
PHYSICAL REVIEW D, VOLUME 65, 126001
Duality, monodromy, and integrability of two dimensional string effective action
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The monodromy matrixM̂ is constructed for the two dimensional tree level string effective action. The pole

structure ofM̂ is derived using its factorizability property. It is found that the monodromy matrix transforms
nontrivially under the noncompactT-duality group, which leaves the effective action invariant, and this can be
used to construct the monodromy matrix for more complicated backgrounds starting from simpler ones. We

construct, explicitly,M̂ for the exactly solvable Nappi-Witten model, both whenB50 andBÞ0, where these
ideas can be directly checked. We consider well known charged black hole solutions in the heterotic string
theory that can be generated byT-duality transformations from a spherically symmetric ‘‘seed’’ Schwarzschild
solution. We construct the monodromy matrix for the Schwarzschild black hole background of the heterotic
string theory.
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I. INTRODUCTION

Field theories in two space-time dimensions have
tracted considerable attention over the past few deca
They possess a variety of interesting features. Some of t
field theories capture several salient characteristics of
dimensional theories and, therefore, such two dimensio
models are used as theoretical laboratories. Moreover,
nonperturbative properties of field theories are much sim
to study in two dimensional models. There are classes of
dimensional theories which are endowed with a rich symm
try structure: integrable models@1# and conformal field theo-
ries @2,3# belong to this special category, among others. U
der special circumstances, in the presence of isometrie
four dimensional theory may also be described by an ef
tive two dimensional theory.

The string theories are abundantly rich in their symme
content. The tree level string effective action, dimensiona
reduced to lower dimensions, is known to possess enla
symmetries@4–6#. Let us consider toroidal compactificatio
of a heterotic string on ad-dimensional torus, from 10 di
mensional space-time to 102d dimensions. The reduce
theory is known to be invariant under the noncomp
T-duality groupO(d,d116). For the cased56, namely, in
the case of reduction to four space-time dimensions, the fi
strength of the two-form antisymmetric tensor can be tra
for the pseudoscalar axion. Furthermore, the dilaton and
ion can be combined to parametrize the coset SL(2,R)/U(1).
Thus, the four dimensional theory possesses theT-duality as
well as theS-duality group of symmetries. When the strin
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effective action is reduced to two space-time dimensions
encounter an enhancement in symmetry, as has been stu
by several authors@7–11#. The string effective action de
scribes supergravity theories and the integrability proper
of such theories have been investigated in the recent
@12,13#. It is worthwhile to mention that higher dimension
Einstein theory, dimensionally reduced to effective two
mensional theories, has been studied in the past@14#. One of
the approaches is to derive the monodromy matrix wh
encodes some of the essential features of integrable
theories. An effective two dimensional action naturally a
pears when one considers some aspects of black hole p
ics, colliding plane waves as well as special types of cosm
logical models. Recently, we have shown that the t
dimensional string effective action has a connection with
tegrable systems from a new perspective in the sense tha
can construct the monodromy matrix for such theories w
well defined prescriptions@15#. It was shown, while investi-
gating the collision of plane fronted stringy waves, that t
monodromy matrix can be constructed explicitly for a giv
set of background configurations@16#. Subsequently, we
were able to give the procedures for deriving the monodro
matrix under general settings. It is worth mentioning th
some of the interesting aspects of black hole physics can
described by an effective two dimensional theory@17#.
Moreover, there is an intimate relation between collidi
plane waves and the description of four dimensional spa
time with two commuting Killing vectors.

Chandrasekhar and Xanthopoulos@18#, in their seminal
work, have shown that a violently time dependent space-t
with a pair of Killing vectors provides a description of plan
colliding gravitational waves. Furthermore, Ferrari, Iban
and Bruni @19# have demonstrated that the colliding pla
wave metric can be identified, locally, as isometric to t
interior of a Schwarzschild metric. In another important st
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Yurtsever@20# constructed the transformation that provide
connection between a metric describing colliding waves
one corresponding to the Schwarzschild black hole. As
well known from the study of colliding plane gravitation
waves@21# corresponding to massless states of strings, th
is a curvature singularity in the future. Recently, the appe
ance of the future singularity has found an alternative
scription in the context of the pre-big-bang~PBB! scenario
@22,23#. The incoming plane waves are to be identified as
initial stringy vacuua of the Universe, which collide and le
to the creation of the Universe. Indeed, the solutions co
spond to the Kasner type metric and the exponents fulfill
requirements of the PBB conditions. A very important fa
in this context, is that one starts from a four dimensio
effective action; however, the physical process is effectiv
described by a two dimensional theory.

When we focus our attention on addressing these p
lems in the framework of string theory, it is essential to ke
in mind the special symmetries, such as dualities, which
an integral part of the stringy symmetries. We have inve
gated @15# the behavior of the monodromy matrix und
T-duality transformation of the backgrounds under a gen
setting when the two dimensional action is derived from
D-dimensional string effective action through compactific
tion on a d-dimensional torusTd. It was shown that the
monodromy matrix transforms nontrivially under the dual
group O(d,d). Therefore, it opens up the possibility o
studying integrable systems which might appear in the c
text of string theories. As an example, we considered
Nappi-Witten @24# model, which is a solution to an exac
conformal field theory described by a Wess-Zumino-Witt
~WZW! model. We first obtained the monodromy matrix f
the case when the two-form antisymmetric tensor is se
zero. It is also well known that an antisymmetric tens
background can be generated through anO(2,2) transforma-
tion from the initial backgrounds@25#. We can construct the
monodromy matrix for the new set of backgrounds using
prescriptions. On the other hand, the new monodromy ma
can be constructed directly by utilizing the transformati
rules discovered by us. Indeed, we explicitly demonstra
that the monodromy matrices obtained via the two differ
routes are identical. It is obvious from the preceding disc
sion that the symmetries of the effective action play an
portant role in the construction of the monodromy matrix a
its transformation properties under those symmetry trans
mations. Therefore, it is natural to expect intimate conn
tions between the integrability properties of the two dime
sional theory and the full stringy symmetry groups ofT and
S dualities.

The purpose of this article is to present details of o
investigations in the directions alluded to above. We prov
prescriptions for the construction of the monodromy mat
M̂ for the string theoretic two dimensional effective actio
We present the pole structure of the monodromy matrix fr
general arguments. The duality transformation propertie
M̂ follow from the definition and construction of this matrix
For example, if the action respectsT duality, then one can
derive howM̂ transforms under the group, whereas if t
12600
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underlying symmetry corresponds toSduality an appropriate
transformation rule for the monodromy matrix can also
derived. Our paper is organized as follows. In Sec. II,
recapitulate the form of the two dimensional action obtain
by toroidal compactification from higher dimensions. Th
we present the equations of motion. A key ingredient in
derivation of the monodromy matrix is the coset space re
mulation of the reduced action. We devote Sec. III to t
construction of the monodromy matrix for the problem und
consideration. The transformation rules forM̂ under a
T-duality transformation are derived once the matrix is co
structed. An interesting observation is that the expression
M̂ already captures the stringy symmetry in an elegant m
ner. In this section, we also present explicit forms ofM̂ for
simple background configurations which still preserve so
of the general features. We present some illustrative
amples in Sec. IV. The structure of the Nappi-Witten mod
in the present context is analyzed in detail. Furthermore,
choose an example from black hole physics to construct
monodromy matrix. In this case, the black hole solution c
be thought of as a solution to type IIB string effective acti
and the theory is endowed withS-duality symmetry. Thus we
are able to provide an example of how the monodromy m
trix transforms under theS-duality group SL(2,R). We
present a brief conclusion in Sec. V and some of the us
relations are collected in the Appendix.

II. TWO DIMENSIONAL EFFECTIVE ACTION

In this section, we will briefly recapitulate the form of th
string effective action in two dimensions, which will form
the basis for all our subsequent discussions. Let us cons
for simplicity, the tree level string effective action inD di-
mensions consisting of the graviton, the dilaton, and the
tisymmetric tensor field,

Ŝ5E dDxA2Ĝe2f̂FRĜ1~ ]̂f̂ !22
1

12
Ĥ m̂n̂r̂Ĥ m̂n̂r̂G . ~1!

Here, Ĝm̂n̂ is the D-dimensional metric in the string fram
with signature (2,1,•••,1), and Ĝ5detĜm̂n̂ . R̂Ĝ is the
scalar curvature,f̂ is the dilaton, and Ĥ m̂n̂r̂5]m̂B̂n̂ r̂

1]r̂B̂m̂n̂1]n̂B̂r̂m̂ is the field strength for the second-rank a
tisymmetric tensor fieldB̂m̂n̂ .

If we compactify this action on ad-dimensional torusTd,
where d5D22, then the resulting dimensionally reduce
action will describe the two dimensional string effective a
tion, which has the form@26,27#

S5E dx0dx1A2ge2f̄FR1~]f̄ !21
1

8
Tr~]aM 21]aM !G .

~2!

Herea,b50,1 are the two dimensional space-time indic
and gab is the two dimensional space-time metric withg
5detgab . R is the corresponding two dimensional sca
curvature, while the shifted dilaton is defined as
1-2
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f̄5f2
1

2
log detGi j ~3!

whereGi j is the metric in the internal space corresponding
the toroidally compactified coordinatesxi , i , j 52,3, . . . ,D
21 (d5D22). Finally, M is a 2d32d symmetric matrix
of the form

M5S G21 2G21B

BG21 G2BG21BD ~4!

whereB represents the moduli coming from the dimensio
reduction of theB̂ field in D dimensions. In general, ther
will be additional terms in Eq.~2! associated withd Abelian
gauge fields arising from the metricĜm̂n̂ and another set ofd
Abelian gauge fields coming from the antisymmetric ten
B̂m̂n̂ , as a result of dimensional reduction@26#. Furthermore,
there would also have been terms involving the field stren
of the two dimensional tensor field,Bab . Since we are in
two space-time dimensions, we have dropped the gauge
terms and, in the same spirit, have not kept the field stren
of Bab , which can always be removed, if it depends only
the coordinatesx0 and x1. Later, we will comment on the
gauge fields, which assume a significant role when Abe
gauge fields are present in the original string effective ac
~1!.

The matrixM corresponds to a symmetric representat
of the groupO(d,d) and the dimensionally reduced action
Eq. ~2! is invariant under the globalO(d,d) transformations

gab→gab , f̄→f̄, ~5!

M→VTMV, ~6!

where VPO(d,d) is the global transformation matrix
which preserves theO(d,d) metric

h5S 0 1d

1d 0 D ~7!

with 1d representing the identity matrix ind dimensions;
namely,V satisfiesVThV5h.

The equations of motion for the different fields follo
from the dimensionally reduced effective action~2!. For ex-
ample, varying the effective action~2! with respect to the
shifted dilatonf̄ and the metricgab leads, respectively, to

R12gabDaDbf̄2gab]af̄]bf̄

1
1

8
gab Tr~]aM 21]bM !50, ~8!

Rab1DaDbf̄1
1

8
Tr~]aM 21]bM !50. ~9!

It follows from these equations that

DaDae2f̄50. ~10!
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The variation of the effective action with respect toM needs
some care sinceM is a symmetricO(d,d) matrix satisfying
MhM5h. A simple method, for example, would involv
adding the constraint to the effective action through
Lagrange multiplier. In any case, since there is no poten
term in the effective action involving the matrixM, the
Euler-Lagrange equation of motion following from the vari
tion of the action with respect toM has the form of a con-
servation law:

]a~e2f̄A2ggabM 21]bM !50. ~11!

We can further simplify these equations by working in t
light-cone coordinates

x15
1

A2
~x01x1!, x25

1

A2
~x02x1! ~12!

and choosing the conformal gauge for the two dimensio
metric, namely,

gab5eF(x1,x2)hab . ~13!

In this case, Eqs.~10! and ~11!, respectively, take the forms

]1]2e2f̄50, ~14!

]1~e2f̄M 21]2M !1]2~e2f̄M 21]1M !50, ~15!

while Eqs.~8! and ~9! can be written explicitly as

]1
2 f̄2]1F]1f̄1

1

8
Tr~]1M 21]1M !50,

]1]2f̄2]1]2F1
1

8
Tr~]1M 21]2M !50,

~16!

]2
2 f̄2]2F]2f̄1

1

8
Tr~]2M 21]2M !50.

It is well known @26# that the moduli appearing in th
definition of theM matrix @see Eq.~4!# parametrize the cose
O(d,d)/@O(d)3O(d)#. Correspondingly, it is convenient t
introduce a triangular matrixVPO(d,d)/@O(d)3O(d)# of
the form

V5S E21 0

BE21 ETD ~17!

such thatM5VVT. Here, E is the vielbein in the interna
space so that (ETE) i j 5Gi j . Under a combined globa
O(d,d) and a localO(d)3O(d) transformation

V→VTVh~x! ~18!

whereVPO(d,d) andh(x)PO(d)3O(d),

M5VVT→VTMV. ~19!
1-3
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That is, theM matrix is sensitive only to a globalO(d,d)
rotation.

From the matrixV, we can construct the currentV21]aV,
which belongs to the Lie algebra ofO(d,d) and can be de-
composed as

V21]aV5Pa1Qa . ~20!

Here,Qa belongs to the Lie algebra of the maximally com
pact subgroupO(d)3O(d) and Pa belongs to the comple
ment. Furthermore, it follows from the symmetric space
tomorphism property of the cosetO(d,d)/@O(d)3O(d)#
that Pa

T5Pa ,Qa
T52Qa so that we can identify

Pa5
1

2
@V21]aV1~V21]aV!T#,

Qa5
1

2
@V21]aV2~V21]aV!T#. ~21!

It is now straightforward to check that

Tr~]aM 21]bM !524 Tr~PaPb!. ~22!

Furthermore, under a globalO(d,d) rotation, the currents in
Eq. ~21! are invariant, while under a localO(d)3O(d)
transformation,V→Vh(x),

Pa→h21~x!Pah~x!,

Qa→h21~x!Qah~x!1h21~x!]ah~x!. ~23!

That is, under a localO(d)3O(d) transformation,Qa trans-
forms like a gauge field, whilePa transforms as belonging t
the adjoint representation. It is clear, therefore, that Eq.~22!
is invariant under the globalO(d,d) as well as the loca
O(d)3O(d) transformations. Consequently, the action
Eq. ~2! is also invariant under localO(d)3O(d) transfor-
mations.

This brings out, naturally, the connection between the s
tem under study and two dimensional integrable syste
First, let us note that, in the absence of gravity and the d
ton ~namely, ifgab5hab ,f̄50), the action in Eq.~2! sim-
ply corresponds to a flat space sigma model defined ove
coset O(d,d)/@O(d)3O(d)#, which can be analyzed
through a zero curvature condition with a constant spec
parameter~to be discussed in more detail in the next sectio!.
In the presence of gravity as well as the dilaton, we c
eliminate the dilaton from the action~2! by choosing the
particular conformal gaugegab5ef̄hab . In this case, the
action will describe a sigma model, defined over the co
O(d,d)/@O(d)3O(d)#, coupled to gravity. As we will show
in the next section, this system can also be analyzed thro
a zero curvature condition much like the flat space ca
although consistency requires the spectral parameter, in
case, to be space-time dependent.

So far, we have discussed only the two dimensional str
effective action starting from theD-dimensional action in
Eq. ~1! involving the graviton, the dilaton, and the antisym
12600
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metric tensor field. However, the action in Eq.~1! can be
generalized by addingn Abelian gauge fields, with the addi
tional action of the form~such terms naturally arise in he
erotic string theory!

ŜÂ52
1

4E dDxA2Ĝe2f̂~ ĝm̂r̂ĝn̂ l̂d IJF̂ m̂n̂
I

F̂ r̂ l̂
J

! ~24!

whereI ,J51,2, . . . ,n and

F̂ m̂n̂
I

5]m̂Ân̂
I
2]n̂Âm̂

I . ~25!

This action can also be dimensionally reduced@27# to two
dimensions and the resulting effective action takes the fo

SA52
1

4E dx0dx1A2ge2f̄~Fab
I FIab12Fa j

I FIa j ! ~26!

where we have defined

ai
I5Âi

I ,

Aa
(1)I5Ĝa

I ,

Aa
(3)I5Âa

I 2aj
IAa

(1) j ,

Fab
(1)i5]aAb

(1)i2]bAa
(1)i , ~27!

Fab
(3)I5]aAb

(3)I2]bAa
(3)I ,

Fab
I 5Fab

(3)I1Fab
(1)iai

I ,

Fa i
I 5]aai

I .

In the presence of the Abelian gauge fields, the field stren
H associated with the second-rank antisymmetric tensor fi
B needs to be redefined for gauge invariance as

Ha i j 5]aBi j 1
1

2
~ai

I]aaj
I2aj

I]aai
I !,

Hab i52Ci j Fab
(1) j1Fab i

(2) 2ai
IFab

(3)I , ~28!

Habg5]aBbg2
1

2
A a

r h rsF bg
s 1cyclic permutations,

whereA a
r 5(Aa

(1)i ,Aa i
(2) ,Aa

(3)I), F ab
r 5]aA b

r 2]bA a
r , and

Aa i
(2)5B̂a i1Bi j Aa

(1) j1
1

2
ai

IAa
(3)I ,

Fab i
(2) 5]aAb i

(2)2]bAa i
(2) , ~29!

Ci j 5
1

2
ai

Iaj
I1Bi j .

Once again, it is easy to see that, in two space-time
mensions, the field strengthHabg can be set to zero. Further
1-4
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more, keeping all other terms, the complete two dimensio
string effective action can be shown to have the same f
as in Eq.~2! with

M5S G21 2G21C 2G21aT

2CG21 G1CTG21C CTG21aT1aT

2aG21 aG21C1a 11aG21aT
D .

~30!

In this case,M is a symmetricd3(d1n) matrix (d5D
22) belonging toO(d,d1n). Under anO(d,d1n) trans-
formation

M→VTMV ~31!

where the parameter of transformationVPO(d,d1n) satis-
fying VThV5h, where

h5S 0 1d 0

1d 0 0

0 0 1n

D ~32!

represents the metric forO(d,d1n). As in the earlier case, i
is more convenient to introduce a matrixVPO(d,d
1n)/@O(d)3O(d1n)# of the form

V5S E21T 0 0

2CTE21T ET aT

2aE21T 0 1
D ~33!

such thatM5VVT. As before, under a combined glob
O(d,d1n) and a localO(d)3O(d1n) transformation

V→VTVh~x! ~34!

where VPO(d,d1n) and h(x)PO(d)3O(d1n). How-
ever, the matrixM is not sensitive to the localO(d)3O(d
1n) transformations. We can now define the curre
V21]aV which belongs to the Lie algebra ofO(d,d1n) and
which can be decomposed as

V21]aV5Pa1Qa . ~35!

In the present case,Qa belongs to the Lie algebra of th
maximal compact subgroupO(d)3O(d1n), while Pa be-
longs to the complement. Under a globalO(d,d1n) trans-
formation, Pa and Qa are invariant, while under a loca
O(d)3O(d1n) transformationV→Vh(x)

Pa→h21~x!Pah~x!,

Qa→h21~x!Qah~x!1h21~x!]ah~x!, ~36!

and all the discussion for the earlier case can again be ca
through.

III. MONODROMY MATRIX

In the last section, we saw that the two dimensional str
effective action, dimensionally reduced fromD dimensions,
12600
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has the natural description of a sigma model defined o
coset, coupled to gravity. In the case when there are no A
lian gauge fields present in the starting string action,
sigma model is defined on the cosetO(d,d)/@O(d)
3O(d)# whered5D22. On the other hand, ifn Abelian
gauge fields are present in the starting string action, the c
can be identified withO(d,d1n)/@O(d)3O(d1n)#. In this
section, we will further analyze the integrability properties
such a system and construct the monodromy matrix ass
ated with the system.

Let us consider a general sigma model in flat space-ti
defined on the cosetG/H. The two cases of interest for u
are when G5O(d,d),H5O(d)3O(d) and G5O(d,d
1n),H5O(d)3O(d1n). Let VPG/H and M5VVT.
Then, as we have noted in the last section, we can dec
pose the currentV21]aV belonging to the Lie algebra ofG
as

V21]aV5Pa1Qa ~37!

whereQa belongs to the Lie algebra ofH, while Pa belongs
to the complement. The integrability condition followin
from this corresponds to the zero curvature condition

]a~V21]bV!2]b~V21]aV!1@~V21]aV!,~V21]bV!#50.
~38!

Explicitly, this equation gives

]aQb2]bQa1@Qa ,Qb#1@Pa ,Pb#50,

DaPb2DbPa50,
~39!

where we have defined

DaPb5]aPb1@Qa ,Pb#. ~40!

The equations of motion for the flat space sigma model@see
Eq. ~11!#

hab]a~M 21]bM !50 ~41!

can be rewritten in the form

habDaPb50. ~42!

Let us next introduce a one parameter family of matric
V̂(x,t) where t is a constant parameter~and not time!, also
known as the spectral parameter, such thatV̂(x,t50)
5V(x) and

V̂21]aV̂5Qa1
11t2

12t2
Pa1

2t

12t2
eabPb. ~43!

Then it is straightforward to check that the integrability co
dition

]a~V̂21]bV̂!2]b~V̂21]aV̂!1@~V̂21]aV̂!,~V̂21]bV̂!#50
~44!
1-5
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leads naturally to Eqs.~39!,~42!. That is, the integrability
condition ~39! as well as the equation of motion for the fl
space sigma model are obtained from the zero curvature
dition associated with a potential which depends on a c
stant spectral parameter.

In the presence of gravity, however, the equation for
sigma model is modified@12,13#. In the conformal gauge
gab5ef̄hab , Eq. ~11! takes the form

hab]a~e2f̄M 21]bM !50,

or habDa~e2f̄Pb!5Da~e2f̄Pa!50. ~45!

As before, we can introduce a one parameter family of
tentials depending on a spectral parameter and with a dec
position of the form~43!. However, in this case, it is easy t
check that the zero curvature condition in Eq.~44! leads to
the correct dynamical equation as well as the integrab
condition, provided the spectral parameter is space-time
pendent and satisfies

]at52
1

2
eab]bFe2f̄S t1

1

t D G . ~46!

In the conformal gauge, as we saw earlier in Eq.~14!, the
shifted dilaton satisfies a simple equation. Therefore, de
ing

r~x!5e2f̄, ~47!

we note that the solution following from the equation for t
shifted dilaton can be written as

r~x!5r1~x1!1r2~x2!. ~48!

With this, the solution to Eq.~46! can be written as

t~x!5
Av1r12Av2r2

Av1r11Av2r2

~49!

wherev is the constant of integration, which can be thoug
of as a global spectral parameter. It is clear that the solut
in Eq. ~49! are double valued in nature.

There are several things to note from our discussion
far. First of all, the one parameter family of connections~cur-
rents! does not determine the potentialV̂(x,t) uniquely,
namely, V̂ and S(v)V̂, where S(v) is a constant matrix,
yield the same one parameter family of connections. Sec
in the presence of the spectral parameter, the symm
space automorphism can be generalized as

h`
„V̂~x,t !…5hS V̂S x,

1

t D D5S V̂21S x,
1

t D D
T

. ~50!

It can be shown, following from this, that

S V̂21S x,
1

t D ]aV̂S x,
1

t D D
T

52V̂21~x,t !]aV̂~x,t !. ~51!

Given these, let us define
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M5V̂~x,t !V̂TS x,
1

t D . ~52!

It follows now, from Eq.~51!, that

]aM50; ~53!

namely,M5M(v) and is independent of the space-tim
coordinates.M(v) is known as the monodromy matrix fo
the system under study and encodes properties of integr
ity such as the conserved quantities associated with the
tem.

Let us next describe how the monodromy matrix is co
structed for such systems. For simplicity, we will consid
the action in Eq.~2!, which describes a sigma model define
on the cosetO(d,d)/@O(d)3O(d)#. The other case can b
studied in a completely analogous manner. To start with,
us set the antisymmetric tensor field to zero, namely,B50.
In this case, we can write

M (B50)5S G21 0

0 GD , V(B50)5S E21 0

0 ED . ~54!

Let us further assume that the matrixE and thereforeG are
diagonal, as is relevant in the study of colliding plane wav
namely, let us parametrize

E5diag~e(l1c1)/2,e(l1c2)/2, . . . ,e(l1cd)/2!,

G5diag~el1c1,el1c2, . . . ,el1cd! ~55!

with ( ic i50 so thatl5(1/d)log detG, as adopted in@23#.
In this case, it follows that@see Eq.~21!#

Pa5
1

2
@~V(B50)!21]aV(B50)1„~V(B50)!21]aV(B50)

…

T#

5S 2E21]aE 0

0 E21]aED ,

~56!

Qa5
1

2
@~V(B50)!21]aV(B50)2„~V(B50)!21]aV(B50)

…

T#

50,

so that we have

~V̂(B50)!21]1V̂(B50)5
12t

11t
P1 ,

~57!

~V̂(B50)!21]2V̂(B50)5
11t

12t
P2 .

Since P6 are diagonal matrices andV̂(B50)(x,t50)
5V(B50)(x) is diagonal, it follows that we can write

V̂(B50)~x,t !5S V̄(B50)~x,t ! 0

0 ~V̄(B50)!21~x,t !
D ~58!
1-6
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with V̄(B50)(x,t) a diagonal matrix of the form
(V̄1 ,V̄2 , . . . ,V̄d). Let us assume that

V̄i5
td1 i

t i

t2t i

t2td1 i
Ei

21 , i 51,2, . . . ,d, ~59!

wheret i is the spectral parameter corresponding to the c
stant v i . Clearly, for t50, this leads to the diagonal ele
ments ofV(B50). Furthermore, noting the form ofP6 in Eq.
~56! and recalling that the spectral parameters satisfy

]6t5
17t

16t
]6 ln r, ]6t i5

17t i

16t i
]6 ln r, ~60!

it is easy to verify that

V̄i
21]6V̄i5]6 ln Ei

217
t

16t
]6 lnS 2

t i

td1 i
D

5
17t

16t
]6 ln Ei

21 ~61!

provided we identify@ t i and td1 i have opposite signature
following from the double valued nature of the solutions
Eq. ~49!#

2
t i

td1 i
5Ei

22 . ~62!

In that case, we can write

~V̂(B50)!21]6V̂(B50)5
17t

16tS 2E21]6E 0

0 E21]6ED
5

17t

16t
P6 . ~63!

Thus, we see that, in the present case,

V̄i5
td1 i

t i

t2t i

t2td1 i
Ei

215A2
td1 i

t i

t2t i

t2td1 i
~64!

and the matrixV̂(B50)(x,t) has 2d simple poles—one pai
for every diagonal elementEi . Furthermore, it is simple to
check from Eq.~49! that the spectral parameters satisfy

v2v i

v2vd1 i
5

td1 i

t i

t2t i

t2td1 i

1/t2t i

1/t2td1 i
, ~65!

so that we can determine the monodromy matrix to be of
form

M̂(B50)5V̂(B50)~x,t !~V̂B50)!TS x,
1

t D
5S M~v! 0

0 M 21~v!
D , ~66!

whereM(v) is diagonal with
12600
-

e

Mi~v!5V̄i~x,t !V̄i S x,
1

t D52
v2v i

v2vd1 i
. ~67!

We note that the double valued relation between the glo
and the local spectral parameters allows us to choosevd1 i
52v i , in which case, we have

Mi~v!5
v i2v

v i1v
. ~68!

This determines the monodromy matrix for the case wh
B50.

Let us note next that we are dealing with a sigma mod
obtained through dimensional reduction of a higher dim
sional tree level string effective action. Therefore, the sy
metries present in the string theory, such asT duality, should
be encoded in the monodromy matrix as well. For examp
it is known that one can generate new backgrounds~of the
string theory! starting from given ones throughT-duality
transformations. In particular, starting from a backgrou
where B50, it is possible in some models~such as the
Nappi-Witten model! to generate backgrounds withBÞ0
through aT-duality rotation. It is natural, therefore, to exam
ine how the monodromy matrix transforms under such tra
formations, for then we can determine the monodromy m
trix for more complicated backgrounds starting from simp
ones.

Let us note that theT-duality transformation, within the
context of string theory~without Abelian gauge fields!, cor-
responds to a globalO(d,d) rotation. Since the one param
eter family of matrices V̂(x,t)PO(d,d)/@O(d)3O(d)#

much like V(x)5V̂(x,t50), it follows that under a globa
O(d,d) rotation

V̂~x,t !→VTV̂~x,t !,

M̂~v!5V̂~x,t !V̂TS x,
1

t D→VTV̂~x,t !V̂TS x,
1

t DV

5VTM̂~v!V. ~69!

Let us also recall that, under a localO(d)3O(d) transfor-
mation, V̂(x,t)→V̂(x,t)h(x). Therefore, the only loca
transformations that will preserve the global nature of
monodromy matrix are the ones that do not depend on
local spectral parameter explicitly. We have already seen
the matrixM5VVT is sensitive only to the globalO(d,d)
transformations even thoughV(x) transforms nontrivially
under a combined globalO(d,d) and local O(d)3O(d)
transformation. In a similar manner,M̂(v) is sensitive only
to the globalO(d,d) rotation. We will check this explicitly
in the case of the Nappi-Witten model in the next sectio
For the moment, let us note that this brings out an interes
connection between the integrability properties of the t
dimensional string effective action and itsT-duality proper-
ties, which can be used as a powerful tool in determin
solutions.
1-7
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For completeness, we record here the transforma
properties ofM̂ under an infinitesimalO(d,d) transforma-
tion. Let us denote

M̂5S M̂11 M̂12

M̂21 M̂22
D , ~70!

where each element represents ad3d matrix. Infinitesi-
mally, we can write@26#

V5S 11X Y

Z 11WD , ~71!

where the infinitesimal parameters of the transformation
isfy YT52Y,ZT52Z andW52XT. Under such an infini-
tesimal transformation, it follows from Eq.~71! that

dM̂115M̂11X1XTM̂112ZM̂121M̂12Z,

dM̂125M̂11Y1XTM̂122ZM̂222M̂12X
T,

~72!

dM̂2152YM̂112XM̂211M̂21X1M̂22Z,

dM̂225M̂21Y2YM̂122XM̂222M̂22X
T.

IV. APPLICATIONS

The ideas presented in the earlier section can be applie
various physical systems. For example, if we are conside
collision of plane fronted waves, which correspond to ma
less states of closed strings, because of the isometries i
problem, this can be described effectively by a two dime
sional theory and all our earlier discussions can be car
over@16#. In this section, we will discuss two other classes
physical phenomena where our results can be explicitly v
fied and prove quite useful.

A. The Nappi-Witten model

The Nappi-Witten model@24# is an example of a cosmo
logical solution following from the string theory. Let us no
that, to leading order ina8, the string tension, there are se
eral solutions to the string equations following from Eq.~1!
that constitute exact conformal field theory backgroun
One of these solutions, studied by Nappi and Witten, co
sponds to a gauged SL(2,R)/SO(1,1)3SU(2)/U(1) Wess-
Zumino-Witten model and describes a closed expanding
verse in 311 dimensions. The backgrounds consist of t
metric, the dilaton, and the antisymmetric tensor fields of
form ~here, we identifyx05t)
12600
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f s252dt21dx21
1

12cos 2t cos 2x

3~4 cos2 t cos2 x dy214 sin2 t sin2 x dz2!,

f52
1

2
log~12cos 2t cos 2x!, ~73!

B1252B215b5
~cos 2t2cos 2x!

~12cos 2t cos 2x!
.

Here, we have set an arbitrary constant parameter appea
in the Nappi-Witten solution to zero for simplicity.

Note that the backgrounds do not depend on two of
coordinates, namely, (y,z), and, consequently, following
from our earlier discussions, the system has anO(2,2) sym-
metry. It is known that these backgrounds can be obtai
from a much simpler background, with a vanishingB field,
of the form

ds252dt21dx21
1

tan2 t
dy21tan2 x dz2,

~74!
f̄52 log~sin 2t sin 2x!

through anO(2,2) rotation. In the language of our earlie
discussion, we note that we can write

GB505S el(0)1c(0)
0

0 el(0)2c(0)D 5S j1 0

0 j2
D ~75!

with

j15exp~l01c0!5
1

tan2 t
,

~76!

j25exp~l02c0!5
1

tan2 x
,

where the superscript ‘‘0’’ denotes the vanishingB field. In
this case, therefore, we have

M (B50)5S ~G(B50)!21 0

0 G(B50)D . ~77!

On the other hand, it is easy to check that we can write

G(B)5S 2j

11j1j2
0

0
2j2

11j1j2

D ,

~78!

B52
12j1j2

11j1j2
e5be,

wheree is the 232 antisymmetric matrix
1-8
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e5S 0 1

21 0D , ~79!

so that

M (B)5S ~G(B)!21 2~G(B)!21B

B~G(B)!21 G(B)2B~G(B)!21BD . ~80!

It is now a simple matter to check that

M (B)5VTM (B50)V ~81!

where@25#

V5
1

A2
S I e

e I D ~82!

belongs toO(2,2). Here,I represents the 232 identity ma-
trix while e is the 232 anti-symmetric matrix defined in Eq
~79!. This shows that the backgrounds with a nontrivial a
tisymmetric tensor field can be generated from a much s
pler background with a vanishingB field through a global
O(2,2) rotation.

It follows from Eq. ~75! that we can write

E(B50)5S Aj1 0

0 Aj2
D ~83!

so that we have

V(B50)5S ~E(B50)!21 0

0 E(B50)D , ~84!
12600
-
-

and it follows that@see Eq.~56!#

P6
(B50)

5S 2~E(B50)!21]6E(B50) 0

0 ~E(B50)!21]6E(B50)D

5S 2
~]6j1!

j1
0 0 0

0 2
~]6j2!

j2
0 0

0 0
~]6j1!

j1
0

0 0 0
~]6j2!

j2

D ,

Q6
(B50)50. ~85!

In this case, therefore, the one parameter family of potent
V̂(B50)(x,t) have to satisfy~sinceQ6

(B50)50)

~V̂(B50)!21~x,t !]6V̂(B50)~x,t !5
17t

16t
P6

(B50) ~86!

wheret is the space-time dependent spectral parameter.
Following our earlier construction@see Eq.~64!#, we can

determine
V̂(B50)~x,t !5diag~V̄1 , . . . ,V̄4!5diagSA2
t3

t1

t2t1

t2t3
,A2

t4

t2

t2t2

t2t4
,A2

t1

t3

t2t3

t2t1
,A2

t2

t4

t2t4

t2t2
D ~87!

where

2
t1

t3
5~E1

(B50)!225
1

j1
, 2

t2

t4
5~E2

(B50)!225
1

j2
. ~88!

It can be checked explicitly, using the equation satisfied by the spectral parameter, Eq.~60!, that V̂(B50)(x,t) in Eq. ~87! does
indeed satisfy Eq.~86!. The monodromy matrix, in this case, follows as

M̂(B50)5S M~v! 0

0 M 21~v!
D 5S v2v1

v2v3
0 0 0

0
v2v2

v2v4
0 0

0 0
v2v3

v2v1
0

0 0 0
v2v4

v2v2

D 5S v12v

v11v
0 0 0

0
v22v

v21v
0 0

0 0
v11v

v12v
0

0 0 0
v21v

v22v

D ,

~89!

where we have identifiedv352v1 ,v452v2.
1-9
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WhenBÞ0, we can similarly obtain

E(B)5SA 2j1

11j1j2

0

0 A 2j2

11j1j2

D , V(B)5S ~E(B)!21 0

B~E(B)!21 E(B)D . ~90!

It follows now that

P6
(B)5S 2~E(B)!21]6E(B)

2
1

2
~E(B)!21~]6B!~E(B)!21

1

2
~E(B)!21~]6B!~E(B)!21 ~E(B)!21]6E(B)

D ,

~91!

Q65S 0
1

2
~E(B)!21~]6B!~E(B)!21

1

2
~E(B)!21~]6B!~E(B)!21 0

D .

In this case, therefore,Q6Þ0 and the one parameter family of potentials has to satisfy

~V̂(B)!21~x,t !]6V̂(B)~x,t !5Q6
(B)1

17t

16t
P6

(B) . ~92!

It is straightforward to check that

V(B)~x!5VTV(B50)~x!h~x! ~93!

whereV is theO(2,2) matrix defined in Eq.~82!, andh(x)PO(2)3O(2) and is of the form

h~x!5
1

A2
S A12bI A11be

A11be A12bI
D . ~94!

It can also be checked that

V̂(B)~x,t !5VTV̂(B50)~x,t !h~x! ~95!

5
1

2 S A12bV̄11A11bV̄4 0 0 A11bV̄12A12bV̄4

0 A12bV̄21A11bV̄3 2A11bV̄21A12bV̄3 0

0 2A12bV̄21A11bV̄3 A11bV̄21A12bV̄3 0

A12bV̄12A11bV̄4 0 0 A11bV̄11A12bV̄4

D ~96!

satisfies the defining relation in Eq.~92!. We note here that, whenBÞ0, whileV(B)(x) is triangular,V̂(B)(x,t) is not in general,
and that bothV(B) and V̂(B) are related to their counterparts withB50 through a combined globalO(2,2) and a local
O(2)3O(2) transformation. Furthermore, as was pointed out earlier, the local transformation does not depend expl
the spectral parameter. This is quite crucial, for it immediately leads to
126001-10
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M̂(B)5V̂(B)~x,t !~V̂(B)!TS x,
1

t D5VTV̂(B50)~x,t !h~x!hT~x!~V̂(B50)!TS x,
1

t DV5VTM̂(B50)V

5
1

2 S M11M 2
21 0 0 M12M 2

21

0 M21M 1
21 2M21M 1

21 0

0 M21M 1
21 M21M 1

21 0

M12M 2
21 0 0 M11M 2

21

D ~97!
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where M15(v12v)/(v11v) and M25(v22v)/(v2
1v) are the two diagonal elements ofM(v) in Eq. ~89!.
This shows explicitly that, for backgrounds related by a d
ality transformation@in the present example, anO(2,2) rota-
tion#, the corresponding monodromy matrices are also
lated in a simple manner, as was pointed out in the
section.

B. Black holes

As a second application, we will discuss the black h
solutions@28,29# in string theory within the context of ou
analysis. We are interested in studying systems with cha
black hole solutions~electric and magnetic!. In this case, in
heterotic string theory, one starts from the 10 dimensio
string effective action~the bosonic sector!

Ŝ5E d10xA2Ĝe2f̂FRĜ1~ ]̂f̂ !22
1

12
Ĥ m̂n̂l̂Ĥ m̂n̂l̂

2
1

4
d IJF̂ m̂n̂

I
F̂ m̂n̂I G ~98!

whereF̂ m̂n̂
I represent Abelian field strengths@see Eqs.~25!–

~27!# with I 51,2, . . . ,16 for theheterotic string. Commonly
the black hole solutions, in four dimensions, are describe
terms of the Einstein metric. The reduction of Eq.~98! to
four dimensions, in the Einstein frame, is carried out
identifying @26#

Ĝm̂n̂5S e2fgmn1Gi j Am
(1)iAn

(1) j Am
(1)iGi j

An
(1) jGi j Gi j

D ~99!

wherem5t,r ,u,f andi , j 54,5, . . .,10. This leads to a fou
dimensional action of the form

S45E dtd3xA2gS Rg2
1

2
~]f!22

1

12
e22fHmnlHmnl

2e2fFmn
i M 21Fmn i1

1

8
Tr~]mM 21]mM ! D , ~100!

where M is defined in Sec. II@Eq. ~30!# along with other
relevant parameters. In this case,MPO(6,22) and the
moduli parametrize the coset,O(6,22)/@O(6)3O(22)#.
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We are interested in charged, nonrotating, spheric
symmetric black hole solutions which are described by
general metric of the form

ds25gmndxmdxn

52l~r !dt21l21~r !dr21R2~r !~du21sin2 udf2!.

~101!

Furthermore, the Maxwell equation, together with the Bia
chi identity, determines that the only nonzero components
the field strengths have the forms~as 28 dimensional column
matrices!

Ftr5
l~r !

r 2
efMa, Fuf5sinuhb, ~102!

where a,b are 28 component column vectors represent
the electric and the magnetic charges andh is the metric of
O(6,22). ~The 28 gauge fields correspond to the sum of
original 16 gauge fields and six each coming from the
mensional reduction of the metric and the antisymmetric t
sor field.!

As is clear from this, in the case of black holes, there
two Abelian isometries since the variables are independen
time as well as the azimuthal angle. Therefore, the pro
way to analyze this problem would be to dimensionally
duce the effective action to two dimensions, as has b
done in the earlier sections. This, however, leads to so
technical issues and, therefore, to keep our discus
simple, we will dimensionally reduce the effective action
three dimensions first. Since the black hole solutions are
dependent of time, we dimensionally reduce time as wel
six spatial dimensions and, keeping in mind the Einst
frame, we parametrize the metric as

Ĝm̂n̂5S e2f̄hab1GmnAa
(1)mAb

(1)n Aa
(1)mGmn

Ab
(1)nGmn Gmn

D ~103!

where a,b51,2,3 and m,n50,4,5, . . . ,10. Here f̄5f̂
2 1

2 log detGmn is the shifted dilaton and the metrichab is in
the Einstein frame~since the dilaton term has been factor
out explicitly! with Euclidean signature. The dimensional
reduced effective action can be determined following the d
cussion in Sec. II and has the form@30–32#
1-11
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S35E d3xAhFRh2~]f̄ !22
1

12
e24f̄HabgHabg

2e22f̄Fab
T ~hMh!Fab1

1

8
Tr~]aM 21]aM !G ,

~104!

whereh is the metric ofO(7,23)

h5S 0 17 0

17 0 0

0 0 116

D ~105!

and the matrixMPO(7,23) has the form given in Eq.~30!.
We can set the field strengthHabg to zero since, in three
dimensions,Bab carries no physical degree of freedom. Fu
thermore, now we have 30 gauge fields—16 from the st
ing action and seven each coming from the dimensional
duction of the metric and the antisymmetric tensor field.Fab
correspondingly represents a 30 component column mat

The equations of motion for the gauge fields, followin
from the action in Eq.~104!, are~in matrix notation!
-

12600
-
t-
e-

.

]a~e22f̄Ah~hMh!Fab!50. ~106!

In three dimensions, the solution of this can be represen
through a duality relation as

e22f̄Ah~hMh!Fab5
1

2
eabg]gx, ~107!

wherex represents 30 scalar fields~in a column matrix rep-
resentation!. Furthermore, the Bianchi identity

eabg]aFbg50 ~108!

can now be written in terms of the 30 scalar fields as

Da~e2f̄~hMh!]ax!50, ~109!

where Da represents the gravitational covariant derivativ
The important point of this analysis is that, in thre
dimensions, the gauge fields can be traded in for sca
which can, in principle, enlarge the coset parametrized by
moduli.

In fact, let us define a 32332 matrix as
M̄5S M2e22f̄xxT e2f̄x Mhx2
1

2
e2f̄~xThx!x

e2f̄xT 2e2f̄
1

2
e2f̄xThx

xThM2
1

2
e2f̄~xThx!xT

1

2
e2f̄xThx 2e22f̄1xT~hMh!x2

1

4
e2f̄~xThx!2

D . ~110!
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This is manifestly symmetric and satisfies

M̄ h̄M̄5h̄ ~111!

where

h̄5S h 0 0

0 0 1

0 1 0
D ~112!

corresponds to the metric forO(8,24). Therefore, the sym
metric matrix M̄PO(8,24). It is straightforward to verify
that the action in Eq.~104! can be rewritten as

S5E d3xAhS Rh1
1

8
Tr~]aM 21]aM ! D ~113!

and is invariant under theO(8,24) transformations

hab→hab , M̄→VTM̄V, ~114!
whereV is a globalO(8,24) matrix satisfyingVTh̄V5h̄.
Thus, we note that, in three dimensions, the action is a s
of the Einstein Hilbert action and a nonlinear sigma mo
coupled to gravity defined overO(8,24)/@O(8)3O(24)#.
We note here that this is, in fact, the symmetry content
would have obtained had we dimensionally reduced to t
dimensions directly.

The three dimensional metric corresponding to the bla
hole solution of Eq.~101! has the form

ds25habdxadxb5dr21R̃2~r !~du21sin2 udf2!
~115!

whereR̃(r )5l(r )R(r ). Furthermore, the relations betwee
the three-dimensional fields and the four-dimensional o
are given byT-duality relations@33# which we give in the
Appendix. For the present, let us note that there is no dep
dence on the azimuthal angle in any of the variables. Con
quently, we can integrate outf in Eq. ~113! to obtain

S5E d2jAg (2)S Rg1
1

8
gabTr~]aM 21]bM ! D , ~116!
1-12
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where j1,j2 denote, respectively,r ,u, and the two dimen-
sional metric has the form

gab5S R̃~r ! 0

0 R̃~r !sinu
D . ~117!

This gives the effective two dimensional action in the co
text of black hole solutions and our general analysis of S
III can now be applied.

In the preceding discussion, we considered a four dim
sional action~100! with metric and matter fields such as th
shifted dilaton, the two-form Neveu-Schwarz–Neve
Schwarz~NS-NS! potential, the gauge fields, and the mod
matrix M. We have also considered a three dimensional
duced effective action~104! with corresponding fields and a
M̄ matrix which parametrizes the cosetO(8,24)/@O(8)
3(24)#. The field configurations such as the gauge pot
tials, shifted dilatons and the moduli appearing in the t
action are related byT duality and these relations are give
in the Appendix. The charged black hole solutions of h
erotic string theory are described by the moduli and
gauge field configurations, which are also presented in
Appendix. One demands that theM matrix or M̄ matrix tend
to a constant asr→` and similarly the gauge potentials hav
appropriate asymptotic behavior in order to define the as
ciated charges. As is well known, the charged black h
12600
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solutions can be obtained by applying the solution genera
techniques@28,29,33,34# ~see@35# for generating black hole
solutions in type IIB theory!. The starting point is the spheri
cally symmetric Schwarzschild black hole solution that a
pears as a solution of the heterotic string effective acti
Subsequently, a series ofT-duality transformations, often
called ‘‘boosts,’’ are implemented in order to obtain charg
black hole solutions with 28 charges~we are thinking of
electrically charged black holes; there will be another
magnetic charges too!. Next, one can obtain the extrem
black hole solution by tuning an appropriate parameter
zero.

We have derived the transformation properties of
monodromy matrix under the noncompactT-duality group in
Sec. III. Therefore, it will suffice to construct the mono
dromy matrix for the Schwarzschild black hole solution
the heterotic string theory. One can derive the monodro
matrix for the general charged black hole from the mon
dromy matrix associated with the Schwarzschild black h
solution, since theT-duality transformations are well know
~see@33#, for example!.

In what follows, we focus our attention on explicit con
struction of the monodromy matrix, for the simplest of bla
holes, namely, the Schwarzschild black hole, following fro
our general analysis. In this case,B50 and we can write,
inside the trapped region,
V~x!5diag~l1
21 ,l2

21 , . . . ,l32
21!5SA2

r

r 2m
,1, . . . ,1,A2

r 2m

r
,1, . . . ,1,A2

r

r 2m
,A2

r 2m

r D ~118!

wherer denotes the radial coordinate andl15l31,l85l32. Correspondingly, theM matrix has the form

M̄5VVT5diagS 2
r

r 2m
,1, . . . ,1,2

r 2m

r
,1, . . . ,1,2

r

r 2m
,2

r 2m

r D . ~119!

Here we follow the notation of@33# and choose the moduli such that they go over to theO(8,24) metric in the asymptotic
limit. Note that usually in the Schwarzschild metric the term appears asr 22M ; here we haver 2m. This is just for notational
convenience. In this case, we can obtain, in a straightforward manner,

Qa50,

Pa5diag~2l1
21]al1,0, . . . ,0,2l8

21]al8,0, . . . ,0,2l31
21]al31,2l32]al32!. ~120!

The one parameter family of potentials, in this case, satisfy

V̂21~x,t !]6V̂~x,t !5
17t

16t
P6 ~121!

and can be determined to have the form

V̂~x,t !5diag~V̄1,1, . . . ,1,V̄8,1, . . . ,1,V̄31,V̄32!, ~122!

where (i 51,8,31,32)

V̄i5
td1 i

t i

t2t i

t2td1 i
l i5A2

td1 i

t i

t2t i

t2td1 i
. ~123!

Here, we have made the identification, following our discussion in Sec. III,
1-13
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2
t i

td1 i
5l i

22 . ~124!

The monodromy matrix, in this case, follows as

M̂~v!5diag„M1~v!,1, . . . ,1,M8~v!,1, . . . ,1,M31~v!,M32~v!… ~125!
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with ( i 51,8,31,32)

Mi~v!5
v i2v

v i1v
. ~126!

Since other black hole solutions can be obtained from
Schwarzschild one byT-duality transformations, the corre
sponding monodromy matrices can also be obtained from
one constructed above following the procedure describe
Sec. III.

V. SUMMARY AND DISCUSSION

We have described the prescriptions for the construc
of the monodromy matrix for two dimensional string effe
tive action. We adopted the procedure commonly followed
the construction of the monodromy matrix for a class of t
dimensionals models in curved space. As mentioned earl
in most of the cases, thes model arises from the dimen
sional reduction of higher dimensional Einstein-Hilbert a
tion to two dimensional space-time due to the presence
isometries. In the context of string theory, a similar approa
was adopted in the past to construct the monodromy ma
as was the case with dimensionally reduced models in g
ity.

One of our principal objectives was to take into accou
the symmetries associated with the string effective action
construct the monodromy matrix that contains informat
about these symmetries. We have succeeded in introduc
procedure for the construction of the monodromy matrix u
der general grounds with some mild requirements such
factorizability and the presence of isolated poles. Furth
more, we have demonstrated that the monodromy ma
transforms nontrivially under the noncompactT-duality
group when the two dimensional string effective action
spects that symmetry. We feel that this is an interesting
important result. The procedure adopted by us allows u
construct the monodromy matrix, once a set of string ba
ground configurations are known. As a result, if we know
monodromy matrix for a given set of simple string vacuu
backgrounds, we can directly obtain the correspond
monodromy matrix for another set of more complicat
backgrounds, if the latter can be derived by duality trans
mations from the simpler backgrounds.

We have discussed two illustrative examples in Sec. IV
applications of our methods. First, we considered the Na
Witten model which is exactly solvable for both vanishin
and nonvanishing two-form potentialB. This is a good test-
ing ground for the duality transformation properties of t
monodromy matrix. We have constructed this matrix for t
12600
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caseB50. Subsequently, we have also constructed it for
caseBÞ0. Then, as a consistency check, we have deri

the M̂B from M̂B50 following our rules of the transforma

tions ofM̂ under duality. Indeed, it is found that the mon
dromy matrix computed using the two different ways me
tioned above coincide. Our second example is that of bl
hole solutions in heterotic string theory. After recapitulati
the charged black hole solutions, we construct the mo
dromy matrix for the ‘‘seed’’ Schwarzschild black hole i
heterotic string theory. One can construct the monodro
matrix for charged black hole solutions since theT-duality
transformations that generate charged black hole solut
are already known. For the sake of completeness, we h
given the corresponding metric for plane waves in t
trapped region for the charged black holes@36,37#. The isom-
etries are quite transparent and the monodromy matrix
the colliding wave case can be constructed by the techniq
used by us@16#.

It is worthwhile to mention that all our results are derive
for the case of classical two dimensional effective theory
is the case for effective two dimensional theories deriv
from higher dimensional Einstein-Hilbert action. It might b
interesting to explore systematically the construction of
monodromy matrix and its properties in quantum theory.
hope the work presented here will find applications in
verse directions where one encounters effective two dim
sional models in the context of string theory.
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APPENDIX: SOME USEFUL RELATIONS

In this appendix, we collect some relations that are use
in understanding the details of various issues, but are
essential to the logic presented in the text. As is mentione
the section on black holes, the fields in three and four dim
sions are related by duality transformations of the form~tilde
quantities are three dimensional while the ones without til
are four dimensional!
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Gi j 5G̃11 i ,11 j , Bi j 5B̃11 i ,11 j , aj
I5ã11 j

I ,

f5f̃1
1

2
@ log detG̃mn2 log detGi j #,

l5e2fFdetG̃mn

detGi j
G1/2

, R5
R̃

l
,

At
(1)i5Gi j G̃1,11 j , Af

(1)i5Gi j Ãf
mG̃m,11 j ,

~A1!

At
(3)I5ãt

I2aj
IAt

(1) j ,

Af
(3)I5Ãf

141I1am
I Ãf

n ,

Ati
(2)5B̃1,11 i1Bi j At

(1) j1
1

2
ai

IAt
(3)I ,

Af i
(2)5Ãf

81 i2B̃11 i ,nÃf
141I1Bi j Af

(1) j1
1

2
ai

IAf
(3)I .

We will now give the explicit forms of some of the blac
hole solutions as well as discuss briefly the connection
tween the black holes and the colliding waves. We know t
in four dimensions, inside the Schwarzschild horizon,r
<2M , the black hole~BH! metric has the following form:

ds25S 2M2r

r Ddt22S r

2M2r Ddr21r 2~du21sin2 udw2!.

~A2!

On the other hand, for colliding plane waves, the metric,
general, can be represented as

ds252e2M (u,v)dudv1e2U(u,v)~eV(u,v)dx21e2V(u,v)dy2!
~A3!

where u,v are light-cone coordinates. Let us consider t
regionu>0,v>0,u1v<p/2. In this region, if we make the
transformations

r→M @12sin~u1v !#,

u→ p

2
1~v2u!, ~A4!

t→x,w→11
y

M

and analytically continuey beyond the cyclic boundary con
dition on the anglew, then the metric for the black hol
becomes

ds2524M2@12sin~u1v !#2dudv1
cos2~u1v !

@12sin~u1v !#2
dx2

1 cos2~u2v !@12sin~u1v !#2dy2, ~A5!

which has the form of that for colliding waves.
12600
e-
t

n

e

A Reissner-Nordstrom BH will have the form of the fou
dimensional metric, given by

ds25l~r !dt22l21~s!dr21R2~r !~du21sin2 udw2!,
~A6!

l5
~r 1b!~r 2b!

~XY2Z2!1/2
,

R5~XY2Z2!1/2,

e2f5
W2

XY2Z2
,

X5r 21Q̄2 cos2 hd11Q̄1 sin2 hd1 ,

Y5r 21Q̄1r ,

Z5Q1 sinhd1r ,

W5r 2,

Q̄256AQ21b2, ~A7!

Q̄156AQ11b2.

Hereb is the nonextremality parameter, where the extrem
limit corresponds tob→0.

The nonextremal BH metric has the generic form

ds25
~r 12r !~r 2r 2!

~r 22R0
2!

dt22
~r 22R0

2!

~r 12r !~r 2r 2!
dr2

1~r 22R0
2!~du21sin2 udw2! ~A8!

whereR0
2 is expressed in terms of charges and boost par

eters of theO(d,d) transformation;r 65M6r 0 and againr 0
is expressed in terms of charges as well as theO(d,d) boost
parameters.

We can go from this black hole metric to that of collidin
waves through the transformation@36#

r→M6r 0S u

a
1

v
bD ,

u→ p

2
6S u

a
2

v
bD ,

~A9!

t→ xr0

~M22R0
2!1/2

,

w→11
y

~M22R0
2!1/2

.

Therefore, we see again that the trapped region of the B
locally isometric to the interaction region of the collidin
1-15
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plane waves. The periodic coordinatew goes toy ~which is
nonperiodic! to represent a plane wave in thex-y plane, so
that, in the trapped region,

gmn5
22$@M6r 0 sin~u/a1v/b!#22R0

2%

ab
,

gxx5
~M22R0

2!cos~u/a1v/b!2

$@M6r 0 sin~u/a1v/b!#22R0
2%

, ~A10!

gyy5cos2S u

a
2

v
bD $@M6r 0 sin~u/a1v/b!#22R0

2%

~M22R0
2!

.

,

-

,’’

y,’

’’
ca

-

re
J.

12600
In the asymptotic limit, the Einstein metricgmn5hmn for u
5v50. The incoming parametersa and b are required to
satisfy the following relations:

ab5~M22R0
2!5

4Sext

p
, ~A11!

whereSext is the entropy of the extremal BH.
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