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We use 't Hooft loops of maximal size on finite lattices to calculate the free energy in the sec®§f
Yang-Mills theory with fixed electric flux, as a function of temperature #@sphatia) volume. Our results
provide evidence for the mass gap. The confinement of electric fluxes in the low temperature phase and their
condensation in the high temperature phase are demonstrated. In a surprisingly large scaling window around
criticality, the transition is quantitatively well described by universal exponents and amplitude ratios relating
the properties of the two phases.
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Center symmetry is widely believed to play a key role for a way that the modified plaquettes form a coclosed set. This
confinement. ISU(N) Yang-Mills theory at finite tempera- creates a7, interface which is equivalent to enforcing
ture, the Polyakov loop is commonly used in lattice studiesboundary conditions with twist in thez{t) directions. Com-
to illustrate this role. Its correlations are short range at lowbining two and three maximal XL 't Hooft loops in or-
temperature and acquire a nonzero disconnected part abovetegonal spatial planes yields the partition functions of
critical temperaturd ., signaling deconfinement. The role of SU(N) Yang-Mills theory on finite lattices for all possible
the low (high) temperature phase as the center symmetricombinations of temporal twists. From these, one obtains the
(broken one is thereby opposite from that in the correspond{ree energies in the presence of fixed units of electric flux
ing Zy-spin model. This suggests that we consider dual Variéezﬁ, via aZy Fourier transform as shown by 't Hodff6].
ables, whose behavior as a function of temperature is rerpjs Jeads to the respective electric-flux superselection sec-
versed. That point of view was emphasized by 't Hooft withtors of the theory in the thermodynamic limit. In the present

t Hooft loops inSU(2) show screening for the interaction of electric fluxes+ 0 vanish exponentially with the spatial size

a static pair of center monopoles in both phases,TfarT, <T.i - :
and for T~ T [2,3, just as spatial Wilson loops exhiit an ¢ ccic e = 2SOy 1R SHEse WO
area law in either case. The expectation values(soffi- to that of the neutraé=0 sector Describing the transition by
c;:antly Ie;rge) spatial t Hotc))fthloqps/g((lj), on the otfher(?and, critical exponents of the 3D-Ising class, we discuss how uni-
¢ ange rom scre_enlng §~aV|or eldyto a an IN€d ONe yersal amplitude ratios quantitatively relate the two phases,
[4] with a dual string tensiorr and an area law in the “elec- i particular, the string tension below and the dGairtex)
trically” deconfined phase abovE, [3], string tension abov@. .

As expected, the free enerdy, of a static fundamental
charge jumps from+- to 0 atT.. One might expect to see
this also in measuring the Polyakov lo&pdirectly on the
lattice. If (Py=e~(YMFq, an infinite free energy amounts to a

(W(C)) ~ exp{—o(T)LR} at T>T,, (1)

for a rectangular curv€ spanning a spatial surface of size e . :
LXR on a 1Tx L3 lattice. Referencd3] also confirmed center symmetric distribution, while a nonzero expectation

numerically a perimeter law for 't Hooft loops &=0. vaIge(P) is obtained for finité=, . However, the presence of
The qualitative behavior of the spatial 't Hooft loops is & Single charge is incompatible with periodic boundary con-
thus the same as that of the Wilson loops in theditions to measurgP). And, like any Wilson loop(P) is
3-dimensionalZ, gauge theory[5]. Furthermore, as the Subjectto UV-divergent perimeter terms, such =0 at
phase transition is approachéitom above, the temperature &l T as the lattice spacing—0. Here, we measure the

dependence of th&U(2) dual string tension obeys the same 9aUge-invariant, UV-regular free energy of a static funda-
scaling law as that of the interface tension in themental charge i8U(2), andshow that it has the expected

3-dimensional Ising modébelow T.). This similarity is ex- behavior, dual to that of a certain type of center vortex. Both
pected, since the 3DZ, gauge theory, its dual the provide a well-defined order parameter for the transififh

3-dimensional Ising model, arfdU(2) at finite temperature

all belong to the same universality class.

To introduce a spatial 't Hooft loop of maximal size
L XL, living in, say, the k,y) plane of the dual lattice, one
multiplies one plaquette in every,t) plane of the original
lattice by a nontrivial element of the center®U(N) in such
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Twisted boundary conditions and electric fluxes

For the finite-volume partition functions of the pure
SU(N) gauge theory, 't Hooft's twisted boundary conditions
fix the total number ofZy-vortices moduloN that pierce
planes of a given orientation. Thus, on the 4-dimensional
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torus there ar@® different Zy-flux sectors corresponding to
the 6 possible orientations for the planes of the twists. These
label the inequivalent choices for imposing boundary condi-
tions on the gauge potentials which are invariant under the
centerZy of SU(N). One first chooseé\(x) to be periodic
with the lengthd_, of the system in each directigm up to
gauge transformation& ,(x,) e SU(N) which can depend .
on the components, transverse to that direction, FIG. 1. Cubes with one, two, and thre&<L planes dual to tt]e
stacks of flipped plaquettes, sketched for temporal twkst
=(0,0,1),k=(0,1,1), andk=(1,1,1) from left to right.

S
~

A(x+ L#)=QM(XL)(A(X)— '5(9 Q1 (x)). 2

Then, compatibility of two successive translations in a S(B.k,m)=—2, B(P)iTr(Up). 7
(m,v)-plane entails thatno summation of indices P
QX +L,)Q (X )=2Z,,0,(x, +L,)Q ,(x,) Her_ein, the sum extends over all plaqgeﬂésvith Up de-
noting the path-ordered product of the links arothand we
with  Z,,=e?™"w/N n =-n, eZy. (3)  introduced a plaquette-dependent coupling,

The total number modN of center vortices in a4, v) plane -B, PeP(n,),
is specified in each sector by the corresponding component B(P)= B, P&P(n,) 8

i) ) aZ2al

of the twist tensom,,,. The spatial ones are given by the

conserved/y-valued and gauge-invariant magnetic flax  herep(n,,) denotes the coclosed stacks of plaquettes dual
through the box,n;;=e€jxm,. The time component$lsi  to the planes of the maximal 't Hooft loops. These stacks of
=k; define temporal twisk 73 . flipped plaquettes force th&, interfaces corresponding to
With the inequivalent choices of boundary conditions, thetwist in the (u,v) directions. Equivalently, they create a
finite-volume theory decomposes into sectors of fractionalt Hooft loop of maximal size in the orthogonal plane. For
Chern-Simons numbemw( K- rﬁ/N) [8] and states labeled by the various combinations of temporal twist the coclosed sets

|K,m, ), wherev e 7 is the usual instanton winding number. P(K), when put between two time slices, can be chosen dual
However, these sectors are not invariant under homotopicallp the spatial planes shown in Fig. 1.

non-trivial gauge transformatior®[K, »] which can change The partition functions of the twist sectors, relative to the
K and v untwistedZ ; [such thatZ 4(0,0) =1], are then

Q[IZ',V!]“Z,rﬁ,v}:|I2+|Z’,rﬁ,v+y/}_ (4) Z'B(lz,rﬁ)zzlglf [dU]exp{—S(,B,IZ,rﬁ)} (9)

A Fourier transform of the twist sectorZ(IZ,rﬁ,v) which
generalizes the construction éfvacua as Bloch waves from Similarly, flipping the couplings of plaquettes dual to some
v-vacua in two ways, by replacing— ( v+ K. rﬁ/N) for frac- surface subtended by a cIoseNd cu€rgields the expectation
tional winding numbers and with an addition&l-Fourier ~ Vvalue of a finite 't Hooft loopW(C). An entirely analogous
transform with respect to the temporal twist procedure can be used for Wilson loops in the 3-dimensional
7, gauge theory. Through duality, their expectation values
o 1 A can be expressed as ratios of Ising model partition functions
e MFemOH=— 3 e loltnz(K,m,v), (5)  with and without antiferromagnetic bonds at those links of
N* v the Ising-model that are du@h 3 dimensionsto some sur-
. face spanned by th&,-Wilson loop[5]. In both cases the
yields the free energf(e,m,¢) in an ensemble of states syrface is arbitrary except for its boundary. The 't Hooft loop
invariant, up to a geometric phase(k,v)=2me-k/N can thus be viewed as a gauge-invariant operator which cre-
+ 6(v+Kk-m/N), under the non-trivial [k, »] also, ates a fluctuating center-vortex surface with pinned bound-
ary.
Q[k,v]|e,m,6)=expliw(k,v)}|e,m,6). (6) In this paper, we first calculatzk(IZ)EZB(lZ,O) for m
=0 (and #=0) on a 1T x L3 lattice in SU(2) (with k; in
These states are then classified, in addition to their magneti®) 11). The expectation values of maximal-size 't Hooft
flux m and vacuum angled, by their Zy-valued gauge-  loops, given by the partition functions of the twist sectors,
invariant electric fluxin the e direction[6]. are then used to calculate the free energies of electric fluxes
To createn,,, twist in SU(2), on thelattice, one intro- @S per Eq(5). For purely temporal twists in particular, the
duces couplings with reversed signs into the usual Wilsodree energies of the electric fluxes through thé box at
action by replacingd— — B for one plaquette in everyy, v) temperature T, F¢(e;L,T)=F(e,m=0,6=0)—F(e=0m
plane, =0,6=0), are given by
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- E?Ik-_zlme_zmé'mzk(ﬁ) .. . L==[0 for Z(k)—1, T<T,,
Zo(e)=e (NFeEL D= _— . (10) (P(X)PT(x+Le)) — )
3020, Zi(k) 1 for Z,(K)—0, T>T,,

reflecting the different realizations of the electrig center

with Z¢(0)=2Z,(0)=1. Because of the invariance under Spa'symmetry in the respective phases.

tial /2 rotations, we can write foSU(2): Z,(1) if k
={(1,00),(0,10),(0,0,1)};  Z(2) if k={(1,1,0), Finite size scaling and universal amplitude ratios
(1,01),(0,1,1)}; and Z,(3)=2Z,(1,1,1), for the partition

functions with one, two and three maximal 't Hooft loops in
orthogonal spatial planes, respectively. With analogous not

We compute the three partition functioBg(i) for SU(2)
near T. by Monte Carlo simulations, using the method of
Ref. [3], with 20k—5( measurements per simulation. For

tions for theZ,(€) one thus obtains pioneering related work &= 0, see Ref[10]. TheZ,(i) are
1 the analogues of ratios of 3D-Ising model partition functions

Zo(1)= —(1+Z (1)~ Zi(2)— ZW(3)), (11) with differen'_[ boundary conditions. As for the lat{erl], we
Ne assume theil, T dependence to be governed by simple

finite-size scaling laws,
1
Zy(2)= M(l_zk(l)_zk(2)+zk(3)), (12 Z()=fOx), i=1,...3. (17)
1 The ) are functions of the finite-size scaling variable
Zg(3)= J\_/-(l_3Zk(1)+32k(2)_zk(3))= (13
e X==*LTt|"<L/éL(t) for T=T,, (18
With V=14 3Z, (1) +3Z,(2) + Z(3). wheret=T/T.—1 and&. (t)=£|t|* are the reduced tem-

perature and the correlation lengths, respectively, and we use
the exponent=0.63 from the Ising model.
In our calculations we keep the number of poiNtsn the
time direction fixed and control the temperature by varying
the lattice coupling3 around the critical value for the phase
transition B.. The results presented here are obtained with
o1 T _ N,=4 for which 8,=2.29895(10)[12]. We employ cou-
P(x)= Ntr(Pe'gfo AoxDdt() (). (14)  plings B between 2.19 and 2.5 for various lattices ranging
from N,=6 up toN,=20 points in the spatial directions. Our

Successively transforming the path-ordered exponential b{i€thod to calculazte. a partition function for one temporal
the various spatial transition functions which accompany thdWist amounts toN;" independent Monte Carlo simulations
possibly nontrivialQ,(x) for the transition in the time direc- £3].t FOI(I? f|;<hed Stai'St:(c‘;l‘ aCCL:raTyi.Wh'Ch |nr'c]r|0(J[uces another
tion, we derive from Eqs(2) and (3) that '370 or N7, the cost of the calculation roughly increases as
I .

P(x+L6)= eZqTiéIZ/NP()Z) or For the temperaturé=1/(N;a), where the lattice spacing
a=a(B) depends on the coupling, we adopt the leading scal-
ing behavior around criticality of the form,

This is proportional to the unit operator when acting on the TITe=expb(B—Bc)}- (19

states in a sector of definitetwist. Therefore, the electric- The nonperturbative coefficient herein, we use 3.26, is
flux partition functions of Eq(10) are in fact the expectation getermined so as to reproduce the published values of
values of Polyakov loop cc_)rrelators in the ensemble averagg (N,) also forN,=6 and 8[13].
over all these temporal twists, We can see in Fig. 3 that all our curves intersect at the
S UTFELT) D mt S| 2 same poinT =T, which is consistent with the known value
Ze)=e OB U=(P(x)P'(x+Le)) 1. (16)  of ., even for our smallest lattice size. In fact, this inter-

section point is known to provide a quite accurate determi-

This expectat.lt?n value !S takean_nlthe nE)-ﬂux_ens_embIe,_ Witth ation of the critical coupling3, already on very small lat-
enlarged partition functiod =2, ~Z(k), which is mani-  tices in the Ising modg]11].

festly different, in a finite volume, from the periodic en-  Away from criticality, corrections to Eq19) will become
semble. Also note that the operator in Ef6) has no perim- important if one is interested in a more precise definition of

eter, is UV regular, and we will see that there is no Coulomlithe physical temperature f@U(2), as inRef. [13]. Espe-

Equations(11)—(13) are readily inverted via inversg, Fou-
rier transform, which in effect interchanggg(i) < Z,(i).

We now establish the connection with Polyakov loops.
First, recall that the gauge invariant definition of the latter in
the presence of temporal twists is given [I9y}

P(X)PT(X+L6)=e 2me kN | (15)

term for small volumes either. cially at our lowestB values, where such corrections are
Equation(10) thus yields a dual relation between Polya- noticeable, scaling violations become important also. A more
kov loops and temporal twists of the general pattern, refined definition of the reduced temperatures therefore
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FIG. 2. The free energy of one temporal twist as a function of 1| R R o
the finite size scaling variabbe (with x<0 for T<T,). - -

0.8 1
beyond the scope of our scaling analysis which concerns the s i Pt sl
dominant behavior nedr;. It has no effect on the qualita-
tive conclusions emphasized here. z Zs(1)

That our results for all different lattice sizes nicely col- Ve
lapse on a single curve can be seen for anel() spatial 't 0.4 " 6%x4 —— |1
Hooft loop in Fig. 2, with analogous results for2 and 3. 8§x4 b
We fit the free energies by an ansatz for each phase, wher, , | 16k == |
the two leading terms obey the expected thermodynamic be ! ];Xj o
havior, while the others represent ad hoc modeling of jwﬂigg 74 203:;4 s
small-size correctionéwith al)~c<b®;dV<1), R . . . . ]
S 06 08 1 12 14 16 18 2
C(i) T/T,
expl bWx+al— ﬁ ,  x<O0, FIG. 3. The partition functions of one temporal twigbp) and
()ron (d¥—x) one electric flux(bottom over T for the various lattices.
FO00= 0 (20
b(x2—a® + .C+ . x>0, Polyakov loops inSU(2) to that of their dual analogue, the
d(;)+x2 correlation lengths of the spins in the 3D-Ising model, as

measured in Ref.15],
and —In fOx)=F(x) for x=0. Plotted over temperature,
the data of Fig. 2 and the unique functiB§(x) lead to the
family of curves shown in Fig. 3top) in which the phase

transition is exhibited ”?OSt clearly. The amplitudes n.el.evaml'ogether with Eq(21) this relates the string tension ampli-
to the large size behavior of the free energy near criticality, .
tude below to its dual counterpart aboVe, as follows.

1) _ 1)_~(1)_
come out aSb,(ﬁ)_3-87i0-5 and b&)_?g )_,5-36i 0.1, From the linear part of the electric-flux free energy,
with some additional systematic uncertainty inherent in the
form of our ansatz20). With analogous data and fits for (P()Z)PT(>Z+ Lé’_))_)efo(T)L/T:efL/.f_(t) T<T
Z(2) andZ,(3), from Eq.(11), we obtainZ,(1) as shown ' ’ ¢

£5U2) gium; £'59 glsing— 1 96 (22)

in Fig. 3 (bottom. Corrections to scaling do not become = —IN(Zo(1))— — X/ (£OT,)

appreciable up tor~2T, indicating a surprisingly large ¢ -

scaling window. —x=LTt|" (23)
C [}

Above T, the dual string tension igvith o{=b'}),
for largeL [or (—x) large]. Thus, from Eqs(21), (22),

o(T) 1 = &
—= m=Tc|t|”\/agl)/R+, R+=§—2R:0.4.
- +

where the universal rati®=0.104[14,15 is known from T

the 3D-Ising model. ThereR=¢2 o, relates the correlation

length and the interface tension for T<T.. Here, Eq(21) A value of abouto{)=5.36 then implies for the string-
determines the screening length for the Polyakov loopsension amplitude 1&(‘,0)TC):3.66. This value was used in
aboveT., £.(t)=VR/o(T). In addition, the universality the fit for the slope of the linear part efIn(Z.(1)) shown in
hypothesis relates the ratio of the correlation lengths for théig. 4. Fitting the slope to the data yields the consistent value

a(T)=oITt>"=RIE (1), (21)
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FIG. 4. Free energy of one unit of electric flux from Efjl) as
a function ofx in the confined phase, and aboVg (inse?.

1/(5(_0)TC):3.58t 0.5. This is the linear potential between
static charges without a Coulomb part.

The insert of Fig. 4 shows the quality of the finite size

scaling from the more accurate data for the free energy
one electric flux in the high temperature phase.

Similar results are obtained from Eq42), (13) also for 2
and 3 orthogonal electric fluxes which we verify to be sup-
pressed more strongly in the confined phase
Z(2)1Z¢(1),Z24(3)/Zo(1)—0 for L—oe. Then, inverting
Egs.(11)—(13) one therefore deduces

=In(Z(1))— —In(1—-2Z4(1))~Zg(1), T<T,

=>1/(§(_0)Tc)zb(_1)=3.87i 0.5 (24)
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1
FIG. 5. Free energy of 1, 2 and 3 't Hooft loopsTatT..

0.5 15

such a square-root behavior is successfully enforced on the
fits (20) of the spatial 't Hooft loops abovE.. We obtain the
same ratios, with less accuracy, for the slopes of the electric-
ux free energies below,, as expected for diagonal fluxes
ith string formation.
To summarize, we have shown that, beldy, the free

energy of electric fluxes diverges linearly with the length
of the system. Because spatial twists share their qualitative
low-temperature behavior with the temporal ones considered
here, the free energy of the magnetic fluxes must vanish.
This is the magnetic Higgs phase with electric confinement
of SU(2) Yang-Mills theory.

At criticality all free energies rapidly approach their finite
L—oo limits indicative of massless excitations. We obtain,
e.0.,Z,(1)=0.54(1) forT=T,, which agrees with the cor-

for the string tension, which is again consistent with theresponding ratio in the 3D-Ising modgl5].

value =3.66 implied by the universal amplitude ratio. Be-
cause of similar relations far,(2) andZ,(3), we expect
b =p@ =p® in our fits (20) for 2 and 3 spatial 't Hooft
loops belowT., which is verified well within our®(10%)
accuracy on these amplitudes. Abolgon the other hand,
we expect for the dual string tension amplitudes

5D e ~1:42:3, (25)

Above T, the free energy of electric charges vanishes in
the thermodynamic limit. The dual area law prevents mag-
netic charges from propagating in spatial directions.

The transition is well described by exponents and ampli-
tude ratios of the 3D-Ising class, see aJ46)].
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