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Density matrix renormalization group approach to the massive Schwinger model
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The massive Schwinger model is studied using a density matrix renormalization group approach to the
staggered lattice Hamiltonian version of the model. Lattice sizes up to 256 sites are calculated, and the
estimates in the continuum limit are almost two orders of magnitude more accurate than previous calculations.
Coleman’s picture of “half-asymptotic” particles at a background fietd = is confirmed. The predicted phase
transition at finite fermion massn{/g) is accurately located and demonstrated to belong in the 2D Ising
universality class.
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I. INTRODUCTION [20-22, Monte Carlo calculation$23—-27, discrete light-
cone quantizatiorf28] and the related light-front Tamm-

The Schwinger moddl1,2], or quantum electrodynamics Dancoff[29,30 and “fast-moving frame’{31] techniques, a
in one space and one time dimension, exhibits many analgecently proposed “contractor renormalization group”
gies with QCD, including confinement, chiral symmetry method[32], and finally a coupled-cluster expansifs3].
breaking, charge shielding, and a topologigalvacuum  For a recent review, see Sriganestal. [22]. Analytic cal-
[3-6]. It is a common test bed for the trial of new techniquesculations of the mass spectrum have been carried out using
for the study of QCD: for instance, several authprs-10| mass perturbation theory3,34-34 for small fermion
have recently discussed new methods of treating lattice femasses, and weak-coupling expansip687,23 for large
mions using the Schwinger model as an example. fermion masses.

Our purpose in this paper is twofold. First, we aim to  In this paper we apply a new technique, namely the den-
explore the physics of this model when an external “back-sity matrix renormalization groufDMRG), which has been
ground” electric field is applied, as discussed long ago in aused with great succe$$1,12 for lattice spin models and
paper by Colemaf6]. Second, we wish to demonstrate the lattice electron models such as the Hubbard model. It was
application of density matrix renormalization group methodsalso recently applied to a simple one-particle potential model
[11,12 to a model of this sort, with long-range, nonlocal with asymptotic freedom by Martin-Delgado and Si€i38].
Coulomb interactions. It might be questioned whether the DMRG can successfully

Coleman[6] showed that the physics of the Schwinger handle a model involving long-range Coulomb interactions
model is periodic ind=2xF/g, where F is the applied such as the Schwinger model. We perform some calculations
“background” electric field andy is the elementary charge. in zero background field, to show that in fact the approach
In the special cas@=m, some amusing phenomena occur.works extremely well. It gives accurate results for lattices of
Whereas the “quarks” in this model are generally confinedup to 256 sites, and provides estimates of the continuum
by a classical linear potential, &= it is possible for limit which are around 50 times more accurate than previous
single quarks to appear deconfined, i.e. move freely, procalculations.
vided they do not cross another quétkalf-asymptotic par- The layout of the paper is as follows. In Sec. Il we review
ticles”). Coleman([6] also demonstrated that fa#=7 a  Coleman’s discussiof6] of the Schwinger model in a back-
phase transition must occur at some finite valuendf, ground field, and the lattice formulation thereof. In Sec. llI
wherem is the quark mass. These arguments are reviewethe DMRG technique is outlined. In Sec. IV our main results
more fully in Sec. II. at background field= 7 are presented. Mass gaps and order

There have been very few attempts to verify these predicparameters are calculated, and the critical parameters at the
tions numerically that we are aware of. Hamer, Kogut,phase transition are accurately estimated, showing that the
Crewther, and MazzolirffiL4] used finite-lattice techniques to transition lies in the universality class of the transverse Ising
address the problem. They calculated the ground-state energyodel in 1+ 1 dimensions. The “half-asymptotic” particles
and “string tension” as functions of andm/g. They located ~behave in exactly the same way as “kinks” or “spinons” in
the phase transition ai= to lie at (m/g).=0.325(20), the transverse Ising model, giving rise to some surprising
with a correlation length index=0.9(1). They also at- effects. Finally, in Sec. V some resultsét 0 are presented,
tempted to estimate the chiral order parameter; but it wagnd compared with previous results, both analytical and nu-
later pointed ouf15] that the chiral order parameter actually merical. Our conclusions are summarized in Sec. VI.
suffers from a logarithmic divergence at finite/g in this
model. Schiller and Ranf24] used Monte Carlo techniques II. THE SCHWINGER MODEL IN A BACKGROUND FIELD
to locate the phase transition ah{g).=0.31(1).

Many different numerical methods have been applied to
the Schwinger model in a zero background field, including The Schwinger model Lagrangian density, in standard no-
strong-coupling serieg16-19, finite-lattice calculations tation, is

A. Fermion formulation
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FIG. 1. Creation of a charged pair alters the electric field by
amount*g in the intervening space.

1
£=—ZFWF‘”+ Y(ib—gA—m)y (1)

wherey is a 2-component spinor field, since there is no spin
in one space dimension. The coupligghas dimensions of
mass, so the theory is super-renormalizable. Ugiras the
scale of energy, the physical properties of the model are then
functions of the dimensionless ratio/g. The field strength
term is

m/g=o0

m/g

oA m/g=0 "\
F#V_&MAV &VAM' ) 0=0 6=r 0=2n

The equations of motion are the Dirac equation
FIG. 2. Schematic plot of the vacuum energy density as a func-

(ib—gA-—m)y=0 (3 tion of m/g and 6. The heavy line marks the first-order transition
, ) line where the energy density has a cusp, terminating at the second
and Maxwell's equations order critical point (n/g)., where the discontinuity in slope wit
_ goes to zero.
9, FH'=aguy . 4
Choosing a time like axial gauge 0=21-r§. (10

Then we can always choogkto lie in the intervall 0,27 ].

In the weak-coupling limitm/g— e, the vacuum contains
no fermionic excitations, and the vacuum energy densjty
is given purely by the electrostatic energy tefwe ignore,

the field-strength tensor reduces to

10 _ pAl_
Fr=-A=E 6) or renormalize to zero, the energy of the Dirac)sétence
whereE is the 1-component electric field. Gauss’s law be- 1
comes §F2=9202/(8w2) (0<m),
; . — €0~
91E=—9,A*=gj°=gy°y. (7)

1
5(9-F)?=g’(2m—0)%/(8n°) (m=0=2m).

The Hamiltonian becomes (11)
— ) — 1, Thus there is a discontinuity in the slope of the energy den-
H =J dx| —igy (g1 +igA)tmyy+ SE°]. (8) ity corresponding to a first-order phase transitiorg=atr.
In the strong-coupling limitm/g=0, on the other hand, chi-
Gauss’s law can be integrated to give ral invariance demands that the vacuum energy density re-
mainsconstantas a function off (see Sec. Il B Thus we
0 expect a first-order transition &= = for large m/g, which
E=gf dxj"(x) +F, 9 terminates at a second order critical point at some finite
(m/g)., as illustrated in Fig. 2. This behavior was demon-
showing thatE is not an independent field, but can be deter-strated numerically some time ago by Hareeal.[14], who
mined in terms of the charge densit§(x), up to the con- located the critical point atn/g).=0.325(20), with an as-
stant of integratiorf, which corresponds to a “background sociated critical index=0.9(1).

field,” as discussed by Colemdif]. We can think of the Normally, charge is confined in the model: there is a
background field as created by condenser plates at either efistring” of constant electric field(or flux) connecting any
of our one-dimensional universe. pair of opposite chargels,4]. But Coleman[6] points out

If |[F|>g/2, charged pairs will be produced, and separatehat in the very special case=m, or F=g/2, the peculiar
to infinity, until the field is reduced within the rand&| phenomenon of “half-asymptotic” particles arises. In the
=<g/2, thus lowering the electrostatic energy per unit lengthweak-coupling limit, one can envisage the state shown in
(Fig. 1). Thus physics is periodic iR with periodg, and itis  Fig. 3. The electric field energy density is the same in be-
convenient to define an angteby tween each pair of particles, and they can therefore move
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M = ) = L= i+ msi ¢
- - Vs (19
g2 / -g/2 / g2 N -gf2 % g2 " ° °
here
FIG. 3. A configuration of “half-asymptotic” charged fermions
at background fieldr =g/2. m’ =m cosé
freely, as long as they maintain the sawreering i.e. no mg=msiné (20)

pair of fermions interchanges positions.
while the remaining terms of the Lagrangian density are na-

B. Boson formulation ively invariant. In the Bose form of the theory, the trans-
The one-dimensional fermionic theory can be mappecjormed mass term maps into
into an equivalent Bose forri8,38]. Some of the relevant _ _
mappings are Ly— —CcmMNycog 2\ md— ) (21)
T which is precisely the form(13), with the chiral rotation
e CMNMCOS(Z\/;@ parameterd playing the role of the background field.
= in(2 7 It can be seen immediately from E@L3) that atm/g
Hyysgie —CMNySIn2y7 ) 120 _0, the Hamiltonian is independent of the background field

variabled (i.e. is chiral invariant and reduces to a theory of
free, massive bosons, with mags=g/+\/7 [1,2]. There is no
sign of the half-asymptotic particles found in the weak-
coupling limit at 6= .

The Hamiltonian density in the charge zero sector can then Coleman[6] gives a very neat semiclassical argument to

) — 1
Jh=yyt ‘_)\/_Ee,uvﬁuﬁb-

be written[6] show how the half-asymptotic particles arise in the Bose for-
1 1 1 mulation. At #= s, the Hamiltonian corresponds to an effec-
_ T2 = 2. T\ 242 tive potential
H=Ny 21'[ +2((91¢) +2M ¢
1
U(¢)=sM?¢p?+cmMcog 2 : 22
_cmMoog2yms—o)|. 13 (¢)=5M?¢ $2\m¢) (22

For m/g small, there is a unique vacuum at=0. Form/g
large, however, there are two vacua, locatedbat+ 3 J,
and the symmetryp«— — ¢ suffers spontaneous breakdown.
g2 The two vacua correspond to background field valde
—, (14 or 27, or F=0 or g. Creutz[7] notes that in the broken
& symmetry phase the expectation value #f[and hence

HereNy, denotes normal ordering with respect to mlssp
is the Bose field andl is its conjugate momentum, and

M?=

while sin(2y/7¢)] should be non-zero, and therefape®y should
make a suitable order parameter, by ER).
e’ Spontaneous breakdown ofZ symmetry implies that
c= 2 (15) the critical point should belong to the universality class of
the (1+1)D or 2D Ising model, with critical indiceg=1
and y=0.5774 is Euler’s constant. Note that and 8= 1/8, which is consistent with the value ferfound
by Hameret al. [14].
drp=m° (16) For a single scalar field in two-dimensional space-time

. , L e ) undergoing spontaneous symmetry breaking, there will exist
is Gauss's law, which identifieé is proportional to the elec-  ime.independent finite-energy soliton solutions of the clas-
tric field. Finally, ¢ is the background field variable, as be- sjc4) field equations passing monotonically from one ground
fore. This form of the theory is most convenient for discusS-giate 1o the other. We may designate the increasing solution a
ing the strong-coupling limitm/g— 0. _ “kink” and the decreasing solution an “antikink{see Fig.

~ Anice discussion of the connection betweeand chiral 4y These are the half-asymptotic particles, in Bose language.
invariance is given by Creufz]. Consider the fermion mass gjnks and antikinks must alternate with each other when

term well separated, just as the half-asymptotic fermions do.
— At strong couplings, the mass of the single boson excita-
Lm=mp. (17 tion at = can be estimated semiclassically by fitting a
. . . harmonic oscillator to the effective potentialéat=0. Hence
If we now consider a chiral rotation )
one finds
y—e 752y (18) 2
&:M 1—\/;67 T +0 T
the mass term becomes g g g g
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0 1 )
ag /(M= —AX) @7)

V2
\ / \ [ \ gL(n) —E(x). (28)
\ J & j | The vy matrices are represented by
~Vr2

e o) 1_(0 1) ,
Y o -1/ Y 7l-1 of @9

FIG. 4. “Kinks” and “antikinks” are represented by transitions . ) ) )
between the ground state solutiogs= = % Every transiton V& Use a “compact” formulation where the gauge field be-
corresponds to either a quark or an antiquark, according to th60mes an angular variable<¥(n)=<2 on the lattice, and

picture given in Fig. 3. L(n) is the conjugate spin variable
L (m (m2 [6(n),L(M)]=i 6, (30
- = -o| 7)ol 7] o

Jr g g so thatL(n) has integer eigenvaluggn)=0,+1,+2,... .

In the naive continuum limia— 0, the lattice Hamiltonian
m m) 2 (25) reduces to the continuum expressi@.
=0.564- 1.7%5 +0 a) , (23 The Hamiltonian is transcribed to a dimensionless opera-

tor

where we have denoted this mass dy, standing for the

mass gap in the “2-particle,” or electron-positron, sector. A

crude linear extrapolation im/g would give the boson mass W= ;H =Wo+xV (31)
vanishing atm/g=0.317, quite close to the critical point g

found by Hamett al. [14]. where

C. Lattice formulation

Wo=2, L2(n)+ —1)"¢T(n)g(n), 32
We employ the Kogut-Susskirid0,17] Hamiltonian spa- 0 ; (n) M; (=17 é(n) (32

tial lattice formulation of the Schwinger model, with the fer-

mions sited on a “staggered” spatial lattice. Let the lattice ) . o)

spacing be, and label the sites of the one-dimensional chain V=i ; [¢'(Me"Vé(nt1)—H.c] (33
with an integern. Define a single-component fermion field

¢(n) at each siten, and a link variable om 1
- - =—, X=—. 34
U(n,n+1)=¢ 6(n) — g—iagAl(n) (24) M g%a X g2a2 (34

on each link! Then the lattice Hamiltonian equivalent to Eq. In the lattice strong-coupling limit— 0, the unperturbed

(8) is ground statg0) has
. N
[ _
H=5a 2 [#/(Me"eint D-Hel LM =0, ' (md(m=5[1-(~1, all n @9
N
_4an whose energy we normalize to zero. The lattice version of
+mn§1 (=) () b(m) Gauss’s law is then taken as
g%a O 1
+ 5 2 LA (25 L(n=L(n=1)=a"(m¢(n-5[1-(-1)"] (39

where the number of lattice sitd¢ is even, and the corre- which means excitations on odd and even sites credte

spondence between lattice and continuum fields is units of flux, corresponding to “electron” and “positron”
excitations, respectively. EquatidB86) determines the elec-
DuppekX), N even, tric field L(n) entirely, up to an arbitrary additiveonstant
H(n)/a— uppe (26) (n) Yy, up y

a, which then represents the background field. Allowintp
be non-zero, the electrostatic energy term is modified to

wlower(x)a n Odd7

e trust the indexn) will differentiate the lattice fieldgs(n) and 2 Lz(n)ﬂz [L(n)+a]% (37)
6(n) from the quite different fieldgs and @ of Sec. Il B. n n
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The physics of the background field then matches precisely 7\
with the continuum discussion. lfa|>1/2, charged pairs P N o
will be produced and separate to infinity to lower the elec- &
trostatic energy, and brinigry|<1/2. Physics is then periodic ~ FIG. 5. The electric fields at either end of the chain in the
in a with period 1, and the background field variable is presence of a single particle agé2, —g/2, respectively. This pre-
cludes periodic boundary conditions due to the mismatch of electric
0=2ma. (38 fields.

In the weak-coupling limitm/g— o the vacuum contains  We will also study two order parameters which can be
no fermion excitations, and the ground state energy=20  used to characterize the phase transitioatr. The first

IS one is the average electric field
wo=Na? (|a|<1/2) (39 1
F“=N<2 [L(n)+a]> , (45)

corresponding to the “zero-loop” state with{L(n) " 0
=0, all n}; or

which in the weak-coupling limitm/g—« takes values

wo=N(1—a)? (l/2<a<l) (400  *£1/2 for the zero-loop and one-loop states, respectively. By

the Feynman-Hellman theorem, it is proportional to the slope
corresponding to the “one-loop” state with{L(n)= JEq/da of the ground-state energy: a glance at Fig. 2 shows
-1, all n}. that at largem/g this slope undergoes a discontinuity et

At a=1/2, these two states are degenerate; and half=, while below (n/g). it vanishes. _ _ _
asymptotic states consisting of alternating electrons and pos- The second order parameter is the axial fermion density
itrons exist, just as in the continuum model. Let us denote theuggested by CreufZ]

two states(39) and (40) by |3) and|—3), according to the __
electric fields{L(n)+a==%, all n} on the links. On a I°=(iy°Plg)o (46)
finite lattice at weak coupling, the eigenstates will be the
symmetric and antisymmetric combinations

=- % 2 (~DMH (Mb(n+1)-Hc)

11 1 0
Sl Dl I (47)
N -
where
and _
Yo=iyyt (48)
, 1(]1 1 o . _
|0")= E 5171735/ (42 Now on a finite lattice there is no spontaneous symmetry

breakdown, and the expectation values of the order param-
_ _ eters will remain identically zero. The remedy for this is
These states become degenerate in the bulk IMait©, — \e) known, howevel41]. If the two lowest-energy states
when spontaneous symmetry-breaking occurs. We shall dgynich become degenerate in the bulk limit->~ are de-

note the energy gap between théar “loop gap”) asAo,  poted|0) and|0’), respectively, then a simplex22 matrix

standing for the 0-particle sector. o _ calculation shows that the order parameter corresponding to
The lowest-energy single-particle excitatidfig. 5 is an operatof) can be estimated as togerlapmatrix element
5 N N L (0]QJ|0") on the finite lattice.
_ ./t —ia()| = In zero background field=0, the 2-particle “positroni-
1) \[N ngl ¢(n)j1;[n € 2> (43 um” excited states of lowest energy in the lattice strong cou-
{n odd pling limit are the “vector” state]16]

while the lowest “2-particle” state is

2

n=
{n odd

1N -
o)== 3, [#00e gn+ 1) +Hello) @9

2)= ¢'(n+1)e" "M g(n)

2

. (44)

WN

and the “scalar” state

_ 1
t i0(n) - = .
+¢t(n+1)e d)(n+2)‘ 2> |s)= \/]-ﬁ 21 [¢T(n)e""Mp(n+1)—H.c]|0) (50

We shall compute the energy gaps between these states and
the ground stated,/g andA,/g, respectively. where|0) is the strong-coupling ground stafe5).
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D. Lattice spin formulation implemented by arranging other blocks acting as an “envi-
An equivalent lattice spin formulation can be obtained byronment” for the system block. o
a Jordan-Wigner transformatig6] The method employed here is the “infinite system”

DMRG method, as prescribed by WhitEl], used both with

B . _ open and periodic boundary conditiof@BC and PBQ. Be-
¢>(n)—|1:[n Lios(1)]o(n) (5D cause of the presence of the electric field on the links, and
the differing nature of the odd- and even-numbered sites,
some modifications were made to the method, although noth-

¢T(n):|1;[n [—ioa(D]o™(n) (520 ing that changes the spirit of the DMRG. The quantities cal-
culated are the ground state energies, mass gaps and order
giving parameters. We use the form of the Hamiltonian given in

Eqgs.(53) and (54).

Let us first look at how the presence of the electric fields
affects the implementation of the code. For a particular spin
configuration with OBC, if we specify the incoming electric
. field for the first site of the chain, then according to Esp)

V= ; [o" (me"Mo™(n+1)+H.c] (54 the electric field for all the links can be deduced. This incom-
ing field can be eithek,,=0 for the zero background field
and case, olL;,= + 1/2 for the background field case. If PBC are
imposed, then as there is no particular link to fix the electric
field, we can have loops of electric flux extending throughout
the ring. In the presence of a background field we simply add
(or subtrack 1/2 from the values of the electric fields due to
The I order parameter can be written in spin variables  the spin configuration. A cutoff, or maximum loop value, was
chosen such that full convergence was reached to machine
1“5:\/—; 2 (—1)"o* (N)e g (n+1)+Hc]) . precision. A loop cutoff of —5,5] was more than sufficient
N \ 5 o In most cases.
(56) A typical DMRG iteration is shown in Figs. @BC) and
7 (PBO). The chain(or ring) is split into two blocks and two
This is the form which we used in the numerical calculations sjtes, where blocks contain in general more than one site. In
one DMRG iteration, we augment two sites to each block, so
Ill. METHODS that the whole system grows by 4 sites each time. This is
more convenient than the standard approach of adding one
site at a time, due to the differing nature of the odd- and

Our results are based on the density matrix renormalizagyen-numbered sites. For the PBC case this allows one to
tion group(DMRG) method[11,12. DMRG has been used haye the same type of site on each end of the bloekboth
primarily to study low dim_ensional_quantum Iattic_e s;_/stemse\,en or both odd which considerably simplifies the book-
in condensed matter physics, and is able to obtain with greglaeping of the electric fields on the links. In this case both
accuracy quantities such as the ground and excited state efy,cks are identical, so that only one augmentation and den-
ergies, "?md. corrgl.ation functions. One of the ‘?‘?Y features o ity matrix is necessary. For the OBC case, we have a differ-
DMRG s its ?b"'ty to (_:alculate these quantities for very ent situation. Again augmenting two sites at a time allows us
large system sizes, particularly for systems with a low nums-, .
ber of degrees of freedom per site. j[O hgve the same type of site on _each end of the blocks, .but

The roots of DMRG lie in the numerical renormalization ™ this case the left-hand block will always have an odd site

group(NRG) procedure, implemented by Wils¢h3] for the on each end, while 'Fhe rlght-hand block will havg an even
Kondo problem. The method obtained good results for thiSite on each end. This requires Fwo s_eparate density matrices
particular problem, but later studies proved that the methodP" €ach block, as they are not identical. _ _
was unreliable, for reasons which were examined by White We start with a 4-site superblock, and continue adding
[11]. Addressing these problems gave birth to the DMRGSIt€S until we reach 256 sites. For PBC we keep a maximum
method, which proved to be a remarkably robust, reliable©f 125 states per spin sector per loop value in a block, which
and highly accurate method of examining the physics of lowcorresponds to a truncation parameter of approximaltely
dimensional systems. Elements of the original NRG proce=~1100, wherd is the total number of basis states retained in
dure remain in DMRG, in that the lattice sites are groupecda block. The truncation error for 256 sites can vary from 1
into successively larger blocks, and that unimportant degreesart in 10 to 10'* depending on the number of excitations
of freedom are integrated out progressively in each iterationand the parameters. For OBC, again we keep a maximum of
DMRG differs from the NRG procedure in that the new basis125 states per spin sector, but as there are no electric field
states which are selected are chosen via the density matrilgops, here the truncation parameter 1s300. The trunca-
and a proper consideration of the boundaries of the blocks ion error for 256 sites is typically 1 part in 10

N
Wo=3 [L(n) +al?+5 3 (~1'osm+ - (63

1
L-L(n-1)=Z[os(m+(-1". (55

A. The density matrix renormalization group method
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TABLE |I. DMRG estimates of the ground state energy density
wol2NX, the “2-particle” gapA, /g, and two order parameters, the
mean field[*=((L+ a)), and axial density"®>=(iyysy/g), as
functions ofl, the number of basis states retained per block. These
results are for periodic boundary conditionsxat 100, m/g=0.3,
0=, andN= 256 sites.

Augmentation & Augmentation 2

i=l _i=2 i=3 i=4 =5 i=6 i=7 i=8

| | wol2NX A,lg re« rs
244 —.31676292 .26833 .28068 .29104
$ 324 —.31677001 .25687 .27598 .28147
416 —.31677263 .25279 27417 27735
555 —.31677385 .25054 27319 .27528
742 —.31677428 .24963 27273 27444
FIG. 6. A DMRG iteration using open boundary conditions. 932 —.31677440 24933 27266 27423

Two augmentations are needed to allow for the difference between

odd and even sites.
order parameters. The ground state energy can be resolved to

1 part in 16, while the two-particle gap is resolved to 1 part
in 10°. The order parameters are subject to round-off errors
The accuracy of the DMRG calculation is strongly depen-because they involve the overlap of the two wave functions,
dent on the parameter valugsand m/g; in particular we and hence reduced accuracy is expected: here we have 3
expect the accuracy to worsen near critical regions. We findigures. Figure 8 shows the behavior of the ground state en-
that OBC provide more accurate results than PBC, which iergy density as a function of the density matrix truncation
consistent with previous DMRG studies. We provide detailseigenvalue, which corresponds to the sum of the eigenvalues
of the accuracy for the worst case scenario, i.e. the paramhrown away from the density matrix. We see a linear rela-
eters closest to the critical regions. This is not representativionship between these quantities, which is confirmation that
of the typical accuracies achievable with the DMRG, butthe DMRG is working correctly. Where possible, we obtain
gives us an upper bound on the errors. the final estimate by taking the results with the two largest
We examine the point nj/g=0.3;x=100;6= ;N truncation parameters, and performing a linear extrapolation
=256) with PBC, which represents the smallest lattice spacto the y axis. The error estimate is obtained by taking the
ing used for this study, and lies in the critical region. Table Idifference in the extrapolant and the result with the largjest
shows the convergence of the DMRG for these parameters as Using OBC improves the accuracy of the DMRG calcu-
a function of the truncation parameterfor the energies and lation considerably. Table Il shows the convergence of the
same quantities with the same parameters as Table I, but with
OBC. The ground state energy density is accurate to nearly
machine precision, and the 2-particle mass gap to 1 part in
10’. Again due to round-off errors, we are limited in accu-
racy for the order parameters, so a similar accuracy to the
PBC code is achieved here. A point against using OBC is
that the finite-size corrections are much larger for this case.

B. Accuracy of the DMRG calculations

i=4 <

-0.3167730 T T T T T o)
-0.3167732 [
$ -0.3167734 [
-0.3167736 [

-0.3167738 [

wo/2Nx

-0.3167740 [

S .
) v . -0.3167742 | ’
i=8 s i=4 -0
* 03167744 |
-0.3167746 | .
.9
i=7 i=6 i=5 03167748 | O°
-0.3167750 . - - ; .
o 05 10 15 20 25 3.0

D.M. truncation error (x10 ®)

FIG. 8. Dependence of the estimated ground state energy den-
sity wq/2Nx on the density matrix truncation eigenvalues, for
FIG. 7. A DMRG iteration using periodic boundary conditions. =100, m/g=0.3, =, using PBC.
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TABLE Il. As for Table I, with open boundary conditions. 0.3% T
x=100 —O—
=44.4 -1~
| wo/2NX A,lg re rs I N . °
107 —.31611009314180 .19536745 .256555-.257439 oazs b o © o °
162 —.31611009382342 .19535871 .256594—.257479 ' 00°
199 —.31611009385738 .19535765 .256606-.257489 3 - W
244  —.31611009386852 .19535733 .256782—.257658 E O o
327 —.31611009387277 .19535723 .256751-.257627 voc im0 0 8 8 8
396 —.31611009387248 .19535720 .256734—.257604
031 | AAA A A A A A A
We use OBC to calculate the 1-particle gap and the ordel | _ _ _ _
parameter estimates in the continuum limit, and PBC other- ***s 20 20 a0 a0 100
wise. INT pad®)

IV. RESULTS AT BACKGROUND FIELD 6= FIG. 9. Pseudocritical points for various lattice spacings.

A. Analysis of critical behavior Bn(m/g) An(m/g)

(59

We use finite-size scaling theory to estimate the position m/g An(m/g)—2(mig)Af(m/g)
of the critical point, by calculating pseudo-critical poifd2]
at each lattice siz&l and each lattice spacing We demand scales at the critical point likggy((m/g))~N"*" as N

that the scaled energy-gap ratio — oo [43]. Hence we can extract the critical exponerfrom
Ho rai
e NA (/) o the ratio
N(M/g)=
(N=1)AN_1(m/g) m/g)§
Nl 1— Bn(( g)f) ’ (60)
is equal to unity at the pointn/g=(m/g);,, which is the Brn-1((M/g){-1)

pseudo-critical point. Hera (m/g) refers to the energy gap
at some finite lattice sizeN. In practice we calculate
Rn(m/g) for a cluster of five points straddling the pseudo-
critical point, then use a polynomial interpolation to find In[ Bn(MIQ)E) By 1 (MVQ)%)] 1

(m/g)y, - The points were chosen at a spacingAdfim/g) N/(N=1)] - (61

since this should approachilhs N—«. Alternatively we
can use the limiting behavior

=0.02 apart, the smallest reasonable spacing which ensures

we cover the pseudo-c_rmcal point based on Ehe work ,,Ofas N—o, We call the first of these ratia®0) the “linear”
Hameret al. [14]. For this exercise we use the “loop gap

. . ) estimate, while the second is the “logarithmic” estimate. We
Ag/g, which collapses to zero at the pseudocritical point. 9

: Iculate these ratios for all lattice siz¥sand latti -
Figure 9 shows three sample data sets for the pseud calculate these ratios for all lattice sizéisand lattice spac

%gs x. Analysis of th hows that the logarithmic ver-
critical points calculated betweex=4 andx=100. On a 9s alysis of the data shows that the logarithmic ve

. . ._sion is more stable numerically, and converges more quickl
1/N3 plot these can be simply extrapolated with a quadratic, y 9 9 y

with errors in the vicinity of 1 part in 19 for all x. Some 036 . , . , , . . . .
numerical instability creeps in for the larger lattice sizes, This work —O—
however, where the change in the gap energy with lattice size °*[ Hamer etal. —CH |
N becomes so slow that round off errors become appreciable ,,| .
The continuum limit is then estimated from these bulk criti- "3“@\
cal points, as shown in Fig. 10. A quadratic fit iny&/ex- oaf ® o,
tracts the continuum limia— 0 or x— e, which we estimate 2l ©5.
to be S‘o‘ﬂ
026 [ RN
m o..
(—) =0.33352). (58) - a.
9/, SR
022 1
This is consistent with the previous estimate by Hasteal. 02 . . . . . . . . .
[14] of (m/g).=0.325(20), or Schiller and Ranft24], L A S A S
(m/g).=0.31(1), but with two orders of magnitude im- *
provement in accuracy. FIG. 10. Critical line in them/g versus 1{x=ga plane. Open

Finite-size scaling theorf42] also allows us to estimate circles are our present estimates, and squares are the previous re-
the critical indices for the model. The theory tells us that thesults of Hameet al.[14], which are in good agreement. The dashed
Callan-Symanzik “beta function” line is a quadratic fit to the data ma.
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0 " " " " " " " TABLE IlIl. Estimates for critical exponents it/and B/v as
arf_ BG-GB Ee e ] functions of the lattice spacing parameter 1/g%a?.
-0.2 4
03 -l o | X 1/lv Blv
B -
g o4 1 4.0 0.991) 0.1285)
o 5 - 4.938 1.002) 0.1255)
£ s : 6.25 0.992) 0.1255)
S o7 L 8.163 0.992) 0.1256)
7 s P o7 11.1 1.004) 0.1266)
09 oo ] 16.0 0.993) 0.1266)
Al ] 25.0 0.993) 0.1276)
- . . . . . . . 44.4 0.974) 0.1236)
"o 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 100 O l Ql) 0 lzl)
N . . .

FIG. 11. “Logarithmic” ratio estimates of critical indices

—1/v and — B/ v for lattice spacing ix=ga=0.45. Quadratic fits some extrapolation is necessary, especially for small lattice
in 1/N provide the bulk extrapolations. We estimate here 1/ spacings, to obtain the bulk limM—s. In order to do so,
=1.00(2) ands/»=0.12535). we need to fit the data with an appropriate functionNof

o ) Now results from Sec. IV A revealed that the critical behav-
towards the bulk limit. We show an example of this conver-jo; of this model is closely related to that of the transverse
gence in Fig. 11 for a particular lattice spacing/d#ga  |sing model. In that model the finite lattice values away from
=0.45. We see monotonic convergence toward$/v—  the critical point converge exponentially to the bulk limit,
— 1, until the same numerical errors begin to creep in as seefodulo half-integral powers dfl [43] (see the Appendix

in Fig. 9. _ ~ Hence we apply a form
A similar method was used to estimate the critical index

B. The order parameterB andT'} are expected to scale

like ~N~#'” [43]. Linear and logarithmic ratios are again Ay=
constructed from these quantities, and analyzed in the same

way as for the beta functions. Again the logarithmic ratios

to the data, wher@,b,c,d,e are fit parameters. Figure 12
IN[T N (M7 g) R/ T N—1((M/g)})] b (62)  shows that this form in fact fits theIo data very weﬁ, for all
IN[N/(N—1)] v values ofm/g.

. . . As a double-check of the results of the fit, we also apply
seem to do better than the Ilnear ratios, in terms of n'umerlcaé VBS sequence extrapolation routifié4] to the finite-
stability and convergence. Figure 11 shows the estimate fqpice sequences, which provides an independent estimate of
Blv, which uses the electric field order parameter. All finalihe pylk limit. Errors for the VBS estimates were obtained by
estimates forB/v shown in Table IIl are calculated using examining the columns of the VBS extrapolants, and com-

n=((L+a))o. paring the results with different VBS parametersTypically

Table 1l displays our results for the critical exponents, forthe VBS and the fit results agree to better than 1% accuracy,
each different lattice spacing. We see essentially no variation

in the exponents with lattice spacing, to within the accuracy |,

C

b
a+\/_N+N exp—dN)+e (65

of our calculations. Our best estimates for the critical expo- x=41:)2$
nents are thus oot logean
r=1.01(1) (63 ozs|
Blv=0.1285). (64) 3

These results provide reasonably conclusive evidence the °%®[
the Schwinger model transition &= lies in the same
universality class as the one dimensional transverse Ising
model, or equivalently the 2D Ising model, witv€1, B
=1/8).

05 " " " "
0 0.002 0.004 0.008 0.008 0.01

B. Behavior in the continuum limit 1N

We now turn to estimating continuum limit values for the  FIG. 12. Bulk extrapolations for the 2-particle gap /g for
energy gaps and order parameters. First of all, examinatiom/g=0.0 andd= . Dashed lines are the fits to the data, according
of the data points for 2-particle gaps in Fig. 12 reveal thato Eq. (65).
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R ' ' ' ' ' ' ' ‘ <0.25, where the gaps are resolved to 4 figures. Near the
e LT vsing i g ] critical region it becomes rather more difficult to extrapolate
' *\% using Ves in a consistent manner.
- \é\\ ] 2. 2-particle gap
o= \\S ] We plot on the same figure results for the 2-particle gap
z o S ] A,/g. Again, the gap vanishes at the critical point/§).,
B\\ but on either side of the critical point there is a finite gap,
s B ] and an almost linear behavior with/g. A linear fit through
E\\E the points in the rangm/g=[0,(m/g).] gives
0.46 \\\
Tf A, m
» . —~0.569-1.72 —|, (66)
i 0.05 01 0.15 0.2 0.25 03 0.35 04 0.45 0.5 g g

ga
_ ) _ which agrees very well with the prediction made in E2p).
FIG. 13. Continuum extrapolations for the 2-particle gap forNote, however, that the behavior is retactlylinear.
r_n/gz0.0 an_d€= 7. Data sets obtained through separate VBS and The m/g=0 case is unique in the sense that we have a
fit extrapolations. direct check on our results, since an analytic solution is
known. For the massless case the background field has no
as long as we are not near the critical region where it beeffect on the physics of the model, since any background
comes difficult to extract a reliable estimate. field is completely screened out. Hence all measurable quan-
Figure 13 shows the extrapolation to the continuum limittities should be independent of the background field, and in

x—, ora—0. We see that generally there is good agreeparticular the Schwinger boson mdds?2]
ment between the VBS extrapolations and th€gf), except

towards small lattice spacings where a discrepancy opens up. A, 1

An extrapolation to the continuum limit is now performed by — =—=~0.564109. (67)
a simple polynomial fit in powers of {k=ga. The double 9 Vr

extrapolation therefore introduces quite large errors into ou
final results, compared to the original DMRG eigenvalue
where the errors are at worst of order 0.1%.

Dur DMRG estimate givell,/g=0.5711), which agrees
Swith this result within errors.

3. 1-particle gap

1. Loop energies The 1-particle gap must be calculated using open bound-

Figure 14 shows our results for the “loop” energy gap ary conditions, due to the mismatch in electric fields at either
Ao /g for all values ofm/g. We see that this gap vanishes atend of the chain. Figure 5 shows the situation. A single
the same point as calculated in E§8), and is zero for all charged particle in the middle will shift the electric field by
m/g>(m/g)., as predicted by Colemaf6]. The conver- =+g, and hence we have differing electric fields at either end.
gence to the bulk limitN—o for this case is much better There is a further complication in the case with open bound-
than for the 2-particle gap illustrated in Fig. 12, such thataries, in that applying a background field of eitlaet 1/2 or
away from the critical region hardly any extrapolation is —1/2 gives a different result for thground state energfor
needed. This gives us good accuracy for the regivig a finite lattice. This is due to the “staggered lattice” conven-

tion we have adopted, with “electrons” appearing on odd

2 T . r r sites and “positrons” appearing on even sites. The only con-
L Ay O sistent definition of the 1-particle gap for a finite lattice is
00p energy, L9 4 therefore
1-particle gap, A /g -+
18I 2-particle gap, A /g —&— 1
. e A,/g=E;— E(Eg +Eo) (68)
< 1 A,.v" |
= where E, is the 1-particle energyE, is the ground state
Vs o energy witha=1/2, andE, that for a=—1/2.
st e _A/ _,g—"' ] Apart from this complication the procedure in extrapolat-
\&.m\ = ing to the continuum limit is the same as for the 2-particle
&.\é\ & state. Our results are shown in Fig. 14. We see that the gap
R /—"*f o—0 0 vanishes form/g<<(m/g)., while for m/g>(m/g). the
0 02 04 06 08 1

1-particle gap is very close to half the 2-particle gap. Once
again, the behavior is very nearly linearnmg.

FIG. 14. Final estimates for gaps in the O-particle, 1-particle and The pattern of eigenvalues exhibited in Fig. 14 bears an
2-particle sectors &= 7. Dashed lines are merely to guide the eye. extraordinary resemblance to that of the transverse Ising

m/g
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05
045 | r* ~o
T

Py based on a weak-coupling representation do not give clear
e e 1 physical insight into this phenomenon.

B ] All the features just discussed are of course peculiar to the
o ] special cased= . For instance, the 1-particle gap at any
o other value of¢ would be infinite.

03 ~~

04r

Q

035

025 ~~ 1 4. Order parameters

Order parameters
/

02

We may also obtain estimates for the order paraméters
€ andI'® as functions ofn/g. Our results are displayed in Fig.
15. Both order parameters are zero, within errors,nfidg
<(m/g).. Near the critical region, particularly fom/g
<(m/g). it becomes quite difficult to obtain accurate esti-
o4 o6 0 ’ mates, but it appears that both order parameters turn over and
m/g drop abruptly to zero as the critical point is approached from
FIG. 15. Order paramete®=((L+a))o, I'®=(iyys//g)o above, consistent with the small exponght 1/8 found in
near the critical region. Dashed lines are merely to guide the eyeSec. IV A. The axial density™® decreases steadily towards
zero at largen/g, wheread ™« approaches the expected value
of 1/2. All our results for the gapad,/g, A,/g, A,/g and
both order parameters are shown in Table IV for future ref-
erence.

015

(mig)

o1

mig

005

[mg]

oL} {F
[

o
[

model [45,43, even down to thgalmos} linear behavior
with m/g. In particular, we see that the energy of the
1-particle or “kink” state vanishes at the critical point, and
then remains deg_enera_\twnh the grou_nd state fqrr_(n/g_) V. RESULTS AT BACKGROUND FIELD 6=0
<(m/g).. Assuming this degeneracy is exact, this indicates
that a “kink condensate” will form in the ground state for =~ The case of zero background field has been studied by
small mass, as discussed by Fradkin and Susddaf It many authors already, as outlined in the Introduction. Our
also indicates the existence of a “dual symmetry” in the purpose here is to demonstrate how the DMRG can improve
model, additional to that discussed in Sec. Il, which is sponon the accuracy of existing results. The main quantities of
taneously broken in the low-mass region, and has not beeinterest are the “vector” and “scalar” state masses. The most
explored hitherto. There should also be a “dual order paramaccurate results to date are those of Srigaretshl. [22],
eter” associated with this symmetry. By analogy with thewho used numerical exact diagonalization results together
Ising case, one would expect the “dual” order parameter towith a VBS extrapolation to obtain their final estimates. The
be the expectation value of the kink creation/destruction oplargest lattice size calculated by these authors Was22,
erator, and the “dual” symmetry to correspond to inversionhence we expect to be able to do much better using our
of this operator; but we have not verified this by explicit DMRG algorithm, which can go to much larger lattice sizes.
computation. For the /=0 case, we find that convergence with lattice
The other notable feature of Fig. 14 is the degeneracwize is much more rapid than fér= 7, so much so that with
(within error9 between the zero-particle gap,/g and the N=256, there is essentially no extrapolation necessary to
2-particle gapA,/g at small mass. Our physical pictures obtain the bulk limit. Figure 16 shows the data fofg=0,

TABLE V. Our results for the loop energy},/g, 1-particle gapA,/g, and 2-particle gap\,/g at
background fieldé==. We also quote our results for the order parametéfs=((L+«)), and I'®

=(i¢rysilg)o.

m/g Aolg A, lg A,lg re rs
0.0 0.56482) 0.0+10°© 0.571) 0.0+10* 0.0-107*
0.05 0.47562) 0.481)

0.1 0.388%2) 0.0+10°° 0.4001) 0.0+10°° 0.0+102
0.15 0.302(5) 0.302)

0.2 0.217%) 0.0+107° 0.234) 0.002) 0.0045)
0.25 0.1342) 0.164)

0.3 0.0%2) 0.0+1072 0.037) 0.03) 0.02)
0.4 0.0:10°3 0.1053) 0.221) 0.3761) 0.3025)
0.5 0.0-10"4 0.2463) 0.491) 0.421(1) 0.2705)
0.6 0.0-10* 0.37646) 0.75898) 0.44305) 0.2385)
0.7 0.0-104 0.502G2) 1.0064) 0.45665) 0.2115)
0.8 0.0:10°° 0.62241) 1.2494) 0.46575) 0.1895)
1.0 0.0:10°° 0.85304) 1.71%4) 0.47695) 0.1555)
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A X=25 —A— quadratic 3~ o
oer 1 0.5652 cubic —a— o
E.II]II]]]]]]]:I]]]]]] A
0.595 | Uo O osss F
o O
o
e . A ] 2 oses
m} E o
ooy 0o ] 0.5646 [
(o} o o O o i
T o 1 0.5644 | ]
o] [m] 1 o
0575 [ o i B e
o | = A
o o} 1 0564 | A A
0.565 . . . . . N . . N
05638
° oo oot 0.0 008 o1 0.1 0.15 02 025 03 035 04

1N

FIG. 16. “Vector” mass gapsn /g for m/g=0, finite lattices
N=10-256, and various lattice spacings.

ga

FIG. 17. An example of our extrapolation procedure for the
“vector” mass gaps am/g=0. Circles, squares and triangles show
linear, quadratic and cubic extrapolants, respectively. Dashed lines
which is the exactly soluble case. For a particular latticeshow the upper and lower bounds for our final estimate. Here we
spacingx, we have very good convergence with lattice sizeestimatem™/g=0.564144).
so that forx=4 through tox=100 we have 6 figure conver-
gence. Even for the largest lattice spacivg400 used here, tion. In a future calculation, a way of eliminating these in-
the gaps have converged to 4 figures. Our final continuungruder states must be found.
estimate is obtained by the method of linear, quadratic and A comparison of our results with previous works is shown
cubic extrapolants in 4k as used in Ref.22]. An example in Fig. 18. In the low mass region, we see excellent agree-
is shown in Fig. 17. Our final estimate ofm™/g ment between our results and the series expansion around
=0.56419(4) for this case agrees extremely well with them/g=0. Our results are also fairly consistent with the results
analytic result(67). of Sriganeshet al. [22], obtained by exact diagonalization.

Table V summarizes our results, which show between on&he “fast-moving frame” results of Krger and Sche(i31]
and two orders of magnitude improvement in accuracy oveseem to be consistently a little low in this region. In the large
the previous best estimates for small valuesig. We must  mass region the situation is reversed, asgémand Scheu
note, however, that for values of/g>1 there is little or no  obtain excellent agreement with the non-relativistic expan-
improvement in accuracy over previous results. To explairsion, while both our results and those of Sriganestal.
this, first note that the structure of the eigenvalue function irseem to be slightly high. We attribute this to the problem
x shifts towards large for largem/g. But at largex and large  with intruder states discussed above. Theédéoand Scheu
m/g there are many “intruder” states below the vector statequasi-light-cone approach appears to remain more accurate
for finite N: artifacts of the finite lattice corresponding to in this weak-coupling region.
states with no fermion excitations but with loops of electric ~ Scalar state mass gaps /g may also be calculated using
flux winding around the entire lattice. This restricts the rangeDMRG; here we merely demonstrate its applicability for one
of x that can be used, and hence the accuracy of the calculamass valuem/g=1.0, where we obtainm*/g—2m/g

TABLE V. Comparison of bound-state energies for the “vector” state with previous works. The results of
Sriganestet al. and Crewther and Hamer were obtained through finite-lattice studies, whilecEkdr Mo
and Perry, and Kiger and Scheu used light-cone or related methods to obtain their results.

Sriganesh Crewther and Eller Mo and “lgev and

m/g This work et al.[22] Hamer[20] et al.[28] Perry[30] Scheu[31]
0 0.564194) 0.5631) 0.561)

0.125 0.5395(7) 0.5432) 0.541) 0.58 0.54 0.528
0.25 0.51916) 0.5194) 0.521) 0.53 0.52 0.511
0.5 0.48747) 0.4853) 0.5011) 0.49 0.49 0.489
1 0.44441) 0.4484) 0.461) 0.45 0.45 0.445
2 0.3981) 0.3945) 0.4135) 0.40 0.40 0.394
4 0.34@1) 0.3455) 0.3585) 0.34 0.34 0.339
8 0.2818) 0.2953) 0.2995) 0.28 0.29 0.285
16 0.2385) 0.2432) 0.2455) 0.23 0.24 0.235
32 0.1945) 0.1982) 0.1975) 0.20 0.20 0.191
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' ' " tstonder non-relatvistic expansion Some calculations were also carried out at zero back-
°55% /" e rton sroum s 20—~ | ground field,#=0. The vector gap was obtained with great
osh Q- Sriganesh et al. — | precision for smalim/g; but at largem/g the accuracy was

Q Kioger & Schou 2 spoiled a little by finite-lattice “intruder” states.
045 B8 . The same methods should be applicable to other lattice
gauge models in (£1) dimensions. In higher dimensions,
o2 a however, the DMRG technique does not have such a large
w

comparative advantage over other techniques. Strenuous ef-
forts are being made to develop improved DMRG algorithms
for lattice models in (2-1)D; but nothing has even been
attempted in (31)D, as far as we are aware.

03r
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=1.1181). This is again over an order of magnitude better APPENDIX
that the previous best estimate of Sriganesfal. who ob-

tained for the same quantity 1.(B2. Here we calculate analytically the form of the finite-size

scaling corrections in the 1D transverse Ising model. We fol-
low the discussion by Hamer and Barld8].
VI. CONCLUSIONS The Hamiltonian is taken as

In this paper we have demonstrated the application of the M M
numerical DMRG technique of Whitel1] to a lattice gauge H zmzz:l [1—03(m)]—xm§=:1 oi(Moy(m+1). (A1)
model, namely the massive Schwinger model. The results are
in most cases nearly two orders of magnitude more accurate 1€ model can be solved exactly by the methods of
than previous calculations. Where exact diagonalization cagchultz, Mattis and Liej46]. The mass gap on a finite lat-
treat lattices up to 22 sites, DMRG gives very accurate refice of M sites with periodic boundary conditions is
sults up _to 256 sites. The long-range Cpulomp interaction F(X,M)=2(1—Xx)+2M[Topu(X)—=Tu(xX)]  (A2)
present in the model has proved no impediment to the h
DMRG technique: this is very likely connected with the fact WNere
that the Coulomb interaction is screerféd4], and theeffec- 1 Mtk
tive interactions are short range. T =31 kz A(V) (A3)
The most interesting results were obtained for the case of -0
the background field)=. We have performed a detailed and
study confirming the existence of the “kinks” or “half- A(0)=[(1—x)%+4x sir?6]Y2 (A4)
asymptotic” particles predicted by Colemd#6], and have
shown that there is a phase transition am/g).
=0.3335(2) belonging in the universality class of the trans- _ 1
verse or (1 1)D Ising model. The pattern of energy eigen- Ty(X)=—=Ty(X)~Co+
values near the critical point bears a truly remarkable resem- W
blance to the transverse Ising model, and points to some new
physical effects, beyond those discussed by Coleféan where
In particular, for fn/g)<(m/g). and 6= 7, we find that 1—x
the single-kink state idegeneratavith the ground state. This We(X)= sinh‘1< —) (AB6)
points to the existence of a kink condens@#] in the 2x
ground state. It also points to the existence of a dual symm
try and dual order parameter in the model, which have no Ba. (AL.16) of Ref. [43]) and hence
been discussed hitherto. We also find that the gap between 2(1—x%)
the symmetric and antisymmetric loop state combinations F(X,M)~2(1-x)—-27 TGQMWC(X) (AT)
appears to be exactly degenerate with the 2-particle vector
gap in this low-mass region. which exhibits the leading finite-size corrections, as required.

For fixedx, asM — e,
e_ZMWc(X)

4
X )(l_xz)llz (ZM )3/2
(AS5)
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