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The monodromy matrix™ is constructed for the two dimensional tree level string effective action. The pole
structure ofM1 is derived using its factorizability property. It is found that the monodromy matrix transforms
nontrivially under the noncompagtduality group, which leaves the effective action invariant, and this can be
used to construct the monodromy matrix for more complicated backgrounds starting from simpler ones. We
construct, explicitly,M for the exactly solvable Nappi-Witten model, both wHgr 0 andB+ 0, where these
ideas can be directly checked. We consider well known charged black hole solutions in the heterotic string
theory that can be generated Dyduality transformations from a spherically symmetric “seed” Schwarzschild
solution. We construct the monodromy matrix for the Schwarzschild black hole background of the heterotic
string theory.
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[. INTRODUCTION effective action is reduced to two space-time dimensions we
encounter an enhancement in symmetry, as has been studied
Field theories in two space-time dimensions have atby several author§7—11]. The string effective action de-
tracted considerable attention over the past few decadescribes supergravity theories and the integrability properties
They possess a variety of interesting features. Some of the§é such theories have been investigated in the recent past
field theories capture several salient characteristics of fourl2,13. It is worthwhile to mention that higher dimensional
dimensional theories and, therefore, such two dimensiondfinstein theory, dimensionally reduced to effective two di-

models are used as theoretical laboratories. Moreover, tH@€nsional theories, has been studied in the [da&t One of

nonperturbative properties of field theories are much simplef® @pproaches is to derive the monodromy matrix which
ncodes some of the essential features of integrable field

to study in two dimensional models. There are classes of twt ies. An effective two di ional acti turall
dimensional theories which are endowed with a rich symme- eories. An efiective two dimensional action naturally ap-
pears when one considers some aspects of black hole phys-

try structure: integrable model4] and conformal field theo- ics. colliding plane waves as well as special tvpes of Cosmo-
ries[2,3] belong to this special category, among others. Un; ™" gp P yp

q Al G ¢ in th £ i logical models. Recently, we have shown that the two
€r special cireumstances, in e presence ol 1ISOMEes, g, angional string effective action has a connection with in-
four dimensional theory may also be described by an effe

) . ) Ct'egrable systems from a new perspective in the sense that one
tive two dimensional theory. o , can construct the monodromy matrix for such theories with
The string theories are abundantly rich in their symmetrye| defined prescriptiongL5). It was shown, while investi-
content. The tree level string effective action, dimensionallygating the collision of plane fronted stringy waves, that the
reduced to lower dimensions, is known to possess enlargagonodromy matrix can be constructed explicitly for a given

symmetrie§4—6]. Let us consider toroidal compactification get of background configurationd6]. Subsequently, we

of a heterotic string on a-dimensional torus, from 10 di- were able to give the procedures for deriving the monodromy

mensional space-time to @ dimensions. The reduced matrix under general settings. It is worth mentioning that

theory is known to be invariant under the noncompactsome of the interesting aspects of black hole physics can be

T-duality groupO(d,d+16). For the case=6, namely, in  described by an effective two dimensional thedi7].

the case of reduction to four space-time dimensions, the fielfloreover, there is an intimate relation between colliding

strength of the two-form antisymmetric tensor can be tradeglane waves and the description of four dimensional space-

for the pseudoscalar axion. Furthermore, the dilaton and axime with two commuting Killing vectors.

ion can be combined to parametrize the coset SR)Y/2J(1). Chandrasekhar and Xanthopoulds], in their seminal

Thus, the four dimensional theory possessesTtdeality as  work, have shown that a violently time dependent space-time

well as theS-duality group of symmetries. When the string with a pair of Killing vectors provides a description of plane
colliding gravitational waves. Furthermore, Ferrari, Ibanez,
and Bruni[19] have demonstrated that the colliding plane

*Permanent address: Institute of Physics, Bhubaneswar 751008,ave metric can be identified, locally, as isometric to the
India. interior of a Schwarzschild metric. In another important step,
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Yurtsever[20] constructed the transformation that provides aunderlying symmetry corresponds$aluality an appropriate
connection between a metric describing colliding waves andransformation rule for the monodromy matrix can also be
one corresponding to the Schwarzschild black hole. As islerived. Our paper is organized as follows. In Sec. Il, we
well known from the study of colliding plane gravitational recapitulate the form of the two dimensional action obtained
waves[21] corresponding to massless states of strings, thery toroidal compactification from higher dimensions. Then
is a curvature singularity in the future. Recently, the appearve present the equations of motion. A key ingredient in the
ance of the future singularity has found an alternative dederivation of the monodromy matrix is the coset space refor-
scription in the context of the pre-big-bat§BB) scenario mulation .of the reduced action. We devote Sec. Ill to the
[22,23. The incoming plane waves are to be identified as th&onstruction of the monodromy matrix for theAprobIem under
initial stringy vacuua of the Universe, which collide and leadconsideration. The transformation rules fovt under a
to the creation of the Universe. Indeed, the solutions correT-duality transformation are derived once the matrix is con-
spond to the Kasner type metric and the exponents fulfil thes}ructed. An interesting observation is that the expression for
requirements of the PBB conditions. A very important fact,/M already captures the stringy symmetry in an elegant man-
in this context, is that one starts from a four dimensionalner. In this section, we also present explicit forms/ef for
effective action; however, the physical process is effectivelysimple background configurations which still preserve some
described by a two dimensional theory. of the general features. We present some illustrative ex-
When we focus our attention on addressing these probamples in Sec. IV. The structure of the Nappi-Witten model
lems in the framework of string theory, it is essential to keepin the present context is analyzed in detail. Furthermore, we
in mind the special symmetries, such as dualities, which arehoose an example from black hole physics to construct the
an integral part of the stringy symmetries. We have investiitnonodromy matrix. In this case, the black hole solution can
gated[15] the behavior of the monodromy matrix under be thought of as a solution to type IIB string effective action
T-duality transformation of the backgrounds under a generaind the theory is endowed withduality symmetry. Thus we
setting when the two dimensional action is derived from aare able to provide an example of how the monodromy ma-
D-dimensional string effective action through compactifica-trix transforms under theS-duality group SL(R). We
tion on ad-dimensional torusTY. It was shown that the present a brief conclusion in Sec. V and some of the useful
monodromy matrix transforms nontrivially under the duality relations are collected in the Appendix.
group O(d,d). Therefore, it opens up the possibility of
studying ir)tegrable'systems which might appear i.n the con- Il. TWO DIMENSIONAL EEEECTIVE ACTION
text of string theories. As an example, we considered the
Nappi-Witten [24] model, which is a solution to an exact  In this section, we will briefly recapitulate the form of the
conformal field theory described by a Wess-Zumino-Wittenstring effective action in two dimensions, which will form
(WZW) model. We first obtained the monodromy matrix for the basis for all our subsequent discussions. Let us consider,
the case when the two-form antisymmetric tensor is set tdor simplicity, the tree level string effective action i di-
zero. It is also well known that an antisymmetric tensormensions consisting of the graviton, the dilaton, and the an-
background can be generated throughCf@,2) transforma-  tisymmetric tensor field,
tion from the initial backgroundf25]. We can construct the
monodromy matrix for the new set of backgrounds using our
prescriptions. On the other hand, the new monodromy matrix
can be constructed directly by utilizing the transformation
fules discovered by us. 'T‘deed' we expl_|C|tIy demon.strateq_mre, G:; is the D-dimensional metric in the string frame
that the monodromy matrices obtained via the two different . o N A L
routes are identical. It is obvious from the preceding discusWith signature ¢, +,---,+), andG=detG,;. Rg is the
sion that the symmetries of the effective action play an im-scalar curvature,¢ is the dilaton, andH,;,=d,B;;
portant role in the construction of the monodromy matrix and+ 9;8;+ ;8. is the field strength for the second-rank an-
its tfansformatlon prqurtles under those symmetry tra”Sforﬂsymmetric tensor ﬁekéA; _
mations. Thereforg, it is nat_ural to expect intimate connec- it e compactify this action on e-dimensional torugd,
tl_ons between the mtegrablll_ty properties of the two dimen-yhere d= D—-2, then the resulting dimensionally reduced
sional theory and the full stringy symmetry groupsTo&nd  4ction will describe the two dimensional string effective ac-

S dualities. _ o _ tion, which has the fornfi26,27]
The purpose of this article is to present details of our

investigations in the directions alluded to above. We provide _ 1

prescriptions for the construction of the monodromy matrix s:f dxodxl\/—_geﬂR+(a¢)2+ gTr(aaMfla“M) .

M for the string theoretic two dimensional effective action. @)

We present the pole structure of the monodromy matrix from

general arguments. The duality transformation properties Olt|erea,B=0,1 are the two dimensional space-time indices,
M follow from the definition and construction of this matrix. and gaﬂ is the two dimensional Space_time metric Wgh
For example, if the action respectsduality, then one can  —detg,,. R is the corresponding two dimensional scalar
derive how M transforms under the group, whereas if thecurvature, while the shifted dilaton is defined as

Re+ (32— —fiasfi|. (1)

S=dex —Ge ¢ SHio
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The variation of the effective action with respectMoneeds
some care sinchl is a symmetridO(d,d) matrix satisfying
MyM = 7. A simple method, for example, would involve

whereG;; is the metric in the internal space corresponding todding the constraint to the effective action through a

the toroidally compactified coordinated, i,j=2,3,...D
—1 (d=D-2). Finally, M is a 2dX2d symmetric matrix
of the form

G! -G 'B

M=lge1 G-BG B

(4)

whereB represents the moduli coming from the dimensional

reduction of theB field in D dimensions. In general, there
will be additional terms in Eq(2) associated witld Abelian

Lagrange multiplier. In any case, since there is no potential
term in the effective action involving the matri, the
Euler-Lagrange equation of motion following from the varia-
tion of the action with respect tM has the form of a con-
servation law:

&a(e‘g\/—gg“ﬁM “19sM)=0.

We can further simplify these equations by working in the
light-cone coordinates

11

gauge fields arising from the metr@:;; and another set af 1 1
Abelian gauge fields coming from the antisymmetric tensor X+:E(XO+X1)' X_=ﬁ(X°—X1) (12)
IAB;L;,, as a result of dimensional reductif26]. Furthermore,

there would also have been terms involving the field strength choosing the conformal gauge for the two dimensional

of the two dimensional tensor fiel®,;. Since we are in

metric, namely,

two space-time dimensions, we have dropped the gauge field

terms and, in the same spirit, have not kept the field strength
of B,g, Which can always be removed, if it depends only on

the coordinatex® and x*. Later, we will comment on the

gaB:eF(X+'X_)7]aB' (13)

In this case, Eqs.10) and(11), respectively, take the forms

gauge fields, which assume a significant role when Abelian

gauge fields are present in the original string effective action

(1).

The matrixM corresponds to a symmetric representation
of the groupO(d,d) and the dimensionally reduced action in

Eq. (2) is invariant under the glob&(d,d) transformations
(5
(6)

where 2 €0O(d,d) is the global transformation matrix,
which preserves th®(d,d) metric

2

1y O
with 14 representing the identity matrix id dimensions;
namely,() satisfiesQ"7Q = 7.
The equations of motion for the different fields follow
from the dimensionally reduced effective acti@). For ex-
ample, varying the effective actiof2) with respect to the

shifted dilaton¢ and the metrig,; leads, respectively, to

¢,
M—QTMQ,

gaBHgaB ’

@)

R+29°?D,Dgp—g*fd i

1 af -1
+ 39 Tr(d,M~*dzM)=0, (8)
_ 1 .
It follows from these equations that
D, D% %=0. (10)

d,0_e =0, (14)
J. (e *M 19 _M)+d_(e"*M~19,M)=0, (15)
while Egs.(8) and(9) can be written explicitly as
2 — 1 -1
# =3 Fi. ¢+ gTr (9. M 0. M)=0,
— 1
d.0_¢p—d,d_F+ gTr((mvrlov,lvl):o,
(16)

_ 1
P d—a_Fo_¢p+ gTr(a,l\/rla,lvn:o.

It is well known [26] that the moduli appearing in the
definition of theM matrix [see Eq(4)] parametrize the coset
0(d,d)/[O(d) X O(d)]. Correspondingly, it is convenient to
introduce a triangular matri¥ € O(d,d)/[O(d) X O(d)] of
the form

a

such thatM =VV'. Here, E is the vielbein in the internal
space so that ETE)ij=GiJ—. Under a combined global
0O(d,d) and a localO(d) X O(d) transformation

E’ 0
) (17)

BE!l ET

V—QTVh(x) (18)
whereQ) e O(d,d) andh(x) e O(d) xO(d),
M=VVT=QTMQ. (19
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That is, theM matrix is sensitive only to a globaD(d,d) metric tensor field. However, the action in E4) can be

rotation. generalized by adding Abelian gauge fields, with the addi-
From the matrixV, we can construct the currewit 19,V,  tional action of the formsuch terms naturally arise in het-

which belongs to the Lie algebra @f(d,d) and can be de- erotic string theory

composed as

- Sim— = [ doxy"Behgingha,El By (2
\ &aV_Pa—i_Qa- (20) A 4 1J A2 ON

Here,Q,, belongs to the Lie algebra of the maximally com- wherel,J=1,2, ... n and

pact subgrougd(d) x O(d) and P, belongs to the comple-

ment. Furthermore, it follows from the symmetric space au- El.=9-Al—g-AL . (25)

tomorphism property of the coséd(d,d)/[O(d)x0O(d)]

thatP]=P,,Q]=—-Q, so that we can identify This action can also be dimensionally redud¢éd] to two
dimensions and the resulting effective action takes the form

1
Pa=§[v—1aav+(v—1aavﬂ], 1 _ '
SA:_ZJ dxdxty—ge ?(FLgF'*F+2F ] F'“)  (26)

1
Qa= E[VflﬁaV—(VflO"aV)T]- (2)  where we have defined
I _ Al
It is now straightforward to check that a=A,

TH(9 M 1dM)=—4Tr(P,Py). (22 AM'=G'
Furthermore, under a glob&l(d,d) rotation, the currents in AGIZAl _ gl A1
Eg. (21) are invariant, while under a locaD(d)xO(d) “ @ e
transformationy— Vh(x), Fg%i:aaA(ﬁni_&ﬁAg)i , (27)

P,—~h" ()P ,h(x), @3)l 3)l @3)l
F&)'=5,AR) — ,A®)

Qa_’hil(X)Qah(x)+hil(x)ﬁah(x)- (23) I:| BIF(3;§|+F(1;3iaiI ,
That is, under a locaD(d) X O(d) transformationQ,, trans- | |
forms like a gauge field, whil® , transforms as belonging to Fai=0da8; -

the adjoint representation. It is clear, therefore, that(22). ] i i
is invariant under the globaD(d,d) as well as the local In the presence of the Abelian gauge fields, the field strength

0(d)xO(d) transformations. Consequently, the action in H associated with th_e second-rank e_mtisymmetric tensor field
Eq. (2) is also invariant under locaD(d)x O(d) transfor- B N€eds to be redefined for gauge invariance as
mations.

This brings out, naturally, the connection between the sys- H
tem under study and two dimensional integrable systems.
First, let us note that, in the absence of gravity and the dila-
ton (namely, ifg, 5= 17.4,4=0), the action in Eq(2) sim-
ply corresponds to a flat space sigma model defined over the
coset O(d,d)/[O(d)*xO(d)], which can be analyzed
through a zero curvature condition with a constant spectral
paramete(to be discussed in more detail in the next segtion )

In the presence of gravity as well as the dilaton, we cawhere Al,=(AY" AR A", F| ,=d,A%—0d,A!, and
eliminate the dilaton from the actiof®) by choosing the

particular conformal gaugga3=e¢naﬁ. In this case, the A&%):gaiJrBijAgl)u Eai'A(f)',

action will describe a sigma model, defined over the coset 2

0O(d,d)/[O(d) xO(d)], coupled to gravity. As we will show

in the next section, this system can also be analyzed through FOi=0.A0—a,A0, (29
a zero curvature condition much like the flat space case,

1
—_ | | | |
aij = 9aBij T 5 (80,8) — 8j9,48)),
Hap=—CiFGY +FOA—alF (), (28)

1
Hupy=04Bgy— EAraan]-‘Sﬁer cyclic permutations,

although consistency requires the spectral parameter, in this 1
case, to be space-time dependent. Cij= 2 aj+Bj.
So far, we have discussed only the two dimensional string
effective action starting from th®-dimensional action in Once again, it is easy to see that, in two space-time di-

Eg. (1) involving the graviton, the dilaton, and the antisym- mensions, the field strength, ., can be set to zero. Further-

aBy
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more, keeping all other terms, the complete two dimensionahas the natural description of a sigma model defined on a
string effective action can be shown to have the same forngoset, coupled to gravity. In the case when there are no Abe-

as in Eq.(2) with lian gauge fields present in the starting string action, the
1 1 T sigma model is defined on the cos&@(d,d)/[O(d)
G -G °C -G ra X 0O(d)] whered=D—2. On the other hand, ifi Abelian

M=| —CG! G+C'GcIc cCc'cta'+a'|. gauge fields are present in the starting string action, the coset

can be identified witlO(d,d+n)/[O(d) X O(d+n)]. In this

_ -1 -1 —1.T
aG aG "Cra 1+aG ‘a section, we will further analyze the integrability properties of

(30 such a system and construct the monodromy matrix associ-
In this case,M is a symmetricdx (d+n) matrix (d=D  ated with the system.
—2) belonging toO(d,d+n). Under anO(d,d+n) trans- Let us consider a general sigma model in flat space-time,
formation defined on the cosdét/H. The two cases of interest for us
are when G=0(d,d),H=0(d)x0O(d) and G=0(d,d
M—QT™MQ (3D  +n),H=0(d)xO(d+n). Let VeG/H and M=VV',

. . Then, as we have noted in the last section, we can decom-
where the parameter of transformatine O(d,d+n) satis- pose the curren? 1,V belonging to the Lie algebra @
fying QT »Q =75, where as

0 44 0 V-la,V=P,+Q, (37)

7=l 0 O (32 , ,
0 0 1 whereQ,, belongs to the Lie algebra &f, while P, belongs
n to the complement. The integrability condition following

represents the metric f@(d,d+n). As in the earlier case, it TOM this corresponds to the zero curvature condition

is more convenient to introduce a matri¥ € O(d,d 1 B 1 1 1 _
+n)/[O(d) X O(d+n)] of the form 9a(V720pV) = 9p(V70V) FL(V 70V, (V05V) ] (gé)

1T
E 0 0 Explicitly, this equation gives

V= _CTE—lT ET aT (33)
_aE*lT 0 1 ﬁaQB_&BQa—’_[Qa1QB]+[PaaPB]:O:
such thatM=VV'. As before, under a combined global DaPs=DsPa=0,
0O(d,d+n) and a localo(d) X O(d+n) transformation (39)
V—QTVh(x) (34) where we have defined
where Q e O(d,d+n) and h(x) e O(d)x O(d+n). How- DoPp=0aPp+[Qq.Ppgl. (40

ever, the matrixM is not sensitive to the locad(d) X O(d . . .
+n) transformations. We can now define the currentThe equations of motion for the flat space sigma mése¢

V™14,V which belongs to the Lie algebra 6f(d,d+n) and Eq. (11)]
which can be decomposed as 783, (M~19,M)=0 (41)
-1 —

V7 daV=PatQa. (35 can be rewritten in the form
In the present cas&), belongs to the Lie algebra of the
maximal compact subgroup(d) X O(d+n), while P, be-
longs to the complement. Under a glotia{d,d+n) trans-
formation, P, and Q, are invariant, while under a local

7*#D,Psz=0. (42

Let us next introduce a one parameter family of matrices

0(d) X O(d+n) transformationvV— Vh(x) V(x,t) wheret is a constant parametéand not time, also
known as the spectral parameter, such thN4i,t=0)
P,—h Y(x)P h(x), =V(x) and
Qu—h "1 (x)Q,h(x) +h™H(x)d,h(x), (36) . . 1+12 2t
V719,V =Q,+ —— Pt —— €,5P". (43
and all the discussion for the earlier case can again be carried 1-t 1-t
through.

Then it is straightforward to check that the integrability con-
lIl. MONODROMY MATRIX dition

In the last section, we saw that the two dimensional string 9,(V~2d,V) — a4V~ 29, V) +[(V"19,V),(V " 13,V)]=0
effective action, dimensionally reduced fraindimensions, (44
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leads naturally to Eqs(39),(42). That is, the integrability N .
condition (39) as well as the equation of motion for the flat M=V(x,HVT
space sigma model are obtained from the zero curvature con-
dition associated with a potential which depends on a cony follows now, from Eq.(51), that
stant spectral parameter.
In the presence of gravity, however, the equation for the 9,M=0; (53)
sigma model is modified12,13. In the conformal gauge
gaﬁ:e¢77aﬁr Eq. (11) takes the form name!y,M=M(w). and is independent of the spage-time
_ coordinates M(w) is known as the monodromy matrix for
7o (e M *1(9B|\/|):o, the system under study and encodes properties of integrabil-
B N ity such as the conserved quantities associated with the sys-
or 7D ,(e ?Py)=D,(e ?P*)=0. (45 tem. _ o
Let us next describe how the monodromy matrix is con-
As before, we can introduce a one parameter family of postructed for such systems. For simplicity, we will consider
tentials depending on a spectral parameter and with a decorthe action in Eq(2), which describes a sigma model defined
position of the form(43). However, in this case, it is easy to on the coseO(d,d)/[O(d) X O(d)]. The other case can be
check that the zero curvature condition in E44) leads to  studied in a completely analogous manner. To start with, let
the correct dynamical equation as well as the integrabilityus set the antisymmetric tensor field to zero, nam@hy,0.
condition, provided the spectral parameter is space-time dén this case, we can write
pendent and satisfies

{
X,? . (52)

G—l
M(B=0):(

0 -0 E-! 0)
. V(E=0— . (54
aat:—leaﬁaﬁ’ G 0 E 64

5 . (46)

— 1
e_(ZS t+?

Let us further assume that the matixand thereforeG are

In the conformal gauge, as we saw earlier in Etf), the diagonal, as is relevant in the study of colliding plane waves;
shifted dilaton satisfies a simple equation. Therefore, def'”hamely let us parametrize

ing
7 E=diage® 12 g0t 2 ah+ig)i2)
p(x)=e"?, (47)

we note that the solution following from the equation for the
shifted dilaton can be written as

G=diage"¥1,eM" V2, | et Va) (55)

with 2,4;=0 so that\ = (1/d)log detG, as adopted if23].
p(X)=p. (X +p_(x). (48) In this case, it follows thaftsee Eq(21)]

With this, the solution to Eq(46) can be written as P - %[(V(BZO))*&QV(B:OM((V(BZO))’laaV(BZO))T]

Jot+p.—Jo—p_

w w—p_ =
P P 0 E-19.E)’
wherew is the constant of integration, which can be thought (56)
of as a global spectral parameter. It is clear that the solutions 1 B_o) -1 B-0 B0 -1 B ONnT
in Eq. (49 are double valued in nature. Qo= 5[(\/( )T,V — (VD) g, V(BT
There are several things to note from our discussion so
far. First of all, the one parameter family of connectidosr- =0,

renty does not determine the potenti&(x,t) uniquely,

~ N . g so that we have
namely,V and S(w)V, where S(w) is a constant matrix,

yield the same one parameter family of connections. Second, R R 1—t
in the presence of the spectral parameter, the symmetric (V(BZO))‘1&+V(B:°)=mP+,
space automorphism can be generalized as 57
R 1 R T v 4 o 1t
77°’°(V(x,t))=77<v<x,?> =(vl x,?)> . (50 (VEB=0)~15 (& °>=EP,.
It can be shown, following from this, that Since P, are diagonal matrices an¥(®=%(x,t=0)
1 1T =V(B=0)(x) is diagonal, it follows that we can write
DY A DA A R -
(V (x, t)%V(x, t) V7H(x,t)d,V(x,t). (51 ) V(BZO)(X,'[) 0
_ _ VE=0(x,t)= — (58
Given these, let us define 0 (VE=0)"1(x 1)
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with V(B=9(xt) a diagonal matrix of the form Mi() =V OV, 1) o-o -
(V1,V,, ... Vy). Let us assume that (@) =ViOVi| %, 7= 0—wgii
— g =4 _ We note that the double valued relation between the global
v, =22 E-Y, i=12,...4, (59
ti t—tgy and the local spectral parameters allows us to chegse

. _ =—wj, in which case, we have
wheret; is the spectral parameter corresponding to the con-

stantw;. Clearly, fort=0, this leads to the diagonal ele- 0~ o
ments ofV(B=0) Furthermore, noting the form &.. in Eq. Mi(w)=———. (68)
(56) and recalling that the spectral parameters satisfy !
15t 17, This determines the monodromy matrix for the case when
+1= + +i= =+ B:O
dt _1itol Inp, 4.t _1itia* Inp, (60)

Let us note next that we are dealing with a sigma model,
obtained through dimensional reduction of a higher dimen-

it is easy to verify that . : i .
y fy sional tree level string effective action. Therefore, the sym-

_ _ t t; metries present in the string theory, suchraguality, should
Vi t9.Vi=4d.1In Eflimﬁt In( - t—') be encoded in the monodromy matrix as well. For example,
- i it is known that one can generate new backgrouf@ishe
1+t . string theory starting from given ones through-duality
=159« InE; (61)  transformations. In particular, starting from a background

where B=0, it is possible in some modelsuch as the

provided we identify[t; andty.; have opposite signatures Nappi-Witten model to generate backgrounds wita# 0

following from the double valued nature of the solutions in through aT-duality rotation. Itis natural, therefore, to exam-
Eq. (49)] ine how the monodromy matrix transforms under such trans-

formations, for then we can determine the monodromy ma-

t trix for more complicated backgrounds starting from simpler

T E 2. 62 ones.
- Let us note that th@-duality transformation, within the
In that case, we can write context of string theorywithout Abelian gauge fieldscor-
responds to a globd(d,d) rotation. Since the one param-
— _E1 . . ~
(UB=0)) 15 (B=0) 1t/ —E “d9.E 0 eter family of matricesV(x,t) e O(d,d)/[O(d) x O(d)]
- 1=+t 0 E 149.E much like V(x)=V(x,t=0), it follows that under a global
_ O(d,d) rotation
_ 1=+t b 63
1+t = V(x,t)—=QTV(x,1),

Thus, we see that, in the present case, 1 1
M(w)=\“/(x,t)(/T(x,—)—>QT\“/(x,t)\7T(x,—)Q
t—t, g [ tgs t—t t t
= ;

(64)
=0"M(w)Q. (69)

— lgu
Vit g T tay
i d+i d+i

and the matrixV®=9(x,t) has 21 simple poles—one pair
for every diagonal elemeri,; . Furthermore, it is simple to Let us also recall that, under a lod@(d) < O(d) transfor-

check from Eq/(49) that the spectral parameters satisfy ~ mation, V(x,t)—V(x,t)h(x). Therefore, the only local
transformations that will preserve the global nature of the
w—w; g t—t 1At monodromy matrix are the ones that do not depend on the
= T m m (65) local spectral parameter explicitly. We have already seen that
the matrixM =VV' is sensitive only to the globaD(d,d)
so that we can determine the monodromy matrix to be of théransformations even thoug¥(x) transforms nontrivially
form under a combined globaD(d,d) and local O(d) X O(d)
transformation. In a similar mannek/(w) is sensitive only
X }) to the globalO(d,d) rotation. We will check this explicitly
' in the case of the Nappi-Witten model in the next section.
For the moment, let us note that this brings out an interesting

W= Wi

M(B=0):\7(B=O)(X,t)(\78=0))T

_ M(w) 0 66) connection between the integrability properties of the two
B 0 M Hw))’ dimensional string effective action and itsduality proper-
ties, which can be used as a powerful tool in determining
where M(w) is diagonal with solutions.
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For completeness, we record here the transformation
fs?=—d7r?+dx*+

properties of MM under an infinitesimaD(d,d) transforma- 1—cos 27 cos X

tion. Let us denote
X (4 cog 7cos x dy?>+4 sirf 7sirt x dZ),

M= ( /\A/lll Ajllz) , (70) b=— %log(l— C0S 27 cOS X), (73
M21 M22
(cos 2r—cos X)
- (1—cos2rcos X)

where each element representsdad matrix. Infinitesi- B12= ~Ba=b

mally, we can writg 26]
Here, we have set an arbitrary constant parameter appearing

in the Nappi-Witten solution to zero for simplicity.

Note that the backgrounds do not depend on two of the
coordinates, namely,y(z), and, consequently, following
from our earlier discussions, the system has4@,2) sym-
metry. It is known that these backgrounds can be obtained
where the infinitesimal parameters of the transformation saffrom a much simpler background, with a vanishiBdield,
isfy YT=—Y,ZT=—Z andW= —X". Under such an infini- of the form
tesimal transformation, it follows from Eg71) that

1+X Y
Z 1+W

: (71)

1

ds?= —d2+dx%+
tar? 7

dy?+tarf x dZ,

5M11: M11X+ XTMll— ZM12+ MIZZi (74)

¢=—log(sin 27 sin 2x)

‘) — A\ 4 TN _ v o\ T ) )
OMuz= MY + X Mag= 2 Map= MuX, through anO(2,2) rotation. In the language of our earlier

(72) discussion, we note that we can write
5M21: _YMll_ XMZl‘l‘ M21X+/{/1222, NQEC) 0 0
ge-o|© - ( o ) (75
o o o e 1o &
5M22:M21Y_YM12_ XMZZ_ M22XT.
with
IV. APPLICATIONS
E=exp\’+¢0)= e
The ideas presented in the earlier section can be applied to tarr
various physical systems. For example, if we are considering (76)
collision of plane fronted waves, which correspond to mass- _ 0 O\
less states of closed strings, because of the isometries in the Er=expN"— ¢ = tare x’

problem, this can be described effectively by a two dimen-

sional theory and all our earlier discussions can be carrie¢jhere the superscript “0” denotes the vanishiBdield. In
over[16]. In this section, we will discuss two other classes ofthjs case, therefore, we have

physical phenomena where our results can be explicitly veri-
fied and prove quite useful. (G(B=0)~1 0

M (B=0)— 0 5E-0)" (77

A. The Nappi-Witten model - .
PP On the other hand, it is easy to check that we can write

The Nappi-Witten mode24] is an example of a cosmo-

logical solution following from the string theory. Let us note 2¢

that, to leading order im’, the string tension, there are sev- 1+ &6,

eral solutions to the string equations following from Ef). G® = ,

that constitute exact conformal field theory backgrounds. 0 26

One of these solutions, studied by Nappi and Witten, corre- 1+§:6

sponds to a gauged SLE)/SO(1,1)x SU(2)/U(1) Wess- (78
Zumino-Witten model and describes a closed expanding uni- _ 1766

verse in 3+1 dimensions. The backgrounds consist of the 1 glgze_ &

metric, the dilaton, and the antisymmetric tensor fields of the

form (here, we identifyx°= 7) wheree is the 2<2 antisymmetric matrix

126001-8



DUALITY, MONODROMY, AND INTEGRABILITYOF. .. PHYSICAL REVIEW D 65 126001

0 1 and it follows thafsee Eq.(56)]
=40) (79
p(B=0)
so that N
—(E(B=0)"15, E(B=0) 0
(B)y-1 —(aBH-1 = -
(B)_ (G*™) (G*¥)™'B . 80) 0 (E(BZO))_lﬁiE(B:O)
B(G®)! G®-B(G®) 1B
(9+€1) 0 0 0
It is now a simple matter to check that - &
(B)— )T\ (B=0) ER
ME=0TME=00 (81) 0 | gfz) 0 0
where[25] = 2 ,
dx
. (I 6) 0 0 ( é§1) 0
=— (82) '
V2le | 0 0 o (=6

belongs t00(2,2). Here,l represents the 22 identity ma-
trix while € is the 2< 2 anti-symmetric matrix defined in Eq.
(79). This shows that the backgrounds with a nontrivial an-Q(B=%=q. (85)
tisymmetric tensor field can be generated from a much sim-

pler background with a vanishing field through a global

0(2,2) rotation. In this case, therefore, the one parameter family of potentials
It follows from Eq. (75) that we can write VE=0(x,t) have to satisfysinceQ®~9=0)
E(B=0):< Ve o ) (83 /(B=0)\ —1 /(B=0) 1+t -0
0 & (VE=N)"2(x, 1) 8. VE= O x,t) = T PE™D  (86)
so that we have
(B=0)\—1 wheret is the space-time dependent spectral parameter.
V(B=0)_ (E ) 0 (84) Following our earlier constructiofsee Eq.(64)], we can
0 EE=0))" determine

|
N — — tat—t t,t—t tt—t trt—t
(B=0) —di —diad A/ 2t /A2 A 8 2 4
\% (x,t)=diagVy, ... ,Vy) dm% -t L=, L=t LI=1, (87)

where

11 B 1 iy -~ 1
__ =0)y-2_"1 _12_ (B=0)-2_ "
t3 (B & 4y (B2 &' ®9

It can be checked explicitly, using the equation satisfied by the spectral paramet@0)EthatV(E=%(x,t) in Eq. (87) does
indeed satisfy Eq(86). The monodromy matrix, in this case, follows as

W— w1 w1~ w

0 0 0 0 0 0
w— w3 w+w
0o 2% 0 o L2279 0
- (B=0) M(w) 0 W= wy Wyt
MET=0 0 e 0— w3 - w1+ '
0 0 0 0 0 0
(.L)_(.L)l wl—w
0 0 . 0 0 o L2te
(,()_(1)2 (1)2_(1)

(89
where we have identifiedh;= — w1, w,= — w,.
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WhenB+# 0, we can similarly obtain

[ 2&
1+ 6,6

(E®)~t 0
(B) = (B) _
E NES v <B<E<B>>-1 E<B’)' %0
1+&:6
It follows now that
EB) -1 E®) 1 @)1 B -1
_( ) atE _E(E ) (aiB)(E )
P = ,
%<E(B’>*l(ai8)<E<B>>*l (E®) 1. E®
(91
1
0 S(E®) " 4a.B)(E®) !
Q.= 1
5(E®) " 1(0.B)(E®) 0
In this case, therefor&) .. #0 and the one parameter family of potentials has to satisfy
\/7(B)\y—1 /(B B 1=t B
(V)7 x, ) a VO (x, 1) = QP + T PE). (92
It is straightforward to check that
VB (x)=QTVE=9(x)h(x) (93
where() is the O(2,2) matrix defined in Eq(82), andh(x) e O(2)x 0O(2) and is of the form
h 1 (V1-bl +i1+be
X)= — _ 94
(x) JV2\V1+be +1-Dl (%9
It can also be checked that
VB (x,1)=QTVE=(x,t)h(x) (95
Vi-bV;+\1+bV, 0 0 Vi+bV,—V1-bV,
1 0 V1I-bV,+V1+bV; —1+bV,+1-bV; 0
2 0 —J1-bVo+1+bV; VI+bVo+1-bV, 0 (96)
Vi—-bV;—V1+bV, 0 0 Vi+bVi+y1-bV,

satisfies the defining relation in E@2). We note here that, whe®i# 0, while V(®)(x) is triangularV(®)(x,t) is not in general,

and that bothvV(® and V(®) are related to their counterparts wiB=0 through a combined globaD(2,2) and a local
0O(2)x0(2) transformation. Furthermore, as was pointed out earlier, the local transformation does not depend explicitly on
the spectral parameter. This is quite crucial, for it immediately leads to
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. . . 1 . . 1 .
M(B)=V(B)(x,t)(V(B))T( X, ?> =QTVE=(x, t)h(x)hT(x)(VE=NT| x, T) Q=0T M1B=00

M+ M3? 0 0 M= M?
1 0 Mo+ M7t = My+ Mt 0
=5 ~1 ~1 97)
2 0 Mo+ My Mo+ My 0
Mi=M3* 0 0 M+ M1
|
where M =(wi—w)/(w;+ ) and My=(w,— w)/(w, We are interested in charged, nonrotating, spherically

+w) are the two diagonal elements #fl(w) in Eq. (89).  symmetric black hole solutions which are described by a
This shows explicitly that, for backgrounds related by a du-general metric of the form

ality transformatior{in the present example, &(2,2) rota-

tion], the corresponding monodromy matrices are also re- d52=g/”dx“de

lated in a simple manner, as was pointed out in the last B o g N 5 5
section. =—N()d72+ X" Xr)dr?+R3(r)(d6?+sir? 6d¢?).

(101

B. Black holes . . .
Furthermore, the Maxwell equation, together with the Bian-

As a second application, we will discuss the black holegp; identity, determines that the only nonzero components of
solutions[28,29 in string theory within the context of our e fieq strengths have the forrfes 28 dimensional column
analysis. We are interested in studying systems with Charger‘}i]atrices
black hole solutiongelectric and magnetjcIn this case, in
heterotic string theory, one starts from the 10 dimensional
string effective actiorithe bosonic sectpr = _)\(r) e’Ma, Foy=Ssin07, (102

T 5
,
5 [ ax = Ge ?

ﬂ,u,v)\

Re+(9¢)°— H ik

where a,8 are 28 component column vectors representing
the electric and the magnetic charges anis the metric of
(99) 0(6,22).(The 28 gauge fields correspond to the sum of the
original 16 gauge fields and six each coming from the di-
mensional reduction of the metric and the antisymmetric ten-
WherelA:'wV represent Abelian field strengthsee Eqs(25—  sor field)
27)] Witﬁ 1=1,2, ...,16 for théneterotic string. Commonly, As is clear from this, in the case of black holes, there are
the black hole solutions, in four dimensions, are described ifv0 Abelian isometries since the variables are independent of
terms of the Einstein metric. The reduction of E§8) to time as well as the azimuthal angle. Therefore, the proper

four dimensions, in the Einstein frame, is carried out byWay to analyze this problem would be to dimensionally re-
identifying [26] duce the effective action to two dimensions, as has been

done in the earlier sections. This, however, leads to some
technical issues and, therefore, to keep our discussion
simple, we will dimensionally reduce the effective action to
(99 . ) . : ; )
three dimensions first. Since the black hole solutions are in-
dependent of time, we dimensionally reduce time as well as

wherep=r7,r,6,¢ andi,j=4,5, . . .,10. This leads to a four six spatial dimensions and, keeping in mind the Einstein

_ %5IJ IA:}L;IA:’;;'

ém_(ez¢gMV+GijA§})iA(Vl)j AMG;

. AVIG; Gij

dimensional action of the form frame, we parametrize the metric as
2$h +G nA(l)mA(l)n INOLS
1 1 ~ € aB mn "\ 8 a mn
= 3y [— i 2_ " g 2¢ O G.;= (103
S4 f de X g( Rg 2((9¢) 128 H#V)\HM M Al(Bl)nGmn Gmn
) 1 — .
—e*‘f’F'WM’lF’”'wL gTr(aMM’laMM) , (100  where ,8=1,2,3 andm,n=0,4,5...,10. Here ¢=¢

— 1log detG,, is the shifted dilaton and the metii;, ; is in

the Einstein framésince the dilaton term has been factored
where M is defined in Sec. I[Eq. (30)] along with other out explicitly) with Euclidean signature. The dimensionally
relevant parameters. In this caskl e O(6,22) and the reduced effective action can be determined following the dis-
moduli parametrize the coséd,(6,22)[O(6)x O(22)]. cussion in Sec. Il and has the fof80—32
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—2 1 4y -2¢ apy—
Rn— (96)2= 158 *H o, H Y da(e2\h(yMn)F*#)=0, (106

S3= f d*xh

In three dimensions, the solution of this can be represented

- 1 through a duality relation as
_a 20T aB_ -1 qa
e FaB(nM n)F*F+ 8Tr(&al\/l d*M) |,

— 1
(104 e *\Vh(nM p)FF=5 gy, (107)

where 7 is the metric ofO(7,23 , .
g ( ) wherey represents 30 scalar fieldi® a column matrix rep-

0 1, O resentation Furthermore, the Bianchi identity
7=\ 1 0 0 (109 €79, F 5= 0 (108
0 0 L5

can now be written in terms of the 30 scalar fields as
and the matrixM € O(7,23) has the form given in E¢30).

We can set the field strengtf z, to zero since, in three D (e?**(yM7)d%x) =0, (109

dimensionsB,; carries no physical degree of freedom. Fur-

thermore, now we have 30 gauge fields—16 from the startwhere D, represents the gravitational covariant derivative.

ing action and seven each coming from the dimensional refhe important point of this analysis is that, in three-

duction of the metric and the antisymmetric tensor fi€lds ~ dimensions, the gauge fields can be traded in for scalars,

correspondingly represents a 30 component column matrixwhich can, in principle, enlarge the coset parametrized by the
The equations of motion for the gauge fields, following moduli.

from the action in Eq(104), are(in matrix notation In fact, let us define a 3232 matrix as
26, T 24 1 26, T
M—e ““xx e"x Mzx— €™ (x nx)x
Vi 26T 2¢ Lo T
M= e’y —e Ee X' X . (110

1 1 .- - 1 .-
X'iM= e (xTpxt  5exTax —e 224 xT(aM ) x— 222X nx)?

This is manifestly symmetric and satisfies where () is a globalO(8,24) matrix Satisfyian;Q:;_
. Thus, we note that, in three dimensions, the action is a sum
MyM=175 (117)  of the Einstein Hilbert action and a nonlinear sigma model
coupled to gravity defined oveD®(8,24)[O(8)Xx0O(24)].
where We note here that this is, in fact, the symmetry content we

would have obtained had we dimensionally reduced to two

7 0 0 dimensions directly.
_ The three dimensional metric corresponding to the black
={0 0 1 (112 hole solution of Eq(101) has the form
0 1 0
ds?=h,zdx*dxf=dr?+R?(r)(d 6>+ sir? 6d$?)

corresponds to the metric f@(8,24). Therefore, the sym- (119
metric matrix M € O(8,24). It is straightforward to verify ~ .
that the action in Eq(104) can be rewritten as whereR(r)=\(r)R(r). Furthermore, the relations between

the three-dimensional fields and the four-dimensional ones
1 are given byT-duality relations[33] which we give in the
R+ =Tr(d,M~19*M) (113  Appendix. For the present, let us note that there is no depen-
8 dence on the azimuthal angle in any of the variables. Conse-
guently, we can integrate out in Eq. (113 to obtain

S=f d3xvh

and is invariant under th®(8,24) transformations

1
_ _ — 2 2 —.ab -1
hephug, M—QTMO, (114 S fd &y? R,+ 5 7*°Tr(a.M " *o;M) |, (116
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where £1,&2 denote, respectively,, 6, and the two dimen- solutions can be obtained by applying the solution generating
sional metric has the form techniqueg28,29,33,34 (see[35] for generating black hole
- solutions in type IIB theory The starting point is the spheri-
R(r) 0 cally symmetric Schwarzschild black hole solution that ap-
Yap™ 0 R(r)sing ' (117 pears as a solution of the heterotic string effective action.
Subsequently, a series dkduality transformations, often
This gives the effective two dimensional action in the con-called “boosts,” are implemented in order to obtain charged
text of black hole solutions and our general analysis of Sedblack hole solutions with 28 chargése are thinking of
[l can now be applied. electrically charged black holes; there will be another 28
In the preceding discussion, we considered a four dimenmagnetic charges t@oNext, one can obtain the extremal
sional action(100) with metric and matter fields such as the black hole solution by tuning an appropriate parameter to
shifted dilaton, the two-form Neveu-Schwarz—Neveu-zero.
Schwarz(NS-NS potential, the gauge fields, and the moduli  we have derived the transformation properties of the
matrix M. We have also considered a three dimensional '®monodromy matrix under the noncompdetiuality group in
duced effective actiol04) with corresponding fields and an gec. |11, Therefore, it will suffice to construct the mono-
M matrix which parametrizes the cos€(8,24){O(8)  dromy matrix for the Schwarzschild black hole solution in
X (24)]. The field configurations such as the gauge potenthe heterotic string theory. One can derive the monodromy
tials, shifted dilatons and the moduli appearing in the twWomatrix for the general charged black hole from the mono-
action are related by duality and these relations are given dromy matrix associated with the Schwarzschild black hole

in the Appendix. The charged black hole solutions of het-sojution, since tha-duality transformations are well known
erotic string theory are described by the moduli and thqsee[33], for example.

gauge field configurations, which are also presented in the |n what follows, we focus our attention on explicit con-
Appendix. One demands that tMematrix orM matrix tend  struction of the monodromy matrix, for the simplest of black
to a constant as— and similarly the gauge potentials have holes, namely, the Schwarzschild black hole, following from
appropriate asymptotic behavior in order to define the assaur general analysis. In this cas=0 and we can write,
ciated charges. As is well known, the charged black holénside the trapped region,

|
V(x)=diag At a5t ... ,xgzl):< \/ - r_rm,l, AN - r_rm,l, . ,1,\/— r_rm, \/— r_rm) (118

wherer denotes the radial coordinate ang=\3;,\g=\3,. Correspondingly, thé1 matrix has the form

— ) r r-m r r-m
M=va=d|ag<—m,1, o1 T,l, co 1

r-m’ r

(119

Here we follow the notation of33] and choose the moduli such that they go over to@{&,24) metric in the asymptotic
limit. Note that usually in the Schwarzschild metric the term appears-@&M ; here we have —m. This is just for notational
convenience. In this case, we can obtain, in a straightforward manner,

Qa: 01
P,=diag —\; '9,11,0, ... ,0m- Ng 90,0, . .. .0 N3 dahs1, — N3pduh32). (120

The one parameter family of potentials, in this case, satisfy

. . 17t
Vlx,) a.V(x 1) = 1—:tpi (121)

and can be determined to have the form

Vix,t)y=diagVy,1, ..., Vg1, . .. ,1Va1,Va), (122

— tgsi U tg+i =1
v=— = - . 123
bttty G t—tgy (123

Here, we have made the identification, following our discussion in Sec. I,

where {=1,8,31,32)
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t

———=\2. (124)
o+
The monodromy matrix, in this case, follows as
M(w)=diagMy(@),1, ..., IMg(®),1, ..., IMz(®),Mafw)) (125
|
with (i=1,8,31,32) caseB=0. Subsequently, we have also constructed it for the

caseB#0. Then, as a consistency check, we have derived
(126)  the MB from MB=C following our rules of the transforma-
tions of M under duality. Indeed, it is found that the mono-

Since other black hole solutions can be obtained from th&lromy matrix computed using the two different ways men-
Schwarzschild one by-duality transformations, the corre- tioned above coincide. Our second example is that of black
sponding monodromy matrices can also be obtained from thlole solutions in heterotic string theory. After recapitulating
one constructed above following the procedure described ithe charged black hole solutions, we construct the mono-
Sec. Il dromy matrix for the “seed” Schwarzschild black hole in
heterotic string theory. One can construct the monodromy
V. SUMMARY AND DISCUSSION matrix for charged black hole solutions since fheluality
transformations that generate charged black hole solutions

We have described the prescriptions for the constructionyre glready known. For the sake of completeness, we have
of the monodromy matrix for two dimensional string effec- given the corresponding metric for plane waves in the

tive action. We adopted the procedure cqmmonly followed intrapped region for the charged black hdl86,37. The isom-
the construction of the monodromy matrix for a class of tWOtries are quite transparent and the monodromy matrix for

Q|men3|onab models in curved space. As mentloned.earller,the colliding wave case can be constructed by the techniques
in most of the cases, the model arises from the dimen- used by ug16]

sional reduction of higher dimensional Einstein-Hilbert ac- . : . .
. . . . It is worthwhile to mention that all our results are derived
tion to two dimensional space-time due to the presence g

isometries. In the context of string theory, a similar approacﬁfor the case of classical two dimensional effeciive theory as

was adopted in the past to construct the monodromy matrix'S the case for effective two dimensional theories derived

as was the case with dimensionally reduced models in gra\)‘_rom higher dimensional Einstein-Hilbert action. It might be

ity. interesting to explore systematically the construction of the

One of our principal objectives was to take into accountMonodromy matrix and its properties in quantum theory. We
the symmetries associated with the string effective action anfope the work presented here will find applications in di-
construct the monodromy matrix that contains informationverse directions where one encounters effective two dimen-
about these symmetries. We have succeeded in introducingséonal models in the context of string theory.
procedure for the construction of the monodromy matrix un-
der general grounds with some mild requirements such as

wi— w

Mi(w)=

wito’

factorizability and the presence of isolated poles. Further- ACKNOWLEDGMENTS
more, we have demonstrated that the monodromy matrix ) )
transforms nontrivially under the noncompagtduality One of us(J.M.) would like to thank Professor Y. Ki-

group when the two dimensional string effective action re-tazawa for discussions on the relevance of the monodromy
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ground configurations are known. As a result, if we know the02-91ER40685.

monodromy matrix for a given set of simple string vacuum

backgrounds, we can directly obtain the corresponding

monodromy matrix for another set of more complicated APPENDIX: SOME USEFUL RELATIONS
backgrounds, if the latter can be derived by duality transfor- . . _
mations from the simpler backgrounds. In this appendix, we collect some relations that are useful

We have discussed two illustrative examples in Sec. IV a$h understanding the details of various issues, but are not
applications of our methods. First, we considered the Nappiessential to the logic presented in the text. As is mentioned in
Witten model which is exactly solvable for both vanishing the section on black holes, the fields in three and four dimen-
and nonvanishing two-form potentiBl This is a good test- sions are related by duality transformations of the fdtifde
ing ground for the duality transformation properties of thequantities are three dimensional while the ones without tildes
monodromy matrix. We have constructed this matrix for theare four dimensional
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A Reissner-Nordstrom BH will have the form of the four

G =Gyt Bi—Bi.i.. al-al.. ARe rdstr
! T e AT 14 dimensional metric, given by

J

-1 _ _ .
$="b+ 5[log detGpy,—log detG; ], ds’=\(r)dt?=\"}(s)dr?+R?(r)(d ¢+ sir? quoz)(,%)
~ 1/2 ~
N detG,,, _R )\_(r+,8)(r—/3)
detGij ! A’ o (XY_ZZ)ZL/Z !
(L)i _ ~ij R ) (1)i _ ~ijEAMR ] _ 2\1/2
At _G Gl’l+] y Ad) —G A¢Gm’1+] I R_(XY_Z ) ]
(A1)
2
AR =3l —al Al om
XY—Z?

AP =RV v ag AT _ _
X=r?+Q,cos hd;+Q;sirfhés;,

~ 1
AP=By11,i+BjAY + Ea:Agg)l :

Y=r?+Qqr,
Asﬁzi):’A?/;H_El-%—i,n’AiSA-H_’_ BijAf;”Jr%ai'Ag?)' . Z=Qqsinhayr,
W=r2,
We will now give the explicit forms of some of the black
hole solutions as well as discuss briefly the connection be- Q,=+\/Q,+ 2, (A7)
tween the black holes and the colliding waves. We know that
in four dimensions, inside the Schwarzschild horizon, 61: + W

<2M, the black holgBH) metric has the following form:

d32=<2Mr_r)dt2—(

Here B is the nonextremality parameter, where the extremal
)dr2+ r2(d6?+sir? 6d¢?). limit corresponds tg3—0.

2M —r The nonextremal BH metric has the generic form
. o —r)(r—r_ r’—R2
On the other hand, for colliding plane waves, the metric, in dszz(r+ N > r-) 2_ ( 0 dr2
general, can be represented as (r’—Rg) (re—n(r=r-)
ds2= —e MUV dudy + e Y(uv)(VUo)gy2 4 g~ V(Uv)gy2) +(r?—R3)(d6*+sir? gd?) (A8)
(A3)

) _ ) whereRj is expressed in terms of charges and boost param-
whereu,v are light-cone coordinates. Let us consider thegters of theD(d,d) transformationr . =M = r, and agairr,,
regionu=0y=0.u+v=m/2. In this region, if we make the s expressed in terms of charges as well asQe,d) boost
transformations parameters.

We can go from this black hole metric to that of colliding

r—M[1-=sin(u+v)], waves through the transformatihaé]

iy u v
0—5+(—u), (A4) r—M=rol =+,
a b
y
t—=X,o—1+ = _)Z+ E_K
M 0 2 \a b))’
and analytically continug beyond the cyclic boundary con- (A9)
dition on the anglep, then the metric for the black hole i XT'o
becomes (M2— RS)I/Z’
cog(u+uv
d32:—4M2[1—Sin(U+U)]2dUdU+mdX2 o1+ y
—SIn(U+v — 5 5
(MZ_Rg)lIZ
+ cog(u—v)[1-sin(u+v)]?dy?, (A5)
Therefore, we see again that the trapped region of the BH is
which has the form of that for colliding waves. locally isometric to the interaction region of the colliding
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plane waves. The periodic coordinagegoes toy (which is
nonperiodi¢ to represent a plane wave in tikey plane, so
that, in the trapped region,

In the asymptotic limit, the Einstein metrg,,= 7, for u
=v=0. The incoming parameteis and b are required to
satisfy the following relations:

_ —2{[M=rgsin(u/a+v/b)]*~ R3}

Qur» ab ,
(M?—R§)cogu/a+v/b)? ab=(M2-Rg)= %e”, (A11)
ST (M =rosinu/at v/b) 2—R2) (A10)
u v\{[M=*rgsin(u/a+v/b)]?—R3}
gyy=cos 2 b (M?_R?) : whereS,,; is the entropy of the extremal BH.

[1] A. Das, Integrable Models (World Scientific, Singapore, [15] A. Das, J. Maharana, and A. Melikyan, to appear in Phys. Lett.
1989; L. D. Faddeev, Integrable Models in B, hep-th/A11158.
(1+1)-Dimensional Quantum Field Theqry1982 Les [16] A. Das, J. Maharana, and A. Melikyan, Phys. Lett5E8 306

Houches LectureéElsevier, North Holland, 1984

[2] E. Abdalla and M. C. B. AbdallaNonperturbative Methods in

Two-dimensional Quantum Field TheofyVorld Scientific,
Singapore, 1991
[3] M. B. Green, J. H. Schwarz, and E. Witte8tring Theory

(2001.

[17] C. Callan, S. Giddings, J. Harvey, and A. Strominger, Phys.

Rev. D45, 1005(1992.

[18] S. Chandrasekhar and B. C. Xanthoupoulos, Proc. R. Soc.

LondonA398, 223(1985.

[19] V. Ferrari, J. Ibanez, and M. Bruni, Phys. Rev.38, 1053
(1987.

[20] U. Yurtsever, Phys. Rev. B7, 2790(1988; 38, 1706(1988.

[21] J. B. Griffiths, Colliding Plane Waves in General Relativity
(Oxford University Press, Oxford, 1981

(Cambridge University Press, Cambridge, England, 1987
Polchinski,String Theory(Cambridge University Press, Cam-
bridge, England, 1998

[4] A. Giveon, M. Porrati, and E. Rabinovici, Phys. Rep2@4,

77(1994. . ) [22] A. Feinstein, K. E. Kunze, and M. A. Vazquez-Mozo, Class.
[5]A. Sen, “Developments in Superstring Theory,” Quantum Gravl7, 3599(2000

hep-th/9810356. . . [23] V. Bozza and G. Veneziano, J. High Energy Phy6, 035
[6] J. Maharana, “Recent Developments in String Theory,” (2000.

hep-th/9911200.
[7] I. Bakas, Nucl. PhysB428 374 (1994).
[8] J. Maharana, Phys. Rev. Lefi5, 205(1995; Mod. Phys. Lett.

A 11, 9 (1996. [26] J. Maharana and J. H. Schwarz, Nucl. PH§890, 3 (1993.
[9]1J. H. Schwarz, Nucl. PhysB447, 137 (1995; B454 427  [27] S. Hassan and A. Sen, Nucl. Ph{375, 103(1992.
(1995; “Classical Duality Symmetries in Two Dimensions,” [28] A. Sen, Nucl. PhysB440, 421 (1995.
hep-th/9505170; a collection of references to earlier works caj29] D. Youm, Phys. Rep316, 1 (1999.
be found in these papers. [30] N. Markus and J. Schwarz, Nucl. Phyg228 145 (1983.
[10] A. Sen, Nucl. PhysB447, 62 (1995. [31] M. Duff and J. Lu, Nucl. PhysB347, 394(1990.
[11] H. Nicolai, Phys. Lett. B235 295 (1990. [32] A. Sen, Nucl. PhysB434, 179(1995.
[12] V. Belinski and V. Zakharov, Sov. Phys. JE®B, 985 (1978; [33] M. Cvetic and D. Youm, Nucl. Phy8472 249(1996.
H. Nicolai, in Schladming Lecturegdited by H. Mitter and H.  [34] R. Kallosh, A. Linde, T. Ortin, A. Peet, and A. Van Proeyen,
Gaustere(Springer-Verlag, Berlin, 1991 Phys. Rev. D46, 5278(1992; R. Kallosh and T. Ortinjbid.
[13] H. Nicolai, D. Korotkin, and H. Samtleben, @uantum Fields 48, 742 (1993; E. Bergsheoff, R. Kallosh, and T. Ortiihid.
and Quantum Spacetimedited by G 't Hooft, A. Jaffe, G. 50, 5188(1994).
Mack, P. K. Miller, and R. Stora, NATO Advanced Study In- [35] A. Das, J. Maharana, and S. Roy, Phys. Lett4®1, 185
stitute, Cargese, 199@lenum, New York, 1997 (1998.
[14] P. Breitenlohner and D. Maison, Ann. Inst. Henri Poingare [36] P. Schwarz, Phys. Rev. B6, 7833(1997.
Sect. A46, 215(1987; F. J. Ernst, A. Garcia, and I. Hauser, J. [37] N. Breton, T. Matos, and A. Garcia, Phys. Rev.53, 1868
Math. Phys.28, 2155(1987). (1996.

[24] C. Nappi and E. Witten, Phys. Lett. P93 309 (1992.
[25] M. Gasperini, J. Maharana, and G. Veneziano, Phys. Lett. B
296, 51 (1993.

126001-16



