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Density matrix renormalization group approach to the massive Schwinger model

T. M. R. Byrnes, P. Sriganesh, R. J. Bursill, and C. J. Hamer
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The massive Schwinger model is studied using a density matrix renormalization group approach to the
staggered lattice Hamiltonian version of the model. Lattice sizes up to 256 sites are calculated, and the
estimates in the continuum limit are almost two orders of magnitude more accurate than previous calculations.
Coleman’s picture of ‘‘half-asymptotic’’ particles at a background fieldu5p is confirmed. The predicted phase
transition at finite fermion mass (m/g) is accurately located and demonstrated to belong in the 2D Ising
universality class.
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I. INTRODUCTION

The Schwinger model@1,2#, or quantum electrodynamic
in one space and one time dimension, exhibits many an
gies with QCD, including confinement, chiral symmet
breaking, charge shielding, and a topologicalu vacuum
@3–6#. It is a common test bed for the trial of new techniqu
for the study of QCD: for instance, several authors@7–10#
have recently discussed new methods of treating lattice
mions using the Schwinger model as an example.

Our purpose in this paper is twofold. First, we aim
explore the physics of this model when an external ‘‘ba
ground’’ electric field is applied, as discussed long ago i
paper by Coleman@6#. Second, we wish to demonstrate t
application of density matrix renormalization group metho
@11,12# to a model of this sort, with long-range, nonloc
Coulomb interactions.

Coleman@6# showed that the physics of the Schwing
model is periodic inu52pF/g, where F is the applied
‘‘background’’ electric field andg is the elementary charge
In the special caseu5p, some amusing phenomena occ
Whereas the ‘‘quarks’’ in this model are generally confin
by a classical linear potential, atu5p it is possible for
single quarks to appear deconfined, i.e. move freely, p
vided they do not cross another quark~‘‘half-asymptotic par-
ticles’’!. Coleman @6# also demonstrated that foru5p a
phase transition must occur at some finite value ofm/g,
wherem is the quark mass. These arguments are revie
more fully in Sec. II.

There have been very few attempts to verify these pre
tions numerically that we are aware of. Hamer, Kog
Crewther, and Mazzolini@14# used finite-lattice techniques t
address the problem. They calculated the ground-state en
and ‘‘string tension’’ as functions ofu andm/g. They located
the phase transition atu5p to lie at (m/g)c50.325(20),
with a correlation length indexn50.9(1). They also at-
tempted to estimate the chiral order parameter; but it w
later pointed out@15# that the chiral order parameter actua
suffers from a logarithmic divergence at finitem/g in this
model. Schiller and Ranft@24# used Monte Carlo technique
to locate the phase transition at (m/g)c50.31(1).

Many different numerical methods have been applied
the Schwinger model in a zero background field, includ
strong-coupling series@16–19#, finite-lattice calculations
0556-2821/2002/66~1!/013002~14!/$20.00 66 0130
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@20–22#, Monte Carlo calculations@23–27#, discrete light-
cone quantization@28# and the related light-front Tamm
Dancoff @29,30# and ‘‘fast-moving frame’’@31# techniques, a
recently proposed ‘‘contractor renormalization grou
method @32#, and finally a coupled-cluster expansion@33#.
For a recent review, see Sriganeshet al. @22#. Analytic cal-
culations of the mass spectrum have been carried out u
mass perturbation theory@3,34–36# for small fermion
masses, and weak-coupling expansions@6,37,22# for large
fermion masses.

In this paper we apply a new technique, namely the d
sity matrix renormalization group~DMRG!, which has been
used with great success@11,12# for lattice spin models and
lattice electron models such as the Hubbard model. It w
also recently applied to a simple one-particle potential mo
with asymptotic freedom by Martin-Delgado and Sierra@39#.
It might be questioned whether the DMRG can successf
handle a model involving long-range Coulomb interactio
such as the Schwinger model. We perform some calculat
in zero background field, to show that in fact the approa
works extremely well. It gives accurate results for lattices
up to 256 sites, and provides estimates of the continu
limit which are around 50 times more accurate than previ
calculations.

The layout of the paper is as follows. In Sec. II we revie
Coleman’s discussion@6# of the Schwinger model in a back
ground field, and the lattice formulation thereof. In Sec.
the DMRG technique is outlined. In Sec. IV our main resu
at background fieldu5p are presented. Mass gaps and ord
parameters are calculated, and the critical parameters a
phase transition are accurately estimated, showing that
transition lies in the universality class of the transverse Is
model in 111 dimensions. The ‘‘half-asymptotic’’ particle
behave in exactly the same way as ‘‘kinks’’ or ‘‘spinons’’ i
the transverse Ising model, giving rise to some surpris
effects. Finally, in Sec. V some results atu50 are presented
and compared with previous results, both analytical and
merical. Our conclusions are summarized in Sec. VI.

II. THE SCHWINGER MODEL IN A BACKGROUND FIELD

A. Fermion formulation

The Schwinger model Lagrangian density, in standard
tation, is
©2002 The American Physical Society02-1
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L52
1

4
FmnFmn1c̄~ i ]”2gA” 2m!c ~1!

wherec is a 2-component spinor field, since there is no s
in one space dimension. The couplingg has dimensions o
mass, so the theory is super-renormalizable. Usingg as the
scale of energy, the physical properties of the model are t
functions of the dimensionless ratiom/g. The field strength
term is

Fmn5]mAn2]nAm . ~2!

The equations of motion are the Dirac equation

~ i ]”2gA” 2m!c50 ~3!

and Maxwell’s equations

]mFmn5gc̄gnc. ~4!

Choosing a time like axial gauge

A050 ~5!

the field-strength tensor reduces to

F1052Ȧ15E ~6!

whereE is the 1-component electric field. Gauss’s law b
comes

]1E52]1Ȧ15g j05gc̄g0c. ~7!

The Hamiltonian becomes

H5E dxS 2 i c̄g1~]11 igA1!c1mc̄c1
1

2
E2D . ~8!

Gauss’s law can be integrated to give

E5gE dx j0~x!1F, ~9!

showing thatE is not an independent field, but can be det
mined in terms of the charge densityj 0(x), up to the con-
stant of integrationF, which corresponds to a ‘‘backgroun
field,’’ as discussed by Coleman@6#. We can think of the
background field as created by condenser plates at eithe
of our one-dimensional universe.

If uFu.g/2, charged pairs will be produced, and separ
to infinity, until the field is reduced within the rangeuFu
<g/2, thus lowering the electrostatic energy per unit len
~Fig. 1!. Thus physics is periodic inF with periodg, and it is
convenient to define an angleu by

FIG. 1. Creation of a charged pair alters the electric field
amount6g in the intervening space.
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Then we can always chooseu to lie in the interval@0,2p#.
In the weak-coupling limitm/g→`, the vacuum contains

no fermionic excitations, and the vacuum energy densitye0
is given purely by the electrostatic energy term~we ignore,
or renormalize to zero, the energy of the Dirac sea!. Hence

e05H 1

2
F25g2u2/~8p2! ~u<p!,

1

2
~g2F !25g2~2p2u!2/~8p2! ~p<u<2p!.

~11!

Thus there is a discontinuity in the slope of the energy d
sity, corresponding to a first-order phase transition, atu5p.
In the strong-coupling limitm/g50, on the other hand, chi
ral invariance demands that the vacuum energy density
mainsconstantas a function ofu ~see Sec. II B!. Thus we
expect a first-order transition atu5p for largem/g, which
terminates at a second order critical point at some fin
(m/g)c , as illustrated in Fig. 2. This behavior was demo
strated numerically some time ago by Hameret al. @14#, who
located the critical point at (m/g)c50.325(20), with an as-
sociated critical indexn50.9(1).

Normally, charge is confined in the model: there is
‘‘string’’ of constant electric field~or flux! connecting any
pair of opposite charges@3,4#. But Coleman@6# points out
that in the very special caseu5p, or F5g/2, the peculiar
phenomenon of ‘‘half-asymptotic’’ particles arises. In th
weak-coupling limit, one can envisage the state shown
Fig. 3. The electric field energy density is the same in
tween each pair of particles, and they can therefore m

y

FIG. 2. Schematic plot of the vacuum energy density as a fu
tion of m/g and u. The heavy line marks the first-order transitio
line where the energy density has a cusp, terminating at the se
order critical point (m/g)c , where the discontinuity in slope withu
goes to zero.
2-2
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freely, as long as they maintain the sameordering, i.e. no
pair of fermions interchanges positions.

B. Boson formulation

The one-dimensional fermionic theory can be mapp
into an equivalent Bose form@3,38#. Some of the relevan
mappings are

:c̄c:↔2cMNMcos~2Apf!

: i c̄g5c:↔2cMNMsin~2Apf! ~12!

j m5:c̄gmc:↔ 1

Ap
emn]mf.

The Hamiltonian density in the charge zero sector can t
be written@6#

H5NMF1

2
P21

1

2
~]1f!21

1

2
M2f2

2cmMcos~2Apf2u!G . ~13!

HereNM denotes normal ordering with respect to massM, f
is the Bose field andP is its conjugate momentum, and

M25
g2

p
, ~14!

while

c5
eg

2p
~15!

andg50.5774 is Euler’s constant. Note that

]1f5Ap j 0 ~16!

is Gauss’s law, which identifiesf is proportional to the elec
tric field. Finally, u is the background field variable, as b
fore. This form of the theory is most convenient for discu
ing the strong-coupling limit,m/g→0.

A nice discussion of the connection betweenu and chiral
invariance is given by Creutz@7#. Consider the fermion mas
term

Lm5mc̄c. ~17!

If we now consider a chiral rotation

c→eiug5/2c ~18!

the mass term becomes

FIG. 3. A configuration of ‘‘half-asymptotic’’ charged fermion
at background fieldF5g/2.
01300
d

n

-

Lm5m8c̄c1m5i c̄g5c ~19!

where

m85m cosu

m55m sinu, ~20!

while the remaining terms of the Lagrangian density are
ively invariant. In the Bose form of the theory, the tran
formed mass term maps into

Lm→2cmMNMcos~2Apf2u! ~21!

which is precisely the form~13!, with the chiral rotation
parameteru playing the role of the background field.

It can be seen immediately from Eq.~13! that at m/g
50, the Hamiltonian is independent of the background fi
variableu ~i.e. is chiral invariant!, and reduces to a theory o
free, massive bosons, with massM5g/Ap @1,2#. There is no
sign of the half-asymptotic particles found in the wea
coupling limit atu5p.

Coleman@6# gives a very neat semiclassical argument
show how the half-asymptotic particles arise in the Bose f
mulation. Atu5p, the Hamiltonian corresponds to an effe
tive potential

U~f!5
1

2
M2f21cmMcos~2Apf!. ~22!

For m/g small, there is a unique vacuum atf50. For m/g
large, however, there are two vacua, located atf56 1

2 Ap,
and the symmetryf↔2f suffers spontaneous breakdow
The two vacua correspond to background field valuesu50
or 2p, or F50 or g. Creutz @7# notes that in the broken
symmetry phase the expectation value off @and hence
sin(2Apf)# should be non-zero, and thereforec̄g5c should
make a suitable order parameter, by Eq.~12!.

Spontaneous breakdown of aZ2 symmetry implies that
the critical point should belong to the universality class
the (111)D or 2D Ising model, with critical indicesn51
and b51/8, which is consistent with the value forn found
by Hameret al. @14#.

For a single scalar field in two-dimensional space-tim
undergoing spontaneous symmetry breaking, there will e
time-independent finite-energy soliton solutions of the cl
sical field equations passing monotonically from one grou
state to the other. We may designate the increasing soluti
‘‘kink’’ and the decreasing solution an ‘‘antikink’’~see Fig.
4!. These are the half-asymptotic particles, in Bose langua
Kinks and antikinks must alternate with each other wh
well separated, just as the half-asymptotic fermions do.

At strong couplings, the mass of the single boson exc
tion at u5p can be estimated semiclassically by fitting
harmonic oscillator to the effective potential atf50. Hence
one finds

D2

g
5

M

g F12ApegS m

g D1OS m

g D 2G

2-3
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5
1

Ap
2egS m

g D1OS m

g D 2

50.56421.78S m

g D1OS m

g D 2

, ~23!

where we have denoted this mass byD2, standing for the
mass gap in the ‘‘2-particle,’’ or electron-positron, sector.
crude linear extrapolation inm/g would give the boson mas
vanishing atm/g50.317, quite close to the critical poin
found by Hameret al. @14#.

C. Lattice formulation

We employ the Kogut-Susskind@40,17# Hamiltonian spa-
tial lattice formulation of the Schwinger model, with the fe
mions sited on a ‘‘staggered’’ spatial lattice. Let the latti
spacing bea, and label the sites of the one-dimensional ch
with an integern. Define a single-component fermion fie
f(n) at each siten, and a link variable

U~n,n11!5eiu(n)5e2 iagA1(n) ~24!

on each link.1 Then the lattice Hamiltonian equivalent to E
~8! is

H52
i

2a (
n51

N

@f†~n!eiu(n)f~n11!2H.c.#

1m(
n51

N

~21!nf†~n!f~n!

1
g2a

2 (
n51

N

L2~n! ~25!

where the number of lattice sitesN is even, and the corre
spondence between lattice and continuum fields is

f~n!/Aa→H cupper~x!, n even,

c lower~x!, n odd,
~26!

1We trust the index~n! will differentiate the lattice fieldsf(n) and
u(n) from the quite different fieldsf andu of Sec. II B.

FIG. 4. ‘‘Kinks’’ and ‘‘antikinks’’ are represented by transition
between the ground state solutionsf56

1
2Ap. Every transition

corresponds to either a quark or an antiquark, according to
picture given in Fig. 3.
01300
n

1

ag
u~n!→2A1~x! ~27!

gL~n!→E~x!. ~28!

The g matrices are represented by

g05S 1 0

0 21D , g15S 0 1

21 0D . ~29!

We use a ‘‘compact’’ formulation where the gauge field b
comes an angular variable 0<u(n)<2p on the lattice, and
L(n) is the conjugate spin variable

@u~n!,L~m!#5 idnm ~30!

so thatL(n) has integer eigenvaluesL(n)50,61,62, . . . .
In the naive continuum limita→0, the lattice Hamiltonian
~25! reduces to the continuum expression~8!.

The Hamiltonian is transcribed to a dimensionless ope
tor

W5
2

ag2
H5W01xV ~31!

where

W05(
n

L2~n!1m(
n

~21!nf†~n!f~n!, ~32!

V52 i(
n

@f†~n!eiu(n)f~n11!2H.c.# ~33!

m5
2m

g2a
, x5

1

g2a2
. ~34!

In the lattice strong-coupling limitx→0, the unperturbed
ground stateu0& has

L~n!50, f†~n!f~n!5
1

2
@12~21!n#, all n ~35!

whose energy we normalize to zero. The lattice version
Gauss’s law is then taken as

L~n!2L~n21!5f†~n!f~n!2
1

2
@12~21!n# ~36!

which means excitations on odd and even sites create71
units of flux, corresponding to ‘‘electron’’ and ‘‘positron’
excitations, respectively. Equation~36! determines the elec
tric field L(n) entirely, up to an arbitrary additiveconstant
a, which then represents the background field. Allowinga to
be non-zero, the electrostatic energy term is modified to

(
n

L2~n!→(
n

@L~n!1a#2. ~37!

e

2-4
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The physics of the background field then matches preci
with the continuum discussion. Ifuau.1/2, charged pairs
will be produced and separate to infinity to lower the ele
trostatic energy, and bringuau<1/2. Physics is then periodi
in a with period 1, and the background field variable is

u52pa. ~38!

In the weak-coupling limitm/g→` the vacuum contains
no fermion excitations, and the ground state energy atx50
is

v05Na2 ~ uau,1/2! ~39!

corresponding to the ‘‘zero-loop’’ state with$L(n)
50, all n%; or

v05N~12a!2 ~1/2,a,1! ~40!

corresponding to the ‘‘one-loop’’ state with$L(n)5
21, all n%.

At a51/2, these two states are degenerate; and h
asymptotic states consisting of alternating electrons and
itrons exist, just as in the continuum model. Let us denote

two states~39! and ~40! by u 1
2 & and u2 1

2 &, according to the
electric fields$L(n)1a56 1

2 , all n% on the links. On a
finite lattice at weak coupling, the eigenstates will be t
symmetric and antisymmetric combinations

u0&5
1

A2
FU12L 1U2 1

2L G ~41!

and

u08&5
1

A2
FU12L 2U2 1

2L G . ~42!

These states become degenerate in the bulk limitN→`,
when spontaneous symmetry-breaking occurs. We shall
note the energy gap between them~or ‘‘loop gap’’! as D0,
standing for the 0-particle sector.

The lowest-energy single-particle excitation~Fig. 5! is

u1&5A2

N (
n51

$n odd%

N

f~n!)
j 5n

N

e2 iu( j )U12L ~43!

while the lowest ‘‘2-particle’’ state is

u2&5
1

AN
(
n51

$n odd%

N Ff†~n11!e2 iu(n)f~n!U12L
1f†~n11!eiu(n)f~n12!U2 1

2L G . ~44!

We shall compute the energy gaps between these state
the ground state,D1 /g andD2 /g, respectively.
01300
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We will also study two order parameters which can
used to characterize the phase transition atu5p. The first
one is the average electric field

Ga5
1

N K (
n

@L~n!1a#L
0

, ~45!

which in the weak-coupling limitm/g→` takes values
61/2 for the zero-loop and one-loop states, respectively.
the Feynman-Hellman theorem, it is proportional to the slo
]E0 /]a of the ground-state energy: a glance at Fig. 2 sho
that at largem/g this slope undergoes a discontinuity atu
5p, while below (m/g)c it vanishes.

The second order parameter is the axial fermion den
suggested by Creutz@7#

G55^ i c̄g5c/g&0 ~46!

52
iAx

N K (
n

~21!n@f†~n!f~n11!2H.c.#L
0

~47!

where

g55 ig0g1. ~48!

Now on a finite lattice there is no spontaneous symme
breakdown, and the expectation values of the order par
eters will remain identically zero. The remedy for this
well-known, however@41#. If the two lowest-energy state
which become degenerate in the bulk limitN→` are de-
notedu0& and u08&, respectively, then a simple 232 matrix
calculation shows that the order parameter correspondin
an operatorQ can be estimated as theoverlapmatrix element
^0uQu08& on the finite lattice.

In zero background fielda50, the 2-particle ‘‘positroni-
um’’ excited states of lowest energy in the lattice strong co
pling limit are the ‘‘vector’’ state@16#

uv&5
1

AN
(
n51

N

@f†~n!eiu(n)f~n11!1H.c.#u0& ~49!

and the ‘‘scalar’’ state

us&5
1

AN
(
n51

N

@f†~n!eiu(n)f~n11!2H.c.#u0& ~50!

whereu0& is the strong-coupling ground state~35!.

FIG. 5. The electric fields at either end of the chain in t
presence of a single particle areg/2, 2g/2, respectively. This pre-
cludes periodic boundary conditions due to the mismatch of elec
fields.
2-5
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D. Lattice spin formulation

An equivalent lattice spin formulation can be obtained
a Jordan-Wigner transformation@16#

f~n!5)
l ,n

@ is3~ l !#s2~n! ~51!

f†~n!5)
l ,n

@2 is3~ l !#s1~n! ~52!

giving

W05(
n

@L~n!1a#21
m

2 (
n

~21!ns3~n!1
Nm

2
~53!

V5(
n

@s1~n!eiu(n)s2~n11!1H.c.# ~54!

and

L~n!2L~n21!5
1

2
@s3~n!1~21!n#. ~55!

The G5 order parameter can be written in spin variables

G55
Ax

N K (
n

~21!n@s1~n!eiu(n)s2~n11!1H.c.#L
0

.

~56!

This is the form which we used in the numerical calculatio

III. METHODS

A. The density matrix renormalization group method

Our results are based on the density matrix renormal
tion group~DMRG! method@11,12#. DMRG has been used
primarily to study low dimensional quantum lattice syste
in condensed matter physics, and is able to obtain with g
accuracy quantities such as the ground and excited state
ergies, and correlation functions. One of the key feature
DMRG is its ability to calculate these quantities for ve
large system sizes, particularly for systems with a low nu
ber of degrees of freedom per site.

The roots of DMRG lie in the numerical renormalizatio
group~NRG! procedure, implemented by Wilson@13# for the
Kondo problem. The method obtained good results for t
particular problem, but later studies proved that the met
was unreliable, for reasons which were examined by Wh
@11#. Addressing these problems gave birth to the DMR
method, which proved to be a remarkably robust, reliab
and highly accurate method of examining the physics of l
dimensional systems. Elements of the original NRG pro
dure remain in DMRG, in that the lattice sites are group
into successively larger blocks, and that unimportant deg
of freedom are integrated out progressively in each iterat
DMRG differs from the NRG procedure in that the new ba
states which are selected are chosen via the density ma
and a proper consideration of the boundaries of the block
01300
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implemented by arranging other blocks acting as an ‘‘en
ronment’’ for the system block.

The method employed here is the ‘‘infinite system
DMRG method, as prescribed by White@11#, used both with
open and periodic boundary conditions~OBC and PBC!. Be-
cause of the presence of the electric field on the links,
the differing nature of the odd- and even-numbered si
some modifications were made to the method, although n
ing that changes the spirit of the DMRG. The quantities c
culated are the ground state energies, mass gaps and
parameters. We use the form of the Hamiltonian given
Eqs.~53! and ~54!.

Let us first look at how the presence of the electric fie
affects the implementation of the code. For a particular s
configuration with OBC, if we specify the incoming electr
field for the first site of the chain, then according to Eq.~55!
the electric field for all the links can be deduced. This inco
ing field can be eitherL in50 for the zero background field
case, orL in561/2 for the background field case. If PBC a
imposed, then as there is no particular link to fix the elec
field, we can have loops of electric flux extending througho
the ring. In the presence of a background field we simply a
~or subtract! 1/2 from the values of the electric fields due
the spin configuration. A cutoff, or maximum loop value, w
chosen such that full convergence was reached to mac
precision. A loop cutoff of@25,5# was more than sufficien
in most cases.

A typical DMRG iteration is shown in Figs. 6~OBC! and
7 ~PBC!. The chain~or ring! is split into two blocks and two
sites, where blocks contain in general more than one site
one DMRG iteration, we augment two sites to each block,
that the whole system grows by 4 sites each time. This
more convenient than the standard approach of adding
site at a time, due to the differing nature of the odd- a
even-numbered sites. For the PBC case this allows on
have the same type of site on each end of the block~i.e. both
even or both odd!, which considerably simplifies the book
keeping of the electric fields on the links. In this case bo
blocks are identical, so that only one augmentation and d
sity matrix is necessary. For the OBC case, we have a dif
ent situation. Again augmenting two sites at a time allows
to have the same type of site on each end of the blocks,
in this case the left-hand block will always have an odd s
on each end, while the right-hand block will have an ev
site on each end. This requires two separate density mat
for each block, as they are not identical.

We start with a 4-site superblock, and continue add
sites until we reach 256 sites. For PBC we keep a maxim
of 125 states per spin sector per loop value in a block, wh
corresponds to a truncation parameter of approximatel
;1100, wherel is the total number of basis states retained
a block. The truncation error for 256 sites can vary from
part in 107 to 1013 depending on the number of excitation
and the parameters. For OBC, again we keep a maximum
125 states per spin sector, but as there are no electric
loops, here the truncation parameter isl;300. The trunca-
tion error for 256 sites is typically 1 part in 1016.
2-6
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B. Accuracy of the DMRG calculations

The accuracy of the DMRG calculation is strongly depe
dent on the parameter valuesx and m/g; in particular we
expect the accuracy to worsen near critical regions. We
that OBC provide more accurate results than PBC, whic
consistent with previous DMRG studies. We provide deta
of the accuracy for the worst case scenario, i.e. the par
eters closest to the critical regions. This is not representa
of the typical accuracies achievable with the DMRG, b
gives us an upper bound on the errors.

We examine the point (m/g50.3;x5100;u5p;N
5256) with PBC, which represents the smallest lattice sp
ing used for this study, and lies in the critical region. Tabl
shows the convergence of the DMRG for these paramete
a function of the truncation parameterl, for the energies and

FIG. 6. A DMRG iteration using open boundary condition
Two augmentations are needed to allow for the difference betw
odd and even sites.

FIG. 7. A DMRG iteration using periodic boundary condition
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order parameters. The ground state energy can be resolv
1 part in 106, while the two-particle gap is resolved to 1 pa
in 103. The order parameters are subject to round-off err
because they involve the overlap of the two wave functio
and hence reduced accuracy is expected: here we ha
figures. Figure 8 shows the behavior of the ground state
ergy density as a function of the density matrix truncati
eigenvalue, which corresponds to the sum of the eigenva
thrown away from the density matrix. We see a linear re
tionship between these quantities, which is confirmation t
the DMRG is working correctly. Where possible, we obta
the final estimate by taking the results with the two larg
truncation parameters, and performing a linear extrapola
to the y axis. The error estimate is obtained by taking t
difference in the extrapolant and the result with the largesl.

Using OBC improves the accuracy of the DMRG calc
lation considerably. Table II shows the convergence of
same quantities with the same parameters as Table I, but
OBC. The ground state energy density is accurate to ne
machine precision, and the 2-particle mass gap to 1 pa
107. Again due to round-off errors, we are limited in acc
racy for the order parameters, so a similar accuracy to
PBC code is achieved here. A point against using OBC
that the finite-size corrections are much larger for this ca

TABLE I. DMRG estimates of the ground state energy dens
v0/2Nx, the ‘‘2-particle’’ gapD2 /g, and two order parameters, th

mean fieldGa5^(L1a)&0 and axial densityG55^ i c̄g5c/g&0 as
functions ofl, the number of basis states retained per block. Th
results are for periodic boundary conditions atx5100, m/g50.3,
u5p, andN5256 sites.

l v0/2Nx D2 /g Ga G5

244 2.31676292 .26833 .28068 .29104
324 2.31677001 .25687 .27598 .28147
416 2.31677263 .25279 .27417 .27735
555 2.31677385 .25054 .27319 .27528
742 2.31677428 .24963 .27273 .27444
932 2.31677440 .24933 .27266 .27423

en

FIG. 8. Dependence of the estimated ground state energy
sity v0 /2Nx on the density matrix truncation eigenvalues, forx
5100, m/g50.3, u5p, using PBC.
2-7
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We use OBC to calculate the 1-particle gap and the or
parameter estimates in the continuum limit, and PBC oth
wise.

IV. RESULTS AT BACKGROUND FIELD uÄp

A. Analysis of critical behavior

We use finite-size scaling theory to estimate the posit
of the critical point, by calculating pseudo-critical points@42#
at each lattice sizeN and each lattice spacingx. We demand
that the scaled energy-gap ratio

RN~m/g!5
NDN~m/g!

~N21!DN21~m/g!
~57!

is equal to unity at the pointm/g5(m/g)N* , which is the
pseudo-critical point. HereDN(m/g) refers to the energy ga
at some finite lattice sizeN. In practice we calculate
RN(m/g) for a cluster of five points straddling the pseud
critical point, then use a polynomial interpolation to fin
(m/g)N* . The points were chosen at a spacing ofD(m/g)
50.02 apart, the smallest reasonable spacing which ens
we cover the pseudo-critical point based on the work
Hameret al. @14#. For this exercise we use the ‘‘loop gap
D0 /g, which collapses to zero at the pseudocritical point

Figure 9 shows three sample data sets for the pse
critical points calculated betweenx54 and x5100. On a
1/N3 plot these can be simply extrapolated with a quadra
with errors in the vicinity of 1 part in 104, for all x. Some
numerical instability creeps in for the larger lattice size
however, where the change in the gap energy with lattice
N becomes so slow that round off errors become apprecia
The continuum limit is then estimated from these bulk cr
cal points, as shown in Fig. 10. A quadratic fit in 1/Ax ex-
tracts the continuum limita→0 or x→`, which we estimate
to be

S m

g D
c

50.3335~2!. ~58!

This is consistent with the previous estimate by Hameret al.
@14# of (m/g)c50.325(20), or Schiller and Ranft@24#,
(m/g)c50.31(1), but with two orders of magnitude im
provement in accuracy.

Finite-size scaling theory@42# also allows us to estimat
the critical indices for the model. The theory tells us that
Callan-Symanzik ‘‘beta function’’

TABLE II. As for Table I, with open boundary conditions.

l v0/2Nx D2 /g Ga G5

107 2.31611009314180 .19536745 .2565552.257439
162 2.31611009382342 .19535871 .2565942.257479
199 2.31611009385738 .19535765 .2566062.257489
244 2.31611009386852 .19535733 .2567822.257658
327 2.31611009387277 .19535723 .2567512.257627
396 2.31611009387248 .19535720 .2567342.257604
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bN~m/g!

m/g
5

DN~m/g!

DN~m/g!22~m/g!DN8 ~m/g!
~59!

scales at the critical point likebN„(m/g)c…;N21/n as N
→` @43#. Hence we can extract the critical exponentn from
the ratio

NS 12
bN„~m/g!N* …

bN21„~m/g!N21* …

D , ~60!

since this should approach 1/n as N→`. Alternatively we
can use the limiting behavior

ln@bN„~m/g!N* …/bN21„~m/g!N* …#

ln@N/~N21!#
;2

1

n
~61!

as N→`. We call the first of these ratios~60! the ‘‘linear’’
estimate, while the second is the ‘‘logarithmic’’ estimate. W
calculate these ratios for all lattice sizesN and lattice spac-
ings x. Analysis of the data shows that the logarithmic ve
sion is more stable numerically, and converges more quic

FIG. 9. Pseudocritical points for various lattice spacings.

FIG. 10. Critical line in them/g versus 1/Ax5ga plane. Open
circles are our present estimates, and squares are the previou
sults of Hameret al. @14#, which are in good agreement. The dash
line is a quadratic fit to the data inga.
2-8
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towards the bulk limit. We show an example of this conv
gence in Fig. 11 for a particular lattice spacing 1/Ax5ga
50.45. We see monotonic convergence towards21/n→
21, until the same numerical errors begin to creep in as s
in Fig. 9.

A similar method was used to estimate the critical ind
b. The order parametersGN

a and GN
5 are expected to scal

like ;N2b/n @43#. Linear and logarithmic ratios are aga
constructed from these quantities, and analyzed in the s
way as for the beta functions. Again the logarithmic ratio

ln@GN„~m/g!N* …/GN21„~m/g!N* …#

ln@N/~N21!#
;2

b

n
~62!

seem to do better than the linear ratios, in terms of numer
stability and convergence. Figure 11 shows the estimate
b/n, which uses the electric field order parameter. All fin
estimates forb/n shown in Table III are calculated usin
GN

a5^(L1a)&0.
Table III displays our results for the critical exponents, f

each different lattice spacing. We see essentially no varia
in the exponents with lattice spacing, to within the accura
of our calculations. Our best estimates for the critical ex
nents are thus

n51.01~1! ~63!

b/n50.125~5!. ~64!

These results provide reasonably conclusive evidence
the Schwinger model transition atu5p lies in the same
universality class as the one dimensional transverse I
model, or equivalently the 2D Ising model, with (n51, b
51/8).

B. Behavior in the continuum limit

We now turn to estimating continuum limit values for th
energy gaps and order parameters. First of all, examina
of the data points for 2-particle gaps in Fig. 12 reveal t

FIG. 11. ‘‘Logarithmic’’ ratio estimates of critical indices
21/n and2b/n for lattice spacing 1/Ax5ga50.45. Quadratic fits
in 1/N provide the bulk extrapolations. We estimate here 1n
51.00(2) andb/n50.125(5).
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some extrapolation is necessary, especially for small lat
spacings, to obtain the bulk limitN→`. In order to do so,
we need to fit the data with an appropriate function ofN.
Now results from Sec. IV A revealed that the critical beha
ior of this model is closely related to that of the transve
Ising model. In that model the finite lattice values away fro
the critical point converge exponentially to the bulk lim
modulo half-integral powers ofN @43# ~see the Appendix!.
Hence we apply a form

DN5S a1
b

AN
1

c

ND exp~2dN!1e ~65!

to the data, wherea,b,c,d,e are fit parameters. Figure 1
shows that this form in fact fits the data very well, for a
values ofm/g.

As a double-check of the results of the fit, we also ap
a VBS sequence extrapolation routine@44# to the finite-
lattice sequences, which provides an independent estima
the bulk limit. Errors for the VBS estimates were obtained
examining the columns of the VBS extrapolants, and co
paring the results with different VBS parametersa. Typically
the VBS and the fit results agree to better than 1% accur

TABLE III. Estimates for critical exponents 1/n and b/n as
functions of the lattice spacing parameterx51/g2a2.

x 1/n b/n

4.0 0.99~1! 0.126~5!

4.938 1.00~2! 0.125~5!

6.25 0.99~2! 0.125~5!

8.163 0.99~2! 0.125~6!

11.1 1.00~4! 0.126~6!

16.0 0.99~3! 0.126~6!

25.0 0.99~3! 0.127~6!

44.4 0.97~4! 0.123~6!

100.0 1.0~1! 0.12~1!

FIG. 12. Bulk extrapolations for the 2-particle gapD2 /g for
m/g50.0 andu5p. Dashed lines are the fits to the data, accord
to Eq. ~65!.
2-9
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as long as we are not near the critical region where it
comes difficult to extract a reliable estimate.

Figure 13 shows the extrapolation to the continuum lim
x→`, or a→0. We see that generally there is good agr
ment between the VBS extrapolations and the fit~65!, except
towards small lattice spacings where a discrepancy open
An extrapolation to the continuum limit is now performed b
a simple polynomial fit in powers of 1/Ax5ga. The double
extrapolation therefore introduces quite large errors into
final results, compared to the original DMRG eigenvalu
where the errors are at worst of order 0.1%.

1. Loop energies

Figure 14 shows our results for the ‘‘loop’’ energy ga
D0 /g for all values ofm/g. We see that this gap vanishes
the same point as calculated in Eq.~58!, and is zero for all
m/g.(m/g)c , as predicted by Coleman@6#. The conver-
gence to the bulk limitN→` for this case is much bette
than for the 2-particle gap illustrated in Fig. 12, such th
away from the critical region hardly any extrapolation
needed. This gives us good accuracy for the regionm/g

FIG. 13. Continuum extrapolations for the 2-particle gap
m/g50.0 andu5p. Data sets obtained through separate VBS a
fit extrapolations.

FIG. 14. Final estimates for gaps in the 0-particle, 1-particle a
2-particle sectors atu5p. Dashed lines are merely to guide the ey
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,0.25, where the gaps are resolved to 4 figures. Near
critical region it becomes rather more difficult to extrapola
in a consistent manner.

2. 2-particle gap

We plot on the same figure results for the 2-particle g
D2 /g. Again, the gap vanishes at the critical point (m/g)c ,
but on either side of the critical point there is a finite ga
and an almost linear behavior withm/g. A linear fit through
the points in the rangem/g5@0,(m/g)c# gives

D2

g
'0.56921.72S m

g D , ~66!

which agrees very well with the prediction made in Eq.~23!.
Note, however, that the behavior is notexactlylinear.

The m/g50 case is unique in the sense that we hav
direct check on our results, since an analytic solution
known. For the massless case the background field ha
effect on the physics of the model, since any backgrou
field is completely screened out. Hence all measurable qu
tities should be independent of the background field, and
particular the Schwinger boson mass@1,2#

D2

g
5

1

Ap
'0.56419. ~67!

Our DMRG estimate givesD2 /g50.57(1), which agrees
with this result within errors.

3. 1-particle gap

The 1-particle gap must be calculated using open bou
ary conditions, due to the mismatch in electric fields at eit
end of the chain. Figure 5 shows the situation. A sin
charged particle in the middle will shift the electric field b
6g, and hence we have differing electric fields at either e
There is a further complication in the case with open bou
aries, in that applying a background field of eithera51/2 or
21/2 gives a different result for theground state energyfor
a finite lattice. This is due to the ‘‘staggered lattice’’ conve
tion we have adopted, with ‘‘electrons’’ appearing on o
sites and ‘‘positrons’’ appearing on even sites. The only c
sistent definition of the 1-particle gap for a finite lattice
therefore

D1 /g5E12
1

2
~E0

11E0
2! ~68!

where E1 is the 1-particle energy,E0
1 is the ground state

energy witha51/2, andE0
2 that for a521/2.

Apart from this complication the procedure in extrapola
ing to the continuum limit is the same as for the 2-partic
state. Our results are shown in Fig. 14. We see that the
vanishes form/g,(m/g)c , while for m/g.(m/g)c the
1-particle gap is very close to half the 2-particle gap. On
again, the behavior is very nearly linear inm/g.

The pattern of eigenvalues exhibited in Fig. 14 bears
extraordinary resemblance to that of the transverse Is

r
d

d
.
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model @45,43#, even down to the~almost! linear behavior
with m/g. In particular, we see that the energy of t
1-particle or ‘‘kink’’ state vanishes at the critical point, an
then remains degeneratewith the ground state for (m/g)
,(m/g)c . Assuming this degeneracy is exact, this indica
that a ‘‘kink condensate’’ will form in the ground state fo
small mass, as discussed by Fradkin and Susskind@45#. It
also indicates the existence of a ‘‘dual symmetry’’ in t
model, additional to that discussed in Sec. II, which is sp
taneously broken in the low-mass region, and has not b
explored hitherto. There should also be a ‘‘dual order para
eter’’ associated with this symmetry. By analogy with t
Ising case, one would expect the ‘‘dual’’ order parameter
be the expectation value of the kink creation/destruction
erator, and the ‘‘dual’’ symmetry to correspond to inversi
of this operator; but we have not verified this by expli
computation.

The other notable feature of Fig. 14 is the degener
~within errors! between the zero-particle gapD0 /g and the
2-particle gapD2 /g at small mass. Our physical picture

FIG. 15. Order parametersGa5^(L1a)&0 , G55^ i c̄g5c/g&0

near the critical region. Dashed lines are merely to guide the e
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based on a weak-coupling representation do not give c
physical insight into this phenomenon.

All the features just discussed are of course peculiar to
special caseu5p. For instance, the 1-particle gap at an
other value ofu would be infinite.

4. Order parameters

We may also obtain estimates for the order parametersG5

andGa as functions ofm/g. Our results are displayed in Fig
15. Both order parameters are zero, within errors, form/g
,(m/g)c . Near the critical region, particularly form/g
,(m/g)c it becomes quite difficult to obtain accurate es
mates, but it appears that both order parameters turn over
drop abruptly to zero as the critical point is approached fr
above, consistent with the small exponentb51/8 found in
Sec. IV A. The axial densityG5 decreases steadily toward
zero at largem/g, whereasGa approaches the expected valu
of 1/2. All our results for the gapsD0 /g, D1 /g, D2 /g and
both order parameters are shown in Table IV for future r
erence.

V. RESULTS AT BACKGROUND FIELD uÄ0

The case of zero background field has been studied
many authors already, as outlined in the Introduction. O
purpose here is to demonstrate how the DMRG can impr
on the accuracy of existing results. The main quantities
interest are the ‘‘vector’’ and ‘‘scalar’’ state masses. The m
accurate results to date are those of Sriganeshet al. @22#,
who used numerical exact diagonalization results toge
with a VBS extrapolation to obtain their final estimates. T
largest lattice size calculated by these authors wasN522,
hence we expect to be able to do much better using
DMRG algorithm, which can go to much larger lattice size

For theu50 case, we find that convergence with latti
size is much more rapid than foru5p, so much so that with
N5256, there is essentially no extrapolation necessary
obtain the bulk limit. Figure 16 shows the data form/g50,

.

TABLE IV. Our results for the loop energyD0 /g, 1-particle gapD1 /g, and 2-particle gapD2 /g at
background fieldu5p. We also quote our results for the order parametersGa5^(L1a)&0 and G5

5^ i c̄g5c/g&0.

m/g D0 /g D1 /g D2 /g Ga G5

0.0 0.5643~2! 0.061026 0.57~1! 0.061024 0.061024

0.05 0.4756~2! 0.48~1!

0.1 0.3883~2! 0.061026 0.40~1! 0.061023 0.061022

0.15 0.3020~5! 0.30~2!

0.2 0.2173~5! 0.061025 0.23~4! 0.00~2! 0.000~5!

0.25 0.134~2! 0.16~4!

0.3 0.05~2! 0.061022 0.03~7! 0.0~3! 0.0~2!

0.4 0.061023 0.105~3! 0.22~1! 0.376~1! 0.302~5!

0.5 0.061024 0.246~3! 0.49~1! 0.421~1! 0.270~5!

0.6 0.061024 0.3764~6! 0.758~8! 0.4430~5! 0.238~5!

0.7 0.061024 0.5020~2! 1.006~4! 0.4566~5! 0.211~5!

0.8 0.061025 0.6224~1! 1.249~4! 0.4657~5! 0.189~5!

1.0 0.061025 0.8530~4! 1.711~4! 0.4769~5! 0.155~5!
2-11
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which is the exactly soluble case. For a particular latt
spacingx, we have very good convergence with lattice si
so that forx54 through tox5100 we have 6 figure conver
gence. Even for the largest lattice spacingx5400 used here
the gaps have converged to 4 figures. Our final continu
estimate is obtained by the method of linear, quadratic
cubic extrapolants in 1/Ax as used in Ref.@22#. An example
is shown in Fig. 17. Our final estimate ofm2/g
50.56419(4) for this case agrees extremely well with
analytic result~67!.

Table V summarizes our results, which show between
and two orders of magnitude improvement in accuracy o
the previous best estimates for small values ofm/g. We must
note, however, that for values ofm/g.1 there is little or no
improvement in accuracy over previous results. To expl
this, first note that the structure of the eigenvalue function
x shifts towards largex for largem/g. But at largex and large
m/g there are many ‘‘intruder’’ states below the vector sta
for finite N: artifacts of the finite lattice corresponding
states with no fermion excitations but with loops of elect
flux winding around the entire lattice. This restricts the ran
of x that can be used, and hence the accuracy of the calc

FIG. 16. ‘‘Vector’’ mass gapsm2/g for m/g50, finite lattices
N510–256, and various lattice spacings.
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tion. In a future calculation, a way of eliminating these i
truder states must be found.

A comparison of our results with previous works is show
in Fig. 18. In the low mass region, we see excellent agr
ment between our results and the series expansion aro
m/g50. Our results are also fairly consistent with the resu
of Sriganeshet al. @22#, obtained by exact diagonalization
The ‘‘fast-moving frame’’ results of Kro¨ger and Scheu@31#
seem to be consistently a little low in this region. In the lar
mass region the situation is reversed, as Kro¨ger and Scheu
obtain excellent agreement with the non-relativistic exp
sion, while both our results and those of Sriganeshet al.
seem to be slightly high. We attribute this to the proble
with intruder states discussed above. The Kro¨ger and Scheu
quasi-light-cone approach appears to remain more accu
in this weak-coupling region.

Scalar state mass gapsm1/g may also be calculated usin
DMRG; here we merely demonstrate its applicability for o
mass value m/g51.0, where we obtainm1/g22m/g

FIG. 17. An example of our extrapolation procedure for t
‘‘vector’’ mass gaps atm/g50. Circles, squares and triangles sho
linear, quadratic and cubic extrapolants, respectively. Dashed l
show the upper and lower bounds for our final estimate. Here
estimatem2/g50.56419(4).
lts of
TABLE V. Comparison of bound-state energies for the ‘‘vector’’ state with previous works. The resu
Sriganeshet al. and Crewther and Hamer were obtained through finite-lattice studies, while Elleret al., Mo
and Perry, and Kro¨ger and Scheu used light-cone or related methods to obtain their results.

Sriganesh Crewther and Eller Mo and Kro¨ger and
m/g This work et al. @22# Hamer@20# et al. @28# Perry @30# Scheu@31#

0 0.56419~4! 0.563~1! 0.56~1!

0.125 0.53950~7! 0.543~2! 0.54~1! 0.58 0.54 0.528
0.25 0.51918~5! 0.519~4! 0.52~1! 0.53 0.52 0.511
0.5 0.48747~2! 0.485~3! 0.50~1! 0.49 0.49 0.489
1 0.4444~1! 0.448~4! 0.46~1! 0.45 0.45 0.445
2 0.398~1! 0.394~5! 0.413~5! 0.40 0.40 0.394
4 0.340~1! 0.345~5! 0.358~5! 0.34 0.34 0.339
8 0.287~8! 0.295~3! 0.299~5! 0.28 0.29 0.285
16 0.238~5! 0.243~2! 0.245~5! 0.23 0.24 0.235
32 0.194~5! 0.198~2! 0.197~5! 0.20 0.20 0.191
2-12
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51.118(1). This is again over an order of magnitude bet
that the previous best estimate of Sriganeshet al. who ob-
tained for the same quantity 1.12~3!.

VI. CONCLUSIONS

In this paper we have demonstrated the application of
numerical DMRG technique of White@11# to a lattice gauge
model, namely the massive Schwinger model. The results
in most cases nearly two orders of magnitude more accu
than previous calculations. Where exact diagonalization
treat lattices up to 22 sites, DMRG gives very accurate
sults up to 256 sites. The long-range Coulomb interact
present in the model has proved no impediment to
DMRG technique: this is very likely connected with the fa
that the Coulomb interaction is screened@1,4#, and theeffec-
tive interactions are short range.

The most interesting results were obtained for the cas
the background fieldu5p. We have performed a detaile
study confirming the existence of the ‘‘kinks’’ or ‘‘half
asymptotic’’ particles predicted by Coleman@6#, and have
shown that there is a phase transition at (m/g)c
50.3335(2) belonging in the universality class of the tra
verse or (111)D Ising model. The pattern of energy eige
values near the critical point bears a truly remarkable res
blance to the transverse Ising model, and points to some
physical effects, beyond those discussed by Coleman@6#.

In particular, for (m/g),(m/g)c andu5p, we find that
the single-kink state isdegeneratewith the ground state. This
points to the existence of a kink condensate@45# in the
ground state. It also points to the existence of a dual sym
try and dual order parameter in the model, which have
been discussed hitherto. We also find that the gap betw
the symmetric and antisymmetric loop state combinati
appears to be exactly degenerate with the 2-particle ve
gap in this low-mass region.

FIG. 18. Comparison of our results for the ‘‘vector’’ state bin
ing energiesE1 /g with other works. Squares mark the results
Sriganeshet al. @22# and triangles the results of Kro¨ger and Scheu
@31#. The results of Vary, Fields and Pirner@34# and Adam@35#
were used for the expansion aroundm/g50, while the non-
relativistic expansions were done in the works of Hamer@37# and
Sriganeshet al. @22#.
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Some calculations were also carried out at zero ba
ground field,u50. The vector gap was obtained with gre
precision for smallm/g; but at largem/g the accuracy was
spoiled a little by finite-lattice ‘‘intruder’’ states.

The same methods should be applicable to other lat
gauge models in (111) dimensions. In higher dimension
however, the DMRG technique does not have such a la
comparative advantage over other techniques. Strenuou
forts are being made to develop improved DMRG algorith
for lattice models in (211)D; but nothing has even bee
attempted in (311)D, as far as we are aware.
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APPENDIX

Here we calculate analytically the form of the finite-si
scaling corrections in the 1D transverse Ising model. We
low the discussion by Hamer and Barber@43#.

The Hamiltonian is taken as

H5 (
m51

M

@12s3~m!#2x (
m51

M

s1~m!s1~m11!. ~A1!

The model can be solved exactly by the methods
Schultz, Mattis and Lieb@46#. The mass gap on a finite lat
tice of M sites with periodic boundary conditions is

F~x,M !52~12x!12M @T2M~x!2TM~x!# ~A2!

where

TM~x!5
1

M (
k50

M21

LS pk

M D ~A3!

and

L~u!5@~12x!214x sin2u#1/2. ~A4!

For fixedx, asM→`,

T̃M~x!5
1

Ax
TM~x!;c01S 4p

x D ~12x2!1/2
e22Mwc(x)

~2M !3/2

~A5!

where

wc~x!5sinh21S 12x

2Ax
D ~A6!

„Eq. ~A1.16! of Ref. @43#… and hence

F~x,M !;2~12x!22pA2~12x2!

xM
e22Mwc(x) ~A7!

which exhibits the leading finite-size corrections, as requir
2-13
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