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Cosmic evolution in a cyclic universe
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Based on concepts drawn from the ekpyrotic scenario and M theory, we elaborate our recent proposal of a
cyclic model of the universe. In this model, the universe undergoes an endless sequence of cosmic epochs
which begin with the universe expanding from a ‘‘big bang’’ and end with the universe contracting to a ‘‘big
crunch.’’ Matching from ‘‘big crunch’’ to ‘‘big bang’’ is performed according to the prescription recently
proposed with Khoury, Ovrut and Seiberg. The expansion part of the cycle includes a period of radiation and
matter domination followed by an extended period of cosmic acceleration at low energies. The cosmic accel-
eration is crucial in establishing the flat and vacuous initial conditions required for ekpyrosis and for removing
the entropy, black holes, and other debris produced in the preceding cycle. By restoring the universe to the
same vacuum state before each big crunch, the acceleration ensures that the cycle can repeat and that the cyclic
solution is an attractor.
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I. INTRODUCTION

In a recent paper@1#, we introduced the possibility of a
cyclic universe, a cosmology in which the universe und
goes a periodic sequence of expansion and contraction. E
cycle begins with a ‘‘big bang’’ and ends in a ‘‘big crunch
only to emerge in a big bang once again. The expans
phase of each cycle includes a period of radiation, ma
and quintessence domination, the last phase of which co
sponds to the current epoch of cosmic acceleration. The
celerated expansion phase dilutes by an exponential fa
the entropy and the density of black holes and any ot
debris produced since the preceding big bang. The acce
tion ultimately ends, and it is followed by a period of dece
erating expansion and then contraction. At the transit
from big crunch to big bang, matter and radiation are c
ated, restoring the universe to the high density required f
new big bang phase.

Historically, cyclic models have been considered attr
tive because they avoid the issue of initial conditions@2#.
Examples can be found in mythologies and philosophies
ing back to the beginning of recorded history. Since the
troduction of general relativity, though, various problem
with the cyclic concept have emerged. In the 1930s, Tolm
@3# discussed cyclic models consisting of a closed unive
with a zero cosmological constant. He pointed out that
tropy generated in one cycle would add to the entropy c
ated in the next. Consequently, the maximal size of the u
verse, and the duration of a cycle, increases from bounc
bounce. Extrapolating backwards, the duration of the bou
converges to zero in a finite time. Consequently, the prob
of initial conditions remains. In the 1960s, the singular
theorems of Hawking and Penrose showed that a big cru
necessarily leads to a cosmic singularity where general r
tivity becomes invalid. Without an available theory to r
place general relativity, considerations of whether time a
space could exist before the big bang were discourag
0556-2821/2002/65~12!/126003~20!/$20.00 65 1260
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‘‘Big bang’’ became synonymous with the beginning
space-time. However, there is nothing in the Hawkin
Penrose singularity theorems to suggest that cyclic beha
is forbidden in an improved theory of gravity, such as stri
theory and M theory, and some people have continued
speculate on this possibility@4,5#. In the 1990s, observation
showed that the matter density is significantly less than
critical density and that the scale factor of the universe
accelerating@6#. Tolman’s cyclic model based on a close
universe is therefore observationally ruled out.

Curiously, the same observations that eliminate Tolma
cyclic model fit perfectly the novel kind of cyclic mode
proposed here. In our proposal, the universe is flat, ra
than closed. The transition from expansion to contraction
caused by introducing negative potential energy, rather t
spatial curvature. Furthermore, the cyclic behavior depe
in an essential way on having a period of accelerated exp
sionafter the radiation and matter-dominated phases. Dur
the accelerated expansion phase, the universe approac
nearly vacuous state, restoring very nearly identical lo
conditions as existed in the previous cycle prior to the c
traction phase. Globally, the total entropy in the unive
grows from cycle to cycle, as Tolman suggested. Howev
the entropy density, which is all any real observer wou
actually see, has perfect cyclic behavior with entropy den
being created at each bounce, and subsequently being di
to negligible levels before the next bounce.

The linchpin of the cyclic picture is safe passage throu
the cosmic singularity, the transition from the big crunch
big bang. In recent work with Khoury, Ovrut and Seiberg, w
have proposed that a smooth transition is possible in st
theory@7,8#. In ordinary 4D general relativity, the big crunc
is interpreted as the collapse and disappearance of f
dimensional space-time. Densities and curvatures dive
and there is no sign that a transition is possible. But in
theory considered here, what appears to be a big crunc
the 4D effective theory actually corresponds to the mom
©2002 The American Physical Society03-1
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tary collapse of an additional fifth dimension. As far as m
ter which couples to the higher dimensional metric is co
cerned, the three large spatial dimensions remain large
time continues smoothly. The temperature and density
finite as one approaches the crunch, and, furthermore,
geometry is flat just before and just after the bounce.
short, there is nothing to suggest that time comes to an
when the fifth spatial dimension collapses. Quite the c
trary, the most natural possibility is that time continu
smoothly. Efforts are currently under way to establish t
conclusion rigorously in string theory@9#. The cyclic sce-
nario considered here exploits this concept and is absolu
dependent on its validity. In the absence of a detailed the
of the transition from big crunch to big bang, we will param
etrize the bounce in terms of simple matching conditio
incorporating energy and momentum conservation.

The appeal of a cyclic model is that it provides a descr
tion of the history of the universe which applies arbitrar
far back into our past. The model presented here sugg
novel answers to some of the most challenging issue
cosmology: How old is the universe—finite or infinite? Ho
large is it? What was the physical cause of its homogene
isotropy and flatness? What was the origin of the ene
density inhomogeneities that seeded cosmic structure for
tion and are visible on the cosmic microwave sky? Wha
the resolution of the cosmic singularity puzzle? Was th
time, and an arrow of time, before the big bang? In additi
our scenario has a number of surprising implications
other major puzzles such as the value of the cosmolog
constant, the relative densities of different forms of mat
and even for supersymmetry breaking.

The cyclic model rests heavily on ideas developed as
of the recently proposed ‘‘ekpyrotic universe’’@7,8#. The ba-
sic physical notion is that the collision between two bra
worlds approaching one another along an extra dimen
would have literally generated a hot big bang. Although
original ekpyrosis paper focused on collisions between b
branes and boundary branes@7#, here the more relevant ex
ample is where the boundary branes collide, the extra dim
sion disappears momentarily and the branes then bou
apart @8#. The ekpyrotic scenario introduced several imp
tant concepts that serve as building blocks for the cy
scenario.

~i! Boundary branes approaching one another~beginning
from rest! correspond to contraction in the effective 4D the
retic description@7#.

~ii ! Contraction produces a blueshift effect that conve
gravitational energy into brane kinetic energy@7#.

~iii ! Collision converts some fraction of brane kinetic e
ergy into matter and radiation that can fuel the big ba
@7,12#.

~iv! The collision and bouncing apart of boundary bran
corresponds to the transition from a big crunch to a big b
@8#.

A key element is added to obtain a cyclic universe. T
ekpyrotic scenario assumes that there is only one collis
after which the interbrane potential becomes zero~perhaps
due to changes in the gauge degrees of freedom on
branes that zero out the force!. The cyclic model assume
12600
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instead that the interbrane potential is the same before
after collision. After the branes bounce and fly apart,
interbrane potential ultimately causes them to draw toge
and collide again. To ensure cyclic behavior, we will sho
that the potential must vary from negative to positive valu
~In the ekpyrotic examples, the potentials are zero or ne
tive for all interbrane separations.! We propose that, at dis
tances corresponding to the present-day separation betw
the branes, the interbrane potential energy density shoul
positive and correspond to the currently observed dark
ergy, providing roughly 70% of the critical density toda
That is, the dark energy that is causing the cosmic accel
tion of the universe today is, in this scenario, interbrane
tential energy. The dark energy and its associated cos
acceleration play an essential role in restoring the univers
a nearly vacuous state thereby allowing the cyclic solution
become an attractor. As the brane separation decreases
interbrane potential becomes negative, as in the ekpyr
scenario. As the branes approach one another, the scale f
of the universe, in the conventional Einstein descriptio
changes from expansion to contraction. When the branes
lide and bounce, matter and radiation are produced and t
is a second reversal transforming contraction to expansio
a new cycle can begin.

The central element in the cyclic scenario is a four dime
sional scalar fieldf, parametrizing the inter-brane distanc
or equivalently the size of the fifth dimension. The bra
separation goes to zero asf tends to2`, and the maximum
brane separation is attained at some finite valuefmax. For
the most part our discussion will be framed complete
within the four dimensional effective theory of gravity an
matter coupled to the scalar fieldf. This description is uni-
versal in the sense that many higher dimensional brane m
els converge to the same four dimensional effective desc
tion in the limit of small brane separation. We shall not ne
to tie ourselves to a particular realization of the brane wo
idea, such as heterotic M theory for the purposes of t
discussion, although such an underlying description is c
tainly required, both for actually deriving the scalar potent
we shall simply postulate and for the ultimate quantum c
sistency of the theory. The extra dimensional, and str
theoretic interpretation is also crucial at the brane collisi
where the effective four dimensional Einstein-frame desc
tion is singular and at which point we postulate a b
crunch–big-bang transition as outlined in Ref.@8#. Again, for
the present discussion we simply parametrize the outcom
this transition in terms of the density of radiation produc
on the branes, and the change in the kinetic energy of
scalar field, corresponding to a change in the contract
expansion rate of the fifth dimension.

The scalar fieldf plays a crucial role in the cyclic sce
nario, in regularizing the Einstein-frame singularity. Matt
and radiation on the brane couple to the Einstein frame s
factor a times a functionb(f) with exponential behavior as
f→2`, such that the product is generically finite at th
brane collision, even thougha50 and f52` there. For
finite f, the coupling of the matter and radiation tof is
more model-dependent. Models in whichf is massless at the
current epoch, such as we describe in this paper, fac
3-2
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COSMIC EVOLUTION IN A CYCLIC UNIVERSE PHYSICAL REVIEW D65 126003
strong constraint due to the fact thatf can mediate a ‘‘fifth
force,’’ which is in general composition dependent and v
lates the equivalence principle. Again, without tying ou
selves to a particular brane world scenario we shall cons
models in which the coupling functionb(f) tends to a con-
stant at current values off ~large brane separations!, and the
corresponding fifth force is weak. An example of such
model is the Randall-Sundrum model with the nonrelativis
matter we are made of localized on the positive tension br
~see e.g. Ref.@10# for a recent discussion!. In models where
b(f) does not tend to a constant at current values off, one
must invoke some physical mechanism to give thef field a
small mass so that the fifth force is only short-ranged. T
modification still allows for cyclic behavior, with an epoc
of false vacuum domination followed by tunneling@11#.

The outline of this paper is as follows. In Sec. II, w
describe the requisite properties of the scalar field~inter-
brane! potential and present a brief tour through one co
plete cosmic cycle. In subsequent sections, we focus in t
nical detail on various stages of the cycle: the bounce~Sec.
III !, passing through the potential well after the big ba
~Sec. IV!, the radiation-, matter- and quintessence-domina
@15# epochs~Sec. V!, the onset of the contraction phase a
the generation of density perturbations~Sec. VI!. In Sec. VII,
we show that the cyclic solution is a stable attractor solut
under classical and quantum fluctuations. In Sec. VIII,
discuss the implications for the fundamental questions
cosmology introduced above.

II. A BRIEF TOUR OF THE CYCLIC UNIVERSE

The various stages of a cyclic model can be character
in terms of a scalar fieldf which moves back and forth in a
effective potentialV(f). In Sec. II A, we discuss the basi
properties thatV(f) must have in order to allow cyclic so
lutions.

The stages of expansion and contraction can be descr
from two different points of view. First, one can choo
fields and coordinates so that the full extra-dimensio
theory is reduced to an effective four-dimensional the
with a conventional Einstein action. The key parameters
the scale factora and the modulus scalar fieldf that deter-
mines the distance between branes. In this picture, the te
‘‘big bang’’ and ‘‘big crunch’’ seem well-merited. The scal
factor collapses to zero at the big crunch, bounces, and gr
again after the big bang. However, what is novel is the pr
ence of the scalar fieldf which runs to2` at the bounce
with diverging kinetic energy. The scalar field acts as a fi
force, modifying in an essential way the behavior of mat
and energy at the big crunch. Namely, the temperature
matter density remain finite at the bounce because the u
blueshift effect during contraction is compensated by
fifth force effect due tof. The arrangement seems rath
magical if one is unaware that the 4D theory is derived fr
a higher dimensional picture in which this behavior has
clear geometrical interpretation. Nevertheless, for most
this paper we shall keep to the four dimensional Einst
description, switching to the higher dimensional picture o
when necessary to understand the bounce, or to discuss
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bal issues where matching one cycle to the next is import
The description of a single cycle from the 4D effectiv
theory point-of-view is given in Sec. II B.

The same evolution appears to be quite different to
servers on the visible brane who detect matter and radia
confined to three spatial dimensions. In this picture, depe
ing on the details, the brane is either always, or nearly
ways expanding except for tiny jags near the big-crunc
big-bang transition when it contracts by a modest amou
The branes stretch at a rate that depends on which form
energy dominates the energy density of the universe. As
big crunch is approached, however, the expansion
changes suddenly, and new matter and radiation is create~a
brane has instantaneously collided into the visible brane
bounced from it!. We describe some aspects of the visib
brane viewpoint in Sec. III C.

This picture makes it clear that the big crunch does
correspond to the disappearance of all of space and the
of time but, rather, to the momentary disappearance of a
dimension. However, the behavior of gravity itself appe
quite wild because it depends on the full bulk space-tim
which is changing rapidly. One way of describing this pictu
is that one has mapped the conventional big bang singula
onto the mildest form of singularity possible, namely t
disappearance of a single dimension for an instant of tim
Nevertheless there are delicate issues involved, as are
cussed in Ref.@8#, such as the fact that the effective fou
dimensional Planck mass hits zero at the singularity, so
gravitational fluctuations can become large. There are s
gestions in specific calculations@12# that physical quantities
are nevertheless well behaved although a great deal m
remains to be done to make the picture rigorous.

A. The effective potential for a cyclic universe

We will consider in this paper potentialsV(f) of the form
shown in Fig. 1, with the following key features:

~i! The potential tends to zero rapidly asf→2`. One
natural possibility for the extra dimension parametrized byf
is the eleventh dimension of M theory. In this case the str
coupling constantgs}egf, with some positive constantg,
and gs vanishes asf→2`. Nonperturbative potentials
should vanish faster than any finite power ofgs , i.e., faster
than an exponential inf.

~ii ! The potential is negative for intermediatef, and rises
with a region of large negative curvature,V9/V@1 covering
a range off of order unity in Planck mass units. This regio
is required for the production of scale invariant density p
turbations, as proposed in Ref.@7# and detailed in Ref.@12#.
Attractive exponential potentials of this type could be pr
duced, for example, by the virtual exchange of massive p
ticles between the boundary branes.

~iii ! As f increases, the potential rises to a shallow p
teau, withV9/V!1 and apositive height V0 given by the
present vacuum energy of the universe as inferred from c
mic acceleration and other astronomical evidence. The p
tive energy density is essential for having a cyclic soluti
since it produces a period of cosmic acceleration that rest
the universe to a nearly vacuous state before the next bou
3-3
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The discussion here can be extended to potentials of a m
general form. For example, it is not essential that the posi
plateau persist to arbitrarily largef since the cyclic solution
only explores a finite range off.0. Provided the condition
V9/V!1 is satisfied over that range, the universe underg
cosmic acceleration when the field rolls down that portion
the potential. However, for simplicity, we will consider th
example in Fig. 1.

An explicit model for V(f) which is convenient for
analysis is

V~f!5V0~12e2cf!F~f!, ~1!

where, without loss of generality, we have shiftedf so that
the zero of the potential occurs atf50. The functionF(f)
is introduced to represent the vanishing of nonperturba
effects described above:F(f) turns off the potential rapidly
as f goes below fmin , but it approaches one forf

.fmin . For example,F(f) might be proportional toe21/gs
2

or e21/gs, wheregs}egf for g.0. The constantV0 is set
roughly equal to the vacuum energy observed in today’s U
verse, of order 102120 in Planck units. We do not attempt t
explain this number. Various suggestions as to how a suit
small positive vacuum energy could arise have been m
@13,14#. For largec, this potential hasV9/V!1 for f*1 and

FIG. 1. The interbrane potentialV(f) versusf, whose value
(2`,f,f`) determines the distance between branes. T
shaded circle represents the maximum positive value off during
the cycle. The various stages are:~1! quintessence/potential dom
nation and cosmic acceleration~duration > trillion years!; ~2! f
kinetic energy becomes non-negligible, decelerated expansion
gins ~duration;1 billion year!; ~3! H50, contraction begins;~4!
density fluctuations on observed scales created@(t0tR)1/2'1 ms be-
fore big crunch#; ~5! f kinetic energy domination begins (tmin

;10230 s before big crunch!; ~6! bounce and reversal from bi
crunch to big bang;~7! end off kinetic energy domination, poten
tial also contributes (tmin;10230 s after big bang!; ~8! radiation
dominated epoch begins (tR;10225 s after big bang!; ~9! matter
domination epoch begins (;1010 s after big bang!. As the potential
begins to dominate and the universe returns to stage~1!, the field
turns around and rolls back towards2`.
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V9/V@1 for fmin,f,0. These two regions account fo
cosmic acceleration and for ekpyrotic production of dens
perturbations, respectively@7,12#. In the latter region, the
constant term is irrelevant andV may be approximated by
2V0e2cf which may be studied using the scaling soluti
discussed in Sec. VI.

For an arbitrary scalar potential of the form sketched,
rising with negative curvature towards a flat plateau, the s
lar spectral index is given approximately by@12,16#

nS'124F11S V

V8
D 2

2
V9V

~V8!2G , ~2!

to be evaluated when the modes on the length scales o
terest are generated@stage~4! as described in Fig. 1#. For the
exponential form here, Eq.~2! reduces to

nS'12
4

c2 . ~3!

Current observational limits from the cosmic microwa
background and large scale structure data are safely sati
for c510, which we shall adopt as our canonical value.

The fact that the potential minimum is negative mea
that there are no strictly static solutions forf except anti–de
Sitter space. However, as we shall show, the gen
behavior—indeed an attractor—is a dynamical ‘‘hoverin
solution in whichf roams back and forth in cyclic fashio
between the plateau and2`. The hovering solution is highly
asymmetric in time. The fieldf spends trillions of years o
more on the plateau and mere instants traveling from
potential well to2` and back. Gravity and the bounce pr
vide transfers of gravitational to kinetic to matter-radiati
density that keep the universe forever hovering around
anti–de Sitter minimum rather than being trapped in it.

B. The view from effective 4D theory

To set the context for the later sections, we present a b
tour through a single cycle, using the labels in Fig. 1 as
mileposts. Stage~1! represents the present epoch. The c
rent value of the Hubble parameter isH0
5(15 billion yr)21. We are presently at the time when th
scalar field is acting as a form of quintessence in which
potential energy has begun to dominate over matter and
diation. Depending on the specific details of the potential,
field f may have already reached its maximal value~gray
circle!, turned back, and begun to evolve towards nega
values. If not, it will do so in the near future. Because t
slope of the potential is very small,f rolls very slowly in the
negative direction. As long as the potential energy dom
nates, the universe undergoes exceedingly slow cosmic
celeration ~compared to inflationary expansion!, roughly
doubling in size everyH0

21515 billion years. If the accel-
eration lasts trillions of years or more~an easy constraint to
satisfy!, the entropy and black hole densities become ne
gibly small and the universe is nearly vacuous. The Einst
equations become

e

e-
3-4
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H25
8pG

3 S 1

2
ḟ21V~f! D ~4!

ä

a
52

8pG

3
@ḟ22V~f!# ~5!

whereH is the Hubble parameter andG is Newton’s con-
stant. We will generally choose 8pG51 except where oth-
erwise noted. Accelerated expansion stops asV(f) ap-
proaches zero and the scalar field kinetic energy beco
comparable to the potential energy, stage~2!. The universe
continues to expand and the kinetic energy of the scalar fi
continues to redshift as the potential drops below zero
nearly scale invariant spectrum of fluctuations on la
length scales~beyond our current Hubble horizon! begins to
develop as the field rolls down the exponentially decreas
part of the potential. The evolution and perturbation eq
tions are the same as in the ekpyrotic model@7,12#. Solving
these equations, one finds that the decelerated expan
continues for a timeH0

21/c, which is about one billion years
@c is the parameter inV(f), Eq. ~1!#. At stage~3!, the po-
tential becomes sufficiently negative that the total scalar fi
energy density hits zero. According to Eq.~4!, H50 and the
universe is momentarily static. From Eq.~5!, ä,0, so thata
begins to contract. The universe continues to satisfy the
pyrotic conditions for creating density perturbations. Sta
~4!, about one second before the big crunch, is the reg
where fluctuations on the current Hubble horizon scale
generated. As the field continues to roll towards2`, the
scale factora contracts and the kinetic energy of the sca
field grows. That is, gravitational energy is converted to s
lar field ~brane! kinetic energy during this part of the cycle
Hence, the field races past the minimum of the potentia
stage~5! and off to 2`, with kinetic energy becoming in
creasingly dominant as the bounce approaches. The s
field kinetic energy diverges asa tends to zero. At the
bounce, stage~6!, matter and radiation are generated, t
scalar field gets a kick and increases speed as it reve
direction, and the universe is expanding. Through stage~7!,
the scalar kinetic energy density (}1/a6) dominates over the
radiation (}1/a4) and the motion is almost exactly the tim
reverse of the contraction phase between stage~5! and the
big crunch. As the field rolls uphill, however, the small kic
given the scalar field and, subsequently, the radiation bec
important, breaking the time-reversal symmetry. The u
verse becomes radiation dominated at stage~8!, at say
10225 s after the big bang. The motion off is rapidly
damped so that it converges towards its maximal value
then very slowly creeps downhill. The damping continu
during the matter dominated phase, which begins thousa
of years later. The universe undergoes the standard big b
evolution for the next 15 billion years, growing structu
from the perturbations created when the scalar field was
ing downhill at stage~4!. Then, the scalar field potentia
energy begins to dominate and cosmic acceleration beg
Eventually, the scalar field rolls back acrossf50. The en-
ergy density falls to zero and cosmic contraction begins. T
scalar field rolls down the hill, density perturbations are g
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erated andf runs off to2` for the next bounce. The evo
lution in terms of conventional variables is summarized
Fig. 2.

C. The view from the visible brane

Thus far, we have described the evolution in terms of
usual Einstein frame variables,a andf. However, as empha
sized in the next section, these variables are singular at
transition from big bang to big crunch, and they do n
present an accurate picture of what an observer compose
matter confined to the brane would actually see. Asa ap-
proaches zero, the density of matter and radiation scal
1/@ab(f)#3 and 1/@ab(f)#4, respectively, whereb(f) is a
function of f which scales as 1/a asa tends to zero. There
fore the densities of matter and radiation on the branes
actually finite ata50.

This scaling of the density withab(f) rather thana can
be understood rather simply. First, the spatial volume e
ment on the branes is that induced from five dimensio
When the brane separation is small, one can use the u
formula for Kaluza-Klein theory,

FIG. 2. Schematic plot of the scale factora(t), the modulus
f(t), andH5[ 2

3 d„exp(A3/2f)…/dt for one cycle, wheret is Ein-
stein frame proper time. The scale factor starts out zero but exp
ast1/3, and the scalar field grows logarithmically witht, in the scalar
kinetic energy dominated early regime. Then, when radiation be
to dominate we havea}t1/2, and the scalar field motion is strongl
damped. This is followed by the matter era, wherea}t2/3, and a
potential dominated phase in whicha(t) increases exponentially
before a final collapse on a time scaleH0

21, to a50 once more.H5

is proportional to the proper~five dimensional! speed of contraction
of the fifth dimension. To obtain a cyclic solution, the magnitude
H5 at the start of the big bang,H5(out), must be slightly larger
than the value at the end of the big crunch,H5( in). This is the case
if more radiation is generated on the negative tension brane~see the
Appendix!.
3-5
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ds5
25e2A(2/3)fds4

21e2A(2/3)fdy2, ~6!

whereds4
2 is the four dimensional line element,y is the fifth

spatial coordinate which runs from zero toL, and L is a
parameter with the dimensions of length. If we write the fo
dimensional line element in conformal time coordinates,
ds4

25a2(2dt21dxW2), then since from the Friedmann equ
tion we have (a8/a)25 1

6 (f8)2, we see thata is proportional
to ef/A6 in the big crunch. Hence a three dimensional com
ing volume elementd3xa3e2A(3/2)f remains finite asa tends
to zero. Thus the density of massive particles tends t
constant. What about the density of radiation? First, re
the usual argument that the energy of a photon diverge
a50. Consider a set of comoving massive particles in
space-time with metrica2hmn wherehmn is the Minkowski
metric. The four velocities of the particles obeyumungmn5

21. Hence, if they are comoving (uW 50W ), then we must have
u05a21. Now a photon moving in such a space-time ha
constant four-momentum,pm5E(1,nW ), with nW 251. The en-
ergy of the photon, as seen by the comoving particles,
2umpngmn5E/a, which diverges asa tends to zero. How-
ever, in the present context, the metric to which the com
ing particles couple ise2A(2/3)fa2hmn . Therefore, we have
u05a21eA(1/6)f and the energy of the detected photons
finite as a tends to zero. In other words, the effect of t
scalar field approaching2` is precisely such as to canc
the gravitational blueshift.

The second crucial use of the higher dimensional metri
in piecing together the global view of the space-time. If o
only had the Einstein frame scale factora, it would not be
clear how to match to the next cycle, sincea50 at the
bounce. But the scale factor on a brane,ab(f), is nonzero at
each bounce and may be so matched. In fact, in the exam
studied in this paper, the scale factorsa0 anda1 ~which are
the brane scale factors in the simplest models! both undergo
a net exponential expansion within a cycle, and decrease
very brief periods—either just before the brane collision~for
a0) or just after it ~for a1). An observer on either bran
would view the cosmology as one of almost uninterrup
expansion, with successive episodes of radiation, matter,
quintessence domination ending in a sudden release of
ter and radiation.

Both matter and radiation are suddenly created by
impact of the other brane. The forewarning of this ca
strophic event would be that asb(f) started to rapidly
change, one would see stronger and stronger violations o
equivalence principle~a ‘‘fifth force’’ !, and the masses an
couplings of all particles would change. In the case of
theory, the running of the string coupling to zero would p
sumably destroy all bound states such as nucleons and
all particle masses to zero.

III. THROUGH THE BOUNCE

To have repeating cycles, the universe must be able
pass smoothly from a big crunch to a big bang. Conventi
ally, the curvature and density singularity when the sc
factora approaches zero has been regarded as an impas
12600
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obstacle to the understanding of what came ‘‘before’’ the
bang. However, the brane world setup sheds new light
this problem. The key feature is that the apparent singula
in the effective four-dimensional description corresponds t
higher dimensional setup in which the four dimensional m
ric is completely nonsingular. When the extra dimension~or
outer brane separation! shrinks to zero, there is no associat
curvature singularity, and the density of matter on the bra
remains finite. The most conservative assumption, based
the higher dimensional picture, is that the branes bou
from ~or, equivalently, pass through! each other and time
continues smoothly, with some conversion of brane kine
energy to entropy. The separation of the two branes after
bounce corresponds to re-expansion in the four-dimensio
effective theory.

How can this be reconciled with the singular fou
dimensional description? The point explained in Ref.@8# is
that the usual four-dimensional variables, the scale factoa
and the scalar fieldf, are a singular choice ata50. Each is
poorly behaved as the branes collide, but in the brane pic
physical quantities depend on combinations of the two v
ables that remain well-behaved. These nonsingular varia
may be treated as fundamental, and matching rules der
to parametrize the physics of inelastic brane collisions. If
system can, as conjectured in Ref.@8#, be properly embedded
within string theory, the matching conditions will be deriv
able from fundamental physics.

A. Nonsingular variables

The action for a scalar field coupled to gravity and a se
fluids r i in a homogeneous, flat universe, with line eleme
ds25a2(t)(2N2dt21dxW2) is

S5E d3xdtFN21S 23a821
1

2
a2f82D

2N@~ab!4S ir i1a4V~f!#G . ~7!

We uset to represent conformal time and primes to repres
derivatives with respect tot. N is the lapse function. The
background solution for the scalar field is denotedf(t), and
V(f) is the scalar potential.

The only unusual term in Eq.~7! is the coupling of the
fluids r i , which we treat as perfect fluids coupled on
through gravity. The action for a perfect fluid coupled
gravity is just2*d4xA2gr, where the densityr is regarded
as a function of the coordinates of the fluid particles and
space-time metric@17#. For a homogeneous isotropic fluid
the equation of stateP(r) defines the functional dependenc
of r on the scale factora, via energy-momentum conserva
tion, d ln r/d ln a523(11w), with w5P/r. For example, for
radiation,r}a24 and for matterr}a23.

We assume these fluids live on one of the branes, so
rather than coupling to the Einstein-frame scale factora, the
particles they are composed of couple to a conformally
lated scale factorab(f), being the scale factor on the ap
propriate brane. For simplicity we have only written the a
3-6
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COSMIC EVOLUTION IN A CYCLIC UNIVERSE PHYSICAL REVIEW D65 126003
tion for fluids on one of the branes, the action for fluids
the other brane being a xerox copy but with the appropr
b(f).

The functionb(f) may generally be different for the tw
branes, and for different brane world setups. But as m
tioned above there is an important universality at small se
rations corresponding to large negativef. In this limit,
which is relevant to the bounce, the bulk warp factor b
comes irrelevant and one obtainsb;e2f/A6, the standard
Kaluza-Klein result. This behavior ensures thatab is finite at
collision and so the matter and radiation densities are
well.

The equations of motion for gravity, the matter and sca
field f are straightforwardly derived by varying Eq.~7! with
respect toa, N and f, after whichN may be set equal to
unity. Expressed in terms of proper timet, the Einstein equa-
tions are

H25
8pG

3 S 1

2
ḟ21V1b4rR1b4rM D , ~8!

ä

a
52

8pG

3 S ḟ22V1b4rR1
1

2
b4rM D , ~9!

where a dot is a proper time derivative. As an example,
consider the case where there is radiation (rR) and matter
(rM) on the visible brane only, which could in principle b
either the positive or negative tension brane. Then the ab
equations are supplemented by the dynamical equation
the evolution off,

f̈13Hḟ52V,f2b ,fb3rM ~10!

and the continuity equation,

â
dr

dâ
5a

]r

]a
1

b

b8

]r

]f
523~r1p! ~11!

where â5ab(f) and p is the pressure of the fluid compo
nent with energy densityr. Note that only the matter densit
contributes to thef-equation, because, ifrR}1/(ab)4, the
radiation term is actually just a constant timesN in the ac-
tion, contributing to the Friedmann constraint but not t
dynamical equations of motion.

If b(f) is sufficiently flat near the current value off,
these couplings have modest effects in the late universe,
the successes of the standard cosmology are recovered
example the total variation inf since nucleosynthesis is ver
modest. In Planck units, this is of order (t r /tN)1/2 wheret r is
the time at the beginning of the radiation dominated ep
and nucleosynthesis begins attN;1 sec. It is utterly negli-
gible for values oft r earlier than the electroweak era. How
ever, the coupling of matter tof produces other potentially
measurable effects including a ‘‘fifth force’’ causing viola
tions of the equivalence principle. Current constraints can
satisfied ifM Pl(ln b),f,1023 @18–20#.

As the universe contracts towards the big crunch,a→0,
the scalar field runs to2` and the scalar potential becom
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negligible. The universe becomes dominated by the sc
field kinetic energy density since it scales asa26 whereas
matter and radiation densities scale asa23 anda24 respec-
tively ~ignoring theb factor!. As scalar kinetic domination
occurs, the scale factora begins to scale as (2t)1/3, and the
background scalar field diverges logarithmically in time. T
energy density and Ricci scalar diverge as (2t)22, so that
t50 is a ‘‘big crunch’’ singularity.

As explained in Ref.@8#, in the simplest treatment o
brane world models there is only one scalar field modul
the ‘‘radion,’’ which runs off to minus infinity as the scal
factor a approaches zero. The singular variables,a and f,
can be replaced by the nonsingular variables:

a052a cosh„~f2f`!/A6…

a1522a sinh„~f2f`!/A6…. ~12!

The kinetic terms in the action define the metric on mod
space. In terms of the old variables one has the line elem
23da21 1

2 a2df2, and a50 is clearly a singular point in
these coordinates. However, in the new coordinates in
~12!, the line element is34 (2da0

21da1
2), which is perfectly

regular even when the Einstein frame scale factora
5 1

2 Aa0
22a1

2 vanishes, on the ‘‘light-cone’’a05a1. For
branes in AdS,a0 anda1 are the scale factors on the positiv
and negative tension branes@7# so that b52 cosh„(f
2f`)/A6… or 22 sinh„(f2f`)/A6… respectively for matter
coupling to these branes.

Notice that the constant field shiftf` is arbitrary. Its ef-
fect is a Lorentz boost on the (a0 ,a1) moduli space. In the
Kaluza-Klein picture~6!, a constant shift inf can be re-
moved by rescaling four dimensional space-time coordina
and redefining the length scaleL of the extra dimensions. In
the absence of matter which couples tof, or of a potential
V(f), this shift is unobservable, a reflection of the glob
symmetryf→f1const of the 4D effective theory. How-
ever, this symmetry is broken byV(f), and by matter cou-
plings. In fact, the scale factora1 must be positive in order
for it to be interpretable as a ‘‘brane scale factor,’’ and th
requires thatf,f` .

We shall find it convenient to choosef50 to be the zero
of the potentialV(f), and then to choosef` so thata1
never vanishes for the solutions we are interested in.~In fact,
sincea1 has a positive kinetic term@7#, a suitable coupling to
moduli fields will always guarantee thata1 ‘‘bounces’’ away
from zero @12#. In this paper, for simplicity we ignore this
complication by pickingf` large enough that no suc
‘‘bounce’’ is necessary.!

Both a0 and a1 are ‘‘scale factors’’ since they transform
like a under rescaling space-time coordinates. However,
like a they tend to finite constants asa tends to zero, imply-
ing an alternative metrical description which is not singu
at the ‘‘big crunch.’’ In the brane world models considered
Ref. @7#, a0 anda1 actually represent the scale factors of t
positive and negative tension branes respectively. Since t
are no low energy configurations witha0,a1, the ‘‘light
cone’’ a05a1 is actually a boundary of moduli space an
one requires a matching rule to determine what the trajec
3-7
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PAUL J. STEINHARDT AND NEIL TUROK PHYSICAL REVIEW D65 126003
of the system does at that point. A natural matching rule is
suppose that at low energies and in the absence of poten
or matter, the branes simply pass through one another~or,
equivalently, bounce! with the intervening bulk briefly disap
pearing and then reappearing after collision. This rule w
detailed in Ref.@8#, where simple models satisfying th
string theory background equations to all orders ina8 were
given. In the Appendix we discuss the collision betwe
boundary branes in terms of energy and momentum con
vation, and the Israel matching conditions.

Let us now comment on the character of the trajectory
the (a0 ,a1)-plane. The Friedmann constraint reads

a08
22a18

25
4

3 S ~ab!4r1
1

16
~a0

22a1
2!2V~f0! D . ~13!

If the energy density on the right hand side is positive,
trajectory is time-like. If the right hand side is zero~for ex-
ample if the potential vanishes asf0→2` and if there is no
matter or radiation!, then the trajectory is light-like. If the
right hand side is negative, the trajectory is space-like.

The trajectory for the cyclic solution in thea02a1 plane
is shown in Fig. 3. The inset shows a blow-up of the beh
ior at the bounce in which the trajectory is light-like at co
traction to the big crunch~the universe is empty! and time-
like on expansion from the big bang~radiation is produced a
the bounce!. In these coordinates, the scale factor increa
exponentially over each cycle, but the next cycle is simpl
rescaled version of the cycle before. A local observer m
sures physical quantities such as the Hubble constant o
deceleration parameter, which entail ratios of the scale fa
and its derivatives in which the normalization of the sc
factor cancels out. Hence, to local observers, each cycle
pears to be identical to the one before.

FIG. 3. Schematic plot of thea0-a1 plane showing a sequenc
of cycles of expansion and contraction~indicated by tick marks!.
The dashed line represents the ‘‘light-cone’’a05a1 corresponding
to a bounce (a50). Each cycle includes a moduli kinetic energ
radiation, matter and quintessence dominated phase and las
exponentially large number of e-folds. The inset shows the tra
tory near the big crunch and bounce. The potential energyV(f)
assumed takes the form shown in Fig. 1.
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B. From big crunch to big bang

In this section we solve the equations of motion imme
ately before and after the bounce, and discuss how the
coming and outgoing states are connected. The nonsing
‘‘brane’’ scale factorsa0 and a1 provide the natural setting
for this discussion, since neither vanishes at the bounce
emphasized above, the Einstein frame scale factora, and the
scalar fieldf are singular coordinates on field space at
bounce. Nevertheless, since our intuition is much bette
the Einstein frame, we shall also give formulas fora andf
near the bounce. In subsequent sections, we shall frame
discussion almost entirely in terms of Einstein frame va
ables, for the most part using the nonsingular variablesa0
and a1 solely as a ‘‘bridge’’ connecting the incoming bi
crunch to the outgoing big bang.

Before the bounce there is little radiation present sinc
has been exponentially diluted in the preceding quintesse
dominated accelerating phase. Furthermore, the pote
V(f) becomes negligible asf runs off to minus infinity. The
Friedmann constraint reads (a8/a)25 1

6 f82, and the scalar
field equation, (a2f8)850, where primes denote conforma
time derivatives. The general solution is

f5A3

2
ln@AH5~ in !t#,

a5Aef/A65AAAH5~ in !t,

a05A@l1l21AH5~ in !t#,

a15A@l2l21AH5~ in !t#, ~14!

where l[ef` /A6. We chooset50 to be the time whena
vanishes so thatt,0 before collision.A is an integration
constant which could be set to unity by rescaling space-t
coordinates but it is convenient not to do so. The Hub
constants as defined in terms of the brane scale factors
a08/a0

2 anda18/a1
2 which att50 take the values1l23H5( in)

and2l23H5( in) respectively.
Re-expressing the scalar field as a function of proper t

t5*adt, we obtain

f5A2

3
lnS 3

2
H5~ in !t D . ~15!

The integration constantH5( in),0 has a natural physica
interpretation as a measure of the contraction rate of the e
dimension@see Eq.~6!#:

H5[
dL5

Ldt5
[

d~eA(2/3)f!

dt5
5A2

3
ḟeA(3/2)f, ~16!

whereL5[LeA(2/3)f is the proper length of the extra dimen
sion,L is a parameter with dimensions of length, andt5 is the
proper time in the five-dimensional metric,

dt5[ae2A(1/6)fdt5e2A(1/6)fdt, ~17!

an
c-
3-8
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COSMIC EVOLUTION IN A CYCLIC UNIVERSE PHYSICAL REVIEW D65 126003
with t being FRW proper time. Notice that a shiftf` can
always be compensated for by a rescaling ofL. As the extra
dimension shrinks to zero,H5 tends to a constant,H5( in).

If the extra dimension shrinks adiabatically and backre
tion from particle production can be ignored, then the mat
ing rule conjectured in Ref.@8# states thatH5 after the
bounce should be given byH5(out)52H5( in). However, if
radiation is produced,H5(out) takes a different value. If one
is given the densities of radiation produced on both bran
thenH5(out) may be inferred from energy and momentu
conservation, and the Israel matching conditions, as we s
in the Appendix.

Immediately after the bounce, scalar kinetic energy do
nates andH5 remains nearly constant, as shown in Fig.
The kinetic energy of the scalar field scales asa26 and ra-
diation scales asa24, so the former dominates at smalla. It
is convenient to rescalea so that it is unity at scalar kinetic
energy-radiation equality,t r , and denote the correspondin
Hubble constantHr . The Friedmann constraint in Eq.~13!
then reads

~a8!25
1

2
Hr

2~11a22!, ~18!

and the solution is

f5A3

2
lnS 25/3tH5

2/3~out!Hr
1/3

~Hrt123/2!
D ,

~19!

a5A1

2
Hr

2t21A2Hrt.

The brane scale factors are

a0[a~l21ef/A61le2f/A6!

5AFlS 11
Hrt

23/2D 1l2121/6Hr
1/3H5

2/3~out!tG ,

a1[a~2l21ef/A61le2f/A6!

5AFlS 11
Hrt

23/2D 221/6l21Hr
1/3H5

2/3~out!tG .

~20!

Here the constantA521/6@Hr /H5(out)#1/3 has been defined
so that we matcha0 anda1 to the incoming solution given in
Eq. ~14!. As for the incoming solution, we can compute t
Hubble constants on the two branes after collision. They
6l23H5(out)1225/3l21Hr

2/3H5
1/3 on the positive and nega

tive tension branes respectively.
For Hr,25/2l23H5, the case of relatively little radiation

production,a0 is expanding buta1 is contracting immedi-
ately after collision, whereas forHr.25/2l23H5, both brane
scale factors expand after collision. We shall concentrate
the former case in this paper, in which we are near the a
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batic limit. If no scalar potentialV(f) were present, the
scalar field would continue to obey the solution~19!, con-
verging to

fC5A2

3
lnS 25/2

H5~out!

Hr
D . ~21!

This value is actually larger thanf` for Hr,H5l2325/2, the
case of weak production of radiation. However, the prese
of the potentialV(f) alters the expression~21! for the final
resting value of the scalar field. Asf crosses the potentia
well traveling in the positive direction,H5 is reduced to a
renormalized valueĤ5(out),H5(out), so that the final
resting value of the scalar field can be smaller thanf` . If
this is the case, thena1 never crosses zero, instead reversi
to expansion shortly after radiation dominance.~In the cal-
culations of Ref.@12#, where we assumed the potentialvan-
ished after collision, this effect did not occur. Instead, w
invoked a coupling ofa1 to a modulus field which caused
to bounce offa150.!

If radiation dominance occurs well afterf has crossed the
potential well, Eq.~21! provides a reasonable estimate f
the final resting value, if we use the corrected val
Ĥ5(out). The dependence of Eq.~21! is simply understood:
while the universe is kinetic energy dominated,a grows as
t1/3 and f increases logarithmically with time. Howeve
when the universe becomes radiation-dominated anda}t1/2,
Hubble damping increases andf converges to the finite limit
above.

IV. ACROSS THE WELL

Using the potential described in Sec. II A and, spec
cally, the example in Eq.~1!, this section considers the mo
tion of f back and forth across the potential well. We w
show that evolution converges to a stable attractor solut
Our main purpose, though, is to explore the asymmetry
the behavior before and after the bounce that is an esse
component of the cyclic solution.

Over most of this region,V may be accurately approxi
mated by2V0 e2cf. For this pure exponential potentia
there is a simple scaling solution@12#

a~ t !5utup, V52V0e2cf52
p~123p!

t2 , p5
2

c2 ,

~22!

which is an expanding or contracting universe solution
cording to whethert is positive or negative.~We chooset
50 to be the bounce.! From the expression forV, we see that
f varies logarithmically withutu.

At the end of the expanding phase of the cyclic scena
there is a period of accelerated expansion which makes
universe empty, homogeneous and flat, followed byf rolling
down the potentialV(f) into the well. After f has rolled
sufficiently and the scale factor has begun to contract@past
stage~3! in Fig. 2#, the universe accurately follows the abov
scaling solution down the well untilf encounters the poten
tial minimum @stage~5! in Fig. 2#.
3-9
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PAUL J. STEINHARDT AND NEIL TUROK PHYSICAL REVIEW D65 126003
Let us consider the behavior off under small shifts in the
contracting phase. In the background scalar field equa
and the Friedmann equation, we setf5fB1df and H
5HB1dH, wherefB andHB are the background quantitie
given from Eqs.~22!. To linear order indf, one obtains

df̈1
113p

t
dḟ2

123p

t2 df50, ~23!

with two linearly independent solutions,df;t21 andt123p,
where p!1. In the contracting phase, the former soluti
grows ast tends to zero. However, this solution is simply
infinitesimal shift in the time to the big crunch:df}ḟ. Such
a shift provides a solution to the Einstein-scalar equati
because they are time translation invariant, but it is phy
cally irrelevant since it can be removed by a redefinition
time. The second solution is a physical perturbation mo
and it decays ast tends to zero. Hence, we find that th
background solution is an attractor in the contracting pha

We next consider the incoming and outgoing collision v
locity, which we have parametrized asH5( in) andH5(out)
in the previous section. Within the scaling solution~22!, we
can calculate the value of incoming velocity by treating t
prefactor of the potentialF(f) in Eq. ~1! as a Heaviside
function which is unity for f.fmin and zero for f
,fmin , wherefmin is the value off at the minimum of the
potential. We compute the velocity of the field as it a
proachesfmin and use energy conservation at the jump inV
to infer the velocity afterfmin is crossed. In the scaling
solution, the total energy asf approachesfmin from the
right is 1

2 ḟ21V53p2/t2, and this must equal the total en
ergy 1

2 ḟ2 evaluated forf just to the left offmin . Hence, we
find that ḟ5A6p/t5A6pVmin /(123p) at the minimum
and, according to Eq.~16!,

H5~ in !'2
A8

c

uVminu1/2eA(3/2)fmin

A126c22
. ~24!

At the bounce, this solution is matched to an expanding
lution with

H5~out!52~11x!H5~ in !.0, ~25!

where x is a small parameter which arises because of
inelasticity of the collision.

In order to obtain cyclic behavior, we shall needx to be
positive or, equivalently, the outgoing velocity to exceed
incoming velocity. There are at least two effects that c
causex to be positive. First, as we discuss in the Append
x is generically positive if more radiation is generated on
negative tension brane than on the positive tension bran
collision. Secondly,x can get a positive contribution from
the coupling ofb(f) to the matter created on the branes
the collision; see Eq.~10!. Both effects are equally good fo
our purposes. For the present discussion, we shall sim
assume a small positivex is given, and follow the evolution
forward in time.
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Sincex is small, the outgoing solution is very nearly th
time reverse of the incoming solution asf starts back across
the potential well after the bounce: the scaling solution giv
in Eqs.~22!, but with t positive. As time proceeds, howeve
the contribution ofx becomes increasingly significant. In th
time-reversed scaling solution,H5 tends to zero. Forx.0,
H5 remains positive andf overshoots the potential well.V0
is exponentially smaller than the kinetic energy density at
bounce, so even a tiny fractionx suffices to reach the platea
after crossing the potential well.

We can analyze this overshoot by treatingx as a pertur-
bation and using the solution in Eq.~23! discussed above
df;t21 and t123p. The latter is a decaying mode in th
contracting phase before the bounce but it grows in the
panding phase. One can straightforwardly compute the
turbation indH5 in this growing mode by matching atfmin

as before. One findsdH5512xH5
B/c2 whereH5

B is the back-
ground value, at the minimum. Beyond this point,dH5

grows astA6/c}eA(3/2)f, for large c, whereas in the back
ground scaling solutionH5 decays withf as e[A(3/2)2c/2]f.
When the perturbation is of order the background value,
trajectory departs from the scaling solution and the poten
becomes irrelevant. The departure occurs when the sc
field has attained the value

fDep5fmin1
2

c
ln

c2

12x
, uVu&S 12x

c2 D 2

uVminu. ~26!

As f passes beyondfDep the kinetic energy overwhelms th
negative potential and the field passes onto the plateauV0
with H5 nearly constant~see Fig. 2!, and equal to

Ĥ5~out!'xS c2

12x D A6/c

H5~ in !, ~27!

until the radiation, matter and vacuum energy become
nificant andH5 is then damped away to zero.

Before moving on to discuss these late stages, it is
structive to compare how rapidlyf travels over its range
before and after the bounce. The time spent to the left of
potential well (f,fmin) is essentially identical in the in
coming and outgoing stages forx!1, namely

utminu'
c

3A2uVminu
. ~28!

For the outgoing solution, whenf has left the scaling
solution but before radiation domination, the definition E
~16! may be integrated to give the time since the big bang
each value off,

t~f!5E df

ḟ
5A2

3E df
eA(3/2)f

H5~f!
'

2

3

eA(3/2)f

Ĥ5~out!
. ~29!

The time in Eq.~29! is a microphysicalscale. The corre-
sponding formula for the time before the big crunch is ve
different. In the scaling solution~22! one has, for largec,
3-10
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t~f!52A 2

uVmin
u
ec(f2fmin)/2

c
52

6ec(f2fmin)/2

c2
utminu.

~30!

The large exponential factor makes the time to the big cru
far longer than the time from the big bang, for each value
f. This effect is due to the increase inH5 after the bounce,
which, in turn, is due to the positive value ofx.

V. THE RADIATION, MATTER AND QUINTESSENCE
EPOCHS

As the scalar field passes beyond the potential wel
runs onto the positive plateauV0. As mentioned in the las
section, the value ofH5(out) is nearly canceled in the pas
sage across the potential well, and is reduced toĤ5 given in
Eq. ~27!. Once radiation domination begins, the field quick
converges to the larget ~Hubble-damped! limit of Eq. ~19!,
namely

fC5A2

3
ln@25/2Ĥ5~out!/Hr !], ~31!

whereHr is the Hubble radius at kinetic-radiation equalit
The dependence is obvious: the asymptotic value off de-
pends on the ratio ofĤ5(out) to Hr . IncreasingĤ5(out)
pushesf further, likewise loweringHr delays radiation
domination allowing the logarithmic growth off in the ki-
netic energy dominated phase to continue for longer.

As the kinetic energy redshifts away, the gently slopi
potential gradually becomes important, in acting to slow a
ultimately reversef ’s motion. The solution of the scala
field equation is, after expanding Eq.~19! for large t, con-
verting to proper timet5*a(t)dt and matching,

ḟ'
A3Hr

a3~ t !
2a23E

0

t

dta3V,f , ~32!

where as above we definea(t) to be unity at kinetic-
radiation equal density. During the radiation and matter e
the first term scales ast23/2 and t22 respectively. For a
slowly varying field,V,f is nearly constant, and the potenti
gradient term in Eq.~32! scales linearly witht, so it eventu-
ally dominates.

When doesf turn around? We give a rough discussi
here, ignoring factors of order unity. First, we use the f
thatV0;t0

22 wheret0 is the present age of the universe, a
roughly we havet0;105tm , wheretm is the time of matter
domination. As we shall see,f may reach its maximal value
fmax and turn around during the radiation, matter or qui
essence dominated epoch. All three possibilities are acc
able phenomenologically, although the case where tu
around occurs in the radiation epoch appears more likely.
example,fmax is reached in the radiation era, if, from E
~32!,

tmax

tm
'104S t r

tm
D 1/5S V

V,f
~fC! D 2/5

,1. ~33!
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If the universe becomes radiation dominated at the gr
unified theory~GUT! scale,t r;10225 s. Then, only if we
fine-tune such thatV/V8.1010 does tmax exceedtm . This
corresponds to the case where we have 1010 e-foldings or
more of cosmic acceleration at late times asf rolls back, far
more than required for the cyclic solution. The bou
changes somewhat if the universe becomes radiation do
nated as late as nucleosynthesis (t r;1 s!. In that case, even
if V/V,f(fC) is not much greater than unity, the scalar fie
turns around in the matter era or later. For turnaround in
matter era, we require

331024&S t r

tm
D 1/6S V

V,f
~fC! D 1/3

&30. ~34!

Finally, if the field runs to very largefC , so that
V,f /V(fC)'ce2cfC is exponentially small, thenf only
turns around in the quintessence-dominated era. For the
ample considered here, the natural range of parameters
responds to turnaround occurring during the radiatio
dominated epoch. Hence, by the present epoch, the fie
rolling monotonically in the negative direction and slow
gaining in speed. Consequently, the ratio of the pressur
the energy density is increasing from its value at turnarou
w521, towards zero. Depending on the details of the sca
potentialV(f), it is conceivable that the increasing value
w could ultimately be observationally detectable.

Once the field has turned around and started to roll b
towards the potential well, the second term in Eq.~32! domi-
nates. For our scenario to be viable, we require there to b
substantial epoch of vacuum energy domination~inflation!
before the next big crunch. The number ofe-foldings Ne of
inflation is given by the usual slow-roll formula,

Ne5E df
V

V,f
'

ecfC

c2
, ~35!

for our model potential. For example, if we demand that
number of baryons per Hubble radius be diluted to bel
unity before the next contraction, which is certainly over-k
in guaranteeing that the cyclic solution is an attractor, we
e3Ne*1080, or Ne*60. This is easily fulfilled iffC is of
order unity in Planck units.

From the formulas given above we can also calculate
maximal valuefC in the cyclic solution: for largec and for
t r@x21tmin , it is

fC2fmin'A2

3
lnS x

t r

tmin
D , ~36!

where we usedHr
21;t r , the beginning of the radiation

dominated epoch. From Eq.~36! we obtain

t r

tmin
;

1

x S c2NeuVminu
V0

D A3/2c2

. ~37!

This equation provides a lower bound ont r . The extreme
case is to takeuVminu;1. Then usingV0;102120,c;10,Ne
;60, we findt r;10225 s. In this case the maximum tem
3-11
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perature of the universe is;1010 GeV. This is not very
different from what one finds in simple inflationary mode

As f rolls down the hill, one can check thatf leaves the
slow-roll regime whene2cf exceeds 3/c2. At this point the
constant termV0 in the potential becomes irrelevant and o
can use the scaling solution forf, all the way to the potentia
minimum. This is also the point at which density perturb
tions start to be generated via the ekpyrotic mechani
while the Einstein frame scale factora is still expanding. The
universe continues to expand slowly, but with a slowly d
creasing Hubble constant, and finally enters contrac
when the density in the scalar field reaches zero, at a n
tive value of the potential energy. The ensuing contract
phase is accurately described by the scaling solution~22!, in
which a;(2t)p and ḟ5A2p/t, with t,0, andt50 being
the time of the next big crunch. From the formulas~12! one
finds ȧ15(pa12Ap/3a0)/t, which is greater than zero fo
p, 1

3 , sincea0 is greater thana1. Thus even whena is un-
dergoing slow contraction, in the scaling era, the effect of
motion of f is enough to makea1 expand throughout this
phase. Matter residing on this brane would see continu
expansion all the way to the big crunch. The same argum
shows thata1 actually undergoes a small amount of contra
tion in the very much shorter scaling epoch of the expand
phase.

VI. GENERATION OF DENSITY PERTURBATIONS

In the cyclic scenario, the period of exponential expans
occurring late in each cycle plays a key role in diluting t
densities of matter, radiation and black holes to negligi
levels, suppressing long wavelength perturbations and es
lishing a ‘‘clean slate,’’ namely a flat vacuous universe
which all fields are in their quantum mechanical grou
state. As the scalar field rolls down the potential in Eq.~1!,
entering the scaling solution in Eq.~22!, the ekpyrotic
mechanism for the generation of fluctuations derived in R
@1# and @12# sets in and a scale invariant spectrum of ad
batic perturbations is thereby developed. Quantum fluc
tions of the usual inflationary sort are also developed in
slow-roll quintessence epoch, but these are:~a! negligible in
amplitude becauseV0 is tiny; and~b! only excited on scales
of order t0 and above in the contracting phase. These sc
are shrunk only as (2t)p in the contracting, scaling solution
but then expanded ast1/3, t1/2 and t2/3 in the kinetic domi-
nated, radiation and matter eras in the big bang phase, w
also lasts for a time of ordert0. Therefore, the modes ampl
fied during inflation are exponentially larger in waveleng
than the Hubble radius scale in the next cycle by the time
quintessence domination, which is the present epoch.

Let us concentrate on the fluctuations produced via
ekpyrotic mechanism@12#. Expanding the inhomogeneou
fluctuations in the scalar fielddf(t,xW )5SkWdfkW(t)eikW•xW, we
remove the damping term by settingdfkW5a21xkW , to obtain

xkW
952k2xkW1S a9

a
2V,ffa2DxkW[2~k22kF

2 !xkW , ~38!
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where primes denote conformal time derivatives and
have definedkF , the comoving ‘‘freeze-out’’ wave number
Modes with k.kF oscillate with fixed amplitude, wherea
those withk,kF are amplified. In the regime of interestkF
grows monotonically so that shorter and shorter waveleng
progressively freeze out as the big crunch is approached.
physical scale at which modes freeze out is given by

lF5Fa9

a3
2V,ffG21/2

5F2

3
V2

1

6
ḟ22V,ffG21/2

. ~39!

As usual we adopt units where 8pG51, and denote prope
time derivative with a dot. In the era of quintessence dom
nation whenV dominates overV,ff , the freeze-out scalelF
is nearly constant, and comoving wavelengths are expon
tially stretched beyond it. AsV,ff begins to dominate, how
ever, Hubble damping becomes irrelevant, and the sys
approaches the scaling solution given in Eq.~22!, in which
V,ff'22/t2, wheret is the proper time to the big crunch
The freeze-out scale drops linearly with time to zero, as
scale factor is falling, like (2t)1/3. Therefore progressively
shorter and shorter wavelength modes are frozen out
amplified, with waves of physical wavelengthtF being fro-
zen out at a timetF .

An exponentially large band of comoving wavelengths
amplified and frozen in asf rolls from f50 down towards
fmin . Modes with all physical wavelengths from the micr
physical scaletmin , which could be not much larger than th
Planck length, to the macroscopic scalet0 /c which is of
order a tenth the present Hubble radius, acquire scale inv
ant perturbations. Once the perturbations are generated,
wavelength scales as (tmin /tF)p in the collapsing phase
Then asf crosses the potential well and races off to min
infinity, the Einstein frame physical wavelength goes to ze
But this is not the relevant quantity to track, since we ma
the variablesa0 and a1 and therefore should match th
physical wavelengths as measured by these scale factor
the kinetic dominated phase,a0 anda1 are nearly constant
so in effect the physical wavelength of the modes is matc
when f crossesfmin , in the contracting and expandin
phases. Furthermore, the contracting and expanding s
tions are nearly time-reverses of one another, until the t
tDep computed above when the expanding solution devia
from scaling. Therefore one is effectively matching attDep ,
from which one sees that the timetF at which perturbations
on the current Hubble radius scalet0 were generated, is
given by

utFuS utDepu
utFu D p

't0S tm

t0
D 2/3S t r

tm
D 1/2S tDep

tr
D 1/3

, ~40!

where the bracketed factors are:~a! the contraction of the
scale factor in the scaling solution, between the timetF at
which the perturbations were generated and the timetDep at
which the expanding solution departs from scaling;~b! the
scaling back of the present comoving Hubble radius scal
the time of matter-dominationtm ; ~c! the scaling back to the
time of radiation-dominationt r ; and ~d! the scaling back to
3-12



c

of
e

s

ua
o

ro
si
i
t

-
c

fo

tl

pr
eg
e
q

se

b
al
p

bl
n
b

If
w
le

ec
al
ys
tio
b

nd
cle,
in-
the

ded
f

x-
u
nd,
lly
-

ely
r-
se
s-
es

tu-
re

row
hat
g
ing
uent

e
is

is
d

ful
iven

the

ties.
ion

sys-
We
a in

ion
the
ite
-
ame
ion.

are

COSMIC EVOLUTION IN A CYCLIC UNIVERSE PHYSICAL REVIEW D65 126003
the time tDep using H5; const, corresponding to kineti
domination in the expanding solution.

From Eq.~30!, it follows that perturbations on the scale
the present Hubble radius were generated at a field valu

fF'fmin1
2

c
lnF c2

6 S c2

12x D 1/3t0
1/2t r

1/6

tmin
2/3 G . ~41!

Comparing with Eq.~36! for the resting value of the field
fC , and the expression

fmin'2
2

c
ln~ct0 /tmin!, ~42!

for the field value at the potential minimum, which follow
from Eq. ~28!, one finds that

fGen2fmin'2
1

2
fmin1

1

A6c
~fC2fmin!, ~43!

where the first term dominates. In other words, the fluct
tions we see today were generated at a field value appr
mately halfway between the zero and the minimum ofV(f).

VII. CYCLIC SOLUTIONS AND CYCLIC ATTRACTORS

We have shown that a cyclic universe solution exists p
vided we are allowed to pass through the Einstein-frame
gularity according to the matching conditions elaborated
Sec. IV, Eqs.~24! and ~25!. Specifically, we assumed tha
H5(out)52(11x)H5( in) wherex is a non-negative con
stant, corresponding to branes whose relative speed after
lision is greater than or equal to the relative speed be
collision. Our argument showed that, for eachx>0, there is
a unique value ofH5(out) that is perfectly cyclic. In the
Appendix, we show that an increase in velocity is perfec
compatible with energy and momentum conservation in
collision between a positive and negative tension brane,
vided a greater density of radiation is generated on the n
tive tension brane.@A similar outcome can occur through th
coupling off to the matter density, as discussed below E
~25!, but we will only discuss the first effect for the purpo
of simplicity.#

In this section, we wish to show that, under reasona
assumptions, the cyclic solution is a stable attractor, typic
with a large basin of attraction. Without the attractor pro
erty, the cyclic model would seem fine-tuned and unsta
One could imagine that there would still be brane collisio
and periods of contraction and expansion, but there would
no regularity or long-term predictability to the trajectories.
this were the case, fundamental physics would lose its po
to explain the masses and couplings of elementary partic
The masses and couplings depend onf and other moduli
fields. If there were no attractor solution, the precise traj
tory of f through cosmic history would depend on initi
conditions and could not be derived from fundamental ph
ics alone. In our proposal, the nature of the attractor solu
depends on microphysics at the bounce which is computa
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in principle, from fundamental theory. Hence, masses a
couplings of particles change during the course of the cy
but fundamental theory retains predictive power in determ
ing the way they change and, specifically, their values at
current epoch.

The essential feature for attractor behavior is the exten
period of accelerated expansion that damps the motion of.
Let us consider how this works. Assumingx is fixed by
microphysics, there is a valueH̄5(out) which corresponds to
the cyclic solution. Now, suppose the value ofH5(out) ex-
ceedsH̄5(out). This means that the outgoing velocity e
ceeds the cyclic value andf runs out farther on the platea
than in the cyclic case. Once the field stops, turns arou
and quintessence-domination begins, the field is critica
damped. By the timeV(f) falls to zero, the transient behav
ior of f which depends on the initial value ofH5 has
damped away exponentially so that the field accurat
tracks the slow-roll solution. Following the solution fo
wards,H5( in) at the next bounce is then exponentially clo
to what it would have been for the cyclic solution. By era
ing memory of the initial conditions, the acceleration insur
that H5(out) after the next bounce is very nearlyH̄5(out).

How manye-foldings of accelerated expansion are ac
ally required to make the cyclic solution an attractor? If the
is no epoch of accelerated expansion, perturbations will g
each cycle, becoming self-gravitating and nonlinear so t
no attractor will occur. A minimal requirement for obtainin
an attractor is that linear density perturbations grown dur
the matter era should be damped away during the subseq
exponential expansion. This requires at least ln(105);10
e-foldings of exponential expansion. Equally, diluting th
number density of baryons below one per Hubble volume
certainly over-kill in terms of ensuring an attractor, and th
requires of order 60e-foldings. In fact, as we discusse
above, obtaining a far larger number ofe-foldings is per-
fectly possible.

To discuss the nature of the attractor solution, it is help
to plot the trajectories of the system in the phase space g
by the (H5 ,f)-plane, shown in Fig. 4–6. Recall thatH5 is
proportional toḟ; see Eq.~16!. Figure 4 illustrates the cyclic
trajectory for the case where no radiation is generated at
bounce (x50) and the cycle is exactly time-symmetric.

The phase space plot must always satisfy three proper
First, for a flat universe, the Friedmann constraint equat

H25 1
3 r implies that the energy densityr5@ 1

2 ḟ21V(f)#
must be positive. Without negative space curvature, the
tem is simply not allowed to explore negative energies.
show the classically excluded region as the shaded are
the figures. In Fig. 4 where there is no radiation andV(f)
→0 asf→0, the excluded region extends alongH550 out
to f→2`. In Figs. 5 and 6 the shape of the excluded reg
is modified due to the presence of radiation. For example,
gray region pinches off on the left hand side for some fin
value off. However, the effect is negligible for the trajec
tories considered in our discussion and so we show the s
excluded region in the figures as in the case of no radiat

The second property is that phase space trajectories
double-valued on the (H5 ,f)-plane. Given the scalar field
3-13
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andH5, one may have either a contracting or an expand
universe. We represent expanding trajectories as solid l
and the contracting trajectories as dashed lines. Two exp
ing trajectories are not allowed to cross, and neither are
contracting trajectories for the usual reasons that hold
particle trajectories on phase space. However, an expan
trajectory may certainly intersect a contracting trajectory.

The final rule is that there are only two ways an expa
ing trajectory can turn into a contracting trajectory. If reve
sal occurs at finitef it can only happen if the trajectory hit

FIG. 4. The cyclic trajectory in the (H5 ,f)-plane for the case
where no matter and radiation are produced at the bounce (x50).
The gray region, which corresponds to negative energy densit
forbidden. The solid~dashed! line represents the trajectory durin
an expanding~contracting! phase. Expansion turns to contractio
and vice versa when the trajectory hits the zero energy surface~the
rightmost tip of the gray region in this case!.

FIG. 5. Trajectories in the (H5 ,f)-plane for the case wher
there is radiation. The solid~dashed! curves represent the trajector
during an expanding~contracting! phase. The thin lines illustrate
undershoot solutions and the heavy line represents an overs
solution.
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the forbidden zero density region~shaded!, sincer has to
vanish if H is to pass smoothly through zero. The shad
region is analogous to the ‘‘egg’’ region described by Bru
ein and Veneziano@21#. The second way in which contrac
tion can turn into expansion is if the system runs off tof
52`. Then, the ‘‘bounce’’ described in Sec. III and Ref.@8#
occurs.

The trajectory shown in Fig. 4 is a cyclic solution~albeit
not a very interesting one! in which no matter-radiation is
produced at the bounce and the value ofH5(out) is precisely
equal toH5( in). The field rolls out in the expanding phas
~solid line emanating from the upper left side of the figure! to
the value whereV(f)50 and stops~the rightmost tip of the
gray region!. The total energy density is momentarily ze
and expansion reverses to contraction. The field then r
back to2` ~lower left side of the figure!. The expanding
and contracting phases are exactly symmetrical.

The time scale for one cycle of this empty-universe so
tion is easily estimated by noting that most of the time
spent near the zero of the potential, where it is rather s
low, and the scale factora is nearly constant. Therefore, w
can neglect gravity and calculate the period for one cycle
the case of the empty universe:

tempty'E
fmin

0 df

AV0~e2cf21!

5
1

cAV0
E

0

cufminu dy

Aey21
'

1

cAV0

~44!

is

oot

FIG. 6. Trajectories in the (H5 ,f)-plane showing the attracto
nature of the cyclic solution~the middle trajectory!. Path~1! is an
overshoot solution that begins with slightly greater velocity (H5)
than the attractor, bounces off the gray zero-energy surface,
then has a contracting trajectory whose value ofH5 is smaller in
magnitude. Path~2! is an undershoot solution which begins wi
slightly less velocity in the expanding phase than the cyclic va
and ends in a contracting phase withH5 having a slightly greater
magnitude. Following the next bounce, therefore, overshoot tu
into undershoot and vice versa. In either case, the deviation f
the attractor value shrinks.
3-14
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for largecufminu. For the parameters typical in our example
this corresponds to roughly one-tenth of the current age
the universe, or a billion years.

In Fig. 5, we consider the case where radiation is p
duced at the bounce,x.0. If H5(out) is too low compared
to the cyclic value, the trajectory encounters the zero den
boundary ~gray region! and reverses to contraction. Sol
curves represent the expanding phase of the trajectory,
dashed lines represent the contracting phase of the trajec
Let us call this an ‘‘undershoot’’ solution.H5 is only constant
if f anda are both increasing, or both decreasing. Howev
if the universe reverses whenH5 is still positive, then the
scalar field kinetic energy is blueshifted andH5 is rapidly
driven to more and more positive values. The trajectory fl
off to large positiveH5 andf ~the upper boundary!.

As one increasesH5(out), the behavior of the system
changes. For sufficiently largeH5, the system avoids the zer
energy surface entirely during the period whenf is increas-
ing ~the bold solid and dashed trajectory in Fig. 5!. The field
‘‘overshoots’’ the negative region of the potential and lan
on the positive plateau. Exponential expansion begins,
lowed by a very slow roll off back towards the potentia
zero, This period appears as a long, thin excursion on
right hand side of the figure.uH5u is small because the field i
rolling slowing in the quintessence-dominated phase.

The cyclic attractor solution lies between these und
shoot and overshoot trajectories. Figure 6 shows trajecto
with initial values of H5(out) both above and below th
cyclic value~the middle curve!. Here we can study the sta
bility of the cyclic solution. Let us first consider a trajecto
with H5(out) larger than the value in the cyclic solution
This trajectory is indicated by~1! in the figure. Clearly, it
overshoots the cyclic trajectory and undergoes a longer
riod of exponential expansion~the long excursion to the
right!. During the slow-roll epoch, the difference betwe
this trajectory and the cyclic one damps away until it is e
ponentially small. The trajectory encounters the zero den
surface very slightly later than the cyclic solution does, a
therefore, reverses and ends up with a very slightly sma
value ofH5(out) than that in the cyclic trajectory. Similarly
one can see that starting the system in state~2! with a smaller
value ofH5(out) than that of the cyclic trajectory, the sys
tem will inflate less and reverse earlier, ending up with
larger value ofH5(out) than that of the cyclic trajectory
This discussion shows that the trajectory is stable and
memory of the initial conditions decays exponentially af
just one cycle.

Here we implicitly assumed thatx is a constant indepen
dent ofH5( in), the incoming velocity. In the Appendix, w
obtain an expression forx in Eq. ~A5! in terms of the matter-
radiation energy densities created on the positive and n
tive tension branes. Assuming the energy density on
negative tension braner2 is significantly greater than th
energy density created on the positive tension brane, we h
x}r2 . Assuming the collision between branes occurs a
low velocity so that one is not far from the adiabatic lim
r2 should decrease with decreasingH5( in). ~Note that the
low-velocity assumption has been made throughout sinc
is required for the moduli approximation.! Hence, we would
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anticipate thatx rises monotonically as the incoming velo
ity increases. This effect can alter the trajectories and
precise basin of attraction in detail, but does not alter
conclusion that a large basin of attraction exists. This is
sured by having a potential plateau or, more generally
region of the potential in whichf slow-rolls with total en-
ergy comparable to the current dark energy density.

Quantum effects are also unlikely to affect the attrac
solution. We have shown that the solution is stable un
small perturbations and here the perturbations remain s
sinceuVminu andV0 are small compared to the Planck sca

What of the trajectories in Fig. 5, for example, that ru
away to largef? For these, it is important to understan
what happens asf grows more positive. One possibility i
that the potentialV(f) diverges asf→`. Our example for
V(f) has an infinite plateau, but, as discussed in Sec. II,
is not a general requirement. IfV(f) grows sufficiently,f
will bounce back towards2`. Alternatively, the same effec
can occur if the theory includes massless fields that coupl
the scale factor on the negative tension brane,a1. The La-
grangian density then includes a terma1

4ċ2}1/a1
2. Increas-

ingly positive f corresponds to shrinkinga1. Hence, this
dynamical term can also create a force that causesf to
bounce back. The net effect is thatf rattles back and forth
along the potential, possibly following a chaotic orb
@22,23#. These effects could enhance the basin of attrac
for the cyclic solution. That is, some of these trajector
which we ignored in our undershoot and overshoot treatm
may eventually hit the plateau with low velocity, at whic
point they would become drawn to the attractor solution.

Finally, let us emphasize that we have only considered
issue of stability in the context of the very simplified mod
studied here, with a single scalar fieldf, and the matching
conditions discussed in Sec. IV. It would be very interest
to generalize this discussion to include other moduli, ma
which couples in a nontrivial way tof as discussed in Sec
IV, and and also discrete degrees of freedom such as a q
tized four-form field, which may change from cycle to cyc
so that the system really explores moduli space. The e
tence or otherwise of an attractor could well be relevant
the determination of the relative abundances of dark ene
dark matter, baryons and photons in the universe, and als
the values of the fundamental constants of nature.

VIII. IMPLICATIONS

The strengths of the cyclic model are its simplicity, i
efficient use of all of the dominant elements of the unive
and the fact that it is a complete description of all phases
cosmic evolution. This can be contrasted with inflationa
cosmology, a highly appealing theoretical model in its ow
right. Inflationary cosmology focuses on a brief epoch wh
the universe was 10235 s old. The model relies on assump
tions about how the universe emerged from the cosmic
gularity. One must postulate the existence of a phase of ra
cosmic acceleration at very high energies, for which th
exists no direct proof.~In contrast, the cyclic model relies o
low energy cosmic acceleration that has been observ!
Subsequent cosmic events, such as the recent transition
3-15
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PAUL J. STEINHARDT AND NEIL TUROK PHYSICAL REVIEW D65 126003
matter domination to dark energy domination and cosm
acceleration, appear to have no direct connection to inflat
ary theory.

Because the cyclic model ties the past, present and fu
evolution of the universe in a tight, cross-correlated way
has surprising explanatory and predictive power. In the
troduction to this paper, we noted a number of the m
challenging questions of cosmology and fundamental ph
ics. In this section, we consider each of these questions~and
more! and briefly describe the insights the cyclic model p
vides concerning their answers.

A. Why is the universe homogeneous, isotropic and flat?

The universe is made homogeneous and isotropic du
the period of the preceding cycle when quintessence do
nates and the universe is undergoing slow cosmic acce
tion. This ensures that the branes are flat and parallel as
begin to approach, collide, and emerge in a big bang. In
tion also relies on cosmic acceleration, but driven by v
high vacuum energy which produces an acceleration tha
nearly 10100 times faster.

B. How were density inhomogeneities generated?

In the cyclic model, the observed inhomogeneities in
universe are generated during the contracting phase whe
scale factor is nearly static and gravitational effects are we
Consequently, as in the ekpyrotic scenario, a nearly s
invariant spectrum of adiabatic, Gaussian energy den
fluctuations is generated. However, because the expan
rate is negligible and gravitational effects are weak, the t
sor ~metric fluctuation! spectrum is blue with an exponen
tially tiny amplitude at long wavelengths.

Fluctuations are also created during the quintesse
dominated phase, just as they are during inflation. Howe
because the energy density during the accelerating pha
100 orders of magnitude smaller than in inflation, the res
ing fluctuation amplitude is exponentially smaller in the c
clic model. These fluctuations also have wavelengths
exceed the current Hubble horizon. Hence, they are obse
tionally irrelevant.

C. What is the role of dark energy and the current cosmic
acceleration?

Clearly, dark energy and the current cosmic accelera
play an essential role in the cyclic model both by reduc
the entropy and black hole density of the previous cycle,
triggering the turnaround from an expanding to a contract
phase.~In all other cosmologies to date, including inflatio
dark energy has no essential role.!

D. How old is the Universe?

A truly cyclic universe is clearly infinitely old in terms o
cosmic time. As we have noted, the exact cyclic solution
also be an attractor. Hence, the cycling is stable. Con
quently, one becomes insensitive to the initial conditions
the universe as long as they were within the basin of att
tion of the cyclic solution. We believe that within this fram
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work, the problem of the initial conditions for the universe
significantly altered: as long as the universe has some n
zero probability for entering the cyclic solution, large regio
of the universe maintain cyclic evolution for arbitrarily lon
periods of time.

There is a possible objection to this argument, due to
fact that the four dimensional nonsingular brane space-tim
in our scenario are past geodesically incomplete. As we h
explained, for most of cosmic time they are well appro
mated by de Sitter space-time, with a cosmological cons
~or vacuum energy! close to the currently observed valu
This nearly de Sitter space-time is foliated by slices of co
stant scalar fieldf, which are nearly geometrically flat. Mat
ter is repeatedly generated on the slices withf52`, in the
rest frame defined by those slices.

As one follows cosmic timet backwards, one must pas
an infinite number of these big-crunch–big-bang surfac
However, even though the cosmic time tends to2`, the
proper time as measured along timelike geodesics runn
into the past generically is finite even ast tends to2`. This
may be seen as follows. Consider a particle with moment
P in the flat slicing. Its momentum blueshifts asa21 as you
follow it back in time. The geodesic becomes nearly null a
the proper time measured along the geodesic converges
thought tends to2` ~this is the crux of the recent argume
of Borde, Guth and Vilenkin that inflation is past geode
cally incomplete@24#!.

In our scenario, however,all physical particles are cre-
ated with finite momentum in the flat slicing defined byf. If
we follow a particle present in today’s universe back in tim
most likely it was created on the lastf52` surface. With
an exponentially smaller probability, it could have been c
ated on the penultimatef52` surface, and so on into th
past. The probability that any observed particle originated
the t52` flat surface, which is the boundary of the fl
slicing of de Sitter space-time, is zero. Therefore we do
attribute any physical significance to the past geodesic
completeness of the space-time metric in our scenario
contrast, particle production in standard inflationary mod
occurred on open slices a finite time ago.

Even if there are no particles present which ‘‘saw’’ th
past boundary of the cyclic universe, one might object t
the scenario implicitly requires a boundary condition in t
infinite past. We do not think this is a strong objection. If t
cyclic solution were begun within a finite region~for ex-
ample a torus! of three dimensional space, it would gro
exponentially with each cycle to an arbitrarily large siz
After an arbitrarily long time, to any real observer the un
verse would appear to be infinite both in spatial extent and
lifetime to the past.

So, while the cyclic model still requires an initial cond
tion, provided that state is within the basin of attraction
the cyclic solution, we are completely insensitive to its d
tails. Any features of the initial state~the total size of the
universe, or any fluctuations about flatness or homogene!
become exponentially diluted in each cycle, and since
cyclic solution can repeat forever, they are ultimately co
pletely irrelevant to any observation.
3-16
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COSMIC EVOLUTION IN A CYCLIC UNIVERSE PHYSICAL REVIEW D65 126003
E. What is the ultimate fate of the Universe?

The cycles can be continued to the infinite future, as w
as the infinite past. Hence, the universe endures forever

F. How big is the Universe?

From the effective 4D point-of-view, the universe osc
lates between periods of expansion to periods of contrac
down to a big crunch. However, from the brane world poi
of-view, the universe is always infinite in the sense that
branes always have infinite extent. The fact that the bra
are spatially infinite means that it is possibly for the to
entropy in the universe to increase from cycle to cycle, a
at the same time, have the entropy density~in particular, the
total entropy per Hubble horizon! become nearly zero prio
to each bounce.

G. What occurs at the big bang singularity?

The cyclic model utilizes the ekpyrotic notion that th
singularity corresponds to the collision and bounce of t
outer orbifold branes in a manner that is continuous a
well-behaved. The singularity is not a place where ene
and curvature diverge and time begins. Rather, formulate
appropriate fields and coordinates, the singularity is
smooth, finite transition from a contracting phase head
towards a big crunch and a big bang evolving into an
panding universe.

H. What determines the arrow of time?

Since the universe is cyclic, it may appear that there is
well-defined means of determining the arrow of time. I
deed, for a local observer, there is no clear means of do
so.

From the global perspective, though, there is a cl
means of determining forward from backward in time. Fir
one of the boundary branes is forever expanding in the ‘‘f
ward’’ time direction in the cyclic model. The other brane
expanding except for brief intervals of contraction, but, a
eraged over a cycle, the net effect is expansion. The
changes from phase to phase, as well as the separation. I
contraction phase, the branes themselves stretch at a rat
is slow but their separation rapidly decreases. In the ra
tion, matter, and quintessence dominated phases, the b
stretch significantly, but their separation remains fixed. D
ing this period, the entropy created during the previous cy
is spread out exponentially, reducing the degrees of freed
per horizon to nearly zero.

I. Why is the cosmological constant so small?

The cyclic model provides a fascinating new outlook
this vexing problem. Historically, the problem is assumed
mean that one must explain why the vacuum energy of
ground state is zero.

In the cyclic model, the vacuum energy of the grou
state is not zero. It is negative and its magnitude is large
is obvious from Fig. 1. If the universe begins in the grou
state, the negative cosmological constant will cause ra
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recollapse, as expected for an anti–de Sitter phase. In
cyclic scenario, though, we have shown how to arrange c
ditions where the universe avoids the ground state. Inst
the universe hovers from cycle to cycle above the grou
state bouncing from one side of the potential well to t
other but spending most time on the positive energy s
The branes are moving too rapidly whenever the separa
corresponds to the potential minimum.

There remains the important challenge of explaining w
the the current potential energy is so small. The value
pends on both the shape of the potential curve and the
cise transfer of energy and momentum at the bounce.
haps explaining the value will be an issue as knotty as
cosmological constant problem, or perhaps the conditi
will prove easier to satisfy. What is certain, though, is th
the problem is shifted from tuning a vacuum energy, and t
provides an opportunity for new kinds of solutions.

J. Equation-of-state of dark energy

The equation-of-state of the dark energy,w, is the ratio of

the pressure to the energy density off, ( 1
2 ḟ22V)/( 1

2 ḟ2

1V). In Sec. V, we discussed the evolution off in the
radiation, matter and quintessence dominated epochs.
generic result is that evolution off in the positive direction
halts and the field begins to roll back towards2` in the
radiation-dominated epoch. At the turn-around,w521 since
the kinetic energy is zero. As the field rolls back and
kinetic energy increases,w increases. Hence, the generic r
sult is thatw is close to21 today and increasing. Conceiv
ably, cosmological observations could detect this predicti
Tracker models of quintessence, some of the best-motiv
alternatives, have the opposite trend:w is near20.8 or so
today and decreasing towards21 @25#. Other models, such
as k-essence, have the same trend as found in the cy
model @26#.

K. Implications for supersymmetry and superstrings

The cyclic model imposes different constraints on fund
mental physics compared to previous cosmological mod
As an example, consider the problem of designing sup
gravity potentials. The potentials are constructed from a
perpotentialW according to the prescription:

V5eK/M pl
2 FKi j DiWD̄jW2

3

M pl
2

WW̄G , ~45!

where Di5]/]f i1Ki /M pl
2 is the Kähler covariant deriva-

tive, Ki5]K/]f i ,Ki j 5]2K/]f i]f j and a sum over each
superfieldf i is implicit. If the ground state is supersymme
ric, DiW50, the first term is zero. In general, unlessW is
zero for precisely the same values for whichDiW50, the
minimum has a negative cosmological constant. In the p
this type of model would have been ruled unacceptable.
possibility of a cosmology in which the universe hovers ov
the ground state in a state of zero or positive energy rev
these models and alters constraints on model building.
3-17
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PAUL J. STEINHARDT AND NEIL TUROK PHYSICAL REVIEW D65 126003
An obvious but important implication is that supersym
metry breaking can be achieved without having spontane
symmetry breaking in the ground state. In this scenario
suffices if the universe hovers in the radiation, matter a
quintessence dominated epochs at some state far abov
ground state in energy and the supersymmetry is broken
the appropriate amount in the hovering state, where the
diation, matter and quintessence dominated phases o
These considerations have a significant impact on the de
of phenomenological supersymmetric models.

One other requirement/prediction of the cyclic scena
~and the ekpyrotic models in general! is that the branes mov
in a space-time with codimension 1. The constraint deri
from having a bounce that produces a smooth transition f
contraction to expansion. As argued by Khouryet al., the
geometry is flat arbitrarily close to the bounce provided th
is one extra dimension only. Hence, brane world scena
based on theories like that of Horˇava and Witten are accep
able, but large extra-dimensional models relying on hav
codimension 2 or greater are problematic.

L. Hoyle’s revenge?

Within each cycle, there is a sequence of kinetic ene
radiation, matter and quintessence dominated phases of
lution that are in accord with the standard big bang cosm
ogy. However, averaged over many cycles, the model ca
viewed as a remarkable reincarnation of Fred Hoyle’s ste
state model of the universe. Most of the cycle is spent i
phase with nearly constant energy density, as in the ste
state picture. Indeed Hoyle’sC-field that was introduced to
provide a constant supply of matter~and a preferred res
frame! is replaced by our scalar fieldf, which defines a
preferred time slicing and generates matter repeatedly at
bounce, restoring the universe to a state of high tempera
and matter density. In Hoyle’s steady state model, every
spatial slice was statistically identical. Here the slices
identical only when separated by one period, so we hav
discrete rather than continuous time translation symme
Nevertheless when coarse grained over large time spans
structure is similar to that proposed in the steady state
verse. Global properties of the cyclic cosmology will be d
cussed elsewhere@27#.
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APPENDIX: MATCHING H 5 ACROSS THE BOUNCE

In this appendix we discuss the matching conditi
needed to determineH5(out) in terms ofH5( in). We shall
assume that all other extra dimensions and moduli are fix
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and the bulk space-time between the branes settles down
static state after the collision.~In the simplest brane world
models, there is a Birkhoff theorem which ensures that th
is a coordinate system in which the bulk metric is static
between the branes.! We shall take the densities of radiatio
on the branes after collision as being given. By impos
Israel matching in both initial and final states, as well
conservation of total energy and momentum, we shall be a
to completely fix the state of the outgoing branes and
particular the expansion rate of the extra dimens
H5(out), in terms ofH5( in). A more complete discussion o
this method will be presented in Ref.@28#.

The idea is to treat the brane collision as a short-dista
phenomenon. The warp factor may be treated as linear
tween the branes as they approach or recede. Linearity
Z2 symmetry ensures that the kinks in the warp factors
equal in magnitude and opposite in sign. Israel match
relates the kink magnitudes to the densities and speeds o
branes, yielding the relations we use below.

The initial state of empty branes with tensionsT and
2T, and with corresponding velocitiesv1,0 and v2.0
~measured in the frame in which the bulk is static! obeys

TA12v1
2 5TA12v2

2

Etot5
T

A12v1
2

2
T

A12v2
2

Ptot5
Tv1

A12v1
2

2
Tv2

A12v2
2

. ~A1!

The first equation follows from Israel matching on the tw
branes as the approach, and equating the kinks in the b
scale factors. The second and third equations are the de
tions of the total energy and momentum. The three equat
~A1! imply that the incoming, empty state hasv15
2v2 ,Etot50 and that the total momentum is

Ptot5
TLH5~ in !

A12
1

4
@LH5~ in !#2

,0, ~A2!

where we identifyv12v2 with the contraction speed of th
fifth dimension,uLH5( in)u.

The corresponding equations for the outgoing state
easily obtained, by replacingT with T1r1[T1 for the
positive tension brane, and2T with 2T1r2[2T2 for the
negative tension brane, assuming the densities of radia
produced at the collision on each brane,r1 andr2 respec-
tively, are given from a microphysical calculation, and a
both positive.

We now wish to apply energy and momentum conser
tion, and Israel matching to the final state. The only subtl
is that the (t,y) frame in which the bulk is static is no
necessarily the same frame in the final state as it was in
initial state, so one should boost the initial two-momentu
(Etot ,Ptot) with a velocityV and then apply the Israel con
straints and energy-momentum conservation equations in
3-18
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new boosted frame. The latter provide three equations for
three unknowns in the final state, namelyv1(out), v2(out)
andV. Writing v6(out)5tanh(u6), whereu6 are the asso-
ciated rapidities, one obtains two solutions

sinhu152
1

2T2
@ uPtotu1uPtotu21~T1

2 2T2
2 !#

sinhu256
1

2T1
@ uPtotu2uPtotu21~T1

2 2T2
2 !#, ~A3!
o
p-

an
ed
r
hi

r
ne

12600
ewhereT1[T1r1 , T2[T2r2 with r1 andr2 the densi-
ties of radiation on the positive and negative tension bra
respectively, after collision. Bothr1 andr2 are assumed to
be positive. In the first solution, with signs (21), the ve-
locities of the positive and negative tension branes are
same after the collision as they were before it. In the seco
with signs (22), the positive tension brane continues in t
negativey direction but the negative tension brane isalso
moving in the negativey direction.

The corresponding values forv6(out) andV are
the extra
v1~out!52
uPtotu1uPtotu21~T1

2 2T2
2 !

APtot
2 12~T1

2 1T2
2 !1Ptot

22~T1
2 2T2

2 !2
,

v2~out!56
uPtotu2uPtotu21~T1

2 2T2
2 !

APtot
2 12~T1

2 1T2
2 !1Ptot

22~T1
2 2T2

2 !2
,

V52
APtot

2 12~T1
2 1T2

2 !1Ptot
22~T1

2 2T2
2 !2

uPtotu~T1
2 1T2

2 !/~T1
2 2T2

2 !1uPtotu21~T1
2 2T2

2 !
,

or 52
APtot

2 12~T1
2 1T2

2 !1Ptot
22~T1

2 2T2
2 !2

uPtotu1uPtotu21~T1
2 1T2

2 !
, ~A4!

where the first solution forV holds for the (21) case, and the second for the (22) case.
We are interested in the relative speed of the branes in the outgoing state, since that gives the expansion rate of

dimension,2v1(out)1v2(out)5LH5(out), compared to their relative speed22v152LH5( in) in the incoming state. We
find in the (21) solution,

UH5~out!

H5~ in !
U5 v1~out!2v2~out!

2v1
5A Ptot

2 14T2

Ptot
2 12~T1

2 1T2
2 !1Ptot

22~T1
2 2T2

2 !2
, ~A5!

and in the (22) solution

UH5~out!

H5~ in !
U5 ~T1

2 2T2
2 !

Ptot
2 A Ptot

2 14T2

Ptot
2 12~T1

2 1T2
2 !1Ptot

22~T1
2 2T2

2 !2
~A6!
i-
ior.

r-

is
with Ptot given by Eq.~A2! in both cases.
At this point we need to consider how the densities

radiation r1 and r2 depend on the relative speed of a
proach of the branes. At very low speeds,uLH5( in)u!1, one
expects the outer brane collision to be nearly adiabatic
an exponentially small amount of radiation to be produc
The (21) solution has the speeds of both branes nea
equal before and after collision: we assume that it is t
solution, rather than the (22) solution which is realized in
this low velocity limit.

As uLH5( in)u is increased, we expectr1 andr2 to grow.
Now, if we considerr1 andr2 to be both!Ptot!T, then
the second term in the denominator dominates. If more
diation is produced on the negative tension bra
f

d
.

ly
s

a-
,

r2.r1 , then uH5(out)/H5( in)u[(11x)'@11(r2

2r1)/2T# and sox is small and positive. This is the cond
tion noted in the text, necessary to obtain cyclic behav
Conceivably, the brane tension can change fromT to T8
5T2t at collision. Then, we obtain (11x)'@11(r2

2r112t)/2T#.
For the (21) solution, we can straightforwardly dete

mine an upper limit foruH5(out)/H5( in)u[(11x). Con-
sider, for example, the case in which the brane tension
unchanged at collision,t50. The expression in Eq.~A5!
gives uH5(out)/H5( in)u as a function ofT1 , T2 andPtot .
It is greatest, at fixedT2 andPtot , whenT15T, its smallest
value. ForPtot

2 ,T2, it is maximized forT2
2 5T22Ptot

2 , and
equal to A11Ptot

2 /(4T2) when equality holds. ForPtot
3-19
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>T2, it is maximized whenT250, its smallest value, and

Ptot
2 52T2, when it is equal toA4

3 . This is more than enough
for us to obtain the small values ofx needed to make the
cyclic scenario work. A reduction in brane tension at co
sions t.0 further increases the maximal value of the rat
To obtain cyclic behavior, we needx to be constant from
bounce to bounce. That is, compared to the tension be
collision, the fractional change in tension and the fractio
production of radiation must be constant.

We shall not consider the (22) solution in detail, except
to note that in the smallPtot limit it allows an arbitrarily
large value foruH5(out)/H5( in)u, which seems unphysical
gy
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Let us reiterate that there are many caveats attache
this calculation. We have not calculatedr1 andr2 and have
left these as parameters. We have set the brane tensionsT to
be equal before and after the collision, and have neglec
possible bulk excitations, treating the bulk space-time
static both before and after collision. We have ignored ma
couplings to bulk scalars, and ignored the possible dynam
evolution of additional extra dimensions. Nevertheless
think it encouraging that the unusual behavior of mat
bound to a negative tension brane allowsH5(out)/H5( in) to
be slightly greater than unity, which is what we need f
cyclic behavior.
ett.
ci.
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