5
dZ—ane ®e Ail...inil(pvc)a (16)

dN(”)(Dir.):Cﬁf d?q, A1 In-1(p,c)

Wheref):iV; is the impact parameter operator conjugate to the transverse momprtcting to the right, an6'= — i‘V_p its
Hermitian conjugate acting to the left.

Next consider the virtual contributioN®™(Vir) =CNA'+'n-1(V+V") 4 ..; _ of the reaction operator, E¢L3),

da,qd%q, dad*an— > -, CrCy(T)
() _ N zn n zZn n N ) ) _ A ’
dN®(Vir,) = C2 Ref e A TR, (Pt @ (G

E* Ef

E" (Qznt Qan) = (Uznt Qpn) 2= (An +0p) % +i€ ETQ)—aqi2— a2 +ie

—i(aGn+0}) - (Xa—Xo)
<e ntdp) - (Xp 0>AL' 17

One notes that the momentum space integrations in this case could have been performed already at the amplitude level, Eq.
(10). Using the same set of approximations as for the Direct part we first perform,thimtegral as well as the impact
parameter average and note that the latter consteging],=0. Picking the residue a,,~—q,,—ie:

do,d%q,— . T(bg) CrCx(T) . . E*
. _ ~N Zn n—j A . ) s ’ 2
dNM(Vir.)=C}2 Ref —(277)3 Al HP)Ai i, (P (=D — Td. v(gp)v(—0p)

E*qy,— a0y +ie
(18

It was shown in Ref[13] that for a broad class of real spherically symmetric potentials of short rafngéhe remainingy,,,

integral can be performed. The screened Yukawa potential(Ftgbelongs in this category whema>1. We note that the
contour integration produces a real result and a factdr thfat cancels the factor of 2 arising from the virtual terms in both

the amplitude and its complementary. The recursion relation for the virtual part of the reaction operator can then be written as

doe (R, T) T(by)
d?q, N

de)(\ﬁr.):cg‘f d2g, A’ n-1(p,c) (=D |A...i_,(p.C). (19

Combining Eqs(16),(19) one recovers the full structure of tledasticreaction operator

doe(R,T) T(bo)

(n) —_cN 24 A1 cin-
dN (p,C) an d QHAl 1(p,C) qun N

(e“qn‘BT@)e‘q“‘B—1)lv4i1~~in1(p’c)

R, T =
T(bo)dgel( ’ )(e,qi,vp_l)

e dN©@(p,c), (20
i

1 n
_ 2
—mfglin

014005-4



REACTION OPERATOR APPROACH TO MULTIPE . . . PHYSICAL REVIEW D 66, 014005 (2002

10° . :

—— Fullresult (p, = 0)

R

----- Gaussian approx., & =logy ]
------ Gaussain approx., & = 1

Opacity x =3 A\
S\ a)
1 A Y
. . - 0 2 4 6

FIG. 2. The graphical structure of the reaction operdtor GeV
=D'D+V+V' is illustrated. It represents all possible=(+ ) (@) pr [GeV]
on-shell cuts through a new double Born insertion. 100 . . . '
where we used th@,ﬁ‘/N”avl/n! (Poisson approximation. Full result (p, = = 0)

Equation(20) is the main result of this paper and has a 't - Gaussian approx., & = log
transparent physical interpretation illustrated in Fig. 2. The — F=zsi0 coeeee Gaussian approx., & = 1

first term in the kinematic structure of the reaction operator §— )
corresponds to the direct elastic scattering part that leads t1% 10°
the deflection of the fact parton from its trajectory. The next O
two terms have delta function strength in the forward 0 &
direction and correspond to the virtual correctigits the Yo
amplitude and its complementary complex conjugafeese r4
terms enforce unitarity in the Gyulassy-Levai-Vit¢@LV) 10 | )
reaction operator formalism. Given any initial parton distri- Opacity x = 10 ~
bution one can then recursively solve from Eg0) for the "
final inclusive distribution of jets that have penetrated the 10 >
medium characterized here by its Glauber thickness functior
T(bg). The method used here is quite general and has severb) P; [GeV]
important advantages. Within the eikonal approximation it ] o
provides exact answers to problems related to multiple elas- FIG: 3. The final partorpy distribution is shown versus; for
tic and inelastic processes in QCD media. In particular it wadwo different opacitie =3 (a) and y=10 (b). We compare the full
applied to the case of gluon radiaticinom jets produced in r_esult(wﬂhqut the delta_ funf:tlon gontrlbutlon at~0) to thfe Mo-
heavy ion reaction§13]. For more details on its uses in jet liere Gaussian zapproxmatlon wi=1 and£=logx. In this ex-
tomography see Ref§4,5]. Since the solution is known to ample we usg.?=0.25 GeV.
all orders in opacity, cases ranging from thin media with a
few scatterings to thick media with a formally very large where the Fourier transform of the differential cross section
number of scatterings can be studied. was denoted by (2)2doe /d?q(b)=0¢(b) and g (0)

In the case of multiple elastic scatterings, the reaction=g,,, the total elastic scattering cross section. The impact
operator is so simple that it is possible to sum over all orderparameter space representation &4) depends only on the
in closed form. As usual it is most convenient to perform thedifference?re,(b) —7/(0). Transforming back to momentum

summation in impact parameter space. The distribution in thepace we recover the parton version of the Glauber multiple
impact parameter space conjugate to the transverse momeghjlision serieq14]

tump is
dN(b)= > i,{nbo)[?&el(b)— Tei}"dNO(b) dN(p)=e~ 7eT(%) f d2belP Pe”e ) TBIINO)(b)
n=0 N:
~ o *© n n
:eT(bo)(veu(b)—Uéf)d NO)(b), (21 _ E e’XX— H d2q; i doe dN©
n=0 ntJ =3 Tel d?q
n the case of medium-induced gluon bremsstrahlung the reaction X(P=01= "+~ ), (22

operatorR retains its general operator form E@.3) but its color

and kinematic structures are different since the on-ghelt = cuts ~ Where Y=o T(bg) =L/\. Equation(22) has the familiar
(see Fig. 2go through both the jet and gluon lines that interact with physical interpretation of a Poisson random walk in trans-
the double Born term. verse momentum space distributed accordingdq, /o,
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15

Full result, opacity 3 = 3 dN(p):j d?belPb——

e—w2§b2/2 1 e_PZ/ZXM2§
2 2;  2m  u.2s
------ Full result, opacity x = 10 ) (277) XH § XH §

(24)

[GeV?)

The resulting distribution is of Gaussian form and has a
width of yu?2¢, i.e., (p?) = xué.

To assess the accuracy of the Gaussian ansatz for finite
relevant in nuclear physics, we compare the Fourier trans-
form of Eq.(21) to Eq.(24). Note that in going from Eq21)
back to momentum space, @ X5%(p) component arises.

. This component is of course not displayed, and for fipite
1 10 100 numerical integration converges much more rapidly if unity
meaXZ [GeVZ] is subtr.acted from e{&(b)T(bO)]_ in the integrand22).
In Figs. 3a) and 3b) numerical results are shown for

FIG. 4. The transverse momentum broadening of jets is show®pacitiesy=3 and y=10. For large opacitiex=10 [see

versusp? .., for two different opacitiey=3,10 as in Figs. @ and ~ Fig. 3(b)] the Gaussian approximation gives better results

2

<pT2(pT max )>

3(b). We here usg:.>=0.25 Ge\ for illustration. than for small onesy=5. However, as is well known, at
larger transverse momenta it fails to account for the power
IV. DISCUSSION law p+ tail of the inclusive distribution. Unlike familiar Mo-

Impact parameter space resummation is often used in coliere scattering in atomic matter, there are no form factors to
junction with the small impact parameter approximation of“mIt the. gr.ov.vthz of the h'g.mT Rutherford tail out to the

the differential cross section, E4). We show below that Kinematic limit pT. yq,~ Equt in the case of QCD..Ou.r results
although such an approach is analytically appealing, it give£Or the rmﬁ trgnsver;r(]e rréomtcejnrt]urr&kmk shown in Fig. ‘r‘]de”."
jet distributions that may differ substantially from the exactOnstrate that in semihard and hard PQCD processes there is a

formula logarithmic in p%max enhancement of the mean squared
’ . . . . 2\ 2 2 2 H
The Fourier transform of thaormalizedcross section is ~ transverse momenturip®) = x u“10g(1+pT ya,/ x %) that is
given by missed in the dipole approximation. Of course for large

p2 .. radiative energy loss also contributes substantially to
the pr broadening of jets and should be taken into account in

doe b):f d*q e—iq-bi p applications.
d%q (2m)? T (9?4 u?)? In summary, we showed that the reaction operator formal-
ism developed in[13] easily recovers the well known
nb Glauber limit for elastic multiple collisions in PQCD matter
- ﬁKl('“b) and sheds light on the accuracy of the dipole approximation.
In the future it would be interesting to combine both elastic
1 Eu2b? and the Landau-Pomeranchuk-MigdaPM) suppressed in-
~ m( 1- 5 +0(b%) |, (23 elastic processes in this method and apply the results to the

jet acoplanarity observables suggested in Ref8,19|.

where b=|b| and in the quadratic term in Eq23) the

log 2/(1.08wb) multiplicative factor has been absorbed into

ab-independent constagtdue to its small logarithmic varia- ACKNOWLEDGMENTS
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