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Cosmic evolution in a cyclic universe
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Based on concepts drawn from the ekpyrotic scenario and M theory, we elaborate our recent proposal of a
cyclic model of the universe. In this model, the universe undergoes an endless sequence of cosmic epochs
which begin with the universe expanding from a “big bang” and end with the universe contracting to a “big
crunch.” Matching from “big crunch” to “big bang” is performed according to the prescription recently
proposed with Khoury, Ovrut and Seiberg. The expansion part of the cycle includes a period of radiation and
matter domination followed by an extended period of cosmic acceleration at low energies. The cosmic accel-
eration is crucial in establishing the flat and vacuous initial conditions required for ekpyrosis and for removing
the entropy, black holes, and other debris produced in the preceding cycle. By restoring the universe to the
same vacuum state before each big crunch, the acceleration ensures that the cycle can repeat and that the cyclic
solution is an attractor.
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I. INTRODUCTION “Big bang” became synonymous with the beginning of
space-time. However, there is nothing in the Hawking-
In a recent papefl], we introduced the possibility of a Penrose singularity theorems to suggest that cyclic behavior
cyclic universe, a cosmology in which the universe underds forbidden in an improved theory of gravity, such as string
goes a periodic sequence of expansion and contraction. Eatiieory and M theory, and some people have continued to
cycle begins with a “big bang” and ends in a “big crunch,” speculate on this possibilif#,5]. In the 1990s, observations
only to emerge in a big bang once again. The expansioshowed that the matter density is significantly less than the
phase of each cycle includes a period of radiation, mattegritical density and that the scale factor of the universe is
and quintessence domination, the last phase of which corr@ccelerating 6]. Tolman’s cyclic model based on a closed
sponds to the current epoch of cosmic acceleration. The acmiverse is therefore observationally ruled out.
celerated expansion phase dilutes by an exponential factor Curiously, the same observations that eliminate Tolman'’s
the entropy and the density of black holes and any othecyclic model fit perfectly the novel kind of cyclic model
debris produced since the preceding big bang. The accelerproposed here. In our proposal, the universe is flat, rather
tion ultimately ends, and it is followed by a period of decel- than closed. The transition from expansion to contraction is
erating expansion and then contraction. At the transitiorcaused by introducing negative potential energy, rather than
from big crunch to big bang, matter and radiation are crespatial curvature. Furthermore, the cyclic behavior depends
ated, restoring the universe to the high density required for & an essential way on having a period of accelerated expan-
new big bang phase. sionafter the radiation and matter-dominated phases. During
Historically, cyclic models have been considered attracthe accelerated expansion phase, the universe approaches a
tive because they avoid the issue of initial conditig@s nearly vacuous state, restoring very nearly identical local
Examples can be found in mythologies and philosophies datonditions as existed in the previous cycle prior to the con-
ing back to the beginning of recorded history. Since the intraction phase. Globally, the total entropy in the universe
troduction of general relativity, though, various problemsgrows from cycle to cycle, as Tolman suggested. However,
with the cyclic concept have emerged. In the 1930s, Tolmarnhe entropy density, which is all any real observer would
[3] discussed cyclic models consisting of a closed universactually see, has perfect cyclic behavior with entropy density
with a zero cosmological constant. He pointed out that enbeing created at each bounce, and subsequently being diluted
tropy generated in one cycle would add to the entropy creto negligible levels before the next bounce.
ated in the next. Consequently, the maximal size of the uni- The linchpin of the cyclic picture is safe passage through
verse, and the duration of a cycle, increases from bounce tive cosmic singularity, the transition from the big crunch to
bounce. Extrapolating backwards, the duration of the bouncbkig bang. In recent work with Khoury, Ovrut and Seiberg, we
converges to zero in a finite time. Consequently, the problenmave proposed that a smooth transition is possible in string
of initial conditions remains. In the 1960s, the singularity theory[7,8]. In ordinary 4D general relativity, the big crunch
theorems of Hawking and Penrose showed that a big cruncis interpreted as the collapse and disappearance of four-
necessarily leads to a cosmic singularity where general reladimensional space-time. Densities and curvatures diverge
tivity becomes invalid. Without an available theory to re- and there is no sign that a transition is possible. But in the
place general relativity, considerations of whether time andheory considered here, what appears to be a big crunch in
space could exist before the big bang were discouragedhe 4D effective theory actually corresponds to the momen-
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tary collapse of an additional fifth dimension. As far as mat-instead that the interbrane potential is the same before and
ter which couples to the higher dimensional metric is con-after collision. After the branes bounce and fly apart, the
cerned, the three large spatial dimensions remain large aridterbrane potential ultimately causes them to draw together
time continues smoothly. The temperature and density arand collide again. To ensure cyclic behavior, we will show
finite as one approaches the crunch, and, furthermore, thbat the potential must vary from negative to positive values.
geometry is flat just before and just after the bounce. InIn the ekpyrotic examples, the potentials are zero or nega-
short, there is nothing to suggest that time comes to an eniive for all interbrane separationd/Ve propose that, at dis-
when the fifth spatial dimension collapses. Quite the contances corresponding to the present-day separation between
trary, the most natural possibility is that time continuesthe branes, the interbrane potential energy density should be
smoothly. Efforts are currently under way to establish thisPositive and correspond to the currently observed dark en-
conclusion rigorously in string theor§®]. The cyclic sce- €rgy, providing roughly 70% of the critical density today.
nario considered here exploits this concept and is absoluteijhat is, the dark energy that is causing the cosmic accelera-
dependent on its validity. In the absence of a detailed theor{yion of the universe today is, in this scenario, interbrane po-
of the transition from big crunch to big bang, we will param- tential energy. The dark energy and its associated cosmic
etrize the bounce in terms of simple matching conditionsacceleration play an essential role in restoring the universe to
incorporating energy and momentum conservation. a nearly vacuous state thereby allowing the cyclic solution to
The appeal of a cyclic model is that it provides a descripbecome an attractor. As the brane separation decreases, the
tion of the history of the universe which applies arbitrarily interbrane potential becomes negative, as in the ekpyrotic
far back into our past. The model presented here suggesg§enario. As the branes approach one another, the scale factor
novel answers to some of the most challenging issues iaf the universe, in the conventional Einstein description,
cosmology: How old is the universe—finite or infinite? How changes from expansion to contraction. When the branes col-
large is it? What was the physical cause of its homogeneit/ide and bounce, matter and radiation are produced and there
isotropy and flathess? What was the origin of the energys @ second reversal transforming contraction to expansion so
density inhomogeneities that seeded cosmic structure form& new cycle can begin.
tion and are visible on the cosmic microwave sky? What is The central element in the cyclic scenario is a four dimen-
the resolution of the cosmic singularity puzzle? Was theresional scalar fieldp, parametrizing the inter-brane distance
time, and an arrow of time, before the big bang? In additionOr equivalently the size of the fifth dimension. The brane
our scenario has a number of surprising implications forseparation goes to zero gstends to—2, and the maximum
other major puzzles such as the value of the cosmologicdirane separation is attained at some finite vapyg,. For
constant, the relative densities of different forms of matterthe most part our discussion will be framed completely
and even for supersymmetry breaking. within the four dimensional effective theory of gravity and
The cyclic model rests heavily on ideas developed as paimatter coupled to the scalar fiethl This description is uni-
of the recently proposed “ekpyrotic universg?,8]. The ba-  versal in the sense that many higher dimensional brane mod-
sic physical notion is that the collision between two braneels converge to the same four dimensional effective descrip-
worlds approaching one another along an extra dimensiotion in the limit of small brane separation. We shall not need
would have literally generated a hot big bang. Although theto tie ourselves to a particular realization of the brane world
original ekpyrosis paper focused on collisions between bulkdea, such as heterotic M theory for the purposes of this
branes and boundary brangg, here the more relevant ex- discussion, although such an underlying description is cer-
ample is where the boundary branes collide, the extra dimeriainly required, both for actually deriving the scalar potential
sion disappears momentarily and the branes then boundte shall simply postulate and for the ultimate quantum con-
apart[8]. The ekpyrotic scenario introduced several impor-sistency of the theory. The extra dimensional, and string
tant concepts that serve as building blocks for the cyclidheoretic interpretation is also crucial at the brane collision,
scenario. where the effective four dimensional Einstein-frame descrip-
(i) Boundary branes approaching one anoftb@ginning  tion is singular and at which point we postulate a big-
from res) correspond to contraction in the effective 4D theo-crunch—big-bang transition as outlined in Ré]. Again, for

retic description 7]. the present discussion we simply parametrize the outcome of
(i) Contraction produces a blueshift effect that convertghis transition in terms of the density of radiation produced
gravitational energy into brane kinetic eneld}. on the branes, and the change in the kinetic energy of the

(iii ) Collision converts some fraction of brane kinetic en-scalar field, corresponding to a change in the contraction/
ergy into matter and radiation that can fuel the big bangexpansion rate of the fifth dimension.

[7,12]. The scalar field$ plays a crucial role in the cyclic sce-
(iv) The collision and bouncing apart of boundary braneshario, in regularizing the Einstein-frame singularity. Matter
corresponds to the transition from a big crunch to a big bangnd radiation on the brane couple to the Einstein frame scale

[8]. factora times a function3(¢) with exponential behavior as

A key element is added to obtain a cyclic universe. The¢— —, such that the product is generically finite at the
ekpyrotic scenario assumes that there is only one collisiobrane collision, even though=0 and ¢y=— there. For
after which the interbrane potential becomes zgrerhaps finite ¢, the coupling of the matter and radiation # is
due to changes in the gauge degrees of freedom on thmore model-dependent. Models in whighs massless at the
branes that zero out the fonceThe cyclic model assumes current epoch, such as we describe in this paper, face a
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strong constraint due to the fact thatcan mediate a “fifth  bal issues where matching one cycle to the next is important.
force,” which is in general composition dependent and vio-The description of a single cycle from the 4D effective
lates the equivalence principle. Again, without tying our-theory point-of-view is given in Sec. Il B.

selves to a particular brane world scenario we shall consider The same evolution appears to be quite different to ob-
models in which the coupling functiofi(¢) tends to a con- servers on the visible brane who detect matter and radiation
stant at current values @f (large brane separationgnd the  confined to three spatial dimensions. In this picture, depend-
corresponding fifth force is weak. An example of such aing on the details, the brane is either always, or nearly al-
model is the Randall-Sundrum model with the nonrelativisticways expanding except for tiny jags near the big-crunch—
matter we are made of localized on the positive tension brankig-bang transition when it contracts by a modest amount.
(see e.g. Refl10] for a recent discussionin models where The branes stretch at a rate that depends on which form of
B(¢) does not tend to a constant at current valuegpobne  energy dominates the energy density of the universe. As the
must invoke some physical mechanism to give ¢héield a  big crunch is approached, however, the expansion rate
small mass so that the fifth force is only short-ranged. Thishanges suddenly, and new matter and radiation is créated
modification still allows for cyclic behavior, with an epoch brane has instantaneously collided into the visible brane and

of false vacuum domination followed by tunnelifitl]. bounced from it We describe some aspects of the visible
The outline of this paper is as follows. In Sec. Il, we brane viewpoint in Sec. Il C.
describe the requisite properties of the scalar fighder- This picture makes it clear that the big crunch does not

brang potential and present a brief tour through one com-correspond to the disappearance of all of space and the end
plete cosmic cycle. In subsequent sections, we focus in tectof time but, rather, to the momentary disappearance of a fifth
nical detail on various stages of the cycle: the bouf®ec. dimension. However, the behavior of gravity itself appears
1), passing through the potential well after the big bangquite wild because it depends on the full bulk space-time,
(Sec. IV), the radiation-, matter- and quintessence-dominategvhich is changing rapidly. One way of describing this picture
[15] epochs(Sec. V), the onset of the contraction phase andis that one has mapped the conventional big bang singularity
the generation of density perturbatigi®ec. V). In Sec. VII,  onto the mildest form of singularity possible, namely the
we show that the cyclic solution is a stable attractor solutiordisappearance of a single dimension for an instant of time.
under classical and quantum fluctuations. In Sec. VI, weNevertheless there are delicate issues involved, as are dis-
discuss the implications for the fundamental questions ofussed in Ref[8], such as the fact that the effective four
cosmology introduced above. dimensional Planck mass hits zero at the singularity, so that
gravitational fluctuations can become large. There are sug-
gestions in specific calculatiof$2] that physical quantities

are nevertheless well behaved although a great deal more

The various stages of a cyclic model can be characterizet@mains to be done to make the picture rigorous.
in terms of a scalar fiel¢p which moves back and forth in an
effective potentiaM(¢). In Sec. Il A, we discuss the basic
properties that/(¢) must have in order to allow cyclic so-
lutions. We will consider in this paper potentidl§ ¢) of the form

The stages of expansion and contraction can be describediown in Fig. 1, with the following key features:
from two different points of view. First, one can choose (i) The potential tends to zero rapidly gs— —«. One
fields and coordinates so that the full extra-dimensionahatural possibility for the extra dimension parametrizedsby
theory is reduced to an effective four-dimensional theoryis the eleventh dimension of M theory. In this case the string
with a conventional Einstein action. The key parameters areoupling constangxe”?, with some positive constant,
the scale factom and the modulus scalar fielgl that deter- and gg vanishes as¢— —o. Nonperturbative potentials
mines the distance between branes. In this picture, the ternshould vanish faster than any finite powergaf, i.e., faster
“big bang” and “big crunch” seem well-merited. The scale than an exponential igp.
factor collapses to zero at the big crunch, bounces, and grows (ii) The potential is negative for intermediate and rises
again after the big bang. However, what is novel is the preswith a region of large negative curvatul,/V>1 covering
ence of the scalar fiel¢p which runs to— at the bounce a range of¢ of order unity in Planck mass units. This region
with diverging kinetic energy. The scalar field acts as a fifthis required for the production of scale invariant density per-
force, modifying in an essential way the behavior of matterturbations, as proposed in R¢Y] and detailed in Ref.12].
and energy at the big crunch. Namely, the temperature andttractive exponential potentials of this type could be pro-
matter density remain finite at the bounce because the usudliced, for example, by the virtual exchange of massive par
blueshift effect during contraction is compensated by thdicles between the boundary branes.
fifth force effect due to¢. The arrangement seems rather (iii) As ¢ increases, the potential rises to a shallow pla-
magical if one is unaware that the 4D theory is derived fromteau, withV"/V<1 and apositive height V, given by the
a higher dimensional picture in which this behavior has gpresent vacuum energy of the universe as inferred from cos-
clear geometrical interpretation. Nevertheless, for most ofnic acceleration and other astronomical evidence. The posi-
this paper we shall keep to the four dimensional Einsteirtive energy density is essential for having a cyclic solution
description, switching to the higher dimensional picture onlysince it produces a period of cosmic acceleration that restores
when necessary to understand the bounce, or to discuss glive universe to a nearly vacuous state before the next bounce.

Il. ABRIEF TOUR OF THE CYCLIC UNIVERSE

A. The effective potential for a cyclic universe

126003-3



PAUL J. STEINHARDT AND NEIL TUROK PHYSICAL REVIEW D65 126003

V(¢) V'IV=>1 for ¢nmin<¢$<0. These two regions account for
cosmic acceleration and for ekpyrotic production of density
perturbations, respectively7,12]. In the latter region, the
constant term is irrelevant and may be approximated by
—V,e ¢ which may be studied using the scaling solution
discussed in Sec. VI.

For an arbitrary scalar potential of the form sketched, i.e.
rising with negative curvature towards a flat plateau, the sca-
lar spectral index is given approximately fi2,16

I
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: S Vi (V/)Z
|

SUSOPNSSRRPORNN WO 0 & o8 - -
HiG 5 4 312 ] to be evaluated when the modes on the length scales of in
CRUNCH |

I

terest are generatégtage(4) as described in Fig.]1For the
exponential form here, Eq2) reduces to

FIG. 1. The interbrane potentia(¢$) versus¢, whose value
(—o<¢p<d¢,) determines the distance between branes. The ne~]— — 3)
shaded circle represents the maximum positive value afuring s c?
the cycle. The various stages af&) quintessence/potential domi-

nation and cosmic acceleratidqduration= trillion years; (2) &  cyrrent observational limits from the cosmic microwave
kinetic energy becomes non-negligible, decelerated expansion bgy, ok ground and large scale structure data are safely satisfied
gins (duration 1 billion yeay; (3) H=0, contraction begind4) ¢, =10, which we shall adopt as our canonical value.
density fluctuations on observed scales cremm3)1’2~1 ms be- The fact that the potential minimum is negative means
fore big crunchl (5) ¢ kinetic energy domination beginstyfi, that there are no strictly static solutions #prexcept anti—de

~10 % s before big crunch (6) bounce and reversal from big Sitter space. However, as we shall show, the generic

crunch to big bang(7) end of ¢ kinetic energy domination, poten- . . . . B L
tial also contributes t(,,,~10 ® s after big bang (8) radiation behavior—indeed an attractor—is a dynamical “hovering

dominated epoch begind~10 2 s after big bang (9) matter solution in which¢ roams back and forth in cyclic fashion
domination epoch begins{10' s after big bang As the potential ~Petween the plateau anek<. The hovering solution is highly
begins to dominate and the universe retumns to stagethe field ~asymmetric in time. The field> spends trillions of years or
turns around and rolls back towarés». more on the plateau and mere instants traveling from the
potential well to—«~ and back. Gravity and the bounce pro-

The discussion here can be extended to potentials of a morde _transfers of gravitati.onal to kinetic to matter-radiation
general form. For example, it is not essential that the positivdl€NSity that keep the universe forever hovering around the
plateau persist to arbitrarily largg since the cyclic solution ~2anti—de Sitter minimum rather than being trapped in it.
only explores a finite range @f>0. Provided the condition
V"IV<1 is satisfied over that range, the universe undergoes B. The view from effective 4D theory
cosmic acceleration when the field rolls down that portion of
the potential. However, for simplicity, we will consider the
example in Fig. 1.

An explicit model for V(¢) which is convenient for
analysis is

To set the context for the later sections, we present a brief
tour through a single cycle, using the labels in Fig. 1 as the
mileposts. Stagél) represents the present epoch. The cur-
rent value of the Hubble parameter isHg
=(15 billionyr)~1. We are presently at the time when the
V() =Vo(1—e )F (), (1) scalar.field is acting as a form of qyintessence in which its
potential energy has begun to dominate over matter and ra-
diation. Depending on the specific details of the potential, the
where, without loss of generality, we have shifig¢dso that  fig|g ¢ may have already reached its maximal valgeay
the zero of the potential occurs ét=0. The functionF(¢)  circle), turned back, and begun to evolve towards negative
is introduced to represent the vanishing of nonperturbativgajues. If not, it will do so in the near future. Because the
effects described abovei(¢) turns off the potential rapidly  sjope of the potential is very smaih, rolls very slowly in the
as ¢ goes below ¢nip, but it approaches one foth  negative direction. As long as the potential energy domi-
> ¢min. FOr exampleF () might be proportional te*9s  nates, the universe undergoes exceedingly slow cosmic ac-
or e s wheregsxe?? for y>0. The constan¥/, is set  celeration (compared to inflationary expansipnroughly
roughly equal to the vacuum energy observed in today’s Unidoubling in size ever)Hglz 15 billion years. If the accel-
verse, of order 10'%°in Planck units. We do not attempt to eration lasts trillions of years or mofan easy constraint to
explain this number. Various suggestions as to how a suitablgatisfy), the entropy and black hole densities become negli-
small positive vacuum energy could arise have been madgibly small and the universe is nearly vacuous. The Einstein
[13,14. For largec, this potential ha¥”/V<1 for ¢=1 and  equations become
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87G (1.
HZZ%(Ed)Z‘l‘V((b)) (4) Hs(out)
H ﬁs(out)
é._ 87G . 2_y 5 Sl
=3 16~ V(9)] (5) i
whereH is the Hubble parameter ard is Newton’s con-

stant. We will generally choose®85=1 except where oth-

erwise noted. Accelerated expansion stopsVd®) ap- (l)
proaches zero and the scalar field kinetic energy becomes

comparable to the potential energy, stdg@e The universe

continues to expand and the kinetic energy of the scalar field

continues to redshift as the potential drops below zero. A

nearly scale invariant spectrum of fluctuations on large

length scalegbeyond our current Hubble horizbbegins to

develop as the field rolls down the exponentially decreasing IOg a
part of the potential. The evolution and perturbation equa-

tions are the same as in the ekpyrotic mddel2]. Solving

these equations, one finds that the decelerated expansion

continues for a timé4, */c, which is about one billion years log t

[c is the parameter iV(¢), Eq. (1)]. At stage(3), the po- )

tential becomes sufficiently negative that the total scalar field FIG. 2. Schematic plot of the scale facta(t), the modulus
energy density hits zero. According to Ed), H=0 and the ~ ¢(1), andHs=5d(exp(/3/2¢))/dt for one cycle, wherd is Ein-

universe is momentarily static. From E&), 3<0, so thata stein frame proper time. The scale factor starts out zero but expands
begins t tract. Th y staic. i ). ¢ ! fi th ast'® and the scalar field grows logarithmically within the scalar
egins to contract. The universe continues to satisfy the elﬁ(’inetic energy dominated early regime. Then, when radiation begins

B asos ne Secont et e o . o i ve a1 4x ve s o ot ko)
) i " amped. This is followed by the matter era, wharet~*, and a
where fluctuations on the current Hubble horizon scale argqtential dominated phase in whigt(t) increases exponentially,
generated AS the f|e|d COI’]tInueS to I’O|| tOW&I‘d$O, the before a final Co"apse on a time Sca-lgl, toa=0 once rnoreH5
scale factora contracts and the kinetic energy of the scalaris proportional to the propefive dimensionalspeed of contraction
field grows. That is, gravitational energy is converted to scaof the fifth dimension. To obtain a cyclic solution, the magnitude of
lar field (brang kinetic energy during this part of the cycle. Hs at the start of the big bandis(out), must be slightly larger
Hence, the field races past the minimum of the potential athan the value at the end of the big cruneh(in). This is the case
stage(5) and off to —«, with kinetic energy becoming in- if more radiation is generated on the negative tension biseethe
creasingly dominant as the bounce approaches. The scalappendix.

field kinetic energy diverges aa tends to zero. At the

bounce, stagé6), matter and radiation are generated, theerated andp runs off to — for the next bounce. The evo-
scalar field gets a kick and increases speed as it reversgsion in terms of conventional variables is summarized in
direction, and the universe is expanding. Through stage Fig. 2.
the scalar kinetic energy density {/a®) dominates over the
radiation ¢<1/a%) and the motion is almost exactly the time-
reverse of the contraction phase between st&yeand the

big crunch. As the field rolls uphill, however, the small kick ~ Thus far, we have described the evolution in terms of the
given the scalar field and, subsequently, the radiation becomgsual Einstein frame variablesand ¢. However, as empha-
important, breaking the time-reversal symmetry. The unisized in the next section, these variables are singular at the
verse becomes radiation dominated at sté§g at say transition from big bang to big crunch, and they do not
10 %° s after the big bang. The motion af is rapidly  present an accurate picture of what an observer composed of
damped so that it converges towards its maximal value andhatter confined to the brane would actually see.aAap-

then very slowly creeps downhill. The damping continuesproaches zero, the density of matter and radiation scale as
during the matter dominated phase, which begins thousands[aB(#)]® and 1[aB(¢)]*, respectively, wherg(¢) is a

of years later. The universe undergoes the standard big barignction of ¢ which scales as &/asa tends to zero. There-
evolution for the next 15 billion years, growing structure fore the densities of matter and radiation on the branes are
from the perturbations created when the scalar field was rollactually finite ata=0.

ing downhill at stage(4). Then, the scalar field potential This scaling of the density wita3(¢) rather thara can
energy begins to dominate and cosmic acceleration beginbe understood rather simply. First, the spatial volume ele-
Eventually, the scalar field rolls back acrogs=0. The en- ment on the branes is that induced from five dimensions.
ergy density falls to zero and cosmic contraction begins. Th&Vhen the brane separation is small, one can use the usual
scalar field rolls down the hill, density perturbations are genformula for Kaluza-Klein theory,

C. The view from the visible brane
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d%:e—¢m¢ds§+ e2(@R)éqy2, (6)  Obstacle to the understanding of what came “before” the big
bang. However, the brane world setup sheds new light on
whereds] is the four dimensional line elementjs the fifth  this problem. The key feature is that the apparent singularity
spatial coordinate which runs from zero kg andL is a  in the effective four-dimensional description corresponds to a
parameter with the dimensions of length. If we write the fourhigher dimensional setup in which the four dimensional met-
dimensional line element in conformal time coordinates, agic is completely nonsingular. When the extra dimension
dszzaz(_deer;(z) then since from the Friedmann equa- outer brane separatipshrinks to zero, there is no associated
tio?1 we have (i'/a)z_’ 1(4")2, we see thak is proportional curvature singularity, and the density of matter on the branes
=1 ,

5 : : : remains finite. The most conservative assumption, based on
to e?" '8 in the big crunch. Hence a three dimensional comov- P

. | | d3xade T2 ins finit tend the higher dimensional picture, is that the branes bounce
Ing volume elementl xae remains finite ag tends - .5 (or, equivalently, pass througteach other and time
to zero. Thus the density of massive particles tends to

. - . ontinues smoothly, with some conversion of brane kinetic
constant. What about the density of radiation? F|(st, recal nergy to entropy. The separation of the two branes after the
the usual afgume”‘ that the energy of a photon (_j|verg_es %tounce corresponds to re-expansion in the four-dimensional
a=0. Consider a set of comoving massive particles in B tfective theory.
space-time with metri@”»,, where7,,, is the Minkowski '

' The f lociti £ th - bavu’q . — How can this be reconciled with the singular four-
metric. The four velocities of the particles obayu’g,.,=  gimensional description? The point explained in Rél. is

— 1. Hence, if they are comovingi¢=0), then we must have - that the usual four-dimensional variables, the scale faator
u”=a"". Now a photon moving in such a space-time has aand the scalar fielgh, are a singular choice at=0. Each is
constant four-momentunp”=E(1,n), with n?=1. The en-  poorly behaved as the branes collide, but in the brane picture
ergy of the photon, as seen by the comoving particles, isphysical quantities depend on combinations of the two vari-
—u*p’g,,=E/a, which diverges as tends to zero. How- ables that remain well-behaved. These nonsingular variables
ever, in the present context, the metric to which the comovimay be treated as fundamental, and matching rules derived
ing particles couple i~ \f@¢>aznw_ Therefore, we have to parametrize the physics of inelastic brane collisions. If the
u=a~1e"@®% and the energy of the detected photons isSYS€M can, as conjectured in Ref], be properly embedded
finite asa tends to zero. In other words, the effect of theWIthIn string theory, the matching conditions will be deriv-

scalar field approaching-oc is precisely such as to cancel able from fundamental physics.
the gravitational blueshift.
The second crucial use of the higher dimensional metric is A. Nonsingular variables

in piecing together the global view of the space-time. If one ¢ action for a scalar field coupled to gravity and a set of
glggrhﬁgvihteo Enlqnastt:er:nt(];rat?: 2;3{%%??2%";@”'8 r;(t)ttgg fluids p; in a homogeneous, flat universe, with line element
o ds?=a2(7)(—N2d 2+ dx?) s

bounce. But the scale factor on a braag( ¢), is nonzero at
each bounce and may be so matched. In fact, in the examples

studied in this paper, the scale factagganda,; (which are S=f d3xdr
the brane scale factors in the simplest modbtsth undergo

a net exponential expansion within a cycle, and decrease for

very brief periods—either just before the brane collisitor —N[(aB)*Zipi+a*V(¢)]
ag) or just after it (for a;). An observer on either brane

would view the cosmology as one of almost uninterrupted ¢ i dori
expansion, with successive episodes of radiation, matter, anf{€ USer to represent conformal time and primes to represent

quintessence domination ending in a sudden release of mderivatives with respect to. N is the lapse function. The
ter and radiation. backg'round solution for the scalar field is denoigd), and
Both matter and radiation are suddenly created by the/(¢) is the scalar potential. _ .
impact of the other brane. The forewarning of this cata- | N€ Only unusual term in Ed7) is the coupling of the
strophic event would be that a8(¢) started to rapidly fluids p;, Wh'ICh we treat as perfect fluids poupled only
change, one would see stronger and stronger violations of tH8rough gravity. 'I;he action for a perfect fluid coupled to
equivalence principléa “fifth force” ), and the masses and 9ravity is just—[d"xy—gp, where the density is regarded
couplings of all particles would change. In the case of MaS @ function of the coordinates of the fluid particles and the
theory, the running of the string coupling to zero would pre-SPace-time metri¢17]. For a homogeneous isotropic fluid,

sumably destroy all bound states such as nucleons and seHf equation of stat®(p) defines the functional dependence
all particle masses to zero. of p on the scale factoa, via energy-momentum conserva-

tion, d In p/dIn a=—3(1+w), with w=P/p. For example, for
radiation,p>a”4 and for mattep=a 3.
We assume these fluids live on one of the branes, so that
To have repeating cycles, the universe must be able toather than coupling to the Einstein-frame scale faetdhe
pass smoothly from a big crunch to a big bang. Conventionparticles they are composed of couple to a conformally re-
ally, the curvature and density singularity when the scaldated scale factoag(¢), being the scale factor on the ap-
factora approaches zero has been regarded as an impassapl®priate brane. For simplicity we have only written the ac-

N—l

1
_3a/2+ §a2¢/2)

. (7)

IIl. THROUGH THE BOUNCE
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tion for fluids on one of the branes, the action for fluids onnegligible. The universe becomes dominated by the scalar
the other brane being a xerox copy but with the appropriatéield kinetic energy density since it scales as® whereas
B(o). matter and radiation densities scaleaas’ anda™* respec-
The functionB(¢) may generally be different for the two tively (ignoring the 8 factor). As scalar kinetic domination
branes, and for different brane world setups. But as meneccurs, the scale factarbegins to scale as(t)'%, and the
tioned above there is an important universality at small sepabackground scalar field diverges logarithmically in time. The
rations corresponding to large negative In this limit,  energy density and Ricci scalar diverge ast]~?, so that
which is relevant to the bounce, the bulk warp factor be-t=0 is a “big crunch” singularity.
comes irrelevant and one obtais~e~#*®, the standard As explained in Ref[8], in the simplest treatment of
Kaluza-Klein result. This behavior ensures thgtis finite at  brane world models there is only one scalar field modulus,
collision and so the matter and radiation densities are, athe “radion,” which runs off to minus infinity as the scale
well. factor a approaches zero. The singular variablesand ¢,
The equations of motion for gravity, the matter and scalarcan be replaced by the nonsingular variables:
field ¢ are straightforwardly derived by varying E@) with

respect toa, N and ¢, after whichN may be set equal to ao=2a cosh($— ¢..)//6)
unity. Expressed in terms of proper tihehe Einstein equa- .
tions are a,=—2asinh(¢— ¢..)/6). (12
87wG (1. The kinetic terms in the action define the metric on moduli
H2= T(§¢2+V+ Bpr+ ,84pM), (8) space. In terms of the old variables one has the line element

—3da?+ 3 a’d¢?, anda=0 is clearly a singular point in
. these coordinates. However, in the new coordinates in Eq.
a__ %( B2Vt Bt lﬁ‘l ) (9 (12, the line element i$ (—da3+da3), which is perfectly
a 3 PRTZP Pm regular even when the Einstein frame scale factor
. . N zéx/az—a2 vanishes, on the “light-cone”ag=a;. For
wher_e a dot is a proper time de_rlvat|v_e. _AS an example, Webranes(,) in A%dSao anda, are the scale factors on the positive
consider the case where there is radiatipp)(and matter and negative tension brandg] so that 8=2 cosh(¢

(pm) on the visible brane only, which could in principle be — $.)1\/6) or — 2 sink{(é— b..)//6) respectively for matter

either the positive or negative tension brane. Then the abovgOupling to these branes

tehqeu233?uii§rze01ts;pplemented by the dynamical equation for Notice that the constant field shift.. is arbitrary. Its ef-
' fect is a Lorentz boost on the&g,a;) moduli space. In the
- . Kaluza-Klein picture(6), a constant shift ing can be re-
¢+3HG= -V 4= B 48w (10 moved by rescaling four dimensional space-time coordinates
and redefining the length scaleof the extra dimensions. In
the absence of matter which couplesgpor of a potential
d V(¢), this shift is unobservable, a reflection of the global
~dp dp B dp - )
a—=a—+——=—3(p+p) (12) symmetry ¢— ¢+ const of the & effective theory. How
da da p ¢ ever, this symmetry is broken by(¢), and by matter cou-

R plings. In fact, the scale fact@; must be positive in order
wherea=ap(¢) andp is the pressure of the fluid compo- for it to be interpretable as a “brane scale factor,” and this
nent with energy density. Note that only the matter density requires thatp< ¢.. .
contributes to thep-equation, because, jffir>1/(aB)?, the We shall find it convenient to choogg=0 to be the zero
radiation term is actually just a constant timésn the ac-  of the potentialV(¢), and then to choose., so thata,
tion, contributing to the Friedmann constraint but not thenever vanishes for the solutions we are interestedrnrfact,
dynamical equations of motion. sincea; has a positive kinetic terfiY], a suitable coupling to

If B(¢) is sufficiently flat near the current value gf,  moduli fields will always guarantee that “bounces” away
these couplings have modest effects in the late universe, arftbm zero[12]. In this paper, for simplicity we ignore this
the successes of the standard cosmology are recovered. Fewmplication by picking ¢.. large enough that no such
example the total variation igh since nucleosynthesis is very “bounce” is necessary.

and the continuity equation,

modest. In Planck units, this is of ordeg (ty) /2 wheret, is Both a; anda; are “scale factors” since they transform
the time at the beginning of the radiation dominated epoclike a under rescaling space-time coordinates. However, un-
and nucleosynthesis beginstgt~1 sec. It is utterly negli- like a they tend to finite constants asgends to zero, imply-

gible for values ot, earlier than the electroweak era. How- ing an alternative metrical description which is not singular
ever, the coupling of matter t¢ produces other potentially at the “big crunch.” In the brane world models considered in
measurable effects including a “fifth force” causing viola- Ref.[7], a; anda,; actually represent the scale factors of the
tions of the equivalence principle. Current constraints can b@ositive and negative tension branes respectively. Since there
satisfied ifMp(In [3),¢,<10*3 [18-20. are no low energy configurations witty<<a,, the “light

As the universe contracts towards the big crureeh;0,  cone” ag=a; is actually a boundary of moduli space and
the scalar field runs te-« and the scalar potential becomes one requires a matching rule to determine what the trajectory
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Z B. From big crunch to big bang

In this section we solve the equations of motion immedi-

i ately before and after the bounce, and discuss how the in-
coming and outgoing states are connected. The nonsingular
“brane” scale factorsa, anda; provide the natural setting

for this discussion, since neither vanishes at the bounce. As
emphasized above, the Einstein frame scale fagtand the
scalar field¢ are singular coordinates on field space at the
bounce. Nevertheless, since our intuition is much better in
= 7 /J B . the Einstein frame, we shall also give formulas éoand ¢

accelerated
expansion
log a, | P

near the bounce. In subsequent sections, we shall frame the
discussion almost entirely in terms of Einstein frame vari-

7 i _ ables, for the most part using the nonsingular variablgs
. . . and a; solely as a “bridge” connecting the incoming big
log a, crunch to the outgoing big bang.

Before the bounce there is little radiation present since it
FIG. 3. Schematic plot of they-a, plane showing a sequence has been exponentially diluted in the preceding quintessence-
of cycles of expansion and contracti¢indicated by tick marks ~ dominated accelerating phase. Furthermore, the potential
The dashed line represents the “light-corey=a; corresponding V() becomes negligible a runs off to minus infinity. The
to a bounce §=0). Each cycle includes a moduli kinetic energy, Friedmann constraint reada’(/a)2= %¢'2, and the scalar

radiation, matter and quintessence dominated phase and lasts f8|d equation, 4°¢')’ =0, where primes denote conformal
exponentially large number of e-folds. The inset shows the trajectime derivatives. The general solution is

tory near the big crunch and bounce. The potential en&t@y)

assumed takes the form shown in Fig. 1. 3
¢="\/5IN[AHs(in)7],

of the system does at that point. A natural matching rule is to
suppose that at low energies and in the absence of potentials

or matter, the branes simply pass through one andibrer a=Ae?"*=AJAHs(in)T,

equivalently, boundewith the intervening bulk briefly disap-

pearing and then reappearing after collision. This rule was ap=A[N+\"'AHsg(in)7],

detailed in Ref.[8], where simple models satisfying the

string theory background equations to all ordersrinwere a;=A[N—\"1AHg(in)7], (14

given. In the Appendix we discuss the collision between
boundary branes in terms of energy and momentum conseyhere A\=e%=/®. We chooser=0 to be the time whem

vation, and the Israel matching conditions. _ _vanishes so that<0 before collision.A is an integration
Let us now comment on the character <_)f the trajectory inconstant which could be set to unity by rescaling space-time
the (ap,a;)-plane. The Friedmann constraint reads coordinates but it is convenient not to do so. The Hubble

constants as defined in terms of the brane scale factors are
aj/a3 anda}/a? which at7=0 take the values-\ ~*Hs(in)
and —\ "3Hg(in) respectively.

Re-expressing the scalar field as a function of proper time
If the energy density on the right hand side is positive, the= fadr, we obtain
trajectory is time-like. If the right hand side is zeffor ex-
ample if the potential vanishes dg— — o and if there is no 2 (3
matter or radiation then the trajectory is light-like. If the p= \@In(EHgs(in)t
right hand side is negative, the trajectory is space-like.

The trajectory for the cyclic solution in they,—a; plane
is shown in Fig. 3. The inset shows a blow-up of the behav
ior at the bounce in which the trajectory is light-like at con- . : )
traction to the big crunciithe universe is empjyand time- dimension[see Eq.(6)]:
like on expansion from the big baricadiation is produced at dL d(e @4 5
the bouncg In these coordinates, the scale factor increases Hs 5 _ - \ﬁ;ﬁe\@m, (16)
exponentially over each cycle, but the next cycle is simply a Ldts dts 3
rescaled version of the cycle before. A local observer mea-
sures physical quantities such as the Hubble constant or theghereLs=Le' @3 is the proper length of the extra dimen-
deceleration parameter, which entail ratios of the scale factagion,L is a parameter with dimensions of length, ands the
and its derivatives in which the normalization of the scaleproper time in the five-dimensional metric,
factor cancels out. Hence, to local observers, each cycle ap-
pears to be identical to the one before. dts=ae™ 0¢d 7= TR)2q¢, 17)

4 1
ap’—ai’=3| (aB)*p+ g(ag—a)V(so) |. (13

. (15

The integration constartis(in)<0 has a natural physical
interpretation as a measure of the contraction rate of the extra
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with t being FRW proper time. Notice that a shift, can  batic limit. If no scalar potentiaV(¢) were present, the
always be compensated for by a rescalind.oAs the extra scalar field would continue to obey the soluti¢i), con-

dimension shrinks to zerd{g tends to a constanHs(in). verging to
If the extra dimension shrinks adiabatically and backreac-
tion from particle production can be ignored, then the match- _ \/E 5, Hs(oul)
ing rule conjectured in Ref{8] states thatHs after the bc= §In 2 H, ' (D)

bounce should be given Bys(out)=—Hsz(in). However, if
radiation is produceds(out) takes a different value. If one This value is actually larger thag.. for H, <Hs\ ~32%2 the
is given the densities of radiation produced on both branes;ase of weak production of radiation. However, the presence
thenHs(out) may be inferred from energy and momentum of the potentiaM(¢) alters the expressiof21) for the final
conservation, and the Israel matching conditions, as we showesting value of the scalar field. As crosses the potential
in the Appendix. well traveling in the positive directiortis is reduced to a
Immediately after the bounce, scalar kinetic energy domirenormalized valueHs(out)<Hs(out), so that the final
nates andHs remains nearly constant, as shown in Fig. 2.resting value of the scalar field can be smaller tifan If
The kinetic energy of the scalar field scalesaa® and ra-  this is the case, theam, never crosses zero, instead reversing
diation scales aa™*, so the former dominates at smalllt  to expansion shortly after radiation dominan¢e. the cal-
is convenient to rescale so that it is unity at scalar kinetic culations of Ref[12], where we assumed the potentiain-
energy-radiation equality, , and denote the corresponding ished after collision, this effect did not occur. Instead, we
Hubble constant,. The Friedmann constraint in EqL3)  invoked a coupling ok, to a modulus field which caused it
then reads to bounce offa;=0.)
If radiation dominance occurs well aftérhas crossed the
potential well, Eq.(21) provides a reasonable estimate for
the final resting value, if we use the corrected value

I:|5(out). The dependence of EQ1) is simply understood:
and the solution is while the universe is kinetic energy dominatedgrows as
t® and ¢ increases logarithmically with time. However,
\/§ (25’37H§’3(0ut)Hr1’3) when the universe becomes radiation-dominatedaantd’?,
¢=1\/3In Hubble damping increases agidconverges to the finite limit
2 (Hp7+2%7) above

(a')2=%H§(1+a*2), (18

(19

/1
Q= E,_|r272+\/§,_|r7_ IV. ACROSS THE WELL

Using the potential described in Sec. Il A and, specifi-
cally, the example in Eq.1), this section considers the mo-
tion of ¢ back and forth across the potential well. We will
show that evolution converges to a stable attractor solution.
Our main purpose, though, is to explore the asymmetry in

The brane scale factors are

aOEa()\ —le‘ﬁ/v@_{_ re~ (f’/yg)

H, 7 the behavior before and after the bounce that is an essential
=A[N 1+ — +A121’6H}’3H§’3(out)rl, component of the cyclic solution.
2 Over most of this regiony may be accurately approxi-
B mated by —Vy,e ¢®. For this pure exponential potential,
a;=a(—\"Le? 1 \e #F) there is a simple scaling solutigf2]
_iflp. ve—vy.e-co—_PE3P 2
—Al 1+HTr/Z —21’6A1H3/3H§’3(0ut)71_ a(t)=[t|P, V=—-Vee = o P=2.
2 (22

(20)
which is an expanding or contracting universe solution ac-

Here the constamA=2Y{H, /Hs(out)]*® has been defined cording to whethet is positive or negative(We chooset
so that we matcla, anda, to the incoming solution given in =0 to be the bounceFrom the expression for, we see that
Eq. (14). As for the incoming solution, we can compute the ¢ varies logarithmically witHt]|.
Hubble constants on the two branes after collision. They are At the end of the expanding phase of the cyclic scenario,
+ X\ 3Hg(out)+ 275\ "*H#*H 13 on the positive and nega- there is a period of accelerated expansion which makes the
tive tension branes respectively. universe empty, homogeneous and flat, followedpplling

For H, <252\ 3H;, the case of relatively little radiation down the potentiaM(¢) into the well. After ¢ has rolled
production,ay is expanding bui, is contracting immedi- sufficiently and the scale factor has begun to contfpast
ately after collision, whereas fot,>2%2\ “3Hs, both brane  stage(3) in Fig. 2], the universe accurately follows the above
scale factors expand after collision. We shall concentrate oscaling solution down the well untip encounters the poten-
the former case in this paper, in which we are near the adiaial minimum[stage(5) in Fig. 2].
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Let us consider the behavior éf under small shifts in the Sincey is small, the outgoing solution is very nearly the
contracting phase. In the background scalar field equatiotime reverse of the incoming solution ésstarts back across
and the Friedmann equation, we st ¢g+ d¢p and H the potential well after the bounce: the scaling solution given
=Hg+ 6H, where¢g andHg are the background quantities in Eqgs.(22), but witht positive. As time proceeds, however,

given from Eqs(22). To linear order ind¢, one obtains the contribution ofy becomes increasingly significant. In the
time-reversed scaling solutiohls tends to zero. Fox >0,
. 1+3p . 1-3p Hs remains positive angb overshoots the potential wel,,
o+ t Y 6¢=0, (23 is exponentially smaller than the kinetic energy density at the

bounce, so even a tiny fractignsuffices to reach the plateau

with two linearly independent solutiond~t~ andt! -3,  after crossing the potential well. _
where p<1. In the contracting phase, the former solution e can analyze this overshoot by treatipgs a pertur-

grows ag tends to zero. However, this solution is simply an batlon_:imd uS|1n_gspthe solution in E(3) discussed above,
infinitesimal shift in the time to the big crunchip= ¢. Such g(()ﬁn:r;ctinandr:ase 'b;% erelilﬁgrbl(?uﬁcgegsgli?g r:)nvegeinl?h;hgx-
a shift provides a solution to the Einstein-scalar equations di %p 0 traiahtf dl 9 te th i
because they are time translation invariant, but it is physi-pan INg phase. Yne can straightforwardly compute the per
: . : o turbation inSH; in this growing mode by matching @,
cally irrelevant since it can be removed by a redefinition of bef On6 findsH .= 12vHB/c whereHE is the back-
time. The second solution is a physical perturbation mod&S P€fore. Ynelindsrs= loyHs/c™ WhereHsg 'S the bac
and it decays as$ tends to zero. Hence, we find that the 9round Valg,f’ a&mtzhe minimum. Beyond this poirdtis
background solution is an attractor in the contracting phasedfows ast™ee fb' for large c, whereas in the back-
We next consider the incoming and outgoing collision ve-ground scaling solutiotis decays with¢ as el &)~ cl2lg,
locity, which we have parametrized & (in) andHs(out) When the perturbation is of ordgr the chkground value, the
in the previous section. Within the scaling soluti@®), we  trajectory erarts from the scaling solution and the potential
can calculate the value of incoming velocity by treating thePecomes irrelevant. The departure occurs when the scalar
prefactor of the potentiaF(¢) in Eq. (1) as a Heaviside field has attained the value
function which is unity for ¢> ¢, and zero for ¢
< Pmin, Whereon,in is the value ofg at the minimum of the
potential. We compute the velocity of the field as it ap-
proachesp.,;, and use energy conservation at the jump/in
to infer the velocity afterg,,, is crossed. In the scaling As ¢ passes beyondp, the kinetic energy overwhelms the
solution, the total energy ag approachesp., from the negative potential and the field passes onto the platgau

right is £ ¢2+V=3p%t2, and this must equal the total en- With Hs nearly constantsee Fig. 2 and equal to
ergy £ ¢? evaluated forp just to the left of,,,,. Hence, we

2 ¢ 12y 2
¢’Dep:¢’min+E|nE, |V|S oz |Vmin|- (26)

2\ 6lc
find that ¢=\6p/t=\6pVmin/(1—3p) at the minimum H5(out)~X(H) Hs(in), (27)
and, according to Eq16), X
\/§ V. |12 @ bmin until the radiation, matter and vacuum energy become sig-
Hg(in)~—— [Viinl _ (24)  nificant andH5 is then damped away to zero.
c J1—-6¢72 Before moving on to discuss these late stages, it is in-

structive to compare how rapidly travels over its range
At the bounce, this solution is matched to an expanding sobefore and after the bounce. The time spent to the left of the
lution with potential well (<., is essentially identical in the in-
coming and outgoing stages fgr<1, namely

Hs(out)=—(1+ x)Hsg(in)>0, (25
c
i ; i tminl ~ ——=. (28
where y is a small parameter which arises because of the [tminl 32Vl

inelasticity of the collision.
In order to obtain cyclic behavior, we shall negdo be

i alently. th {01 locity t dth For the outgoing solution, whegh has left the scaling
postiive or, equivalently, the outgoing velocily 10 exceed tN€qq gy byt before radiation domination, the definition Eq.
incoming velocity. There are at least two effects that ca

b ive. Fi di in the A di n(16) may be integrated to give the time since the big bang at
causey to be positive. First, as we discuss in the AppendiX,o, 1, value of,

x is generically positive if more radiation is generated on the
negative tension brane than on the positive tension brane at

- L I do 2
collision. Secondly,y can get a positive contribution from t(p)= f = \ﬁj de
the coupling ofB(¢) to the matter created on the branes by 1) 3
the collision; see Eq.10). Both effects are equally good for
our purposes. For the present discussion, we shall simpl¥he time in Eq.(29) is a microphysicalscale. The corre-
assume a small positive is given, and follow the evolution sponding formula for the time before the big crunch is very
forward in time. different. In the scaling solutiof22) one has, for large,

e\“‘md’ 2 e\“‘m(ﬁ
Hs(¢) 3 Ag(out)

. (29
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2 etd—éminl2 6ec(6~ dmin)/2 If the universe becomes radiation dominated at the grand
t(p)=—1/ v | =— 5 [tminl- unified theory(GUT) scale,t,~10 % s. Then, only if we
[Vimin ¢ c fine-tune such thaV/V’>10'" doest,,4 exceedt,,. This

(30) corresponds to the case where we havé® B¥oldings or

The large exponential factor makes the time to the big cruncif10"€ Of cosmic acceleration at late times¢asolls back, far

far longer than the time from the big bang, for each value of "0'® than requwed. for the_ cyclic solution. The_ bound.
&. This effect is due to the increase fity, after the bounce changes somewhat if the universe becomes radiation domi-

which, in turn, is due to the positive value f nated as late as nucleosynthedis{1 9. In that case, even
' ’ if VIV 4(c) is not much greater than unity, the scalar field
turns around in the matter era or later. For turnaround in the

V. THE RADIATION, MATTER AND QUINTESSENCE :
matter era, we require

EPOCHS
: . . tr 1/6 \V; 1/3
As the scalar f_|¢|d passes beyond th_e potgnual well, it 3><104s(—> (_(¢C)> =130, (34)
runs onto the positive plateavy. As mentioned in the last tm Ve

section, the value ofig(out) is nearly canceled in the pas-
sage across the potential well, and is reduced 4aiven in
Eq. (27). Once radiation domination begins, the field quickly
converges to the large(Hubble-dampepdlimit of Eq. (19),
namely

Finally, if the field runs to very large¢c, so that
V,¢,/V(<;S(;)~ce*°‘/’C is exponentially small, therp only
turns around in the quintessence-dominated era. For the ex-
ample considered here, the natural range of parameters cor-
responds to turnaround occurring during the radiation-

2 A dominated epoch. Hence, by the present epoch, the field is
dc= \[gln[25’2H5(0ut)/Hr)], (31)  rolling monotonically in the negative direction and slowly

gaining in speed. Consequently, the ratio of the pressure to

the energy density is increasing from its value at turnaround,
w=—1, towards zero. Depending on the details of the scalar
potentialVV( ), it is conceivable that the increasing value of
w could ultimately be observationally detectable.

Once the field has turned around and started to roll back
towards the potential well, the second term in EB§) domi-
nates. For our scenario to be viable, we require there to be a

ubstantial epoch of vacuum energy dominatiorflation)
efore the next big crunch. The numberesfoldings N, of
inflation is given by the usual slow-roll formula,

whereH, is the Hubble radius at kinetic-radiation equality.
The dependence is obvious: the asymptotic value) afe-

pends on the ratio ofi5(out) to H, . IncreasingHs(out)
pushes¢ further, likewise loweringH, delays radiation
domination allowing the logarithmic growth @ in the ki-
netic energy dominated phase to continue for longer.

As the kinetic energy redshifts away, the gently sloping
potential gradually becomes important, in acting to slow an
ultimately reverse¢’s motion. The solution of the scalar
field equation is, after expanding E@.9) for large 7, con-

verting to proper timé= fa(7)dr and matching, VvV  ef%c
B o= [ a0~ %
b~—; —a‘3j dta’Vv 4, (32 _ .
a(t) 0 for our model potential. For example, if we demand that the

] ] o number of baryons per Hubble radius be diluted to below
where as above we defina(t) to be unity at kinetic- ity before the next contraction, which is certainly over-kill

radiation equal density. During the radiation and matter erasn guaranteeing that the cyclic solution is an attractor, we set
the first term scales as ** and t™2 respectively. For a g3Ne=10%% or N,=60. This is easily fulfilled if ¢ is of

slowly varying field,V , is nearly constant, and the potential order unity in Planck units.

gradient term in Eq(32) scales linearly with, so it eventu- From the formulas given above we can also calculate the

ally dominates. . _ ~ maximal valueg in the cyclic solution: for large and for
When does¢ turn around? We give a rough discussiont s =1t . itis

here, ignoring factors of order unity. First, we use the fact

thatV0~t62 wheret is the present age of the universe, and \F t,

roughly we havet,~10°t,,, wheret,, is the time of matter bc— bmin™ §|”<Xt_.)' (36)
domination. As we shall seé may reach its maximal value e

dmax @nd turn around during the radiation, matter or quint-where we used—l,‘1~tr, the beginning of the radiation-
essence dominated epoch. All three possibilities are accepfominated epoch. From E¢B6) we obtain

able phenomenologically, although the case where turn-

around occurs in the radiation epoch appears more likely. For t, 1({c®NgVminl V3rc?

example,dmax is reached in the radiation era, if, from Eq. T ;(V—> (37)

(32), min 0
¢ (|15 215 This equation provides a lower bound tn The extreme
maxmloél(_r) (_(¢C)) <1 (33)  case is to takeVs|~1. Then usingVo~ 10 120 c~10N,
tm tn/ Vg ~60, we findt,~102° s. In this case the maximum tem-
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perature of the universe is-10'° GeV. This is not very Where primes denote conformal time derivatives and we
different from what one finds in simple inflationary models. have definecg, the comoving “freeze-out” wave number.

As ¢ rolls down the hill, one can check thétleaves the Modes withk>kg oscillate with fixed amplitude, whereas
slow-roll regime where™¢% exceeds 2. At this point the  those withk<kg are amplified. In the regime of interelst
constant termV/, in the potential becomes irrelevant and onegrows monotonically so that shorter and shorter wavelengths
can use the scaling solution fe, all the way to the potential Progressively freeze out as the big crunch is approached. The
minimum. This is also the point at which density perturba-physical scale at which modes freeze out is given by
tions start to be generated via the ekpyrotic mechanism,
while the Einstein frame scale factais still expanding. The
universe continues to expand slowly, but with a slowly de- Ap=
creasing Hubble constant, and finally enters contraction
when the density in the scalar field reaches zero, at a neg

g\ézsvea::eacogutg?eﬁ/ozjeer:;“c?ilbirgjetr)?/yt.hzhsiaelir:wsgug‘o% L((&%ltriicnngtime derivative with a dot. In the era of quintessence domi-

_ : _ _ nation whenV dominates ovev ,,, the freeze-out scaler
which a~(—1t)P and ¢=y2p/t, with t<0, andt=0 being  js nearly constant, and comoving wavelengths are exponen-
the time of the next big crunch. From the formuldg) one  ia|ly stretched beyond it. A¥ ,, begins to dominate, how-
finds a, = (pa,— \p/3ao)/t, which is greater than zero for ever, Hubble damping becomes irrelevant, and the system
p<3, sinceay is greater thara;. Thus even wher is un-  approaches the scaling solution given in E2R), in which
dergoing slow contraction, in the scaling era, the effect of they , ,~ —2/t?, wheret is the proper time to the big crunch.
motion of ¢ is enough to maka, expand throughout this The freeze-out scale drops linearly with time to zero, as the
phase. Matter residing on this brane would see continuouscale factor is falling, like £ t)Y3. Therefore progressively
expansion all the way to the big crunch. The same argumershorter and shorter wavelength modes are frozen out and
shows that; actually undergoes a small amount of contrac-amplified, with waves of physical wavelength being fro-
tion in the very much shorter scaling epoch of the expandingen out at a time.
phase. An exponentially large band of comoving wavelengths is

amplified and frozen in a# rolls from ¢=0 down towards
dmin- Modes with all physical wavelengths from the micro-

VI. GENERATION OF DENSITY PERTURBATIONS physical scalé,,;,, which could be not much larger than the

In the cyclic scenario, the period of exponential expansiorf’lanck length, to the macroscopic scajgc which is of
occurring late in each cycle plays a key role in diluting theOrder a tenth the present Hubble radius, acquire scale invari-

densities of matter, radiation and black holes to negligibleam perturbations. Once the perturbations are generated, their

levels, suppressing long wavelength perturbations and estalavelength scales asty{iy/te)” in the collapsing phase.
lishing a “clean slate,” namely a flat vacuous universe in Then as¢ crosses the potential well and races off to minus

which all fields are in their quantum mechanical groundinfinity, the Einstein frame physical wavelength goes to zero.
state. As the scalar field rolls down the potential in EX, But this is not the relevant quantity to track, since we match
entering the scaling solution in Eq¢22), the ekpyrotic the yariablesao and a; and therefore should match the
mechanism for the generation of fluctuations derived in RefsPhysical wavelengths as measured by these scale factors. In
[1] and[12] sets in and a scale invariant spectrum of adia-thel kinetic domlnatgd phasey anda, are nearly constant,
batic perturbations is thereby developed. Quantum fluctuaso in effect the physical wavelength of the modes is matched
tions of the usual inflationary sort are also developed in thevhen ¢ crosseséy,, in the contracting and expanding
slow-roll quintessence epoch, but these &agnegligible in ~ Phases. Furthermore, the contracting and expanding solu-
amplitude becaus¥, is tiny; and(b) only excited on scales tions are nearly time-reverses of one another, until the time
of ordert, and above in the contracting phase. These scaleep COMputed above when the expanding solution deviates
are shrunk only as<t)P in the contracting, scaling solution, from scaling. Therefore one is effectively matching st
but then expanded a8 t¥2 andt?? in the kinetic domi- from which one sees that the tinbe at which perturbations
nated, radiation and matter eras in the big bang phase, whi@n the current Hubble radius scalg were generated, is
also lasts for a time of ordeg. Therefore, the modes ampli- given by
fied during inflation are exponentially larger in wavelength ) o3 o "
than the Hubble radius scale in the next cycle by the time of It [toepl |°_. [tm) ™[ tr | " toep (40)
quintessence domination, which is the present epoch. FIUJte] %l t, tm t, '

Let us concentrate on the fluctuations produced via the
ekpyrotic mechanisnj12]. Expanding the inhomogeneous where the bracketed factors ar@ the contraction of the
fluctuations in the scalar fieldp(t,x) =S i8¢p(7)e**, we  scale factor in the scaling solution, between the timpeat
remove the damping term by settidgpy=a ‘xi, to obtain ~ which the perturbations were generated and the tigg at
which the expanding solution departs from scalifig; the
scaling back of the present comoving Hubble radius scale to
the time of matter-dominatioty,; (c) the scaling back to the
time of radiation-domination, ; and (d) the scaling back to
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Xs usual we adopt units wheren®& =1, and denote proper
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Xi=— 2yt xi=—(k*=k3)xg, (39
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the timetp, using Hs~ const, corresponding to kinetic in principle, from fundamental theory. Hence, masses and
domination in the expanding solution. couplings of particles change during the course of the cycle,
From Eq.(30), it follows that perturbations on the scale of but fundamental theory retains predictive power in determin-

the present Hubble radius were generated at a field value Ing the way they change and, specifically, their values at the
current epoch.

The essential feature for attractor behavior is the extended
(41)  period of accelerated expansion that damps the motiaf. of
Let us consider how this works. Assumingis fixed by

microphysics, there is a vallﬁs(o ut) which corresponds to
the cyclic solution. Now, suppose the valuetbf(out) ex-

ceedsHs(out). This means that the outgoing velocity ex-
2 ceeds the cyclic value and runs out farther on the plateau
GDrmin™~— Eln(ctoltmin), (42 than in the cyclic case. Once the field stops, turns around,
and quintessence-domination begins, the field is critically
for the field value at the potential minimum, which follows damped. By _the tim&(4) falls to ze_ro_,_the transient behav-
from Eq. (28), one finds that ior of ¢ which depends. on the initial valu_e dfl; has
damped away exponentially so that the field accurately
1 1 tracks the slow-roll solution. Following the solution for-
dcen— Pmin=— > Gmint — (bc— dmin),  (43)  wards,Hg(in) at the next bounce is then exponentially close
\/50 to what it would have been for the cyclic solution. By eras-
] ) ing memory of the initial conditions, the acceleration insures
v_vhere the first term dominates. In other WOFdS, the fl“Ctua’[hatH5(out) after the next bounce is very neal@g,(out).
tions we see today were generated at a f|g|d_ value approxi- How manye-foldings of accelerated expansion are actu-
mately halfway between the zero and the minimunv(). ally required to make the cyclic solution an attractor? If there

is no epoch of accelerated expansion, perturbations will grow
VII. CYCLIC SOLUTIONS AND CYCLIC ATTRACTORS each cycle, becoming self-gravitating and nonlinear so that
. . . . no attractor will occur. A minimal requirement for obtaining
We have shown that a cyclic universe solution exists pro- is that i densi bati duri
vided we are allowed to pass through the Einstein-frame sing? attractor Is that linear density perturbations grown during
. . . - . the matter era should be damped away during the subsequent
gularity according to the matching conditions elaborated in . ) . .
s exponential expansion. This requires at least IP(3QLO
Sec. IV, Eqs.(24) and (25). Specifically, we assumed that e-foldings of exponential expansion. Equally, diluting the
Hs(out)=—(1+ x)Hs(in) wherey is a non-negative con- 9 P b - =quaty, 9

stant, corresponding to branes whose relative speed after Cor]_umber density of baryons below one per Hubble volume is
Iision, is re:ter thagn or equal to the relative 5 ced beforé:ertainly over-kill in terms of ensuring an attractor, and this
collision gOur arqument shgwed that. for e 0 pthere s requires of order 60=foldings. In fact, as we discussed
T 9 T 3k ' above, obtaining a far larger number efoldings is per-
a unique value oHs(out) that is perfectly cyclic. In the :
. ) . o fectly possible.
Appendix, we show that an increase in velocity is perfectl

compatible with enerav and momentum conservation in Y To discuss the nature of the attractor solution, it is helpful
P ay . ; %o plot the trajectories of the system in the phase space given
collision between a positive and negative tension brane, pr

vided a greater density of radiation is generated on the negc;[i)—y the Hs, ¢)-plane, shown in Fig. 4-6. Recall thel is

tive tension brangA similar outcome can occur through the Proportional tog; see Eq(16). Figure 4 illustrates the cyclic
coupling of ¢ to the matter density, as discussed below Eq_trajectory for the case where no radlat|o_n is generatgd at the
(25), but we will only discuss the first effect for the purpose Pounce k=0) and the cycle is exactly time-symmetric.
of simplicity.] _ The phase space plot must a_Iways satisfy thre_e properties.
In this section, we wish to show that, under reasonabl&irst, for a flat universe, the Friedmann constraint equation
assumptions, the cyclic solution is a stable attractor, typicallji?=3p implies that the energy density=[3¢*+V(¢)]
with a large basin of attraction. Without the attractor prop-must be positive. Without negative space curvature, the sys-
erty, the cyclic model would seem fine-tuned and unstabletem is simply not allowed to explore negative energies. We
One could imagine that there would still be brane collisionsshow the classically excluded region as the shaded area in
and periods of contraction and expansion, but there would bthe figures. In Fig. 4 where there is no radiation af{d))
no regularity or long-term predictability to the trajectories. If —0 as¢—0, the excluded region extends alodg=0 out
this were the case, fundamental physics would lose its poweb ¢— —co. In Figs. 5 and 6 the shape of the excluded region
to explain the masses and couplings of elementary particless modified due to the presence of radiation. For example, the
The masses and couplings depend @rand other moduli  gray region pinches off on the left hand side for some finite
fields. If there were no attractor solution, the precise trajecvalue of ¢». However, the effect is negligible for the trajec-
tory of ¢ through cosmic history would depend on initial tories considered in our discussion and so we show the same
conditions and could not be derived from fundamental physexcluded region in the figures as in the case of no radiation.
ics alone. In our proposal, the nature of the attractor solution The second property is that phase space trajectories are
depends on microphysics at the bounce which is computablelouble-valued on theHs, ¢)-plane. Given the scalar field

2
PE~ Pmint Eln
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Comparing with Eq.(36) for the resting value of the field
¢c, and the expression
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0 0
FIG. 4. The cyclic trajectory in theHs, ¢)-plane for the case FIG. 6. Trajectories in theHs, ¢)-plane showing the attractor
where no matter and radiation are produced at the boupeed]. nature of the cyclic solutioithe middle trajectory Path(1) is an

The gray region, which corresponds to negative energy density, isvershoot solution that begins with slightly greater velocitys)

forbidden. The soliddashed line represents the trajectory during than the attractor, bounces off the gray zero-energy surface, and

an expandingcontracting phase. Expansion turns to contraction then has a contracting trajectory whose valueHgfis smaller in

and vice versa when the trajectory hits the zero energy sufaee magnitude. Patt{2) is an undershoot solution which begins with

rightmost tip of the gray region in this cgse slightly less velocity in the expanding phase than the cyclic value
and ends in a contracting phase wiiy having a slightly greater

andHs, one may have either a contracting or an expandindnagnitude. Following the next bounce, therefore, overshoot turns
universée We represent expanding trajectories as solid lind to undershoot and vice versa. In either case, the deviation from
and the contracting trajectories as dashed lines. Two expand!€ atractor value shrinks.

ing trajectories are not allowed to cross, and neither are twi . . . .
g el ﬂwe forbidden zero density regioishadegl sincep has to

contracting trajectories for the usual reasons that hold for . hifH s t thiv th h The shaded
particle trajectories on phase space. However, an expandirY nish | IS 10 pass smoothly through zero. The shade

trajectory may certainly intersect a contracting trajectory. r _glon(;svanalo'gouz 1t° EH? €gg r(ejglon d'escr;]per(]j by It3rust-
The final rule is that there are only two ways an expand—te.In an tenez_latm@ - e sgcq?thway '? whic co?frac-
ing trajectory can turn into a contracting trajectory. If rever- 10" €an turn into expansion is if the system runs offdio

sal occurs at finitep it can only happen if the trajectory hits :C;J:é Then, the “bounce” described in Sec. il and RE8]

The trajectory shown in Fig. 4 is a cyclic solutigalbeit
not a very interesting ondn which no matter-radiation is
produced at the bounce and the valud¢ig{out) is precisely
equal toHg(in). The field rolls out in the expanding phase
(solid line emanating from the upper left side of the figuwe
the value wher&/(¢) =0 and stopgthe rightmost tip of the
gray region. The total energy density is momentarily zero
and expansion reverses to contraction. The field then rolls
back to —o (lower left side of the figure The expanding
and contracting phases are exactly symmetrical.

The time scale for one cycle of this empty-universe solu-
tion is easily estimated by noting that most of the time is
spent near the zero of the potential, where it is rather shal-
low, and the scale facta is nearly constant. Therefore, we
can neglect gravity and calculate the period for one cycle in
the case of the empty universe:

0 d¢
FIG. 5. Trajectories in theHs,¢)-plane for the case where Lempty™ brin /Vo(e—cqs—_ 1)
there is radiation. The solilashed curves represent the trajectory
during an expandingcontracting phase. The thin lines illustrate 1 clominl  dy 1
undershoot solutions and the heavy line represents an overshoot = =~ (44
solution. cyVgJo ver=1 cyVq
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for largec| ¢min| . FOr the parameters typical in our examples,anticipate thaty rises monotonically as the incoming veloc-
this corresponds to roughly one-tenth of the current age oty increases. This effect can alter the trajectories and the
the universe, or a billion years. precise basin of attraction in detail, but does not alter the

In Fig. 5, we consider the case where radiation is pro-conclusion that a large basin of attraction exists. This is as-
duced at the bouncg,>0. If Hs(out) is too low compared sured by having a potential plateau or, more generally, a
to the cyclic value, the trajectory encounters the zero densityegion of the potential in whiclp slow-rolls with total en-
boundary(gray region and reverses to contraction. Solid ergy comparable to the current dark energy density.
curves represent the expanding phase of the trajectory, and Quantum effects are also unlikely to affect the attractor
dashed lines represent the contracting phase of the trajectoigolution. We have shown that the solution is stable under
Let us call this an “undershoot” solutioiid 5 is only constant  small perturbations and here the perturbations remain small
if ¢ anda are both increasing, or both decreasing. Howeversince|V ;.| andV, are small compared to the Planck scale.
if the universe reverses whet is still positive, then the What of the trajectories in Fig. 5, for example, that run
scalar field kinetic energy is blueshifted ahld is rapidly away to large¢? For these, it is important to understand
driven to more and more positive values. The trajectory fliesvhat happens ag grows more positive. One possibility is
off to large positiveHgs and ¢ (the upper boundajy that the potentiaV/(¢) diverges asp— . Our example for

As one increases$is(out), the behavior of the system V(¢) has an infinite plateau, but, as discussed in Sec. Il, this
changes. For sufficiently lardés, the system avoids the zero is not a general requirement. \f(¢) grows sufficiently,¢
energy surface entirely during the period wherns increas-  will bounce back towards- . Alternatively, the same effect
ing (the bold solid and dashed trajectory in Fig. Bhe field  can occur if the theory includes massless fields that couple to
“overshoots” the negative region of the potential and landsthe scale factor on the negative tension brame,The La-
on the positive plateau. Exponential expansion begins, folyrangian density then includes a teafi/?>1/a2. Increas-
lowed by a very slow roll of¢) back towards the potential ingly positive ¢ corresponds to shrinking,. Hence, this
zero, This period appears as a long, thin excursion on thgynamical term can also create a force that cause®
right hand side of the figureHs| is small because the field is pounce back. The net effect is thatrattles back and forth
rolling slowing in the quintessence-dominated phase. along the potential, possibly following a chaotic orbit

The cyclic attractor solution lies between these under{37 >3 These effects could enhance the basin of attraction
shoot and overshoot trajectories. Figure 6 shows trajectoriggr the cyclic solution. That is, some of these trajectories
with initial values of Hs(out) both above and below the \hich we ignored in our undershoot and overshoot treatment
cyclic value(the middle curve Here we can study the sta- may eventually hit the plateau with low velocity, at which
bility of the cyclic solution. Let us first consider a trajectory point they would become drawn to the attractor solution.
with Hs(out) larger than the value in the cyclic solution. ~ Finally, let us emphasize that we have only considered the
This trajectory is indicated byl) in the figure. Clearly, it jssue of stability in the context of the very simplified model
overshoots the cyclic trajectory and undergoes a longer p&sydied here, with a single scalar fiefdd and the matching
riod of exponential expansiofthe long excursion to the conditions discussed in Sec. IV. It would be very interesting
right). During the slow-roll epoch, the difference betweentg generalize this discussion to include other moduli, matter
this trajectory and the cyclic one damps away until it is €x-which couples in a nontrivial way tg as discussed in Sec.
ponentially small. The trajectory encounters the zero densityy; and and also discrete degrees of freedom such as a quan-
surface very slightly later than the cyclic solution does, andyjzeq four-form field, which may change from cycle to cycle
therefore, reverses and ends up with a very slightly smallegy that the system really explores moduli space. The exis-
value ofHs(out) than that in the cyclic trajectory. Similarly, tence or otherwise of an attractor could well be relevant to
one can see that starting the system in s@evith a smaller  the determination of the relative abundances of dark energy,
value ofHs(out) than that of the cyclic trajectory, the sys- dark matter, baryons and photons in the universe, and also to

tem will inflate less and reverse eal’liel’, ending Up with athe Va|ues Of the fundamenta' constants Of nature.
larger value ofHs(out) than that of the cyclic trajectory.

This discussion shows that the trajectory is stable and that
memory of the initial conditions decays exponentially after
just one cycle. The strengths of the cyclic model are its simplicity, its
Here we implicitly assumed that is a constant indepen- efficient use of all of the dominant elements of the universe
dent ofHs(in), the incoming velocity. In the Appendix, we and the fact that it is a complete description of all phases of
obtain an expression for in Eq. (A5) in terms of the matter- cosmic evolution. This can be contrasted with inflationary
radiation energy densities created on the positive and neggesmology, a highly appealing theoretical model in its own
tive tension branes. Assuming the energy density on theight. Inflationary cosmology focuses on a brief epoch when
negative tension brang_ is significantly greater than the the universe was IG° s old. The model relies on assump-
energy density created on the positive tension brane, we hat®ns about how the universe emerged from the cosmic sin-
x*p_ . Assuming the collision between branes occurs at gyularity. One must postulate the existence of a phase of rapid
low velocity so that one is not far from the adiabatic limit, cosmic acceleration at very high energies, for which their
p_ should decrease with decreasiHg(in). (Note that the exists no direct proof(In contrast, the cyclic model relies on
low-velocity assumption has been made throughout since ibw energy cosmic acceleration that has been observed.
is required for the moduli approximatigri-ience, we would Subsequent cosmic events, such as the recent transition from

VIII. IMPLICATIONS
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matter domination to dark energy domination and cosmiavork, the problem of the initial conditions for the universe is
acceleration, appear to have no direct connection to inflationsignificantly altered: as long as the universe has some non-
ary theory. zero probability for entering the cyclic solution, large regions
Because the cyclic model ties the past, present and futuref the universe maintain cyclic evolution for arbitrarily long
evolution of the universe in a tight, cross-correlated way, itperiods of time.
has surprising explanatory and predictive power. In the In- There is a possible objection to this argument, due to the
troduction to this paper, we noted a number of the moStact that the four dimensional nonsingular brane space-times
challenging questions of cosmology and fundamental physi, oyr scenario are past geodesically incomplete. As we have
ics. In this section, we consider each of these quest@ans o, yjained, for most of cosmic time they are well approxi-
more and briefly describe the insights the cyclic model pro- 516 by de Sitter space-time, with a cosmological constant
vides concerning their answers. (or vacuum energyclose to the currently observed value.
This nearly de Sitter space-time is foliated by slices of con-
stant scalar fields, which are nearly geometrically flat. Mat-
The universe is made homogeneous and isotropic durintgr is repeatedly generated on the slices with — oo, in the
the period of the preceding cycle when quintessence domkest frame defined by those slices.
nates and the universe is undergoing slow cosmic accelera- As one follows cosmic timé backwards, one must pass
tion. This ensures that the branes are flat and parallel as they infinite number of these big-crunch—big-bang surfaces.
begin to approach, collide, and emerge in a big bang. InflaHowever, even though the cosmic time tends-te, the
tion also relies on cosmic acceleration, but driven by veryproper time as measured along timelike geodesics running
high vacuum energy which produces an acceleration that igig the past generically is finite even eends to— . This

A. Why is the universe homogeneous, isotropic and flat?

00 4i . ) .
nearly 16 times faster. may be seen as follows. Consider a particle with momentum
o B P in the flat slicing. Its momentum blueshifts as® as you
B. How were density inhomogeneities generated? follow it back in time. The geodesic becomes nearly null and

In the cyclic model, the observed inhomogeneities in thethe proper time measured along the geodesic converges even
universe are generated during the contracting phase when titigought tends to— < (this is the crux of the recent argument
scale factor is nearly static and gravitational effects are wealof Borde, Guth and Vilenkin that inflation is past geodesi-
Consequently, as in the ekpyrotic scenario, a nearly scaleally incomplete 24]).
invariant spectrum of adiabatic, Gaussian energy density In our scenario, howevesll physical particles are cre-
fluctuations is generated. However, because the expansiened with finite momentum in the flat slicing defineddoyf
rate is negligible and gravitational effects are weak, the tenwe follow a particle present in today’s universe back in time,
sor (metric fluctuation spectrum is blue with an exponen- most likely it was created on the lagt= —« surface. With
tially tiny amplitude at long wavelengths. an exponentially smaller probability, it could have been cre-

Fluctuations are also created during the quintessencgted on the penultimatgé= —« surface, and so on into the
dominated phase, just as they are during inflation. Howevepast. The probability that any observed particle originated on
because the energy density during the accelerating phasetise t=—c flat surface, which is the boundary of the flat
100 orders of magnitude smaller than in inflation, the resultslicing of de Sitter space-time, is zero. Therefore we do not
ing fluctuation amplitude is exponentially smaller in the cy- attribute any physical significance to the past geodesic in-
clic model. These fluctuations also have wavelengths thatompleteness of the space-time metric in our scenario. In
exceed the current Hubble horizon. Hence, they are observ@ontrast, particle production in standard inflationary models

tionally irrelevant. occurred on open slices a finite time ago.
Even if there are no particles present which “saw” the
C. What is the role of dark energy and the current cosmic past boundary of the cyclic universe, one might object that
acceleration? the scenario implicitly requires a boundary condition in the

Clearly, dark energy and the current cosmic acceleratiquf"f].Ite past. We do not think th.'s IS a strong obpcnon. If the
cyclic solution were begun within a finite regidifior ex-

I n ntial role in th lic model h I in . . ;
play an essential role in the cyclic model both by reducing mple a torus of three dimensional space, it would grow

the entropy and black hole density of the previous cycle, an tially. with h e t bitrarily | )
triggering the turnaround from an expanding to a contractingeXponen lally with each cycle fo an arbitrarily large size.

phase(In all other cosmologies to date, including inflation, After an arbitrarily long t|r_ne_, FO any r_eal observer the uni-
dark energy has no essential role. verse would appear to be infinite both in spatial extent and in

lifetime to the past.

So, while the cyclic model still requires an initial condi-
tion, provided that state is within the basin of attraction of

A truly cyclic universe is clearly infinitely old in terms of the cyclic solution, we are completely insensitive to its de-
cosmic time. As we have noted, the exact cyclic solution carails. Any features of the initial statéhe total size of the
also be an attractor. Hence, the cycling is stable. Consasniverse, or any fluctuations about flathess or homogeneity
guently, one becomes insensitive to the initial conditions forbecome exponentially diluted in each cycle, and since the
the universe as long as they were within the basin of attraceyclic solution can repeat forever, they are ultimately com-
tion of the cyclic solution. We believe that within this frame- pletely irrelevant to any observation.

D. How old is the Universe?
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E. What is the ultimate fate of the Universe? recollapse, as expected for an anti—de Sitter phase. In the
chlic scenario, though, we have shown how to arrange con-
ditions where the universe avoids the ground state. Instead,
the universe hovers from cycle to cycle above the ground
state bouncing from one side of the potential well to the
other but spending most time on the positive energy side.
From the effective 4D point-of-view, the universe oscil- The branes are moving too rapidly whenever the separation
lates between periods of expansion to periods of contractioforresponds to the potential minimum.
down to a big crunch. However, from the brane world point-  There remains the important challenge of explaining why
of-view, the universe is always infinite in the sense that th¢he the current potential energy is so small. The value de-
branes always have infinite extent. The fact that the brane@ends on both the shape of the potential curve and the pre-
are spatially infinite means that it is possibly for the totalCiS€ transfer of energy and momentum at the bounce. Per-
entropy in the universe to increase from cycle to cycle, andl@PS €xplaining the value will be an issue as knotty as the

at the same time, have the entropy denéityparticular, the cosmological constant problem, or perhaps the conditions

total entropy per Hubble horizorbecome nearly zero prior will prove eaSier _to satisfy. What is certain, though, is tha_t
to each bounce the problem is shifted from tuning a vacuum energy, and this

provides an opportunity for new kinds of solutions.

The cycles can be continued to the infinite future, as wel
as the infinite past. Hence, the universe endures forever.

F. How big is the Universe?

. . .
G. What occurs at the big bang singularity? J. Equation-of-state of dark energy

The cyclic model utilizes the ekpyrotic notion that the

. X o The equation-of-state of the dark energy,is the ratio of
singularity corresponds to the collision and bounce of twoh h densi £ L2\ /(L2
outer orbifold branes in a manner that is continuous andn€ Pressure to the energy density ¢j (G¢"=W)I(5¢

well-behaved. The singularity is not a place where energy” ¥)- In Sec. V, we discussed the evolution gf in the

and curvature diverge and time begins. Rather, formulated ifpdiation, matter and quintessence dominated epochs. The
appropriate fields and coordinates, the singularity is ZJ€neric result is that ev_olutlon @b in the positive d|_rect|on
smooth, finite transition from a contracting phase headind!@lts and the field begins to roll back towarésc in the
towards a big crunch and a big bang evolving into an exJadiation-dominated epoch. At the turn-arounds — 1 since
panding universe. the Klnetlc energy is zero. As the field rolls back and its
kinetic energy increases increases. Hence, the generic re-
sult is thatw is close to—1 today and increasing. Conceiv-
ably, cosmological observations could detect this prediction.
Since the universe is cyclic, it may appear that there is nqfracker models of quintessence, some of the best-motivated
well-defined means of determining the arrow of time. In-ajternatives, have the opposite trendis near—0.8 or so
deed, for a local observer, there is no clear means of doinfhday and decreasing towaresl [25]. Other models, such

SO. as k-essence, have the same trend as found in the cyclic
From the global perspective, though, there is a cleamodel[26].

means of determining forward from backward in time. First,
one of the boundary branes is forever expanding in the “for-
ward” time direction in the cyclic model. The other brane is ) . ) i
expanding except for brief intervals of contraction, but, av- The cyclic model imposes different constraints on funda-
eraged over a cycle, the net effect is expansion. The rat@ental physics compared to previous cosmological models.
changes from phase to phase, as well as the separation. In thé an example, consider the problem of designing super-
contraction phase, the branes themselves stretch at a rate ti§§@Vity potentials. The potentials are constructed from a su-
is slow but their separation rapidly decreases. In the radial€rpotentialW according to the prescription:

tion, matter, and quintessence dominated phases, the branes
_stretc_h significantly, but their separatio_n remains fi_xed. Dur- V=eK’M§| K”DiWB-W— iWV_V ’ (45)
ing this period, the entropy created during the previous cycle ! 2

is spread out exponentially, reducing the degrees of freedom
per horizon to nearly zero.

H. What determines the arrow of time?

K. Implications for supersymmetry and superstrings

pl

where Di=a/a¢i+Ki/M§, is the Kéler covariant deriva-
I. Why is the cosmological constant so small? tive, KiZé’K/(?(ﬁi,Kij :aZK/a(bia(ﬁj and a sum over each
The cyclic model provides a fascinating new outlook onsuperfielde; is implicit. If the ground state is supersymmet-
this vexing problem. Historically, the problem is assumed toric, D;W=0, the first term is zero. In general, unlédsis
mean that one must explain why the vacuum energy of theero for precisely the same values for whibhWw=0, the
ground state is zero. minimum has a negative cosmological constant. In the past,
In the cyclic model, the vacuum energy of the groundthis type of model would have been ruled unacceptable. The
state is not zero. It is negative and its magnitude is large, agossibility of a cosmology in which the universe hovers over
is obvious from Fig. 1. If the universe begins in the groundthe ground state in a state of zero or positive energy revives
state, the negative cosmological constant will cause rapithese models and alters constraints on model building.
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An obvious but important implication is that supersym- and the bulk space-time between the branes settles down to a
metry breaking can be achieved without having spontaneoustatic state after the collisioriln the simplest brane world
symmetry breaking in the ground state. In this scenario, itmodels, there is a Birkhoff theorem which ensures that there
suffices if the universe hovers in the radiation, matter ands a coordinate system in which the bulk metric is static in
quintessence dominated epochs at some state far above thetween the brangsWe shall take the densities of radiation
ground state in energy and the supersymmetry is broken bgn the branes after collision as being given. By imposing
the appropriate amount in the hovering state, where the rdsrael matching in both initial and final states, as well as
diation, matter and quintessence dominated phases occwonservation of total energy and momentum, we shall be able
These considerations have a significant impact on the desigo completely fix the state of the outgoing branes and in
of phenomenological supersymmetric models. particular the expansion rate of the extra dimension

One other requirement/prediction of the cyclic scenarioHs(out), in terms ofHg(in). A more complete discussion of
(and the ekpyrotic models in genera that the branes move this method will be presented in R¢28].
in a space-time with codimension 1. The constraint derives The idea is to treat the brane collision as a short-distance
from having a bounce that produces a smooth transition froopphenomenon. The warp factor may be treated as linear be-
contraction to expansion. As argued by Khowetal, the  tween the branes as they approach or recede. Linearity plus
geometry is flat arbitrarily close to the bounce provided ther&Z, symmetry ensures that the kinks in the warp factors are
is one extra dimension only. Hence, brane world scenarioequal in magnitude and opposite in sign. Israel matching
based on theories like that of Fwa and Witten are accept- relates the kink magnitudes to the densities and speeds of the
able, but large extra-dimensional models relying on havingranes, yielding the relations we use below.

codimension 2 or greater are problematic. The initial state of empty branes with tensiomsand
—T, and with corresponding velocitias, <0 andv_>0
L. Hoyle’s revenge? (measured in the frame in which the bulk is statibeys
Within each cycle, there is a sequence of kinetic energy, T\/l—vi=T\/1—v3

radiation, matter and quintessence dominated phases of evo-
lution that are in accord with the standard big bang cosmol-

T T
ogy. However, averaged over many cycles, the model can be Eror= _
viewed as a remarkable reincarnation of Fred Hoyle's steady \/1—vi Vi-v?
state model of the universe. Most of the cycle is spent in a
phase with nearly constant energy density, as in the steady T, Tv_
state picture. Indeed HoyleB-field that was introduced to Piot= 0 1T (A1)
< <

provide a constant supply of mattéand a preferred rest

frame is replaced by our scalar fielgp, which defines a The first equation follows from Israel matching on the two
preferred time slicing and generates matter repeatedly at eaghanes as the approach, and equating the kinks in the brane
bounce, restoring the universe to a state of high temperatuigale factors. The second and third equations are the defini-
and matter density. In Hoyle's steady state model, every flafions of the total energy and momentum. The three equations
spatial slice was statistically identical. Here the slices arga1) imply that the incoming, empty state has, =
identical only when separated by one period, so we have a;, g _ =0 and that the total momentum is

discrete rather than continuous time translation symmetry.

Nevertheless when coarse grained over large time spans, the b TLHs(in) 0 a2)
structure is similar to that proposed in the steady state uni- tot 1 '
verse. Global properties of the cyclic cosmology will be dis- 1— Z[LH5(in)]2

cussed elsewhel@7].

where we identifyv , —v _ with the contraction speed of the
fifth dimension,|LHz(in)|.
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tion, and Israel matching to the final state. The only subtlety
APPENDIX: MATCHING H; ACROSS THE BOUNCE is that the {,y) frame in which the bulk is static is not

necessarily the same frame in the final state as it was in the
In this appendix we discuss the matching conditioninitial state, so one should boost the initial two-momentum
needed to determindg(out) in terms ofHg(in). We shall  (E;q,Piot) With a velocityV and then apply the Israel con-
assume that all other extra dimensions and moduli are fixedstraints and energy-momentum conservation equations in the
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new boosted frame. The latter provide three equations for thethereT . =T+p,, T_=T—p_ with p, andp_ the densi-
three unknowns in the final state, namely(out), v _(out) ties of radiation on the positive and negative tension branes
andV. Writing v + (out) =tanh(@..), where §.. are the asso- respectively, after collision. Both, andp_ are assumed to

ciated rapidities, one obtains two solutions be positive. In the first solution, with signs-(+), the ve-
1 locities of the positive and negative tension branes are the
sinh§, = — ﬁ“ Piotl + |Prod “H(T2=T2)] same after the collision as they were before it. In the second,

with signs (— —), the positive tension brane continues in the
1 negativey direction but the negative tension braneaiso
sinh6_ == —[|Pyor — | Pyl “ (T2 —T2)], (A3 moving in the negative direction.
2T, [Pl =IPeod (T - (A3) The corresponding values for, (out) andV are

|Protl + | Prodd “H(TZ=T2)
VP2 A2(T2+T2)+ P A(T2 —T%)?

v.(out)y=—

IPiotl = |Piod " H(TE—T2)
\/Pt0t+2(T2 +T2)+ P, 2(T2 -T2)%'

v_(out)=

PR 2T AT P T2 -T2
|Pt°t|(Ti+T2‘)/(Ti_Tz—)+|Ptot| l(Ti—TZ_)’

VP2 +2(T2+T2)+ P 2(T2 —T2)?
or =-— Eep— > , (A4)
|Ptot|+|Ptot| (T++T—)

where the first solution fo¥ holds for the (- +) case, and the second for the {-) case.

We are interested in the relative speed of the branes in the outgoing state, since that gives the expansion rate of the extra
dimension,— v, (out)+v _(out)=LHs(out), compared to their relative spee?v . = —LH5(in) in the incoming state. We
find in the (— +) solution,

5(out)| v (ou—v_(out) _ Phoct 4T
’_ 2 2 2,12 2 12 _ 122" (AS)
Hs(in) vy P2 +2(T2+T2)+PA(T2-T2)

and in the  —) solution

Hs(oup)| (T2 —T?) Ph+4T?

2 2 —2/72 25\2 (A6)
Hs(in) | Pot Plort 2(T2 +T2) + P 2(TE —T2)
|

with P;,; given by Eq.(A2) in both cases. p_>p,, then |Hg(out)/Hs(in)|=(1+x)~[1+(p_

At this point we need to consider how the densities of—p)/2T] and soy is small and positive. This is the condi-
radiation p,. and p_ depend on the relative speed of ap-tion noted in the text, necessary to obtain cyclic behavior.
proach of the branes. At very low speefisH(in)|<1, one  Conceivably, the brane tension can change froro T’
expects the outer brane collision to be nearly adiabatic angT—t at collision. Then, we obtain (&x)~[1+(p-
an exponentially small amount of radiation to be produced.—p++2t)/2T].

The (—+) solution has the speeds of both branes nearly For the (= +) solution, we can straightforwardly deter-
equal before and after collision: we assume that it is thignine an upper limit for|Hs(out)/Hs(in)|=(1+ x). Con-
solution, rather than the{—) solution which is realized in sider, for example, the case in which the brane tension is
this low velocity limit. unchanged at collisiont=0. The expression in EqA5)

As|LHs(in)| is increased, we expept, andp_ to grow.  gives|Hs(out)/Hg(in)| as a function ofT ., T_ andPyq,.
Now, if we considerp, andp_ to be both<P,,<T, then Itis greatest, at fixed ~ andP,;, whenT , =T, its smallest
the second term in the denominator dominates. If more ravalue. ForPZ,<T2, it is maximized forT2 =T2—PZ, and

diation is produced on the negative tension braneequal to \/1+Pt20t/(4T2) when equality holds. FoP;y
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=T2, it is maximized whenT_=0, its smallest value, and Let us reiterate that there are many caveats attached to

P2 ,=2T?, when itis equal to\/g. This is more than enough this calculation. We have not calculated andp and have
for us to obtain the small values af needed to make the 'eft these as parameters. We have's'et the brane teriBitans
cyclic scenario work. A reduction in brane tension at colli- 0@ equal before and after the collision, and have neglected
sionst>0 further increases the maximal value of the ratio.Possible bulk excitations, treating the bulk space-time as
To obtain cyclic behavior, we neeg to be constant from static both before and after collision. We have ignored matter
bounce to bounce. That is, compared to the tension beforeouplings to bulk scalars, and ignored the possible dynamical
collision, the fractional change in tension and the fractionaevolution of additional extra dimensions. Nevertheless we
production of radiation must be constant. think it encouraging that the unusual behavior of matter
We shall not consider the{—) solution in detail, except bound to a negative tension brane allddgout)/Hs(in) to
to note that in the smalP,,, limit it allows an arbitrarily  be slightly greater than unity, which is what we need for
large value fofHs(out)/Hs(in)|, which seems unphysical. cyclic behavior.
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