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Exactly solvable model of superstring in plane wave Ramond-Ramond background
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We describe in detail the solution of type IIB superstring theory in the maximally supersymmetric plane-
wave background with constant null Ramond-Ramond 5-form field strength. The corresponding light-cone
Green-Schwarz action found by Metsaev is quadratic in both bosonic and fermionic coordinates. We obtain the
light-cone Hamiltonian and the string representation of the corresponding supersymmetry algebra. The super-
string Hamiltonian has a “harmonic-oscillator” form in both the string oscillator and the zero-mode parts and
thus has a discrete spectrum. We analyze the structure of the zero-mode sector of the theory, establishing the
precise correspondence between the lowest-lying “massless” string states and the type 1B supergravity fluc-
tuation modes in the plane-wave background. The zero-mode spectrum has a certain similarity to the super-
gravity spectrum in AdSx S® background of which the plane-wave background is a special limit. We also
compare the plane-wave string spectrum with the expected form of the light-cone gauge spectrum of the
AdS; X S° superstring.

DOI: 10.1103/PhysRevD.65.126004 PACS nuntgerl1.25.Mj, 04.65+e
[. INTRODUCTION In the present paper which is an extensiorf &fwe will
present in detail the solution of this Ramond-RamoR&R)
The simplest gravitational plane wave backgrounds plane-wave string model. In particular, we will explicitly
identify the massless modes in its spectrum with small fluc-
ds?=2dxTdx” +K(x",x")dx"dx" +dx'dx!, tuations of the type IIB supergravity fields in the background
(1.2). The results will have an obvious similarity to those of
K=Kk ;x'x’, [10] in the case of AdSXS. In particular, a remarkable

common feature of the RR plane wave supermultiplets and
supported by a constant Neveu-Schwarz—Neveu-Schwathe AdS supermultiplets is that the massless fields with dif-
(NS-NS 3-form background, provide examples of exactly ferent spins belonging to the same supermultiplet have, in
solvable(supeistring models: the string action becomes qua-general, different lowest energy values. The same is true also
dratic in the light-cone gauge' =p*  (see, e.g.f[1-4). It  for massive supermultiplets.
was recently pointed oy6] that this solvability property is Let us first recall the form of the light-cone gauge Green-
shared also by a conformal model describing type I1B superSchwarz(GS) action for the type IIB superstring in the back-
string propagating in a particular plane-wave metric sup-ground(1.1). This action was found if5] by using the su-

ported by aRamond-Ramon8-form background6]: percoset method of13], but there is a simple shortcut
argument relating the presence of the fermionic “mass” term
dsz=2dx*dx*—f2x|2dx*dx*+dx'dx', I1=1,...,8 to the form of the generalized spinor covariant derivative in

'(1'_1) type lIB supergravity. In view of the special null Killing
vector properties of the backgrouftll), (1.2) it is possible
F 103~ F 4 se76= 2f. (1.2)  to argue that the only non-vanishing fermionic contribution
to the type lIB superstring action in the standard light-cone

This background has several special properties. It preservé&uge

the maximal number of 32 supersymmetri&, and it is xt=p*r, T+67=0 1.3
related by a special limitboost along a circle 08° com- ' '
bined with a rescaling of the coordinates and of the radiusor

’ 5
a’) to the Ad$ XS background7]. The exactly solvable This is different from what one finds in the case of the non-

string theory correqundmg to E(1.1) may thus have Som? supersymmetric bosonic plane wave backgrounds, where massless
common featuress with a much more _compllcat_ed Strlngfields of different spins have, as in the case of the flat space, the
theory on AdgxS” whose light-cone action contains non- same jowest energy values. This difference is related to supersym-
trivial interaction termg8,9)]. metry and not to the definition of masslessness: in both cases we
use the same definition of massless fields based on so-iled
invariance(invariance under transformations of the original plane-
*Email address: metsaev@lIpi.ru wave algebra supplemented by the dilatatiohthe corresponding
"Email address: tseytlin.1@osu.edu field equationg11,12.
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comes from the direct covariantization canonical quantization of this quadratic system already
_ sketched in5]. In Sec. Il C we shall present the light-cone
Lop=1(7877~ €p3ry) dx"0T D6’ (1.4  string realization of the basic symmetry superalgebra of the
. o i - plane-wave background. We shall then use this superalgebra
of the quadratic fermionic term in the flat-space GB] g fix the vacuum-energy“normal-ordering”) constant in
action. Hergaz (7=1,2) are the two real positive ch_|ral|ty the zero-mode sectdiSec. 11D). As we shall explain, the
10D MW spinors angs=diag(1;-1) (see the Appendix for  cpoice of the fermionic zero-mode vacuum is not unique
notation. D is the generalized covariant derivative that ap-, different (physically equivalentchoices depending on

pears in the Killing spinor equat_io(m)r gravit.ino transforma- how one decides to describe the representation of the corre-
tion law) in type 1B supergravity 15]: acting on the real sponding Clifford algebra. In particular, we note that a

. I - . .
igg;gzsdi :atngﬁ);tge form(we ignore the dilaton and RR choice that leads to zero vacuum energy constant breaks the
P SQ(8) global symmetry down t&O(4)x SO’ (4) [which is

1 1 in fact the true symmetry of the plane-wave background

Da=d,+ Z&axT (w,uvm_ EHme3>F“” (1.1),(1.2)] but is not the one that has a smooth flat-space
B B limit.

a 1 avhpk In Sec. Il we shall determine the spectrum of fluctuations

- QF#MF p1+2.5! Fumnpl’ Po FT of type IIB supergravity expanded near the plane-wave back-

ground (1.1),(1.2). Section Il A will contain some general
(1.9 remarks on solutions of massless Klein-Gordon-type equa-

where thep, matrices in theZ, .7 space are the Pauli matrices ions in the plane-wave metritl.2). The bosonic(scalar,
p1=01, po=io. In the light-cone gaugél.3) the non-zero 2-form, graviton gnd 4-form f!ebdspectra WI|.| be found in '
contribution to Eq.(1.4) comes only from the term where Sec. Il B. The spin 1/2 and spin 3/2 cases will be analyzed in
both the “external” and “internal”’d,x™ factors in Eq.(1.4)  Sec. Il C. Our analysis will be similar to the one carried out
becomep* 8762. As is well known, in the flat-space light- in [10] in the case of the AdS< S° background. As a result,
cone GS actiond* and 62 become the right and the left We Will be able to give a space-time interpretation to the
moving 2D fermions. In the presence of thg background “massless”(zero-modg sector of the string theory. The dis-

(1.2) the surviving quadratic fermionic term is proportional Céteness of the supergravity part of the light-cone energy

to O TH1- #4gPF _ While in the case of an sPectrum will follow from the condition of square integrabil-

NS-NS 3-form backglrgt.l.r{g“the fermionic interaction term ity of the solutions of the corresponding wave equations at
fixedp™. In Sec. Il D we will summarize the results for the

has a chiral 2D form g is dlag_ona], |n“ the case c:f a RR bosonic and fermionic spectra in the two tables and then
background one gets a non-chiral 2D “mass-term” structure

i . ) ) explain how the corresponding physical modes can be inter-
i(rﬁ)lEzgd(qO;)ir(i%;f diagonalout of the interaction term i, preted as components of a single scalar type IIB superfield

; L . . satisfying a masslegglilatation-invariant equation in light-
The resulting quadratic light-cone actiph] can be writ- fying s keq g

) o : n r .
ten, like the flat-space GS action, in a 2D spinor form andCO © superspace

. i . In the concluding Sec. IV we shall make some comments
describes 8 free massive 2D scalars and 8 free massive Mgc "y1,o parameters and possible limits of the plane-wave

jorana 2D ferm|lon|c fieldgy= (6",6%) propagating in a flat string theory, and also compare it with the expected form of
2D world-sheet: the light-cone string theory spectrum in Ag8S® back-
1 ground.
L=Lg+LE, EB:§(5+X'07X'—m2X|2), Our index and spinor notation and definitions as well as
some useful relations will be given in the Appendix.

m=p"f, (1.6)
L1 — — Il. CANONICAL QUANTIZATION
Le=i(6Yy 9.0+ 6%y 9_6°—2mety 116%), Q
A. Solution of classical equations

y*é'=o0. (1.7 The equations of motion following from Eqél.6),(1.7)

. take the form
Hered. = dy* 9, and we absorbed one factor pf into #7.

We use the spinor notation ¢6] i.e., Y™, y™ are the 16 9, 9_x'+m3x'=0, (2.2
X 16 Dirac matrices which are the off-diagonal parts of 32
X 32 matrices"™. The matrixII in the mass termI{?=1)
is the product of foury matrices(see the Appendjxwhich 9, 0'—mll6?>=0, d_6°+mIle*=0. (2.2
originates froml““l-'-Mle__M in Egs.(1.4),(1.5.
In Sec. Il A we shall review the solution of the classical
equations corresponding to the light-cone gauge actioifhe parameter f in Eq1.1) which has dimension of mass,
(1.6),(1.7) and then(in Sec. 1l B) perform the straightforward can be absorbed into rescalingf,x, i.e. set to a given
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value? We shall choose the length of theinterval to be 1. 1

The flat space limit corresponds to-#0. k,=2mn, c,= =, N=*1+2,....
As follows from the structure of the covariant string ac- \/ 14 ( wn_kn)

tion corresponding to the backgroufitil),(1.2) one can ab-

sorb the dependence on the string tension into the following (2.10

rescaling of the coordinatts x —2wa’x X i y
—@ma )Y, 67— (2ma’) 1267 with x* unchanged. Then The canonical momenturR'=x' takes the form

all one needs to do to restore the dependence on the string

tension is the following rescaling qf*: P'(o,7)=cosmr ph—msinmr x)+ >, (eX(o,7)al
n#0
pr—2ma'p”. (2.3 + (o, 7)), (2.11)
In particular, m=m=2ma’p™*f. The fermionic momenta given by i;*OI imply that there
The general solutions to Eq$2.1),(2.2) satisfying the are the second class constraints which should be treated fol-
closed string boundary conditions lowing the standard Dirac procedufgee, e.g.[5]).

The coordinatex™ satisfies the equation

XI(0'+1,T)=XI(0',7'), 0(c+17)=06(o,7), O<o=<1, | } _ _
(2.4) prX +PX'+i(6'y 601+ 67y 6%)=0, (212

are found to be which leads to the constraint

1 f do[P'X' +i(6ty~ 6+ 62y~ 69)]=0. (2.13
X' (o, 7)=cos mr xy+m~sinmr ph+i, w—[cpﬁ(cr,r)
n7o We get the following classical Poisson-Dirac brackets:
X at+ ¢3(o,7)a? (2.5

[ploaXé]P.B.Zfle, {6’1& 0 B}PB :_(7 ) Bt

0o, 7)=cos mr O3+sinmrlea+ >, cn( oX(o,7) 6}
n#0

i
[aﬂ raan]P.B.:Ewm5m+n,06IJ5Ija (2.14
on"kn 2
+I (Pn(o-!T)Hen ’ (26) .
i
{om 6. = 7 ()P b1pn0. (2.15
6°(o, 7)=cos mr65— sin mrll 6+ ;O Cn( er(o,7) The matrixy™ in Eq. (2.1 is reflecting the fact that we are
" using _the light-cone gauge constrained fermionic coordi-
5 wn—Kyp 1 nates,y* #=0. The coefficients,,, Eq. (2.10, are chosen
X0~ en(o, DG, |, (2.7) 50 that the Fourier modes of the fermionic coordinates satisfy

the standard Poisson-Dirac brackésl5).

H : 1,2,
where the basis functiong, (o, 7) are B. Quantization and space of states
o o, 7)=ext —i(w,m—kyo)], We can now quantize 2D fields and 6” by promoting as
usual the coordinates and momenta or the Fourier compo-
nents appearing in Eq82.5),(2.6),(2.7) to operators and re-
placing the classical Poissdant)brackets(2.14),(2.15 by
the equal-time(antjcommutators of quantum coordinates
and and momenta according to the rulgs.}p g —i{.,.}quant:

[.,.]p.e.—i[.,-Iquant- This gives fn,n=*1,+2,...)
=Vki+m?, n>0; w,=—Vki+m?, n<O0;

(o, 7)=exd —i(w,+Kyo)] (2.9

2.9 [pbodl= 6%, [ad )= 5 OO n 00”8,
(2.19
°Note also that since the generaf®t commutes with all other 1
generators of the plane wave superalgebra we couldfixo take {gga , ggﬂ}z —( 7+)aﬁ51§,
some specific non-vanishing value. In what follows we sipil 4
arbitrary.
After the rescaling<™,x' will be dimensionlesglike = and o) {0Ia 0]5}_ (y )a552j5m+n0- .17

butx* (anda’p*) will have dimension of length.
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The light-cone superstring Hamiltonian is in terms of which the commutation relatiori2.16),(2.17)
take the form
H=-P", (2.18
. . [ap,a]=6", [am.a7’]=nnd”s™,  (2.29
H= o7 f do|= (7> +x2+ m?x?) + 2im@ty 1162 B 1
{65, 08}=7(v" ),
—i(6y 61— 6%y~ '92)} (2.19
{7 177nﬁ}_ S(y ") B8 06", (2.30
Using the fermionic equations of motion it can be rewritten
in the form Herea=1,...,16, and the spinors are subject to 5@6%
1 1 — =0,y" 75=0 constraint.
H= o JdU S(PE+XI+m>XP) +i(0%y 6+ 6%y 02)|. In this basis the light-cone energy operat@?21) be-
comes the sum dE,, E* andE? where
(2.20
Plugging in the above expressions for the coordinates and Eo=f&, Eo=apap+26py 116,+4, (2.31
momenta we can represent the resulting light-cone energy
operator as 12
—+2 ar oy 7). (2.32
H=E,+E+E? (2.2 "~

whereE, is the contribution of the zero modes aid,g2 ~ We have normal-ordered the bosonic zero mode&ifget-
are the contributions of the string oscillation modes: ting extra termz X 8=4) and both the bosonic and fermionic
operators inEZ (here the normal-ordering constants cancel

out as there are equal numbers of bosonic and fermionic

1 .
Eo= 5 - (2.22  oscillators. Note that because of the relation Fr(y II)
P =0, the contribution of the fermionic zero modes in Eg.

(2.31) does not depend on ordering 6§ and 6.

EI— — > (o el +w,6" y 6L, T=12. To restore the dependence @hwe need to rescale” as
ptizo " " in Eq. (2.3. The explicit form of the light-cone Hamiltonian
(2.23 is then
The constraint2.13 takes the form H=f(alah+260y 16,+4)
Kn
1_p2 T Bn 1 -
N'=N2, N go a® aP+ k6 vy 6L N S EW(aﬂjﬂL?]n)’;ﬁ)-
(2.24 a'p” 712ns
(2.33
Let us introduce the following basis of creation and annihi-
lation operators: Note that the energy thus depends on the two parameters of

mass dimension 1: the curvatui@ RR field scale f and the

| 1 L — 1 L string scale p*a’) 1. The flat-space limit corresponds to
ap= T (Po+imxp), ao:\/?] (Po—imXp), f=0 (the zero-mode part recovers its flat-space fpf2p*
(2.2 as in the case of the standard harmonic oscillator; cf. Sec.
' HA).
o ° The vacuum state is the direct product of a zero-mode
\/ _”gé'l . n=12,..., vacuum and the Fock vacuum for string oscillation modes;
2 i.e., it is defined by
(2.2
L ap|0)=0, 65/0)=0, a7'|0)=0, 7,%0)=0,
Tl 2 Do pl_ip2
~ ot =g (fmifh) 227 n=12,.... (2.34
Generic Fock space vectors are then built up in terms of
1 1_ products of creation operatoeg, a2 , 65, 7. acting on
&nzﬁnﬁ" I— Eng n=1.2,..., the vacuum
(2.28 |@)=D(ag,an,60,7n)[0). (2.3
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The subspace of physical states is obtained by imposing the
constraint Pt=p*, P'=f do(cosk™P'+fsinfx™x'p™), (2.37
N @pnyd =N @y, NT= 2 ky(agan + oy 7). 3= j do(f~isinf* P!~ cos k" x'p*), (2.38
n=1
(2.39

+_ T XTI

Note that in contrast to the flat space case ti€re N.. Q 2\/p_f doye™ 76,

Let us now make few remarks about the global symmetry
of the above expressions. While the metflcl) and the S+_ +f eIy
bosonic part of the string actigi.6) haveSQ(8) symmetry, Q"=2p" | doye o (2:39
the 5-form backgroundl.2) and thus the fermionic part of o
the classical actior(1.7) are invariant only undeSQ(4)  The remaining kinematical charge¥”’=(J7,J'"") have
X SO'(4). The contribution of the string oscillators to the non-zero components which depend on all string modes and
Hamiltonian(2.32) is SQ(8) invariant, but this invariance is are
broken down tasSOQ(4) X SO’ (4) by the contribution of the
fermionic zero modes in Eq2.31). In general, the amount ij:J' DI i p— A
of global symmetry of the zero-mode Hamiltonian depends J do(XPI=XPI=i0yy70),
on the definition of the fermionic creation and annihilation
operators, i.e. on the definition of the zero-mode vacuum. i VoS it o
With the definition used in Eq(2.27 the vacuum(2.34) I _f do(x' P! =xPt—ify vy 1 6).
preservesSO(8) symmetry, but the fermionic part of the (2.40
zero-mode Hamiltoniari2.31) is not SQ(8) invariant. One ) L )
can instead introduce another set of fermionic creation] N dynamical charg®™ is given by Eq.(2.19, while the
annihilation operators, i.e. use another definition of the fersupercharge® ~ and Q™ are given by[Q,Q=(1/y2)(Q"
mionic zero-mode vacuum, which preserves only the*iQ?)]
SO(4) XSO (4) invariance, but which formally restores the

SQ(8) invariance of the zero-mode Hamiltonigsee Sec. 4 2 LT T 2
IID below). In any case, the&SO(8) invariance is broken Q= s do[(P'=x)y 6= mxy I167],
down to SO(4)XS0O'(4) not only in the fermionic zero (2.41)

mode sector, but also explicitly by the string-mode contribu-
tions to the dynamical supercharges discussed in Sec. Il C.

—2_ 2 LIV 2 I ol

Q o do[ (P +Xx")y 0c+mx' y'TI16"].

C. Light cone string realization of the supersymmetry algebra P (2.42
In general, the choice of the light-cone gauge spoils part o o

of manifest global symmetries, and in order to demonstratd N€ derivation of these supercharges is givefsh

that these global invariances are still present, one needs to USing the mode expansions of Sec. Il A in E¢8.37),

find the (bosonic and fermionicNoether charges that gener- (2.39 we get

ate them. These charges play a crucial role in formulating R L P

superstring field theory in the light-cone gauge in flat space PP=p", P'=po, J=-ixp", (2.43

[16,17] and are of equal importance in the present plane- _ _

wave contexisee alsd5]). Qf=2VpTy 6y, Q" =2\pTy b,. (2.44
In the light-cone formalism, the generatdicharges of o

the basic superalgebra can be split into the kinematical geriFhe chargeg" =(J', J'1") are given by

eratorsP™,P',.J%" 3 31" Q*,Q", and the dynamical gen- . .

erators P7,Q7,Q” [here 1=(i,i"), i=1,2,3,4; JN=gd 2 z al'aBl— il + Z pF ML

. L . T MY VYV T
i’=5,6,7,4.4 It is important to find a fredquadratig field = Y = R neno2m "
representation for the generators of the basic superalgebra. (2.49
The kinematical generators which effectively depend only on 3 o

the zero modes ate whereJg is the contribution of the zero modes:

19 _ o130 S 04T 1 — N7
4At point x*=p* r=0 the kinematical generators in the super- Jo =803~ oo+ 2 121,2 by Y6 (249
field realization are quadratic in the physical string fields, while the
dynamical generators receive higher-order interaction-dependent——
corrections. While transforming the generatod4”, Egs.(2.39), (2.40), to the

SWe defined=(1/y/2)(6*+i 6?), 52(1/\/5)(017 i6%). form given in Eqs(2.43), (2.45 we multiply them by the factot-i.
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Note that the kinematical generators do not involve the ma- A S | . .
trix IT and formally look as if theSQ(8) symmetry were  [P,Q,]= Epr(Hf oo [PT.Q.1=fQ,II%,,

present. (2.55
The dynamical superchargéx41) have the following ex- '
plicit form: together with the commutators that follow from these by

complex conjugation. The anticommutation relations are

[

P70 =205 03 2mdy M1+ S, | 2ol

{Q1 .Qs}=2y,4P", (2.56
¢ a2+ e, (2.47) {Qa Qal=( 7" ¥)agP' —f(y ¥ ¥ ) g3 ™"
\/w_nCn DU S A = Y +i’
=y y Ty ) pd™, (2.57
VPTQE= 2oy 05 2oy 165+ 2, | 2Voncren y 1Qu Q=7 ¥ V)P 17y 71 13"
im . —f(y y Y T pd ", (2.59
11 1
——a; yllyp,+H.c.|. (2.48
Vo, "

{Qz . Qpl=2yiP +f(y" Y1), 5"

These expressions explicitly break ti80(8) invariance I T ”s

down toSO(4) XSO (4). (r'y Japd' - (2.59
The requirement that the light-cone gauge formulation "®One can check directly that our quantum generators ex-

spect basic global symmetries amounts to the condition thai

i , ressed in terms of the creation-annihilation operators do sat-
the above generators satisfy the relations of the symmetr fy these(anticommutations relation. Note that one recov-
superalgebra of the plane wave RR background. The co

) 7 MErs the flat-space light-cone superalgebra in the limiOf
mutators of the bosonic generators‘are As in the flat superstring case the anticommutator relation
[P~,P'1=f23*", [P'J"]=-&"P, between the dynamical generat@s andQ™, Eq.(2.59, is

valid only on the physical subspa¢2.36).

[P, J*"]=P/, (2.49
D. Choice of fermionic zero-mode vacuum
e ok ke _ _ o
[P, 3] =8P~ 5P/, The states obtained by applying the fermionic zero-mode
Lo L creation operators to the vacuum form a supermultiplet.
[P, I ]=§"1"PK — sk pi’ (250  States of that supermultiplet can be described in different
o B o ways depending on how one picks ug‘&lifford” ) vacuum
[J71,JK]=§1gTk—ska], to construct the tower of other states on top of it. While it is
natural to define “the” vacuum to have zero energy, this is
[JH7, 31K = 61" gtk — 5K g+i (2.57  hot the only possible or necessary choice as we shall discuss
’ ’ ' below.
Ji 3= sk31 £3 terms, In general, the quantum counterpart of the zero-mode en-
[ ] ergy (2.22 may be written ascf. Eq. (2.33]
il klll _ 'Ik! '!ll R— J—
[V ]=8%3" +3 terms. (2.52 Eo=1&, 50:a|05{)_200,y—n 6o+ €, (2.60

The commutation relations between the even and odd gen, ... 0o=(1/y2)(05+163) [see Eq.(2.27] and g, is a

erators are constant that should be fixed from the condition of the real-
1 1 ization of the superalgebré2.56—(2.59 at the quantum
[Jij’Qi]:_Qg(yij)ﬁay [Ji’J’,Qi]:_QE(yi’J’)Ba, level. Note thatEy=0 in the flat-space limit£0.
2 2 We shall need the following expressions for the zero-
(2.53 mode parts of some symmetry generatmse Eqs(2.46),

1 (2.47), (2.481:
[37,Q.1=5Q5 (v, (2.54 —
27 W=abad-alayt oy ¥ 0, (26
FA-—onl A o |
"Note that we use the HermitiaP* and the anti-Hermitiad*” VP Qg =2pgy Oo+ 2imxyy I16y,
generators. The supercharg@$ andQ~ are related to each other — — = s
by the conjugation@*)T=Q". VP Qg =2pgy bp—2imxyy 116g. (2.62
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Let us introduce instead df, the following complex fermi-
onic zero-mode coordinates:

1+11 1-11
— 0o,

Or="—=00, 0=
R \/50 L \/E

satisfying in view of Eqs(2.15), (2.30 the relations

(2.63

— 1
{0, 05}= 7(1+1D) ",

_ 1 _
{9L,9L}:Z(1_H)7+y {6, 06,}=0. (2.64
In terms of them
So=apapt Oy O.—Ory Or+ey, (269
and
Qo =2Vf(apy' Or+apy' 6,),
Qo =2vf(apy br+apy 6y), (2.66
1J 1723 JAT 1__— 1J
Jo =agdp—apapt §9R7 v O
I-—

PHYSICAL REVIEW 65 126004

from Eq. (2.65 we see that acting witl#_ (6g) on|0) we
increase(decreasethe energy by one unit. The generic fer-
mionic zero-mode state is

(6r)""(6,)™[0), (2.7

The restriction on the values afgz and ng comes from
(0R)°=0, (6.)°=0 (the projected fermions have only 4 in-
dependent componentd he corresponding energy spectrum
is thus

n|_ ,nR: 0,1,2,3,4.

(2.72

The values of the energy of the lightest masslggpe 11B
supergravity string modes with no bosonic excitations thus
run from O to 8(in units of f).

The equivalent definition of the vacuum is obtained by
using the conjugate of Eq2.68

SO(nR,nL):4_nR+ n|_ .

Let us now discuss several possible definitions of the zero-

mode vacuuntwe shall always assume thegj|0)=0). In all
the cases below the expression B will imply that the
vacuum is a scalar with respect 80(4) XSO’ (4).

First, we may define the fermionic zero-mode vacuum in

the same way is in the case of the flat space background by

imposing

0,/0)=0, i.e. 6g0)=0, 6,0)=0. (2.68

This is the definition we used in EQR.34). Then
{Qq Qo HO)y=4Hayy' 0+ ayy' 6, a3y 0r+ady76,}0)
=4(a3y’0r) (257 6r)[0)
=41y 0ry' 6r0) =¥/ (1+11) " ¥'|0)
= —8fy"(0), (2.69

where we use the relatioFH ¥'=0. On the other hand,
from the supersymmetry algebra relatigh59 we have

{Q,Q }|0)=2fy"P7|0)=—2fy"e,|0), (2.70

where we used thal'’|0)=0. Since for the zero modds,
=—P~ we learn that here,=4.
Thus the normal ordering of bosons done in E3)) is

6,/0Y=0, i.e. 6g0)=0, 6,]0)=0, (2.73
so that
eo=4, &(Ng,nN)=4+ng—n. (2.74
One may instead define the vacuum by
05/0)=0, 6,]0)=0, (2.75
leading to
e=8, &(nhg,n)=8—ng—n, (2.76
so that&, again takes values in the range ,Q,1. ,8.
Finally, another possible choice is
6rl0)=0, 6.]0)=0, (2.77
in which case one finds that
e=0, &(ng,n)=ng+tn_. (2.78
Here also&y=0,1, . ..,8.Note that the two choices of the

vacuum(2.68 and(2.73 preserve th&&Q(8) symmetry but
break the effective 2D supersymmetry of the light-cone
string action(1.6) (the 2D vacuum energy does not vanish
At the same time, the choid®.78 preserves the 2D super-
symmetry, but breaks th8O(8) symmetry down t&50O(4)
XSO (4) [cf. Eq.(2.63].

All these definitions of the vacuum are physically equiva-
lent, being related by a relabeling of the states in the same
“massless” supermultiplet. While in the last choice we dis-
cussed the vacuum energy constis zero(i.e. the normal
ordering constants of the bosonic and fermionic zero modes
cancel as they do for the string oscillation moxdake ad-
vantage of the first definition we have used above in Eq.
(2.34) is that it directly corresponds to the definition of the
fermionic vacuum in flat spadel6,18, i.e. with this defini-
tion one has a natural smooth flat space limit.

In the next section we shall determine the spectrum of the

indeed consistent with the supersymmetry algebra. Thetype IIB supergravity fluctuation modes in the background
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(1.1, (1.2) and will thus be able to explicitly interpret the spin 1/2 field: A®(16); Ng,=16
states(2.71) with energies&,=0,1, ...,8 interms of par- (3.6)
ticular supergravity fields.
(\ is negative chirality complex spinor, and =3y y"\ is
IIl. TYPE 1IB SUPERGRAVITY FLUCTUATION its light-cone projection
SPECTRUM IN THE RR PLANE-WAVE BACKGROUND

; iald- oL oL [ .
The string states obtained by acting by the fermionic and ~ SPin 3/2field: 4=(48),  4;,7(48), $°1(16);

bosonic zero-mode operators on the vacuum should be in
one-to-one correspondence with the fluctuation modes of Ngof=112 (3.7
type 1IB supergravity fields expanded near the plane-wave
background(1.1), (1.2). Assuming the choice of the zero- (the gravitino is a positive chirality complex spinor, ad
mode vacuum in E¢2.34) or (2.68 and acting by the prod- and ! are itsy-transverse ang-parallel parts
ucts of the fermionic zero-mode operators one finds the As we have already found in string thedignd will con-
lowest-lying states that can be symbolically represented asfirm directly from the supergravity equations belowere, as

in the case of the AdS supermultiplets, the spectrum of the

|0) complex scalar lowest eigenvalues of the light-cone energy operator is non-
6,|0) spin 1/2 field degenerate; i.e., different states have different valuds,of
6060|0) complex 2- form field

A. Massless field equations in plane-wave geometry

006006,|0) spin 3/2 field ) . ) o
) ) Our aim will be to find the explicit form of the type IIB
6060006o/0)  graviton and self-dual 4-form field equations of motion expanded to linear order in fluctuations
complex conjugates to the above, near the plane-wave backgroufill), (1.2) and then to de-
: termine the corresponding light-cone energy spectrum. Let
(3.9 ine th ding ligh L
The complete type IIB supergravity spectrum is obtained byus first discuss th(_a solutions of the_ s_,implest wave equations
acting with the bosonic zero mode creation operaagrsm in the curved metri¢1.1). The non-trivial components of the

the above states. corresponding connection and curvature aye (= f?x?)
The aim of this section is to explicitly derive the super-

gravity spectrum using the standard field-theoretic approach, F$| = —f2x!oL, F$+ =2 5?

analogous to the one used [ih0] for the AdS X S® back-

ground. Ris+3=—f28,;, Ry =8f (3.9

As a preparation, it is useful to present the decomposition
of the 128+ 128 physical transverse supergravity degrees offhe massless scalar equation in the plane-wave geometry has
freedom in the light-cone gauge using t8€(8)— SO(4) the following explicit form:
X SO (4) decompositiof:

. L Ue=0,
Graviton:  h;;(9), hi;(9),  hij(16), h(1);
1
Naor=35 3.2 0= = ('~ gg™,)
he | d . . -9 - -
—, ht,., are traceless and t , 1S not symmetric in, ).
(M M " Y " =20" 0 +139 2+ 7. (3.9

4-form field: a;;,(16), a;;i,j:(18), a(l);
After the Fourier transform inx™,x' corresponding to the

Ngof=35 (3.3 light-cone description where* is the evolution parameter,
(:a[,leis | hot antisymmetric in i,j’ and &}/ L dp*dép oty s s
7 €ijkI €71k ki) - e(x",x ,X)—f (277)9/29 e(x",p",p),
Complex 2-form field:b;;(12), bj/j:(12), bjj(32); Ngot (3.10
=56 (3.9 it becomes
(bjj, is not antisymmetric in,j’). (2p+P’—f2p+2ﬁil+p|2)'<}=0, (3.11)

Complex scalar field: $(2);  Ngor=2 (3.5
where— P~ =ig~ may thus be interpreted as the light-cone
Hamiltonian appearing in the non-relativistic Sctiirmger
®The number of independent components are indicated in brackegquation for the free harmonic oscillator in 8 dimensions
and Ny, is the total number of degrees of freedom. with massp™ and frequency f:
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E tions Bmz bﬂ in the plane-wave background.l), (1.2
(p?— I m=fp*. (3.12  (with P,,=0) using the light-cone gauge

b_,=0. (3.20

H=-P"

2+

Introducing the standard creation and annihilation operators

It is sufficient to analyze Eq$3.19 for the following values
of the indices (h;,m,): (—,I) and (,J). We find

[ al=

a (p|+m(9p|)a

1 1
——(p'—may), —
v2m Vv2m
DTGT|J:C7MGM|J+f2X|2(?+G_|J, DTGT_|:&MGM_
[a,a’]=6", (3.13 (3.2
Taking into account thaF,mz,_.m5=0 and the light-cone
gauge conditior(3.20 we find

ﬁ+b+|+ﬁJbJ|:0, (322

we get the following normal-ordered form of the Hamil-
tonian:

1 — —
H= -f(a'a'+a'a')=f(a'a' +4), (3.149 _ _ _
2 which allows us to express the non-dynamical mdalesin

terms of the physical on . Then
where 4= (D —2)/2, D= 10. As usual, the spectrum of states phy &5

[and thus the solution of E¢3.9)] is then found by acting by DG, ,;=0b,;. (3.23
a' on the vacuum satisfying'|0)=0. -

Below we will need the following simple generalization Using  that Fijimmm =0 [cf. Eq. (1.2] and
of this analysis: if a fieldp satisfies the equation F,Jm3m4msGT3T4TS—6fe”k|a b, we get from Egs.(3.19,

(O +2ifca™ ) o(x) =0, (3.15 (3.23 the following equations for the physical modes :

. . . . . Ob;;»=0, Ob; +2ife d b =0
wherel is defined in Eq(3.9) andc is an arbitrary constant, ' ij T <1 €ijia @ Bid

then the corresponding light-cone Hamiltonian is Obyrj+2if€riyy 0 by =0. (3.24
3 7_p,2 f2p+25 The equation forb;;, implies that &y (b;j.)=4 [see Egs.
H=-P"= 2p* +fc=f(a' al +ta+c), (3.9, (3.17)]. To diagonalize the remaining equations we de-

(3.16 compose the antisymmetric tensor fiddgl into the irreduc-
ible tensors of theso(4) algebra:
so that the lowest light-cone energy value is given by

1
— S O
Eozf(‘:o, 50 4+c. (317) b bEB_l_b'J ! bi‘]9 - 26|Jk|bk| . (323

In what follows we shall discuss in turn the equations ofThen
motion for various fields of type 1IB supergravity, reducing
them to the form(3.15 and thus determining the correspond- (O+ 4if(9+)bf‘]-9 =0, (O —4if(9+)b$= 0. (3.2

ing lowest energy values from E¢3.17).
The same relations are found fbr,;,. Then according to

Egs.(3.15, (3.17 we find the following lowest energy val-
ues:

B. Bosonic fields

1. Complex scalar field

The dilaton and RR scalar are decoupled from the 5-form Eo((bj ) 2, SO(b) 6, EO(b =2,

background1.2), i.e. satisfy o
go(bi,j,):6, 50(bij’):4- (3.27
O¢=0, ie. &p)=4. (3.19
In the oscillator construction of Sec. Il Bsee Eqs(2.68),

2. Complex 2-form field (2.71), (2.72] the monomials of the second order ¢h g
with £&,=4 are 66, , which have 16 complex components;
i.e., these monomials can be identified with the ground state
i of b;;,. The second and sixth order monommlsda, o,

=Fm . GIeM4Ms WhICh can be identified with the ground statedﬁf b"

(3.19 b, b, ;» may be found in Table I.

The corresponding nonlinear equations 8|

m me*x
DG nym, = PG, m, ~ e

where Gm,m,m, =37 mle2m3] is the field strength of the 3. Graviton and 4-form field

complex 2-form fieldB,,, andP,, is the complex scalar field Since both the graviton and the 4-form field have non-
strength. The aim is to derive the equation for small fluctuatrivial backgrounds, some of their fluctuation modes are

126004-9



R. R. METSAEV AND A. A. TSEYTLIN PHYSICAL REVIEW D65 126004

mixed and need to be analyzed together. The full non-lineaNext, we need to consider the self-duality equation for the
forms of the corresponding equations of motion®are 5-form field whose [4l,l51,—) component implies that
a1, is expressed in terms of the physical modes, :
1
Rmz ﬂsz = -msFETZ s, (3.28 L

Apiyi,l,= &TﬁJaJl

(3.39

1l2l3

1
Fm...m:__l\/_gem...mn...nFEl”'ES: . .
—t=s 5l st In terms ofa,;«, the 5-form field strength self-duality con-
(3.29 dition becomes

D™, . mg=0s F, . m=5d(mAm,  .m,- 1
(3.30 a|l...|4—_Hfll...|431...34aJl...34- (3.39

Expanding near the plane wave RR background The (+ +) component of Eq(3.34) leads to the expression
for h,, (after taking into account the above resylts
+ + b - : ot
9mn = Gmn h@’ ATl---th—}ATl---Tét Am, ...my =(1/(9%)?)9,0;h,;. So far all is just as in the light-cone
(3.3) analysis near flat space.

Let us now do the 44 split of the 8 transverse direc-

RTH R@HT' FTl"'TsH le - 'T5+fT1 oo Ms? tions. The (,j) components of Eq(3.34) take the form
(3.32
. . 1
we shall choose the light-cone gauges for the fluctuations fi,'=f5ijo7+a, azgfil---uail---u- (3.40
h@ and m, ... m,’
i =1 .
h,T=O, a’Tszth:O' (3.33 Using thatr;; 20h;; we get
The linearized form of the Einstein equation is
Thus there is a mixing between the trace of 8©(4) part
roo=—(F fmpmyy Eommy of the gravitonh;; and the(pseudg scalar part of the 4-form
mo4h MMy .My T mmy - My e potential. From the igi,izi,) component of theDF=0
equation for the 4-form field in Eq3.30 we also find that
— 4F o g F o oS 12) 334 M 43.30

Da—8f&+hii=0. (342
where
These equations are diagonalized by introducing the traceless
1 K raviton and the complex scalar,
=5 (~ DNy + DD ¥Ny+ D4y~ D D g P

1 . — .
+ 2Ry mym,nh™™2+ Ry chis+ Ry k). (3.39 hij=hij— 7 dijh. h=hi+ia, h=h;—ia,
- T (3.43
The (——) component gives =0 and thus we find the
zero-trace condition for the transverse modes of the gravitorso that we finish with
h,=0. (3.39 Oh;=0, (O-8ifg*)h=0, (O+8ifg")h=0.
3.4
The (—=1) components of Eq(3.34 give r _,=0 and this 344
leads to the equatioP™h,,,=0 which allows us to express According to Eq.(3.17) this implies
the non-dynamical modes in terms of the physical modes o
represented by the traceless tenisgr. €O(hiij)=4, Eo(h)=0, &(h)=8. (3.4
The same results are found of course in the other 4 direc-
hy=——dshy. (337  tions, i.e. withh;—h;/;, anda—a'=%, &' jar. i,
Jd 1 41 4
a'=—a.

Let us now look at “mixed” components. Equations

The equatiorDF5=0 follows of course from the self-duality of (3.34 in (ij ") directions give
Fs, but we will find it useful to use this second order form of the

equation forA, below. Note that we ignore the quadratic 2-form _ 1

q . 4 R . g . q . Dhijr+4f(9+aij/:0, aijr=—€ii ] ajri inint
correction term inF5 [15] as it does not contribute to the linear 3 M2zl a2l
fluctuation equations here. (3.49
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We have used the self-duality (3.39 implying i 0

il igi, @i 5i5i,= €i'ini5i;@iziziz. 1N addition, the {j'j3]) D__4_80 - 'TSle---Ts))\ZO’ AZ()\ )

components of th®F =0 equationg3.30 give (3.56
Daij/—4f5+hij/=O. (347)

Here yI= e% * where e/"—: is the (inverse vielbein matrix.
We use the following vielbein basis corresponding to the

Again there is a mixing between the components of the
g g P |metr|c(1 D (et= e"dx_)

graviton and the 4-form field. These equations are diagonal

ized by defining the complex tensor )

f
. — . et =dx*, e =dx" — 35X Zdx*, e'=dx. (35
hierhij/+|aijr, hierhij/_|aijr, (348) ( 7)

(D—4ifr7+)hi]—,=0, (D+4if<9+)ﬁj,=0, (3.49  The spinor covariant derivativ®,, —07 +3 w’“"y’“’ then

takes the following explicit form:
so that the corresponding lowest eigenvalues of the energy

are 2 _
- D_=d_, D=4, D+=(9+—Ex'y+'. (3.589
So(h”r)=2, (c/‘o(h”r)ZG (35@
Finally, for a;;,;, satisfying, according to Eq(3.39, the Taking into account the background value of the 5-form field
constraint (1.2) we get
1 f2 —
aiji’j’:_Zeijk|6i’j’k'|’ak|k'|’ (35]) |:’y+ (?_+EX|2(7+_IfH +,y—{9++,y|(9|})\zo,
(3.59
we find from Eq.(3.30 that
where we used that
Daiji,j/ZO, |e 50(aiji/j/):4. (352 o
] ] ] ) ym-Msp o =A480fy I, (3.60
Note that the self-dual tensor fielj;; ;. is reducible with =
respect to th&O(4) X SO (g) groeup It can be decomposed Decomposing\ as
into the irreducible partaIJI i g satisfying
1 1
1 1 A=AT+AN®, A=y yTN, A=y
o o ) o ) Y Y N Y Y N
aﬁi,j,zzeijmaﬁi,j,, aﬁi,j,=—§ei,j,k,|,aﬁk,l,, 2 2
(353 (3.6)
1 1 we find that in the light-cone description® is non-
oo S So _ oo dynamical mode expressed in terms of the physical mode
aiji,j, 26|Jk|ak“ i aiji,j,—EEirjrquaijk,l,. )\)é p pny
(3.59
, . . 1 _
The SQ(4) < SO/ (4) labels of these irreducible parts may NO=—"y Ya'ytA®, (O-2iflla")A®=0. (3.62
be found in Table I. 20
C. Fermionic fields Decomposing\ © further as[cf. Eq. (2.63]
Let us now extend the above analysis to the fermionic 1400 1-TT
fields of type IIB supergravity. NC=NE+ND, Ag= 5 N, A= 5 \,
1. Spin 12 field (3.63

The equation of motion for the two Majorana-Weyl nega-
tive chirality spin 1/2 fields combined into one
32-component Weyl spinor field [15],

we get the diagonal equations of the desired f¢8115:
(O-2ifg")\g=0, (O+2ifg")\’=0. (3.64

rep,— 4_80le TFm,...m|A=0, (355  Then from Eq.(3.17 we conclude that the lowest values of
- - the light-cone energy for the fieldss , A" are

can be rewritten in terms of the complex-valued . .
16-component spinor field (see the Appendix for notatign Eo(Ag)=3, &(N[)=5. (3.69
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2. Spin 32 field Dlpi@_zifn(aij_%;j)(ﬁ 'ﬂj@:OY
The equation for the positive chirality gravitino in the
32-component notation 1%

_ U=y (o (3.74
i
FTT192<Dm +—IsE - TP, =0
~ 960 e (3.66 The other non-dynamical mode, [splitinto 4 and ¢ as
' in Eq. (3.61)] is found from Eq.(3.71) and them= + com-
In the 16-component notation it becomes ponent of the gravitino equatiof3.69:
mmgm. I n n - ® 1 ® S 1 + @
YR Dy g0 ¥ F g Vi, | ¥, =0, vi==awl. gi=- oy Tyt 379
1/ Decomposing the dynamical gravitino modsg® into the
Vo= NE (3.67  y-transverse ang-parallel parts as
1 — _
This can be rewritten as i‘BiE< 8ij— N7 (pj@ , ¢@I\Eyi s (3.76
_ i — — .
'}’EDE’;DT_ Dm‘ﬁ_ @7’2721 a ‘Q5F21 .. .ESVT%: 0, we find
_ (O-2ifllo*) gt =0, (O-6ifllo")y®l=0.
=y (3.68 (3.77
Making use of Eq(3.60 we get As in the spin 1/2 case, to diagonalize these equations we

introduce[cf. Eq. (3.63)]

— if— _
'VEDE‘pT_ DT¢_ E')’EH')’+ YTlﬂE:O, (3.69

@L_1+H oL EBL_l_H oL
R =5 Vi =5 i,

and impose the light-cone gauge for the gravitino field

1+11 1-11
W =0. (3.70 wﬂR}”:Tlﬂ@“' lﬂ?HZTlﬂ@H- (3.78
Equation(3.69 for m=-— then gives This gives finally
b=y g +y =0, ie. y yy=0. (371 (O-2ifoY)y%=0, (O+2ifd")yit=0,
As a consequence, (@-s6ifoH)yil=0, (O+s6ifa")yll=0. (3.79
Yy yiy=211y" (8= ) ;. These equations give, according to E(3.19, (3.17) the
following values of the minimal energg, for the respective
Yy yi = —2I1y" (5, =YYW (3.72  physical gravitino modes:
With the help of these relations the=i component of Eq. Eolyix)=3, &(yi)=5, &lygh=1,
(3.69 becomes - o
ol ) =T7. (3.80
_ f2 _ _ N
yHlo + Ex,zcﬁ +y 0T+ yJaJ} i —ifIly* A similar analysis applies to the gravitino componeifts.
In this case we gdicf. Eq. (3.74)]
X(6ij— 17 ¢;=0. (3.73

Decomposing the gravitino field into the physical moge
and non-dynamical mod$i9 as in Eq.(3.61) we get, from
Eq. (3.7 ting by y* by v7),

9 (3.73 (acting by orby y) E Ui =5, E(Ui)=3. (3.82

and as a result

. rol=",, 4% i
10The 5-form term in the gravitino equation was missing 1] As for the y pgrallel partys 7"_‘/’i’ of ¢ir, it _does not
but its presence is implied by the supersymmetry transformationfePresent an independent dynamical mode being related to
given there and if19]. This term was explicitly included ifiLO]. z,/;@” through Eq.(3.72), i.e. ' 7 =0.
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TABLE |. Spectrum of bosonic physical on-shell fields.

Field Energy SO(4)xSO'(4) Term in

& and spectrum labels superfield expansion
Ngor k=0

0 h(2) k (0,0 (0,0) B a;g_

2 hj (32) k+2 (1,0)<(1,0) Ory 0ROy %0,

2 b (6) k+2 (1,1)x(0,0) (0L y16,)

? Di(6) 2 (0.0x(1.) o0 )

2 b (6) k2 (1,2)x(0,0) Orm™y 10

2 b?,j,(s) k+2 (0,0X(1,—1) Oy "1 O

4 ¢(2) k+4 (0,0)x(0,0) 1

4 $(2) k+4 (0,0)%(0,0) N

4 hi;(9) k+4 (2,0)% (0,0) Oy K0 00,75 6,

4 hi{j,(g) k+4 (0,0)X(2,0) Oy <0 050,91 K 0,

4 aleflerlr(g) k+4 (111)><(1‘_1) 9|_7T®£7ij GLGRTr@E*i,j,HR

4 a?_ie’aj,(g) k+4 (1-1)x(1.1) Oy 100 %y 6,

4 b,],(32) k+4 (1,0)X(1,0) 0R77ij'0|_

6 bﬁ‘f(G) k+6 (1,1)x(0,0) o, %y e,

6 bie,j,(a) k+6 (0,0)x (1,1) o 7%y 16,

6 b5 (6) k+6 (1,-1)x(0,0) 0 (0rm™y 1 6R)

6 E?,j,(s) k+6 (0,0)x(1,-1) a‘L‘LaRwe?_i'i’aR)

6 h”/(sz) k+6 (110)X(110) GL,y*ikeLaR,y*j'kgL

8 h(2) k+8 (0,0)X (0,0) o}

D. Light-cone gauge superfield formulation of type 1B superspace.

supergravity on the plane wave background

Finding even the quadratic part of the action for fluctua-
Before proceeding, let us first summarize the results of th&ons of the supergravity fields in a curved background is a

above analysis in two tables: one for the bosonic modes angPmplicated problerfr: We could in principle use the cova-
other for the fermionic modes. In Tables | and Il in thg  fiant superfield description of type IIB supergravit§1],
column we indicate lowest eigenvalues of the light-cone enstarting with linearized expansion of superfields, imposing
ergy operator of the corresponding field. The energy spedight-cone gauge on fluctuations and then solving the con-
trum of higher “Kaluza-Klein” modes(obtained by further straints to eliminate non-physical degrees of freedom in
action by the bosonic zero-mode creation operaai;)sis terms of physical ones. That would be quite tedious. The
labeled by k, where k0 corresponds to the ground state. light-cone gauge approach is self-contained, i.e. does not rely
Note, however, that these are not the usual Kaluza-Kleinupon existence of a covariant description, and provides a
type modes because the action of the symmetry algebra aofiuch shorter route to final results.
the plane wave background mixes modes with different val- There are two methods of finding the light-cone gauge
ues of k. This algebra can be thus viewed as a spectruformulation of the type Il supergravity. Ori@2] reduces the
generating algebra for the “Kaluza-Klein” modes. problem of constructing a nevlight-cone gaugedynamical

In the fourth column we have given the Gelfand-Zetlin system to finding a new solution of the commutation rela-
labels of the correspondir§O(4) X SO’ (4) representations. tions of the defining symmetry algebra. This method of Dirac
In the last column we indicated the monomials in fermionicwas applied to the case of supergravity in AdS® and
zero moded), , 6 which accompany the corresponding field AdS,x S® in [23] and[24].*? The second method is based on
components in the expansion of the light-cone superfield finding the equations of motion by using the Casimir opera-

discussed below. tors of the symmetry algebra. Here we shall fol-
In the rest of this section we shall present the light-cone

gauge superfield description of type IIB supergravity in the———

plane wave RR background. As in flat space, the equationsiyiy the case of the AdS<S® background in covariant gauge it
for the physical modes we have found above can be suUmMayas solved if20].

rized in a light-cone superfield form. The corresponding un- 12The application of this method to a superfield formulation of
constrained scalar superfield(x, 6,) will satisfy the “mass- interaction vertices oD =11 supergravity may be found if25]
less” equation, invariant under the dilatational invariance in(see alsd26] for various related discussions
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TABLE Il. Spectrum of fermionic physical on-shell fields. D(X,0)=0"2A+ 029" Y+ 0313a23+Aa1a2
Field Energy SO(4)XSO'(4) Term in + 0a10a20a3’//alaza3+ 021 634Aal .4
& and spectrum labels superfield expansion
Ndof k=0 i * 1 *
_(fas)a aja, T Y12 _(506):3 a, T A%
1 4/2“(8) K+ 1 1 1 y 11 0:& 18283 5+ 182 5+
20 2)7\2'2 i 1
= 4
1 oylls)y k+1 11 /11 Or6L +(ea7)aF¢a*+(eeg)FA*, (3.83
2'2)7\2" 2
3 ¢y5(24) k+3 1 0.) N
¥ir (24) (2*% X %%) (6rY " 0R) Y00 wheree, .. ., is the spinorial Levi-Civitatensor, i.e.
3 yii(24) k+3 (1 L3 1) (6ry ™"V 0R) ¥ 61 1
519 5 5 8—n — a, a,
. 2'2)\2° 2 . (€0 )al...an_ (8_n)!5a1...anan+1...a80 Nt L 0%,
$ il k33111 0RO (3.84
2'2)7\2" 2
3 E,%(M) k+3 1 1) /31 6367 Here we use the following Hermitian conjugation rule:
(51_5 X 575) (6.6,)T= 0636} . This superfield has a certain reality prop-
3 \E(8) k+3 1 1 /11 0n erty: the component field for the monomiél is complex
(5,—5 X E’E) conjugated to the one fa®~". This reality constraint can be
_ 4.3 written in the superfield notation as
3 A8 k+3 11) /1 1 OROL
22272 8tai(a™) 206"  5+4 T
5 A®) kS5 11 11 " Dx,0)= [ PO (G )@, 0)'. (389
Eixﬁfﬁ
5 \2(8) k+5 1 1 y 11 636; In what follows we will use again the 16-component spinor
27222 .
S g k+S 31y 1 1) (i)Y 0=
22)"\27 2 0
5 ¢ g(24) k+5 1 1) (31 6y "6 Y6
Yire(24) (5,—5 X E’E) (Ly DY O Decomposing it intodg and 6, as in Eq.(2.63 we can
— ) 5 expand the superfield in terms of these anticommuting
S yir'(24) k+5 (ﬁ_} e }) OROL coordinates.
2" 2] \2'2 The expansion in this basis can be used to identify the
5 Uet(24)  k+5 31 1 1 6267 superfield components with physical on-shell modes of type
"t 25 %5:7 5 IIB supergravity fields found earlier in this section. The cor-
7 uele) k47 11 (1 1 o3 responding monomials ifi,_ g are shown in Tables | and II.
- (E' 51%|3:- E) - The dilaton field¢ is the lowest superfield component, while
_ its complex conjugate appears in the last component mul-
7 I 60 e . .
yri(8)  kH7 (%_% x %%) LR tiplying 6%6; . As another example, consider the antisym-

metric second rank complex tensor field mobﬁsand b?.
According to Table I, they correspond to the monomials
6, 7%y~ 116, and 57"y~ "1 6z where we used the following
low this second approach. notation for the self-dual projectorsr{ y 1=,y ):

The basic light-cone gauge superfield will be denoted as ’
d(x,0) and will have the following expansion in powers of 1
the Grassmann coordinatés'® Wﬁ?;k|=z(5ik5j| — 81 %kt €ijui)»

o 1
7Tij;k|:Z(5ik5j| — 0i1 O}k — €ijk1)-

BHere we omit the index 0 on the light-cone fermionic zero-mode (3.89
variablef,, denoting it simply a®. To simplify the expressions for
the superfield expansion and its reality constraint we solve the lightLet us now determine the equations of motion for the scalar
cone gauge constraint” 6=0 in terms of eight fermion®? (a superfield®. For this we will need the explicit form of the
=1,...,8) byusing the representation fa° in Eq. (A8) andy®  second-order Casimir operator for the plane wave superalge-
=diag(lg,— 1g). bra described in Sec. Il C:
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— — 9t | Al
c:2P+P—+P'P'+f23+'J+'—%fQ+Hy+Q+. DT 00y. (399
(3.87) The requirement ofim invariance of the superfield equa-

tions of motion amounts to the conditi¢®,C]P =0. Since,
The representations of the generators of the plane-wave sas it is easy to see from E(.91), [D,C]=—2C, it follows
peralgebra in terms of differential operators actingbgk, ) then that the onlgim-invariant equation of motion is simply
may be found by using the standard supercoset méttiofi _
EQs.(2.397—(2.39]: Ch=0, ie. (O—-2ifg"6lld,)D(x,0)=0.

. (3.99
Pt=9", P =97, P'=coskd'+fsinfx*x'o",
(3.889  The corresponding quadratic term in the superfield light-cone

gauge action is then
Jt'=f"1sinfx"9'—cosk*x'9",

sl,c_%f d%dBod (x, 0) (01— 2ifd™ 6119,) D (X, 6).
(3.95

Splitting the fermionic coordinaté into 6z and 6, parts as
in Eqg. (2.63 one can rewrite EQ3.94) as

1
\]IJ:XIU"J_XJU')I_FEaﬁ’yIJey (389)

Q+= _2iﬁ+;*eifX+H9, 6+

1— 1 — _
=§y*e*'f”“y+a(,, {00807 =5 (v v )% [O+2if0™ (6.0 — Ordg) 1P (X, 0r,6,)=0. (3.96

(3.90  This remarkably simple equation summarizes all the field

i ) . o equations for the physical fluctuation modes of type 1IB su-

The projector on the right-hand sidBRHS) of the definition  pergravity fields in the present RR plane-wave background
of the fermionic derivativeg, in Eq. (3.90 reflects the fact [i.e. the components ab, Eq. (3.83] which were derived

that 6 satisfies the light-cone gauge condition. PlugginGearlier in this section. In particular, the universal expression

these expressions into E(§.87) we find for the lowest values of the light-cone energy operator can be

= found by applying Eqgs(3.195, (3.17) to the case of Eq.
C=0-2ifg" g1y, (39) (306 y applying Egs(3.19, (3.17) q

where[] was defined in Eq(3.9). ' . Eo=f(4+ 9L50L_ GR(;HR)_ (3.97)
In a general curved background the equations of motion

for the superfieldb take the form C—Cy)® =0, where the

constant ternmC, should be fixed by an additional require-

ment. For example, in the case of AdS spdkgs expressed

in terms of constant curvature of the background. In the IV. CONCLUDING REMARKS

present case of the plane wave backgrounddhean be In this paper we presented the quantization of type IIB
fixed by using the so-calledsim” invariance—the invari-  string theory in the maximally supersymmetric RR plane-
ance under the original plane-wave superalgebra supplevave background of6] whose light-cone gauge action was
mented by the scale-invariance condition, i.e. by the condifound in [5]. We explicitly constructed the quantum light-
tion of dilatational invariance in superspaf@2].”® The  cone Hamiltonian and the string representation of the corre-
generator D of dilatations in the light-cone superspaxe ( sponding supersymmetry algebra. The superstring Hamil-
= const) tonian has the standard “harmonic-oscillator” form, i.e. is
. B B | | quadratic in creation-annihilation operators in all 8 trans-
X7 =0, Ox =2Nx", X =AX, J0=\0, verse directions, so that its spectrum can be readily obtained.
(3.92 We have discussed in detail the structure of the zero-mode
has the obvious form sector of the theory, gi_vin_g it the spape—time field-theoretic
interpretation by establishing the precise correspondence be-
tween the lowest-lying “massless” string states and the type

n this section we use the anti-Hermitean representation for théIB supergravity fluctuation modes in the plane-wave back-

generatorsP*. The corresponding commutation relations in this ground.“ ) .
representation can be found from E¢@.49—(2.59 by the substi- The “massless’(supergravity part of the spectrum has
tutions P4 — — P~. certain similarities with the supergravity spectrum folifh@]

5n the usual 4 dimensions scale transformati¢datations N the case of another maxi_mally supersymmetric type 11B
combined with the Poincargroup form the maximal subgroup of background: Ad$x S [15] (this may not be completely sur-
the conformal group, or similitude groupIM(3,1). Dilatation in-  Prising given that the two backgrounds are related by a spe-
variance ensures masslessness, so the direct generalization to €ial limit [7]). In particular, the light-cone energy spectrum
supergroup case should give a criterion of masslessness for tf@f a superstring in the RR plane-wave background is dis-
superfields. crete. As in the AdS cade7], the discreteness of the spec-

This reproduces the values &§ in Tables | and II.
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trum depends on a particular natural choice of the boundary o
conditions. In the present case they are the same as in the Hyp+ =" (a'(,E{,+200y*H00+4)
standard harmonic oscillator problem: the square integrabil-
ity of the wave functions in all 8 transverse spatial directions. o
An interesting feature of the plane-wave string spectrum + > > @al'+ gty gh|. (40

is its non-trivial dependence gm'". This is possible due to

¥ .
the fact t?a; the generatér corr:ml:)tes V\X'/th dallflothderhgen- The constrain2.36 remains the same as it does not involve
erators of the symmetry superalgebra. We defined the speg ;g provides an interesting example of a non-trivial

trum in terms of Ehe light-cone energy=—P -, which does  «,j|_string’ spectrum which is worth further study. Note, in
not depend orp™ for the massles¢zero-modg states but  particular, that here the energies do not grow with the oscil-
does depend on it for the string oscillator modes. In generalgtor |evel numbern; i.e., there are no Regge-type

one may define the string spectrum in curved space in termgajectories:®
of the second-order Casimir operator of the corresponding [ et us now compare the plane-wave string spectrum with
superalgebra. In the present case the eigen-values of this ofire expected form of the light-cone spectrum of the super-
erator depend on discrete quantum numbers as well @ on string in an Ad§Xx S® background. In general, the spectrum
(through the dimensionless combinatior=@7a’p*f with of the light-cone Hamiltoniar{=—7"in AdSsx S’ [9]
the curvature scale f and the string scalg. should depend on two characteristic mass parameters: the
Given the exact solvability of this plane-wave string curvature scal® ! (the inverse AdS radigg® which is the
theory, there are many standard flat-space string calculatior@alogue of f in Eq(1.1), and the string mass scalgx’. In
that can be straightforwardly repeated in this case. One caliie context of the standard AdS conformal field the@¥T)
determine the vertex operators for the “massless” supercorrespondence the coordinates should be rescaled sR that
string states and compute the 3-point and 4-point correlatiof always combined witl" into the effective dimensionless
functions, following the same strategy as in the light-conetension parameter ¥R°T=R?2ma’ =\/2m. In contrast
Green-Schwarz approach to flat superstring thédrit  to the plane-wave case, here the dependen¢éafip™ can
would be interesting to compai¢he o’ —0 limits of) the only be, the trivial one, i.e. only through thed" factor[in
plane-wave string results to the corresponding correlatiofPoincarecoordinates the Ads<S® background has Lorentz
functions in the type I1B supergravity on A8 . One can  invariance in the ¢ ,_—) d|re<_:t|0n_§. Let_us recall the form
also find possible D-brane configurations, by imposing open?f the light-cone strlngaH%mliltonlgn using the “cgnformally
string boundary conditions in some directions and repeatindf@t’ 10D coordinates x*,Z™) in which the Adgx S> metric
the analysis of Sec. ff’ 's (herea=0,1,2,3M=1, ... ,6)
Let us comment on some limits of this plane-wave string
theory. It depends on the two mass parameters which enter

the Hamiltonian(2.33: the curvature scale f and the string gpjitting the 4D coordinates a€=(x*,x~,x}) and using

scale @'p*)~*. The limit f~0 is the flat-space limit: the the appropriate light-cone gauge one finds the following
discrete spectrum then becomes the standard type IIB flaphase space Lagrangif®:

space string spectrutiin the same sense in which the har-

monic oscillator spectrum reduces to the spectrum of a free, . VR .

particle in the zero-frequency limitThe f—oo limit is not L=Px +PuZ"+ 5(9 i+ mn—H.C)—H, 4.3

special: it corresponds simply to a rescaling of the light-cone

energy ancp™ [recall that f in Eq.(1.1) can be setto 1 by a

rescaling ofx ™ andx™]. H=

The limit o’ p* —0 corresponds to the supergravity in the

plane-wave background: the string Hamiltonid@.21),

(2.31), (2.32 becomes infinite on all states that contain non-

zero string oscillators; i.e., it effectively reducesHg, Eq. —iV2|Z| " 19ix, ) +H.c]l. (4.4)

(2.32), restricted to the subspace of the zero-mode states. The

opposite(“zero-tension”) limit «’p*— is also regular: it Compared to[9] we have rescaled the fermiort®, 7' (i

follows from Eq.(2.33 that here we are left with =1,2,3,4) by\p ™ (thus absorbing all spurious® depen-
dencg. P, ,Py are the momenta ang™V is a product of
Dirac matrices. Here the coordinates and momeimtelud-

ds?=R?Z?(dx3dx®+dzMdzM). 4.2

{P2+PyPu+T2Z 4(x2+ZMZM) + 272 (9?)?

+

+2in' pliN I ZyPul - 2712|317 pf ZM (6

Note that in the present plane-wave case we do not have the
standardSmatrix setup: the string spectrum is discrete in all 8 ®Note that the parameter f may be viewed as a “regularization”
transverse directions; i.e., the string states with non-peroare  introduced to define a non-trivial tensionless string limit of the flat
localized neax;=0 and cannot escape to infinity. superstring.

0One obvious candidate is a D-string along #iedirection. For ¥In the context of the standard AdS/CFT the radRis related to
a light-cone gauge description of D-branes in flat spacd 2&e the 't Hooft couplingh by [29] R=\Y4/a’".

126004-16



EXACTLY SOLVABLE MODEL OF SUPERSTRING IN . .. PHYSICAL REVIEW D65 126004

ing H andp™) are all dimensionlesémeasured in units of 1,J,K,L=1,...,8

R), reflecting the rescaling done in E@t.2). Restoring the

canonical mass dimensions/(~RH, p*—Rp™) the corre- so(8)vector indicegtangent space indices
sponding analogue of the plane-wave reg@it33 should

thus have the structure LjkI=1,....,4

1 so(4)vector indicegtangent space indices
H= p+—Rz[50+ TE(T)]

i’ k' 1"=5,...,8
1)1 1 R? o o
=—| =360t —Eu|l —— | |, (4.5 so’ (4)vector indicegtangent space indices
p"|R 2wa’ 2wa’
. . . a,B,y=1,...,16s0(9,1)
where&y, &, are dimensionless functions of the parameters
and discrete quantum numbers. . spinor indices in chiral representation
Here the limita’—0 or T—x for fixed p*R? corre-

sponds to the type IIB supergravity Ag8S® background a,b=0,1 2D world-sheet coordinate indices

with only the&, part(known explicitly[10,23)) surviving on
the SUbSpace of finite mass states. The IRt o with fixed 7,J= 1’2 labels of the two real MW Spinors_

p* should reproduce the flat space string spectftinis sug-

gests that,(T—«) should be finit¢ The limit T—0 for  We identify the transverse target indices with tangent space
fixed p*R? is a “null-string” limit [30]. Like the corre- indices, i.ex'=x', and avoid using the underlined indices in
sponding limit in the plane-wave caé&.1) it is expected to + and— light-cone directions, i.e. adopt simplified notation
be well defined. x", x”. We suppress the flat space metric tenggr=(—,

Aformal correspondence between EGE5) and(2.33)is  +, ... ,+) in scalar products, i.&X*Y*= 5, X*Y". We de-
established by identifying f with 1f(*R?), so that m composex* into the light-cone and transverse coordinates:
=2ma’p*fin Eq. (2.33 goes over to Za'/R*=T 1. This  yu—(x* x~ x), X' =(x,xI'), where
rescaling ofR2 by p* “explains” why Eq. (4.5 does not o o
have a non-trivial dependence pi while Eq.(2.33 does. 1

The dependence of the string-mode péyt of Eq. (4.5 xT=—(x=x%). (A1)
on T should of course be much more complicated than de- V2
pendence o’ p*fin Eq. (2.33. To determine it remains an
outstanding problem.

While this work was nearing completion there appeareaas
an interesting papdi31] which provides a gauge-theory in-
terpretation of this plane-wave string theory based on a spe-
cial limit of the AdS/CFT correspondence.

The scalar products of tangent space vectors are decomposed

XEYE=XTY~+ XY + XY, XY'=XYi+X'Y",
(A2)

The notation d., 4, is mostly used for target space
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TheSQ(9,1) Levi-Civitatensor is defined by =1, so

APPENDIX: NOTATION AND DEFINITIONS that in the light-cone coordinates ~*---8=1. The deriva-
We use the following conventions for the indices: tives with respect to the world-sheet coordinateso{ are
denoted as
m,n,k=0,1,...,9 Ol Ll [
2 X=X, X=9,X. (A5)
10D space-time coordinate indices We use the chiral representation for thex3@ Dirac matri-

cesI'* in terms of the 1& 16 matricesy*:
m,v,p=01,...,9

so(9,1)vector indicegtangent space indices 20n Secs. | and Il AJ. indicate world-sheet derivatives.
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0 y*
=l — : AG
o (A6)
Y Y =2 = ()P,
Yr=9ks, (A7)
=199,
YE=(=1/99), a,f=1,...,16.
(A8)

We adopt the Majorana representation formatrices,C
=T"°, which implies that ally* matrices are real and sym-
MEric, Y45= Yo (Vap)™ = Yap- Asin[5] y#1---#kare the
antisymmetrized products ok gamma matrices, e.g.,
(Y =3(¥* ) = (r=v), (P P=5(y y"y) P
+5terms. Note that¢*"?)*# are antisymmetric irx, 8. We
assume the normalization

1 0

FnEFO...F9=(O _1), Yoyt a8yP=1.

We use the following definitions:
="y (I1)=(r"Y*y¥")%,
(A10)

A= 7y). (I0)P= (P ).
(A11)

PHYSICAL REVIEW D65 126004

Note thatl1®;=11,%. Because of the relation®y®=y"",
the normalization conditiorfA9) takes the formy™ ~IIII’
=1. Note also the following useful relatiorisee alsd5]):

(y'7)?=I%=(I1")*=1, (A12)
y Tyt =xy, Yy =Ty, vy =y Ty =0,
(A13)
Y I+11)=(I1+11")y~ =0,
Yy (I-T")=(I-11")y" =0, (A14)
y =1y, YI=-1I1y, YlI=-1IY,
YI'=11"y, yII'=11"4" (A15)

The 32-component positive chirality spinérand the nega-
tive chirality spinorQ are decomposed in terms of the 16-

component spinors as
0“ 0
o) *Tla,

The complex Weyl spinoré is related to the two real
Majorana-Weyl spinorg* and 62 by

0= . (A16)

9=i(el+ia2) E i(91—“92) (A17)
V2 o2 '

The shorthand notation likedy“# and y“6 stands for
0*yh 6% and v ;67 respectively.
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