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Itzhak Bar$
CIT-USC Center for Theoretical Physics and Department of Physics and Astronomy, University of Southern California,
Los Angeles, California 90089-2535

Yutaka Matsud
Department of Physics, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
(Received 12 February 2002; published 12 June 2002

We give a detailed study of the associativity anomaly in open string field theory from the viewpoint of the
split string and Moyal formalisms. The origin of the anomaly is reduced to the properties of the special infinite
size matrices which relate the conventional open string to the split string variables, and is intimately related to
midpoint issues. We discuss two steps to cope with the anomaly. We identify the field subspace that causes the
anomaly which is related to the existence of closed string configurations, and indicate a decomposition of open
or closed string sectors. We then propose a consistent cutoff method with a finite number of string modes that
guarantees associativity at every step of any computation.
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I. INTRODUCTION example, Witten’s action would not enjoy a gauge symmetry
in the presence of anomalies. It is therefore important to
Recent developments in vacuum string field theoryknow precisely when and how such an anomaly occurs and
[1-18 are promising for a description of D-branes andhow it can be treated.
closed strings from the viewpoint of open string field theory  The purpose of this paper is to present a systematic study
[19,20. In particular, a simple picture of the stringy solitons of such anomalies. We will show that the associativity
emerges as noncommutative solitons of open string fields. anomaly emerges from the very properties of the infinite di-
The algebraic structure of string field theory is greatlymensional matrice§,R that relate the open full string de-
simplified by describing the open string in terms of two grees of freedom to the split string degrees of freedom, thus
halves separated by a midpoint—the split string formalismclarifying the origin and the structure of the anomaly. Indeed,
[21,1-4. By doing so, the open string field is regarded as anwe will see that the Horowitz-Strominger anomaly is hidden
infinite dimensional matrix. Furthermore, by transforming toin the matricesT,R themselves.
a Fourier space of the odd full string modes and using some In order to tame such an anomaly, we will discuss two
special matrices that naturally emerged in the split stringsteps:(1) separation of the open or closed string sectors and
formalism (the T,R discussed beloyy Witten’s star product (2) a consistent cutoff method.
is translated into the standard Moyal product involving the In the first step, we study the structure of the Hilbert space
phase space of the even full string modé$ This estab-  for split strings more carefully. We find that the Hilbert space
lishes an explicit link between open string field theory andcan be decomposed into two sectors. The first sector is the
noncommutative geometry in a form which is familiar in old subspace in which associativity is maintained. We may
[22] and recent literatur¢23]. In this context, string field regard it as the Hilbert space of open string fields. In the
theory computations, including the construction of noncom-second sector associativity is explicitly broken. This sub-
mutative solitons, become greatly simplifigz#]. space is characterized by the fact that under star products
There are, however, some singularities in the split stringvith singular fields the location of the midpoint shifts
formalism that require deeper understanding. In particular, iricontrary to the definition of the original star producthus,
the description of D-branes some infinities and zeros are erwe show the simplified origin of the anomaly, with a direct
countered[11,14. So one must learn how to consistently relation to the Horowitz-Strominger anomaly, through its re-
extract finite quantities from infinite dimensional matrix cal- lation to the gauge variation of closed string degrees of free-
culations or Moyal-star computations that have singular bedom that are hidden in the open string formalism.
havior. Related phenomena were observed long 2§27, It is not clear how to precisely separate the open or closed
such as the breakdown of associativity of the star product fogectors while maintaining the infinite number of string
certain string field configurations. Such anomalies typicallymodes. Therefore, in the second step, we propose a consis-
appear for string fields that correspond to closed string excitent cutoff method using a finite number of string modes, and
tations, such as those that represent space-time diffeomasending the number of modes to infinity at the end of com-
phisms. putations. The essence of our cutoff method is to maintain all
The breakdown of associativity would have a huge influ-the crucial algebraic relations satisfied by the matritesd
ence on the very structure of open string field theory. FOR for any number of modes. This cutoff method is then valid
in both the split string and Moyal formalisms. With a finite
number of modes, associativity is maintained at all stages of
*Email address: bars@citusc.usc.edu any computation. When the number of modes is sent to in-
TEmail address: matsuo@phys.s.u-tokyo.ac.jp finity the origin of the anomaly emerges in the formoafe.
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The ambiguity in such quantities is seen to be the origin ofwhere d is the number of dimension&6 plus 1 for the

the anomaly. With the consistent cutoff method the ambigubosonized ghos}sé is a parameter that has units of area in

ity is resolved and a unique value is obtained in the limit.phase spacel,, o1 is @ special infinite matrix intimately

W|th the CUtOf‘f methOd a” quantities Of the Open Stl’ing f|e|d Connected to Sp“t String&ee be|ow and; is the String

theory (o_ff-shell vertex, _integration, etc.are readily ex- midpoint which may be rewritten in terms of, Xy, asx

pressed in terms of a finite number of modes, and computa- 237 “1)2 Then the Witten star product be-

tions are carried out in a straightforward way without wor- o n-1Xen(—1)™. The N en star product be

rying about the associativity anomaly. comes the Moyal star prpdu_ct .|n the phase space of each
We expect that our consistent cutoff theory would also beeVen mode except the midpoint:

quite useful in the numerical study of vacuum string field B

theory since it is a more reliable method as compared to thea B)(;,in ,p2n)=e(3i’Z)X27A(ZX2n ,Pan)

level truncation which has been used in the recent literature.

i0 g 9
Xexg 5 7. —
II. SPLIT STRING AND MOYAL FORMALISMS 2 n=1\ dxb, IPan
We first recall the basic definitions of the split string and g 5 .
Moyal formalisms in order to set up the notatidi+4]. For - B(X,Xon ,P2n) - (4)
ease of notation space-time indices and ghost degrees of P2, IXb,

freedom will be suppressed in most formulas.

In Witten’s open string field theory, the three string vertexngte that the product is local at the midpoint in all dimen-

operator is de_flned by an overlap of the nght half of the fIrStsions, and that there is a midpoint insert@d”2in the 27"
open string with the left half of the second:

dimension which is the bosonized ghost coordinate. It is un-
derstood that the midpoint ghost insertion is present in all
(W W) 2( U)]EJ VL [x() ¥ [y(a)] versions of the star prod_upt although_lt is not a_lways _expllc-
itly indicated. For simplicity of notation we will continue
this tradition of omitting the midpoint insertion in our for-
x I dx(e)—y(m—0a)] mulas below unless we need to do an explicit computation.
TS o<a This reformulation of the star product greatly simplifies com-
-~ putations of interacting string fields as shown with many
X
dx(e)dy(m=a), @ examples in24].
. . . _ The split string formalism defines split string modes
with the |d]?nt|f|caion<z(cr)—x(o) for O<o=m/2 and  \hich are also convenient to describe string interactions. In
Z(({I')h_y(o)d or m/2<o< 77]; h _ terms of the continuous parameter these are defined by
€ mode expansion of the open string, explicitly splitting the left and right variables of the open
string relative to a midpoint ad= 7/2:

X(0)=Xg+ \/Enz,l X,co0gNo), 2)

I(o)=x(o), r(o)=x(m—o) for O0<o=x/2.
)
is not the most convenient set of degrees of freedom to de-
scribe the star product since one cannot say whethé®e-  \yith these new variables, the star product can be written as
longs to the left or right side of the string. In the operator 4, infinite matrix multiplication:
formalism of the open string field theory, such description
causes the Neumann coefficients appearing in the three strin%’
vertex operator to become rather complicated matrices. This¥ 1*¥2)[I(o),r(o)]
obscures the understanding of the overall structure and leads
to rather complex computations. :f H dt(o)V4[l(0),t(a) ]V [t(o),r(o)]. (6)
The Moyal formulation is obtained by performing a Fou- O=o=<ml2
rier transform on the odd string modes. If the original string
field written in terms of modes i¢(Xo,X2n,X2n-1), its FOU-  Thijs expression may be rewritten in terms of the split string
rier image in the Moyal basis i&(x,X,,,P2n) given as fol-  modes discussed below. The open string variadfle) has
lows [4]: no a priori boundary condition at the midpoint. Therefore, a
subtlety in identifying the split string modes is the boundary

_ condition of the half-string variablego),r (o) at the mid-
A(nyzn,pzn):de(ZT)dlz( J dxgnl) point. Up to this point, two standard choices have been con-
sidered: the Dirichlet and Neumann boundary conditions
X e (210) 7,5 _1PhToka - 1% 1 [21,4]. While we do not exclude other possibilities, we will
concentrate on these two choices in the following. Either
X (X0, X2n X2n—1) (3 case is compatible with the Moyal basis given abp4e
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A. Dirichlet at the midpoint

We first examine the Dirichlet cas€=x(7-r/2)=l(w/2)

=r(7/2). Since we have Neumann boundary conditions at i
the other end of (o) orr (o), we arrive at the mode expan-

sion in terms of the odd cosines:

(o) =X+ ﬁZl l,,_,c082n—1)c,

r(o)=x+ \/521 ron_1C082n—1)0. 7)

The Fourier coefficients are related to each other as

|y 1= ¥f077/2da(|(a)—5cos(2n— 1o

22 f " o (x(0) —Xcog2n—1) o
m Jo

Mo 1= %EJOWdo(r(cr) —x)cog2n—1)o

_2\/§fwl2
7)o

do(x(m—0o)—x)cog2n—1)o

2 (m
Xn£0= %—JO do x(o)cogno)

- EF/Zda[l(a)ﬂ—1)“r(a)]cos(na).
T Jo

They imply
1
Xon—-1= §(|2n71_r2n71) 8
1 o0
Xon20= 5 m; Tonom-1(lom—1+T2m-1) 9
X+ ! § T (I + ) (10)
Xo=X+ ——= _ PR ST
0 2\/§m:1 0,2m—-1\12m—-1 2m—1
where

4 (w2
Tonom—1= ;fo do cog(2n)o)cog(2m—1)0)

_2(_1)m+n+1( 1

T 2m—1+2n

1
+2m—1—2n)' (D

This matrixT is directly related to the matriX in [20,2] as
follows:
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Xom-1,0= ~Xonam-1=1Tonom-1  (N>0), (12
Xoam-1= —=Toam_1- (13
0,2n—1 \/E 0,2m—1
The inverse relations of Eq&3)—(10) are
lom—1=Xom-1+ nzl Rom—1,20X2n (14
X=Xo+ V22, (—1)"an (15)
n=1
Mom-—1= _X2m71+n§=‘41 Rom—1,2%2n (16)
where
4 (w2
Rom—1.:m= = docog2m—1)o[cos ho—(—1)"]
0
(17)
_An(—1)nm 1 1
 m(2m—1) {2m-1+2n 2m-1-2n/’
(18)
Note that
R =T (2n)*
2m—1,27 2n,2m71(2m_1)2
=Tonom-1—(—1)"Toam-1- (19

It must be mentioned th&,,_; o is the inverse of 5 071
on both sides

(RT)om-1,2-1= Omk»

From Egs.(19) and(20) one obtains the relations

(TR)Zm,Zk: 5m,k- (20)

nzl Tonom—1(2N)%Top x1=(2m—1)%5,, (21

1 1
T B T a=—95 (22
nzl 2m,2n l(2n—1)2 2k,2n—1 (2m)2 m,k
nzl R2n71,2m(2n_:I-)2R2n*l,2k:(Zm)zémvk (23
ﬁ R D R et s (2a
P2 2m—1,2n(2n)z 2k—1.2n (2m—1)2 mk-

These equations reflect the fact that the matricesdR are
transformations between two bases of the form aas)2
cog(2n—1)0) which diagonalize the Laplacian 07,2, with
two different boundary conditions.

126006-3



ITZHAK BARS AND YUTAKA MATSUO

B. Neumann at the midpoint

First we note the following properties of trigonometric
functions when & o< = for integersm,n=1:

cod(2n—1)0)

_ -
=sgr(§—a 2, [cog2mo) (=)™ Tomzn1 (29
[cog2mo)—(—1)™]
—sgr(——a) 21 cod(2n—1)0)Ron—1.2m- (26)
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o

1
lo=Xo+ —= > Tom—1X2n—1,
2 n=1

0

1
ro=Xo— —= 2, Tom—1Xon—1- (31
2 n=1
The inverse relation is
lot+rg lom+Tom
=T Xenm—p
o - I2n_r2n
Xom-1= 2, Rom-1,m 5 - (32
n=1

Both sides of these equations satisfy Neumann boundaryote that the matching condition at the midpoirt/2)

conditions atc=0 and Dirichlet boundary conditions at

=r(mw/2)=x(m/2)=x is satisfied by the even modes. This is

=m/2, and both are equivalent complete sets of trigonometevident from the first expression in E7) and also by

ric functions for the range € o< /2. In the previous sec-
tion we made the choice of expandihgr),r (o) in terms of

the odd modes. Now we see that we could also expand ther‘q

in terms of the even modes as follows:
I(0)=x+12 2 Ipn[cog2mo)—(—1)"]
m=1

=g+ ﬁmzzl | ,mcog 2ma) (27)

and similarly forr (o). The even modek,,,, are now associ-
ated with cos(fho) which is a complete set that satisfies
Neumann boundary conditions at=0,7/2. Comparing to

the expressions in the previous subsection, and using EQs.
(25),(26) we can find the relation between the odd modes

(In-1,r2n—1) and the even modes ., ,r»,)

lom= nZl T2m,2nf 1lon-1
(28

o]
lon—1= 21 Rzn—1,2m| 2m>
m=

o

lon-1= 21 Ron—1,2mM 2m
m=

oo
lom= El Tomon—1r2n-1-
n=

(29

Furthermore, by using the relation between the odd string

modes (,,_1.X,l2n—1) and the full string modes
(Xg,X2n ,Xon—1) In EQs.(14)—(16) or by direct comparison to

x(o), we derive the relation between the even split string

modes and the full string modes:

)

| om=Xom+ 21 Toman—1X2n—1,
n=

©

r2m:X2m_n§1 T2m,2n—lx2n—li (30

noting thatl,—rq automatically obeys the relation

\/EHZ1 Toom-—1Xon-1=— \/Engl (Ign=ron)(=D)"

(33

as seen by using Eg$31),(32) and inserting the relation

vR=w given below in Eq(37). In working purely with even
split string modes, EqQ.(33) is a constraint on
(Io,,r0.12n,r2n) that must be imposed among those modes.
However, an alternative strategy is to use the unconstrained
modes &,l,,,r,,) as the independent modes instead of the
constrained moded {,rq,l2,,r2,). In this case, instead of
Eq. (32), the center of mass, is given in terms of the split
gtring modes X, |5, ,r o) by

Im
Xo=X— J'E A qyn, (34)

while the expression fdrp—ry never enters and can take its
allowed values in terms ofl§,—r,,,) as seen in Eq33).

C. Relations amongT, R, v, w

More relations among the special matricBRR can be
compactly written in matrix notation by defining the even
and odd vectorsv,v

Wom=12(— 1),
1 2\/5 (_1)n+1
U2n—1:ETO,2n—1:T TS (35

and then noting the following identities among these matri-
ces,

TR=1, RT=1, R=T+uw, R=«, T2, (36)

v=Tw, w=Rv, RR=1+ww, TT=1-vv

(37
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TT=1, Tv=0, wvv=1, (39) Going back to the original definition in terms of the integrals
of cosines as in Eq11), this equation is satisfied as follows:

where the bar on a symbol means transpose of the matrix. In -

Eq. (36) we have defined the odd and even diagonal matrices f cog(2n—1)o)do
0

k,=diag2n—1), «k.=diag2n), (39

o

/2
= — —_ k -
to reproduce EQq(19). We recall that the meaning of the zk;( Y fo cog(2n—1)o)cos2ka)do.

eigenvalues of, , x are the frequencies of oscillation of the
string modes.

As we see in the next section, these identities, while the)é - :

But this is rewritten as

come from the absolutely convergent sums, are not consis-
tent with each other in the sense that they break associativity 2
when some of these matrices occur in double sums. The f cog(2n—1)0)é(o— m/2)do=0, (44)
culprits are the relations in E438) and the underlying rea- 0

son is the infinite normww=c. In the final section, we
propose a finite size version of the matrides}, w andv to
make all matrix relations consistent with associativity. Here 1 2

we give a simple sketch of our idea. We suppose that we Slo—ml2)= —— = — 1)%cog 2k
have a regularization scheme where a suitably redefimed (o= ml2) T kz (= 1) cos2ka)
has a finite normyyw=finite). Then there is a unique way to
impose associativity consistent with the definitions of

(43

where the periodic delta function is given by

l - _W2n
T,R,v,w as expressed in Eq&36),(37). Associativity forces =—* \/52 ——cog2no).
us to modify the formulas in Eq38) to the unique form n=t (45)
TT=1— YW = = Thus, through the delta function we see that Tw is a
1+ww’ 1+ww 1+ww' relation involving the midpoint. Together with the identities
(40 TT=1, Tv=0, vv=1 given in Eq.(38), these matrices dis-
o o L play an associativity anomaly as follows:
Rw=v(1+ww), RR=1-vv(l+ww). (47

(TT)w=1-w=w versus T(Tw)=Tv=0, (46)
One derives them as, for exampl@,v=T(?w)=T(R
—vW)WzTRW—TvWWzW—(Tv)(v_vw), which implies (U_T)W=0-W=O versus v(Tw)=vv=1.
TU=W/(1+V_VW). Of course, in the infinite norm limit ofv, (47)
one reproduces Ed38). We will often come back to this

issue in the text. The details of the cutoff procedure withNamely (TT)w#T(Tw) and @T)w#v(Tw). These ex-
finite rank matrices that preserve all the relations above ar@mples clearly show the anomaly is intimately related to the

presented in Sec. V. midpoint. .
Before we move on, let us point out what would happen
l1l. ASSOCIATIVITY ANOMALY to the double infinite sums if the infinite norwww=c is not

imposed in the single sums, as would be the case in any
In this section, we explain the appearance of the associautoff procedure. Then, instead of E8) we use Eq(40).
tivity anomaly hidden in the split string formalism. The ma- This gives
trix algebras between, R, w, v are defined by the absolutely
convergent infinite sums as emphasized above. However the _ WW WW
doublesum appearing in the product of three elements can TTw=wW———, vTw= —= (48)
be only conditionally convergent and the two infinite sums in 1+ww 1+ww
different order do not in general give the same answer, thus o
producing an anomaly. We will see that physically themdependentgf the order of the sums. The anomaly is cir-
anomaly appears as the subtleties at the midpoint. cumvented ifww=o is imposed at the end of the computa-
We first show the most typical example. The matricestion since then there is a unique answer. After emphasizing
Tonam_1 and Umel:(1/\/5)1-0’2”]7l defined by Eq.(11) the significance of the anomaly in terms of midpoint issues,

satisfy v —Tw, or we W_iII propose a consistent cutoff procedure that will rely
on this observation.
o In the following, we show more specifically how the
Tom_1=— 22 (— 1)k-|-2k2n71_ (42) anomgly arises _for the _two ch0|ce_s of the m|dp0|nt boundary
k=1 conditions considered in the previous section.
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A. Dirichlet at the midpoint (odd mode9

PHYSICAL REVIEW D 65 126006

So, there is an extra zero mode in the split string formalism

We write the relation between the full string modes and®S compared to the full string formalism. In this sense, the

the split string mode$8)—(10),(14)—(16) in matrix notation

correspondence between the split string modes and the full
string modes does not seem to be one-to-one and eitber

1 1— 1 the variation ofl ,r(®) alongv appear to contain an extra
v v _ _ zero mode. This redundancy gives the origin of the anomaly
Xo 1 1 X X in this case. We will further clarify below the relation of this
x® =10 2T =T [ | =7 | anomaly to the Horowitz-Strominger anomaB5-27], and
©) 2 2 © © to the pure midpoint-ghost BRST operator recently sug-
X 1 1 r r gested in the vacuum string field theory formalifi].
0 5 9 As above, in a cutoff scheme, if the infinite nonvw
(49) = is not imposed temporarily in the single sums, and we
use Eq.(40) instead of Eq(38), we get the temporarily non-
X 1 -w O Xo Xo zero result
|(0) =10 R X(e) ER(O) X(e) 1
e R -1/ Ax® X Tove-| w | (55)
(50 o | L1Tww

where we use the notatiog= even,o=o0dd and the right-

hand sides define the matric8®) andR (°). One may check Then R©7p©E=© follows without associativity
TORE=R©TO)=1 py using the formulasTR=RT  anomalies in the double sums, provided the infinite norm
=1, vR=w andv=wT. A subtle point in this correspon- ww=0c is not imposed until the end of the computation.
dence is tha7{® has a state with zero eigenvalue given by

(19 1Oy~ (—1p,0)=1© B. Neumann at the midpoint (even mode$

The relations similar to Eq$49),(50) are

1 - 1
v 2 11— 1
11 -t Lagw v
7—(0)]/(0)5 0 ET ET v Xo 1 1 X
v x® =] 0 5 > (e
0 E — E x(0) r(®
2 2 0 1 R 1 R
—14vv 2 2
= To =0, (51 X
0 =R @ | (56)
_ r(®
which follows fromTv =0, vv=1. Note that the eigenstate
V() has finite norm. These facts imply that associativity is — 1 7 o «
broken explicitly as follows: X -w 0
©@=lo 1 T |[x®
(RO 7)) =10 yersus RO (70p©))=0. © B «(©)
(52) r T
X
The interpretation of the eigenvectd¥® is that the in- o (2)
finitesimal translation of the split string modes given by two =7 x (57
translation parameteis*,b* x(©

oX,=a,, Ol5_1=b vyn_q, 5 _1=b*vyn_1, There is an eigenvector with zero eigenvalue when

(53 (X0,x® x()~(0,0p)=V®
does not generate any translation of the full string modes w0 0 0
(X2n,X2n—1) While X is translated only by the sum@*+ b*
but not the difference*”— b* 7@Y©={0 1 T 0|= Tv |=0

0 1 -T v

Sxt=al+bH., (54)

126006-6



ASSOCIATIVITY ANOMALY IN STRING FIELD THEORY PHYSICAL REVIEW D 65 126006

which follows from the single sum iTv=0. Again, we (;1_;3”\/123»:0 (64)
meet the associativity anomaly in the double sums
(REOTEO VO =1 versus RE(TOVE)=0. [P1rt PaL X1 —X3]=—i/2. (65
(59

The first equation represents the conservation of the momen-

In this case, we have to be more careful since the zero eigefdm for the four string interaction. The second represents that

state occurs on the full string side. That is, the translation ofn€ midpoint is fixed for the interaction. The third equation,

the full string modex(®* by v does not seem to induce however, says tha® and x does not commute. Obviously,

any translation in the split string variables, ((®),r(®) these equations are not consistent with each other if associa-
tivity is assumed

X 1 -w O 0 _ _ _ _

s@l=lo 1 T 0 X1(P1r|V1239) = P1r(X1|V1239) # (X1P1r = P1rX1) V1239
a (66)

or® 0O 1 -T/\v — . . .

In the split string formalism, the product is defined by the
0 path integral over the half strind). The momentum conser-
vation (63) is represented as the invariance of the constant

=e*| Tv | =0. (60)

shift of the integration variablg o) on the right-hand side of
—Tv Eq. (1). In this senseP_r operator should induce the infini-

tesimal translation of(o),r(o) by a constant. In the odd

In this case, the split string modes we have chosen do nghoqding split string formalism, it is generated by the opera-
seem to be enough to describe the open string degrees Rfr,

freedom. However, let us analyze the zero mode-f,) as
given in Eq.(33). From the expressiohy—ro=2vx(® we
see that it certainly translates when the full string me@&* Pf:nzl U2n*1‘"7l;;n_1’ Pé:zl UanlﬁﬁLz,,_l' (67)
is translated by*v, that isé(1§—r§)=2€e* after usinguv o

=1. This shows that the infinite sum(I®—r®) also must The sum generates exactly the type of the translaiprn

translate by the same amount even though the individudrd- (53) which caused the associativity anomaly in our case
I° re did not seem to translate (31P=b,v=0r"). The associativity anomaly appears

there because there is a redundancy in the split string de-
S(1E—r)=20 X =w( 51— 5r®) = 2¢~. (1)  sScription. We also noted in Eq54) that this translation
causes a shift in the center of mass coordinate, as claimed by
Thus, we see again that double infinite suwiEs must be Horowitz and Strominger. We have therefore identified the

evaluated carefully as they are afflicted with the associativity10roWitz and Strominger anomaly with the anomaly in the
anomaly. Once more, in a regularized theory, if we Tise ~VerY matricesR, T,v,w that occur naturally in the split string

— . ) . formulation.
— 1
=w(l+ww) " as in Eq.(40) Estead of the zerp value in In the Moyal formulation—id{* « corresponds to left
Eq. (38), then the correct reswt(51€— r€) =2¢€* is recov- 2n-1

= , multiplication  under the  Moyal star  product
ered by settingvw= at the end of the calculation. = " - .
ZnTon—12am(P5xA) and |(9r2n_1¢ corresponds to right

C. Relation to the Horowitz-Strominger anomaly multiplication® Ty, 1 am(A%p5,). In particular the sum

Actually the associativity anomaly which we encountered(PL T PRIA(XXzn,P2n) IS given by the commutator
in this section is the split string version of the Horowitz- i Zn mv2n-1T2n-1,2m(P5m*A—Axp5,). Taking into account
Strominger's anomaly ifi25]. In that paper, the space-time Ty=0, we see that the translatio®{f + P&) A(X,Xzn , P2n)
translation generator is represented as the inner derivative @anishes unless the string fietds such that the commutator
the open string fields. The generator is represented by thgy% «A—Axpk ) behaves likew,, (since the double sum
string field wTuv is ambiguous by the anomalySuch a string field con-
PD) 62) figuration must involveX(—1)"x,, which is precisely re-
L lated to the difference between the center of mass and mid-

whereP, is the momentum density integrated over the leftpoint (Xo—Xx) as in Eq.(15). Hence Strominger’s anomaly is

half of the open string. The string configuration described byclosely connected to the associativity anomaly among the

P, shifts the center of mass of the full string under commu-matricesk,T,v,w.

tation using the star product. This singular behavior gives If we follow the discussion in this section, the anomaly

rise to the Horowitz-Strominger anomaly. would not exist if we exclude string fields that are nontrivial
More explicitly, in terms of the vertex operator, they ob- under the variation induced i3 + P. If one takes such an

served that

oo [

(P1r+P2)|[ V1230 =0 (63 These will be discussed in detail in a future paff.
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approach the excluded string field configurations would livey ysing the identityR=T+vw in Eg. (36), one may easily
outside of the open string Hilbert space, and would belong t¢pserve

the closed string sector that are nontrivial under space-time

diffeomorphisms generated bR{‘+ Pg as advocated by _
Strominger. R'T'=P, T'R'=1, and R'=T'. (71

IV. CONTROLLING THE ANOMALY In a sense;T’ and R’ define the partial isometry between
) HeyenandH 44 and they become the transpose of each other
There are basically two natural ways to control the assoj, the restricted space.

ciativity anomaly. One method is to use projectors that sepa- ope subtlety is that there is naively a vectein M

. . even
rate the anomalous sector in theT Hilbert space,'th_ereby SePAtich causes a problem sin@w=PTw=Pv=0 which
rating the open or closed string field sectors. This is along the . . . ,
. . . Seems to imply the existence of a problematic zero eigen-
lines of an old proposal by Strominger as described below\'/alue However we note that we restridt to be square
The other method is to consider a regularization which is by ' ! d

definition free from anomaly. In this section we consider thenormahzable, and therefore the vecterdoes not belong to

. . o Hepen in this sense.
first strategy in the presence of an infinite number of modes. A cost for using this prescription is that we lose some

We first discuss a projection and its relation to old works. W_ asic properties of andR, Egs.(21)—(24), after we project

then point out the relevance to midpoint issues that arise i t the Hilbert In particul hould be replaced
recent proposals in the context of vacuum string field theoryOu N ert spaces. In particuat, should be replace

In Sec. V we propose another way of controlling the anomaI)Py4a I”IOI’]dI%gOI’:Iaj ”I]at”?"opthln fact,l trt]ﬁ r;e(;:_:xftfloni%l)—t ¢
through a new consistent regularization using a finite numbe@ ) arelqu| € smgula: sgnge e¥ lmpty ? : (i_ren S%S 0
of modesN, with the cutoffN to be sent to infinity at the end eigenvalues are related by unitary transformatias ob-

of the calculation. The essence of our regularization metho&erved |r[14_]). In this Sense, losing these |_dent|t|es after_ we
is to maintain all the crucial relations satisfied by properly define the space is natural. The failure of these iden-

R Tk DU D T o for @ e a 1% 15Ot SeSrable snce i would create some prtles
long asN is finite. The regularized theory automatically re- . pe ' . .
Lo one must also face the issue of anomalies that are in conflict
solves the associativity anomaly. : . . .
with the basic gauge symmetry of the action. We will come
o back to this problem in our future work.
A. Projecting out the anomalous sector We can interpret our constrairit ;44 in terms of open

We start from the example which we first explained in thestrings. When we take the Dirichlet boundary condition at
last section. We denote the mode space spanned by the batli¢ midpoint(odd split string modes we encountered a re-
cosfio) for n=odd (respectivelyn=even) asH,qq (respec- dundancy in the split string degree of freedom involving
tively Heyer). The matricesT andR act on the mode spaces (1(?+r(®)«y andx. We note thatx is physically essential
as to describe the vertex operator of the free boson which is the

exponential ofx*(g). While it may be possible to remove

the x variable, this reasoning suggests that it may not be a
good idea to proceed in this direction. So we take the other
and they are the inverse of each other. We have discuss%tion, namely projecting away the component of°)
that the existence of an eigenvectowith zero eigenvalue 1 (9))ey, by applying the projectoP. This prescription is
implies the associativity anomaly as=(RT)v #R(Tv)=0.  obviously consistent with our analysis.
From the mathematical viewpoint, such an anomaly should \when we use the Neumann boundary condition at the
disappear in a sector with some restriction on the spacegidpoint, the split string variable is described b, e, and
Hevenodd- Such a sector of string fields would presumablywe do not need to consider the projector for this case.
be identified with the open string sector. Some years ago, Stromindé&7] classified the inner deri-
One natural restriction is the limitation of the elements ofyation of the open string Hilbert space into three subclasses
‘H to square normalizable states. This restriction, hOWEVEr, |@,C,_’Z' The first one©, is the inner derivative with respect
not enough to guarantee associativity as seen in the case @fthe open string field in a narrow sense and the star product
Eq. (51) that has a finite nory(?). Obviously the normal- in this category is always associative. The second category,
izable vectow e H,qq breaks associativity. We therefore pro- ¢, describes the variation of the closed string background

T Hoda—Hevens R Hepen— Hodd: (68)

ceed to project it out front,4q by using the projector, written in terms of the open string variable. He showed that
the element belonging to this subspace breaks associativity.
P=1—po=TT. (69) The associator for the closed string field then belongs to the

third classZ which is described by the midpoint insertion of

We limit Hoqq by using this projectorH | 4q=PHoqq and

redefine the operators in the surviving subspace 2We emphasize however that these are not really unitary transfor-

mations when the subtleties of the double sums are taken into ac-
T'=TP, R'=PR (70 count. Therefore, there really is no contradiction.
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the primary field. The elements i commute with all the If we represent the ghost field in terms of the free boson field

elements of the inner derivative. &(2) [identified as a 2% dimension¢(o)=xX,A0o)], then
This scenario can be applied to our simple situation. Théhe c(7/2) insertion is again written in the form of a vertex

inner product of the open string is now represented by th@perator exfi ¢(7/2)).

commutators of the big matrices described by the split string In the following, we show that the midpoint insertion of

variables or by commutators involving the Moyal star prod-the vertex operator discussed here can be precisely written in

uct. We have seen that associativity can be broken by thterms of the allowed kink configuration which we have just

string field degree of freedom that generaté®‘¢ P%)  mentioned, and that a deviation from the midpoint kink is

that is related to the uniform translation of the openlikely to create problems with associativity.

string (in the Moyal basis this is the string field\ _ We _take the ferm_ionic ghc_Jst as the exampl_e. W+e consider

=30 mP4mToman_102n- 1 Under commutation, as seen its action at an arpnrgry poinro. Thg ghost flelc_jr(ao_)

above. In Strominger’s classification, this represents a singleCts on the string field in the Z7direction by creating a kink

element inC. We have seen only one element since we con&t oo (see Eq(3.41 of [2])

sidered only the algebra of string fields linear in the modes + v aie(o0)(718) ni (o

x*,p*. For the nonlinear string configurations, the projection ¢ (00) U [p(o)]=Ke 07Dl

of the Hilbert space becomes more complicated and we get XW[p(o)=m0(oo—0)], (75

more and more elements which belongtdt is not easy to

find a projection prescription to separate these configurationghere the dependence on the other 26 dimensions is sup-

into open or closed sectors. Therefore, we will resort to thedressed.

regularized theory given below which treats the issue of For generico# /2, the Fourier coefficients of the peri-

anomalies in a different manner. odic shift §(oy— o) are given by
o \/5 sinno
B. Subtlety of the vertex operators 0(og—0)= ?O + \/EE Tocos( no). (76
n=1

As we have seen, following Strominger’s interpretation,
the open string sector can be identified by imposing certaimrhe midpoint coordinat®(oo— 7T/z)zgis
constraints. The constraints can be described in terms of the
continuous variable o) andr (o) for which constant shifts — |0, Osoe<m/2,
are allowed only in the opposite directiohéo)+e and o= 1, wl2<o,<m. 77
r(o)—e. More precisely the allowed constant shifts are de-
scribed by a kink at the midpoint and a translation of theAn expansion ob(oy— o) in terms of split string modes can

midpoint as discussed in Eq&3),(54) be developed as in Secs. I A and ll(Bdd modes For odd
split string modegDirichlet at midpoinj the corresponding
SxH(a)och 1+Sgl'(g—0')) (72) coefficients are given as follows:
o - 242 sin((2n—1) o) 0 o
: o . . n-1m 4 2n—1 1o Y2n-17
with a periodic sign function. This mode should be treated
rather carefully. for O<oo<ml/2 (79)
This fact is relevant in recent developments in vacuum
string field theory in two contexts name(iy the open string 242 sin((2n—1) o)
coupling to the closed string vertex operaf®2,11] and (ii) 0({“)_1: - =1 , 6(2',1_1=0,
the ghost kinetic term as proposed [iyl] namely fermionic 7
ghost insertion at the midpoint. for w2<oy=l2. (79
In the first context, we recall that the proposed coupling
of the open string to the closed string background is An expansion in terms of even split string modes can also be

easily obtainedNeumann at midpoint We note that these
odd split string mode expansion coefficients have nonvanish-

@V:f V(m/2)W. (73)  inginner product withv. For example the coefficients in Eq.
(78) satisfy

Here V(=r/2) is the midpoint insertion of the closed string v-00=20¢/. (80)
vertex operatoV acting on the open string field. The
simplest choice for such a vertex operator is the closed strin
tachyon vertex exfpk ,x*(w/2)). In the second context, the
kinetic term of the VSFT was proposed as

This implies that the translation created by the kifito
glo-) has a mode along the vectdX® of Eq. (51). As we
have already discussed, this is an extra mode which is at the
very origin of the associativity anomaly.
Let us now consider the ghost very special poiry
= 7/2. The kink now creates a translation proportional to the
SNJ W (C(m/2)W). (74) periodic functioné(/2— o) which is given in terms of the
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periodic sign function by This is an allowed translation as in E@2). Indeed the mode
11 expansion for this function is given in terms of the full string
0( T U) = +_Sg,(2 - U) . (81)  modes, odd split string modes, and even split string modes as
2 2 2712 follows:
an 1 ” Uon-1
Ol =—a|==+2> coq(2n—1)o) (82)
2 2 o1 2
left/right odd split modes even split modes
midpoint 1 1
- left modes ! !
SUon— — W
2V2n-1 2(1+V_VW) 2m
. 1
right modes  —1p,, , (83

-—w
2(1+ww) "

In particular, the odd split string modes are given by the firstdependence, for which there is a certain amount of flexibility.
column in Eq.(83) In any case, the finite matrices become the infinite matrices
we discussed before whe— oo.

To have a consistent theory, the finite rank matrices must
obey the same relations among themselves that were obeyed
by the infinite rank matrices. The list of all the relations that
which shows again in detail that it is of the allowed type, asmust be satisfied for arbitrary finité¢ are given in Eqs(36)—
in Egs. (53),(54). Thus, we see that except for the casg, (41) excluding the hasty infinite limit in Eq.38). These re-
=1/2, the kink created by the vertex is anomalous. In this'&tions are satisfied by the infinite matrices. Here we will
respect, the construction of the vertex operators is a verpresent the general solution f&T,v,w, x, , . that satisfies
subtle problem. hese relations at any.

A lesson that we can draw here may be the following. The WhenN—« the sumww diverges even though all com-
guiding principle to determine the closed string couplingponents of the vector are finite. The associativity anomaly
(73) or the kinetic term(74) was that they enjoyed an en- arises from this infinite norm. Associativity is restored by
hanced symmetry if inserted at the midpoint. From our poinkeeping track of this divergence when multiple sums are in-
of view, the midpoint is the safest choice because associati0!ved, and sendingl— o only at the end of a calculation.
ity is preserved. However, the regularization offered to defind t@king the limit any explicitN dependence in the matrix
them does not seem to enjoy the same properties. elements of the matrice8,R, ke «o, v,w should be taken

into account. However, the important infinity usually occurs
V. CONSISTENT REGULARIZATION in the formww, therefore keeping track of this expression is
mainly what is needed in most cases to extract the unique

The anomaly occurred because of the infinite norm of thevalues consistent with associativity.
vectorw. To analyze the anomaly more carefully it is neces-  First we give the general solution f&;T that satisfies all
sary to introduce a consistent regulator. This can be done bye relations except foR= K 2Tw2. This is given in terms
formulating a cutoff version of the theory using finite rank of 4 general orthogonal matrig as follows:
matrices which truncate the theory to a finite number of os-

1
9251 05 1=—05) 1= 5Uan-1, (84)

cillator modes o5 ,Pon) With n=1,2, ... N. Such a cutoff T=(1+ww) 25, R=S(1+ww)¥2 (85)
is desirable more generally to regulate string field theory. It ) ) ) )

*12in the form

In this section we will denote the finite matrices with the the matrices (#ww)
same symbols as the infinite matrices. Thus, we have square
NXN matricesT, R, k¢ k, andN dimensional column ma-
tricesv,w. These finite matrices may depend on the cuitbff
not only through their rank but also explicitly in the matrix . o
elements. We will see that except for the general structur&@hus, for any orthogonal matri® that satisfiesSS=1=SS,

that we will explain, we seldom need the details of the and any vectow, one constructs

_ 1 _ _
(1+ww) " 2=1+ —((1+ww) “ Y2~ 1)ww. (86)
ww
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Sw cillations of the string modes, whiles,,, is related to the
v=Tw= —— (87 modes that determine the difference between the center of
V1+ww mass point and the midpoing—X. TheseN equations de-

termine uniquely thew3, for arbitrar ,Kon_1. The
and then easily verifies that all the relations hold. Other than quely 2n ¥ fan Kan-1

leaving S unspecified, this form of the solution fdr,R,v is tnique solution is
unique for a giverw.

Next we turn to the conditiolR= «, *T«2. By inserting
the R, T given above, this relation takes the form ) N _1 1
o o - o W5n(N)= 2 (M Danom-1—5— (96)
K2=Tr2T=S(1+ww) Y2%2(1+ww) ¥?s. (89 m Kom-1

By a linear transformation dd andw, one may always go to

a basis in which both spectrum matrices, x. are diagonal. Where M%), 1 is the inverse of th&dx N matrix de-
Thus, without losing generality we assume diagong)x,.  termined by the frequencies

In such a basis we see that the meaningsan the above

equation is that it is the orthogonal matrix that diagonalizes

the symmetric matrix (& ww) ~Y22(1+ww) Y2 1

Let us now determine the spectrury by solving the Mom-1n=—5—5 -
eigenvalue condition for the matrix (Aww) Y2«3(1 Kom-1" K2n
+ww) Y2 We wish to solve the secular equation

We expect that in the larghl limit w,,=\2(—1)""* when

B 2 N — —
def(1+ww) "2g(1+ww) " 2=N)=0. (89 ., —2n andx,y, ;=2m— 1. Indeed itis easily verified that

The determinant can be computed as follows:
de((1+ww) 4 k2= N (1+ww)](L+ww) ¥ (90) 1S 2 o
(2m—1)2 =1 (2m—1)2—(2n)?

(97
=det(1+ww) Y)2det(x2— N (1+ww))  (91)

is satisfied for every integam, showing that we have the

de‘(xg—)\) N — expected solution in the larde limit.
T ltww det 1- 2 ww (92) At finite N, we have the freedom to choose freelil 2
© numbersx,,(N),x2,_1(N) and determine théN numbers
, wgn(N) f_rom Eqg.(96). Symmetry considerations may dictate
detkg—N\) — A a particular pattern for the N dependence of
- - l=w——wl. (93 (N) (N) at some stage of our investigation. For
1+ww K2—\ Kon(N), Kkon_1 ge of ou estigation. Fo

now, as an example, suppose we make the chejze-2n
The only way to have a vanishing determinant is by theand x,,=2n—1 just like at infiniteN, and then determine
vanishing of the last factor, therefore the secular equatioms (N) as a function ofN. The solutions can be obtained

becomes numerically and their dependence Nrcan be studied. Also,
the unique diagonalizing matri® can be obtained numeri-
1 N Wg cally and its dependence dd can be studied. Some ex-
_—— n2 =0. (94  amples forN=2,3,10 are given below; as follows from Eq.
ARSIk, (96), they show consistency witkv,,=+2(—1)"*! as N
This equation can be rewritten as WH' order polynomial in gets larger
\, and therefore it hall roots for\. TheN roots correspond
to the diagonal matrix,. Therefore we have the following
N relations among the 8 numberswo,, , ko, Kon—1 1 1\ 1! 1 20
5 3 15 9
1S W, Wanln=z=1 g g = s
5 + 2 S 3 = 0 (95 5 7 9 9
Kom-1 "=1 Kom_17 K2
for m=1,2, ... N. Recall that the meaning of the eigenval- _ ( 2'22;) (98)
ues ko, ,kKon—1 IS that they represent the frequencies of os- 3.88
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1 1 1, 1 1 and thekth power in\ yields
3 1535 1 N 1+ws +ws +---+ws,
1 2 k
W2 N=3~— —} 1 i 5 i1 Fio - FiL=1 KZ, K2- ~-~K2-
2nIN= 5 7 27 ) 1772 k 2i,%2i, 2iy
1 1 e N 1
21 11 = 2 5 —. (103
i FREL Ko 1K, 17 Ko, 1
21
10 In particular, the ratio det/x2)=1+ww which was
63 2.1 computed from the zeroth power inhas a universal form in
= — | =| 252]. (99) terms of w independent of the specific choice &f,«,.
25 4.62 Note that in the infiniteN limit 1 +ww is the periodic delta
231 function 6(o— 7/2) with vanishing argument, as seen from
50 Eqg. (45
For N=10, we get the 10 numbers 1+ww=75(0). (104

) This relation also implies that the determinanffofl can be
w5,=(2.009,2.039,2.091,2.171,2.290,2.465,2.734, computed from Eqs(40),(89):

3190,4.141,8.076 detTT)=del( x5/ x3)=(1+ww) . (105
which approactw%n=2 except for the last few components.
For faster convergence one may take advantage of the fre
dom in the choices we can make freely in thelependence
of x5n(N),x2,-1(N). However, we will not exercise this (detR)‘1=detT=de<
choice until we determine whether some symmetry consid-

erations dictate a speufl‘d_dependence. If we use the choicev,,=y2(—1)"** at largeN, the right-
There are some relations among thg,(N), xzn(N), hand side vanishes &(1/\/N) in the largeN limit.

x2n-1(N) which can be read off directly from E94) with- Having satisfied the crucial relations f&;T,v,W, x,, ke

out knowing explicitly th‘_aKZn_(N)z"anlgN)' We ;irst e at finite N, we may next easily represent some cutoff ver-

write Eq. (94) by multiplying it with MIn_;(A—«3,) and  sjons of distributions such as the theta or delta functions

expressing the secular determinant in terms of its eigenvabiven in Egs.(45),(82),(83) in which v,w appear as funda-

ues as in the right-hand side below: mental entities.

N N The above are examples of expressions and relations that

2 — 2 could not be uniquely determined without a consistent cutoff.

nﬂl (A= KZ“HnZl WZnWZn)\i(l;[n) (A=) These results are useful in explicit computations that will be

presented if24].

eB_y replacing this in Eqs(36),(85) we learn

%) —(1+ww) Y2 (106

e

N

_ n _ 2
_(1+Ww)nﬂl (A= #5n-1)- (100 VI. CONCLUSION AND OUTLOOK

The overall coefficient on the right-hand side is determinedas:;gctigltisvi?agizmvv; pi:]e\s/\?iEfnqsfggsqaﬂﬁa?;aihaezﬁec;dOfint_he
by comparing the highest power af on both sides. The y y 9 Y:

same relation follows from Eq88) after subtracting. from dicated that it arises from the matrices that map the open

) . . : string variable to the split string variable. We argued that this
both .S'.des and computing the determinant. BY comparing thsnomaly does not come from the peculiarity of using the
ggﬁg:'ﬁgﬁ o:e;;ircl)%is Izowai;iscﬁfarort]) bgg:nsgr?: V‘tlﬁecggef_split string variables but can be related to the midpoint issues
e y -Inp llar, by parng noticed in the literature in other contexts. We proposed some
ficient of the zeroth power one finds

prescriptions to deal with the anomaly. One was based on an

2 N 2 attempt to separate open or closed string modes in the pres-
dew< _z =11 ’;Zn —1tww. (101  ence of an infinite number of modes, the other was based on
k2] n=1K5 g a systematic cutoff version of the theory.
We have to emphasize that our arguments are not yet
The first power in\ gives complete. For example, in the first prescription, although we
may identify some anomaly causing singular string fields
N 1+w2 N that are linear, the vertex operatdfg [20] and other string
D=2 (102 field configurations are expected to contain nonlinear singu-
=1 Ky =1 K3i—1 lar fields associated with closed strings. In this sense, it is not
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completely clear how to generalize the open or closed sepaussion of the Virasoro generators in terms of Moyal vari-

ration systematically to all string fields. ables (in the N—o limit), and calculations of off-shell
On the other hand, in the regularization with a finite num-n-point amplitudes.

ber of modes, we do not have such a difficulty. However, we

pointed out that there remains some arbitrariness in fixing the

spectrum(matricesk, and «,) where we have not yet found ACKNOWLEDGMENTS
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