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Effect of the minimal length uncertainty relation on the density of states and the cosmologica
constant problem
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We investigate the effect of the minimal length uncertainty relation, motivated by perturbative string theory,
on the density of states in momentum space. The relation is implemented through the modified commutation

relation@ x̂i ,p̂ j #5 i\@(11b p̂2)d i j 1b8p̂i p̂ j #. We point out that this relation, which is an example of a UV/IR
relation, implies the finiteness of the cosmological constant. While our result does not solve the cosmological
constant problem, it does shed new light on the relation between this outstanding problem and UV/IR corre-
spondence. We also point out that the blackbody radiation spectrum will be modified at higher frequencies, but
the effect is too small to be observed in the cosmic microwave background spectrum.
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I. INTRODUCTION

In this paper, we continue our investigation@1# of the
consequences of the commutation relation

@ x̂,p̂#5 i\~11b p̂2!, ~1!

which leads to the minimal length uncertainty relation

Dx>
\

2 S 1

Dp
1b DpD . ~2!

As reviewed in Ref.@1#, Eq. ~2! has appeared in the conte
of perturbative string theory@2# where it is implicit in the
fact that strings cannot probe distances below the string s
\Ab. It should be noted that the precise theoretical fram
work for such a minimal length uncertainty relation is n
understood in string theory. In particular, it is not cle
whether Eq.~1! represents the correct quantum mechan
implementation of Eq.~2!. Indeed, Kempf has shown that th
commutation relation which implies the existence of a mi
mal length is not unique@3#.

Furthermore, Eq.~2! does not seem to be universal
valid. For example, both in the realms of perturbative a
nonperturbative string theory~where distances shorter tha
the string scale can be probed byD-branes@4#!, another type
of uncertainty relation involving both spatial and time coo
dinates has been found to hold@5#. The distinction~and re-
lation! between the minimal length uncertainty relation a
the space-time uncertainty relation has been clearly em
sized by Yoneya@6#.

Notwithstanding these caveats, the minimum length
certainty formula does exhibit the basic features of UV/
correspondence: whenDp is large,Dx is proportional toDp,
a fact which seems counterintuitive from the point of view
local quantum field theory. As is well known, this kind o
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UV/IR correspondence has been previously encountere
various contexts: the AdS/CFT correspondence@7#, noncom-
mutative field theory@8#, and more recently in the attemp
to understand quantum gravity in asymptotically de Sit
spaces@9,10#.

Moreover, it has been argued by various authors@11# that
the UV/IR correspondence, described by Eq.~2!, is relevant
for the understanding of the cosmological constant prob
@12#. Likewise, it has been suggested in the literature t
some kind of UV/IR relation is necessary to understand
servable implications of short distance physics on inflatio
ary cosmology@3,13#.

In this paper we ask the question whether the cosmolo
cal constant problem could be understood by utilizing a c
crete UV/IR relation, such as Eq.~1!. In particular, we study
the implication of the commutation relation on the effecti
density of states in the vacuum and consequently on the
mological constant problem. We point out that the comm
tation relation implies the finiteness of the cosmological co
stant and the modification of the blackbody radiati
spectrum. While we do not present a solution to the cosm
logical constant problem, our results offer a new perspec
from which this outstanding problem may be addressed.

II. THE CLASSICAL LIMIT AND THE LIOUVILLE
THEOREM

The observation we would like to make is that the righ
hand side of Eq.~1! can be considered to define an ‘‘effe
tive’’ value of \ which is p dependent. This means that th
size of the unit cell that each quantum state occupies in ph
space can be thought of as being alsop dependent. This will
change thep dependence of the density of states and aff
the calculation of the cosmological constant, the blackbo
radiation spectrum, etc.@14#. For this interpretation to make
sense, we must first check that any volume of phase sp
evolves in such a way that the number of states inside d
not change with time. What we are looking for here is t
analog of the Liouville theorem. To place the discussion i
general context, we begin by extending Eq.~1! to higher
dimensions.
©2002 The American Physical Society28-1
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In D dimensions, Eq.~1! is extended to the tensorial form
@15#

@ x̂i ,p̂ j #5 i\~d i j 1b p̂2d i j 1b8p̂i p̂ j !. ~3!

If the components of the momentump̂i are assumed to com
mute with each other,

@ p̂i ,p̂ j #50, ~4!

then the commutation relations among the coordinatesx̂i are
almost uniquely determined by the Jacobi identity~up to
possible extensions! as

@ x̂i ,x̂ j #5 i\
~2b2b8!1~2b1b8!b p̂2

~11b p̂2!
~ p̂i x̂ j2 p̂ j x̂i !.

~5!

Let us take a look at what happens in the classical lim
Recall that the quantum mechanical commutator correspo
to the Poisson bracket in classical mechanics via

1

i\
@Â,B̂#⇒$A,B%. ~6!

So the classical limits of Eqs.~3!–~5! read

$xi ,pj%5~11bp2!d i j 1b8pipj ,

$pi ,pj%50,

$xi ,xj%5
~2b2b8!1~2b1b8!bp2

~11bp2!
~pixj2pjxi !.

~7!

The time evolutions of the coordinates and momenta
governed by

ẋi5$xi ,H%5$xi ,pj%
]H

]pj
1$xi ,xj%

]H

]xj
,

ṗi5$pi ,H%52$xj ,pi%
]H

]xj
. ~8!

The analog of the Liouville theorem in this case states t
the weighted phase space volume

dDx dDp

@11bp2#D21@11~b1b8!p2#12b8/2(b1b8)
~9!

is invariant under time evolution. To see this, consider
infinitesimal time intervaldt. The evolution of the coordi-
nates and momenta duringdt are

xi85xi1dxi ,

pi85pi1dpi , ~10!

with
12502
t.
ds

re

t

n

dxi5F $xi ,pj%
]H

]pj
1$xi ,xj%

]H

]xj
Gdt,

dpi5F2$xj ,pi%
]H

]xj
Gdt. ~11!

An infinitesimal phase space volume after this infinitesim
evolution is

dDx8 dDp85U]~x18 , . . . ,xD8 ,p18 , . . . ,pD8 !

]~x1 , . . . ,xD ,p1 , . . . ,pD!
UdDx dDp.

~12!

Since

]xi8

]xj
5d i j 1

]dxi

]xj
,

]xi8

]pj
5

]dxi

]pj
,

]pi8

]xj
5

]dpi

]xj
,

]pi8

]pj
5d i j 1

]dpi

]pj
, ~13!

the Jacobian to first order indt is

U]~x18 , . . . ,xD8 ,p18 , . . . ,pD8 !

]~x1 , . . . ,xD ,p1 , . . . ,pD!
U511S ]dxi

]xi
1

]dpi

]pi
D1•••.

~14!

We find

S ]dxi

]xi
1

]dpi

]pi
D 1

dt

5
]

]xi
F $xi ,pj%

]H

]pj
1$xi ,xj%

]H

]xj
G2

]

]pi
F $xj ,pi%

]H

]xj
G

5F ]

]xi
$xi ,pj%G ]H

]pj
1$xi ,pj%

]2H

]xi]pj
1F ]

]xi
$xi ,xj%G]H

]xj

1$xi ,xj%
]2H

]xi]xj
2F ]

]pi
$xj ,pi%G]H

]xj
2$xj ,pi%

]2H

]pj]xi

5F ]

]xi
$xi ,xj%G]H

]xj
2F ]

]pi
$xj ,pi%G]H

]xj

5F2
~2b2b8!1~2b1b8!bp2

~11bp2!
~D21! pj G ]H

]xj

2@~2b1Db8! pj #
]H

]xj

52F2~D21!bS 11~b1b8!p2

11bp2 D 1~2b1b8!Gpj

]H

]xj
.

~15!

Therefore, to first order indt
8-2
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dDx8 dDp85dDx dDpF12H 2~D21!bS 11~b1b8!p2

11bp2 D
1~2b1b8!J pj

]H

]xj
dtG . ~16!

On the other hand,

11bp82511b~pi1dpi !
2

511b~p212pidpi1••• !

511bS p222pi$xi ,pj%
]H

]xj
dt1••• D

511bS p222@11~b1b8!p2#pj

]H

]xj
dt1••• D

5~11bp2!22b@11~b1b8!p2#pj

]H

]xj
dt1•••

5~11bp2!F1

22bS 11~b1b8!p2

11bp2 D pj

]H

]xj
dt1•••G , ~17!

and

11~b1b8!p82

511~b1b8!~pi1dpi !
2

511~b1b8!~p212pidpi1••• !

511~b1b8!S p222pi$xi ,pj%
]H

]xj
dt1••• D

511~b1b8!S p2

22@11~b 1b8!p2#pj

]H

]xj
dt1••• D

5@11~b1b8!p2#

22~b1b8!@11~b1b8!p2#pj

]H

]xj
dt1•••

5@11~b1b8!p2#F122~b1b8!pj

]H

]xj
dt1•••G .

~18!

Therefore, to first order indt
12502
@11bp82#2D11@11~b1b8!p82#211b8/2(b1b8)

5@11bp2#2D11@11~b1b8!p2#211b8/2(b1b8)

3F11H 2~D21!bS 11~b1b8!p2

11bp2 D
12~b1b8!S 12

b8

2~b1b8!
D J pj

]H

]xj
dtG

5@11bp2#2D11@11~b1b8!p2#211b8/2(b1b8)

3F11H 2~D21!bS 11~b1b8!p2

11bp2 D
1~2b1b8!J pj

]H

]xj
dtG . ~19!

From Eqs.~16! and~19!, we deduce that the weighted pha
space volume Eq.~9! is invariant. Note that in addition to the
noncanonical Poisson brackets between the coordinates
momenta, those among the coordinates themselves~and thus
the noncommutative geometry of the problem! are crucial in
arriving at this result. Whenb850, Eq. ~9! simplifies to

dDx dDp

~11bp2!D
. ~20!

As a concrete example, consider the 1D harmonic os
lator with the Hamiltonian

H5
p2

2m
1

1

2
mv2x2. ~21!

The equations of motion are

ẋ5$x,H%5
1

m
~11bp2!p,

ṗ5$p,H%52mv2~11bp2!x. ~22!

These equations can be solved to yield

x~ t !5xmaxA11«
sin~A11« vt !

A11« sin2~A11« vt !
,

p~ t !5pmax

cos~A11« vt !

A11« sin2~A11« vt !
, ~23!

where

«52mEb, xmax5A 2E

mv2
, pmax5A2mE. ~24!

Note that the period of oscillation,T, is now energy~and thus
amplitude! dependent:
8-3
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T5
2p

vA11«
. ~25!

Now, consider the infinitesimal phase space volume sa
wiched between the equal-energy contoursE and E1dE,
and the equal-time contourst andt1dt. It is straightforward
to show that

dE dt5
dx dp

11bp2
. ~26!

The left-hand side of this equation is time-independent
definition, so the right-hand side must be also.

Finally, note that the semi classical quantization (\→0
limit ! of the harmonic oscillator is consistent with the fu
quantum mechanical result derived in our previous pa
Ref. @1#.

III. DENSITY OF STATES

From this point on, we will only consider theb850 case
for the sake of simplicity.

Integrating over the coordinates, the invariant phase sp
volume Eq.~20! becomes

V dDp

~11bp2!D
, ~27!

whereV is the coordinate space volume. This implies th
upon quantization, the number of quantum states per
mentum space volume should be assumed to be

V

~2p\!D

dDp

~11bp2!D
. ~28!

Equation~28! indicates that the density of states in mome
tum space must be modified by the extra factor of
1bp2)2D. This factor effectively cuts off the integral be
yond p51/Ab. Indeed, in 3D the weight factor is

1

~11bp2!3
, ~29!

the plot of which is shown in Fig. 1. We look at the cons
quence of this modification in the calculation of the cosm
logical constant and the blackbody radiation spectrum in
following.

A. The cosmological constant

The cosmological constant is obtained by summing o
the zero-point fluctuation energies of harmonic oscillato
each of which corresponds to a particular particle momen
state@12#. If we assume that the zero-point energy of ea
oscillator is of the usual, canonical, form

1

2
\v5

1

2
Ap21m2, ~30!
12502
d-

y

r,
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r
,

m
h

then, the sum over all momentum states per unit volum
~up to some prefactors!

L~m!5E d3p

~11bp2!3 F1

2
Ap21m2G

52pE
0

` p2dp

~11bp2!3
Ap21m2

5
p

2b2
f ~bm2!, ~31!

where

f ~x!

55 11
x

2~12x!
1

x2

4~12x!3/2
lnS 12A12x

11A12x
D ~x<1!,

12
x

2~x21!
1

x2

2~x21!3/2
tan21Ax21 ~x>1!.

~32!

f (x) is a monotonically increasing function which behav
asymptotically as

f ~x!;Ax, ~33!

as can be gleaned from Eq.~31!. In the region 0<x<1, it is
well approximated by

f ~x!'~11x!0.42. ~34!

In the massless case we obtain

L~0!5
p

2b2
. ~35!

As expected, due to the strong suppression of the densit
states at high momenta, the cosmological constant is
dered finite with 1/Ab acting effectively as the UV cutoff.
This result is in strong contrast to conventional calculatio
where the UV cutoff is an arbitrary scale which must

FIG. 1. The behavior of the weight factor@11(Abp)2#23.
8-4
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FIG. 2. The shape of the blackbody radiation spectrum with~solid line! and without~dashed line! the damping factor@11(n/nb)2#23 at
temperaturesT5Tb ~left! andT50.1Tb ~right!.
t

h

s
s

e

d

the
introduced by hand, and where one must assume that
physics beyond the cutoff does not contribute.

Unfortunately, since 1/Ab is the string mass scale, whic
we expect to be of the order of the Planck massM p , this
does not solve the cosmological constant problem. Thi
true even if the Planck massM p were as low as a TeV a
suggested in models with large extra dimensions@16#.

B. The blackbody radiation spectrum

Taking into account the weight factor Eq.~29!, the aver-
age energy in the EM field per unit volume at temperaturT
is

Ē52E d3k

~2p!3@11b~\k!2#3

\kc

e\kc/kBT21

5
8p

c3 E0

`

dn
1

@11b~hn/c!2#3 S hn3

ehn/kBT21
D

[E
0

`

dn ub~n,T!. ~36!

We see that the blackbody radiation spectrum is dampe
high frequencies close to the cutoff scale:
12502
he

is

at

ub~n,T!5
1

@11~n/nb!2#3
u0~n,T!, nb[

c

hAb
. ~37!

Here

u0~n,T!5
8phn3

c3

1

ehn/kBT21
, ~38!

is the regular spectral function.
To see the effect of this damping on the shape of

spectral function, we plot the functions

f 0~n,T![
~n/nb!3

e(n/nb)(Tb /T)21
,

f b~n,T![
1

@11~n/nb!2#3
f 0~n,T!, ~39!

for several values of the temperatureT in Figs. 2 and 3. The
temperatureTb in the definition off 0(n,T) is defined as

Tb[
c

kBAb
. ~40!
FIG. 3. The shape of the blackbody radiation spectrum with~solid line! and without~dashed line! the damping factor@11(n/nb)2#23 at
temperatureT50.01Tb . The graph on the right is the blowup of the region inside the box on the left.
8-5
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As is evident from the figures, the distortion to the blackbo
radiation is undetectable unless the temperature is with
few orders of magnitude belowTb . Given that the decou
pling temperature is on the order of an MeV@17#, we do not
expect the spectrum of the cosmic microwave backgro
~CMB! to be affected in any observable way, even if 1/Ab
were as small as a TeV@16#.

IV. DISCUSSION

We have shown that Eq.~1! and its higher dimensiona
extensions imply that the density of states is naturally s
pressed in the ultraviolet. This suppression renders the
mological constant finite, without affecting the blackbo
radiation spectrum at observable temperatures. The cos
logical constant is still too large, however, since it is prop
tional to 1/b2;M p

4 . This scaling is to be expected sinc
1/Ab is the only scale present in the problem.

Nevertheless, we believe that our result is a major
provement over previous results and points to a new di
tion from which we may approach the cosmological const
problem. The reason why conventional calculations were
taining an infinite result can be identified as a case of ov
counting of states. If string theory does indeed lead to Eq.~1!
and the resulting suppression of the density of states at
momenta, the number of states in the UV is not as numer
as conventional calculations assume.

The smallness of the cosmological constant can then
interpreted as a sign that we are still overcounting the nu
ber of states in our calculation and the density of sta
should be further suppressed. Whatever the method of
pression, this would necessarily entail the introduction of
additional characteristic scale,Mc , other than 1/Ab5M p , in
which case the dependence of the cosmological constan
the scales can be expressed asL;M p

4F(Mc /M p) with
F(1)51.

One method we could use would be to modify the rig
hand side of Eq.~1! to further suppress the higher mome
s

,

12502
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a
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tum states@20#. However, that would not work since all tha
would do would be to change the ‘‘effective’’ value of th
UV cutoff from M p to Mc . @F;(Mc /M p)4#. So the addi-
tional suppression must occur in a more subtle fashion.

Banks @11# has argued thatF;(Mc /M p)8 with Mc
;1 TeV andM p;1019 GeV would reproduce the correc
value of the cosmological constant. But the exact mechan
which would lead to such a form forF remains elusive.~See
also Ref.@18# for a related discussion.!

At this point, we note that if string theory is the corre
theory of gravity, modifying the commutation relations alo
would not properly take into account all of its potential e
fects. It is possible that the holographic principle@19# could
be of help here. Consideration of holography in a cosmolo
cal background might naturally provide another scale ot
than 1/Ab, namely the size of the cosmological horizon, t
Hubble radiusH, related to the cosmological constant
H2;1/L. It is conceivable that due to the correct impleme
tation of the holographic principle in a cosmological situ
tion, the number of fundamental degrees of freedom cont
uting to the vacuum energy is determined by the density
states above some very large momentum@which by the
UV/IR correspondence~2! would be related to the degrees
freedom at distances of the order of the cosmological h
zon#. If indeed the density of states is strongly suppresse
high momenta, as argued in this paper, then the effec
number of degrees of freedom contributing to the vacu
energy density would be very small. While these consid
ations are highly speculative, they seem to point to a n
promising way to approach the cosmological constant pr
lem.
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