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Gauge-gravity duals with a holomorphic dilaton
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We consider configurations of D7-branes and whole and fractional D3-branesd/withsupersymmetry. On
the supergravity side these have a warp factor, three-form flux and a nonconstant dilaton. We discuss general
type 1IB solutions of this type and then obtain the specific solutions for the D7-D3 system. On the gauge side
the D7-branes add matter in the fundamental representation of the D3-brane gauge theory. We find that the
gauge and supergravity metrics on moduli space agree. However, in many cases the supergravity curvature is
large even when the gauge theory is strongly coupled. In these cases we argue that the useful supergravity dual
must be a type IIA configuration.
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[. INTRODUCTION moduli space and show that it agrees with the action of a
probe in the corresponding dual geometry.
The extension of Maldacena’s gauge-gravity dudlifjto In Sec. V we analyze the range of validity of the super-

systems with less supersymmetry and richer matter content gravity duals and find an unpleasant surprise: even when the
an interesting one, both for understanding more generajauge theory is strongly coupled, in many cases the super-
gauge theories and for application to the local geometries ofravity curvature is large. This occurs, for example, in the
warped compactificationg2]. A natural extension is to add simple and interesting case of the conformal theory of
D7-branes, as these contribute matter fields in the fundameisU(N) with 2N hypermultiplets. We argue that the correct

tal representation. Thus in this paper we consitler2 sys-  supergravity dual is instead a type IIA configuration, whose
tems of D7-branes with whole and fractional D3-branes.  study we leave for future work.

Gauge-gravity duality with many D7-branes has received
little consideration. As far as we are aware, only Hé&f

directly overlaps our work, with a discussion of D?_—pranes Il. SOLUTIONS: GENERALITIES
and whole D3-branes. Referenpg allows for a position- . .
dependent dilaton but requires that it be constant on any AdS A. Special type IIB solutions

factor. There has also been substantial discussion of configu- Supersymmetric warped solutions of type 1B supergrav-
rations of D7-branes and Q?Tplane_s such that the dilaton i,’:}y have recently played an extensive role in gauge-gravity
everywhere constant, beginning with RefS,3]. The non-  gyajity and string compactification. The general solution of
trivial dilaton in the present case brings in new features anghis type is not known. Early papei§] obtained very restric-
puzzles. . ) tive results by use of the integrated Bianchi identity for the
In Sec. Il we review some of the special classes of typ&jye-form flux. These restrictions need not hold when the
IIB supergravity solution that have played a role in gauge-ransverse dimensions are noncompact, or when appropriate
gravity duality and string compactification, and develop theprane sources are includéd.
detailed form of the type IIB solutions with holomorphic Much recent work has involved two special cases, which

In Sec. Ill we find solutions with D7-branes and whole can e characterized by the form of the ten-dimensional su-
and fractional D3-branes. The solutions are singular at longyersymmetry spinoe. This can be decomposed

distance, but we conjecture that this can be thought of as a

UV effect that decouples from the gauge dual. In the frac- e={@x1+{*®x5. (2.1
tional D3 case the D7-branes are wrapped on the asymptoti-

cally locally euclidean ALE spacR?*/Z,. To fix the param-

eters in the solution we analyze the induced charges on thgere is a four-dimensional chiral spinof,*¢=¢, andy; »
D7 world volume. are six-dimensional chiral spinorE®y;=— x;. Each inde-

In Sec. IV we first d_ete_rmine the spectru.m of the dU&'pendent pairi/l,xz) gives rise to on® =4 supersymmetry.
gauge theory and obtain its one-loop effective action. Forrhe two special cases are then

D7-branes orR*/Z, there are two choices of Chan-Paton
action, just as for D3-branes on this space; we relate this to———
the induced D5 charge. We then find the one-loop metric on 1gyen without supersymmetry, the integrated Einstein equation
implies that in a compact space without branes, warping is impos-
sible in a Minkowski solutiori7,8]. With appropriate brane sources,
*Email address: mariana@physics.ucsb.edu or in the noncompact case, warped solutions are possible; see Ref.
TEmail address: joep@itp.ucsb.edu [2] for a recent discussion.
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type A(ndy): x,=e%y,, ¢ realand constant; th_e two-form pot_entiaCMN ,.and the four—fqrm fielpnpg
(2.2) with self-dual five-form field strength in the Ramond-
Type Blecke): x,=0 or y,=0. Ramond (RR) sector. Their fermionic superpartners are a

complex Weyl gravitinagy, (I'*%=— ) and a complex
Weyl dilatino x (I''°=X\). The theory had =10, N'=2

The behavior of the spinor correlates with that of the com ) '
plex three-form fluxGs. In type A solutionsG g, must ~SUPErsymmetry with a complex chiral supersymmetry pa-
have a constant phase. In type B solutions it must be imagf@metere (I' “e=—¢). The two scalars can be combined

o . Al Ct o b : 3
nary self-dual; more specificallgee Sec. Il B it must be of N0 @ complex field7=C+ie”“=7,+ir, which param
type(2,1) and primitive with respect to the complex structure trizes theSL(2,R)/U(1) coset space. . .
of the transverse space. Vanishiys also gives type B We want to find backgrounds with four-dimensional Lor-

types: the D5-brane and NS5-brane are of type A, and thihg that_the_ background Fer_mi _fields vanish, we have to find

D3-brane and D7-brane are of type B. a combmgtlc_)n of the boson_|c f|eIQS sug:h that the supersym-
The type A solutions are closely related to the warped“etry variation o_f t_he fermionic fields is zero. The dilatino

heterotic solutions found by Stromingg®]. The type 1B @nd gravitino variations arg22]

form was discussed in Rdf10]. The Maldacena-Nier so- i i

lution [11] is a notable AdS/CFTconformal field theory ON*=——yMPY e+ —G*e*, 2.3

example of this type. K 4
The type B solutions are dual to M theory solutions found

by Becker and Beckel12—14. In the M theory form the Sy = 1

corresponding restriction on the supersymmetry spinor is that K

it has definite eight-dimensional chirality. The explicit type

[IB form was obtained in Ref$15,16 for the special case of

a constant dilaton. Such solutions have played an important

i
DM_EQM)S

i
My...M
tas0” L M, mgYme

role in gauge-gravity duality. Th&/=1 fractional brane so-

. . . : . 1 1
lution [17] is of this form, as well as itd/=2 generalization — —I'yGe*— =GI'ye*. (2.4
[18,19. 16 8

In general, the type B solutions allow a holomorphic di- g MNP . . — .
laton. We find these solutions in Sec. Il B. The various brane$' €€ ©=sGmnpy™ ™, Dy is the covariant derivative with
in our system—D7-branes and whole and fractional Ds_respect to the metrigy, and
branes—all preserve supersymmetries c_)f type B. MoreoverPszz(?MB, Qu=f2Im(BdyB*),
the supersymmetries preserved by the different branes have a 2.5
nontrivial intersection, which is th&/=2 of the whole sys- 1+ir '
tem. Thus these solutions are the relevant ones. =1
Finally, we should note that there are interesting solutions T
which are of neither special form. A D3/D5 bound state will 11,4 field strengths are
interpolate between type A at short distance and type B at

r=C+ie”®, f2=1-BB*.

long distance. Also, the ) flux corresponding to anV’ G(zy=f(F (3~ BF%,) Fav=dA

. . (3) (3) (3)/> (3) (2)
=1 or V=2 mass perturbation of th&=4 gauge theory is (2.6)
of neither type, as one can see from the explicit expressions K '
in Sec. Ill C of Ref[20]. Full solutions are known only for a F(5)=dA(4)—§Im(A(z)/\FZ*3>),

few special states in the mass-perturbed théafy. In Ref.
[20] an approximate solution was found, whose supersymgyitn Ay complex andA 4, real.
metry was verified in Refl15]. This approximation is valid We should note that the conventions used in supergravity

over most of parameter space, but it was emphasized thate different from those usually used in string or brane ac-
important physics occurs in regions where it breaks down. jons, so for reference we give the relations. The complex

potential is related to the NS-NS and RR potentials by

A2y=0(Bs+iC(), 2.
The solutions of type B could be obtained by duality “A@=9Be) @) @7
[13,14] from those of Ref[12], but we have found that it is and the associated fluxes are related by
generally simpler to work directly in type IIB variables. This

B. Type B solutions

section extends the results of Reff$5,16, which were ob- . Fays ™He)s (14|12
tained for constant. KG(3):IQGIGT, 9'92( 1=ir

We first review the relevant results from type IIB super- 2 2.9
gravity [22]. The massless bosonic fields of the type IIB :
superstring theory consist of the dilatdn the metric tensor gng
Gun and the antisymmetric 2-tensdy,y in the Neveu-
Schwarz—Neveu-SchwakNS-NS sector, and the axio€, 4«kF(5y=9gFs)s- (2.9
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The subscript ” denotes the usual string quantities, e.g. the ~ i -
RR ﬂUX iS F(3)S:dC(2), the NS'NS ﬂUX iSH(3)S:dB(2), (Dm_ EQm X]_:O (219)
and the five-form flux is=5)=dC4)+ Chern-Simons term.

Define also The connectiorD,, is therefore inU(3) and sods: is

ok complex and Khler. As in Calabi-Yau compactification, if
Gays= Fz)s— TH(3)s= —ie_'a—\/T—zG(a)- (2.10  the first Chern class ob,,— (i/2)Q,, vanishes for a given
g metric, then there is a metric with the sameéhia class and
Note that supergravity equations are usually written in termgomplex structure such that a covariantly conspanexists.
of x and string-brane equations in termsgyfbut these are We introduce complex coordinates where
related _
Y'x1=0; (2.20
2k’=(2m) 'g%a’*. (2.11)
acting ony; with 9!, ¥/, and y'* generate independent
The general Einstein metric and five-form backgroundspinors. The final variation proportional tois that of the

with four-dimensional Poincariavariance is dilatino, whose vanishing implies
—7-12 v 71 :
ds?=z"Y2, dxtdx’+ZV4dss, (2.12 MPE =7 PExa=0. (221
Forzan= dmh. (213 It follows that B, and sor, is holomorphic.
. The vanishing of the* variations now implies
We use subindiceM,N, ...=0,...,9; u,»=0,1,2,3; and g P

m,n, ...=4,...,9. Thewarp factor Z, the potentialh
=Cyp103, and the dilaton axiorr depend only on the trans-
versex™. The factor ofZ¥2 is included in the definition of
the transverse metric for convenience.

For solutions of type B, Gijk= G =G =G x=0. (2.23
e={®x1, (2.14

Gx1=Gx} =Gy'x¥ =0. (222

Expanding these in term of the independent spinors gives

In other wordsG s is of type(2,1) and primitive, just as for
a constant dilaton.

In addition the Bianchi identities must be satisfied. For the
three-form flux these are simply

the terms proportional t@ and £* in the supersymmetry
(SUSY) variations are linearly independent and so must van-
ish separately. Equivalently, the terms independenGgj
and those containinG sy must vanish separately. Let us start

with the former. dF(3)=dH)=0. (2.24

First, These of course translate into more complicated identities for
1 G(3) or Gg)s. The five-form flux Bianchi identity implies
5(/1M=K71(?'u8—§’y’u’ym(K71(?m|n Z—4ZT%h)e. that
(2.15
—V2z= (477)1’2Kp3+1—2c;pqrepqr* (2.25

The spin connection is calculated for tangent space &kes
parallel to the Cartesian coordinate axXds The Poincare
supersymmetries are independentéfand and so the van- Ill. SOLUTIONS WITH D7-BRANES

ishing of 6, implies that A D7-4+D3-branes

1 As a warmup we consider D7-branes and D3-branes in a
h= AxZ’ (218 fiat background, rederiving results obtained in R&i. The
D3-branes are extended along tae directions, and D7-
The variation ofi,, now takes the form branes along the noncompagat directions as well as the

4567 directions.
1 From the discussion in the preceding section, we can take
et §8am|nz' (2.17 any solution without D3-branesZ& 1, implying F(5=0)
and introduce D3-branes through a nontrivial Thus we
describe first the D7-brand23]. We will use the complex
coordinates

KOYm= ( Bm_ IEQm

whereD,, is the covariant derivative falsz. Thus,

~ _ 18
X1=27X (2.18 ) x*+ix® x8+ix” xB+ix®
7= =

is covariantly constant, \/E ' \/E ’ \/E

. (3
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The dilatonT must be holomorphic, and in the given con- 1 1 M
figuration it depends only om. The transverse metric is of el=r,=—— > Z In|z—z|. (3.9
the form 9 emi=1
d2=2(d7dZ + d2d 2+ e22d7 a2 3.2 Notice that we are contemplating an arbitrarily large num-

ber of D7-branes. The local for(3.9), (3.9) becomes singu-

whereys i to be determined n terms of the diaton. 2 810 L MR O R el ol
Now consider the supersymmetry of this solution. For ar- 9 9

bitrary holomorphicr(z), the covariant constancy condition tion (3.7. ForN;>24 therg IS no kf?OW” nonsmgular exten-
(2.19 becomes sion. Nevertheless, we will use this local solution and find

that it gives sensible results at smalllt is an interesting
question for the future, whether there is any physical realiza-

1. 1 ~
9+ —w2°T 3=~ d; In(1— BB*)>X1=0, tion of N;>24 in string theory, and if not whether the use of
4 4 this local solution in gauge-gravity duality is nonetheless jus-
. . (3.3 tified.
~ ~ _ The D3-D7 solution is now obtained by including a non-
+ 0T+ = —BB*) |x1= . 21 ! =d by Inciid
a 4% Tap Afo-'ﬁln(1 BB ))Xl 0. trivial Z. This is determined by the Bianchi identity:
wherew?” is the Christoffel connection for the tilded metric. —2(e%0107+ €005+ d333)Z= (4m)V*Ke!ps,
For the metric (3.2) these becomed;y;=dox1=dix1 " (3.10
=d2x1=0 and e’ps= >, 8(xm—x".
=1
~ 1.
= — — — *
X1 =+ gxadd ¢—In(1=BBY)], As is well known[24], this cannot be solved exactly. In Sec.

(3.4 IV we will discuss some approximate features.

- 1. Finally, let us ask for all supersymmetries of this solution.
I2X1=— X1 JL¢—In(1-BB*)]. For a more general spinar’, the necessary conditions are
first the vanishing oféy,, Eqg. (2.19, which implies that
These are integrable provided I[e’=0 ore’={®x;. The vanishing o6y, Eq.(2.17),
then implies
Y—In(1—BB*)=y+ v* (3.5
- i 1
~ * Dmn— = +sedgnZ= A
for arbitrary holomorphic y(z). Then x,;=e*("" ")y, ( m 2Qm)8 g®omn2=0, (319

where 7, is a constant spinor satisfying 7,=0, and .
so thaty;=2"8*~Y")y for any constant spinoy. Fi-
e’=(1-BB*)e?""". (3.6 nally, the vanishing oféS\ implies thaty'P} =0, and so

_ . o _ _ ¥*P{7=0. This has two solutions of the given chirality,
Noting that 1-BB* =4r,/|1—i7|*, the holomorphic partis _ 70 and 7=y27,. We can characterize these as the two

determined by modular invarian¢23], spinors having definite chiralities in the 4567 and 89 direc-
N tions,
7
W 4 _ 5|16 i .
/=1y 7(7)| |];[l |z—z| " (3.7 1294567 =i %99 = 7. (3.12

wherey is the Dedekind eta function amglare the positions ~ Thus, as expected, this background has four complex or eight
of the D7 branes(To avoid clutter we have introduced di- real supersymmetries, i.&.=4, N=2.
mensionless coordinates; to convert to the coordinates previ- As shown in Sec. 11 B, we can add three-form flux to the
ously defined substitute—z/r, wherer, is some fixed ref- above solution provided th& ), or equivalentlyGs)s, is
erence distanck. (2,1), primitive, and satisfies the appropriate Bianchi iden-
For the purpose of the gauge-gravity duality we are interfity. The simplest solution of this form is

ested in the local physics nellr, D7-branes. In this limit . o

| Ga)s= 720(2°)dZ*\dZ/N\d 7 (3.13

1 7
27 21 In(z=z), B8 for any antiholomorphicg(z®). The primitivity and (2,1)
properties are evident, and the Bianchi identity can readily

with z,z<1. The constant could be absorbed into the argube verified. Forg=(z°), this scales as a dimension+k
ment of the logarithm, but it is convenient to keep it explicit. perturbation of the gauge thedr®5], and so does not affect
Whenz,z;<1 then7,>1 and the metric simplifies to the infrared physics.

[
T=—+
9
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B. D7+fractional D3-branes Herezg is the D5-brane position, the upper/lower signs refer

From the study of gauge-gravity duals without D7-branes,t° D5/anti-D5, and the factor of 2 arises because the two-

we know that interesting gauge theories are obtained by taiePhere has self-intersection numbeftias is discussed more
ing aZ, orbifold and including fractional D3-branes on the 9enerally in Ref[26]).
fixed plane, corresponding to D5-branes wrapped on the col- | "€ combinatiory is invariant under th&L(2,2) mono-
lapsed 2-cycle. These duals are developed in R2€. The dromy of the I_D?_-branes, _but may still have branch cgts at the
full A'=2 supergravity solutions are given in Ref$8,19. D7-branes arising from induced D5 charge. Consider then
Our main focus will be to generalize these by the inclusiont’® Chern-Simons action for a D7-brane, whose relevant
of D7-branes. terms are

We begin with aZ, orbifold of the D3-D7 solution. The
Z, reflects the 4567 directions, so that the space transverse to Sce= f
the D3-branes isR*/Z,) x R? with the D7-branes filling the S0 I maxace
R*/Z, ALE space and at a point in tH®? parametrized by. 1
This preservesV=2 supersymmetry. + _(27.,&/)2]:(2)/\]:(2)/\(;(4)] (3.20

The D3-D7 solution survives in the orbifolded theory, 2
provided thatp; and thereforeZ are invariant under the or- ) ) )
bifolding, and this solution is our starting point. Then, as(there is also a curvature term that will be discussed shortly
discussed in Sec. Il B, we can add the three-form flux subjedtiere 2ma'Fz)=2ma'F 2= B(,). Using the form(3.14
to the appropriate conditions. The new feature of the orbiand definingF ;)=® w7, this becomes
folded theory is the existence of a zero-size two-sphere at the
fixed point, which is associated with a harmonic two-form _ f
() also localized at the fixed point. It is a standard property Ses= #7 M4 ALE
of ALE spaces that(,y is (1,1) and primitivae@Ii{rLtZe ALE 1
space. Then, as in the case without D7-br iscus- = N2y )2
s%n and notation follow Ref.19], except that the signs of o (2ma’) (D= 0s) w(g)/\w(z)/\C(4)}
B(2) and C, are reversed to agree with conventions used
elsewherg we take 2ma’ uy

J'M4><ALE )

+—2 J’M“xsz(q)_ 08)C(s)

C(8)+ 2’7TC¥,.¢.(2)/\C(6)

C(8)+ 2mwa’ ((I) - 05) a)(z)/\C(G)

B(z): 2776(’ GB(Z,;) (0(2) ’ C(Z): 2’77'&/ GC(Z,;) (1)(2) .

2 1\2
(3.14 n %JMA@ — 0)°C(a). (3.2)

Conversely, at each fixer

1
Og= IB,0=
BZW&’Szz c

In going from the first line to the second we have used prop-
f C,. (3.19 erties that follow from Poincarduality, specifically
SZ

27w
1
The Bianchi identity and primitivity condition are auto- JALE“’(Z)/\“(Z):ELZO‘(Z)’ Lz‘”(Z):l' 322
matic. The condition that the (1,2) part Gf ), or equiva-

lently of Gg)s, vanish is then for any closed two-formy,). The 3 again arises from the

self-intersection number of th#’.

Recall thatus=(27)%a’ u; and uz=(2m)*a’2u, [27],
and that in the orbifold theorgg= 7 [28]. It follows from
the coupling taC 4 that for® =0, the induced D3 charge is
1=. However, we must also include the curvature terms in the
Chern-Simons actiof29]. These make a contribution 7,
because on the space K34/Z, the total induced charge is
—1. Thus the net induced D3 charge on the wrapped D7-
brane with® =0 is zero. Similarly the induced D5 charge is
— % times that of a wrapped D5. Fdr=27 the induced D3
charge is again zero and the induced D5 charge is

&;0:0, 0= 00_ ’THB. (31@

We have usediw;)=0. Thusé is any holomorphic func-
tion,

6= holomorphic. (3.17

Writing 6(z) = 60,+1i6,, the real and imaginary parts of
= fc— 765 imply that

Op=— @ = 0,— T8 (3.18 These considerations suggest that
72 72
Ny Ns
The anglesfg and 6. are periodic with period Z. A 0=2i >, qs IN(z—25)+2i >, In(z—zs5)

wrapped D5-brane couples magneticallygtoand sof has a i=1 =1

branch cut N5
—2i In(z—zgy). 3.2
9~ + 2i In(z— zs). (3.19 kgl (2= 75 (3.29
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Herei runs over D7-braneg, over D5-branes an#t over 6 , s
anti-D5 branes. The induced charggs are =1 from the S’Msz—J d°¢e [ —de(G+2ma' Fy)]
above discussion. Recall also that

i 1 N7 + f C(6)+ f 27Ta/,./f(2)/\C(4) y (327)
7=+ 5= 2 In(z-zp). (3.24)
g =t where the metrids in the Dirac-Born-Infeld(DBI) action is

in the string frame. The determinant splits into
The form(3.23 is not quite correct, as we must include the detG det(G,,+ 27a’ F,p,), where| denotes the 0123 direc-
explicit orbifold background®g= 7, and so add-w7to .  tions anda,b label the directions in the 2-cycle. If the probe

The final result is is slowly moving with velocityv in the complex plane, then
ir N 1 e *(—detG) =g~z 1(1-|v|%e’2)"?
6=——+2i > | qsi+ —|In(z—2z7)
9 i=1 4 PP E B W12
~ ~g 2 -5g e[t (3.28
N5 N5

+2Ij§1 In(Z_ZSJ)_Zlgl N(Z=z5). 329 e have useGeinsiei= 9%~ *?Ggying, as well as the form

(2.12 and (3.2 for the Einstein metric. For the other deter-

This is correct in any configuration in which all D5 charges Minant, detGap+2ma’ Fop) =det(2ma’ Fup), since the

cancel locally, as it then just gives the orbifold background?-CYcle is in the limit of zero area. Slightly enlarging this

gs=. It can then be verified for other configurations by c0llapsing cycle so that it is a small two-sphere, we get

moving the D5- and D7-branes around. Note that in the final

result(3.25 the shifts indc around the D7-branes are prop- f de(2ma’ Fop)Y?=2ma’|27n— 65|, (3.29

erly quantizedmultiples of 2r7), whereas that did not hold $

for Eqg. (3.23. . .
The D7-brane—fractional-D3-brane system has the sam here_f_SzFab=27rn is the quantized D-brane gauge flux.

N=2 supersymmetry as the D7-D3 system. The orbifolding .O”?b'”'”g Eqs(3.29 and(3.29)., the DBI Lagrangian den-

preserves supersymmetrié& 12 of positive 4567 chirality. Y in the noncompact dimensions becomes

The fractional brane flux is manifestly (2,1) with respect to 1

the complex structure defined by the spingy. It is also gDBIZ_Zﬂarﬁpwn_gd(zl_ —e¢|u|2>.

(2,1) with respect to the complex structure definedybn,: 2

this is obtained by replacing < z' in the ALE directions, so (330
() remains (1,1). » _ The potentialC g is obtained from the seven-form field
The three-form flux now acts as an additional eﬁec“"estrength
D3-brane source for the warp factdr The Bianchi identity
(3.10 becomes dCs)=—€®* (F(3)s~ CH)d + Ciay\Hzys: (33D
—2(e¥9,07+ e%d9,05+ d3d3)Z The exterior derivative of the right-hand side vanishes by the

type IIB supergravity equations; in fact, this consistency con-
= (4m)Y2kepy+ E(Zwa’g)25F,3|D10|2, (3.26 dition _determines the form of the Chem-Simons terms here.
Inserting the type B form for the metric ar@},,, the right-
hand side is proportional to Re{& 3)s— G ()9, Where %
where D,0=d,0c—7d,05. We have used the fact that denotes the dual in the transverse directions using the metric
wpq@P9=Sep is a & function at the fixed point of the ALE <2 This combination vanishes as a consequence of the su-
space. persymmetry conditions, so for all type B solutions the cou-
pling to Cg) is at most a constant in the action, which can be
1. Probe actions ignored.

Regarding this as a four-dimensional system, the D7- 1he Chem-Simons term, for a type B background, gives
brane positions are fixed while the D5-brane coordinates pdl'® Lagrangian density
rametrize a moduli space d; complex dimensions. The
metrjc on this space can be compqted both_on the_ supergrav- Lcszzwarﬁ(zﬂn_ Og). (3.32
ity side and on the gauge theory side. In this section we find 9z
the supergravity metric, and in the next we will compare it

with the gauge theory metric. As long as the induced D3 charge

To that end we consider the action for a probe D5-brane at
the fixed plane, whose moduli space has one complex dimen- —n— i P (3.33
sion. The relevant terms in the probe brane action are 9 27 B '
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is positive, this cancels the potential from the DBI action. In., 0
The final result for the DBI Lagrangian density is YR3 ( ’ | )
0 —Ing-
1 4.7
Lpgi =§T3q3e‘/’| v|? (3.39 In. 0
YR7 0 _|N7— )

with Ty=472a’ us/g being the D3-brane tension.

This action has a simple interpretation: the inertial massyherel,, is the NX N identity matrix. The interpretation of
comes entirely from the induced D3-brane charge, with any_. is well known[33]. This basis represents half D3-branes
additional factor ofe? from the effect of the D7-branes on trapped on the fixed p|ane_ Geometrica”y, the positive eigen_
the metric. For anti-D5-branes the same result holds thh values Correspond to Wrapped D5-branes on the Co||apsed

replaced byn+(1/2m) 65 . Recall that these branes are the $?, and the negative eigenvalues to wrapped anti-D5-branes.
correct degrees of freedom on the moduli space only for Thys,

0=<qz=<1. (3.35 N3+=Ns, Nz-=Ng. (4.2)

Where the induced D3 charge becomes negative the 5-branE&ch DS carries one-half unit of D3 charge in the orbifold
would no longer be Bogomol'nyi-Prasad-Sommerfi@g ~ heory, so the D3 charge is one-half the number of D3 Chan-
type. The moduli space of 5-brane coordinates thus does nG@ton indicesthis is eV|dent_|[1 aE?S'S in which each D3-
continue on into such a region but rather is joined onto th&rane has an imagethusQz=3N3=3(N3++Nz-).
internal moduli space of the enhanced symmetry region de- Ve must similarly deduce the meaning g;. There is a
fined by the curve whergs vanisheg30]. When the mag- natural guess, since we have seen in Sec. llI B that the D7-
nitude of the induced D3 charge exceeds unity, the 5-branBran€ has two ground states, with D5-charges. Indeed,

acquires additional moduli and can separate into elementa/9'€ ¢&n argue for this connection as followEhe reflection

constituents in the rang@.35 [19]. relates opposite points on a given D7-braneyge repre-
Carrying out a similar expansion for the gauge field actionSeNts a phase under a closed motiorRSfZ,. This phase is
yields an additional term a D7 Wilson line around the fixed point and so should arise

from a localized flux, which is just the degree of freedom
1 1 distinguishing the two D7 states. To be precise, a disk
EDB,=T3q3[§e¢|v|2— Z(Zwa’)ze_‘PFwF’“’ . bounded by the given closed motion intersects the collapsed
S? once, so the integral of the flux on this disk is one-half of
(3.39 its integral on the collapse®?, giving a phase difference of
7 between the two states.

In fact, the induced charge has already been calculated in
Ref. [34], in T-dual 5-9 form, where the last line of Eq.
(3.30 shows that the induced charge carried by the D9-brane

LDB|=(nTZiﬁ>(ET3|v|2— i,: V,:;w)7 (3.37) is —% of that carried by the D5l—brane. So_just as for D3-
2mw)\2 8w * branes, the D7 Chan-Paton eigenvalue is related to the
brane’s D5 charge, though with a different proportionality:
where the plugminus corresponds to a D&nti-D5) brane.  Chan-Paton eigenvalue 1 corresponds to charges;.
The kinetic and gauge terms have the same coefficient, im- The dynamical fields ilD =4 are obtained from the 3-3,
plying thatz is the /=2 special coordinate. More generally, 3-7 and 7-3 strings. The massless 3-3 spectrum is well
as in the F theory solutiof8.7), e’/e~® is the modulus of a known to be aU(N3+) X U(N;3-) gauge theory with two
holomorph!c funct?on and the special coordinate is th_en &Nj+,N3-)@(N3+,N3-) hypermultipletd35,26]. The action
holomorphic function ofz. For future reference we define of the orbifold on the 3-7 strings is
72t t0 be the coefficient of- (1/8m)F , F*", hence

Finally, noting thate?=e~®=1r, in our solution, this be-
comes

RIv,i.])= Yrajir Yrejj IR®I T '), 4.3
0>

T2 eff— m-z_ﬂ' (3.38 where is the oscillator state anidandj are the D3 and D7
Chan-Paton indices. In the Ramond sector, the fermionic
zero modes on the 3-7 strings come from the 23- and 89-
IV. GAUGE THEORY DUALS planes, so that the massless fermionic states are labeled by
the corresponding helicitigs, ,s,) and the Gliozzi-Scherk-
Olive (GSO projection sets; = —s,. The reflection in the
The gauge theory dual to our supergravity solution is ob4567 directions has no action on this state, so the orbifold
tained from the open-string spectrum for D3- and D7-branegrojection amounts toygsji yr7;j=1. Thus the 3-7 strings
on the orbifold[31,32. The Z, reflectionR acts on the D3
and D7 Chan-Paton degrees of freedom via matrices, which—
in a diagonal basis will be of the form 2We thank M. Douglas for suggesting this.

A. The D7-brane—fractional-D3-brane spectrum
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contributeN,+ Weyl fermions of each chiralityfrom s,= Hereg? are the two classical gauge couplings, each equal to
=+ 3) in the fundamental3+,1) andN,- Weyl fermions of ~ 8#g in the classical limit. The masses of the hypermultiplets
each chirality in the (N3z-). The 7-3 strings contribute the in Eq. (4.4) are, respectively,

antiparticles of these. In the NS sector, states are labeled by

the 4567 helicitiegs,,s;) and the GSO projection sets

=s5. Supersymmetry requires bosonic partners for the fer-

mions in the spectrum, sB must act trivially on the oscil- ai_’éj ., a-b;, ai_'f,j ) (4.9
lator part of these bosonic states. This is sR i§ defined as

e ™(527%3): this is the condition where the orbifold and

D7-D3 supersymmetries are compatible. The effective value of-,, normalized as in Eq:3.39), is
In summary, the massless spectrum isJdFF2 gauge |m(7"), and represents the inverse of the effective coupling-
theory with squared for théJ (N3+) factor. To obtain the effective action

for a D5-brane probe, increase the rank of the gauge group

vector multiplets: U(Ns-+) X< U(N3-)adjoint, by one, adding in the field, and extending the ranges in the

_ _ sums. Then
two hypermultiplets: (N3+,N3-) @ (N3+,N3-),
N+ hypermultiplets: (N3+,1)& (N+,1), PF
T2 eff Im E
N,-hypermultiplets: (1,N3-)® (1,N3-). (4.9 0
Again, the superscripts refer to the action of th&, on the Ng 5 Na- -
D3 and D7 Chan-Paton factors. I S (@—a)7| 1 S n (ao—aj)
29 27 =) MZ 27 =] 1“2
B. The metric on moduli space
The Coulomb branch of moduli space is defined classi-
cally by the eigenvalues of the vector multiplet scalarand 1 N7r (ag—b;)?
b, ) T (4.10

p=diagay, ... ay,.), ¢=diagay,...ay, ).

(4.5 (An uninteresting numerical constant has been absorbed into
he definition ofu.)
These are related to the positions of the fractional branes bE/ The moduli space is divided into regions which are sepa-
rated by enharan curves[30,19. Within each such region
the supergravity calculation is supposed to match the appro-
priate perturbative descriptiof86], with a nonperturbative
rearrangement of degrees of freedom when an ermaig
4.7 crossed. The perturbative orbifold corresponds to the range
' 0< 6g/2w<1, where Egs(3.35 and (3.33 imply that the
D5-brane probe correspondsrie=1. Then Eq.(3.38 gives

2ma’'ai=2z5, 2ma'ai=1zs (4.6

Define similarly for the D7-brane positions
27Ta,bi=27+i, 27TC¥,Bi=Z77i.

The moduli space metric is obtained from thé=2 pre-
potential 7, whose perturbative form is

F= Felassicat Fone loop = i
(48) TZ,eﬁ 7'2+ 271_ (92. (411)
i . Nj-
2i
]:classmal_ z a 5 2 b
- Inserting the result$3.24),(3.25 for = and 6, one finds that

the metrics do agree, where we identiy=rq/27a’ [rg is

& (3 ')2 the reference scale introduced below E8.7)]. The metric
F 2 (ai—a;)2In——— -
oneloop— g i 9 PE: for an anti-D5 probe also agrees.
N3~ ~_)2
2
+,J§_: @-a) In= 2 V. DISCUSSION
Now let us consider the conditions under which the su-

_ 2 m?2 In— pergravity solution gives a good description of the theory.

hypers We first summarize the solution
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ds?=z" 2y, dx“dx’+ 2V,

ds=2(dz'dzt+d2d 2+ r,dzd2,

N7
2— Z In(z—2z4),

T=

i
g

—2(0107+ dpd5+ 75 *9303)Z

1
=(4m) Pkps+ 5—(2ma’9)* e D, 0/,
27'2
i Ns
0:_E+IE In(z—2z7-) +2|2 In(z—zs5)

N5’

—2ik21 In(z—zgy). (5.1)

As discussed in Sec. Il A, there is a singularity in the dilaton

PHYSICAL REVIEW D 65 126005

This has a simple interpretation: it is the condition for the
usual AJS/CFT duality to be valifil], substituting the run-
ning values ofQ; and 7. Thus we need

Qs> = r>e 27Ny, (5.9

In particular, the supergravity dual is good over a range of
scales only if

Qs>N5. (5.9

This result is unfortunate. For example, an interesting
case is to takél D3"-branes and B D7*-branes all at the
origin: this gives a conformalV=2 SU(N) theory with fun-
damental matter. The solution for this case is

i iN iT
7=———Inz, 6=——+2iNInz, (5.10
g 7 g
giving
0, 1 0  m—2gNInr
= + —=— _—— i
2o 2T 50750 2 2m—2gNint Ot

at large radius, when In~27/gN;,. In order that the unknown
physics of the singularity decouple we then need The effective coupling is constant, as is already assured by
<e?™9N7_ |t will be convenient to make the slightly stronger the general agreement between the moduli space metrics as

assumption that

r<i. (5.2

This inequality also implies that, *<1 so that the theory is

weakly coupled.

In addition for a good supergravity dual the string metric
must have curvature whose inertial components are small i

string units[37],
a' Re<1. (5.3

A typical term in the curvature is of order

_ g 1/2
Re~GHd,InZ|%= (—) lo,InZ|2.

727 (5.9

Although we cannot find the warp factdrexactly, we can

calculated in supergravity and the gauge theory. Note that we
have here a conformal gauge theory even though the dilaton
is nontrivial. UnfortunatelyQ;=<N-, and so we have not
found a good dual. We will return to this issue shortly.

The condition(5.8) is satisfied over a wide range of scales
in the case olN D3*-branes andN,<N D7"-branes. This
ifives aN=2 SU(N) theory with a small amount of matter.
However, there is a large negatigefunction so the coupling
quickly becomes strong, and so there is interesting dynamics
only over a small range of scales with an enf@n[30] in
the IR.

The one case where we obtain a useful dualNis-
~N3;->N,=. This gives an approximately conformal
SU(N3+) X SU(N3-) theory with bifundamental matter plus
a small amount of fundamental matter.

This raises the interesting question: wisthe dual to the

estimate it. For convenience we take all branes to be at theonformal V=2 SU(N) theory with fundamental matter,
origin. The arguments of the logarithms are small and so th#hen the 't Hooft parametegN is large? Let us see why our
logarithms are slowly varying. One thus obtains a good estidual (5.10 fails. At r<1, 7, quickly becomes large, so the

mate ofZ at any position by treating and ¢ as constants.

underlying string theory isveaklycoupled. The reason that

The unwarped metric is then flat, addsatisfies an ordinary the gauge dynamics remains strongly coupled is that at the
Laplace equation, so that the warp factor reduces to that fagame timefg rapidly approaches the valuer2at which the

a D3-brane system. Thus,

Z~?—4, T2=r24r24 702, =47gQ;, (5.5
whereQ; is the total 3-brane charge

Ny 1 2B )N, D 5.6

Q3=N3+ on TNa- 5 (5.6)

Evaluating this on the plang =z,=0, where it is greatest,

we find

~\72/Qs3. (5.7

ALE space becomes singular. One could also try to obtain a
dual description by starting with the dual to a product theory
with bifundamental mattef26] and taking one gauge cou-
pling to zero while holding the other fixed. The limit is again
zero string coupling on a singular ALE space.

The problem of understanding weakly coupled string
theory on a singular ALE space is a familiar one, and it has
been argued that the correct effective description is obtained
by T-duality on one of the angular directions of the ALE
space, giving a IIA configuration with parallel NS5-branes
[38]. With the inclusion of D3- and D7-branes on the 1IB
side one obtains D4- and D6-branes on the IIA side. Such
configurations have of course been extensively considered
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[39], and theirT-duality to the 1IB configurations discussed ACKNOWLEDGMENTS
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