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Color confinement and dual superconductivity in full QCD
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We report on evidence that confinement is related to the dual superconductivity of the vacuum in full QCD,
as in quenched QCD. The vacuum is a dual superconductor in the confining phase, while theU(1) magnetic
symmetry is realizeda la Wigner in the deconfined phase.
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I. INTRODUCTION

In a series of papers@1–3#, which we shall refer to as I, II,
III respectively, we have demonstrated by numerical simu
tions that the quenched QCD vacuum is a dual superc
ductor in the confining phase, and goes to a normal stat
the deconfinement transition~see also Ref.@4#!. More pre-
cisely we have constructed an operatorm carrying a mag-
netic charge and we have measured its vacuum expect
value ^m&. For T,Tc ^m&Þ0, for T.Tc ^m&50 and, ap-
proaching Tc , ^m&.(12T/Tc)

d @d50.50(3)#. Magnetic
charge is defined by a procedure called Abelian projection
associates (Nc21) U(1) magnetic symmetries to any oper
tor f in the adjoint representation@5#. A priori magnetic
symmetries corresponding to different Abelian projectio
~different choices off) are independent. In I, II, III we have
shown that the behavior of̂m&, including the value of the
index d, is independent of the Abelian projection.

There is general agreement on the order-disorder natu
the deconfining transition in the quenched case. The pop
order parameter is the Polyakov line^L&; the symmetry in-
volved is ZN . Alternatively the dual~’t Hooft! line ^L̃& @6#
can be used as a disorder parameter~order parameter of the
disordered phase! corresponding to the dualZ̃N symmetry.
Our ^m& is also a good disorder parameter, and in fac
coincides numerically witĥL̃& @7,8#.

In full QCD, i.e. in the presence of dynamical quarks, t
situation is less clear.ZN and Z̃N symmetries are explicitly
broken by the very presence of the quarks. At zero qu
mass there is a phase transition at someTc involving chiral
symmetry: forT,Tc chiral symmetry is spontaneously bro
ken, the pseudoscalar octet being the Goldstone parti
and for T.Tc it is restored. Quark masses do break chi
symmetry explicitly. It is not clear theoretically what th

*Email address: jcarmona@posta.unizar.es
†Email address: delia@ge.infn.it
‡Email address: ldd@df.unipi.it
§Email address: digiaco@df.unipi.it
i Email address: lucini@thphys.ox.ac.uk
¶Email address: paffuti@df.unipi.it
0556-2821/2002/66~1!/011503~4!/$20.00 66 0115
-
n-
at

ion

it

s

of
lar

it

rk

s,
l

chiral transition has to do with the deconfinement transiti
However, the susceptibilities of different quantities~the
Polyakov line ^L&, the chiral condensate! have been mea
sured, and all of them have a maximum at the same va
Tc(mq) for any value ofmq . Above a certain value ofmq
(mq.3 GeV) the transition is first order, as in the quench
case, and̂L& still works as an order parameter. Atmq;0 the
transition is presumably second order. At intermediate val
the susceptibilities which have been considered show
maximum atTc , but it does not become large at increasi
volume. The indication is then that there is no transition b
only a crossover.

A natural question is then if dual superconductivity is
symmetry for the transition in full QCD as it is in th
quenched case. In the spirit of theNc→` limit, one would
expect that the mechanism of confinement be the same a
quenched QCD, the idea being that the structure of
theory is the same as that in the limitNc→` at g2Nc5l
fixed: at finiteNc small differences are expected with respe
to the limiting case. Quark loops are nonleading in the
pansion. The mechanism of confinement should be appr
mately Nc independent and the same with and without d
namical quarks.

The disorder parameter̂m& can be constructed in ful
QCD exactly in the same way as in the quenched case~see
Sec. II!. At a given temperatureT, ^m& has to be computed in
the infinite volume limit. We have investigated the regio
T,Tc , where we find

lim
V→`

^m&Þ0 ~1!

andT.Tc , where we find

lim
V→`

^m&50 ~2!

as will be shown in detail below. Notice that the limit Eq.~2!
is not within errors but exact. Indeed we measure, instea
^m&, the quantityr5(d/db)ln^m&, and we find that it tends
to 2` as r52kNs1k8 (k.0) as the spatial size of th
sampleNs→`.
©2002 The American Physical Society03-1
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The finite size scaling analysis in the critical region
under investigation, to study the nature and the order of
transition.

II. DISORDER PARAMETER

The operatorm is defined in full QCD exactly in the sam
way as in the quenched theory@1–3#

^m&5
Z̃

Z
,

Z5E ~DU !e2bS, ~3!

Z̃5E ~DU !e2bS̃.

Z̃ is obtained fromZ by changing the action in the time slic
x0 , S→S̃5S1DS. In the Abelian projected gauge th
plaquettes

P i0~xW ,x0!5Ui~xW ,x0!U0~x1 ı̂ ,x0!

3Ui
†~xW ,x010̂!U0

†~xW ,x0! ~4!

are changed by substituting

Ui~xW ,x0!→Ũ i~xW ,x0![Ui~xW ,x0!eiTbi (x
W2yW ) ~5!

where bW (xW2yW ) is the vector potential of a monopole co
figuration centered atyW in the gauge¹W bW 50, andT is the
diagonal gauge group generator corresponding to the m
pole species chosen. In SU~2! T5s3/2, in SU~3! T5l3/2 or
(A3l82l3)/2. In the generic SU(N) case the procedure i
explained in Ref.@9#. Unlike the ZN center symmetry, the
U(1) magnetic symmetry defined after Abelian projection
a good symmetry also in the presence of dynamical fer
ons. It can be shown that, as in the quenched case,m adds to
any configuration the monopole configurationbW (xW2yW ). If
the magnetic symmetry is realizeda la Wigner,^m&50 if m
carries nonzero net magnetic charge. Then^m&Þ0 means
Higgs breaking of the U~1! symmetry. Thereforêm& can be
a correct disorder parameter for the transition to dual su
conductivity also in full QCD.

III. NUMERICAL RESULTS

We have measured̂m& with two flavors of degenerate
staggered fermions onNs

334 lattices, with different values
of Ns (Ns512,16,32) and of the bare quark massmq . In
particular we have chosen, in the transition region, to v
the temperature,T51/„Nta(b,mq)…, moving in the (b,mq)
plane while keeping a fixed value ofmp /mr . To do this and
to extract the physical scale we have used fits to themr and
mp masses published in@10#. We present here results ob
tained atmp /mr.0.505: in this case, atNt54, theb corre-
sponding to the transition is approximatelybc;5.35 @11#.
Preliminary results have been already presented in@12#.
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Instead of̂ m& we measure the quantity

r5
d

db
ln^m&. ~6!

It follows from Eq. ~3! that

r5^S&S2^S̃& S̃ , ~7!

the subscript meaning the action by which the average
performed. In terms ofr,

^m&5expS E
0

b

r~b8!db8D . ~8!

A drop of ^m& at the phase transition corresponds to a stro
negative peak ofr.

FIG. 1. Chiral condensate~open circles! andr ~filled circles! on
the 32334 lattice.

FIG. 2. Behavior ofr around the phase transition at variou
lattice sizes.
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We have used theR version of the hybrid Monte Carlo
~HMC! algorithm for our simulations@13#. Some technical
complications arise in the computation of the second term

the right-hand side of Eq.~7!. In the evaluation of̂ S̃& S̃ ,
C!-periodic boundary conditions in time direction have to
used for the gauge fields and this requiresC! boundary con-
ditions in temporal direction also for fermionic variables~in
addition to the usual antiperiodic ones!, in order to ensure
gauge invariance of the fermionic determinant. This impl
relevant changes in the formulation and implementation
the HMC algorithm which are explained in detail in Re
@14#.

We have chosen the Polyakov line as the local adjo
operator which defines the Abelian projection. Actually, ca

ing L(xW ,x0) the Polyakov line starting at point (xW ,x0), the
Abelian projection is defined by the operat
L(xW ,x0)L!(xW ,x0), which transforms in the adjoint represe
tation when usingC! boundary conditions.

The use of a modified gauge action also implies chan
in the molecular dynamics equations. One has to main
the modified Hamiltonian containingS̃ constant. A change in
any temporal link indeed induces a change inL(xW ,x0) and
hence in the Abelian projection defining the monopole fie
Therefore the dependence ofS̃ on temporal links is nontrivial
and the equations of motion for the temporal momenta
come more complicated.

Figure 1 showsr for a 32334 lattice, and the chiral con
densate as a function ofb. The negative peak ofr is clearly
at the same value ofb where^c̄c& drops to zero.

Figure 2 shows the plot ofr for different spatial sizesNs .
For larger lattices the peak becomes deeper and the valu
r at highb lower.

An analysis ofr at largeb ’s as a function ofNs is shown
in Fig. 3, for different masses of the staggered fermions u
in the simulations. For net magnetic chargeÞ0

FIG. 3. Weak coupling behavior ofr at various lattice sizes.
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r.2kNs1k8 ~k.0! ~9!

and is practically independent of the quark mass within
rors. For net charge zero~e.g. monopole-antimonopole pai!
r stays constant at largeNs . Going back to Eq.~8! this
means that̂m& is strictly zero in the infinite volume limit for
nonzero magnetic charge, and can beÞ0 for excitations with
zero net magnetic charge. This statement is based on
analysis of many different excitations with different ma
netic charges, and Fig. 3 is only an example. The magn
symmetry is therefore realizeda la Wigner forT.Tc and the
Hilbert space is superselected. Notice that

~1! ^m& can only be strictly zero in the infinite volum
limit ~Lee-Yang theorem@15#!, and~2! if we were measuring
^m& directly we would find zero within large errors. Lookin
instead atr we can unambigously check Eq.~9!, which
means that̂m& is strictly zero asNs→`.

For T,Tc ^m&Þ0 if r stays constant and finite with in
creasing volume. This is what indeed happens as show
Fig. 4. Nothing spectacular can happen at larger volum
since no larger length scale exists in the system.

Around Tc a finite size scaling analysis is required to g
information on the order of the transition as well as to me
sure the critical indices. The problem is more complica
than in the quenched case, since an extra scale, the q
mass, is present. The program is on the way on a se
APEmille machines. Some qualitative features are shown
Fig. 2.

IV. CONCLUSIONS

The preliminary data reported in this paper conta
enough information to state that dual superconductivity is
work as a confinement mechanism in QCD with dynami
quarks, in the same way as in the quenched theory@I, II, III #.
For T.Tc the Hilbert space is superselected with respec

FIG. 4. Strong coupling behavior ofr at various lattice sizes
andam50.1335.
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magnetic charge, forT,Tc the symmetry is broken by th
Higgs mechanism.

Dependence of the disorder parameter on the choic
the Abelian projection and the nature of the transition
under investigation.
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