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Associativity anomaly in string field theory
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We give a detailed study of the associativity anomaly in open string field theory from the viewpoint of the
split string and Moyal formalisms. The origin of the anomaly is reduced to the properties of the special infinite
size matrices which relate the conventional open string to the split string variables, and is intimately related to
midpoint issues. We discuss two steps to cope with the anomaly. We identify the field subspace that causes the
anomaly which is related to the existence of closed string configurations, and indicate a decomposition of open
or closed string sectors. We then propose a consistent cutoff method with a finite number of string modes that
guarantees associativity at every step of any computation.
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I. INTRODUCTION

Recent developments in vacuum string field theo
@1–18# are promising for a description of D-branes a
closed strings from the viewpoint of open string field theo
@19,20#. In particular, a simple picture of the stringy soliton
emerges as noncommutative solitons of open string field

The algebraic structure of string field theory is grea
simplified by describing the open string in terms of tw
halves separated by a midpoint—the split string formali
@21,1–4#. By doing so, the open string field is regarded as
infinite dimensional matrix. Furthermore, by transforming
a Fourier space of the odd full string modes and using so
special matrices that naturally emerged in the split str
formalism ~the T,R discussed below!, Witten’s star product
is translated into the standard Moyal product involving t
phase space of the even full string modes@4#. This estab-
lishes an explicit link between open string field theory a
noncommutative geometry in a form which is familiar in o
@22# and recent literature@23#. In this context, string field
theory computations, including the construction of nonco
mutative solitons, become greatly simplified@24#.

There are, however, some singularities in the split str
formalism that require deeper understanding. In particula
the description of D-branes some infinities and zeros are
countered@11,14#. So one must learn how to consistent
extract finite quantities from infinite dimensional matrix ca
culations or Moyal-star computations that have singular
havior. Related phenomena were observed long ago@25–27#,
such as the breakdown of associativity of the star product
certain string field configurations. Such anomalies typica
appear for string fields that correspond to closed string e
tations, such as those that represent space-time diffeo
phisms.

The breakdown of associativity would have a huge infl
ence on the very structure of open string field theory. F
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example, Witten’s action would not enjoy a gauge symme
in the presence of anomalies. It is therefore important
know precisely when and how such an anomaly occurs
how it can be treated.

The purpose of this paper is to present a systematic s
of such anomalies. We will show that the associativ
anomaly emerges from the very properties of the infinite
mensional matricesT,R that relate the open full string de
grees of freedom to the split string degrees of freedom, t
clarifying the origin and the structure of the anomaly. Inde
we will see that the Horowitz-Strominger anomaly is hidd
in the matricesT,R themselves.

In order to tame such an anomaly, we will discuss tw
steps:~1! separation of the open or closed string sectors
~2! a consistent cutoff method.

In the first step, we study the structure of the Hilbert spa
for split strings more carefully. We find that the Hilbert spa
can be decomposed into two sectors. The first sector is
subspace in which associativity is maintained. We m
regard it as the Hilbert space of open string fields. In
second sector associativity is explicitly broken. This su
space is characterized by the fact that under star prod
with singular fields the location of the midpoint shif
~contrary to the definition of the original star product!. Thus,
we show the simplified origin of the anomaly, with a dire
relation to the Horowitz-Strominger anomaly, through its r
lation to the gauge variation of closed string degrees of fr
dom that are hidden in the open string formalism.

It is not clear how to precisely separate the open or clo
sectors while maintaining the infinite number of strin
modes. Therefore, in the second step, we propose a co
tent cutoff method using a finite number of string modes, a
sending the number of modes to infinity at the end of co
putations. The essence of our cutoff method is to maintain
the crucial algebraic relations satisfied by the matricesT and
R for any number of modes. This cutoff method is then va
in both the split string and Moyal formalisms. With a finit
number of modes, associativity is maintained at all stage
any computation. When the number of modes is sent to
finity the origin of the anomaly emerges in the form of`/`.
©2002 The American Physical Society06-1
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The ambiguity in such quantities is seen to be the origin
the anomaly. With the consistent cutoff method the ambi
ity is resolved and a unique value is obtained in the lim
With the cutoff method all quantities of the open string fie
theory ~off-shell vertex, integration, etc.! are readily ex-
pressed in terms of a finite number of modes, and comp
tions are carried out in a straightforward way without wo
rying about the associativity anomaly.

We expect that our consistent cutoff theory would also
quite useful in the numerical study of vacuum string fie
theory since it is a more reliable method as compared to
level truncation which has been used in the recent literat

II. SPLIT STRING AND MOYAL FORMALISMS

We first recall the basic definitions of the split string a
Moyal formalisms in order to set up the notation@1–4#. For
ease of notation space-time indices and ghost degree
freedom will be suppressed in most formulas.

In Witten’s open string field theory, the three string vert
operator is defined by an overlap of the right half of the fi
open string with the left half of the second:

~C1!C2!@z~s!#[E C1@x~s!#C2@y~s!#

3 )
p/2<s<p

d@x~s!2y~p2s!#

3dx~s!dy~p2s!, ~1!

with the identification z(s)5x(s) for 0<s<p/2 and
z(s)5y(s) for p/2<s<p.

The mode expansion of the open string,

x~s!5x01A2(
n51

`

xncos~ns!, ~2!

is not the most convenient set of degrees of freedom to
scribe the star product since one cannot say whetherxn be-
longs to the left or right side of the string. In the opera
formalism of the open string field theory, such descripti
causes the Neumann coefficients appearing in the three s
vertex operator to become rather complicated matrices. T
obscures the understanding of the overall structure and l
to rather complex computations.

The Moyal formulation is obtained by performing a Fo
rier transform on the odd string modes. If the original stri
field written in terms of modes isc(x0 ,x2n ,x2n21), its Fou-
rier image in the Moyal basis isA( x̄,x2n ,p2n) given as fol-
lows @4#:

A~ x̄,x2n ,p2n!5det~2T!d/2S E dx2n21
m D

3e2(2i /u)hmn(k,l 51
` p2k

m T2k,2l 21x2l 21
n

3c~x0 ,x2n ,x2n21! ~3!
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where d is the number of dimensions~26 plus 1 for the
bosonized ghosts!, u is a parameter that has units of area
phase space,T2n,2m21 is a special infinite matrix intimately
connected to split strings~see below! and x̄ is the string
midpoint which may be rewritten in terms ofx0 ,x2n as x̄
5x01A2(n51

` x2n(21)2n. Then the Witten star product be
comes the Moyal star product in the phase space of e
even mode except the midpoint:

~A!B!~ x̄,x2n ,p2n!5e(3i /2)x̄27A~ x̄,x2n ,p2n!

3expF iu

2
hmn (

n51

` S ]Q

]x2n
m

]W

]p2n
n

2
]Q

]p2n
n

]W

]x2n
m D GB~ x̄,x2n ,p2n!. ~4!

Note that the product is local at the midpoint in all dime
sions, and that there is a midpoint insertionei3x̄27/2 in the 27th

dimension which is the bosonized ghost coordinate. It is
derstood that the midpoint ghost insertion is present in
versions of the star product although it is not always exp
itly indicated. For simplicity of notation we will continue
this tradition of omitting the midpoint insertion in our for
mulas below unless we need to do an explicit computati
This reformulation of the star product greatly simplifies co
putations of interacting string fields as shown with ma
examples in@24#.

The split string formalism defines split string mod
which are also convenient to describe string interactions
terms of the continuous parameters, these are defined by
explicitly splitting the left and right variables of the ope
string relative to a midpoint ats5p/2:

l ~s![x~s!, r ~s![x~p2s! for 0<s<p/2.
~5!

With these new variables, the star product can be written
an infinite matrix multiplication:

~C1!C2!@ l ~s!,r ~s!#

5E )
0<s<p/2

dt~s!C1@ l ~s!,t~s!#C2@ t~s!,r ~s!#. ~6!

This expression may be rewritten in terms of the split str
modes discussed below. The open string variablex(s) has
no a priori boundary condition at the midpoint. Therefore,
subtlety in identifying the split string modes is the bounda
condition of the half-string variablesl (s),r (s) at the mid-
point. Up to this point, two standard choices have been c
sidered: the Dirichlet and Neumann boundary conditio
@21,4#. While we do not exclude other possibilities, we w
concentrate on these two choices in the following. Eith
case is compatible with the Moyal basis given above@4#.
6-2
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A. Dirichlet at the midpoint

We first examine the Dirichlet casex̄5x(p/2)5 l (p/2)
5r (p/2). Since we have Neumann boundary conditions
the other end ofl (s) or r (s), we arrive at the mode expan
sion in terms of the odd cosines:

l ~s!5 x̄1A2(
n51

`

l 2n21cos~2n21!s,

r ~s!5 x̄1A2(
n51

`

r 2n21cos~2n21!s. ~7!

The Fourier coefficients are related to each other as

l 2n215
2A2

p E
0

p/2

ds„l ~s!2 x̄…cos~2n21!s

5
2A2

p E
0

p/2

ds„x~s!2 x̄…cos~2n21!s

r 2n215
2A2

p E
0

p/2

ds„r ~s!2 x̄…cos~2n21!s

5
2A2

p E
0

p/2

ds„x~p2s!2 x̄…cos~2n21!s

xnÞ05
A2

p E
0

p

ds x~s!cos~ns!

5
A2

p E
0

p/2

ds@ l ~s!1~21!nr ~s!#cos~ns!.

They imply

x2n215
1

2
~ l 2n212r 2n21! ~8!

x2nÞ05
1

2 (
m51

`

T2n,2m21~ l 2m211r 2m21! ~9!

x05 x̄1
1

2A2
(

m51

`

T0,2m21~ l 2m211r 2m21! ~10!

where

T2n,2m215
4

pE0

p/2

ds cos„~2n!s…cos„~2m21!s…

5
2~21!m1n11

p S 1

2m2112n

1
1

2m2122nD . ~11!

This matrixT is directly related to the matrixX in @20,2# as
follows:
12600
t

X2m21,2n52X2n,2m215 iT2n,2m21 ~n.0!, ~12!

X0,2m215
i

A2
T0,2m21 . ~13!

The inverse relations of Eqs.~8!–~10! are

l 2m215x2m211 (
n51

`

R2m21,2nx2n ~14!

x̄5x01A2(
n51

`

~21!nx2n ~15!

r 2m2152x2m211 (
n51

`

R2m21,2nx2n ~16!

where

R2m21,2n5
4

pE0

p/2

ds cos~2m21!s@cos 2ns2~21!n#

~17!

5
4n~21!n1m

p~2m21! S 1

2m2112n
2

1

2m2122nD .

~18!

Note that

R2m21,2n5T2n,2m21

~2n!2

~2m21!2

5T2n,2m212~21!nT0,2m21 . ~19!

It must be mentioned thatR2k21,2m is the inverse ofT2m,2n21
on both sides

~RT!2m21,2k215dm,k , ~TR!2m,2k5dm,k . ~20!

From Eqs.~19! and ~20! one obtains the relations

(
n51

`

T2n,2m21~2n!2T2n,2k215~2m21!2dm,k ~21!

(
n51

`

T2m,2n21

1

~2n21!2
T2k,2n215

1

~2m!2
dm,k ~22!

(
n51

`

R2n21,2m~2n21!2R2n21,2k5~2m!2dm,k ~23!

(
n51

`

R2m21,2n

1

~2n!2
R2k21,2n5

1

~2m21!2
dm,k . ~24!

These equations reflect the fact that the matricesT andR are
transformations between two bases of the form cos(2ns),
cos„(2n21)s… which diagonalize the Laplacian2]s

2 with
two different boundary conditions.
6-3
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B. Neumann at the midpoint

First we note the following properties of trigonometr
functions when 0<s<p for integersm,n>1:

cos„~2n21!s…

5sgnS p

2
2s D (

m51

`

@cos~2ms!2~21!m#T2m,2n21 ~25!

@cos~2ms!2~21!m#

5sgnS p

2
2s D (

n51

`

cos„~2n21!s…R2n21,2m . ~26!

Both sides of these equations satisfy Neumann bound
conditions ats50 and Dirichlet boundary conditions ats
5p/2, and both are equivalent complete sets of trigonom
ric functions for the range 0<s<p/2. In the previous sec
tion we made the choice of expandingl (s),r (s) in terms of
the odd modes. Now we see that we could also expand t
in terms of the even modes as follows:

l ~s!5 x̄1A2 (
m51

`

l 2m@cos~2ms!2~21!m#

5 l 01A2 (
m51

`

l 2mcos~2ms! ~27!

and similarly forr (s). The even modesl 2m are now associ-
ated with cos(2ms) which is a complete set that satisfie
Neumann boundary conditions ats50,p/2. Comparing to
the expressions in the previous subsection, and using
~25!,~26! we can find the relation between the odd mod
( l 2n21 ,r 2n21) and the even modes (l 2n ,r 2n)

l 2n215 (
m51

`

R2n21,2ml 2m , l 2m5 (
n51

`

T2m,2n21l 2n21

~28!

r 2n215 (
m51

`

R2n21,2mr 2m , r 2m5 (
n51

`

T2m,2n21r 2n21 .

~29!

Furthermore, by using the relation between the odd str
modes (l 2n21 ,x̄,r 2n21) and the full string modes
(x0 ,x2n ,x2n21) in Eqs.~14!–~16! or by direct comparison to
x(s), we derive the relation between the even split str
modes and the full string modes:

l 2m5x2m1 (
n51

`

T2m,2n21x2n21 ,

r 2m5x2m2 (
n51

`

T2m,2n21x2n21 , ~30!
12600
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l 05x01
1

A2
(
n51

`

T0,2n21x2n21 ,

r 05x02
1

A2
(
n51

`

T0,2n21x2n21 . ~31!

The inverse relation is

x05
l 01r 0

2
, x2m5

l 2m1r 2m

2
,

x2m215 (
n51

`

R2m21,2n

l 2n2r 2n

2
. ~32!

Note that the matching condition at the midpointl (p/2)
5r (p/2)5x(p/2)5 x̄ is satisfied by the even modes. This
evident from the first expression in Eq.~27! and also by
noting thatl 02r 0 automatically obeys the relation

l 02r 05A2(
n51

`

T0,2n21x2n2152A2(
n51

`

~ l 2n2r 2n!~21!n

~33!

as seen by using Eqs.~31!,~32! and inserting the relation

v̄R5w̄ given below in Eq.~37!. In working purely with even
split string modes, Eq. ~33! is a constraint on
( l 0, ,r 0 ,l 2n ,r 2n) that must be imposed among those mod
However, an alternative strategy is to use the unconstra
modes (x̄,l 2n ,r 2n) as the independent modes instead of
constrained modes (l 0, ,r 0 ,l 2n ,r 2n). In this case, instead o
Eq. ~32!, the center of massx0 is given in terms of the split
string modes (x̄,l 2n ,r 2n) by

x05 x̄2A2(
n51

`
l 2m1r 2m

2
~21!n, ~34!

while the expression forl 02r 0 never enters and can take i
allowed values in terms of (l 2n2r 2n) as seen in Eq.~33!.

C. Relations amongT, R, v, w

More relations among the special matricesT,R can be
compactly written in matrix notation by defining the eve
and odd vectorsw,v

w2m5A2~21!m11,

v2n215
1

A2
T0,2n215

2A2

p

~21!n11

2n21
, ~35!

and then noting the following identities among these ma
ces,

TR51, RT51, R5T̄1vw̄, R5ko
22T̄ke

2 , ~36!

v5T̄w, w5R̄v, R̄R511ww̄, T̄T512vv̄
~37!
6-4
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ASSOCIATIVITY ANOMALY IN STRING FIELD THEORY PHYSICAL REVIEW D 65 126006
TT̄51, Tv50, v̄v51, ~38!

where the bar on a symbol means transpose of the matri
Eq. ~36! we have defined the odd and even diagonal matr

ko5diag~2n21!, ke5diag~2n!, ~39!

to reproduce Eq.~19!. We recall that the meaning of th
eigenvalues ofko ,ke are the frequencies of oscillation of th
string modes.

As we see in the next section, these identities, while t
come from the absolutely convergent sums, are not con
tent with each other in the sense that they break associat
when some of these matrices occur in double sums.
culprits are the relations in Eq.~38! and the underlying rea
son is the infinite normw̄w5`. In the final section, we
propose a finite size version of the matricesT, R, w andv to
make all matrix relations consistent with associativity. He
we give a simple sketch of our idea. We suppose that
have a regularization scheme where a suitably redefinew

has a finite norm (w̄w5finite). Then there is a unique way t
impose associativity consistent with the definitions
T,R,v,w as expressed in Eqs.~36!,~37!. Associativity forces
us to modify the formulas in Eq.~38! to the unique form

TT̄512
ww̄

11w̄w
, Tv5

w

11w̄w
, v̄v5

w̄w

11w̄w
,

~40!

Rw5v~11w̄w!, RR̄512vv̄~11w̄w!. ~41!

One derives them as, for example,Tv5T(T̄w)5T(R
2vw̄)w5TRw2Tvw̄w5w2(Tv)(w̄w), which implies
Tv5w/(11w̄w). Of course, in the infinite norm limit ofw,
one reproduces Eq.~38!. We will often come back to this
issue in the text. The details of the cutoff procedure w
finite rank matrices that preserve all the relations above
presented in Sec. V.

III. ASSOCIATIVITY ANOMALY

In this section, we explain the appearance of the asso
tivity anomaly hidden in the split string formalism. The m
trix algebras betweenT, R, w, v are defined by the absolutel
convergent infinite sums as emphasized above. Howeve
doublesum appearing in the product of three elements
be only conditionally convergent and the two infinite sums
different order do not in general give the same answer, t
producing an anomaly. We will see that physically t
anomaly appears as the subtleties at the midpoint.

We first show the most typical example. The matric
T2n,2m21 and v2m215(1/A2)T0,2m21 defined by Eq.~11!

satisfyv5T̄w, or

T0,2n21522(
k51

`

~21!kT2k,2n21 . ~42!
12600
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Going back to the original definition in terms of the integra
of cosines as in Eq.~11!, this equation is satisfied as follows

E
0

p/2

cos„~2n21!s…ds

522(
k51

`

~21!kE
0

p/2

cos„~2n21!s…cos~2ks!ds.

~43!

But this is rewritten as

E
0

p/2

cos„~2n21!s…d~s2p/2!ds50, ~44!

where the periodic delta function is given by

d~s2p/2!5
1

p
2

2

p (
k51

`

~21!kcos~2ks!

5
1

p
1A2(

n51

`
2w2n

p
cos~2ns!.

~45!

Thus, through the delta function we see thatv5T̄w is a
relation involving the midpoint. Together with the identitie
TT̄51, Tv50, v̄v51 given in Eq.~38!, these matrices dis
play an associativity anomaly as follows:

~TT̄!w51•w5w versus T~ T̄w!5Tv50, ~46!

~ v̄T̄!w50•w50 versus v̄~ T̄w!5 v̄v51.
~47!

Namely (TT̄)wÞT(T̄w) and (v̄T̄)wÞ v̄(T̄w). These ex-
amples clearly show the anomaly is intimately related to
midpoint.

Before we move on, let us point out what would happ
to the double infinite sums if the infinite normw̄w5` is not
imposed in the single sums, as would be the case in
cutoff procedure. Then, instead of Eq.~38! we use Eq.~40!.
This gives

TT̄w5w
w̄w

11w̄w
, v̄T̄w5

w̄w

11w̄w
~48!

independent of the order of the sums. The anomaly is
cumvented ifw̄w5` is imposed at the end of the comput
tion since then there is a unique answer. After emphasiz
the significance of the anomaly in terms of midpoint issu
we will propose a consistent cutoff procedure that will re
on this observation.

In the following, we show more specifically how th
anomaly arises for the two choices of the midpoint bound
conditions considered in the previous section.
6-5
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A. Dirichlet at the midpoint „odd modes…

We write the relation between the full string modes a
the split string modes~8!–~10!,~14!–~16! in matrix notation

S x0

x(e)

x(o)
D 5S 1

1

2
v̄

1

2
v̄

0
1

2
T

1

2
T

0
1

2
2

1

2

D S x̄

l (o)

r (o)
D [T (o)S x̄

l (o)

r (o)
D

~49!

S x̄

l (o)

r (o)
D 5S 1 2w̄ 0

0 R 1

0 R 21
D S x0

x(e)

x(o)
D [R (o)S x0

x(e)

x(o)
D

~50!

where we use the notatione5even, o5odd and the right-
hand sides define the matricesT (o) andR (o). One may check
T (o)R (o)5R (o)T (o)51 by using the formulasTR5RT

51, v̄R5w̄ and v̄5w̄T. A subtle point in this correspon
dence is thatT (o) has a state with zero eigenvalue given
( x̄,l (o),r (o));(21,v,v)[V (o)

T (o)V (o)[S 1
1

2
v̄

1

2
v̄

0
1

2
T

1

2
T

0
1

2
2

1

2

D S 21

v

v
D

5S 211 v̄v

Tv

0
D 50, ~51!

which follows fromTv50, v̄v51. Note that the eigenstat
V (o) has finite norm. These facts imply that associativity
broken explicitly as follows:

~R (o)T (o)!V (o)5V (o), versus R (o)~T (o)V (o)!50.
~52!

The interpretation of the eigenvectorV (o) is that the in-
finitesimal translation of the split string modes given by tw
translation parametersam,bm

d x̄m5am , d l 2n21
m 5bmv2n21 , dr 2n21

m 5bmv2n21 ,
~53!

does not generate any translation of the full string mo
(x2n ,x2n21) while x0 is translated only by the sumam1bm

but not the differenceam2bm

dx0
m5am1bm. ~54!
12600
s

So, there is an extra zero mode in the split string formali
as compared to the full string formalism. In this sense,
correspondence between the split string modes and the
string modes does not seem to be one-to-one and eitherx̄ or
the variation ofl (o),r (o) along v appear to contain an extr
zero mode. This redundancy gives the origin of the anom
in this case. We will further clarify below the relation of th
anomaly to the Horowitz-Strominger anomaly@25–27#, and
to the pure midpoint-ghost BRST operator recently su
gested in the vacuum string field theory formalism@11#.

As above, in a cutoff scheme, if the infinite normw̄w
5` is not imposed temporarily in the single sums, and
use Eq.~40! instead of Eq.~38!, we get the temporarily non
zero result

T (o)V (o)5S 21

w

0
D 1

11w̄w
. ~55!

Then R (o)T (o)V (o)5V (o) follows without associativity
anomalies in the double sums, provided the infinite no
w̄w5` is not imposed until the end of the computation.

B. Neumann at the midpoint „even modes…

The relations similar to Eqs.~49!,~50! are

S x0

x(e)

x(o)
D 5S 1

1

2
w̄

1

2
w̄

0
1

2

1

2

0
1

2
R 2

1

2
R

D S x̄

l (e)

r (e)
D

[R (e)S x̄

l (e)

r (e)
D ~56!

S x̄

l (e)

r (e)
D 5S 1 2w̄ 0

0 1 T

0 1 2T
D S x0

x(e)

x(o)
D

[T (e)S x0

x(e)

x(o)
D . ~57!

There is an eigenvector with zero eigenvalue wh
(x0 ,x(e),x(o));(0,0,v)[V (e)

T (e)V (e)[S 1 2w̄ 0

0 1 T

0 1 2T
D S 0

0

v
D 5S 0

Tv

2Tv
D 50

~58!
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which follows from the single sum inTv50. Again, we
meet the associativity anomaly in the double sums

~R (e)T (e)!V (e)5V (e), versus R (e)~T (e)V (e)!50.
~59!

In this case, we have to be more careful since the zero ei
state occurs on the full string side. That is, the translation
the full string modex(o)m by emv does not seem to induc
any translation in the split string variables (x̄,l (e),r (e))

S d x̄

d l (e)

dr (e)
D 5S 1 2w̄ 0

0 1 T

0 1 2T
D S 0

0

v
D

5emS 0

Tv

2Tv
D 50. ~60!

In this case, the split string modes we have chosen do
seem to be enough to describe the open string degree
freedom. However, let us analyze the zero mode (l 02r 0) as
given in Eq. ~33!. From the expressionl 02r 052v̄x(o) we
see that it certainly translates when the full string modex(o)m

is translated byemv, that isd( l 0
m2r 0

m)52em after usingv̄v
51. This shows that the infinite sumw̄( l e2r e) also must
translate by the same amount even though the individ
l e,r e did not seem to translate

d~ l 0
m2r 0

m!52v̄dx(o)5w̄~d l e2dr e!52em. ~61!

Thus, we see again that double infinite sumsw̄Tv must be
evaluated carefully as they are afflicted with the associati
anomaly. Once more, in a regularized theory, if we useTv
5w(11w̄w)21 as in Eq.~40! instead of the zero value in
Eq. ~38!, then the correct resultw̄(d l e2dr e)52em is recov-
ered by settingw̄w5` at the end of the calculation.

C. Relation to the Horowitz-Strominger anomaly

Actually the associativity anomaly which we encounter
in this section is the split string version of the Horowit
Strominger’s anomaly in@25#. In that paper, the space-tim
translation generator is represented as the inner derivativ
the open string fields. The generator is represented by
string field

PLuI& ~62!

wherePL is the momentum density integrated over the l
half of the open string. The string configuration described
PL shifts the center of mass of the full string under comm
tation using the star product. This singular behavior giv
rise to the Horowitz-Strominger anomaly.

More explicitly, in terms of the vertex operator, they o
served that

~P1R1P2L!uV1234&50 ~63!
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~ x̄12 x̄3!uV1234&50 ~64!

@P1R1P2L ,x̄12 x̄3#52 i /2. ~65!

The first equation represents the conservation of the mom
tum for the four string interaction. The second represents
the midpoint is fixed for the interaction. The third equatio
however, says thatP and x̄ does not commute. Obviously
these equations are not consistent with each other if asso
tivity is assumed

x̄1~P1RuV1234&)2P1R~ x̄1uV1234&)Þ~ x̄1P1R2P1Rx̄1!uV1234&.
~66!

In the split string formalism, the product is defined by t
path integral over the half string~1!. The momentum conser
vation ~63! is represented as the invariance of the const
shift of the integration variablet(s) on the right-hand side o
Eq. ~1!. In this sense,PL,R operator should induce the infini
tesimal translation ofl (s),r (s) by a constant. In the odd
modding split string formalism, it is generated by the ope
tor,

PL
m5 (

n51

`

v2n21] l 2n21

m , PR
m5 (

n51

`

v2n21] r 2n21

m . ~67!

The sum generates exactly the type of the translationbm in
Eq. ~53! which caused the associativity anomaly in our ca
(d l m

(o)5bmv5dr m
(o)). The associativity anomaly appea

there because there is a redundancy in the split string
scription. We also noted in Eq.~54! that this translation
causes a shift in the center of mass coordinate, as claime
Horowitz and Strominger. We have therefore identified t
Horowitz and Strominger anomaly with the anomaly in t
very matricesR,T,v,w that occur naturally in the split string
formulation.

In the Moyal formulation2 i ] l 2n21

m c corresponds to left

multiplication under the Moyal star produc
(mT̄2n21,2m(p2m

m !A) and i ] r 2n21

m c corresponds to right

multiplication1 T̄2n21,2m(A!p2m
m ). In particular the sum

(PL
m1PR

m)A( x̄,x2n ,p2n) is given by the commutato

i (n,mv2n21T̄2n21,2m(p2m
m !A2A!p2m

m ). Taking into account

Tv50, we see that the translation (PL
m1PR

m)A( x̄,x2n ,p2n)
vanishes unless the string fieldA is such that the commutato
(p2m

m !A2A!p2m
m ) behaves likew2m ~since the double sum

wTv is ambiguous by the anomaly!. Such a string field con-
figuration must involve((21)nx2n which is precisely re-
lated to the difference between the center of mass and m
point (x02 x̄) as in Eq.~15!. Hence Strominger’s anomaly i
closely connected to the associativity anomaly among
matricesR,T,v,w.

If we follow the discussion in this section, the anoma
would not exist if we exclude string fields that are nontriv
under the variation induced byPL1PR . If one takes such an

1These will be discussed in detail in a future paper@24#.
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approach the excluded string field configurations would l
outside of the open string Hilbert space, and would belon
the closed string sector that are nontrivial under space-t
diffeomorphisms generated byPL

m1PR
m as advocated by

Strominger.

IV. CONTROLLING THE ANOMALY

There are basically two natural ways to control the as
ciativity anomaly. One method is to use projectors that se
rate the anomalous sector in the Hilbert space, thereby s
rating the open or closed string field sectors. This is along
lines of an old proposal by Strominger as described bel
The other method is to consider a regularization which is
definition free from anomaly. In this section we consider t
first strategy in the presence of an infinite number of mod
We first discuss a projection and its relation to old works.
then point out the relevance to midpoint issues that aris
recent proposals in the context of vacuum string field the
In Sec. V we propose another way of controlling the anom
through a new consistent regularization using a finite num
of modesN, with the cutoffN to be sent to infinity at the end
of the calculation. The essence of our regularization met
is to maintain all the crucial relations satisfied b
R,T,v,w,ko ,ke but with finite norm for a modifiedw as
long asN is finite. The regularized theory automatically r
solves the associativity anomaly.

A. Projecting out the anomalous sector

We start from the example which we first explained in t
last section. We denote the mode space spanned by the
cos(ns) for n5odd ~respectivelyn5even) asHodd ~respec-
tively Heven). The matricesT andR act on the mode space
as

T: Hodd→Heven , R: Heven→Hodd , ~68!

and they are the inverse of each other. We have discu
that the existence of an eigenvectorv with zero eigenvalue
implies the associativity anomaly asv5(RT)vÞR(Tv)50.
From the mathematical viewpoint, such an anomaly sho
disappear in a sector with some restriction on the spa
Heven,odd . Such a sector of string fields would presumab
be identified with the open string sector.

One natural restriction is the limitation of the elements
H to square normalizable states. This restriction, howeve
not enough to guarantee associativity as seen in the ca
Eq. ~51! that has a finite normV (o). Obviously the normal-
izable vectorvPHodd breaks associativity. We therefore pr
ceed to project it out fromHodd by using the projector,

P512vv̄5T̄T. ~69!

We limit Hodd by using this projectorH odd8 5PHodd and
redefine the operators in the surviving subspace

T8[TP, R8[PR. ~70!
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By using the identityR5T̄1vw̄ in Eq. ~36!, one may easily
observe

R8T85P, T8R851, and R85T̄8. ~71!

In a sense,T8 and R8 define the partial isometry betwee
Heven andH odd8 and they become the transpose of each ot
in the restricted space.

One subtlety is that there is naively a vectorw in Heven

which causes a problem sinceT̄8w5PT̄w5Pv50 which
seems to imply the existence of a problematic zero eig
value. However, we note that we restrictH to be square
normalizable, and therefore the vectorw does not belong to
Heven in this sense.

A cost for using this prescription is that we lose som
basic properties ofT andR, Eqs.~21!–~24!, after we project
out the Hilbert spaces. In particular,ko should be replaced
by a nondiagonal matrixPkoP. In fact, the relations~21!–
~24! are quite singular since they imply that different sets
eigenvalues are related by unitary transformations~as ob-
served in@14#!.2 In this sense, losing these identities after w
properly define the space is natural. The failure of these id
tities is not desirable since this would create some proble
in the construction of the Virasoro operators. Neverthel
one must also face the issue of anomalies that are in con
with the basic gauge symmetry of the action. We will com
back to this problem in our future work.

We can interpret our constraintH odd8 in terms of open
strings. When we take the Dirichlet boundary condition
the midpoint~odd split string modes!, we encountered a re
dundancy in the split string degree of freedom involvi
( l (o)1r (o))}v and x̄. We note thatx̄ is physically essentia
to describe the vertex operator of the free boson which is
exponential ofxm(s). While it may be possible to remov
the x̄ variable, this reasoning suggests that it may not b
good idea to proceed in this direction. So we take the ot
option, namely projecting away the component of (l (o)

1r (o))}v by applying the projectorP. This prescription is
obviously consistent with our analysis.

When we use the Neumann boundary condition at
midpoint, the split string variable is described byHeven and
we do not need to consider the projector for this case.

Some years ago, Strominger@27# classified the inner deri-
vation of the open string Hilbert space into three subclas
O,C,I. The first one,O, is the inner derivative with respec
to the open string field in a narrow sense and the star pro
in this category is always associative. The second categ
C, describes the variation of the closed string backgrou
written in terms of the open string variable. He showed t
the element belonging to this subspace breaks associat
The associator for the closed string field then belongs to
third classI which is described by the midpoint insertion o

2We emphasize however that these are not really unitary trans
mations when the subtleties of the double sums are taken into
count. Therefore, there really is no contradiction.
6-8
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the primary field. The elements inI commute with all the
elements of the inner derivative.

This scenario can be applied to our simple situation. T
inner product of the open string is now represented by
commutators of the big matrices described by the split str
variables or by commutators involving the Moyal star pro
uct. We have seen that associativity can be broken by
string field degree of freedom that generates (PL

m1PR
m)

that is related to the uniform translation of the op
string ~in the Moyal basis this is the string fieldA
5(n,mp2m

m T2m,2n21v2n21 under commutation, as see
above!. In Strominger’s classification, this represents a sin
element inC. We have seen only one element since we c
sidered only the algebra of string fields linear in the mod
xm,pm. For the nonlinear string configurations, the projecti
of the Hilbert space becomes more complicated and we
more and more elements which belong toC. It is not easy to
find a projection prescription to separate these configurat
into open or closed sectors. Therefore, we will resort to
regularized theory given below which treats the issue
anomalies in a different manner.

B. Subtlety of the vertex operators

As we have seen, following Strominger’s interpretatio
the open string sector can be identified by imposing cer
constraints. The constraints can be described in terms o
continuous variablesl (s) andr (s) for which constant shifts
are allowed only in the opposite directionsl (s)1« and
r (s)2«. More precisely the allowed constant shifts are d
scribed by a kink at the midpoint and a translation of t
midpoint as discussed in Eqs.~53!,~54!

dxm~s!}bmX11sgnS p

2
2s D C ~72!

with a periodic sign function. This mode should be trea
rather carefully.

This fact is relevant in recent developments in vacu
string field theory in two contexts namely~i! the open string
coupling to the closed string vertex operator@12,11# and~ii !
the ghost kinetic term as proposed by@11# namely fermionic
ghost insertion at the midpoint.

In the first context, we recall that the proposed coupl
of the open string to the closed string background is

OV5E V~p/2!C. ~73!

Here V(p/2) is the midpoint insertion of the closed strin
vertex operatorV acting on the open string fieldC. The
simplest choice for such a vertex operator is the closed st
tachyon vertex exp„ikmxm(p/2)…. In the second context, th
kinetic term of the VSFT was proposed as

S;E C!„c~p/2!C…. ~74!
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If we represent the ghost field in terms of the free boson fi
f(z) @identified as a 27th dimensionf(s)5x27(s)#, then
the c(p/2) insertion is again written in the form of a verte
operator exp„if(p/2)….

In the following, we show that the midpoint insertion o
the vertex operator discussed here can be precisely writte
terms of the allowed kink configuration which we have ju
mentioned, and that a deviation from the midpoint kink
likely to create problems with associativity.

We take the fermionic ghost as the example. We cons
its action at an arbitrary points0. The ghost fieldc6(s0)
acts on the string field in the 27th direction by creating a kink
at s0 ~see Eq.~3.41! of @2#!

c6~s0!C@f~s!#5Kei e(s0)(p/4)eif(s0)

3C@f~s!6pu~s02s!#, ~75!

where the dependence on the other 26 dimensions is
pressed.

For generics0Þp/2, the Fourier coefficients of the per
odic shift u(s02s) are given by

u~s02s!5
s0

p
1A2(

n51

` A2 sinns0

np
cos~ns!. ~76!

The midpoint coordinateu(s02p/2)5 ū is

ū5H 0, 0<s0,p/2,

1, p/2,s0<p.
~77!

An expansion ofu(s02s) in terms of split string modes ca
be developed as in Secs. II A and II B~odd modes!. For odd
split string modes~Dirichlet at midpoint! the corresponding
coefficients are given as follows:

u2n21
( l ) 5

2A2

p

sin„~2n21!s0…

2n21
, u2n21

(r ) 50,

for 0<s0,p/2 ~78!

u2n21
(r ) 52

2A2

p

sin„~2n21!s0…

2n21
, u2n21

( l ) 50,

for p/2,s0<p/2. ~79!

An expansion in terms of even split string modes can also
easily obtained~Neumann at midpoint!. We note that these
odd split string mode expansion coefficients have nonvan
ing inner product withv. For example the coefficients in Eq
~78! satisfy

v̄•u ( l )52s0 /p. ~80!

This implies that the translation created by the kinku(s0
2s) has a mode along the vectorV (o) of Eq. ~51!. As we
have already discussed, this is an extra mode which is a
very origin of the associativity anomaly.

Let us now consider the ghost very special points0
5p/2. The kink now creates a translation proportional to t
periodic functionu(p/22s) which is given in terms of the
6-9
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periodic sign function by

uS p

2
2s D5

1

2
1

1

2
sgnS p

2
2s D . ~81!
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12600
This is an allowed translation as in Eq.~72!. Indeed the mode
expansion for this function is given in terms of the full strin
modes, odd split string modes, and even split string mode
follows:
uS p

2
2s D5

1

2
1A2(

n51

`
v2n21

2
cos„~2n21!s… ~82!

left/right odd split modes even split modes

5

midpoint 1
2

1
2

left modes 1
2 v2n21

1

2~11w̄w!
w2m

right modes 2 1
2 v2n21 2

1

2~11w̄w!
w2m ~83!
ity.
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In particular, the odd split string modes are given by the fi
column in Eq.~83!

ū5
1

2
, u2n21

( l ) 52u2n21
(r ) 5

1

2
v2n21 , ~84!

which shows again in detail that it is of the allowed type,
in Eqs. ~53!,~54!. Thus, we see that except for the case,s0
5p/2, the kink created by the vertex is anomalous. In t
respect, the construction of the vertex operators is a v
subtle problem.

A lesson that we can draw here may be the following. T
guiding principle to determine the closed string coupli
~73! or the kinetic term~74! was that they enjoyed an en
hanced symmetry if inserted at the midpoint. From our po
of view, the midpoint is the safest choice because associa
ity is preserved. However, the regularization offered to defi
them does not seem to enjoy the same properties.

V. CONSISTENT REGULARIZATION

The anomaly occurred because of the infinite norm of
vectorw. To analyze the anomaly more carefully it is nece
sary to introduce a consistent regulator. This can be don
formulating a cutoff version of the theory using finite ran
matrices which truncate the theory to a finite number of
cillator modes (x2n ,p2n) with n51,2, . . . ,N. Such a cutoff
is desirable more generally to regulate string field theory
could also be useful for numerical estimates.

In this section we will denote the finite matrices with th
same symbols as the infinite matrices. Thus, we have sq
N3N matricesT, R, ke,ko and N dimensional column ma
tricesv,w. These finite matrices may depend on the cutofN
not only through their rank but also explicitly in the matr
elements. We will see that except for the general struc
that we will explain, we seldom need the details of theN
t
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dependence, for which there is a certain amount of flexibil
In any case, the finite matrices become the infinite matri
we discussed before whenN→`.

To have a consistent theory, the finite rank matrices m
obey the same relations among themselves that were ob
by the infinite rank matrices. The list of all the relations th
must be satisfied for arbitrary finiteN are given in Eqs.~36!–
~41! excluding the hasty infinite limit in Eq.~38!. These re-
lations are satisfied by the infinite matrices. Here we w
present the general solution forR,T,v,w,ko ,ke that satisfies
these relations at anyN.

WhenN→` the sumw̄w diverges even though all com
ponents of the vector are finite. The associativity anom
arises from this infinite norm. Associativity is restored b
keeping track of this divergence when multiple sums are
volved, and sendingN→` only at the end of a calculation
In taking the limit any explicitN dependence in the matri
elements of the matricesT,R,ke,ko , v,w should be taken
into account. However, the important infinity usually occu
in the formw̄w, therefore keeping track of this expression
mainly what is needed in most cases to extract the uni
values consistent with associativity.

First we give the general solution forR,T that satisfies all
the relations except forR5ko

22T̄ke
2 . This is given in terms

of a general orthogonal matrixS as follows:

T5~11ww̄!21/2S, R5S̄~11ww̄!1/2. ~85!

Expanding the square roots in a power series, one may w
the matrices (11ww̄)61/2 in the form

~11ww̄!61/2511
1

w̄w
„~11w̄w!61/221…ww̄. ~86!

Thus, for any orthogonal matrixS that satisfiesSS̄515S̄S,
and any vectorw, one constructs
6-10
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v5T̄w5
S̄w

A11w̄w
~87!

and then easily verifies that all the relations hold. Other th
leavingS unspecified, this form of the solution forT,R,v is
unique for a givenw.

Next we turn to the conditionR5ko
22T̄ke

2 . By inserting
the R,T given above, this relation takes the form

ko
25T̄ke

2T5S̄~11ww̄!21/2ke
2~11ww̄!21/2S. ~88!

By a linear transformation ofSandw, one may always go to
a basis in which both spectrum matricesko ,ke are diagonal.
Thus, without losing generality we assume diagonalko ,ke .
In such a basis we see that the meaning ofS in the above
equation is that it is the orthogonal matrix that diagonaliz
the symmetric matrix (11ww̄)21/2ke

2(11ww̄)21/2.
Let us now determine the spectrumko by solving the

eigenvalue condition for the matrix (11ww̄)21/2ke
2(1

1ww̄)21/2. We wish to solve the secular equation

det„~11ww̄!21/2ke
2~11ww̄!21/22l…50. ~89!

The determinant can be computed as follows:

det„~11ww̄!21/2@ke
22l~11ww̄!#~11ww̄!21/2

… ~90!

5det„~11ww̄!21/2
…

2det„ke
22l~11ww̄!… ~91!

5
det~ke

22l!

11w̄w
detS 12

l

ke
22l

ww̄D ~92!

5
det~ke

22l!

11w̄w
S 12w̄

l

ke
22l

wD . ~93!

The only way to have a vanishing determinant is by
vanishing of the last factor, therefore the secular equa
becomes

1

l
1 (

n51

N w2n
2

l2k2n
2

50. ~94!

This equation can be rewritten as anNth order polynomial in
l, and therefore it hasN roots forl. TheN roots correspond
to the diagonal matrixko . Therefore we have the following
N relations among the 3N numbersw2n ,k2n ,k2n21

1

k2m21
2

1 (
n51

N w2n
2

k2m21
2 2k2n

2
50 ~95!

for m51,2, . . . ,N. Recall that the meaning of the eigenva
uesk2n ,k2n21 is that they represent the frequencies of o
12600
n

s

e
n

-

cillations of the string modes, whilew2n is related to the
modes that determine the difference between the cente

mass point and the midpointx02 x̄. TheseN equations de-
termine uniquely thew2n

2 for arbitrary k2n ,k2n21. The
unique solution is

w2n
2 ~N!5 (

m51

N

~M 21!2n,2m21

1

k2m21
2

~96!

where (M 21)2n,2m21 is the inverse of theN3N matrix de-
termined by the frequencies

M2m21,2n5
21

k2m21
2 2k2n

2
.

We expect that in the largeN limit w2n5A2(21)n11 when
k2n52n andk2m2152m21. Indeed it is easily verified tha

1

~2m21!2
1 (

n51

`
2

~2m21!22~2n!2
50 ~97!

is satisfied for every integerm, showing that we have the
expected solution in the largeN limit.

At finite N, we have the freedom to choose freely 2N
numbersk2n(N),k2n21(N) and determine theN numbers
w2n

2 (N) from Eq.~96!. Symmetry considerations may dicta
a particular pattern for the N dependence of
k2n(N),k2n21(N) at some stage of our investigation. F
now, as an example, suppose we make the choicek2n52n
and k2n52n21 just like at infiniteN, and then determine
w2n

2 (N) as a function ofN. The solutions can be obtaine
numerically and their dependence onN can be studied. Also
the unique diagonalizing matrixS can be obtained numeri
cally and its dependence onN can be studied. Some ex
amples forN52,3,10 are given below; as follows from Eq
~96!, they show consistency withw2n5A2(21)n11 as N
gets larger

w2n
2 uN525S 1

3

1

15

2
1

5

1

7

D 21

S 1

1

9
D 5S 20

9

35

9

D
5S 2.222

3.888D ~98!
6-11
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w2n
2 uN535S 1

3

1

15

1

35

2
1

5

1

7

1

27

2
1

21
2

1

9

1

11

D 21

S 1

1

9

1

25

D
5S 21

10

63

25

231

50

D 5S 2.1

2.52

4.62
D . ~99!

For N510, we get the 10 numbers

w2n
2 5~2.009,2.039,2.091,2.171,2.290,2.465,2.734,

3.190,4.141,8.076!

which approachw2n
2 52 except for the last few component

For faster convergence one may take advantage of the
dom in the choices we can make freely in theN dependence
of k2n(N),k2n21(N). However, we will not exercise this
choice until we determine whether some symmetry con
erations dictate a specificN dependence.

There are some relations among thew2n
2 (N),k2n(N),

k2n21(N) which can be read off directly from Eq.~94! with-
out knowing explicitly thek2n(N),k2n21(N). We first re-
write Eq. ~94! by multiplying it with l)n51

N (l2k2n
2 ) and

expressing the secular determinant in terms of its eigen
ues as in the right-hand side below:

)
n51

N

~l2k2n
2 !1 (

n51

N

w̄2nw2nl )
i (Þn)

~l2k2i
2 !

5~11w̄w!)
n51

N

~l2k2n21
2 !. ~100!

The overall coefficient on the right-hand side is determin
by comparing the highest power ofl on both sides. The
same relation follows from Eq.~88! after subtractingl from
both sides and computing the determinant. By comparing
coefficients of various powers ofl on both sides we can
derive many relations. In particular, by comparing the co
ficient of the zeroth power one finds

detS ke
2

ko
2D 5 )

n51

N k2n
2

k2n21
2

511w̄w. ~101!

The first power inl gives

(
i 51

N 11w2i
2

k2i
2

5(
i 51

N
1

k2i 21
2

~102!
12600
e-

-

l-

d

e

-

and thek th power inl yields

(
i 1Þ i 2•••Þ i k51

N 11w2i 1
2 1w2i 2

2 1•••1w2i k
2

k2i 1
2 k2i 2

2
•••k2i k

2

5 (
i 1Þ i 2•••Þ i k51

N
1

k2i 121
2 k2i 221

2
•••k2i k21

2
. ~103!

In particular, the ratio det(ke
2/ko

2)511w̄w which was
computed from the zeroth power inl has a universal form in
terms of w independent of the specific choice ofke ,ko .
Note that in the infiniteN limit 1 1w̄w is the periodic delta
function d(s2p/2) with vanishing argument, as seen fro
Eq. ~45!

11w̄w5pd~0!. ~104!

This relation also implies that the determinant ofT, T̄ can be
computed from Eqs.~40!,~88!:

det~ T̄T!5det~ko
2/ke

2!5~11w̄w!21. ~105!

By replacing this in Eqs.~36!,~85! we learn

~detR!215detT5detS ko

ke
D5~11w̄w!21/2. ~106!

If we use the choicew2n5A2(21)n11 at largeN, the right-
hand side vanishes asO(1/AN) in the largeN limit.

Having satisfied the crucial relations forR,T,v,w,ko ,ke
at finite N, we may next easily represent some cutoff v
sions of distributions such as the theta or delta functio
given in Eqs.~45!,~82!,~83! in which v,w appear as funda
mental entities.

The above are examples of expressions and relations
could not be uniquely determined without a consistent cut
These results are useful in explicit computations that will
presented in@24#.

VI. CONCLUSION AND OUTLOOK

In this paper, we presented fundamental aspects of
associativity anomaly in Witten’s string field theory, and i
dicated that it arises from the matrices that map the o
string variable to the split string variable. We argued that t
anomaly does not come from the peculiarity of using t
split string variables but can be related to the midpoint iss
noticed in the literature in other contexts. We proposed so
prescriptions to deal with the anomaly. One was based on
attempt to separate open or closed string modes in the p
ence of an infinite number of modes, the other was based
a systematic cutoff version of the theory.

We have to emphasize that our arguments are not
complete. For example, in the first prescription, although
may identify some anomaly causing singular string fie
that are linear, the vertex operatorsVN @20# and other string
field configurations are expected to contain nonlinear sin
lar fields associated with closed strings. In this sense, it is
6-12
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completely clear how to generalize the open or closed se
ration systematically to all string fields.

On the other hand, in the regularization with a finite nu
ber of modes, we do not have such a difficulty. However,
pointed out that there remains some arbitrariness in fixing
spectrum~matriceske andko) where we have not yet foun
a principle to determine them. A related issue is how to r
resent conformal symmetry with a finite number of mod
One idea which we have not explored yet is to use quan
groups, which may lead to a determination ofke and ko .
While our prescription is successful in providing a syste
atic regulator, it is clear that we need additional insights
complete our proposal.

After providing a regularization as in this paper, th
Moyal approach@4# gives a very simple framework to calcu
late various quantities in string field theory. In a forthcomi
paper, we will discuss explicit computations, including a d
1

h,

12600
a-

-
e
e

-
.
m

-
o

-

cussion of the Virasoro generators in terms of Moyal va
ables ~in the N→` limit !, and calculations of off-shel
n-point amplitudes.
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