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Exact solution of the harmonic oscillator in arbitrary dimensions
with minimal length uncertainty relations
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We determine the energy eigenvalues and eigenfunctions of the harmonic oscillator where the coordinates
and momenta are assumed to obey the modified commutation relakoms]=i%[ (1+ 8p?) &;+ B'pip;].
These commutation relations are motivated by the fact that they lead to the minimal length uncertainty
relations which appear in perturbative string theory. Our solutions illustrate how certain features of string
theory may manifest themselves in simple quantum mechanical systems through the modification of the
canonical commutation relations. We discuss whether such effects are observable in precision measurements on
electrons trapped in strong magnetic fields.
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[. INTRODUCTION uncertainty relation and the space-time uncertainty relation
has been elucidated by Yonelg.
In this paper, we derive the exact solution to the Sehro  Nonetheless, Eq(2) does embody an intriguing UV/IR
dinger equation for the harmonic oscillator when the com-elation : whenAp is large(UV), Ax is proportional toAp
mutation relation between the position and momentum isand therefore is also largéR). This type of UV/IR relation

modified from the canonical one to has appeared in several other contexts: the AAS/CFT corre-
o A spondencd 7], noncommutative field theor{8], and more
[x,p]=iA(1+ Bp?). (1)  recently in attempts at understanding quantum gravity in as-

ymptotically de Sitter spacd9,10].
This commutation relation leads to the uncertainty relation It has been argued that the kind of UV/IR “bootstrap”
described by Eq(2) is necessary to understand observable

Axaé i+,8Ap), @) implications o_f sh(_)rt distance physics on inflationary cos-
2\ Ap mology[11]. Likewise, Banks has argued that some kind of
UV/IR relation should be at the core of the cosmological
which implies the existence of a minimal length constant problenfi12] as well as its relation to the problem
of supersymmetry breaking. Therefore, both E2).and the
AXmin=1\/B, (3 underlying Eq.(1) are well motivated by a variety of appli-

. o -~ cations, including the cosmological constant problem which

below which the uncertainty in positiodx, cannot be re- \ye will discuss is a subsequent pap8].
duced[1,2]. _ _ Furthermore, the UV/IR relation represented by E2).

The minimal length uncertainty relation, E@), has ap-  gyggests that certain “stringy” short distaneV) effects
pgared in the context of perturbative string theBywhere ‘may manifest themselves at longer distand&, lending
it is a consequence of the fact that strings cannot probe diggqgitional justification to our analysis of the nonrelativistic
tances below the string scafe\3. Though the modified harmonic oscillator.
commutation relation, qu), has not yet been derived di- The prob]em of So|ving for the energy eigenva]ues and
rectly from string theory, the fact that it implies E@) sug-  eigenstates of the harmonic oscillator with the minimal
gests that it is one possible way in which certain features ofength uncertainty relation has been studied previously by
string theory may manifest themselves in low energy quankempf et al. in Refs.[1,2]. However, the exact result had
tum mechanical systems. been obtained only for the 1-dimensional case. We present

It should be noted, however, that E@) is not a ubiqui-  here the exact solution for the geneBadimensional isotro-
tous prediction of string theory. Indeed, both in the realms ofjc harmonic oscillator.

perturbative and nonperturbative string thedwhere dis-
tances shorter than the string scale can be probed by
D-braneq4]), another type of uncertainty relation involving

both spatial and time coordinates has been found to [Fdld We represent the position and momentum operators obey-
The distinction(and relation between the minimal length ing Eq. (1) in momentum space by

Il. THE HARMONIC OSCILLATOR IN 1 DIMENSION
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The choice of the constant determines the weight function
in the definition of the inner product:

*(p)g(p), (5)

dp
(tloy= | Ry

where

Y

B (6)

a=

This definition ensures the hermiticity ®f In the following,
we will keep y arbitrary, though eventually we will find that
the energy levels in fact do not depend on its value.

The Schrdinger equation for the harmonic oscillator with
Hamiltonian

1 1.

N_ T 202, T o
H 2,u,wx-l-zlu#p, (7)

is given by

2

—pho +2yp

]
(1+,3I02)—>

d
((1+,8p2)% D

+y(B+y)p*+y

1 2|y
+Mﬁ_wp (p)

2E
= W (p). ®

A change of variable fronp to

1
= —tan (\/8p), (9)
p 7B (VBp

maps the region-o<p<w to

w

ar
———<p< ,
2V8 "2

and casts Eq8) into the form:

(10

2

_2+

d 2
uho
ap

Y
“Ztan/B,
N

tanz\/,Eer

] 1 "
ap| | phep HTCY

x 10

¥(p)=0. (11)

Y
14—
B

+,uﬁwy]

Defining dimensionless parameters by

p Y 2E
= , k=\JuhowB, o6=—=, e=-—, (12
& e mhop B o
we obtain
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” 2 55 J 25(1+6 i
A A P N P
+(e+K28) |V (£€)=0, (13
where we use the shorthand notations
c=coské, s=sinké. (14

Let W(&)=c " ?f(s), where\ is a constant to be deter-
mined. Then the equation fd(s) is

° A

K2

0.

(1-sH)f"—(2n+1)sf' +

+iA(A—1) L|s
k*| c?
The variable is now-1<s<1. Note thaté=y/B is elimi-

nated from the equation. We fix by requiring the coeffi-
cient of the tangent squared term to vanish:

f= (15

0. (16

AA—1) !
K4

The wave function should be nonsingular a0, which
implies

+ (17)

B

x—1+
T2

1
K4.
This simplifies Eq(15) to

(1—s?) f"— (2N +1)sf' +

&
—Z—A)f=0. (18)
K

Similarly, f(s) should be nonsingular &= =*1. Thus we
require a polynomial solution to E@18). This requirement
imposes the following condition on the coefficientfof

%—)\zn(n+2)\), (19

where n is a non-negative integdil5]. Equation(18) be-
comes
(1—s?)f"—(2N+1)sf’ +n(n+2\)f=0, (20)

the solution of which is given by the Gegenbauer polyno-
mial:

f(s)=Cx(s). (2D
The energy eigenvalues follow from the condition ELP):

en=k[N>+(2n+1)\]

K4
F(2n+ 1)1+

2++1
n*+n+ 7

(22)

or more explicitly,
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1 B2 w? where
En=fio||n+ 5|\ 1+ ——F—
5 D-1
1\ Buho Y o
2
+in +n+§ 2 (23) a= , . (31)
(B+B")

This result agrees with KemgfL]. The normalized energy
eigenfunctions are Note that wherB’ =0, this expression reduces to that of the
1D case, Eq(6). Referencd?2] uses

V. (p)=2"(\) \/Mcﬁﬁck(s) (24)
. 270 (n+2)\) e y=B8+8'

D+1 -
T 1 ( )
where
in which case the weight function is constant. We will keep
1 arbitrary in our calculations. As in the 1D case, we will find
CZCOS\/EPI—Z, that the energy eigenvalues do not dependyon
vi+Bp Since theD-dimensional harmonic oscillator
VBp 1 1
s=sin ———% 25 O =2 LwlXe+ —p?
\/:Ep \/rﬂpz ( ) H 2/J,(.0 X+ 2,(Lp (33)
IIl. THE HARMONIC OSCILLATOR IN D DIMENSIONS is rotationally symmetric, we can assume that the momentum

) ) - ) space energy eigenfunctions expressed in terms of the radial
In more than 1 dimension, the modified commutation re-momenta can be written as a product of spherical harmonics

lation can be generalized to the tensorial form: and a radial wave function:
’\- N . = 1 . n 2 .o ! N . n .
DXPIZIR+ BR%0 HAPiRY)- (29 Yo(p)=Yiy i (QR(D). 39
If the components of the momentLﬁm are assumed to com-
mute with each other, In 2D and 3D, we have
[Pi.p;1=0, 27

1 .
\PZ(p): \/Z_e"md’R(p)’
then the commutation relations among the coordinatese .
almost uniquely determined by the Jacobi ideniibp to

possible extensionss(1,2] Ws(p)=Yim(0,0)R(p). (35
aa . (2B=B)F(2B+BBP? A i . Equation(34) allows us to make the replacements
[Xi,Xj]=ih =~ (PiX;— PjXi)-
(1+pBp°) "
(28) 3 # ¢ D-14 L?
These operators are realized in momentum space as i=1 f9pi2 ap? P dp p?
%= i) (1+ BP2) -+ B'PiPj—+ 7D SO
i~ . iP5~ T YPi| .7
ap, ap 2 Pig=P oo (36)
Pi=Pi - (29 where[14]
The arbitrary constany in the representation o]‘i does not L2 1(|+D—2 =012 3
affect the commutation relations among thés. Again, its =l ) 12012 (37)
choice determines the weight function in the definition of the
inner product: (I=|m| for D=2) .
We therefore find, not unexpectedly, that the Sdimger
4P equation for theD-dimensional harmonic oscillator can be
<f|g>:f P *(p)g(p), (30) reduced to the 1-dimensional problem for the radial wave
[1+(B+B")p?]t ¢ function R(p). The equation foR(p) is:
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9?2 - d
—pho {[1+(/5’+B )Dz]% + T+[(D—1)B+27]|0 [1+(B+B )Pz]%
LZ 2 2 ’ 21 2\ n2 1 2 _ 2E
~ T (D= 2B+ y(BD B+ )~ LAY R(P)+ T pPR(P)= FUR(P). (39

Introducing the change of variable

1
p= tan 1\B+B'p, (39
VB+p’
maps the region € p<e to
0<p<——0b (40)
p T
2VB+ B’

and renders the equation into the following form:

# [(D-1)VB+B’ [(D-1)B+2y] )a L2A(B+B')
ho tany/ 'p|—— ——=—+(yD—2pL?
s {ap (ta g | e PG ek, 0P
[¥(BD+B'+7)]- L3 ] 1 2E
+ tarf\B+ B p| + ————tarf\/B+B'p |R(p)= —R(p). (41)
(13 B+B'p Bt ) B+B'p|R(p)=7—R(p
Defining the dimensionless parameters
__ P N e __B _ Y _2E
é:_ \MI K= /.Lﬁ(l)(ﬁ'i‘ﬂ )1 7]_ ﬁ-l—ﬁ,’ 5_ IB-}—B" 8_ﬁw' (42)
we obtain
1 R 14R
Ea_gz (D— 1) +{(D 1)77+25} < GE
€ L? s?
+ [—2—(217—1)L2+5D]——2+[5(D—1)7;+5(1+5)—772L2——4}—2 R=0, (43)
K S k%) c
where we use the shorthand notation
c=coské, Ss=sinké, (44)
as before. LeR(¢)=c*%f(s). The equation forf(s) is
D-1
(1-8?)f"+| —{2\+1+(D—1)(1—p)}s+ —}f’
e L? 1]s?
+ |—2—(2n—1)L2—>\D]—?Jr[xz—x[1+(D—1)n]—n2L2——4]§ f=0. (45)
K K
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Note that as in the 1D casé,is eliminated. We choose to ~ The equation foff (s) then simplifies to
cancel the tangent squared term:

D-1
1 2\ fM _ _ _ 4
7\2—?\[1+(D—1)77]—772L2——4=0- (46) (1-s9)f"+| —{2\+1+(D-1)(1—-p)}s+ S }f
K
. . . e L2
Taking the positive root, we obtain + [_2_)‘D_(27’_ 1)L2] - —|f=0. (48
K s
1+(D—-1 1+(D—-1)7}? 1
N )77+\/{ (D—-1)7%} T | | -
2 4 K4 Next, letf(s)=s'g(s). This substitution eliminates the cen-

(47)  trifugal barrier term and gives the equation fy(s):

214D
—{2N+21+1+(D—1)(1—7)}s+

%—277L2—(2I+D))\+I{(D—1)77—l}lg=0.
K

(1-s%)g"+ g'+
(49
Another change of variable
z=2s’-1 (50)
maps the interval &s<1 to —1<z<1 and leads to
(1—z2):—292’+[(b—a)—(a+ b+ 2)z]%+ % %—anZ—(m +D)A+1{(D—1)»—1}|g=0, (51)
|
where yvheren’ is a non-negative integéd5]. This casts Eq(51)
a:)\_1+(D—1)77 into the form
2
+(D-— 2
= \/w“ﬂ” % (1—22)%+[(b—a)—(a+b+2)z]%
b:2+|—1. 52 +n'(n'+a+b+1)g=0, (54)

Once again, we need a polynomial solutiongi@) to keep

. 2 the solution of which is given by the Jacobi polynomial:
the wave function regular at= = 1. The condition one must

impose is
1 2)=P@") (7). 55
Z %—277|_2—(2|+D)>\+|{(D—1)77—1}] 9(2)=Pn(2) 59
K
=n'(n"+a+b+1), (53)  The energy eigenvalues are given by

€ D
—=2 (2n’+|)+5 A+[4n'2+2n"(1— ) (D—1)+4n'l+29L%+{np(D—1)—1}I]
K
D
=2\n+ = A+[n?+n(1—7)(D—1)+(25p—1)L?]
D 1+(D-1)7}? 1 D2 D
=2(n+ = \/M+7;ZL2+—+ n*+nD+ — n+ = (1— )+ (29p—1)L?|,
2 4 e 2 2

(56)
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where in the second line we have made the replacemeht P=n. The final expression is:

N
(57)

This equation represents the main result of our paper. The 1D result can be reproduced from this expression By setting
=1,L2?=0, andB’=0. The normalized energy eigenfunctions are

D? D| uho
24 — 2 G
!

2
+(B=8")

(DB+B')?
4

En=fw B?L2+ w2hlw?+{(B+B") n+ =

2(2n’"+a+b+1)n"'I'(n"+a+b+1)
Rnl(p):

(B+ ,D/4C)\+5SIP(a,'b) 2), 58
I'(n'+a+1)(n'+b+1) (B+£) (2 8

wheren’=(n-1)/2, and

1
C=CcoSs/B+ ! =
SNy T o
VB+B'p
s=sinyB+ B p= ———,
SNy or
INR2_
z=252—1=w. (59)
(B+B)Pp*+1

IV. COMPARISON WITH PREVIOUS RESULTS

Kempf[2] has calculated the energy eigenvalues of the 2D and 3D harmonic oscillators to linear gédamdi’. From
the exact expression E7), we can easily identify the terms to that order to be:

En~h i k2+k'2 D|* k?—k'?)| L? D* k’ZD 60
n|~wn+§+§(+ )n+§+(— ) t TR S (60)
For ease of comparison, we have introduced the notation

kK’=Buhow, k'?2=puho. (61

For theD=2 andD =3 cases, the explicit expressions are

1
E,p~fio|(n+1)+ E{(k2+k’2)(n+1)2+(k2—k’2)(|2+1)+k’2}},
Esp~h A I FTCINE +32+ k104 1)+ 2| +kr2s 62
sp~ho|| Nt 1451 ( )nt35) )a+D+ 7 il (62)
We define the parametsrby
n—I
SEn"f‘l:T'f'l, (63)

which takes values from 1 tqn+2)/2] for fixed n. Then

3
(n+ 1)+k2(n2+3n+3)—k’2( n+ —) —2(k?—k'?>)s(n+2—s)

EZD%ﬁw 2

+|(2 _k/2

—(k®—k'?)s(2n+5—2s)

L9
Ty

214 +21
n n 4

.3
3

Esp~fow , (64
which agree with Ref[2]. See also Ref.16].
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V. ELECTRONS IN A PENNING TRAP for the string momentum scale.

Then? dependence of the harmonic oscillator energy Iev-r,n e'gssljree ftfg] eaheer teﬁgcgfsl a?:léﬁrsgtc:arl] ?Lr\’\?het:v% ?T?f Stcan
els, Eq.(57), would be an unmistakeable signature of therequire thain satisf?/y y ang
modified commutation relations E¢l) or Eq.(26). Even if
B and B’ were small, the deviation from the usuatlepen-
dence should be manifest for sufficiently lange

The cyclotron motion of an electron in a Penning trap| meC
is effectively a one-dimensional harmonic oscillator. By o )
looking for shifts in its energy levels, we may be able tofor our electron to stay nonrelativistic. This leads to the con-
place a constraint oi8. To leading order in3 andn, the  Straint
deviation of the harmonic oscillator energy levels from the

nhw,
2

<1, (73

2 2
canonicalhw(n—+ %) is given b Ml _ (MeC) ~
(n+3)isg y < Foo = (eh)B 10°, (74)
AE, [(Bmiw) , ) . L .
Py 5 n<, (65) This condition also maintains the radius of the electron’s

cyclotron motion to be well within the geometry of the Pen-
ning trap. Therefore, the maximum value fthat can be
used to constrai would ben~ 10° if we allow for a 10%
relativistic correction. So the best limit o that can be
achieved will be

which grows quickly withn. Note that the combination of
parameters that is constained by a measuremeAEQf/ 7 w

is Bmhiw. The cyclotron frequency of an electron trapped in
a magnetic field of strengtB is (in Sl unity

eB

1
=, (66) hB<107'®m, ——=>1 GeVL. (75)
me

VB

Therefore, Obtaining a better limit would be difficult since improving
the limit on /8 by an order of magnitude requires the im-
Meh wo=(eh)B=(1.7x10 kg’ m*/’/T)B, (67)  provement of the limit on3 by two orders of magnitude.

We

which is independent of the electron mass. For a trapping V1. DISCUSSION AND CONCLUSIONS
field strength oB=6 T, we obtain '
T We have obtained the exact energy eigenvalues and eigen-
Mefi = efiB=(1.0X 10" °*kg” m?/s%). (68)  states of the harmonic oscillator when the coordinate and
. ) momentum operators satisfy the modified commutation rela-
Even though we anticipate that measuring the energy levelg, o Eq.(1) or Eq. (26).
accurately for very larga would be difficult, let us assume The energy levels, Eq&23) and(57), grow asn? for large
for the sake of argument that deviations as largeias |, The reason for this? behavior can be understood as fol-
would be detectable. Then, the absence of such a deviatiqg,,s: The change of variable fromto p in the 1D problem
for the nth energy level would imply changes the? kinetic term into a taf/Bp potential which
BehB is bounded ap =+ 7/2\/B. For higher dimensions, the ef-
2 i Al i 7 : :
( )n , (69) fective potential is tah/B+ B'p plus a centrifugal barrier

cot\/B+ B’p which introduces a wall gb=7/2B+ " in

addition to the one ap=0. For higher energy eigenstates,

or
the potentials are in essence square wells, leading tathe
211 (2.0x1F2mA R ) dependence of the energy. Indeed, the energy eigenvalues of
B<( )—zz : 5 . (70) a spherically symmetric square well potential of radius
eiB/n n wl2\B+ B’ are given approximately by
This translates into uhw D+1\2
E,~fw 5 (B+B") n+T . (76)
27\ 1 (1.5x10 ®m)
h\/E< eB ?Z n ' (71) The parametery, introduced in Eqs(4) and (29) has no

effect on the energy eigenvalues and only results in the wave

as a limit for the minimal length, E43), and functions acquiring an extra factor of

I\Nn27— 6/2
1 N \/W_ I [1+(8+B")p7] (77
\/E 2 n"=(. gm/sn which cancels the dependence in the weight function of the
inner product, Eqs(5) and (30).
=(13eVic)n, (72 The original
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(D+n—1)! netic field have been discussed. Even under optimistic as-
m (78) sumptions, the constraints that can be imposed are weak.
In addition to affecting the energy levels of quantum me-
fold degeneracy of thath energy state is broken, leaving chanical systems, the modified commutation relations, Egs.
only the (1) and (26), may have other far reaching consequences. In
subsequent papers, we will discuss their effects on the calcu-
(79 lation of the cosmological constafit3], and the motion of
macrosopic objectgl9].

(D+I1-1)!  (D+1-3)!
D-1!!  (D-1)I(I-2)!

fold degeneracy for each value loflue to rotational symme-
try [14]. This loss of degeneracy can be interpreted as the
breaking of self-supersymmetry of the harmonic oscillator
[18]. The natural question arises whether an analogue exists We would like to thank Vijay Balasubramanian, Atsushi
on the level of field theory as a potentially new mechanismHiguchi, Asad Naqvi, Koenraad Schalm, Gary Shiu, Joseph
for supersymmetry breaking. Slawny, and Matthew Strassler for helpful discussions. This

Potential constraints o that can be placed by measur- research is supported in part by the U.S. Department of En-
ing the energy levels of an electron trapped in a strong magergy, Grant No. DE—FG05-92ER40709.
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