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Orientifolds with three-form flux provide some of the simplest string examples of warped compactification.
In this paper we show that some models of this type have the unusual featlre- 4f A'=3 spacetime
supersymmetry. We discuss their construction and low energy physics. Although the local form of the moduli
space is fully determined by supersymmetry, to find its global form requires a careful study of the
Bogomol'nyi-Prasad-Sommerfield spectrum.
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. INTRODUCTION the duality group as a spontaneous breaking of Afe4
dualities, the symmetry breaking is not straightforward.
Warped compactifications are of great interest, due to the While this work was in progress we learned of related
observation of Randall and Sundrum that warping in a highework on T%/Z, orientifolds with flux[6]. We are grateful to
dimensional space can produce a hierarchy of fourthose authors for communications.
dimensional scalegl,2]. Becker and Beckdr3] described a
large class of warped three-dimensioMatheory compacti- Il. AN'=3 ORIENTIFOLDS
fications, in which four-form flux is the source for the warp . . . S
factor. By duality these give rise to warped four-dimensional In this section we describe the specific orientifold solu-
IB compactifications, with three-form fluxes as the sourcetions with three-form flux, and determine their supersymme-
[4,5]. try._Th|s overla}ps the dlsc_ussmn in R@]; the T%/Z, ori-
In this paper we study some particularly simple exampleseg“m'd was discussed briefly there, in It4 theory avatar
of this type, which as we will show haie=4, N'=3 su- 1 /Zz- _ . .
persymmetry. These are of interest in part because of the In Sec. Il A we determine the action of tfi€/Z, orien-
rarity of A’=3 supersymmetry, but also because the superUf0|d projection on the fields. In Se_c. 1B we d|§cuss t'he
symmetry strongly constrains their moduli spaces. Th&luantization of three-form qu_x, which ha_ls an mtere_stlng_
small-radius behavior of warped compactifications is likelySubtiety. In Sec. Il C we describe the solution to the Bianchi
to be quite complicated fa\'<2, as the warping becomes |den_t|t|es anq equations of motion. Ir_1 Sec_. II D we identify a
large in this limit and the application af duality (or mirror ~ Particularly simple class of models, in which only one com-
symmetry is complicated by the warping and fluxes. Also, plex component of the flux is nonvanishing. In Sec. Il E we
such compactifications are intrinsically nonperturbative, inStudy the supersymmetry of these models and show that
that the dilaton is fixed at a nonzero value. However, withthere are\’=3 unbroken supersymmetries.
N=3 supersymmetry the local form of the moduli space is
completely determined, and we can hope to deduce the glo- A. Orientifold projection

bal structure. All examples that we consider are based on T8éZ,

b IndSec.tLIé_vg/eZdesgnbt_ef tlgese iﬂyt'ons'tﬁ"pf which €orientifold. Greek indices denote the noncompact directions
ased on 2 orientifold, and CISCUSS their SUPErsym- o - = 5 14yer case roman indices denote the compact direc-

metry. An interesting subtlety arises with the flux qu"’lm'z""'tions 4 ...,9, anccapital roman indices denote all directions

tion. .In Sec. lll we study various aspects of the'low energy, _....9. Thecoordinates<™ are each taken to be periodic
physics—the massless spectrum, and the metric on moduli

space—and show that it is consistent with the constraints O\cfltl)tr?w perltod qua_an(t:ie;mezz Is a simultaneous reflection of all
N=3 supersymmetry. We argue that the breaking/ef4 to pact coordina '

N=3 should appear to be spontaneous in the large radius R: (x*x5,x®8x",x8 x°%

limit. In Sec. IV we consider the duality groups. Because of

theH 3, flux and the finitegs, we have no tools to determine = (x0T ). (2D
these directly, and so must try to deduce their form based on ) .
the spectrum of Bogomol'nyi-Prasad-Sommerfig@PS For now we take the toroidal metric to be rectangular,

states. We find that, even though it may be possible to view 9
ds’= >, rZdxmdx™; (2.2)
m=4
*Electronic address: frey@vulcan.physics.ucsb.edu
TElectronic address: joep@itp.ucsb.edu we will relax this in Sec. Il
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The action of the orientifol&, can be derived by using To understand this, consider first the reduced problem of a
duality to the type | theory, whergy, C(), and® are  charge moving in a constant magnetic fifildg=F on a
even under world-sheet pari® and B(;), C=Cq, and torus 0=x>%<27. Let us work in the gauge
C(4) are odd. Alternately, one may derive it by noting that the

ont - F - As=0, Ag=Fx° 2.8
orientifold Z, must include a factor of{ 1)Ft, whereF, is 5=0, Ag=Fx". (2.8

the spacetime fermion number carried by the Ieft—movers;l_h field i iodi ¢ ¢ ; i
R=QR(—1)" [7,8]. This is necessary in order that it € gauge field Is periodic up to a gauge transtormation,

square to unity: A (X84 277, x8) = A (X5, X8) + M,

2_02R2(_1\FL+Fr—
RE=QRA(=1)R=1. 23 A (X5, X+ 27) = A, (X5, XE) + I\, 2.9
Note thatQ?=1, asQ) acts as*1 on all fields.R is equiva-

; X . ith \s=27Fx® and\4=0. Similarly a field of unit ch
lent to a rotation by in each of three planes, &7 is a w 5= <X andie imiarly a field ot untt charge

: . satisfies
rotation by 27 in an odd number of planes and therefore ISt
equal to (- 1)". J(x5+27,x8) =e sy (x5, x°),
By either means one finds that, acts on the various
fields as follows: Y(x5 X8+ 27) = eMey(x5,x5). (2.10
even: d,,,9mn:Bum:CumCimnpgq: Crovmn: Crinp . P.C; The consistency of defining(x°+ 2,x8+ 27) implies the

Dirac quantization

odd: g,um’B/.w1an!CMV!Cmn!C,umnp!Cp,V)\m' (24)
F=f2w, feZ. (2.11
It follows that the fluxesH,,, and F,,, are even, and so
constant three-form fluxes are allowed. In other words,
B. Flux quantization f Fee=2mfe2nZ. (2.12
The three-form fluxes must be appropriately quantized. T
The usual quantization conditions are Now let us form the orbifoldT2/Z,=S? by identifying

(x°,x8) with (—x°,—x5). For any value of we can define
1 j Fae2aZ (25 the quantum mechanics for the charged particle on the coset
rJc space simply by restricting to wave functions suchthat

1
’J H(3)62’7TZ,
C

2Ta 27w

for every three-cycleC. However, the orientifold presents P(—x°, =X =+ (x° x°). (213
some subtleties. ] 5. .
Consider firsfT® compactification. LettingC run over all However, the integral oF 55 over S° is half of the integral

T3's, one finds that constant fluxes over T2, so forf odd the flux is not quantized.
To see how this can make sense, note that there are four
o' a’ fixed points &°,x8)=(0,0),(,0),(0:), (7, ). At the first

Hinnp=5 - hmnp: Fmnpg=5—Tmnpi Nmnps Tmnpe 2 three, the periodicitie§2.10 and(2.13 are compatible, but
(2.6) at (7, ) they are incompatible and the wave function must
vanish. If we circle this fixed point, from#«—e€,7) to the
are allowed. Any cycle on the covering spatedescends to identified point @+ €, ), the wave function is required to
a cycle onT®/Z,, so the condition$2.6) are still necessary. change sign: there is a half-unit of magnetic flux at the fixed
In addition, there are new 3-cycles on the coset space, sudint (7, ). Thus the Dirac quantization condition is in fact

as satisfied.
Of course, the fixed pointit, 7) is not special: the quan-
o=x*<2w, O0=x°<2m, tization condition is satisfied if there is a half-unit of flux at
any one fixed point, or at any three. Similarly fagven there
0=xb<m, x'=x8=x°=0. (2.77  can be half-integer flux at zero, two, or four fixed points. In

each case there are eight configurations, which can be ob-
The conditions(2.5) on this cyclé would appear to require tained in the orbifold construction by including discrete Wil-
that h,s6 and f 455 be even, and similarly for all other com- son lines on the torus, and a discrete gauge transformation in
ponents. However, we claim thhf,,, andf,,, can still be  the orientifold projection.
arbitrary odd or even integers. This analysis extends directly to the quantum mechanics
of an F-string or D-string wrapped in the 4-direction, moving

We follow the conventions of Ref9].
The cycle(2.7) is unoriented, but the three-form fluxes can be We have chosen a gauge in whih, is explicitly Z, symmetric,

integrated on it because they have odd intrinsic parity. so no gauge transformation is needed.

126009-2



N=3 WARPED COMPACTIFICATIONS PHYSICAL REVIEW D 65 126009

in the fluxesH 56 andF 456. This is consistent for any inte- The warp factoiZ is determined by

gershysg and f 456, but if either of these is odd then there

must be Neveu-Schwarz—Neveu-SchwafiS-NS or =5 4 o~  Us e
Ramond-RamondR-R) flux at some fixed points, for ex- —V7Z=(2m)"a'“gspst 1_26”‘”"G @219
ample all those withx*=x°=x®= 7. Indeed, there are four

kinds of O3 plane, distinguished by the presence or absenGgnare 3 tilde denotes the use of the unwarped mézr.

of discrete NS-NS and R-R fluxd40]; for recent reviews This is consistent provided that the net D3 chatgel5
see Refs[11,13. The cycle(2.7), and each of the others | nishes and the Bianchi identitg.14 and the field equa-
obFalned from it by a rotation of the torus, cont_auns four fixediions are then satisfied.

points. If the NS-NS flux through the cycle is eveodd As discussed i{18], the warp factor can be obtained

then an everiodd number of the fixed points must have f,m Eq (2,19 by the method of images. Under rescaling of
discrete NS-NS flux, and correspondingly for the R-R flux. ~ o~ .
the unwarped transverse metrig,,,—\“gmn, the right-

hand side of Eq(2.19 scales as\~° (there is a factor of

C. Bianchi identities and field equations ~_1/2 o~ )
g 2in p3), while V2 scales as\. 2. It follows that in the

The Bianchi identities for the three-form fludH@)  |arge radius limitz=1+0O(\ %) and the warping becomes
=dF(3)=0, are trivially satisfied by constant fluxes. The Bi- hegjigible. On the other hand, at small radius the warping is
anchi identity for the five-form flux is significant. Thus we might expect that in general the small

radius region of moduli space is significantly modified—for

example, the AdS radius of the warped region remains finite
even as the radius of the unwarped manifold is taken to zero.
Note also that due to the negative charge of the orientifold
lanes, the warp factor becomes negative and unphysical
ear theZ, fixed points. Since the region of unphysical be-

avior is smaller than the string scale, the geometry cannot

or with both, has D3 charge-  [10-12. The integrated be taken literally, but it again suggests that the small-radius

. . A . . - limit may be complicated.However, for the highly super-
Bianchi identity then gives the tadpole cancellation Condltlonsymmetric cases that we consider the small-radius limit is
1 highly constrained.

N+ §N+ m;mnquﬁhmnpfqrsz 16. (215)

dﬁli(5)=(217)4a’2p|39°dVL+H(S)/\F(3), (214)
where %° is the D3-brane density from localized sources
and dV, is the transverse volume form. The localized
sources that we will consider are D3-branes and the variou
types of O3-plane. An O3-plane without discrete flux has D
charge— % [13], while an O3-plane with either discrete flux

D. Examples

HereN is the total number of D3-braneEI, is the total num- There are many solutions based on 'ﬂﬁsézz Orientifo]d,
ber of O3 planes with any discrete flux, agt?®’8%=1. The  distinguished by the three-form flux quanta and the discrete
factor of 3 in the flux term arises because the orientifold hasfluxes at orientifold points. Even with vanishing three-form
half the volume of the original torus. fluxes there are many solutions to the tadpole cancellation
We are interested in compactifications to four-dimensionatondition (2.15 and the three-form flux quantization condi-
Minkowski space with supergravity fields plus D3-branestions. One extreme is to have 16 D3-branes and no discrete
and O3-planes. In Reff14] it is shown that all such solutions flux [19], which is the familiarT dual to the type | theory on
must be of “smeared D3” forni15,16], which is dual to the  T8. The other extreme is to have no D3-branes and 32 fixed

M theory ansatz of Ref3]. That is, the flux points with discrete flux. For example, the configuration with
N discrete R-R flux at all fixed points in the plaré=0 satis-
G@=F@~H@E), 7=Ctie ™, (216 fies the quantization conditions and Tsdual to a type |

compactification without vector structuf20]. In these cases
the supersymmetry iD=4, N=4.

1 For simplicity we will restrict attention to a limited set of
yemnp‘”qu,fiGmnp. (2.17  three-form flux configurations, where the nonzero fluxes are

must be imaginary self-dual,

This flux behaves as an effective D3-brane source for the Nase= ~Nage™ ~h756= —Nzgs=hy,

remaining fields, which are therefore of black 3-brane form
[17] ] fas6= — fago= — F750= — f7ge=T1,

i
r=conseC+ —,
Os h7g9= —h756= —hage= —husg=hy,

dsgtring: " 1/277wd xdx’+ 245 mrdX"dX", f789= — f756= — fage= — fas= 1>,

(2.20
T * 1 0 1 2 3
Fs)=(1+*)dxay, X(4):g_SZdX Adx*/Adxe/A\dx°.
(2.18 “This remark is due to S. Sethi.
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andf;, and h,, are integers. The duality conditiof2.17) In the notation of Ref[4] [Egs.(3.18 and(3.19 of ver-
implies that theT® is the product of three squaiié’s, sion 3, the ansatz2.20, (2.25 corresponds to solutions
with only A nonvanishing; in particular, cag€) is the solu-
r4=rs, rs=rg, T[g=lg, (22)  tion A=1+i. The condition(3.18 in Ref.[4] is equivalent
) o ) ) to fnp andhy,,, being even in our notation.
and that the string coupling is fixed in terms of the integer
fluxes, .
E. Supersymmetry counting
_ f—ify The supersymmetry of this class of type IIB solutions was
[ h,—ih, " (222 giscussed in Ref$15,16. Aside from the three-form fluxes,

the background is a distribution of black 3-branes. Therefore

This is therefore an intrinsically nonperturbative solution ofthe supersymmetries of the black or D3-brane,
type 1IB string theory. It can be studied at large radius using
supergravity, which becomes classical at low energy, but to SQ(3,)xSA6):
understand the physics at small radius a high degree of su- _ _ _
persymmetry willlob)é essential. The tadpole c?ancel%tion con- e=tox, Twi=+4 Tex=-x (229
dition is are broken only by terms that are linear in the three-form

1 fluxes. Using the supersymmetry transformations from Refs.

N+ 2N =16—2(h,f,—h,f,)<16. (2.23 [21-23, the unbroken supersymmetries are those that satisfy

Gx=Gx*=GyMy* =0,
The last inequality follows from the duality conditidB.22).

This configuration of fluxes has the simple feature that in 1 MNP~ 123
terms of the complex coordinates G=5Cmnpy" "= Cr3y (2.29
Wl:x4+ix7 W2:x5+ix8 W3:x6+ix9 A spinor y of chirality (2.29) is either y,, where
iz 7 2 " -
(2.24) ¥Y'x0=0 (alli), (2.30
there is a single component or one of the three spinorg’ xo. One readily verifies that for
the latter three spinors the conditiofs29 are satisfied and
J2a! so the unbroken supersymmetryds= 4, N'=3. The number
GEZT(H— thy). (2.29 N of solutions to the condition&.29 can be any of 0, 1, 2,

3, and 4(the last is for vanishing fluxgsall but the case
N=3 have been discussed in the previous work.

The N=3 supersymmetry can be understood simply as
lows. The condition for an unbroken supersymmetry is

That is, Gy is @ (0,3)-form. Such solutions will be the
focus of the remainder of this paper. The unwarped metric i?ol

3 B that the fluxG ) be of type (2,1) and primitivgl5,16. The
dNSZ:ZE ri2+3dwidW', E]if:riz+35i7- (2.2 orientifold has several complex structures. If we choose the
i=1 coordinates

If we restrict to everf, ,andh, ,, and to O3-planes with-
out flux, then it is easy to list all solutions, up to rotations
and dualities: then the nonzero fluG;i,2,3 is indeed (2,1) and primitive.

There are obviously two other such choices,
(A) hy=f,=2,h,=f,=0: N=8,g.=1, C=0;

(24,22,2%) = (WL, w2, w?) (2.30)

N (24,22,2) = (W w2, W),
(B) hl:2,f2:4, h2:fl:O: N:O, gSZE,C:O,
(2.27 (24, 22.28)" = (W w2 W), (2.32
(C) hy=—hy=f,=1,=2: N=0,9,=1,C=0. Each of these three complex structures leads to an unbroken
supersymmetry.
N=3 supersymmetry is unfamiliar but not unknown. Pre-
vious examples have been constructed as asymmetric orbi-

Solds in type Il theory[24], breaking half of the supersym-
number of solutions is large. One examplehg=1, f, . ’ i
—4, h,=f,=0, N=0, g.=*, C=0, with discrete NS-NS metry on one side and three-fourths on the other. The

flux at the 16 fixed points at which exactly one of the fol- =3 matter multiplet(helicities 1%31.037 7) plus itsCPT
lowing four conditions holds]x*=x°=x%=0], [x*=x®  conjugate form ao\V'=4 matter multiplet, but the supergrav-

=x%=0], [x'=x>=x°=0], [x'=x8=x6=0]. ity multiplet (helicities 222,133 plus CPT conjugates is

For example, the solutioh;=f,=2, h,=0, f;=2m, with
N=8 andr=i+m, is Sdual to casdA).
With odd fluxes and discrete flux on the O3-planes th
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distinct. In the global case the renormalizable interactions arare slightly involved, and so the analysis is set aside below.

the same as forV=4, but there are presumably higher- The conclusion is that there is a fidg,,qWhich is periodic
dimension operators allowed by=3 but not V=4. The  and which appears in the field strength only through its ex-
N=3 supergravity was constructed in R¢R5]. Like N terior derivative. A constant shift of this field is then a new
=4, the moduli space is a coset and its local form is comsolution to the equations of motion. However, some of these
pletely determined, are gauge-equivalent to the unshifted solution. It is shown
U3 below that the gauge variation around a given background is

U(3)xuU(n)’ 233

5E(4):d}+|(:A/\é(3)—)\A/\€(3))/2|m(7’), (32)

wheren is ;he number of matltgrl mul:]iplets. Including the \yith  periodic and\ , a complex one-form. Since the back-
\(Je(?;)”rf3l,n the supergravity multiplet, the gauge symmetry 'Sgroundé(3) s a (0.3) form, the (13) and (3.1) partsig,
can be gauged away. The (2,2) partg are the moduli.

Finally, there is no restriction on the positions of any D3-
branes that might be present, so their world-volume scalars
In this section we analyze the massless spectra of thare also moduli. It will be convenient to write these in com-

models described in the previous section, to verify the strucplex form, asw!, W/ wherel labels the D3-branépertur-

ture required byN=3 supergravity: with the supergravity batively speaking, it would be a Chan-Paton factor diagonal
multiplet plusn matter multiplets, there must benénoduli  on the two end poinis

andn+ 3 vectors. We also verify, in the large-radius limit,

that the metric on moduli space has the expected {@:883. Periodicities of forms

Note that, becausgs is fixed to be of order 1, we cannot use
string perturbation theory to study these models. The one

Ill. LOW ENERGY EFFECTIVE THEORY

The gauge transformations of the various potentials are

tool we have is low energy supergravity, which is valid in the 8Crz=d\c
large-radius limit. In this\'=3 case there is enough super-
symmetry to extrapolate to the full moduli space, but fér SB(py=d\g

<2 it will be very difficult to analyze the full moduli space.
5C(4):dX_)\C/\H(3), (33)

A. Moduli .
in terms of one-forms\c and Az and three-formy. The

The massless scalars arise from the zero modes of ﬂlfauge transformation 4, corresponds to the field defini-

Z,-even scalars in Eq2.4), namelygmn, Cmnpq, ® andC. - 6 A
! i @ an =dCuy+Cry/\Ha).
However, not all of these are moduli, as the fluxes lift some'2"F©) dCu)+Cr)/\Hs) . ONT" these must be periodic

of the directions of moduli spadé,5,18. For example, we Up to a gauge transformation,
have already seen that the dilaton and R-R scalar are fixed. C(z)(x+em)=C(z)(x)+d)\g‘(x)
Their potential arises from the three-form flux and the result-

ing mass-squared is of order B(z)(x+em)=B(Z)(x)+d)\g"(x)

12
GG~ — (3.1) Cay(x+€™M=Cay(3) +dx™(X) = NEC)/AH 3(%).

RS’ (3.4

We have assumed that all radii of the torus are of oRjeso  Here €™ is the lattice vector in them-direction, €™)"

that g,n~R? and have used the quantization conditions=2m8"", and\{, \g', andx™ are specified gauge transfor-

(2.5. mations. To analyze these it is convenient to write each field
Now consider the scalagy,,. These are partly fixed by as its background value plus a shift, for examflg,(x)

the self-duality condition(2.17), through the dependence of =é(4)(x)+c(4)(x). The three-form flux backgrounds are

the e-tensor ong,,,. The zero mode of the three-form flux is constant, and so for the corresponding potentials we can
fixed by the quantization conditions, $8,,, remains a choose a gauge

(0,3)-form in thew coordinates. The metrig,,, must there-

fore be Hermitean in these coordinates, otherwise there will Crn=1 IEmanpi Bon= %anpxp_ (3.5

be nonzero componené$ﬁ<'/1"". The self-duality condition
is satisfied for any Hermitean metrig;. Thus, in terms of It follows that
the w coordinates, the complex structure moduli are frozen

while the Kanler moduli remain free. In terms of any of the \C= %IA:mnpx“dxp, A= éﬁmnpx“dxp. (3.6
supersymmetric complex structurgs3l), (2.32) these are a
mix of Kahler and complex structure moduli. The quantized fluxes cannot fluctuate, and soXfe are

The remaining bulk scalars are those from the four-formfixed. It then follows that the two-form fluctuations are peri-
potentialC,,,,q- The periodicity conditions on this potential odic,
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C(z)(X"F em):C(z)(X), b(z)(X"F em):b(z)(X). (37) A :CMH_TBMH' (313)

m

The four-form must satisfy a more complicated boundaryThe gauge transformation &A= d,\am, Where the one-
condition. This can be deduced from the condition thatform gauge parametex, is as in Egs(3.2), (3.12. It fol-

C(a)(x+eM+e") be consistently defined, giving lows from the transformatiof(B.2) that the (1,0) parts of 5
o | . . . . leave the background invariant, so the unbroken gauge fields
dx"(x+e") —dx™M(x) —dx"(x+e") +dx"(x) areA,,; . This is also evident from the linearized gauge field
12 strength
:anquXq/\H(g,)(X). (38)

Note that it is the fullH s, that appears on the right-hand f5)=dC) = (@) \G(a)~ a2y \G(a))/2 Im(7). 31
side, so thaty™ has both a background piece and a field- (3.14
dependent piecg™= Y™+ ™. Rather than solve directly for The fielda,appears in thes1jkl component. Companng
x™ we first shift the four-form to one with a simpler period- with the nonlinear Higgs covariant derivativg ¢ — A,

icity. Define see thata,, is broken through the Higgs mechanism by
Cijki» SO thata,; andcj, remain as massless fields.

Cy=C*+C/\b2)+ 3 C2/\bz), (3.9 The real and imaginary parts ef,; give six gauge fields;
for example whernr=i, these are
so that
~ _ ~ Cu,—B B,+C C,s—B
fsy=dcu)—(Fa)+3f)/\be Y
\ 2 2 2
Th B,u.5+C/.L8 C,U.G_B/.LQ B,u,6+C,u9 (3 13
en \/E i) \/E 1 \/E
= m "~ i m
C(ay(X+ET) =Cay(X) +d7(X), (3.19 In addition each D3-brane addd41) gauge field, for total

gauge groupJ(1)®*N. The total number of moduli is nine
from the metric, nine fron?n(4), and 6\ from the D3-branes,
for 6(3+ N) in all. The counting matche&'=3 supergravity

with 3+ N matter multiplets; note that this agreement re-
quires exactly six of th&J(1)’s to bebroken.

wherel™= M+ T/\b,, . Itis consistent to také™=0, and
we choose a gauge in which this is sofAthat could not be
gauged away would correspond to a quantized five-form flux
on T®, which is inconsistent with th&, projection(2.4).

The gauge variation of,) is

Massless vector solutions

@y =dx—Ac/\H(g)+ Czy\dhg It is an interesting exercise, though somewhat aside from

+ L(ciAdhat+dheAb our rnain point_, to ident_ify t_he massless vector selutions to

7 (Ce) B c/\b2) the field equations, taking into account the warping of the
internal space. We consider solutions without D3-branes. We
take as an ansatz that the only nontrivial components of the

fluctuations are the tensoig, ,m and~fwmnp. The nontrivial

:d}_)\c/\(ﬂ(aff %h(s))JF)\B/\(r:(s)Jr 3f(3)

~ 1 — . : ' ) :
=dy— W{M/\(G(aﬁ %9(3)) field and Bianchi equations are
—)\A/\(6_(3)+%a(3))}, (3.12 493=0. d"95)= 1949/ \F )t G M),
~ ~ ~ SO
where y= y+ C(z)/\_)\B and AA=)\C—_T)\B. (Note that the fsy=*T5, dis= 95(6(3)/\9(3)+g(3)/\6(3))
hatted background is defined to be fixed, so the gauge trans-
formation goes entirely into the fluctuationThe gauge (3.1

transformationy must be periodic. A nonperiodic gauge we further take
transformation would act on the periodic identification by

conjugation, 7™ (x)=Z"(x) + x(x+e™ —x(x), so with 9uom(X,Y) =T 00 UR(Y) + (% 4F) () v m(Y),

fixed identification the gauge transformation must be peri- B

odic. f;wmnp:fuv(x)')’mnp(Y)+(*4f)Mv(X)
(*6'}’)mnp()/)- (3.17

B. Gauge fields

The bulk vector fields that survive the orientifold projec- Hereu,, andv ,, are complex, and, andf ,, are real. In this
tion (2.4) arec,, andb,,,. Form the complex linear combi- subsection and the next we usdor the noncompact coor-
nations dinates ang for the compact coordinates. Subscripts @64
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on the Hodge star indicate that it is taken with respect to the C. Metric on moduli space
spacetimeinterna) indices only. Note that on two-forms,* In this section, we will find the low-energy action for the

is the same as the flat spacetime Hodge star. _ scalars and verify that it takes the form ofg3,n)/U(3)

Inserting this ansatz into the field equations gives the, () coset. We only consider the large-radius limit, where
four-dimensional equations the warp factorZ becomes unity as discussed in Sec. Il C.
Thus we will drop the tildes on the internal metric. Four-
dimensional geometric quantities will be denoted by a “4,”
or by “E” in the four-dimensional Einstein frame; internal
indices will always be raised with the string metric.
dugy=dv 1,=0, _ Let us first find _the action for the me_tric moo_luli. The

dimensional reduction of the ten-dimensional string frame

Hilbert action gives

d*4f(2):df(2):0 (318)

and the internal equations

d*sU1y= —i19w 1) \F (5~ 195 3/ \* 6 ¥(3)

1
. 2 . oA = = duA| R+ AT20, AdHA
d*6v(1)=19U()/\F(5)t19G 3\ ¥a) Sy Wa'ggfd XNT948 Ra IuRd
igs ol - gl 1 F ﬁ( o
d7(3):7(6(3)/\U(1)+U(1)/\G(3))' ~59°979,949"gii (3.29

whereAza’*deth—. The dimensional reduction includes
a factor(2)® from the volume ofT®/Z,. Switching to the
(319  four-dimensional Einstein frameggy%,=Ag},,, the action

i0s — -
d*6v(9)= 5 (G \vw v/ \G).

becomes
The Bianchi identities fou(;y andv ;) are solved by
Ua)(Y)=o@ytdaly), v)(y)=rqy+db(y) S= ! f d%x —QE[ Re— EA‘ZaﬂAaMA
(3.20 2ma’gs 2
where w1y and vqy are constant one-forms on the internal 1 - =
(1) (1) s ) __gjlg|kﬁ 9"
space ana(y) andb(y) are periodic. The equations foys, 2 w3k 7 Hil
are then solved by
igs, = — R R L i Tky o g |
7(3):7(86(3)—36(3)), (321) _27Ta,g XN—0g E_E'}’J Y (9/.Lﬂ}/kj(7 Yil |
S
(3.2
if
) o where all spacetime indices are raised with the Einstein met-
b(y)=—ia(y), w=v=0. (822 ic. We have defined
Finally, the field equations fou ;) andv ;) both become
_ 2059y
2 N YT, A (3.27)
o

. s -
Z0mOma+20mZdma+ dnZ(wntivy) = TZaGmanmnp,

(3.23 in order to eliminate double trace terms from the derivatives

where all contractions are with the flat internal metric. ThereOf A; the o is included in order to make the moduli dimen-

. L sionless.
are then two solutions for each complex direction:

The other bulk moduli are the R-R scalars, contained in
om=—ivy=dy, a=yz=0; vuy=iug, thfa field stNrength quct'uatloﬁ(S). The moduli k[letm ter.ms
_ arise fromf ,,,q, and in Hodge dual form froni,,q; in
om=ivg=dy, a#0, order to avoid the problems of self-dual actions we include
only the former, in terms of which
’}/(3)7&0, V)= —iU(l) . (324)
For the second solution we do not have a closed form, but 9 d*V—gglf (5|2 3.2
uti¢ 1 CIO; : Srr= ; XV —gelf(5)*. (3.28
can show by a variational argument that it exists. Thus we 87

have the expected six internal solutions. Note that we do not
get distinct solutions by choosing;)=idy', because the In the absence of D3-branes, we havgii=d,Cijii, and
ansatz is invariant under—uv, v——u, f)—*,f ). the action is simply
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g T e 7 - = 1 - : . -
SrR=— o f d*xV-geg" g7 g“g" D,BY=39,B"+ — (Wd,Wi—W3,W). (3.3
327« 8
X9, Cijki 0 Ciy i - (329 With a bit of algebra, it is possible to show that the entire

- . action on moduli space takes the form
To exhibit the coset structure we put these moduli in a two-

index form, 1 1
= ~ 15 f d*x\ = geTr(d,M5nd*M7) (3.37)
a Cijk|_2A fijklabﬂ . (33@ T gS
The action for all the bulk supergravity moduli is then wherez is theU(3,3+ N) invariant metric (= Q"7) and
M is a HermiteanU(3,3+N) matrix that behaves aMm
1 P —QOMQ" underU(3,3+N). We work in a basis with block
Smod™= — J d*xy= 9eYig Yir( %7”0“7“ diagonal form
da’gs
i) 91 g1y 3.3 I3
—a,10"p). (3.31 |,
n= 3 ’
This is just theU(3,3)/U(3)XU(3) moduli space metric, L In
familiar from the untwisted moduli of th&4 orbifold [26],
with upper and lower indices exchanged. [yt -y B —y tat
We now consider D3-branes. Expanding the Dirac-Born- | .4+ 3 P + o1+, %
Infeld (DBI) action gives the kinetic term M=| =By™" y+Bly "Bfaa By a+a
| —ay ! ay B+a Intay tal
1 R
SoBi=~ 3, f d*x\ = geyi;d, W, W, (3.39
(2m)°a’gs

(3.32  with matrix notation y=v/, a=W/2m, and B=pg
_ o N ) +(1/2)a'a. To verify that this takes the appropriate coset
with an implicit sum onl. In addition there is a dependence form, note that we can write
on the collective coordinates from the coupling of the D3-
brane toC 4y, which appears through a nontrivial five-form e —eB —eal
Bianchi identity. In the D3-brane rest frame, " 1
M=V, Vv=|0 e 0 (3.39

~ a'? 0 «a In
dF@)=(2m)*a’?8%(y)d®y— —d%,  (3.33
2 wheree is the vielbeine'e=y~1. Following [27], we see

that M indeed belongs to the coset(3,3+N)/U(3)XU(3

where we have projected onto the zero mode; we omit the_njy preci
' , precisely as we expected based/és 3 supersymme-
flux term in the Bianchi identity, which makes no contribu- ;. )P y P s persy

tion to the moduli kinetic terms. Boosting this gives 4

D. Comparison to N'=4 heterotic string

(df) wijia= mfijﬁaﬁ( 3, WPa, Wi — 3, Wa,Wp), The results of Sec. Ill C are notably similar to work done
ma by Maharana and Schwarz on ti&(6,22) duality of the
heterotic string orT® [27]. This is not an accident. Starting
o Y b from the heterotic strings duality maps to type | strings, and
6iik'aB(WF‘9VW?_W?‘?VWF)' a furtherT duality on all six dimensions takes the theory to
(3.34  the type 1IB model of 19]. Our N'=3 models are then ob-
tained by nonperturbatively transforming D3-branes into
The moduli space action is then self-dual G5y flux, so we expect that our moduli space
should simply be a subspace of the heterotic moduli space.
- To make this more precise, we can follow the action of
J d*x —gE[ Yigyir(d,y7 K the Sand T dualities on the moduli of the heterotic theory.
For ease of comparison, we will use coordinates of radii
- - 1 B equal to the string lengtk/a’. We will also choose duality
~D,B'DHaK) + F%?“Wi' af‘W{] ., (3.35  conventions such that’ is the same in the heterotic, type I,
a

fLijir= d.Cijia + FECIIN

Spulk= —

dma’gs

and type 1IB string theories. To get the normalization correct
including numerical factors, we must be carefsgte[28] for
where some factors in the type | theory, for example
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We start by considering the heterotic—typeSiduality.  are then clearly théanti-)Hermitean subset of the gravita-
Under this duality, the heterotic fundamental string maps tdional and R-R moduli along with all the D-brane positions
the type | D-string; in particular the actions must be equalin complex form.

Since the D-string tension and charge are reduced by a factor There is an additional complex modulus in the=4 case

of \2 by the orientifold projection in the type | theory, we which corresponds on the heterotic side to the four-

therefore must have dimensional dilaton an8,,, axion, and on the type IIB side
to the ten-dimensional dilaton and R-R scalar. In ffe 3

1 theories this modulus is fixed.
2pn0—®
; f d“ée (1) —deg(l) Consider the\'=4 states which become massive due to
27« \E . "
the fluxes. These include one gravitino, so we must have a

1 massive spin-3/2 multiplet. This must be a large representa-
= ,f d2¢+/—detg(het tion because these supergravity states are all neutral under
2ma the U(1) central charges, and so the helicities are
e ®() 5,015 31 0% -3 —1% -4
:gMN(heD:TgMN(I) (3.40 (3.45

This agrees with the finding that six gauge symmetries are
and likewiseB,(het)=C,(1)/ 2. The 10D supergravity ac- proken. The twenty spin-zero components are the dilaton-
tions then map into each other if we take the gauge theoryxion, the six zero-helicity components of the massive vec-
potentials to be equal. tors (from C(4y), and the twelve real components @fy,-

In the T duality between type | off® and IIB onT%Z,,  Note that at large radius these states, with masseR®, lie
the dilaton picks up a well-known factor @2 [28], so theT  parametrically below the Kaluza-Klein scale Bf 2. Thus

duality is we can truncate to an effective field theory in which only
these and the massless states survive. Since the mass scale is

()= V2 e®(IIB) parametrically below the Planck scale as well, the SUSY

def’?g, . ' breaking fromA'=4 to /=3 must be spontaneous. There

has been some discussion of such breaking in supergravity
Imn(D=0™(I1B), g,.()=g,,(1B). (34D [29-31
There is an additional factor in the RR sector, as follows. IV. DUALITIES

Taking the prefactor of the 10D action to be the same in the ) ) _ ) .
two theories T duality tells us that we should have the same !N this section, we discuss the stringy duality group of

dimensionally reduced actions, or these compactifications. In particular, we are interested in the
’ dual description that governs the physics when the radii be-
264" 3 come small.
%f d4X\/—g4A§MCmno7’“Cmn(|)
A. Dualities of the A/=4 theory with 16 D3-branes
(277)6a’ 3J~ . i .
_ d*—0.Ad C LCMNPY |18 As a warmup, let us first consider the dualities of tkie
2:2-4! 94294 Cmnpd ) =4 theory with 16 D3-branes, which is tfiedual of type |

(342 On T8 and theTS dual of the heterotic theory of®. The
duality of the latter theory iSO(22,6Z) X SU(1,12) [32].
for the moduli. HereA = det’?g,,, andg, is the string frame ~ Consider first the perturbati@X(22,67) factor. This group
metric. The additional factor of 2 in the type IIB case againis generated by discrete shifts of the Wilson lines, Weyl re-
comes from the volume. This equality holds if we take ~ flections in the gauge group, discrete shiftsBy,, large
coordinate transformations on the torus, and the inversion of
one or more directions on the tor(this is not meant to be a
AemPIC 1. (3.43  minimal set of generatorsWe will call this last operatiofR
V2-41 duality to distinguish it from the full perturbativ duality.
The first four operations are manifest in the type IIB descrip-
Then the heterotic modulusing the notation df27]) map to  tjon, as the periodicities of the D3-brane collective coordi-

Cmn(D=

the type 1IBN=4 moduli as follows: nates, permutations of the D3-branes, discrete shifts of the
P Cmnpg: @nd large coordinate transformations respectively.
9ur—9Eurs  Gmn—Y ' The R duality is not manifest in the type IIB description.
Note that this is not the same as type Rduality, because
Bni—B™, aj,—a", (3.449 it leaves fixed the ten-dimensional type IIB coupling and not

the four-dimensional coupling. Rather, it is the image of the
following the notation of Sec. Il C for the type IIB side, up heteroticR duality; therefore we will henceforth designate it
to factors ofa’ from coordinate rescaling. Th&=3 moduli Ry
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To seeRy in the type 11B description it is useful to focus We have definegh,=v%r,a'g¥?\2, which is just the ra-
on its action on the BPS states. In the heterotic descriptiodius in the heterotic string picture, in heterotic string units.
Rpet interchanges Kaluza-KleifKK) states and winding The masses of strings and 5-branes interchange under inver-
F-strings. In the type | description these become KK statesion of p,, as expected.
and winding D-strings, and then in type IIB they become The SU(1,1Z) of the heterotic theory maps to the
winding F-strings and D5-branes. Similarly it interchangessuU(1,17) of the ten-dimensional type 1IB theory. In par-
winding D-strings and NS5-branes. ticular, gs—~g< ' interchanges strings with strings and

To analyze the duality carefully we need the masses 0k-pranes with 5-branes.
these objects, taking for simplicity a rectangular todsg
=r2dx™dx™, and vanishing R-R backgrounds. We take the B. Dualities of the A'=3 theories
F- and D-strings to be wound in the 4-direction, and the D5-

and NS5-branes to be wound in the 56789-directions. Then Ve expect that the duality group will be an integer ver-
(in the string framg sion of the continuous low energy symmetd(3,3+N).

The simplest guess would be that it is the intersection of this
continuous group with the discrete symme®y)(6,227)

- Tq m _ T4 XSU(1,1Z) of the N=4 theory. In other words, the fluxes
B b1 a'ge break the duality symmetry to a subgroup, just as they do
with the supersymmetry. However, we will see that this
v v guess is incorrect.

(4.2) Let us consider the BPS states discussed in Sec. IVA.

Note that these do not have a perturbative description, be-
wherev =1IIr,. The factors of 2 come about because thecausegs is of order 1, but we can study them using the
strings must be wound on cycles f, while the 5-branes €ffective low energy description when the radii are large. In
can be wound on the fixed cycl!=0 whose volume is the ’'=4 theory, these states are invariant under eight super-
halved. For the F-string this represents the fact that in agymmetries; one finds that four of these supersymmetries lie
orientifold the closed strings are obtained by projection; forin the A'=3 subalgebra of intereStThus these are “1/3-
the NS5-brane it is simply the, reduction of an NS 5-brane BPS” states, in agreement with the result that BPS particles
solution atx*=0 on the originalT®. For the D1- and D5- in N'=3 preserve four supersymmetriggs].
branes, these statements #rdual to the fact that in the type ~ When the torus is rectangular, the R-R backgrounds zero,
| string the D5-brane has two Chan-Paton values while th@nd all D3-brane coincident, the central charges are from the
D1-brane has ong33,28: thus, the IIB D1-brane can move bulk U(1)'s A ;. For simplicity let us focus on the case in
off the fixed plane, while the D5-brane is fixed. For future Which gs=1. The unbroken gauge fields associated with the
reference let us also give the masses in the type | descriptio; 7 torus are

where r/,=a'lr,,; the couplings are related by’'/g'2
=v/2g2, the factor of 2 being from the orientifold volume.

Mps=_——""2— M\ss= 2 5
2r4a'%gs 2r 40393

Bp,4+c,u,7 C,u4_B,U«7

L L (4'4)
Then V2 V2
1 v’\/i ry while the broken symmetries are
Mk == Mpgr=——7>—, Mppy=———.
4 Maa 393 1% gs\/E B .—C Cc,,+B
(4 2) s wt ué wnt (4 5)
' 2 \2

The factors ofy/2 are as found in Ref28]. o o o
In units of the four-dimensional Planck mass, Thus a D-string in the 4-direction, or an F-string in the

:(U/Z)l/za,—zgs—l the BPS masses are 7_—direction, have the same BPS charge, e_Iectric charge in the
first U(1). A D5-brane in the 56789-directions, and an NS5-
Mey r4a’gs\/§ gé’z b;]ane Ln the 89456-directions, carry the analogous magnetic
—=— = charge®
2 . .
My vt Pa There is, however, an important subtlety: not all of these
states actually appear in the spectrum. Each of these objects
Mp; rqa’ V2 1 couples both to a massless and a massive vector. The discus-
m, 2 pagl?’ sion of Eqg.(3.14 shows that the vector mass arises from
49s 4.3 electric breaking through the Higgs mechanism. For the elec-
my r4a’\/§ s SMore details, and further analysis, will be presented in future
work.
Muss 12 P4 %More generally we can considep,@q)-strings and _5-bra_nes, at_
= ; =15 various angles—a full accounting of the BPS states is an interesting
Ms 10 gs\/— Os exercise.
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trically charged 1-branes the massive charge is screened agfl A’'=3 construction, such as those of Rigf4], though we
there is no great effect. However, the 5-branes carry the cohave no particular reason to expect this. Note also that there
responding magnetic charge and so must be confined: the no reason to expect an effective heterotic description any-
Higgs mechanism breaks the symmetry between these tW@here in the moduli space. For the=4 theories such a
sets of states. We can understand this in two other ways afescription holds when the type IIB radii are small and the
well. First, the breaking through Higgs mechanism reducesen-dimensional 1B coupling is large, but in thé=3 mod-
the long-ranged interaction between the electric and magga|s the latter coupling is always of order 1.
netic objects by a factor of 2. Since they had the minimum  The remainder of the duality group would be generated by
relative Dirac quantum in theV=4 theory, they are no |arge coordinate transformations mixing the holomorphic co-
longer correctly quantized. Second, the gauge invariant flugrdinates, periodicities of the D3-brane coordinates, permu-
on the D5-brane isF(2)=F(2)—B2)/2ma’, which satisfies  tations of the D3-branes, and shifts of the R-R backgrounds.
, We conclude this section with a few remarks about these.
d7=~H@f2ma’. 4.6 When discussing large coordinate transformations on the

The integral of this over any 3-cycle should then vanish, buforus, we should distinguish betwean dualities, which
this is inconsistent because our background includes at lea§2ve the background invariant, and “string-string™like du-
one ofHg7g Or Hsg7, @among others. In order for the Bianchi alltlgs, which take one background into a different byt
identity to be consistent, there must be another source. Thgduivalent background. The transformations —that give
would be a D3-brane, which is localized in the 3-cycle in_String-string” dualities are discussed if6]; here we are
question and extended in the other two compact direction'térested in finding those that givé dualities.
and one noncompact direction: this is a confining flux tube. A la&rge coordinate transformation will leave the back-
It follows that the dualityR; that interchanges the basic groundGya3 Invariant if its determinant is unity. Neverthe- .
1- and 5-branes does not survive in the=3 theory’ There less, the duality also mclgdes el_ements of.nontrlwal dgterml-
are magnetic objects in this theory, but they are bound state§ant- For example, at=i, rotation of a single coordinate
For example, a 56789 D5-brane and a 89456 NS5-bran — W changes the background 3-fof@y;3— G123, but
have the same BPS(1) charge and the opposite broken this can be undone by one of the brokBh(2;Z) dualities
charge, and so their bound state is unconfined and is a BP¥ the type IIB string,7— —1/7. Note that this combined
state of twice the minimurV=4 mass. In a perturbative operation leaves the background invariant and so does not

description, the D5-brane ends twice on the NS5-brane, as fCt ©n the moduli space, but it does mix the BPS states and
the (p,q)-5-brane webs of35,36. S0 is a nontrivial duality. Also, if the fluxes are chosen so that
The simplest conjecture would then be that the dua"tyﬂ&i, this duality is not &J d.uality, so we find that different
group interchanges the objects of minimum electric andV=3 backgrounds have slightly differebkduality groups.
magnetic charge. With the D5-brane masée8) doubled, Note that in models with fluxes on the orientifold planes, we
this would now mean that!, = 1/2p,.; it is not clear whether must restrict ourselves to transformations that take O3-planes
this symmetry could be innr]leritednlzr,om thé=4 theory? To of a given type into the same type. If we insist that all the

be precise, this symmetry can act independently on any set (f();f(ed po'lntf‘ maptto tfhtehmslglves tundefr dualtl_tles, thetnt';he off-
paired indices, 4-7, 5-8, or 6-9: it must preserve Exj2)). iagonal elements of the linear transformation must be even

This conjectured symmetry relates rather different objectsf,ind the diagonal elements must be udy —1 with a trans-

and so for example the fotal number of BPS states of ation)..Again, different backgrounds will have different
D-string in the 4-direction and an F-string in the 7-direction -c_irl;]ah%/:gggoups. h d inth B
must equal that of the D5-NS5 bound states. It is an interest- el b rane gauge c Iargei IS not[a)lppe_ar In the %’pgb
ing exercise, to be studied in future work, to determine the>UP€ralgenra, and a zero-length F- or D-string stretched be-

BPS spectra of these objects as a function of the backgrount&’een commdetnt D\?\;Eransiﬁ IS l;n3aks)sless, giving an en?%niﬁd
fluxes. It is possible that this will reveal a more intricate gauge symmetry. en the -branés aré separate N

pattern of dualities, in which the varioug=3 models mix. stretched string begins to couple to the bulk gauge fields, and

It is conceivable that the dualities might involve other t esacquires a BPS mass and charge. When the D3-branes shift
9 yp fully around the 1-cycles of the torus, the attached F- and

D-strings acquire integer winding charges. Since the electric

"Note that this duality interchanges electric and magnetic objectsCharges on the D3-branes are the end points of F-strings, this

while the SO(6,227) of the heterotic theory acts separately on ?gahtﬁ/ shifts f\fl]etbt’:lhk tele_ctnctc;]harges b){[.theDéDg—branehelec—
each. This is because the unbroken gauge figld$ are a linear ric charges. Note that since the magnetic -brane charges

combination of electric and magnetic gauge fields in the heterotif)1re D-string e_nd pomts,.the shift al_so depends on the D_3'
picture: the nonlinear Higgs field has both electric and magnetid'@n€ _magnetl_c_charges. as not_ed in footnote 7, the dugllty
charges. group is nontrivially embedded in the low energy electric-

8Such a duality does exist in the heterotic string for a nonzerdhagnetic duality group. . o .
axion [20], but it has not been determined if it can be combined In order to understand the R-R shift dualities in detail one
with the heterotic strong-weak coupling duali§7] to generate the Needs to consider two other classes of BPS objects. The first
proper action on the BPS states. This possibility also requires thare Euclidean D3-branes wrapped entirely on the internal
the axion of the “heterotic” description of th&V=3 theory be torus. These are instantons under the unbroken gauge sym-
shifted by half a unit, and it is not immediately clear that this is so.metries, and their phases depend on the R-R moduli. The
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magnetic analogs to these are spacetime strings, D3-brangfis implies thaitsgggcan shift by even integral multiples of

wrapped on the appropriate 2-cycles of the torus and ex; 2 without changing the path integral. As this shigts! by
tended in one direction of the external space; we have al

e 1/2 times that integer, we see that the shift duality has been
ready encountered these above, as confining flux tubes. Asqoken by the instantons @ for each axion.

one circles such a string one traces a closed loop in moduli | gt ys check that this is consistent with the spacetime
space. The discrete shift dualities must leave all instantogtrings' A D3-brane wrapped on 47 is dual to a D5-brane in
amplitudes invariant, and one expects that all such shifts willhe A/=4 type | theory. Since the type | D5-brane must have
be generated by the dual strings. Note that the instantongyo Chan-Paton indices, these D3-branes can only wrap
wrap enough directions for the identit¢.6) to be relevant, 2-cycles of volume (2)2. Using the relative coefficients of
so their spectrum will be subject to restrictions. terms in the action, the 10-dimensional Bianchi identity for

There are two physically distinct cases of these instantonthe 5-form integrates to
and strings. The simpler case couples to the diagBtia(i 1 1
=1) moduli, as these moduli correspond to a single real —§ T:(s):—, (4.9

M (277)361'/2

com = 11 ; ) 2m)'a’?

ponent ofc 4). For example8~~ couples to an instan

tonic D3-brane wrapped on the 5689 directions and a stringhe surface surrounding the stringVs=Stx T 4/Z,. Inte-
D3-brane partially wrapped on the 47 directions. Notice thalyrating over the latter factor gives

these instantons do not wrap any 3-cycle includkhg, or

F(s) flux. Additionally, we have checked that these strings
preserve supersymmetry; in fact, they preserve 6 super-
charges in common with the background. The other case cor-, . , . - : . . :
responds to the off-diagonal moduli, which have real an a:wl:):lri]tulgethe minimum shift consistent with the instanton

imaginary parts constructed from two componentscg A complete analysis of the duality group is left for future
each. The instantons do wrap 3-cycles with flux, so theyyork.

must come in bound states, much as the magnetic BPS |n conclusion, we see that although supersymmetry

charges discussed above, and the corresponding string&ongly constrains thes&’=3 models, there remain inter-

would then fill half a supermultiplet each. These strings pre-esting dynamical issues. Thus these models may be a useful

serve four supersymmetries in common with the backgroundoreliminary to the study of less symmetric and more realistic
We consider here just the diagonal case. In Me4  warped compactifications.

theory the wrapped D3-branes are dual to type | instantonic

D-strings. These have a single Chan-Paton index, so there ACKNOWLEDGMENTS
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