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Effect of the minimal length uncertainty relation on the density of states and the cosmological
constant problem
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We investigate the effect of the minimal length uncertainty relation, motivated by perturbative string theory,
on the density of states in momentum space. The relation is implemented through the modified commutation
relation[x; ,p;]1=i#%[(1+ Bp?) &;+ B’ pip;]. We point out that this relation, which is an example of a UV/IR
relation, implies the finiteness of the cosmological constant. While our result does not solve the cosmological
constant problem, it does shed new light on the relation between this outstanding problem and UV/IR corre-
spondence. We also point out that the blackbody radiation spectrum will be modified at higher frequencies, but
the effect is too small to be observed in the cosmic microwave background spectrum.
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[. INTRODUCTION UV/IR correspondence has been previously encountered in
various contexts: the AdS/CFT correspondefie noncom-
In this paper, we continue our investigatiph] of the  mutative field theory{8], and more recently in the attempts

consequences of the commutation relation to understand quantum gravity in asymptotically de Sitter
L R spaceg9,10].
[x.p]=if(1+Bp?), 1) Moreover, it has been argued by various authafg that
_ o ) ) the UV/IR correspondence, described by E2), is relevant
which leads to the minimal length uncertainty relation for the understanding of the cosmological constant problem
i1 [12]. Likewise, it has been suggested in the literature that
AX= — —+,3AP>- (2)  some kind of UV/IR relation is necessary to understand ob-
2\Ap servable implications of short distance physics on inflation-

. . . ary cosmologyf3,13].
As reviewed in Ref[1], Eq. (2) has appeared in the context |, this paper we ask the question whether the cosmologi-

of perturbative string theor}2] where it is implicit in the 5 constant problem could be understood by utilizing a con-
fact that strings cannot probe distances below the string scalgqate UV/IR relation. such as EL). In particular, we study
fiB. It should be noted that the precise theoretical frameqpe implication of the commutation relation on the effective
work for such a minimal length uncertainty relation is not yensity of states in the vacuum and consequently on the cos-
understood in string theory. In particular, it is not C'?armological constant problem. We point out that the commu-
whether Eq.(1) represents the correct quantum mechanicalaiion relation implies the finiteness of the cosmological con-
implementation of Eq(2). Indeed, Kempf has shown that the giant and the modification of the blackbody radiation
commutation relation which implies the existence of a mini-spectrum. While we do not present a solution to the cosmo-
mal length is not uniqué3]. logical constant problem, our results offer a new perspective

Furthermore, Eq(2) does not seem to be universally fom which this outstanding problem may be addressed.
valid. For example, both in the realms of perturbative and

nonperturbative string theorfwhere distances shorter than
the string scale can be probed Bybraned4]), another type
of uncertainty relation involving both spatial and time coor-
dinates has been found to hdld]. The distinction(and re-
lation) between the minimal length uncertainty relation and The observation we would like to make is that the right-
the space-time uncertainty relation has been clearly emph#and side of Eq(1) can be considered to define an “effec-
sized by Yoneyd6]. tive” value of # which is p dependent. This means that the
Notwithstanding these caveats, the minimum length unsize of the unit cell that each quantum state occupies in phase
certainty formula does exhibit the basic features of UV/IRspace can be thought of as being gistependent. This will
correspondence: whekp is large,Ax is proportional taA p, change thep dependence of the density of states and affect
a fact which seems counterintuitive from the point of view of the calculation of the cosmological constant, the blackbody
local quantum field theory. As is well known, this kind of radiation spectrum, et¢14]. For this interpretation to make
sense, we must first check that any volume of phase space
evolves in such a way that the number of states inside does

Il. THE CLASSICAL LIMIT AND THE LIOUVILLE
THEOREM

*Electronic address: laynam@vt.edu not change with time. What we are looking for here is the
Electronic address: dminic@vt.edu analog of the Liouville theorem. To place the discussion in a
*Electronic address: nokamura@vt.edu general context, we begin by extending Ed) to higher
§Electronic address: takeuchi@vt.edu dimensions.
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In D dimensions, Eq(1) is extended to the tensorial form
[15]

[Xi,pj1=1%(8;+ BP*8;;+ B PiP)).- 3

If the components of the momentupn are assumed to com-
mute with each other,

An infinitesimal phase space volume after this infinitesimal
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JH JH
oxi=|{x; ,Pj}£+{xi Xt oot
J

oH
_{Xjapi}a_xj ot (13)

[p; ,[3,-]=0, (4)  evolution is
then the commutation relations among the coordinatese d°x’ dPp’ — IX1, .. Xp.Py, - - dPx gP
almost uniquely determined by the Jacobi identiyp to X (X1, ... Xp,P1s - - - Pp)| xawp.
possible extensionsas (12)
<o (2B=B)+(2B+BBP L . . Since
[Xi.x]]=ih (17 55D (PiXj—PjXi)-
Bp (5) (9Xi, B (95X| &Xi' B (95)(,
a0 ey oy
Let us take a look at what happens in the classical limit.
Recall that the quantum mechanical commutator corresponds ap aop; ap! a6p;
to the Poisson bracket in classical mechanics via — =, =5+ —, (13)
(9Xj t?XJ' ﬁp] ! (9p]
1 ..
= [ABI={AB}. (6)  the Jacobian to first order ift is
So the classical limits of Eq$3)—(5) read XLy oo Xp,P1s - Po)| doX;  Iop;
, (X1, -+« Xp,P1s - - PD)| X, Ip
{xi,pj}=(1+pp* &;+ B pip; . I I (14)
1pi.pj}=0, We find
(2B—pB')+(2B+B')Bp* dox; dop;| 1
{xi.xj}= > (PiX; = PjXi)- -t =5
(1+Bp?) IX; P
™ aH H d dH
The time evolutions of the coordinates and momenta are { .,p,} +{X" i ox: IX; - op; x ’pi}a_xj
governed by
H H oH 2 J oH
= H) =i} ) i 00 P 05 P+ o
0 | 2P0 o~ P
oH Xi 1 Xj 1P 1P
puz{pi,H}:—{X,‘,pi}ﬁ. ®) i axﬁx Xj P joMi IP;IX;
j
The analog of the Liouville theorem in this case states that = i{xi X} M i{xj ,Pi} M
the weighted phase space volume 2 9Xj | 9P X
d°xdPp © _|_@empnr@prppr? |
[1+Bp%I° Y1+ (B+ B )p*]* #12FHH) (1+Bp?) '] %

is invariant under time evolution. To see this, consider an
infinitesimal time intervalst. The evolution of the coordi-
nates and momenta duringj are

Xi, :Xi + 8Xi y
p{ =pi+dp;, (10)

with
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oH
—[(28+Dpg’) pj]&—xj

1+(B+ ﬁ)p
1+

JH
)+(2ﬁ+,8 )]p, 7
19

- 2(D—1)ﬁ(

Therefore, to first order idt
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dDXr der — dDX de

1+(/3+/3’)p2)

(16)

+(2,8+/3’)} ™ ot
p.—dt|.
JﬁXj

On the other hand,

1+Bp'?=1+B(p;+ opj)?
=1+B(p*+2p;op;+- - -)

p>—2pif p}ﬁH«ﬂ+
— . X y e P
1 I ] (7XJ

=1+

=1+

2 ’ 2 oH
pT=2[1+(B+B")p ]DJK&JF"'
j

_ 2 ’ 2 (9H
—%1+ﬁp)—2BDﬁ1ﬁ+B)p]m555H~~-

=(1+pp?H|1
1+(B+B")p?| oH
and
1+(B+p)p'?

=1+(B+B")(pi+p)?
=1+(B+B)(p*+2p;dpi+---)

=1+(B+pB')

, o
p —ZDﬂM,m}5§6P%~-

=1+(B+pB')| p

LB +BRTIp p
L ox;
=[1+(B+B")p%]
oH
—2(B+,3')[1+(B+B’)p2]pja—)(jﬁH'"
! 2 ! JH
=[1+(B+BHP]|1-2(B+B )pja—xjﬁHm :
(18)

Therefore, to first order it
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[1+Bp/Z]—D+1[1+(B+B/)p/2]—1+ﬂ//2(,8+ﬁ/)
=[1+B8p°] PTH 1+ (B+p )P HHREED
1+(B+B)p?
1+[2(D 1),8( 11 gp? )
B’ JH
' 2(B+B’)>]pj ;"
=[1+8p?] P 1+ (B+p )P FREED

1+(B+B’)p2>
1+ Bp?

X

+2(8+B")

X

1+|ao—rm

(19

JH
+(2,3+B')] pja—xlﬁt -

From Eqgs.(16) and(19), we deduce that the weighted phase
space volume Eq9) is invariant. Note that in addition to the
noncanonical Poisson brackets between the coordinates and
momenta, those among the coordinates themséares thus

the noncommutative geometry of the prob)eane crucial in
arriving at this result. WheB’ =0, Eq.(9) simplifies to

dPxdPp
(1+pp3)°°

As a concrete example, consider the 1D harmonic oscil-
lator with the Hamiltonian

(20

2
_p 1 2,,2
H—2M+2,u,wx. (21

The equations of motion are

. 1 )
x={x,H}= ;(1+Bp )P,

p={p,H}=—no’(1+Bp’)x. (22
These equations can be solved to yield
sin(v1+e wt)
X(t) =XmaxV1t+e ,
\/1+8 Sif(V1+e wt)
® cog V1+e wt) 23
p t = p L
e \/1+8 Sinz(\/1+8 wt)
where
2E
e=2nEB, Xma= R: Pmax= V21E. (24)

Note that the period of oscillatiof, is now energyand thus
amplitude dependent:
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2
T= (25

oVl+e

Now, consider the infinitesimal phase space volume sand-
wiched between the equal-energy contotrsand E+dE,

and the equal-time contout@ndt +dt. It is straightforward

to show that

dE dt=

dxdp
1+ sz . (26) -4 -2 K : 2 4 logyo(v/Bp)

The left-hand side of this equation is time-independent by
definition, so the right-hand side must be also.

Finally, note that the semi classical quantizatigin—0 . :
limit) of the harmonic oscillator is consistent with the full tEent,otP;grﬁgmrg;/aecrt(z)a}I'lsmomentum states per unit volume is
guantum mechanical result derived in our previous paper(, P P
Ref. [1]. 3

d°p 1
A(m)=f—(1+18p2)3{§\/p2+m2}

FIG. 1. The behavior of the weight factpt + (/8p)2] 3.

Ill. DENSITY OF STATES

From this point on, we will only consider th@' =0 case » p2d
for the sake of simplicity. =27Tf p—p23 Vp?+m?
Integrating over the coordinates, the invariant phase space 0 (1+5p%)
volume Eq.(20) becomes -
=—f(8m?), 31
v p 2 (Bm?) (32)
—— 5 (27)
(1+4p%) where

whereV is the coordinate space volume. This implies thatf(x)
upon quantization, the number of quantum states per mo-

mentum space volume should be assumed to be X N 1—J1—x
I+t L (x=<1),
Vv d®p 8 _ (1=x)  4(1-x) 1+1-x
(2h)° (1+Bp)° x X’

tan 1yx—1 (x=1).

1- +
. . . . 2(x=1) 2(x—1)%?
Equation(28) indicates that the density of states in momen-

tum space must be modified by the extra factor of (1 (32
+Bp?) ~P. This factor effectively cuts off the integral be- . . . . . .
yond p=1/y/8. Indeed, in 3D the weight factor is f(x) is a monotonically increasing function which behaves
asymptotically as
1
—, 29 FO)~ X, (33)
(1+8p*)° 29

o o as can be gleaned from E@1). In the region G=x<1, itis
the plot of which is shown in Fig. 1. We look at the conse- || approximated by

guence of this modification in the calculation of the cosmo-
logical constant and the blackbody radiation spectrum in the f(x)~(1+x)%42 (34)
following.

In the massless case we obtain

A. The cosmological constant

The cosmological constant is obtained by summing over A(0)= o (35)
the zero-point fluctuation energies of harmonic oscillators, 23?
each of which corresponds to a particular particle momentum
state[12]. If we assume that the zero-point energy of eachAs expected, due to the strong suppression of the density of

oscillator is of the usual, canonical, form states at high momenta, the cosmological constant is ren-
1 1 dered finite with 1{/8 acting effectively as the UV cutoff.
_ 77 This result is in strong contrast to conventional calculations
—how=z\Jp°+m 4 . .
Zﬁw 2 P ' (30 where the UV cutoff is an arbitrary scale which must be
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FIG. 2. The shape of the blackbody radiation spectrum thid line) and without(dashed lingthe damping factof1+ (v/ 1/5)2]‘3 at
temperature =T (left) andT=0.1T 4 (right).

introduced by hand, and where one must assume that the 1 c

physics beyond th_e cutoff d_oes not _contnbute. _ ug(v,T)= 3 (v, T), vg=—p
Unfortunately, since /8 is the string mass scale, which [1+(v/vp)7]

we expect to be of the order of the Planck mass, this

does not solve the cosmological constant problem. This i$€re

true even if the Planck madd, were as low as a TeV as

suggested in models with large extra dimensipisj. 8mhy? 1

Ug(v,T)= , (38
o o3 ehvkeT_1q

B. The blackbody radiation spectrum . .
is the regular spectral function.

age energy in the EM field per unit volume at temperaflire gpectral function, we plot the functions

IS

/ 3
d3k tke fO(V,T)E(V;'B),
— f (v (T _ 1
(2m)%[ 1+ B(fik)?]? eikkeT—1
8w (= 1 hy®
== | dv ( - ) Fo(n )= - fo(,T), (39
cdJo  [1+B(hv/c)?]®\ ekeT—1 [1+(v/vg)]
_ [~ for several values of the temperatdren Figs. 2 and 3. The
fo dv g T). 36 temperaturéT ; in the definition off(»,T) is defined as
We see that the blackbody radiation spectrum is damped at T.= ¢ (40)
. . . B :
high frequencies close to the cutoff scale: kB\/E
. T=001T74
1.4-10 8.1077
1.2-107° .
g 7.8-10
1-10
8.10"" 7.6-107
6-107 7.4.1077
4.107
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FIG. 3. The shape of the blackbody radiation spectrum gthid line) and without(dashed lingthe damping factof1+ (v/ VB)Z]’3 at
temperaturel =0.01T 5. The graph on the right is the blowup of the region inside the box on the left.
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As is evident from the figures, the distortion to the blackbodytum state§20]. However, that would not work since all that
radiation is undetectable unless the temperature is within would do would be to change the “effective” value of the
few orders of magnitude beloW,. Given that the decou- UV cutoff from M, to M. [F~(M¢/Mp)*]. So the addi-
pling temperature is on the order of an MEV7], we do not  tional suppression must occur in a more subtle fashion.
expect the spectrum of the cosmic microwave background Banks [11] has argued thaF~(M./My)® with M

(CMB) to be affected in any observable way, even ifa/ ~1 TeV andM,~10" GeV would reproduce the correct
were as small as a TeM6]. value of the cosmological constant. But the exact mechanism

which would lead to such a form fd¥ remains elusive(See
also Ref[18] for a related discussion.
At this point, we note that if string theory is the correct
We have shown that Eq1) and its higher dimensional theory of gravity, modifying the commutation relations alone
extensions imply that the density of states is naturally supwould not properly take into account all of its potential ef-
pressed in the ultraviolet. This suppression renders the cofects. It is possible that the holographic principk9] could
mological constant finite, without affecting the blackbody be of help here. Consideration of holography in a cosmologi-
radiation spectrum at observable temperatures. The cosméal background might naturally provide another scale other
logical constant is still too large, however, since it is propor-than 14/8, namely the size of the cosmological horizon, the
tional to 1432~Mg- This scaling is to be expected since Hubble radiusH, related to the cosmological constant as
5 ) ) ;
1/\/B is the only scale present in the problem. H®~1/A. Itis conceivable that due to the correct implemen-
Nevertheless, we believe that our result is a major im{ation of the holographic principle in a cosmological situa-
provement over previous results and points to a new direcion, the number of fundamental degrees of freedom contrib-
tion from which we may approach the cosmological constant!ting to the vacuum energy is determined by the density of
problem. The reason why conventional calculations were obstates above some very large momentlwhich by the
taining an infinite result can be identified as a case of overtV/IR correspondence?) would be related to the degrees of
counting of states. If string theory does indeed lead to(Eq. freedom at distances of the order Qf the cosmological hori-
and the resulting suppression of the density of states at highPnl- If indeed the density of states is strongly suppressed at
momenta, the number of states in the UV is not as numeroudigh momenta, as argued in this paper, then the effective
as conventional calculations assume. number of degrees of freedom contributing to the vacuum
The smallness of the cosmological constant can then b@nergy density would be very small. While these consider-
interpreted as a sign that we are still overcounting the numations are highly speculative, they seem to point to a new
ber of states in our calculation and the density of stateromising way to approach the cosmological constant prob-
should be further suppressed. Whatever the method of suﬂ)em-
pression, this would necessarily entail the introduction of an
additional characteristic scal¥l, other than 1Y3=M p» N
which case the dependence of the cosmological constant on We would like to thank Vijay Balasubramanian, Per Ber-
the scales can be expressed /&SvMéF(MC/Mp) with  glund, Will Loinaz, Asad Naqvi, Koenraad Schalm, Gary
F(1)=1. Shiu, Joseph Slawny, and Matthew Strassler for helpful dis-
One method we could use would be to modify the right-cussions. This research is supported in part by a grant from
hand side of Eq(1) to further suppress the higher momen- the US Department of Energy, DE-FG05-92ER40709.

IV. DISCUSSION

ACKNOWLEDGMENTS

[1] L. N. Chang, D. Minic, N. Okamura, and T. Takeuchi, Phys. (2002); D. Minic, Phys. Lett. B442 102(1998.

Rev. D65, 125027(2002. [6] T. Yoneya, Prog. Theor. Phy403 1081 (2000.

[2] D.J. Gross and P.F. Mende, Nucl. Phy303 407 (1988; [7] L. Susskind and E. Witten, hep-th/9805114; A.W. Peet and J.
Phys. Lett. B197, 129(1987); D. Amati, M. Ciafaloni, and G. Polchinski, Phys. Rev. 39, 065011(1999.

Veneziano,bid. 216, 41 (1989; Int. J. Mod. Phys. A3, 1615 [8] M.R. Douglas and N.A. Nekrasov, Rev. Mod. Phyg 977
(1988; Phys. Lett. B197, 81 (1987; E. Witten, Phys. Today (2002.

49, 24 (1997); see also G. 't Hooft, Int. J. Mod. Phys. 1, [9] C.M. Hull, J. High Energy Phys07, 021 (1998; 11, 017
4623(1996); S. de Haro, J. High Energy PhyK), 023(1998. (1998; V. Balasubramanian, P. Horava, and D. Mirikad. 05,

[3] A. Kempf, Phys. Rev. D63, 083514(2001); A. Kempf and 043(2001); E. Witten, hep-th/0106109; A. Strominger, J. High
J.C. Niemeyerijbid. 64, 103501(20012). Energy Phys10, 034 (200)).

[4] J. Polchinski, Phys. Rev. Leff5, 4724(1995; M.R. Douglas, [10] A. Strominger, J. High Energy Phy%1, 049 (200)); V. Bala-

D. Kabat, P. Pouliot, and S.H. Shenker, Nucl. PI3485 85 subramanian, J. de Boer, and D. Minic, Phys. Rev6h)
(1997. 123508(2002.

[5] T. Yoneya, Int. J. Mod. Phys. A6, 945 (2001; T. Yoneya, [11] T. Banks, Int. J. Mod. Phys. A6, 910 (2001); For other
hep-th/9707002; M. Li and T. Yoneya, Phys. Rev. L&, closely related attempts to understand the cosmological con-
1219(1997; M. Li and T. Yoneya, hep-th/9806240; H. Awata, stant problem consult, for example, T. Banks, hep-th/9601151;
M. Li, D. Minic, and T. Yoneya, J. High Energy Phy32, 013 A.G. Cohen, D.B. Kaplan, and A.E. Nelson, Phys. Rev. Lett.

125028-6



EFFECT OF THE MINIMAL LENGTH UNCERTAINTY . .. PHYSICAL REVIEW D65 125028

82, 4971 (1999; P. Horava and D. Minic,bid. 85, 1610 [14] A similar observation was made in M. Lubo, hep-th/0009162.
(2000; N. Arkani-Hamed, S. Dimopoulos, N. Kaloper, and R. [15] A. Kempf, G. Mangano, and R.B. Mann, Phys. Rev.5B
Sundrum, Phys. Lett. B480, 193 (2000; S. Kachru, M. 1108(1993; A. Kempf, J. Phys. A30, 2093(1997.

Schulz, and E. Silverstein, Phys. Rev.6Q, 045021(2000. [16] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B

. . . 429, 263(1998; Phys. Rev. D59, 086004(1999; I. Antonia-
[12] Both observational constraints on and theoretical approaches dis, N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys.

to the cosmological constant are reviewed in S.M. Carroll, Lett. B 436, 257 (1998.

Living Rev. Relativ.4, 1 (2001); for some theoretical perspec- [17] See, for instance, G.F. Smoot and D. Scott, Eur. Phys.15,C

tives, see S. Weinberg, astro-ph/0005265; Rev. Mod. Faiys. 145 (2000.

1(1989; E. Witten, hep-ph/0002297. [18] P. Berglund, T. Hubsch, and D. Minic, hep-th/0112079; also,
[13] R. Easther, B.R. Greene, W.H. Kinney, and G. Shiu, Phys. Rev. _ hep-th/0201187. _

D 64, 103502(2001); hep-th/0110226; see also L. Mersini, M. [19] G- 't Hooft, gr-qc/9310026; L. Susskind, J. Math. Ph@s,

. . ] 6377(1995.
Bastero-G!I, and P. Kanti, Phys Rev.d2, 043508(2001; M. [20] Depending on the modification, the cosmological constant may
Bastero-Gil and L. Mersini,ibid. 65 023502 (2002; M.

) > be rendered divergent. For instance, if we adopt the commuta-
Bastero-Gil, P. H. Frampton, and L. Mersiitijd. 65, 106002 tion relations used by Kempf in Ref3], the cosmological

(2002. constant will diverge logarithmically.

125028-7



