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Exactly solvable model of superstring in plane wave Ramond-Ramond background
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We describe in detail the solution of type IIB superstring theory in the maximally supersymmetric plane-
wave background with constant null Ramond-Ramond 5-form field strength. The corresponding light-cone
Green-Schwarz action found by Metsaev is quadratic in both bosonic and fermionic coordinates. We obtain the
light-cone Hamiltonian and the string representation of the corresponding supersymmetry algebra. The super-
string Hamiltonian has a ‘‘harmonic-oscillator’’ form in both the string oscillator and the zero-mode parts and
thus has a discrete spectrum. We analyze the structure of the zero-mode sector of the theory, establishing the
precise correspondence between the lowest-lying ‘‘massless’’ string states and the type IIB supergravity fluc-
tuation modes in the plane-wave background. The zero-mode spectrum has a certain similarity to the super-
gravity spectrum in AdS53S5 background of which the plane-wave background is a special limit. We also
compare the plane-wave string spectrum with the expected form of the light-cone gauge spectrum of the
AdS53S5 superstring.
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I. INTRODUCTION

The simplest gravitational plane wave backgrounds

ds252dx1dx21K~x1,xI !dx1dx11dxIdxI ,

K5kIJxIxJ,

supported by a constant Neveu-Schwarz–Neveu-Schw
~NS-NS! 3-form background, provide examples of exac
solvable~super!string models: the string action becomes qu
dratic in the light-cone gaugex15p1t ~see, e.g.,@1–4#!. It
was recently pointed out@5# that this solvability property is
shared also by a conformal model describing type IIB sup
string propagating in a particular plane-wave metric s
ported by aRamond-Ramond5-form background@6#:

ds252dx1dx22f2xI
2dx1dx11dxIdxI , I 51, . . . ,8,

~1.1!

F112345F1567852f. ~1.2!

This background has several special properties. It prese
the maximal number of 32 supersymmetries@6#, and it is
related by a special limit~boost along a circle ofS5 com-
bined with a rescaling of the coordinates and of the radiu
a8) to the AdS53S5 background@7#. The exactly solvable
string theory corresponding to Eq.~1.1! may thus have some
common features with a much more complicated str
theory on AdS53S5 whose light-cone action contains no
trivial interaction terms@8,9#.

*Email address: metsaev@lpi.ru
†Email address: tseytlin.1@osu.edu
0556-2821/2002/65~12!/126004~19!/$20.00 65 1260
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In the present paper which is an extension of@5# we will
present in detail the solution of this Ramond-Ramond~RR!
plane-wave string model. In particular, we will explicitl
identify the massless modes in its spectrum with small fl
tuations of the type IIB supergravity fields in the backgrou
~1.1!. The results will have an obvious similarity to those
@10# in the case of AdS53S5. In particular, a remarkable
common feature of the RR plane wave supermultiplets
the AdS supermultiplets is that the massless fields with
ferent spins belonging to the same supermultiplet have
general, different lowest energy values. The same is true
for massive supermultiplets.1

Let us first recall the form of the light-cone gauge Gree
Schwarz~GS! action for the type IIB superstring in the back
ground~1.1!. This action was found in@5# by using the su-
percoset method of@13#, but there is a simple shortcu
argument relating the presence of the fermionic ‘‘mass’’ te
to the form of the generalized spinor covariant derivative
type IIB supergravity. In view of the special null Killing
vector properties of the background~1.1!, ~1.2! it is possible
to argue that the only non-vanishing fermionic contributi
to the type IIB superstring action in the standard light-co
gauge

x15p1t, G1uI50 ~1.3!

1This is different from what one finds in the case of the no
supersymmetric bosonic plane wave backgrounds, where mas
fields of different spins have, as in the case of the flat space,
same lowest energy values. This difference is related to supers
metry and not to the definition of masslessness: in both cases
use the same definition of massless fields based on so-calledsim
invariance~invariance under transformations of the original plan
wave algebra supplemented by the dilatation! of the corresponding
field equations@11,12#.
©2002 The American Physical Society04-1
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comes from the direct covariantization

L2F5 i ~habdIJ2eabr3IJ!]axmūIGmDbuJ ~1.4!

of the quadratic fermionic term in the flat-space GS@14#
action. HereuI (I51,2) are the two real positive chiralit
10D MW spinors andr35diag(1,21) ~see the Appendix for
notation!. D is the generalized covariant derivative that a
pears in the Killing spinor equation~or gravitino transforma-
tion law! in type IIB supergravity@15#: acting on the real
spinorsuI it has the form~we ignore the dilaton and RR
scalar dependence!

Da5]a1
1

4
]axmF S vmnm2

1

2
Hmnmr3DGmn

2S 1

3!
FmnlGmnlr11

1

2•5!
FmnlrkGmnlrkr0DGmG

~1.5!

where thers matrices in theI,J space are the Pauli matrice
r15s1 , r05 is2. In the light-cone gauge~1.3! the non-zero
contribution to Eq.~1.4! comes only from the term wher
both the ‘‘external’’ and ‘‘internal’’]axm factors in Eq.~1.4!
becomep1d1

mda
0 . As is well known, in the flat-space light

cone GS actionu1 and u2 become the right and the le
moving 2D fermions. In the presence of theF5 background
~1.2! the surviving quadratic fermionic term is proportion
to u1G2Gm1 . . . m4u2F1m1 . . . m4

. While in the case of an
NS-NS 3-form background the fermionic interaction te
has a chiral 2D form (r3 is diagonal!, in the case of a RR
background one gets a non-chiral 2D ‘‘mass-term’’ struct
(r1 andr0 are off diagonal! out of the interaction term inDa
in Eqs.~1.4!,~1.5!.

The resulting quadratic light-cone action@5# can be writ-
ten, like the flat-space GS action, in a 2D spinor form a
describes 8 free massive 2D scalars and 8 free massive
jorana 2D fermionic fieldsc5(u1,u2) propagating in a flat
2D world-sheet:

L5LB1LF , LB5
1

2
~]1xI]2xI2m2xI

2!,

m[p1f, ~1.6!

LF5 i~u1ḡ2]1u11u2ḡ2]2u222mu1ḡ2Pu2!,

ḡ1uI50. ~1.7!

Here]65]06]1 and we absorbed one factor ofp1 into uI.
We use the spinor notation of@5# i.e., gm,ḡm are the 16
316 Dirac matrices which are the off-diagonal parts of
332 matricesGm. The matrixP in the mass term (P251)
is the product of fourg matrices~see the Appendix! which
originates fromGm1 . . . m4F1m1 . . . m4

in Eqs.~1.4!,~1.5!.
In Sec. II A we shall review the solution of the classic

equations corresponding to the light-cone gauge ac
~1.6!,~1.7! and then~in Sec. II B! perform the straightforward
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canonical quantization of this quadratic system alrea
sketched in@5#. In Sec. II C we shall present the light-con
string realization of the basic symmetry superalgebra of
plane-wave background. We shall then use this superalg
to fix the vacuum-energy~‘‘normal-ordering’’! constant in
the zero-mode sector~Sec. II D!. As we shall explain, the
choice of the fermionic zero-mode vacuum is not uniq
with different ~physically equivalent! choices depending on
how one decides to describe the representation of the co
sponding Clifford algebra. In particular, we note that
choice that leads to zero vacuum energy constant breaks
SO(8) global symmetry down toSO(4)3SO8(4) @which is
in fact the true symmetry of the plane-wave backgrou
~1.1!,~1.2!# but is not the one that has a smooth flat-spa
limit.

In Sec. III we shall determine the spectrum of fluctuatio
of type IIB supergravity expanded near the plane-wave ba
ground ~1.1!,~1.2!. Section III A will contain some genera
remarks on solutions of massless Klein-Gordon-type eq
tions in the plane-wave metric~1.2!. The bosonic~scalar,
2-form, graviton and 4-form field! spectra will be found in
Sec. III B. The spin 1/2 and spin 3/2 cases will be analyzed
Sec. III C. Our analysis will be similar to the one carried o
in @10# in the case of the AdS53S5 background. As a result
we will be able to give a space-time interpretation to t
‘‘massless’’~zero-mode! sector of the string theory. The dis
creteness of the supergravity part of the light-cone ene
spectrum will follow from the condition of square integrab
ity of the solutions of the corresponding wave equations
fixed p1. In Sec. III D we will summarize the results for th
bosonic and fermionic spectra in the two tables and th
explain how the corresponding physical modes can be in
preted as components of a single scalar type IIB superfi
satisfying a massless~dilatation-invariant! equation in light-
cone superspace.

In the concluding Sec. IV we shall make some comme
on the parameters and possible limits of the plane-w
string theory, and also compare it with the expected form
the light-cone string theory spectrum in AdS53S5 back-
ground.

Our index and spinor notation and definitions as well
some useful relations will be given in the Appendix.

II. CANONICAL QUANTIZATION

A. Solution of classical equations

The equations of motion following from Eqs.~1.6!,~1.7!
take the form

]1]2xI1m2xI50, ~2.1!

]1u12mPu250, ]2u21mPu150. ~2.2!

The parameter f in Eq.~1.1! which has dimension of mass
can be absorbed into rescaling ofx1,x2, i.e. set to a given
4-2
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EXACTLY SOLVABLE MODEL OF SUPERSTRING IN . . . PHYSICAL REVIEW D65 126004
value.2 We shall choose the length of thes interval to be 1.
The flat space limit corresponds to m→0.

As follows from the structure of the covariant string a
tion corresponding to the background~1.1!,~1.2! one can ab-
sorb the dependence on the string tension into the follow
rescaling of the coordinates3: x2→2pa8x2,xI

→(2pa8)1/2xI ,uI→(2pa8)1/2uI with x1 unchanged. Then
all one needs to do to restore the dependence on the s
tension is the following rescaling ofp1:

p1→2pa8p1. ~2.3!

In particular, m→m52pa8p1f.
The general solutions to Eqs.~2.1!,~2.2! satisfying the

closed string boundary conditions

xI~s11,t!5xI~s,t!, u~s11,t!5u~s,t!, 0<s<1,

~2.4!

are found to be

xI~s,t!5cos mt x0
I 1m21sin mt p0

I 1 i(
nÞ0

1

vn
@wn

1~s,t!

3an
1I1wn

2~s,t!an
2I #, ~2.5!

u1~s,t!5cos mt u0
11sin mtPu0

21 (
nÞ0

cnS wn
1~s,t!un

1

1 i
vn2kn

m
wn

2~s,t!Pun
2D , ~2.6!

u2~s,t!5cos mtu0
22sin mtPu0

11 (
nÞ0

cnS wn
2~s,t!

3un
22 i

vn2kn

m
wn

1~s,t!Pun
1D , ~2.7!

where the basis functionswn
1,2(s,t) are

wn
1~s,t!5exp@2 i~vnt2kns!#,

wn
2~s,t!5exp@2 i~vnt1kns!# ~2.8!

and

vn5Akn
21m2, n.0; vn52Akn

21m2, n,0;
~2.9!

2Note also that since the generatorP1 commutes with all other
generators of the plane wave superalgebra we could fixp1 to take
some specific non-vanishing value. In what follows we shallp1

arbitrary.
3After the rescalingx2,xI will be dimensionless~like t and s)

but x1 ~anda8p1) will have dimension of length.
12600
g

ing

kn[2pn, cn5
1

A11S vn2kn

m D 2 , n561,62, . . . .

~2.10!

The canonical momentumP I5 ẋI takes the form

P I~s,t!5cos mt p0
I 2m sin mt x0

I 1 (
nÞ0

~wn
1~s,t!an

1I

1wn
2~s,t!an

2I !. ~2.11!

The fermionic momenta given by2 iḡ2uI imply that there
are the second class constraints which should be treated
lowing the standard Dirac procedure~see, e.g.,@5#!.

The coordinatex2 satisfies the equation

p1x́21P I x́I1 i~u1ḡ2ú11u2ḡ2ú2!50, ~2.12!

which leads to the constraint

E ds@P I x́I1 i~u1ḡ2ú11u2ḡ2ú2!#50. ~2.13!

We get the following classical Poisson-Dirac brackets:

@p0
I ,x0

J#P.B.5d IJ, $u0
Ia ,u0

Jb%P.B.5
i

4
~g1!abdIJ ,

@am
II ,an

JJ#P.B.5
i

2
vmdm1n,0d

IJdIJ, ~2.14!

$um
Ia ,un

Jb%P.B.5
i

4
~g1!abdIJdm1n,0 . ~2.15!

The matrixg1 in Eq. ~2.15! is reflecting the fact that we ar
using the light-cone gauge constrained fermionic coor
nates,ḡ1uI50. The coefficientscn , Eq. ~2.10!, are chosen
so that the Fourier modes of the fermionic coordinates sat
the standard Poisson-Dirac brackets~2.15!.

B. Quantization and space of states

We can now quantize 2D fieldsxI anduI by promoting as
usual the coordinates and momenta or the Fourier com
nents appearing in Eqs.~2.5!,~2.6!,~2.7! to operators and re
placing the classical Poisson~anti!brackets~2.14!,~2.15! by
the equal-time~anti!commutators of quantum coordinate
and momenta according to the rules$.,.%P.B.→ i$.,.%quant,
@ .,.#P.B.→ i@ .,.#quant. This gives (m,n561,62, . . . )

@p0
I ,x0

J#52 id IJ, @am
II ,an

JJ#5
1

2
vmdm1n,0d

IJdIJ,

~2.16!

$u0
Ia ,u0

Jb%5
1

4
~g1!abdIJ,

$um
Ia ,un

Jb%5
1

4
~g1!abdIJdm1n,0 . ~2.17!
4-3
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The light-cone superstring Hamiltonian is

H[2P2, ~2.18!

H5
1

p1E
0

1

dsF1

2
~P I

21 x́I
21m2xI

2!12imu1ḡ2Pu2

2 i~u1ḡ2ú12u2ḡ2ú2!G . ~2.19!

Using the fermionic equations of motion it can be rewritt
in the form

H5
1

p1E dsF1

2
~P I

21 x́I
21m2xI

2!1 i~u1ḡ2u̇11u2ḡ2u̇ 2!G .
~2.20!

Plugging in the above expressions for the coordinates
momenta we can represent the resulting light-cone ene
operator as

H5E01E11E2, ~2.21!

whereE0 is the contribution of the zero modes andE1,E2

are the contributions of the string oscillation modes:

E05
1

2p1
~p0

21m2x0
2!12ifu0

1ḡ2Pu0
2 , ~2.22!

EI5
1

p1 (
nÞ0

~a2n
II an

II1vnu2n
I ḡ2un

I!, I51,2.

~2.23!

The constraint~2.13! takes the form

N15N2, NI[ (
nÞ0

S kn

vn
a2n

II an
II1knu2n

I ḡ2un
ID .

~2.24!

Let us introduce the following basis of creation and anni
lation operators:

a0
I 5

1

A2m
~p0

I 1 imx0
I !, ā0

I 5
1

A2m
~p0

I 2 imx0
I !,

~2.25!

a2n
II 5Avn

2
an

II , an
II5Avn

2
ān

II , n51,2, . . . ,

~2.26!

u05
1

A2
~u0

11 iu0
2!, ū05

1

A2
~u0

12 iu0
2!, ~2.27!

u2n
I [

1

A2
hn

I , un
I[

1

A2
h̄n

I , n51,2, . . . ,

~2.28!
12600
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in terms of which the commutation relations~2.16!,~2.17!
take the form

@ ā0
I ,a0

J#5d IJ, @ ām
II ,an

JJ#5dm,nd IJdIJ, ~2.29!

$ū0
a ,u0

b%5
1

4
~g1!ab,

$h̄m
Ia ,hn

Jb%5
1

2
~g1!abdm,ndIJ. ~2.30!

Herea51, . . .,16, and the spinors are subject to theḡ1u0
I

50,ḡ1hn
I50 constraint.

In this basis the light-cone energy operator~2.21! be-
comes the sum ofE0 , E1 andE2 where

E05fE0 , E05a0
I ā0

I 12ū0ḡ2Pu014, ~2.31!

EI5
1

p1 (
n51

`

vn~an
II ān

II1hn
Iḡ2h̄n

I!. ~2.32!

We have normal-ordered the bosonic zero modes inE0 ~get-
ting extra term1

2 3854) and both the bosonic and fermion
operators inEI ~here the normal-ordering constants can
out as there are equal numbers of bosonic and fermio
oscillators!. Note that because of the relation Tr(g1ḡ2P)
50, the contribution of the fermionic zero modes in E
~2.31! does not depend on ordering ofu0 and ū0.

To restore the dependence ona8 we need to rescalep1 as
in Eq. ~2.3!. The explicit form of the light-cone Hamiltonian
is then

H5f~a0
I ā0

I 12ū0ḡ2Pu014!

1
1

a8p1 (I51,2
(
n51

`

An21~a8p1f!2~an
II ān

II1hn
Iḡ2h̄n

I!.

~2.33!

Note that the energy thus depends on the two paramete
mass dimension 1: the curvature~or RR field! scale f and the
string scale (p1a8)21. The flat-space limit corresponds t
f50 ~the zero-mode part recovers its flat-space formpI

2/2p1

as in the case of the standard harmonic oscillator; cf. S
III A !.

The vacuum state is the direct product of a zero-mo
vacuum and the Fock vacuum for string oscillation mod
i.e., it is defined by

ā0
I u0&50, ū0

au0&50, ān
II u0&50, h̄n

Iau0&50,

n51,2, . . . . ~2.34!

Generic Fock space vectors are then built up in terms
products of creation operatorsa0

I , an
II , u0

a , hn
I,a acting on

the vacuum

uF&5F~a0 ,an ,u0 ,hn!u0&. ~2.35!
4-4
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The subspace of physical states is obtained by imposing
constraint

N1uFphys&5N2uFphys&, NI5 (
n51

`

kn~an
II ān

II1hn
Iḡ2h̄n

I!.

~2.36!

Note that in contrast to the flat space case hereEIÞNI.
Let us now make few remarks about the global symme

of the above expressions. While the metric~1.1! and the
bosonic part of the string action~1.6! haveSO(8) symmetry,
the 5-form background~1.2! and thus the fermionic part o
the classical action~1.7! are invariant only underSO(4)
3SO8(4). The contribution of the string oscillators to th
Hamiltonian~2.32! is SO(8) invariant, but this invariance is
broken down toSO(4)3SO8(4) by the contribution of the
fermionic zero modes in Eq.~2.31!. In general, the amoun
of global symmetry of the zero-mode Hamiltonian depen
on the definition of the fermionic creation and annihilati
operators, i.e. on the definition of the zero-mode vacuu
With the definition used in Eq.~2.27! the vacuum~2.34!
preservesSO(8) symmetry, but the fermionic part of th
zero-mode Hamiltonian~2.31! is not SO(8) invariant. One
can instead introduce another set of fermionic creati
annihilation operators, i.e. use another definition of the
mionic zero-mode vacuum, which preserves only
SO(4)3SO8(4) invariance, but which formally restores th
SO(8) invariance of the zero-mode Hamiltonian~see Sec.
II D below!. In any case, theSO(8) invariance is broken
down to SO(4)3SO8(4) not only in the fermionic zero
mode sector, but also explicitly by the string-mode contrib
tions to the dynamical supercharges discussed in Sec. II

C. Light cone string realization of the supersymmetry algebra

In general, the choice of the light-cone gauge spoils p
of manifest global symmetries, and in order to demonstr
that these global invariances are still present, one need
find the~bosonic and fermionic! Noether charges that gene
ate them. These charges play a crucial role in formulat
superstring field theory in the light-cone gauge in flat sp
@16,17# and are of equal importance in the present pla
wave context~see also@5#!.

In the light-cone formalism, the generators~charges! of
the basic superalgebra can be split into the kinematical g
eratorsP1,PI ,J1I ,Ji j ,Ji 8 j 8,Q1,Q̄1, and the dynamical gen
erators P2,Q2,Q̄2 @here I 5( i ,i 8), i 51,2,3,4;
i 855,6,7,8#.4 It is important to find a free~quadratic! field
representation for the generators of the basic superalge
The kinematical generators which effectively depend only
the zero modes are5

4At point x15p1t50 the kinematical generators in the supe
field realization are quadratic in the physical string fields, while
dynamical generators receive higher-order interaction-depen
corrections.

5We defineu[(1/A2)(u11 iu2), ū[(1/A2)(u12 iu2).
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P15p1, PI5E ds~cos fx1P I1f sin fx1xIp1!, ~2.37!

J1I5E ds~ f21sin fx1P I2cos fx1xIp1!, ~2.38!

Q152Ap1E dsḡ2eifx1Pu,

Q̄152Ap1E dsḡ2e2 ifx1Pū. ~2.39!

The remaining kinematical chargesJIJ5(Ji j ,Ji 8 j 8) have
non-zero components which depend on all string modes
are

Ji j 5E ds~xiP j2xjP i2 iū ḡ2g i j u!,

Ji 8 j 85E ds~xi 8P j 82xj 8P i 82 iū ḡ2g i 8 j 8u!.

~2.40!

The dynamical chargeP2 is given by Eq.~2.19!, while the
superchargesQ2 and Q̄2 are given by@Q,Q̄5(1/A2)(Q1

6 iQ2)#

Q215
2

Ap1E ds@~P I2 x́I !ḡ Iu12mxI ḡ IPu2#,

~2.41!

Q225
2

Ap1E ds@~P I1 x́I !ḡ Iu21mxI ḡ IPu1#.

~2.42!

The derivation of these supercharges is given in@5#.
Using the mode expansions of Sec. II A in Eqs.~2.37!,

~2.39! we get6

P15p1, PI5p0
I , J1I52 ix0

I p1, ~2.43!

Q152Ap1ḡ2u0 , Q̄152Ap1ḡ2ū0 . ~2.44!

The chargesJIJ5(Ji j , Ji 8 j 8) are given by

JIJ5J0
IJ1 (I51,2

(
n51

` S an
II ān

IJ2an
IJān

II1
1

2
hn

Iḡ2g IJh̄n
ID ,

~2.45!

whereJ0
IJ is the contribution of the zero modes:

J0
IJ5a0

I ā0
J2a0

Jā0
I 1

1

2 (I51,2
u0

Iḡ2g IJu0
I . ~2.46!

e
nt

6While transforming the generatorsJmn, Eqs.~2.38!, ~2.40!, to the
form given in Eqs.~2.43!, ~2.45! we multiply them by the factor1 i.
4-5
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Note that the kinematical generators do not involve the m
trix P and formally look as if theSO(8) symmetry were
present.

The dynamical supercharges~2.41! have the following ex-
plicit form:

Ap1Q2152p0
I ḡ Iu0

122mx0
I ḡ IPu0

21 (
n51

` S 2Avncnan
1I ḡ I h̄n

1

1
im

Avncn

an
2I ḡ IPh̄n

21H.c.D , ~2.47!

Ap1Q2252p0
I ḡ Iu0

212mx0
I ḡ IPu0

11 (
n51

` S 2Avncnan
2I ḡ I h̄n

2

2
im

Avncn

an
1I ḡ IPh̄n

11H.c.D . ~2.48!

These expressions explicitly break theSO(8) invariance
down toSO(4)3SO8(4).

The requirement that the light-cone gauge formulation
spect basic global symmetries amounts to the condition
the above generators satisfy the relations of the symm
superalgebra of the plane wave RR background. The c
mutators of the bosonic generators are7

@P2,PI #5f2J1I , @PI ,J1J#52d IJP1,

@P2,J1I #5PI , ~2.49!

@Pi ,Jjk#5d i j Pk2d ikPj ,

@Pi 8,Jj 8k8#5d i 8 j 8Pk82d i 8k8Pj 8, ~2.50!

@J1 i ,Jjk#5d i j J1k2d ikJ1 j ,

@J1 i 8,Jj 8k8#5d i 8 j 8J1k82d i 8k8J1 j 8, ~2.51!

@Ji j ,Jkl#5d jkJil 13 terms,

@Ji 8 j 8,Jk8 l 8#5d j 8k8Ji 8 l 813 terms. ~2.52!

The commutation relations between the even and odd g
erators are

@Ji j ,Qa
6#5

1

2
Qb

6~g i j !b
a , @Ji 8 j 8,Qa

6#5
1

2
Qb

6~g i 8 j 8!b
a ,

~2.53!

@J1I ,Qa
2#5

1

2
Qb

1~g1I !b
a , ~2.54!

7Note that we use the HermitianPm and the anti-HermitianJmn

generators. The superchargesQ6 andQ̄6 are related to each othe

by the conjugation (Q6)†5Q̄6.
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@PI ,Qa
2#5

1

2
fQb

1~Pg1I !b
a , @P2,Qa

1#5fQb
1Pb

a ,

~2.55!

together with the commutators that follow from these
complex conjugation. The anticommutation relations are

$Qa
1 ,Q̄b

1%52gab
2 P1, ~2.56!

$Qa
1 ,Q̄b

2%5~ ḡ2g1ḡ I !abPI2f~ ḡ2g1ḡ iP!abJ1 i

2f~ ḡ2g1ḡ i 8P8!abJ1 i 8, ~2.57!

$Qa
2 ,Q̄b

1%5~ ḡ1g2ḡ I !abPI2f~ ḡ1g2ḡ iP!abJ1 i

2f~ ḡ1g2ḡ i 8P8!abJ1 i 8, ~2.58!

$Qa
2 ,Q̄b

2%52gab
1 P21f~ ḡ1g i j P!abJi j

1f~ ḡ1g i 8 j 8P8!abJi 8 j 8. ~2.59!

One can check directly that our quantum generators
pressed in terms of the creation-annihilation operators do
isfy these~anti!commutations relation. Note that one reco
ers the flat-space light-cone superalgebra in the limit f→0.
As in the flat superstring case the anticommutator relat
between the dynamical generatorsQ2 andQ̄2, Eq. ~2.59!, is
valid only on the physical subspace~2.36!.

D. Choice of fermionic zero-mode vacuum

The states obtained by applying the fermionic zero-mo
creation operators to the vacuum form a supermultip
States of that supermultiplet can be described in differ
ways depending on how one picks up a~‘‘Clifford’’ ! vacuum
to construct the tower of other states on top of it. While it
natural to define ‘‘the’’ vacuum to have zero energy, this
not the only possible or necessary choice as we shall dis
below.

In general, the quantum counterpart of the zero-mode
ergy ~2.22! may be written as@cf. Eq. ~2.33!#

E05fE0 , E05a0
I ā0

I 22u0ḡ2Pū01e0 , ~2.60!

where u05(1/A2)(u0
11 iu0

2) @see Eq.~2.27!# and e0 is a
constant that should be fixed from the condition of the re
ization of the superalgebra~2.56!–~2.59! at the quantum
level. Note thatE050 in the flat-space limit f→0.

We shall need the following expressions for the ze
mode parts of some symmetry generators@see Eqs.~2.46!,
~2.47!, ~2.48!#:

J0
IJ5a0

I ā0
J2a0

Jā0
I 1 ū0ḡ2g IJu0 , ~2.61!

Ap1Q0
252p0

I ḡ Iu012imx0
I ḡ IPu0 ,

Ap1Q̄0
252p0

I ḡ I ū022imx0
I ḡ IPū0 . ~2.62!
4-6
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Let us introduce instead ofu0 the following complex fermi-
onic zero-mode coordinates:

uR5
11P

A2
u0 , uL5

12P

A2
u0 , ~2.63!

satisfying in view of Eqs.~2.15!, ~2.30! the relations

$ūR ,uR%5
1

4
~11P!g1,

$ūL ,uL%5
1

4
~12P!g1, $ūR ,uL%50. ~2.64!

In terms of them

E05a0
I ā0

I 1uLḡ2ūL2uRḡ2ūR1e0 , ~2.65!

and

Q0
252Af~a0

I ḡ IuR1ā0
I ḡ IuL!,

Q̄0
252Af~ ā0

I ḡ I ūR1a0
I ḡ I ūL!, ~2.66!

J0
IJ5a0

I ā0
J2a0

Jā0
I 1

1

2
ūRḡ2g IJuR

1
1

2
ūLḡ2g IJuL . ~2.67!

Let us now discuss several possible definitions of the ze
mode vacuum~we shall always assume thatā0

I u0&50). In all
the cases below the expression forJIJ will imply that the
vacuum is a scalar with respect toSO(4)3SO8(4).

First, we may define the fermionic zero-mode vacuum
the same way is in the case of the flat space backgroun
imposing

ū0u0&50, i.e. ūRu0&50, ūLu0&50. ~2.68!

This is the definition we used in Eq.~2.34!. Then

$Q0
2 ,Q̄0

2%u0&54f$a0
I ḡ IuR1ā0

I ḡ IuL ,ā0
JḡJūR1a0

JḡJūL%u0&

54f~ ā0
JḡJūR!~a0

I ḡ IuR!u0&

54fḡ I ūRḡ IuRu0&5fḡ I~11P!g1ḡ I u0&

528fḡ1u0&, ~2.69!

where we use the relationḡ IPg I50. On the other hand
from the supersymmetry algebra relation~2.59! we have

$Q2,Q̄2%u0&52fḡ1P2u0&522fḡ1e0u0&, ~2.70!

where we used thatJIJu0&50. Since for the zero modesE0
52P2 we learn that heree054.

Thus the normal ordering of bosons done in Eq.~2.31! is
indeed consistent with the supersymmetry algebra. T
12600
o-

n
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n

from Eq. ~2.65! we see that acting withuL (uR) on u0& we
increase~decrease! the energy by one unit. The generic fe
mionic zero-mode state is

~uR!nR~uL!nLu0&, nL ,nR50,1,2,3,4. ~2.71!

The restriction on the values ofnR and nL comes from
(uR)550, (uL)550 ~the projected fermions have only 4 in
dependent components!. The corresponding energy spectru
is thus

E0~nR ,nL!542nR1nL . ~2.72!

The values of the energy of the lightest massless~type IIB
supergravity! string modes with no bosonic excitations th
run from 0 to 8~in units of f).

The equivalent definition of the vacuum is obtained
using the conjugate of Eq.~2.68!

u0u0&50, i.e. uRu0&50, uLu0&50, ~2.73!

so that

e054, E0~nR ,nL!541nR2nL . ~2.74!

One may instead define the vacuum by

ūRu0&50, uLu0&50, ~2.75!

leading to

e058, E0~nR ,nL!582nR2nL , ~2.76!

so thatE0 again takes values in the range 0,1, . . . ,8.
Finally, another possible choice is

uRu0&50, ūLu0&50, ~2.77!

in which case one finds that

e050, E0~nR ,nL!5nR1nL . ~2.78!

Here alsoE050,1, . . . ,8.Note that the two choices of th
vacuum~2.68! and~2.73! preserve theSO(8) symmetry but
break the effective 2D supersymmetry of the light-co
string action~1.6! ~the 2D vacuum energy does not vanish!.
At the same time, the choice~2.78! preserves the 2D super
symmetry, but breaks theSO(8) symmetry down toSO(4)
3SO8(4) @cf. Eq. ~2.63!#.

All these definitions of the vacuum are physically equiv
lent, being related by a relabeling of the states in the sa
‘‘massless’’ supermultiplet. While in the last choice we di
cussed the vacuum energy constante0 is zero~i.e. the normal
ordering constants of the bosonic and fermionic zero mo
cancel as they do for the string oscillation modes!, the ad-
vantage of the first definition we have used above in E
~2.34! is that it directly corresponds to the definition of th
fermionic vacuum in flat space@16,18#, i.e. with this defini-
tion one has a natural smooth flat space limit.

In the next section we shall determine the spectrum of
type IIB supergravity fluctuation modes in the backgrou
4-7
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~1.1!, ~1.2! and will thus be able to explicitly interpret th
states~2.71! with energiesE050,1, . . . ,8 interms of par-
ticular supergravity fields.

III. TYPE IIB SUPERGRAVITY FLUCTUATION
SPECTRUM IN THE RR PLANE-WAVE BACKGROUND

The string states obtained by acting by the fermionic a
bosonic zero-mode operators on the vacuum should b
one-to-one correspondence with the fluctuation modes
type IIB supergravity fields expanded near the plane-w
background~1.1!, ~1.2!. Assuming the choice of the zero
mode vacuum in Eq.~2.34! or ~2.68! and acting by the prod
ucts of the fermionic zero-mode operators one finds
lowest-lying states that can be symbolically represented

u0& complex scalar

u0u0& spin 1/2 field

u0u0u0& complex 2- form field

u0u0u0u0& spin 3/2 field

u0u0u0u0u0& graviton and self-dual 4-form field

.. complex conjugates to the above.
~3.1!

The complete type IIB supergravity spectrum is obtained
acting with the bosonic zero mode creation operatorsa0

I on
the above states.

The aim of this section is to explicitly derive the supe
gravity spectrum using the standard field-theoretic approa
analogous to the one used in@10# for the AdS53S5 back-
ground.

As a preparation, it is useful to present the decomposi
of the 1281128 physical transverse supergravity degrees
freedom in the light-cone gauge using theSO(8)→SO(4)
3SO8(4) decomposition:8

Graviton: hi j
'~9!, hi 8 j 8

'
~9!, hi j 8~16!, h~1!;

Ndo f535 ~3.2!

(hi j
' , hi 8 j 8

' are traceless and thehi j 8 is not symmetric ini , j 8).

4-form field: ai j 8~16!, ai j i 8 j 8~18!, a~1!;

Ndo f535 ~3.3!

(ai j 8 is not antisymmetric in i , j 8 and ai j i 8 j 8
52 1

4 e i jkl e i 8 j 8k8 l 8aklk8 l 8).

Complex 2-form field:bi j ~12!, bi 8 j 8~12!, bi j 8~32!; Ndo f

556 ~3.4!

(bi j 8 is not antisymmetric ini , j 8).

Complex scalar field:f~2!; Ndo f52 ~3.5!

8The number of independent components are indicated in brac
andNdo f is the total number of degrees of freedom.
12600
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f

spin 1/2 field: l %~16!; Nd.o. f516
~3.6!

~l is negative chirality complex spinor, andl % 5 1
2 ḡ2g1l is

its light-cone projection!.

Spin 3/2 field: c i
%'~48!, c i 8

%'
~48!, c % i~16!;

Ndo f5112 ~3.7!

~the gravitino is a positive chirality complex spinor, andc'

andc i are itsg-transverse andg-parallel parts!.
As we have already found in string theory~and will con-

firm directly from the supergravity equations below!, here, as
in the case of the AdS supermultiplets, the spectrum of
lowest eigenvalues of the light-cone energy operator is n
degenerate; i.e., different states have different values ofE0.

A. Massless field equations in plane-wave geometry

Our aim will be to find the explicit form of the type IIB
equations of motion expanded to linear order in fluctuatio
near the plane-wave background~1.1!, ~1.2! and then to de-
termine the corresponding light-cone energy spectrum.
us first discuss the solutions of the simplest wave equat
in the curved metric~1.1!. The non-trivial components of the
corresponding connection and curvature are (g225f2xI

2)

G1I
m

52f2xId2
m , G11

m
5f2xId I

m ,

RI 11J52f2d IJ , R1158f2. ~3.8!

The massless scalar equation in the plane-wave geometry
the following explicit form:

hw50,

h[
1

A2g
]m~A2ggmn]n!

52]1]21f2xI
2]121] I

2 . ~3.9!

After the Fourier transform inx2,xI corresponding to the
light-cone description wherex1 is the evolution parameter,

w~x1,x2,xI !5E dp1d8p

~2p!9/2
ei ( p1x21pIxI )w̃~x1,p1,pI !,

~3.10!

it becomes

~2p1P22f2p12]pI
2

1pI
2!w̃50, ~3.11!

where2P25 i]2 may thus be interpreted as the light-co
Hamiltonian appearing in the non-relativistic Schro¨dinger
equation for the free harmonic oscillator in 8 dimensio
with massp1 and frequency f:
ts
4-8
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H52P25
1

2p1
~pI

22m2]pI
2

!, m[fp1. ~3.12!

Introducing the standard creation and annihilation operat

aI[
1

A2m
~pI2m]pI !, āI[

1

A2m
~pI1m]pI !,

@ āI ,aJ#5d IJ, ~3.13!

we get the following normal-ordered form of the Ham
tonian:

H5
1

2
f~ āIaI1aIāI !5f~aIāI14!, ~3.14!

where 45(D22)/2, D510. As usual, the spectrum of stat
@and thus the solution of Eq.~3.9!# is then found by acting by
aI on the vacuum satisfyingāI u0&50.

Below we will need the following simple generalizatio
of this analysis: if a fieldw satisfies the equation

~h12ifc]1!w~x!50, ~3.15!

whereh is defined in Eq.~3.9! andc is an arbitrary constant
then the corresponding light-cone Hamiltonian is

H52P25
pI

22f2p12]pI
2

2p1
1fc5f~aIāI141c!,

~3.16!

so that the lowest light-cone energy value is given by

E05fE0 , E0541c. ~3.17!

In what follows we shall discuss in turn the equations
motion for various fields of type IIB supergravity, reducin
them to the form~3.15! and thus determining the correspon
ing lowest energy values from Eq.~3.17!.

B. Bosonic fields

1. Complex scalar field

The dilaton and RR scalar are decoupled from the 5-fo
background~1.2!, i.e. satisfy

hf50, i.e. E0~f!54. ~3.18!

2. Complex 2-form field

The corresponding nonlinear equations are@15#

DmGmm1m2
5PmGmm1m2

* 2
i

3
Fm1 . . . m5

Gm3m4m5

~3.19!

where Gm1m2m3
53] [m1

Bm2m3] is the field strength of the

complex 2-form fieldBmn andPm is the complex scalar field
strength. The aim is to derive the equation for small fluct
12600
rs

f

-

tions Bmn5bmn in the plane-wave background~1.1!, ~1.2!
~with Pm50) using the light-cone gauge

b2m50. ~3.20!

It is sufficient to analyze Eqs.~3.19! for the following values
of the indices (m1 ,m2): (2,I ) and (I ,J). We find

DmGmIJ5]mGmIJ1f2xI
2]1G2IJ , DmGm2I5]mGm2I .

~3.21!

Taking into account thatF2m2 . . . m5
50 and the light-cone

gauge condition~3.20! we find

]1b1I1]JbJI50, ~3.22!

which allows us to express the non-dynamical modesb1I in
terms of the physical onesbIJ . Then

DmGm IJ5hbIJ . ~3.23!

Using that Fi j 8m3m4m5
50 @cf. Eq. ~1.2!# and

Fi j m3m4m5
Gm3m4m556fe i jkl ]

1bkl we get from Eqs.~3.19!,

~3.23! the following equations for the physical modesbIJ :

hbi j 850, hbi j 12ife i jkl ]
1bkl50,

hbi 8 j 812ife i 8 j 8k8 l 8]
1bk8 l 850. ~3.24!

The equation forbi j 8 implies that E0(bi j 8)54 @see Eqs.
~3.9!, ~3.17!#. To diagonalize the remaining equations we d
compose the antisymmetric tensor fieldbi j into the irreduc-
ible tensors of theso(4) algebra:

bi j 5bi j
% 1bi j

* , bi j
% ,*56

1

2
e i jkl bkl

% ,* . ~3.25!

Then

~h14if]1!bi j
% 50, ~h24if]1!bi j

*50. ~3.26!

The same relations are found forbi 8 j 8 . Then according to
Eqs.~3.15!, ~3.17! we find the following lowest energy val
ues:

E0~bi j
*!52, E0~bi j

% !56, E0~bi 8 j 8
*

!52,

E0~bi 8 j 8
%

!56, E0~bi j 8!54. ~3.27!

In the oscillator construction of Sec. II D@see Eqs.~2.68!,
~2.71!, ~2.72!# the monomials of the second order inuL,R
with E054 areuRuL , which have 16 complex component
i.e., these monomials can be identified with the ground s
of bi j 8 . The second and sixth order monomials inuR , uL

which can be identified with the ground states ofbi j
* , bi 8 j 8

* ,
bi j

% , bi 8 j 8
% may be found in Table I.

3. Graviton and 4-form field

Since both the graviton and the 4-form field have no
trivial backgrounds, some of their fluctuation modes a
4-9
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mixed and need to be analyzed together. The full non-lin
forms of the corresponding equations of motion are9

Rmn5
1

24
Fmm2 . . . m5

Fn
m2 . . . m5, ~3.28!

Fm1 . . . m5
52

1

5!
A2gem1 . . . m5n1 . . . n5

Fn1 . . . n5,

~3.29!

DmFmm2 . . . m5
50, Fm1 . . . m5

55] [m1
Am2 . . . m4] .

~3.30!

Expanding near the plane wave RR background

gmn→gmn1hmn , Am1 . . . m4
→Am1 . . . m4

1am1 . . . m4
,

~3.31!

Rmn→Rmn1r mn , Fm1 . . . m5
→Fm1 . . . m5

1 f m1 . . . m5
,

~3.32!

we shall choose the light-cone gauges for the fluctuati
hmn andam1 . . . m4

:

h2m50, a2m2m3m4
50. ~3.33!

The linearized form of the Einstein equation is

r mn5
1

24
~Fm m1 . . . m4

f n
m1 . . . m41 f m m1 . . . m4

Fn
m1 . . . m4

24Fmn1m3m4m5
Fnn2

m3m4m5hn1n2! ~3.34!

where

r mn5
1

2
~2D2hmn1DmDkhkn1DnDkhkm2DmDnhk

k

12Rm m1m2nhm1m21Rm khn
k
1Rn khm

k
!. ~3.35!

The (22) component givesr 2250 and thus we find the
zero-trace condition for the transverse modes of the gravi

hII 50. ~3.36!

The (2I ) components of Eq.~3.34! give r 2I50 and this
leads to the equationDmhmI50 which allows us to expres
the non-dynamical modes in terms of the physical mo
represented by the traceless tensorhIJ :

h1I52
1

]1
]JhJI . ~3.37!

9The equationDF550 follows of course from the self-duality o
F5, but we will find it useful to use this second order form of th
equation forA4 below. Note that we ignore the quadratic 2-for
correction term inF5 @15# as it does not contribute to the linea
fluctuation equations here.
12600
ar
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Next, we need to consider the self-duality equation for
5-form field whose (I 1I 2I 3I 42) component implies tha
a1I 1I 2I 3

is expressed in terms of the physical modesaIJKL :

a1I 1I 2I 3
52

1

]1
]JaJI1I 2I 3

. ~3.38!

In terms ofaIJKL the 5-form field strength self-duality con
dition becomes

aI 1 . . . I 4
52

1

4!
e I 1 . . . I 4J1 . . . J4

aJ1 . . . J4
. ~3.39!

The (11) component of Eq.~3.34! leads to the expressio
for h11 ~after taking into account the above results!: h11

5(1/(]1)2)] I]JhIJ . So far all is just as in the light-cone
analysis near flat space.

Let us now do the 414 split of the 8 transverse direc
tions. The (i , j ) components of Eq.~3.34! take the form

r i j 5fd i j ]
1a, a[

1

6
e i 1 . . . i 4

ai 1 . . . i 4
. ~3.40!

Using thatr i j 52 1
2 hhi j we get

hhi j 12fd i j ]
1a50. ~3.41!

Thus there is a mixing between the trace of theSO(4) part
of the gravitonhii and the~pseudo! scalar part of the 4-form
potential. From the (i 1i 2i 3i 4) component of theDF50
equation for the 4-form field in Eq.~3.30! we also find that

ha28f]1hii 50. ~3.42!

These equations are diagonalized by introducing the trace
graviton and the complex scalar,

hi j
'[hi j 2

1

4
d i j hkk , h[hii 1 ia, h̄[hii 2 ia,

~3.43!

so that we finish with

hhi j
'50, ~h28if]1!ĥ50, ~h18if]1!h̄50.

~3.44!

According to Eq.~3.17! this implies

E0~hi j
'!54, E0~h!50, E0~ h̄!58. ~3.45!

The same results are found of course in the other 4 di
tions, i.e. with hi j →hi 8 j 8 and a→a85 1

6 , e i
18 . . . i

48
ai

18 . . . i
48
,

a852a.
Let us now look at ‘‘mixed’’ components. Equation

~3.34! in ( i j 8) directions give

hhi j 814f]1ai j 850, ai j 8[
1

3
e i i 1i 2i 3

aj 8 i 1i 2i 3
.

~3.46!
4-10
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We have used the self-duality ~3.39! implying
e i i 2i 3i 4

aj 8 i 2i 3i 4
5e j 8 i

28 i
38 i

48
aii

28 i
38 i

48
. In addition, the (i j 8 j 18 j 28)

components of theDF50 equations~3.30! give

hai j 824f]1hi j 850. ~3.47!

Again there is a mixing between the components of
graviton and the 4-form field. These equations are diago
ized by defining the complex tensor

hi j 8[hi j 81 iai j 8 , h̄i j 8[hi j 82 iai j 8 , ~3.48!

~h24if]1!hi j 850, ~h14if]1!h̄i j 850, ~3.49!

so that the corresponding lowest eigenvalues of the en
are

E0~hi j 8!52, E0~ h̄i j 8!56. ~3.50!

Finally, for ai j i 8 j 8 satisfying, according to Eq.~3.39!, the
constraint

ai j i 8 j 852
1

4
e i jkl e i 8 j 8k8 l 8aklk8 l 8 ~3.51!

we find from Eq.~3.30! that

hai j i 8 j 850, i.e. E0~ai j i 8 j 8!54. ~3.52!

Note that the self-dual tensor fieldai j i 8 j 8 is reducible with
respect to theSO(4)3SO8(4) group. It can be decompose
into the irreducible partsai j i 8 j 8

% * , ai j i 8 j 8
* % satisfying

ai j i 8 j 8
% *

5
1

2
e i jkl akli 8 j 8

% * , ai j i 8 j 8
% *

52
1

2
e i 8 j 8k8 l 8ai jk 8 l 8

% * ,

~3.53!

ai j i 8 j 8
* %

52
1

2
e i jkl akli 8 j 8

* % , ai j i 8 j 8
* %

5
1

2
e i 8 j 8k8 l 8ai jk 8 l 8

* % .

~3.54!

The SO(4)3SO8(4) labels of these irreducible parts ma
be found in Table I.

C. Fermionic fields

Let us now extend the above analysis to the fermio
fields of type IIB supergravity.

1. Spin 1Õ2 field

The equation of motion for the two Majorana-Weyl neg
tive chirality spin 1/2 fields combined into on
32-component Weyl spinor fieldL @15#,

S GmDm2
i

480
Gm1 . . . m5Fm1 . . . m5DL50, ~3.55!

can be rewritten in terms of the complex-valu
16-component spinor fieldl ~see the Appendix for notation!:
12600
e
l-

gy

c

-

S gmDm2
i

480
gm1 . . . m5Fm1 . . . m5Dl50, L5S 0

la
D .

~3.56!

Here gm5em
mgm whereem

m is the ~inverse! vielbein matrix.
We use the following vielbein basis corresponding to t
metric ~1.1! (em5em

mdxm):

e15dx1, e25dx22
f2

2
xI

2dx1, eI5dxI . ~3.57!

The spinor covariant derivativeDm5]m1 1
4 vm

mnḡmn then
takes the following explicit form:

D25]2 , DI5] I , D15]12
f2

2
xI ḡ1I . ~3.58!

Taking into account the background value of the 5-form fie
~1.2! we get

Fg1S ]21
f2

2
xI

2]12 ifP̄ D1g2]11g I] I Gl50,

~3.59!

where we used that

gm1 . . . m5Fm1 . . . m5
5480fg1P̄. ~3.60!

Decomposingl as

l5l % 1l*, l % 5
1

2
ḡ2g1l, l*5

1

2
ḡ1g2l,

~3.61!

we find that in the light-cone descriptionl* is non-
dynamical mode expressed in terms of the physical m
l % :

l*5
1

2]1
ḡ I] Ig1l % , ~h22ifP̄]1!l % 50. ~3.62!

Decomposingl % further as@cf. Eq. ~2.63!#

l % 5lR
% 1lL

% , lR[
11P̄

2
l, lL[

12P̄

2
l,

~3.63!

we get the diagonal equations of the desired form~3.15!:

~h22if]1!lR
% 50, ~h12if]1!lL

% 50. ~3.64!

Then from Eq.~3.17! we conclude that the lowest values
the light-cone energy for the fieldslR

% , lL
% are

E0~lR
% !53, E0~lL

% !55. ~3.65!
4-11
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2. Spin 3Õ2 field

The equation for the positive chirality gravitino in th
32-component notation is10

Gm m1m2S Dm1
1

i

960
Gn1 . . . n5Fn1 . . . n5

Gm1DCm2
50.

~3.66!

In the 16-component notation it becomes

ḡm m1m2S Dm1
1

i

960
gn1 . . . n5Fn1 . . . n5

ḡm1Dcm2
50,

Cm5S cm
a

0
D . ~3.67!

This can be rewritten as

ḡnDncm2Dmc2
i

960
ḡngn1 . . . n5Fn1 . . . n5

ḡmcn50,

c[ḡmcm . ~3.68!

Making use of Eq.~3.60! we get

ḡnDncm2Dmc2
if

2
ḡnPg1ḡmcn50, ~3.69!

and impose the light-cone gauge for the gravitino field

c250. ~3.70!

Equation~3.69! for m52 then gives

c5ḡ1c11ḡ Ic I50, i.e. g1ḡ Ic I50. ~3.71!

As a consequence,

ḡJPg1ḡ icJ52P̄ḡ1~d i j 2g i ḡ j !c j ,

ḡJPg1ḡ i 8cJ522P̄ḡ1~d i 8 j 82g i 8ḡ j 8!c j 8 . ~3.72!

With the help of these relations them5 i component of Eq.
~3.69! becomes

F ḡ1S ]21
f2

2
xI

2]1D1ḡ2]11ḡJ]JGc i2 ifP̄ḡ1

3~d i j 2g i ḡ j !c j50. ~3.73!

Decomposing the gravitino field into the physical modec i
%

and non-dynamical modec i
* as in Eq.~3.61! we get, from

Eq. ~3.73! ~acting byg1 or by g2),

10The 5-form term in the gravitino equation was missing in@15#
but its presence is implied by the supersymmetry transformat
given there and in@19#. This term was explicitly included in@10#.
12600
hc i
% 22ifP~d i j 2g i ḡ j !]

1c j
% 50,

c I
*52

1

2]1
g1~ ḡJ]J!c I

% . ~3.74!

The other non-dynamical modec1 @split into c1
% andc1

* as
in Eq. ~3.61!# is found from Eq.~3.71! and them51 com-
ponent of the gravitino equation~3.69!:

c1
% 52

1

]1
] Ic I

% , c1
*52

1

2]1
g1ḡ I] Ic1

% . ~3.75!

Decomposing the dynamical gravitino modec I
% into the

g-transverse andg-parallel parts as

c i
%'[S d i j 2

1

4
g i ḡ j Dc j

% , c % i[ḡ ic i
% ~3.76!

we find

~h22ifP]1!c i
%'50, ~h26ifP̄]1!c % i50.

~3.77!

As in the spin 1/2 case, to diagonalize these equations
introduce@cf. Eq. ~3.63!#

c iR
%'5

11P

2
c i

%' , c iL
%'5

12P

2
c i

%' ,

cR
% i5

11P̄

2
c % i, cL

% i5
12P̄

2
c % i. ~3.78!

This gives finally

~h22if]1!c iR
%'50, ~h12if]1!c iL

%'50,

~h26if]1!cR
% i50, ~h16if]1!cL

% i50. ~3.79!

These equations give, according to Eqs.~3.15!, ~3.17! the
following values of the minimal energyE0 for the respective
physical gravitino modes:

E0~c iR
%'!53, E0~c iL

%'!55, E0~cR
% i!51,

E0~cL
% i!57. ~3.80!

A similar analysis applies to the gravitino componentsc i 8 .
In this case we get@cf. Eq. ~3.74!#

hc i 8
%

12ifP~d i 8 j 82g i 8ḡ j 8!]
1c j 8

%
50, ~3.81!

and as a result

E0~c i 8R
%'

!55, E0~c i 8L
%'

!53. ~3.82!

As for the g-parallel partc8 % i5ḡ i 8c i 8
% of c i 8 , it does not

represent an independent dynamical mode being relate
c % i through Eq.~3.71!, i.e. ḡ Ic I

% 50.
s
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TABLE I. Spectrum of bosonic physical on-shell fields.

Field Energy SO(4)3SO8(4) Term in
E0 and spectrum labels superfield expansion

Ndo f k>0

0 h(2) k (0,0)3(0,0) uR
4

2 hi j 8(32) k12 (1,0)3(1,0) uRḡ2 ikuRuRḡ2 j 8kuL

2 b̄i j
%(6) k12 (1,1)3(0,0) uR

4(uLp % ḡ2 i j uL)
2 b̄i 8 j 8

% (6) k12 (0,0)3(1,1) uR
4(uLp % ḡ2 i 8 j 8uL)

2 bi j
*(6) k12 (1,1)3(0,0) uRp*ḡ2 i j uR

2 bi 8 j 8
* (6) k12 (0,0)3(1,21) uRp*ḡ2 i 8 j 8uR

4 f(2) k14 (0,0)3(0,0) 1
4 f̄(2) k14 (0,0)3(0,0) uR

4uL
4

4 hi j
'(9) k14 (2,0)3(0,0) uRḡ2k( iuRuLḡ j )k2uL

4 hi 8 j 8
' (9) k14 (0,0)3(2,0) uRḡ2k8( i 8uRuLḡ j 8)k82uL

4 ai j i 8 j 8
% * (9) k14 (1,1)3(1,21) uLp % ḡ2 i j uLuRp*ḡ2 i 8 j 8uR

4 ai j i 8 j 8
* % (9) k14 (1,21)3(1,1) uRp*ḡ2 i j uRuLp % ḡ2 i 8 j 8uL

4 bi j 8(32) k14 (1,0)3(1,0) uRḡ2 i j 8uL

6 bi j
%(6) k16 (1,1)3(0,0) uLp % ḡ2 i j uL

6 bi 8 j 8
% (6) k16 (0,0)3(1,1) uLp % ḡ2 i 8 j 8uL

6 b̄i j
*(6) k16 (1,21)3(0,0) uL

4(uRp*ḡ2 i j uR)
6 b̄i 8 j 8

* (6) k16 (0,0)3(1,21) uL
4(uRp*ḡ2 i 8 j 8uR)

6 h̄i j 8(32) k16 (1,0)3(1,0) uLḡ2 ikuLuRḡ2 j 8kuL

8 h̄(2) k18 (0,0)3(0,0) uL
4
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D. Light-cone gauge superfield formulation of type IIB
supergravity on the plane wave background

Before proceeding, let us first summarize the results of
above analysis in two tables: one for the bosonic modes
other for the fermionic modes. In Tables I and II in theE0
column we indicate lowest eigenvalues of the light-cone
ergy operator of the corresponding field. The energy sp
trum of higher ‘‘Kaluza-Klein’’ modes~obtained by further
action by the bosonic zero-mode creation operatorsa0

I ) is
labeled by k, where k50 corresponds to the ground stat
Note, however, that these are not the usual Kaluza-Kle
type modes because the action of the symmetry algebr
the plane wave background mixes modes with different v
ues of k. This algebra can be thus viewed as a spect
generating algebra for the ‘‘Kaluza-Klein’’ modes.

In the fourth column we have given the Gelfand-Zet
labels of the correspondingSO(4)3SO8(4) representations
In the last column we indicated the monomials in fermion
zero modesuL ,uR which accompany the corresponding fie
components in theu expansion of the light-cone superfie
discussed below.

In the rest of this section we shall present the light-co
gauge superfield description of type IIB supergravity in t
plane wave RR background. As in flat space, the equat
for the physical modes we have found above can be sum
rized in a light-cone superfield form. The corresponding u
constrained scalar superfieldF(x,u0) will satisfy the ‘‘mass-
less’’ equation, invariant under the dilatational invariance
12600
e
nd

-
c-

.
-
of
l-
m

e

ns
a-
-

superspace.
Finding even the quadratic part of the action for fluctu

tions of the supergravity fields in a curved background i
complicated problem.11 We could in principle use the cova
riant superfield description of type IIB supergravity@21#,
starting with linearized expansion of superfields, impos
light-cone gauge on fluctuations and then solving the c
straints to eliminate non-physical degrees of freedom
terms of physical ones. That would be quite tedious. T
light-cone gauge approach is self-contained, i.e. does not
upon existence of a covariant description, and provide
much shorter route to final results.

There are two methods of finding the light-cone gau
formulation of the type II supergravity. One@22# reduces the
problem of constructing a new~light-cone gauge! dynamical
system to finding a new solution of the commutation re
tions of the defining symmetry algebra. This method of Dir
was applied to the case of supergravity in AdS53S5 and
AdS33S3 in @23# and@24#.12 The second method is based o
finding the equations of motion by using the Casimir ope
tors of the symmetry algebra. Here we shall fo

11In the case of the AdS53S5 background in covariant gauge
was solved in@20#.

12The application of this method to a superfield formulation
interaction vertices ofD511 supergravity may be found in@25#
~see also@26# for various related discussions!.
4-13
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R. R. METSAEV AND A. A. TSEYTLIN PHYSICAL REVIEW D65 126004
low this second approach.
The basic light-cone gauge superfield will be denoted

F(x,u) and will have the following expansion in powers
the Grassmann coordinatesu:13

13Here we omit the index 0 on the light-cone fermionic zero-mo
variableu0, denoting it simply asu. To simplify the expressions fo
the superfield expansion and its reality constraint we solve the li

cone gauge constraintḡ1u50 in terms of eight fermionsua (a
51, . . . ,8) byusing the representation forg0 in Eq. ~A8! andg9

5diag(18 ,218).

TABLE II. Spectrum of fermionic physical on-shell fields.

Field Energy SO(4)3SO8(4) Term in
E0 and spectrum labels superfield expansi

Ndo f k>0

1 cR
% i(8) k11 S12,2

1

2D3S12,
1

2D uR
3

1 c̄L
% i(8) k11 S12,

1

2D3S12,2
1

2D uR
4uL

3 c iR
%'(24) k13 S32,2

1

2D3S12,
1

2D (uRḡ2 i j uR)ḡ juL

3 c i 8L
%'(24) k13 S12,

1

2D3S32,2
1

2D (uRḡ2 i 8 j 8uR)ḡ j 8uL

3 c̄ iL
%'(24) k13 S32,

1

2D3S12,2
1

2D uR
3uL

2

3 c̄ i 8R
%'(24) k13 S12,2

1

2D3S32,
1

2D uR
3uL

2

3 lR
%(8) k13 S12,2

1

2D3S12,
1

2D uR

3 l̄L
%(8) k13 S12,

1

2D3S12,2
1

2D uR
4uL

3

5 lL
%(8) k15 S12,

1

2D3S12,2
1

2D uL

5 l̄R
%(8) k15 S12,2

1

2D3S12,
1

2D uR
3uL

4

5 c iL
%'(24) k15 S32,

1

2D3S12,2
1

2D (uLḡ2 i j uL)ḡ juR

5 c i 8R
%'(24) k15 S12,2

1

2D3S32,
1

2D (uLḡ2 i 8 j 8uL)ḡ j 8uR

5 c̄ iR
%'(24) k15 S 3

2
,2

1

2D3S 1

2
,
1

2D uR
2uL

3

5 c̄ i 8L
%'

~24! k15 S 3

2
,
1

2D3S 1

2
,2

1

2D uR
2uL

3

7 cL
% i~8! k17 S 1

2
,
1

2D3S 1

2
,2

1

2D uL
3

7 c̄R
% i~8! k17 S 1

2
,2

1

2D3S 1

2
,
1

2D uL
4uR
12600
s

F~x,u!5]12A1ua]1ca1ua1ua2]1Aa1a2

1ua1ua2ua3ca1a2a3
1ua1 . . . ua4Aa1 . . . a4

2~eu5!a1a2a3

i

]1
ca1a2a3* 2~eu6!a1a2

1

]1
Aa1a2*

1~eu7!a

i

]12
ca* 1~eu8!

1

]12
A* , ~3.83!

whereea1 . . . a8
is the spinorial Levi-Civita` tensor, i.e.

~eu82n!a1 . . . an
[

1

~82n!!
ea1 . . . anan11 . . . a8

uan11 . . . ua8.

~3.84!

Here we use the following Hermitian conjugation rul
(u1u2)†5u2

†u1
† . This superfield has a certain reality pro

erty: the component field for the monomialun is complex
conjugated to the one foru82n. This reality constraint can be
written in the superfield notation as

F~x,u!5E d8u†ei( ]1)21uu†
~]1!4

„F~x,u!…†. ~3.85!

In what follows we will use again the 16-component spin

ua5S ua

0 D .

Decomposing it intouR and uL as in Eq. ~2.63! we can
expand the superfieldF in terms of these anticommutin
coordinates.

The expansion in this basis can be used to identify
superfield components with physical on-shell modes of ty
IIB supergravity fields found earlier in this section. The co
responding monomials inuL,R are shown in Tables I and II
The dilaton fieldf is the lowest superfield component, whi
its complex conjugatef̄ appears in the last component mu
tiplying uR

4uL
4 . As another example, consider the antisy

metric second rank complex tensor field modesbi j
% andbi j

* .
According to Table I, they correspond to the monomia
uLp %g2 i j uL anduRp*g2 i j uR where we used the following
notation for the self-dual projectors (p %g2 i j [p i j ;kl

% g2kl):

p i j ;kl
% 5

1

4
~d ikd j l 2d i l d jk1e i jkl !,

p i j ;kl
* 5

1

4
~d ikd j l 2d i l d jk2e i jkl !.

~3.86!

Let us now determine the equations of motion for the sca
superfieldF. For this we will need the explicit form of the
second-order Casimir operator for the plane wave supera
bra described in Sec. II C:

e

t-
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EXACTLY SOLVABLE MODEL OF SUPERSTRING IN . . . PHYSICAL REVIEW D65 126004
C52P1P21PI PI1f2J1IJ1I2
1

2
fQ̄1Pg1Q1.

~3.87!

The representations of the generators of the plane-wave
peralgebra in terms of differential operators acting ofF(x,u)
may be found by using the standard supercoset method14 @cf.
Eqs.~2.37!–~2.39!#:

P15]1, P25]2, PI5cos fx1] I1fsin fx1xI]1,
~3.88!

J1I5f21sin fx1] I2cos fx1xI]1,

JIJ5xI]J2xJ] I1
1

2
]ug IJu, ~3.89!

Q1522i]1ḡ2eifx1Pu, Q̄1

5
1

2
ḡ2e2 ifx1Pg1]u , $]ub,ua%5

1

2
~g1ḡ2!a

b .

~3.90!

The projector on the right-hand side~RHS! of the definition
of the fermionic derivatives]u in Eq. ~3.90! reflects the fact
that u satisfies the light-cone gauge condition. Pluggi
these expressions into Eq.~3.87! we find

C5h22if]1uP̄]u , ~3.91!

whereh was defined in Eq.~3.9!.
In a general curved background the equations of mo

for the superfieldF take the form (C2C0)F50, where the
constant termC0 should be fixed by an additional require
ment. For example, in the case of AdS space,C0 is expressed
in terms of constant curvature of the background. In
present case of the plane wave background theC0 can be
fixed by using the so-called ‘‘sim’’ invariance—the invari-
ance under the original plane-wave superalgebra sup
mented by the scale-invariance condition, i.e. by the con
tion of dilatational invariance in superspace@12#.15 The
generator D of dilatations in the light-cone superspacel
5const)

dx150, dx252lx2, dxI5lxI , du5lu,
~3.92!

has the obvious form

14In this section we use the anti-Hermitean representation for
generatorsPm. The corresponding commutation relations in th
representation can be found from Eqs.~2.49!–~2.59! by the substi-
tutionsPm→2 iPm.

15In the usual 4 dimensions scale transformations~dilatations!
combined with the Poincare´ group form the maximal subgroup o
the conformal group, or similitude groupSIM(3,1). Dilatation in-
variance ensures masslessness, so the direct generalization
supergroup case should give a criterion of masslessness fo
superfields.
12600
u-

n

e

le-
i-

D52x2]11xI] I1u]u . ~3.93!

The requirement ofsim invariance of the superfield equa
tions of motion amounts to the condition@D,C#F50. Since,
as it is easy to see from Eq.~3.91!, @D,C#522C, it follows
then that the onlysim-invariant equation of motion is simply

CF50, i.e. ~h22if]1uP̄]u!F~x,u!50.
~3.94!

The corresponding quadratic term in the superfield light-co
gauge action is then

Sl .c.5
1

2E d10xd8uF~x,u!~h22if]1uP̄]u!F~x,u!.

~3.95!

Splitting the fermionic coordinateu into uR anduL parts as
in Eq. ~2.63! one can rewrite Eq.~3.94! as

@h12if]1~uL]uL
2uR]uR

!#F~x,uR ,uL!50. ~3.96!

This remarkably simple equation summarizes all the fi
equations for the physical fluctuation modes of type IIB s
pergravity fields in the present RR plane-wave backgrou
@i.e. the components ofF, Eq. ~3.83!# which were derived
earlier in this section. In particular, the universal express
for the lowest values of the light-cone energy operator can
found by applying Eqs.~3.15!, ~3.17! to the case of Eq.
~3.96!:

E05f~41uL]uL
2uR]uR

!. ~3.97!

This reproduces the values ofE0 in Tables I and II.

IV. CONCLUDING REMARKS

In this paper we presented the quantization of type
string theory in the maximally supersymmetric RR plan
wave background of@6# whose light-cone gauge action wa
found in @5#. We explicitly constructed the quantum ligh
cone Hamiltonian and the string representation of the co
sponding supersymmetry algebra. The superstring Ha
tonian has the standard ‘‘harmonic-oscillator’’ form, i.e.
quadratic in creation-annihilation operators in all 8 tran
verse directions, so that its spectrum can be readily obtai

We have discussed in detail the structure of the zero-m
sector of the theory, giving it the space-time field-theore
interpretation by establishing the precise correspondence
tween the lowest-lying ‘‘massless’’ string states and the ty
IIB supergravity fluctuation modes in the plane-wave ba
ground.

The ‘‘massless’’~supergravity! part of the spectrum ha
certain similarities with the supergravity spectrum found@10#
in the case of another maximally supersymmetric type
background: AdS53S5 @15# ~this may not be completely sur
prising given that the two backgrounds are related by a s
cial limit @7#!. In particular, the light-cone energy spectru
of a superstring in the RR plane-wave background is d
crete. As in the AdS case@27#, the discreteness of the spe

e

the
the
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trum depends on a particular natural choice of the bound
conditions. In the present case they are the same as in
standard harmonic oscillator problem: the square integra
ity of the wave functions in all 8 transverse spatial directio

An interesting feature of the plane-wave string spectr
is its non-trivial dependence onp1. This is possible due to
the fact that the generatorP1 commutes with all other gen
erators of the symmetry superalgebra. We defined the s
trum in terms of the light-cone energyH52P2, which does
not depend onp1 for the massless~zero-mode! states but
does depend on it for the string oscillator modes. In gene
one may define the string spectrum in curved space in te
of the second-order Casimir operator of the correspond
superalgebra. In the present case the eigen-values of thi
erator depend on discrete quantum numbers as well as op1

~through the dimensionless combination m52pa8p1f with
the curvature scale f and the string scalea8).

Given the exact solvability of this plane-wave strin
theory, there are many standard flat-space string calculat
that can be straightforwardly repeated in this case. One
determine the vertex operators for the ‘‘massless’’ sup
string states and compute the 3-point and 4-point correla
functions, following the same strategy as in the light-co
Green-Schwarz approach to flat superstring theory.16 It
would be interesting to compare~the a8→0 limits of! the
plane-wave string results to the corresponding correla
functions in the type IIB supergravity on AdS53S5. One can
also find possible D-brane configurations, by imposing op
string boundary conditions in some directions and repea
the analysis of Sec. II.17

Let us comment on some limits of this plane-wave str
theory. It depends on the two mass parameters which e
the Hamiltonian~2.33!: the curvature scale f and the strin
scale (a8p1)21. The limit f→0 is the flat-space limit: the
discrete spectrum then becomes the standard type IIB
space string spectrum~in the same sense in which the ha
monic oscillator spectrum reduces to the spectrum of a
particle in the zero-frequency limit!. The f→` limit is not
special: it corresponds simply to a rescaling of the light-co
energy andp1 @recall that f in Eq.~1.1! can be set to 1 by a
rescaling ofx1 andx2#.

The limit a8p1→0 corresponds to the supergravity in th
plane-wave background: the string Hamiltonian~2.21!,
~2.31!, ~2.32! becomes infinite on all states that contain no
zero string oscillators; i.e., it effectively reduces toE0, Eq.
~2.31!, restricted to the subspace of the zero-mode states.
opposite~‘‘zero-tension’’! limit a8p1→` is also regular: it
follows from Eq.~2.33! that here we are left with

16Note that in the present plane-wave case we do not have
standardS-matrix setup: the string spectrum is discrete in all
transverse directions; i.e., the string states with non-zerop1 are
localized nearxI50 and cannot escape to infinity.

17One obvious candidate is a D-string along thex9 direction. For
a light-cone gauge description of D-branes in flat space see@28#.
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Ha8p1→`5fF ~a0
I ā0

I 12ū0ḡ2Pu014!

1 (I51,2
(
n51

`

~an
II ān

II1hn
Iḡ2h̄n

I!G . ~4.1!

The constraint~2.36! remains the same as it does not invol
a8. This provides an interesting example of a non-triv
‘‘ null-string’’ spectrum which is worth further study. Note, i
particular, that here the energies do not grow with the os
lator level number n; i.e., there are no Regge-typ
trajectories.18

Let us now compare the plane-wave string spectrum w
the expected form of the light-cone spectrum of the sup
string in an AdS53S5 background. In general, the spectru
of the light-cone HamiltonianH52P 2 in AdS53S5 @9#
should depend on two characteristic mass parameters:
curvature scaleR21 ~the inverse AdS radius!,19 which is the
analogue of f in Eq.~1.1!, and the string mass scaleAa8. In
the context of the standard AdS conformal field theory~CFT!
correspondence the coordinates should be rescaled so tR
is always combined witha8 into the effective dimensionles
tension parameter T5R2T5R2/2pa85Al/2p. In contrast
to the plane-wave case, here the dependence ofH on p1 can
only be the trivial one, i.e. only through the 1/p1 factor @in
Poincare´ coordinates the AdS53S5 background has Lorentz
invariance in the (1,2) directions#. Let us recall the form
of the light-cone string Hamiltonian using the ‘‘conformal
flat’’ 10D coordinates (xa,ZM) in which the AdS53S5 metric
is ~herea50,1,2,3;M51, . . . ,6)

ds25R2Z22~dxadxa1dZMdZM !. ~4.2!

Splitting the 4D coordinates asxa5(x1,x2,x') and using
the appropriate light-cone gauge one finds the follow
phase space Lagrangian@9#:

L5P'ẋ'1P MŻM1
i

2
~u i u̇ i1h i ḣ i2H.c.!2H, ~4.3!

H5
1

2p1
$P'

2 1PMPM1T2Z24~ x́'
2 1ŹMŹM !1Z22@~h2!2

12ih ir i j
MNh jZMPN#22T@ uZu23h ir i j

MZM~ ú j

2 iA2uZu21h j x́'!1H.c.#%. ~4.4!

Compared to@9# we have rescaled the fermionsu i ,h i ( i
51,2,3,4) byAp1 ~thus absorbing all spuriousp1 depen-
dence!. P' ,PM are the momenta andrMN is a product of
Dirac matrices. Here the coordinates and momenta~includ-

he
18Note that the parameter f may be viewed as a ‘‘regularizatio

introduced to define a non-trivial tensionless string limit of the fl
superstring.

19In the context of the standard AdS/CFT the radiusR is related to
the ’t Hooft couplingl by @29# R5l1/4Aa8.
4-16
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ing H and p1) are all dimensionless~measured in units o
R), reflecting the rescaling done in Eq.~4.2!. Restoring the
canonical mass dimensions (H→RH, p1→Rp1) the corre-
sponding analogue of the plane-wave result~2.33! should
thus have the structure

H5
1

p1R2@E01TEstr~T!#

5
1

p1 F 1

R2E01
1

2pa8
EstrS R2

2pa8
D G , ~4.5!

whereE0 ,Estr are dimensionless functions of the paramet
and discrete quantum numbers.

Here the limit a8→0 or T→` for fixed p1R2 corre-
sponds to the type IIB supergravity AdS53S5 background
with only theE0 part ~known explicitly @10,23#! surviving on
the subspace of finite mass states. The limitR→` with fixed
p1 should reproduce the flat space string spectrum@this sug-
gests thatEstr(T→`) should be finite#. The limit T→0 for
fixed p1R2 is a ‘‘null-string’’ limit @30#. Like the corre-
sponding limit in the plane-wave case~4.1! it is expected to
be well defined.

A formal correspondence between Eqs.~4.5! and~2.33! is
established by identifying f with 1/(p1R2), so that m
52pa8p1f in Eq. ~2.33! goes over to 2pa8/R25T21. This
rescaling ofR2 by p1 ‘‘explains’’ why Eq. ~4.5! does not
have a non-trivial dependence onp1 while Eq. ~2.33! does.

The dependence of the string-mode partEstr of Eq. ~4.5!
on T should of course be much more complicated than
pendence ona8p1f in Eq. ~2.33!. To determine it remains an
outstanding problem.

While this work was nearing completion there appea
an interesting paper@31# which provides a gauge-theory in
terpretation of this plane-wave string theory based on a s
cial limit of the AdS/CFT correspondence.
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APPENDIX: NOTATION AND DEFINITIONS

We use the following conventions for the indices:

m,n,k50,1, . . . ,9

10D space-time coordinate indices

m,n,r50,1, . . . ,9

so~9,1!vector indices~tangent space indices!
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I ,J,K,L51, . . . ,8

so~8!vector indices~tangent space indices!

i , j ,k,l 51, . . . ,4

so~4!vector indices~tangent space indices!

i 8, j 8,k8,l 855, . . . ,8

so8~4!vector indices~tangent space indices!

a,b,g51, . . . ,16so~9,1!

spinor indices in chiral representation

a,b50,1 2D world-sheet coordinate indices

I,J51,2 labels of the two real MW spinors.

We identify the transverse target indices with tangent sp
indices, i.e.xI5xI , and avoid using the underlined indices
1 and2 light-cone directions, i.e. adopt simplified notatio
x1, x2. We suppress the flat space metric tensorhmn5(2,
1, . . . ,1) in scalar products, i.e.XmYm[hmnXmYn. We de-
composexm into the light-cone and transverse coordinat
xm5(x1,x2,xI), xI5(xi ,xi 8), where

x6[
1

A2
~x96x0!. ~A1!

The scalar products of tangent space vectors are decomp
as

XmYm5X1Y21X2Y11XIYI , XIYI5XiYi1Xi 8Yi 8.
~A2!

The notation ]6 , ] I is mostly used for target spac
derivatives:20

]1[
]

]x1
]2[

]

]x2
, ] I[

]

]xI
. ~A3!

We also use

]15]2 , ]25]1 , ] I5] I . ~A4!

TheSO(9,1) Levi-Cività tensor is defined bye01 . . . 951, so
that in the light-cone coordinatese121 . . . 851. The deriva-
tives with respect to the world-sheet coordinates (t,s) are
denoted as

ẋI[]tx
I , x́I[]sxI . ~A5!

We use the chiral representation for the 32332 Dirac matri-
cesGm in terms of the 16316 matricesgm:

20In Secs. I and II A]6 indicate world-sheet derivatives.
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Gm5S 0 gm

ḡm 0 D , ~A6!

gmḡn1gnḡm52hmn, gm5~gm!ab,

ḡm5gab
m , ~A7!

gm5~1,g I ,g9!,

ḡm5~21,g I ,g9!, a,b51, . . . ,16.
~A8!

We adopt the Majorana representation forG matrices,C
5G0, which implies that allgm matrices are real and sym
metric,gab

m 5gba
m , (gab

m )* 5gab
m . As in @5# gm1 . . . mk are the

antisymmetrized products ofk gamma matrices, e.g
(gmn)a

b[ 1
2 (gmḡn)a

b2(m↔n), (gmnr)ab[ 1
6 (gmḡngr)ab

65terms. Note that (gmnr)ab are antisymmetric ina, b. We
assume the normalization

G11[G0 . . . G95S 1 0

0 21D , g0ḡ1 . . . g8ḡ95I .

~A9!

We use the following definitions:

Pa
b[~g1ḡ2g3ḡ4!a

b , ~P8!a
b[~g5ḡ6g7ḡ8!a

b ,
~A10!

P̄a
b[~ḡ1g2ḡ3g4!a

b, ~P̄8!a
b[~ḡ5g6ḡ7g8!a

b.
~A11!
on

s

s
,’’

s.

e
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Note thatPa
b5P̄b

a. Because of the relationg0ḡ95g12,
the normalization condition~A9! takes the formg12PP8
51. Note also the following useful relations~see also@5#!:

~g12!25P25~P8!251, ~A12!

g12g656g6, ḡ6g1257ḡ6, g1ḡ15g2ḡ250,
~A13!

ḡ1~P1P8!5~P1P8!g250,

ḡ2~P2P8!5~P2P8!g150, ~A14!

g6P̄5Pg6, g iP̄52Pg i , ḡ iP52P̄ḡ i ,

g iP̄85P8g i , ḡ iP85P̄8ḡ i . ~A15!

The 32-component positive chirality spinoru and the nega-
tive chirality spinorQ are decomposed in terms of the 1
component spinors as

u5S ua

0 D , Q5S 0

Qa
D . ~A16!

The complex Weyl spinoru is related to the two rea
Majorana-Weyl spinorsu1 andu2 by

u5
1

A2
~u11 iu2!, ū5

1

A2
~u12 iu2!. ~A17!

The shorthand notation likeū ḡmu and ḡmu stands for
ū agab

m ub andgab
m ub respectively.
su-
n-
fer-
in,

s.
@1# D. Amati and C. Klimcik, Phys. Lett. B210, 92 ~1988!; G.T.
Horowitz and A.R. Steif, Phys. Rev. Lett.64, 260 ~1990!; H.J.
de Vega and N. Sanchez,ibid. 65, 1517~1990!.

@2# C.R. Nappi and E. Witten, Phys. Rev. Lett.71, 3751~1993!; E.
Kiritsis and C. Kounnas, Phys. Lett. B320, 264 ~1994!; C.
Klimcik and A.A. Tseytlin, Phys. Lett. B323, 305 ~1994!; K.
Sfetsos and A.A. Tseytlin, Nucl. Phys.B427, 245 ~1994!.

@3# O. Jofre and C. Nunez, Phys. Rev. D50, 5232~1994!.
@4# J.G. Russo and A.A. Tseytlin, Nucl. Phys.B448, 293~1995!; P.

Forgacs, P.A. Horvathy, Z. Horvath, and L. Palla, Heavy I
Phys.1, 65 ~1995!.

@5# R.R. Metsaev, Nucl. Phys.B625, 70 ~2002!.
@6# M. Blau, J. Figueroa-O’Farrill, C. Hull, and G. Papadopoulo

J. High Energy Phys.01, 047 ~2002!.
@7# M. Blau, J. Figueroa-O’Farrill, C. Hull, and G. Papadopoulo

‘‘Penrose limits and maximal supersymmetry
hep-th/0201081.

@8# R.R. Metsaev and A.A. Tseytlin, Phys. Rev. D63, 046002
~2001!.

@9# R.R. Metsaev, C.B. Thorn, and A.A. Tseytlin, Nucl. Phy
B596, 151 ~2001!.

@10# H.J. Kim, L.J. Romans, and P. van Nieuwenhuizen, Phys. R
D 32, 389 ~1985!.

@11# V. Bhansali, J. Math. Phys.32, 302 ~1991!.
,

,

v.

@12# R.R. Metsaev, J. Math. Phys.38, 648 ~1997!.
@13# R.R. Metsaev and A.A. Tseytlin, Nucl. Phys.B533, 109

~1998!.
@14# M.B. Green and J.H. Schwarz, Phys. Lett.136B, 367 ~1984!.
@15# J.H. Schwarz, Nucl. Phys.B226, 269 ~1983!.
@16# M.B. Green, J.H. Schwarz, and L. Brink, Nucl. Phys.B219,

437 ~1983!.
@17# M.B. Green and J.H. Schwarz, Nucl. Phys.B243, 475 ~1984!;

B218, 43 ~1983!.
@18# M.B. Green and J.H. Schwarz, Phys. Lett.122B, 143 ~1983!.
@19# J.H. Schwarz and P.C. West, Phys. Lett.126B, 301 ~1983!.
@20# G.E. Arutyunov and S.A. Frolov, J. High Energy Phys.08, 024

~1999!.
@21# P.S. Howe and P.C. West, Nucl. Phys.B238, 181 ~1984!.
@22# P.A. Dirac, Rev. Mod. Phys.21, 392 ~1949!.
@23# R.R. Metsaev, Phys. Lett. B468, 65 ~1999!.
@24# R.R. Metsaev and A.A. Tseytlin, J. Math. Phys.42, 2987

~2001!.
@25# R.R. Metsaev, ‘‘Light-cone approach to eleven dimensional

pergravity,’’ hep-th/0010248; talk given at International Co
ference on Quantization, Gauge Theory, and Strings: Con
ence Dedicated to the Memory of Professor Efim Fradk
Moscow, Russia, 2000.

@26# R. Helling, J. Plefka, M. Serone, and A. Waldron, Nucl. Phy
4-18



.

flat

EXACTLY SOLVABLE MODEL OF SUPERSTRING IN . . . PHYSICAL REVIEW D65 126004
B559, 184 ~1999!; T. Dasgupta, M.R. Gaberdiel, and M.B
Green, J. High Energy Phys.08, 004 ~2000!; M.B. Green, H.
Kwon, and P. Vanhove, Phys. Rev. D61, 104010~2000!.

@27# P. Breitenlohner and D.Z. Freedman, Ann. Phys.~N.Y.! 144,
249 ~1982!.

@28# M.B. Green and M. Gutperle, Nucl. Phys.B476, 484 ~1996!.
12600
@29# J. Maldacena, Adv. Theor. Math. Phys.2, 231 ~1998!.
@30# A.A. Tseytlin, ‘‘On limits of superstring in AdS53S5,’’

hep-th/0201112.
@31# D. Berenstein, J. Maldacena, and H. Nastase, ‘‘Strings in

space and pp waves from N54 super Yang Mills,’’
hep-th/0202021.
4-19


