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Gauge-gravity duals with a holomorphic dilaton
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We consider configurations of D7-branes and whole and fractional D3-branes withN52 supersymmetry. On
the supergravity side these have a warp factor, three-form flux and a nonconstant dilaton. We discuss general
type IIB solutions of this type and then obtain the specific solutions for the D7-D3 system. On the gauge side
the D7-branes add matter in the fundamental representation of the D3-brane gauge theory. We find that the
gauge and supergravity metrics on moduli space agree. However, in many cases the supergravity curvature is
large even when the gauge theory is strongly coupled. In these cases we argue that the useful supergravity dual
must be a type IIA configuration.
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I. INTRODUCTION

The extension of Maldacena’s gauge-gravity duality@1# to
systems with less supersymmetry and richer matter conte
an interesting one, both for understanding more gen
gauge theories and for application to the local geometrie
warped compactifications@2#. A natural extension is to add
D7-branes, as these contribute matter fields in the fundam
tal representation. Thus in this paper we considerN52 sys-
tems of D7-branes with whole and fractional D3-branes.

Gauge-gravity duality with many D7-branes has receiv
little consideration. As far as we are aware, only Ref.@3#
directly overlaps our work, with a discussion of D7-bran
and whole D3-branes. Reference@4# allows for a position-
dependent dilaton but requires that it be constant on an A5
factor. There has also been substantial discussion of con
rations of D7-branes and O7-planes such that the dilato
everywhere constant, beginning with Refs.@5,3#. The non-
trivial dilaton in the present case brings in new features
puzzles.

In Sec. II we review some of the special classes of ty
IIB supergravity solution that have played a role in gaug
gravity duality and string compactification, and develop t
detailed form of the type IIB solutions with holomorphict.

In Sec. III we find solutions with D7-branes and who
and fractional D3-branes. The solutions are singular at l
distance, but we conjecture that this can be thought of a
UV effect that decouples from the gauge dual. In the fr
tional D3 case the D7-branes are wrapped on the asymp
cally locally euclidean ALE spaceR4/Z2. To fix the param-
eters in the solution we analyze the induced charges on
D7 world volume.

In Sec. IV we first determine the spectrum of the du
gauge theory and obtain its one-loop effective action.
D7-branes onR4/Z2 there are two choices of Chan-Pato
action, just as for D3-branes on this space; we relate thi
the induced D5 charge. We then find the one-loop metric
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moduli space and show that it agrees with the action o
probe in the corresponding dual geometry.

In Sec. V we analyze the range of validity of the sup
gravity duals and find an unpleasant surprise: even when
gauge theory is strongly coupled, in many cases the su
gravity curvature is large. This occurs, for example, in t
simple and interesting case of the conformal theory
SU(N) with 2N hypermultiplets. We argue that the corre
supergravity dual is instead a type IIA configuration, who
study we leave for future work.

II. SOLUTIONS: GENERALITIES

A. Special type IIB solutions

Supersymmetric warped solutions of type IIB supergra
ity have recently played an extensive role in gauge-grav
duality and string compactification. The general solution
this type is not known. Early papers@6# obtained very restric-
tive results by use of the integrated Bianchi identity for t
five-form flux. These restrictions need not hold when t
transverse dimensions are noncompact, or when approp
brane sources are included.1

Much recent work has involved two special cases, wh
can be characterized by the form of the ten-dimensional
persymmetry spinor«. This can be decomposed

«5z ^ x11z* ^ x2* . ~2.1!

Herez is a four-dimensional chiral spinor,G4z5z, andx1,2
are six-dimensional chiral spinors,G6x i52x i . Each inde-
pendent pair (x1 ,x2) gives rise to oneD54 supersymmetry.
The two special cases are then

1Even without supersymmetry, the integrated Einstein equa
implies that in a compact space without branes, warping is imp
sible in a Minkowski solution@7,8#. With appropriate brane source
or in the noncompact case, warped solutions are possible; see
@2# for a recent discussion.
©2002 The American Physical Society05-1
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MARIANA GRAÑ A AND JOSEPH POLCHINSKI PHYSICAL REVIEW D65 126005
type A~ndy!: x25eicx1 , c real and constant;
~2.2!

Type B~ecker!: x150 or x250.

The behavior of the spinor correlates with that of the co
plex three-form fluxG(3) . In type A solutionsG(3) must
have a constant phase. In type B solutions it must be im
nary self-dual; more specifically~see Sec. II B!, it must be of
type~2,1! and primitive with respect to the complex structu
of the transverse space. VanishingG(3) also gives type B
solutions. Pure brane systems are of one or the other of t
types: the D5-brane and NS5-brane are of type A, and
D3-brane and D7-brane are of type B.

The type A solutions are closely related to the warp
heterotic solutions found by Strominger@9#. The type IIB
form was discussed in Ref.@10#. The Maldacena-Nun˜ez so-
lution @11# is a notable AdS/CFT~conformal field theory!
example of this type.

The type B solutions are dual to M theory solutions fou
by Becker and Becker@12–14#. In the M theory form the
corresponding restriction on the supersymmetry spinor is
it has definite eight-dimensional chirality. The explicit typ
IIB form was obtained in Refs.@15,16# for the special case o
a constant dilaton. Such solutions have played an impor
role in gauge-gravity duality. TheN51 fractional brane so-
lution @17# is of this form, as well as itsN52 generalization
@18,19#.

In general, the type B solutions allow a holomorphic d
laton. We find these solutions in Sec. II B. The various bra
in our system—D7-branes and whole and fractional D
branes—all preserve supersymmetries of type B. Moreo
the supersymmetries preserved by the different branes ha
nontrivial intersection, which is theN52 of the whole sys-
tem. Thus these solutions are the relevant ones.

Finally, we should note that there are interesting solutio
which are of neither special form. A D3/D5 bound state w
interpolate between type A at short distance and type B
long distance. Also, theG(3) flux corresponding to anN
51 or N52 mass perturbation of theN54 gauge theory is
of neither type, as one can see from the explicit express
in Sec. III C of Ref.@20#. Full solutions are known only for a
few special states in the mass-perturbed theory@21#. In Ref.
@20# an approximate solution was found, whose supersy
metry was verified in Ref.@15#. This approximation is valid
over most of parameter space, but it was emphasized
important physics occurs in regions where it breaks dow

B. Type B solutions

The solutions of type B could be obtained by dual
@13,14# from those of Ref.@12#, but we have found that it is
generally simpler to work directly in type IIB variables. Th
section extends the results of Refs.@15,16#, which were ob-
tained for constantt.

We first review the relevant results from type IIB supe
gravity @22#. The massless bosonic fields of the type I
superstring theory consist of the dilatonF, the metric tensor
GMN and the antisymmetric 2-tensorBMN in the Neveu-
Schwarz–Neveu-Schwarz~NS-NS! sector, and the axionC,
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the two-form potentialCMN , and the four-form fieldCMNPQ
with self-dual five-form field strength in the Ramond
Ramond ~RR! sector. Their fermionic superpartners are
complex Weyl gravitinocM (G10cM52cM) and a complex
Weyl dilatino l (G10l5l). The theory hasD510, N52
supersymmetry with a complex chiral supersymmetry
rameter« (G10«52«). The two scalars can be combine
into a complex fieldt5C1 ie2f[t11 i t2 which param-
etrizes theSL(2,R)/U(1) coset space.

We want to find backgrounds with four-dimensional Lo
entz invariance that preserve some supersymmetry. Ass
ing that the background Fermi fields vanish, we have to fi
a combination of the bosonic fields such that the supers
metry variation of the fermionic fields is zero. The dilatin
and gravitino variations are@22#

dl* 52
i

k
gMPM* «1

i

4
G* «* , ~2.3!

dcM5
1

k S DM2
i

2
QM D «

1
i

480
gM1 . . . M5FM1 . . . M5

gM«

2
1

16
GMG«* 2

1

8
GGM«* . ~2.4!

HereG5 1
6 GMNPgMNP, DM is the covariant derivative with

respect to the metricgMN , and

PM5 f 2]MB, QM5 f 2 Im~B]MB* !,
~2.5!

B5
11 i t

12 i t
, t5C1 ie2F, f 22512BB* .

The field strengths are

G(3)5 f ~F (3)2BF~3!
* !, F (3)5dA(2) ,

~2.6!

F (5)5dA(4)2
k

8
Im~A(2)`F ~3!

* !,

with A(2) complex andA(4) real.
We should note that the conventions used in supergra

are different from those usually used in string or brane
tions, so for reference we give the relations. The comp
potential is related to the NS-NS and RR potentials by

kA(2)5g~B(2)1 iC (2)!, ~2.7!

and the associated fluxes are related by

kG(3)5 igeiu
F (3)s2tH (3)s

At2

, eiu5S 11 i t*

12 i t D 1/2

~2.8!

and

4kF (5)5gF(5)s. ~2.9!
5-2
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The subscript ‘‘s’’ denotes the usual string quantities, e.g. t
RR flux is F (3)s5dC(2) , the NS-NS flux isH (3)s5dB(2) ,
and the five-form flux isF (5)s5dC(4)1Chern-Simons term
Define also

G(3)s5F (3)s2tH (3)s52 ie2 iu
k

g
At2G(3) . ~2.10!

Note that supergravity equations are usually written in ter
of k and string-brane equations in terms ofg, but these are
related

2k25~2p!7g2a84. ~2.11!

The general Einstein metric and five-form backgrou
with four-dimensional Poincare´ invariance is

ds25Z21/2hmndxmdxn1Z1/2ds̃6
2 , ~2.12!

F0123m5]mh. ~2.13!

We use subindicesM ,N, . . . 50, . . . ,9; m,n50,1,2,3; and
m,n, . . . 54, . . . ,9. The warp factor Z, the potential h
[C0123, and the dilaton axiont depend only on the trans
versexm. The factor ofZ1/2 is included in the definition of
the transverse metric for convenience.

For solutions of type B,

«5z ^ x1 , ~2.14!

the terms proportional to« and «* in the supersymmetry
~SUSY! variations are linearly independent and so must v
ish separately. Equivalently, the terms independent ofG(3)
and those containingG(3) must vanish separately. Let us sta
with the former.

First,

dcm5k21]m«2
1

8
gmgm~k21]m ln Z24ZG4]mh!«.

~2.15!

The spin connection is calculated for tangent space axeM̂
parallel to the Cartesian coordinate axesM. The Poincare´
supersymmetries are independent ofxm and and so the van
ishing of dcm implies that

h52
1

4kZ
. ~2.16!

The variation ofcm now takes the form

kdcm5S D̃m2
i

2
QmD «1

1

8
«]m ln Z, ~2.17!

whereD̃m is the covariant derivative fords̃6
2. Thus,

x̃15Z1/8x1 ~2.18!

is covariantly constant,
12600
s
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S D̃m2
i

2
QmD x̃150. ~2.19!

The connectionD̃m is therefore inU(3) and sods̃6
2 is

complex and Ka¨hler. As in Calabi-Yau compactification, i
the first Chern class ofD̃m2( i /2)Qm vanishes for a given
metric, then there is a metric with the same Ka¨hler class and
complex structure such that a covariantly constantx̃1 exists.
We introduce complex coordinateszi , where

g ı̄x150; ~2.20!

acting on x1 with g i , g i j , and g i jk generate independen
spinors. The final variation proportional to« is that of the
dilatino, whose vanishing implies

gMPM* x15g i Pı̄
* x150. ~2.21!

It follows that B, and sot, is holomorphic.
The vanishing of the«* variations now implies

Gx15Gx1* 5Gg ı̄x1* 50. ~2.22!

Expanding these in term of the independent spinors give

Gi jk5Gi j
j 5Gı̄ ̄ k̄5Gı̄ ̄k50. ~2.23!

In other words,G(3) is of type~2,1! and primitive, just as for
a constant dilaton.

In addition the Bianchi identities must be satisfied. For t
three-form flux these are simply

dF(3)5dH(3)50. ~2.24!

These of course translate into more complicated identities
G(3) or G(3)s. The five-form flux Bianchi identity implies
that

2¹̃2Z5~4p!1/2kr31
k2

12
GpqrG

pqr̃* . ~2.25!

III. SOLUTIONS WITH D7-BRANES

A. D7¿D3-branes

As a warmup we consider D7-branes and D3-branes
flat background, rederiving results obtained in Ref.@3#. The
D3-branes are extended along them directions, and D7-
branes along the noncompactm directions as well as the
4567 directions.

From the discussion in the preceding section, we can t
any solution without D3-branes (Z51, implying F (5)50)
and introduce D3-branes through a nontrivialZ. Thus we
describe first the D7-branes@23#. We will use the complex
coordinates

z15
x41 ix5

A2
, z25

x61 ix7

A2
, z5

x81 ix9

A2
. ~3.1!
5-3
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The dilatont must be holomorphic, and in the given co
figuration it depends only onz. The transverse metric is o
the form

ds̃6
252~dz1dz̄11dz2dz̄21ec(z,z̄)dz dz̄! ~3.2!

wherec is to be determined in terms of the dilaton.
Now consider the supersymmetry of this solution. For

bitrary holomorphict(z), the covariant constancy conditio
~2.19! becomes

S ] i1
1

4
ṽ i

abGab2
1

4
] i ln~12BB* ! D x̃150,

~3.3!

S ] ı̄1
1

4
ṽ ı̄

ab
Gab1

1

4
] ı̄ ln~12BB* ! D x̃150,

whereṽ i
ab is the Christoffel connection for the tilded metri

For the metric ~3.2! these become]1x̃15]2x̃15] 1̄x̃1

5] 2̄x̃150 and

]zx̃151
1

4
x̃1]z@c2 ln~12BB* !#,

~3.4!

] z̄x̃152
1

4
x̃1 ] z̄@c2 ln~12BB* !#.

These are integrable provided

c2 ln~12BB* !5g1g* ~3.5!

for arbitrary holomorphic g(z). Then x̃15e4(g2g* )h0,
whereh0 is a constant spinor satisfyingg ı̄h050, and

ec5~12BB* !eg1g* . ~3.6!

Noting that 12BB* 54t2 /u12 i tu2, the holomorphic part is
determined by modular invariance@23#,

ec5t2uh~t!u4)
i 51

N7

uz2zi u21/6, ~3.7!

whereh is the Dedekind eta function andzi are the positions
of the D7 branes.~To avoid clutter we have introduced d
mensionless coordinates; to convert to the coordinates p
ously defined substitutez→z/r 0 wherer 0 is some fixed ref-
erence distance.!

For the purpose of the gauge-gravity duality we are int
ested in the local physics nearN7 D7-branes. In this limit

t5
i

g
1

1

2p i (
i 51

N7

ln~z2zi !, ~3.8!

with z,zi!1. The constant could be absorbed into the ar
ment of the logarithm, but it is convenient to keep it explic
Whenz,zi!1 thent2@1 and the metric simplifies to
12600
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ec5t25
1

g
2

1

2p (
i 51

N7

lnuz2zi u. ~3.9!

Notice that we are contemplating an arbitrarily large nu
ber of D7-branes. The local form~3.8!, ~3.9! becomes singu-
lar at z;1, wheret2 goes through zero. ForN7<24, this
local solution can be extended to a nonsingular global so
tion ~3.7!. For N7.24 there is no known nonsingular exte
sion. Nevertheless, we will use this local solution and fi
that it gives sensible results at smallz. It is an interesting
question for the future, whether there is any physical reali
tion of N7.24 in string theory, and if not whether the use
this local solution in gauge-gravity duality is nonetheless j
tified.

The D3-D7 solution is now obtained by including a no
trivial Z. This is determined by the Bianchi identity:

22~ec]1] 1̄1ec]2] 2̄1]3] 3̄!Z5~4p!1/2kecr3 ,
~3.10!

ecr35(
j 51

N

d6~xm2xj
m!.

As is well known@24#, this cannot be solved exactly. In Se
IV we will discuss some approximate features.

Finally, let us ask for all supersymmetries of this solutio
For a more general spinor«8, the necessary conditions ar
first the vanishing ofdcm , Eq. ~2.15!, which implies that
G4«850 or «85z ^ x18 . The vanishing ofdcm , Eq. ~2.17!,
then implies

S D̃m2
i

2
QmD «1

1

8
«]mln Z50, ~3.11!

so thatx185Z21/8e4(g2g* )h for any constant spinorh. Fi-

nally, the vanishing ofdl implies thatg ı̄ Pi* h50, and so

g 3̄Pi* h50. This has two solutions of the given chirality,h
5h0 and h5g12h0. We can characterize these as the tw
spinors having definite chiralities in the 4567 and 89 dire
tions,

i 2g4567h5 ig89h5h. ~3.12!

Thus, as expected, this background has four complex or e
real supersymmetries, i.e.D54, N52.

As shown in Sec. II B, we can add three-form flux to t
above solution provided thatG(3) , or equivalentlyG(3)s, is
(2,1), primitive, and satisfies the appropriate Bianchi ide
tity. The simplest solution of this form is

G(3)s5t2g~ z̄3!dz1`dz2`dz̄3 ~3.13!

for any antiholomorphicg( z̄3). The primitivity and (2,1)
properties are evident, and the Bianchi identity can read
be verified. Forg5( z̄3)k, this scales as a dimension 71k
perturbation of the gauge theory@25#, and so does not affec
the infrared physics.
5-4
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B. D7¿fractional D3-branes

From the study of gauge-gravity duals without D7-bran
we know that interesting gauge theories are obtained by
ing a Z2 orbifold and including fractional D3-branes on th
fixed plane, corresponding to D5-branes wrapped on the
lapsed 2-cycle. These duals are developed in Refs.@26#. The
full N52 supergravity solutions are given in Refs.@18,19#.
Our main focus will be to generalize these by the inclus
of D7-branes.

We begin with aZ2 orbifold of the D3-D7 solution. The
Z2 reflects the 4567 directions, so that the space transver
the D3-branes is (R4/Z2)3R2 with the D7-branes filling the
R4/Z2 ALE space and at a point in theR2 parametrized byz.
This preservesN52 supersymmetry.

The D3-D7 solution survives in the orbifolded theor
provided thatr3 and thereforeZ are invariant under the or
bifolding, and this solution is our starting point. Then,
discussed in Sec. II B, we can add the three-form flux sub
to the appropriate conditions. The new feature of the o
folded theory is the existence of a zero-size two-sphere a
fixed point, which is associated with a harmonic two-for
v (2) also localized at the fixed point. It is a standard prope
of ALE spaces thatv (2) is (1,1) and primitive in the ALE
space. Then, as in the case without D7-branes~our discus-
sion and notation follow Ref.@19#, except that the signs o
B(2) and C(2) are reversed to agree with conventions us
elsewhere!, we take

B(2)52pa8uB~z,z̄!v (2) , C(2)52pa8uC~z,z̄!v (2) .

~3.14!

Conversely, at each fixedz,

uB5
1

2pa8
E

S2
B2 , uC5

1

2pa8
E

S2
C2 . ~3.15!

The Bianchi identity and primitivity condition are auto
matic. The condition that the (1,2) part ofG(3) , or equiva-
lently of G(3)s, vanish is then

] z̄u50, u5uC2tuB . ~3.16!

We have useddv (2)50. Thusu is any holomorphic func-
tion,

u5holomorphic. ~3.17!

Writing u(z)5u11 iu2, the real and imaginary parts ofu
5uC2tuB imply that

uB52
u2

t2
, uC5u12

t1u2

t2
. ~3.18!

The anglesuB and uC are periodic with period 2p. A
wrapped D5-brane couples magnetically touC and sou has a
branch cut

u;62i ln~z2z5!. ~3.19!
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Herez5 is the D5-brane position, the upper/lower signs re
to D5/anti-D5, and the factor of 2 arises because the tw
sphere has self-intersection number 2~this is discussed more
generally in Ref.@26#!.

The combinationu is invariant under theSL(2,Z) mono-
dromy of the D7-branes, but may still have branch cuts at
D7-branes arising from induced D5 charge. Consider th
the Chern-Simons action for a D7-brane, whose relev
terms are

SCS5m7E
M43ALE

H C(8)12pa8F(2)`C(6)

1
1

2
~2pa8!2F(2)`F(2)`C(4)J ~3.20!

~there is also a curvature term that will be discussed shor!.
Here 2pa8F(2)52pa8F (2)2B(2) . Using the form~3.14!
and definingF (2)5Fv (2) , this becomes

SCS5m7E
M43ALE

H C(8)12pa8~F2uB!v (2)`C(6)

1
1

2
~2pa8!2~F2uB!2v (2)`v (2)`C(4)J

5m7E
M43ALE

C(8)1
2pa8m7

2 E
M43S2

~F2uB!C(6)

1
~2pa8!2m7

4 E
M4

~F2uB!2C(4) . ~3.21!

In going from the first line to the second we have used pr
erties that follow from Poincare´ duality, specifically

E
ALE

v (2)`a (2)5
1

2ES2
a (2) , E

S2
v (2)51, ~3.22!

for any closed two-forma (2) . The 1
2 again arises from the

self-intersection number of theS2.
Recall thatm55(2p)2a8m7 andm35(2p)4a82m7 @27#,

and that in the orbifold theoryuB5p @28#. It follows from
the coupling toC(4) that forF50, the induced D3 charge i
1

16 . However, we must also include the curvature terms in
Chern-Simons action@29#. These make a contribution2 1

16 ,
because on the space K35T4/Z2 the total induced charge i
21. Thus the net induced D3 charge on the wrapped D
brane withF50 is zero. Similarly the induced D5 charge
2 1

4 times that of a wrapped D5. ForF52p the induced D3
charge is again zero and the induced D5 charge is1 1

4 .
These considerations suggest that

u5
?

2i(
i 51

N7

q5i ln~z2z7i !12i (
j 51

N5

ln~z2z5 j !

22i (
k51

N5̄

ln~z2z5̄k!. ~3.23!
5-5
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Here i runs over D7-branes,j over D5-branes andk over
anti-D5 branes. The induced chargesq5i are 6 1

4 from the
above discussion. Recall also that

t5
i

g
1

1

2p i (
i 51

N7

ln~z2z7i !. ~3.24!

The form ~3.23! is not quite correct, as we must include th
explicit orbifold backgrounduB5p, and so add2pt to u.
The final result is

u52
ip

g
12i(

i 51

N7 S q5i1
1

4D ln~z2z7i !

12i (
j 51

N5

ln~z2z5 j !22i (
k51

N5̄

ln~z2z5̄k!. ~3.25!

This is correct in any configuration in which all D5 charg
cancel locally, as it then just gives the orbifold backgrou
uB5p. It can then be verified for other configurations b
moving the D5- and D7-branes around. Note that in the fi
result~3.25! the shifts inuC around the D7-branes are pro
erly quantized~multiples of 2p), whereas that did not hold
for Eq. ~3.23!.

The D7-brane–fractional-D3-brane system has the s
N52 supersymmetry as the D7-D3 system. The orbifold
preserves supersymmetries~3.12! of positive 4567 chirality.
The fractional brane flux is manifestly (2,1) with respect
the complex structure defined by the spinorh0. It is also
(2,1) with respect to the complex structure defined byg12h0:
this is obtained by replacingzi↔ z̄i in the ALE directions, so
v (2) remains (1,1).

The three-form flux now acts as an additional effect
D3-brane source for the warp factorZ. The Bianchi identity
~3.10! becomes

22~ec]1] 1̄1ec]2] 2̄1]3] 3̄!Z

5~4p!1/2kecr31
1

2
~2pa8g!2dFPuDzuu2, ~3.26!

where Dzu5]zuC2t]zuB . We have used the fact tha
vpqv

pq̃5dFP is a d function at the fixed point of the ALE
space.

1. Probe actions

Regarding this as a four-dimensional system, the D
brane positions are fixed while the D5-brane coordinates
rametrize a moduli space ofN5 complex dimensions. The
metric on this space can be computed both on the superg
ity side and on the gauge theory side. In this section we
the supergravity metric, and in the next we will compare
with the gauge theory metric.

To that end we consider the action for a probe D5-bran
the fixed plane, whose moduli space has one complex dim
sion. The relevant terms in the probe brane action are
12600
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at
n-

S/m552E d6j e2F@2det~G12pa8F(2)!#
1/2

1E C(6)1E 2pa8F(2)`C(4) , ~3.27!

where the metricG in the Dirac-Born-Infeld~DBI! action is
in the string frame. The determinant splits in
detGi det(Gab12pa8Fab), wherei denotes the 0123 direc
tions anda,b label the directions in the 2-cycle. If the prob
is slowly moving with velocityv in the complex plane, then

e2F~2detGi!
1/25g21Z21~12uvu2ecZ!1/2

'g21Z212
1

2
g21ecuvu2. ~3.28!

We have usedGEinstein5g1/2e2F/2Gstring, as well as the form
~2.12! and ~3.2! for the Einstein metric. For the other dete
minant, det(Gab12pa8Fab)5det(2pa8Fab), since the
2-cycle is in the limit of zero area. Slightly enlarging th
collapsing cycle so that it is a small two-sphere, we get

E
S2

det~2pa8Fab!
1/252pa8u2pn2uBu, ~3.29!

where *S2Fab52pn is the quantized D-brane gauge flu
Combining Eqs.~3.28! and~3.29!, the DBI Lagrangian den-
sity in the noncompact dimensions becomes

LDBI522pa8
m5

g
u2pn2uBuS Z212

1

2
ecuvu2D .

~3.30!

The potentialC(6) is obtained from the seven-form fiel
strength

dC(6)52eF* ~F (3)s2CH(3)s!1C(4)`H (3)s. ~3.31!

The exterior derivative of the right-hand side vanishes by
type IIB supergravity equations; in fact, this consistency co
dition determines the form of the Chern-Simons terms he
Inserting the type B form for the metric andC(4) , the right-
hand side is proportional to Re(*˜

6G(3)s2 iG (3)s), where *̃6
denotes the dual in the transverse directions using the m
ds̃2. This combination vanishes as a consequence of the
persymmetry conditions, so for all type B solutions the co
pling to C(6) is at most a constant in the action, which can
ignored.

The Chern-Simons term, for a type B background, giv
the Lagrangian density

LCS52pa8
m5

gZ
~2pn2uB!. ~3.32!

As long as the induced D3 charge

q35n2
1

2p
uB ~3.33!
5-6
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is positive, this cancels the potential from the DBI actio
The final result for the DBI Lagrangian density is

LDBI5
1

2
T3q3ecuvu2 ~3.34!

with T354p2a8m5 /g being the D3-brane tension.
This action has a simple interpretation: the inertial m

comes entirely from the induced D3-brane charge, with
additional factor ofec from the effect of the D7-branes o
the metric. For anti-D5-branes the same result holds withq3
replaced byn1(1/2p)uB . Recall that these branes are t
correct degrees of freedom on the moduli space only for

0<q3<1. ~3.35!

Where the induced D3 charge becomes negative the 5-br
would no longer be Bogomol’nyi-Prasad-Sommerfield~BPS!
type. The moduli space of 5-brane coordinates thus does
continue on into such a region but rather is joined onto
internal moduli space of the enhanced symmetry region
fined by the curve whereq3 vanishes@30#. When the mag-
nitude of the induced D3 charge exceeds unity, the 5-br
acquires additional moduli and can separate into elemen
constituents in the range~3.35! @19#.

Carrying out a similar expansion for the gauge field act
yields an additional term

LDBI5T3q3H 1

2
ecuvu22

1

4
~2pa8!2e2FFmnFmnJ .

~3.36!

Finally, noting thatec5e2F5t2 in our solution, this be-
comes

LDBI5S nt26
u2

2p D S 1

2
T3uvu22

1

8p
FmnFmnD , ~3.37!

where the plus~minus! corresponds to a D5~anti-D5! brane.
The kinetic and gauge terms have the same coefficient,
plying thatz is theN52 special coordinate. More generall
as in the F theory solution~3.7!, ec/e2F is the modulus of a
holomorphic function and the special coordinate is the
holomorphic function ofz. For future reference we defin
t2,eff to be the coefficient of2(1/8p)FmnFmn, hence

t2,eff5nt26
u2

2p
. ~3.38!

IV. GAUGE THEORY DUALS

A. The D7-brane–fractional-D3-brane spectrum

The gauge theory dual to our supergravity solution is
tained from the open-string spectrum for D3- and D7-bra
on the orbifold@31,32#. The Z2 reflectionR acts on the D3
and D7 Chan-Paton degrees of freedom via matrices, w
in a diagonal basis will be of the form
12600
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gR35S I N31 0

0 2I N32

D ,

~4.1!

gR75S I N71 0

0 2I N72

D ,

whereI N is theN3N identity matrix. The interpretation o
gR3 is well known@33#. This basis represents half D3-bran
trapped on the fixed plane. Geometrically, the positive eig
values correspond to wrapped D5-branes on the collap
S2, and the negative eigenvalues to wrapped anti-D5-bra
Thus,

N315N5 , N325N5̄ . ~4.2!

Each D5 carries one-half unit of D3 charge in the orbifo
theory, so the D3 charge is one-half the number of D3 Ch
Paton indices~this is evident in a basis in which each D3
brane has an image!; thusQ35 1

2 N35 1
2 (N311N32).

We must similarly deduce the meaning ofgR7. There is a
natural guess, since we have seen in Sec. III B that the
brane has two ground states, with D5-charges6 1

4 . Indeed,
one can argue for this connection as follows.2 The reflection
R relates opposite points on a given D7-brane, sogR7 repre-
sents a phase under a closed motion onR4/Z2. This phase is
a D7 Wilson line around the fixed point and so should ar
from a localized flux, which is just the degree of freedo
distinguishing the two D7 states. To be precise, a d
bounded by the given closed motion intersects the collap
S2 once, so the integral of the flux on this disk is one-half
its integral on the collapsedS2, giving a phase difference o
p between the two states.

In fact, the induced charge has already been calculate
Ref. @34#, in T-dual 5-9 form, where the last line of Eq
~3.30! shows that the induced charge carried by the D9-br
is 2 1

4 of that carried by the D5-brane. So just as for D
branes, the D7 Chan-Paton eigenvalue is related to
brane’s D5 charge, though with a different proportionali
Chan-Paton eigenvalue61 corresponds to charge7 1

4 .
The dynamical fields inD54 are obtained from the 3-3

3-7 and 7-3 strings. The massless 3-3 spectrum is w
known to be aU(N31)3U(N32) gauge theory with two
(N31,N̄32) % (N̄31,N32) hypermultiplets@35,26#. The action
of the orbifold on the 3-7 strings is

Ruc,i , j &5gR3,i i 8gR7,j j 8uRc,i 8, j 8&, ~4.3!

wherec is the oscillator state andi and j are the D3 and D7
Chan-Paton indices. In the Ramond sector, the fermio
zero modes on the 3-7 strings come from the 23- and
planes, so that the massless fermionic states are labele
the corresponding helicitiesus1 ,s4& and the Gliozzi-Scherk-
Olive ~GSO! projection setss152s4. The reflection in the
4567 directions has no action on this state, so the orbif
projection amounts togR3,i i gR7,j j 51. Thus the 3-7 strings

2We thank M. Douglas for suggesting this.
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contributeN71 Weyl fermions of each chirality~from s45
6 1

2 ) in the fundamental (N31,1) andN72 Weyl fermions of
each chirality in the (1,N32). The 7-3 strings contribute th
antiparticles of these. In the NS sector, states are labele
the 4567 helicitiesus2 ,s3& and the GSO projection setss2
5s3. Supersymmetry requires bosonic partners for the
mions in the spectrum, soR must act trivially on the oscil-
lator part of these bosonic states. This is so ifR is defined as
eip(s22s3): this is the condition where the orbifold an
D7-D3 supersymmetries are compatible.

In summary, the massless spectrum is anN52 gauge
theory with

vector multiplets: U~N31!3U~N32!adjoint,

two hypermultiplets: ~N31,N̄32! % ~N̄31,N32!,

N71hypermultiplets: ~N31,1! % ~N̄31,1!,

N72hypermultiplets: ~1,N32! % ~1,N̄32!. ~4.4!

Again, the superscripts6 refer to the action of theZ2 on the
D3 and D7 Chan-Paton factors.

B. The metric on moduli space

The Coulomb branch of moduli space is defined clas
cally by the eigenvalues of the vector multiplet scalarsf and
f̃,

f5diag~a1 , . . . ,aN31!, f̃5diag~ ã1 , . . . ,ãN32!.
~4.5!

These are related to the positions of the fractional brane

2pa8ai5z5i , 2pa8ãi5z5̄i . ~4.6!

Define similarly for the D7-brane positions

2pa8bi5z71 i , 2pa8b̃i5z72 i . ~4.7!

The moduli space metric is obtained from theN52 pre-
potentialF, whose perturbative form is

F5Fclassical1Fone loop,
~4.8!

Fclassical5
2p i

g1
2 (

i 51

N31

ai
21

2p i

g2
2 (

i 51

N32

bi
2 ,

Fone loop5
i

8p H (
i , j 51

N31

~ai2aj !
2 ln

~ai2aj !
2

m2

1 (
i , j 50

N32

~ ãi2ã j !
2 ln

~ ãi2ã j !
2

m2

2 (
hypers

m2 ln
m2

m2J .
12600
by

r-

i-

by

Hereg6
2 are the two classical gauge couplings, each equa

8pg in the classical limit. The masses of the hypermultiple
in Eq. ~4.4! are, respectively,

ai2ã j , ai2bj , ãi2b̃ j . ~4.9!

The effective value oft2, normalized as in Eq.~3.38!, is
Im(F9), and represents the inverse of the effective coupli
squared for theU(N31) factor. To obtain the effective action
for a D5-brane probe, increase the rank of the gauge gr
by one, adding in the fielda0 and extending the ranges in th
sums. Then

t2,eff5ImS ]2F
]a0

2 D
5

1

2g
1

1

2p (
i 51

N31

lnU~a02ai !
2

m2 U2
1

2p (
i 51

N32

lnU~a02ãi !
2

m2 U

2
1

4p (
i 51

N71

lnU~a02bi !
2

m2 U . ~4.10!

~An uninteresting numerical constant has been absorbed
the definition ofm.!

The moduli space is divided into regions which are se
rated by enhanc¸on curves@30,19#. Within each such region
the supergravity calculation is supposed to match the ap
priate perturbative description@36#, with a nonperturbative
rearrangement of degrees of freedom when an enhanc¸on is
crossed. The perturbative orbifold corresponds to the ra
0,uB/2p,1, where Eqs.~3.35! and ~3.33! imply that the
D5-brane probe corresponds ton51. Then Eq.~3.38! gives

t2,eff5t21
1

2p
u2 . ~4.11!

Inserting the results~3.24!,~3.25! for t andu, one finds that
the metrics do agree, where we identifym5r 0/2pa8 @r 0 is
the reference scale introduced below Eq.~3.7!#. The metric
for an anti-D5 probe also agrees.

V. DISCUSSION

Now let us consider the conditions under which the s
pergravity solution gives a good description of the theo
We first summarize the solution
5-8
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ds25Z21/2hmndxmdxn1Z1/2ds̃6
2 ,

ds̃6
252~dz1dz̄11dz2dz̄21t2dzdz̄!,

t5
i

g
1

1

2p i (
i 51

N7

ln~z2z7i !,

22~]1] 1̄1]2] 2̄1t2
21]3] 3̄!Z

5~4p!1/2kr31
1

2t2
~2pa8g!2dFPuDzuu2,

u52
ip

g
1 i (

i 51

N72

ln~z2z72 i !12i (
j 51

N5

ln~z2z5 j !

22i (
k51

N5̄

ln~z2z5̄k!. ~5.1!

As discussed in Sec. II A, there is a singularity in the dilat
at large radius, when lnr;2p/gN7. In order that the unknown
physics of the singularity decouple we then needr
!e2p/gN7. It will be convenient to make the slightly stronge
assumption that

r !1. ~5.2!

This inequality also implies thatt2
21!1 so that the theory is

weakly coupled.
In addition for a good supergravity dual the string met

must have curvature whose inertial components are sma
string units@37#,

a8Rs!1. ~5.3!

A typical term in the curvature is of order

Rs;Gs
zz̄u]z ln Zu25S g

t2ZD 1/2

u]z ln Zu2. ~5.4!

Although we cannot find the warp factorZ exactly, we can
estimate it. For convenience we take all branes to be at
origin. The arguments of the logarithms are small and so
logarithms are slowly varying. One thus obtains a good e
mate ofZ at any position by treatingt and u as constants
The unwarped metric is then flat, andZ satisfies an ordinary
Laplace equation, so that the warp factor reduces to tha
a D3-brane system. Thus,

Z'
R4

r̃ 4
, r̃ 25r 1

21r 2
21t2r 2, R454pgQ3 , ~5.5!

whereQ3 is the total 3-brane charge

Q35N31S 12
uB

2p D1N32

uB

2p
. ~5.6!

Evaluating this on the planez15z250, where it is greatest
we find

a8Rs;At2 /Q3. ~5.7!
12600
n

in

he
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This has a simple interpretation: it is the condition for t
usual AdS/CFT duality to be valid@1#, substituting the run-
ning values ofQ3 andt. Thus we need

Q3@t2⇒r @e22pQ3 /N7. ~5.8!

In particular, the supergravity dual is good over a range
scales only if

Q3@N7 . ~5.9!

This result is unfortunate. For example, an interest
case is to takeN D31-branes and 2N D71-branes all at the
origin: this gives a conformalN52 SU(N) theory with fun-
damental matter. The solution for this case is

t5
i

g
2

iN

p
ln z, u52

ip

g
12iN ln z, ~5.10!

giving

t2,eff5t21
u2

2p
5

1

2g
,

uB

2p
5

p22gN ln r

2p22gN ln r
. ~5.11!

The effective coupling is constant, as is already assured
the general agreement between the moduli space metric
calculated in supergravity and the gauge theory. Note tha
have here a conformal gauge theory even though the dil
is nontrivial. UnfortunatelyQ3&N7 and so we have no
found a good dual. We will return to this issue shortly.

The condition~5.8! is satisfied over a wide range of scal
in the case ofN D31-branes andN7!N D71-branes. This
gives aN52 SU(N) theory with a small amount of matte
However, there is a large negativeb function so the coupling
quickly becomes strong, and so there is interesting dynam
only over a small range of scales with an enhanc¸on @30# in
the IR.

The one case where we obtain a useful dual isN31

;N32@N76. This gives an approximately conforma
SU(N31)3SU(N32) theory with bifundamental matter plu
a small amount of fundamental matter.

This raises the interesting question: whatis the dual to the
conformal N52 SU(N) theory with fundamental matter
when the ’t Hooft parametergN is large? Let us see why ou
dual ~5.10! fails. At r !1, t2 quickly becomes large, so th
underlying string theory isweaklycoupled. The reason tha
the gauge dynamics remains strongly coupled is that at
same timeuB rapidly approaches the value 2p at which the
ALE space becomes singular. One could also try to obta
dual description by starting with the dual to a product the
with bifundamental matter@26# and taking one gauge cou
pling to zero while holding the other fixed. The limit is aga
zero string coupling on a singular ALE space.

The problem of understanding weakly coupled stri
theory on a singular ALE space is a familiar one, and it h
been argued that the correct effective description is obta
by T-duality on one of the angular directions of the AL
space, giving a IIA configuration with parallel NS5-bran
@38#. With the inclusion of D3- and D7-branes on the II
side one obtains D4- and D6-branes on the IIA side. S
configurations have of course been extensively conside
5-9
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@39#, and theirT-duality to the IIB configurations discusse
@40#. However, thus far they have been applied only to
moduli space dynamics. To obtain a complete dual to
large-N gauge theory one needs the full supergravity solut
on the IIA side. There has been recent progress in this
@41#, and we hope to return to this point in future work.
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