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Exact solution of the harmonic oscillator in arbitrary dimensions
with minimal length uncertainty relations

Lay Nam Chang,* Djordje Minic,† Naotoshi Okamura,‡ and Tatsu Takeuchi§
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We determine the energy eigenvalues and eigenfunctions of the harmonic oscillator where the coordinates

and momenta are assumed to obey the modified commutation relations@ x̂i ,p̂ j #5 i\@(11b p̂2)d i j 1b8p̂i p̂ j #.
These commutation relations are motivated by the fact that they lead to the minimal length uncertainty
relations which appear in perturbative string theory. Our solutions illustrate how certain features of string
theory may manifest themselves in simple quantum mechanical systems through the modification of the
canonical commutation relations. We discuss whether such effects are observable in precision measurements on
electrons trapped in strong magnetic fields.
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I. INTRODUCTION

In this paper, we derive the exact solution to the Sch¨-
dinger equation for the harmonic oscillator when the co
mutation relation between the position and momentum
modified from the canonical one to

@ x̂,p̂#5 i\~11b p̂2!. ~1!

This commutation relation leads to the uncertainty relatio

Dx>
\

2 S 1

Dp
1bDpD , ~2!

which implies the existence of a minimal length

Dxmin5\Ab, ~3!

below which the uncertainty in position,Dx, cannot be re-
duced@1,2#.

The minimal length uncertainty relation, Eq.~2!, has ap-
peared in the context of perturbative string theory@3# where
it is a consequence of the fact that strings cannot probe
tances below the string scale\Ab. Though the modified
commutation relation, Eq.~1!, has not yet been derived d
rectly from string theory, the fact that it implies Eq.~2! sug-
gests that it is one possible way in which certain features
string theory may manifest themselves in low energy qu
tum mechanical systems.

It should be noted, however, that Eq.~2! is not a ubiqui-
tous prediction of string theory. Indeed, both in the realms
perturbative and nonperturbative string theory~where dis-
tances shorter than the string scale can be probed
D-branes@4#!, another type of uncertainty relation involvin
both spatial and time coordinates has been found to hold@5#.
The distinction~and relation! between the minimal length
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uncertainty relation and the space-time uncertainty rela
has been elucidated by Yoneya@6#.

Nonetheless, Eq.~2! does embody an intriguing UV/IR
relation : whenDp is large~UV!, Dx is proportional toDp
and therefore is also large~IR!. This type of UV/IR relation
has appeared in several other contexts: the AdS/CFT co
spondence@7#, noncommutative field theory@8#, and more
recently in attempts at understanding quantum gravity in
ymptotically de Sitter spaces@9,10#.

It has been argued that the kind of UV/IR ‘‘bootstrap
described by Eq.~2! is necessary to understand observa
implications of short distance physics on inflationary co
mology @11#. Likewise, Banks has argued that some kind
UV/IR relation should be at the core of the cosmologic
constant problem@12# as well as its relation to the problem
of supersymmetry breaking. Therefore, both Eq.~2! and the
underlying Eq.~1! are well motivated by a variety of appli
cations, including the cosmological constant problem wh
we will discuss is a subsequent paper@13#.

Furthermore, the UV/IR relation represented by Eq.~2!
suggests that certain ‘‘stringy’’ short distance~UV! effects
may manifest themselves at longer distances~IR!, lending
additional justification to our analysis of the nonrelativis
harmonic oscillator.

The problem of solving for the energy eigenvalues a
eigenstates of the harmonic oscillator with the minim
length uncertainty relation has been studied previously
Kempf et al. in Refs. @1,2#. However, the exact result ha
been obtained only for the 1-dimensional case. We pres
here the exact solution for the generalD-dimensional isotro-
pic harmonic oscillator.

II. THE HARMONIC OSCILLATOR IN 1 DIMENSION

We represent the position and momentum operators ob
ing Eq. ~1! in momentum space by

x̂5 i\F ~11bp2!
]

]p
1g pG ,

p̂5p. ~4!
©2002 The American Physical Society27-1
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The choice of the constantg determines the weight functio
in the definition of the inner product:

^ f ug&5E dp

~11bp2!12a
f * ~p!g~p!, ~5!

where

a5
g

b
. ~6!

This definition ensures the hermiticity ofx̂. In the following,
we will keepg arbitrary, though eventually we will find tha
the energy levels in fact do not depend on its value.

The Schro¨dinger equation for the harmonic oscillator wi
Hamiltonian

Ĥ5
1

2
mv2x̂21

1

2m
p̂2, ~7!

is given by

F2m\vH S ~11bp2!
]

]pD 2

12gpS ~11bp2!
]

]pD
1g~b1g!p21gJ 1

1

m\v
p2GC~p!

5
2E

\v
C~p!. ~8!

A change of variable fromp to

r[
1

Ab
tan21~Abp!, ~9!

maps the region2`,p,` to

2
p

2Ab
,r,

p

2Ab
, ~10!

and casts Eq.~8! into the form:

Fm\vH ]2

]r2
1S 2g

Ab
tanAbr D ]

]rJ 2H 1

m\vb
2m\vg

3S 11
g

b D J tan2Abr1H 2E

\v
1m\vgJ GC~p!50. ~11!

Defining dimensionless parameters by

j[
r

Am\v
, k[Am\vb, d[

g

b
, «[

2E

\v
, ~12!

we obtain
12502
F ]2

]j2
12kd

s

c

]

]j
2H 1

k2
2k2d~11d!J s2

c2

1~«1k2d!GC~j!50, ~13!

where we use the shorthand notations

c[coskj, s[sinkj. ~14!

Let C(j)5cl1d f (s), where l is a constant to be deter
mined. Then the equation forf (s) is

~12s2! f 92~2l11!s f81F H «

k2
2lJ

1H l~l21!2
1

k4J s2

c2G f 50. ~15!

The variable is now21,s,1. Note thatd5g/b is elimi-
nated from the equation. We fixl by requiring the coeffi-
cient of the tangent squared term to vanish:

l~l21!2
1

k4
50. ~16!

The wave function should be nonsingular atc50, which
implies

l5
1

2
1A1

4
1

1

k4
. ~17!

This simplifies Eq.~15! to

~12s2! f 92~2l11!s f81S «

k2
2l D f 50. ~18!

Similarly, f (s) should be nonsingular ats561. Thus we
require a polynomial solution to Eq.~18!. This requirement
imposes the following condition on the coefficient off:

«

k2
2l5n~n12l!, ~19!

where n is a non-negative integer@15#. Equation~18! be-
comes

~12s2! f 92~2l11!s f81n~n12l! f 50, ~20!

the solution of which is given by the Gegenbauer polyn
mial:

f ~s!5Cn
l~s!. ~21!

The energy eigenvalues follow from the condition Eq.~19!:

«n5k2@n21~2n11!l#

5k2S n21n1
1

2D1~2n11!A11
k4

4
, ~22!

or more explicitly,
7-2
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EXACT SOLUTION OF THE HARMONIC OSCILLATOR . . . PHYSICAL REVIEW D 65 125027
En5\vF S n1
1

2DA11
b2m2\2v2

4

1S n21n1
1

2Dbm\v

2 G . ~23!

This result agrees with Kempf@1#. The normalized energy
eigenfunctions are

Cn~p!52lG~l!An! ~n1l!Ab

2pG~n12l!
cl1dCn

l~s!, ~24!

where

c5cosAbr5
1

A11bp2
,

s5sinAbr5
Abp

A11bp2
. ~25!

III. THE HARMONIC OSCILLATOR IN D DIMENSIONS

In more than 1 dimension, the modified commutation
lation can be generalized to the tensorial form:

@ x̂i ,p̂ j #5 i\~d i j 1b p̂2d i j 1b8p̂i p̂ j !. ~26!

If the components of the momentump̂i are assumed to com
mute with each other,

@ p̂i ,p̂ j #50, ~27!

then the commutation relations among the coordinatesx̂i are
almost uniquely determined by the Jacobi identity~up to
possible extensions! as @1,2#

@ x̂i ,x̂ j #5 i\
~2b2b8!1~2b1b8!b p̂2

~11b p̂2!
~ p̂i x̂ j2 p̂ j x̂i !.

~28!

These operators are realized in momentum space as

x̂i5 i\F ~11bp2!
]

]pi
1b8pipj

]

]pj
1g pi G ,

p̂i5pi . ~29!

The arbitrary constantg in the representation ofx̂i does not
affect the commutation relations among thex̂i ’s. Again, its
choice determines the weight function in the definition of t
inner product:

^ f ug&5E dDp

@11~b1b8!p2#12a
f * ~p!g~p!, ~30!
12502
-

where

a5

g2b8S D21

2 D
~b1b8!

. ~31!

Note that whenb850, this expression reduces to that of th
1D case, Eq.~6!. Reference@2# uses

g5b1b8S D11

2 D , ~32!

in which case the weight function is constant. We will keepg
arbitrary in our calculations. As in the 1D case, we will fin
that the energy eigenvalues do not depend ong.

Since theD-dimensional harmonic oscillator

Ĥ5
1

2
mv2x̂21

1

2m
p̂2 ~33!

is rotationally symmetric, we can assume that the momen
space energy eigenfunctions expressed in terms of the ra
momenta can be written as a product of spherical harmo
and a radial wave function:

CD~p!5Yl (D21)••• l 2l 1
~V!R~p!. ~34!

In 2D and 3D, we have

C2~p!5
1

A2p
e2 imfR~p!,

C3~p!5Ylm~u,f!R~p!. ~35!

Equation~34! allows us to make the replacements

(
i 51

N
]2

]pi
2
5

]2

]p2
1

D21

p

]

]p
2

L2

p2
,

(
i 51

N

pi

]

]pi
5p

]

]p
, ~36!

where@14#

L25 l ~ l 1D22!, l 50,1,2,•••. ~37!

( l 5umu for D52.!
We therefore find, not unexpectedly, that the Schro¨dinger

equation for theD-dimensional harmonic oscillator can b
reduced to the 1-dimensional problem for the radial wa
function R(p). The equation forR(p) is:
7-3
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2m\vF H @11~b1b8!p2#
]

]pJ 2

1H D21

p
1@~D21!b12g#pJ H @11~b1b8!p2#

]

]pJ
2

L2

p2
1~gD22bL2!1$g~bD1b81g!2b2L2%p2GR~p!1

1

m\v
p2R~p!5

2E

\v
R~p!. ~38!

Introducing the change of variable

r[
1

Ab1b8
tan21Ab1b8p, ~39!

maps the region 0,p,` to

0,r,
p

2Ab1b8
, ~40!

and renders the equation into the following form:

F2m\vH ]2

]r2
1S ~D21!Ab1b8

tanAb1b8r
1

@~D21!b12g#

Ab1b8
tanAb1b8r D ]

]r
2

L2~b1b8!

tan2Ab1b8r
1~gD22bL2!

1
@g~bD1b81g!#2b2L2

~b1b8!
tan2Ab1b8rJ 1

1

m\v~b1b8!
tan2Ab1b8rGR~r!5

2E

\v
R~r!. ~41!

Defining the dimensionless parameters

j[
r

Am\v
, k[Am\v~b1b8!, h[

b

b1b8
, d[

g

b1b8
, «[

2E

\v
, ~42!

we obtain

1

k2

]2R

]j2
1F ~D21!

c

s
1$~D21!h12d%

s

cG 1

k

]R

]j

1F H «

k2
2~2h21!L21dDJ 2

L2

s2
1H d~D21!h1d~11d!2h2L22

1

k4J s2

c2GR50, ~43!

where we use the shorthand notation

c5coskj, s5sinkj, ~44!

as before. LetR(j)5cl1d f (s). The equation forf (s) is

~12s2! f 91F2$2l111~D21!~12h!%s1
D21

s G f 8

1F H «

k2
2~2h21!L22lDJ 2

L2

s2
1H l22l@11~D21!h#2h2L22

1

k4J s2

c2G f 50. ~45!

125027-4
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Note that as in the 1D case,d is eliminated. We choosel to
cancel the tangent squared term:

l22l@11~D21!h#2h2L22
1

k4
50. ~46!

Taking the positive root, we obtain

l5
11~D21!h

2
1A$11~D21!h%2

4
1h2L21

1

k4
.

~47!
t

12502
The equation forf (s) then simplifies to

~12s2! f 91F2$2l111~D21!~12h!%s1
D21

s G f 8

1F H «

k2
2lD2~2h21!L2J 2

L2

s2 G f 50. ~48!

Next, let f (s)5slg(s). This substitution eliminates the cen
trifugal barrier term and gives the equation forg(s):
~12s2!g91F2$2l12l 111~D21!~12h!%s1
2l 1D21

s Gg81F «

k2
22hL22~2l 1D !l1 l $~D21!h21%Gg50.

~49!

Another change of variable

z52s221 ~50!

maps the interval 0,s,1 to 21,z,1 and leads to

~12z2!
d2g

dz2
1@~b2a!2~a1b12!z#

dg

dz
1

1

4 F «

k2
22hL22~2l 1D !l1 l $~D21!h21%Gg50, ~51!
where

a5l2
11~D21!h

2

5A$11~D21!h%2

4
1h2L21

1

k4
,

b5
D

2
1 l 21. ~52!

Once again, we need a polynomial solution tog(z) to keep
the wave function regular atz561. The condition one mus
impose is

1

4 F «

k2
22hL22~2l 1D !l1 l $~D21!h21%G

5n8~n81a1b11!, ~53!
wheren8 is a non-negative integer@15#. This casts Eq.~51!
into the form

~12z2!
d2g

dz2
1@~b2a!2~a1b12!z#

dg

dz

1n8~n81a1b11!g50, ~54!

the solution of which is given by the Jacobi polynomial:

g~z!5Pn8
(a,b)

~z!. ~55!

The energy eigenvalues are given by
«

k2
52F ~2n81 l !1

D

2 Gl1@4n8212n8~12h!~D21!14n8l 12hL21$h~D21!21% l #

52S n1
D

2 Dl1@n21n~12h!~D21!1~2h21!L2#

52S n1
D

2 DA$11~D21!h%2

4
1h2L21

1

k4
1Fn21nD1

D2

2
h1

D

2
~12h!1~2h21!L2G ,

~56!
7-5
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where in the second line we have made the replacement 2n81 l 5n. The final expression is:

Enl5\vF S n1
D

2 DA11H b2L21
~Db1b8!2

4 J m2\2v21H ~b1b8!S n1
D

2 D 2

1~b2b8!S L21
D2

4 D1b8
D

2 J m\v

2 G .
~57!

This equation represents the main result of our paper. The 1D result can be reproduced from this expression by sD
51, L250, andb850. The normalized energy eigenfunctions are

Rnl~p!5A2~2n81a1b11!n8!G~n81a1b11!

G~n81a11!G~n81b11!
~b1b8!D/4cl1dsl Pn8

(a,b)
~z!, ~58!

wheren85(n2 l )/2, and

c5cosAb1b8r5
1

A11~b1b8!p2
,

s5sinAb1b8r5
Ab1b8p

A11~b1b8!p2
,

z52s2215
~b1b8!p221

~b1b8!p211
. ~59!

IV. COMPARISON WITH PREVIOUS RESULTS

Kempf @2# has calculated the energy eigenvalues of the 2D and 3D harmonic oscillators to linear order inb andb8. From
the exact expression Eq.~57!, we can easily identify the terms to that order to be:

Enl'\vF S n1
D

2 D1
1

2 H ~k21k82!S n1
D

2 D 2

1~k22k82!S L21
D2

4 D1k82
D

2 J G . ~60!

For ease of comparison, we have introduced the notation

k25bm\v, k825b8m\v. ~61!

For theD52 andD53 cases, the explicit expressions are

E2D'\vF ~n11!1
1

2
$~k21k82!~n11!21~k22k82!~ l 211!1k82%G ,

E3D'\vF S n1
3

2D1
1

2 H ~k21k82!S n1
3

2D 2

1~k22k82!S l ~ l 11!1
9

4D1k82
3

2J G . ~62!

We define the parameters by

s[n8115
n2 l

2
11, ~63!

which takes values from 1 to@(n12)/2# for fixed n. Then

E2D'\vF ~n11!1k2~n213n13!2k82S n1
3

2D22~k22k82!s~n122s!G ,
E3D'\vF S n1

3

2D1k2S n214n1
21

4 D2k82S n1
9

4D2~k22k82!s~2n1522s!G , ~64!

which agree with Ref.@2#. See also Ref.@16#.

125027-6
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V. ELECTRONS IN A PENNING TRAP

Then2 dependence of the harmonic oscillator energy l
els, Eq. ~57!, would be an unmistakeable signature of t
modified commutation relations Eq.~1! or Eq. ~26!. Even if
b andb8 were small, the deviation from the usualn depen-
dence should be manifest for sufficiently largen.

The cyclotron motion of an electron in a Penning trap@17#
is effectively a one-dimensional harmonic oscillator. B
looking for shifts in its energy levels, we may be able
place a constraint onb. To leading order inb and n, the
deviation of the harmonic oscillator energy levels from t
canonical\v(n1 1

2 ) is given by

DEn

\v
5S bm\v

2 Dn2, ~65!

which grows quickly withn. Note that the combination o
parameters that is constained by a measurement ofDEn /\v
is bm\v. The cyclotron frequency of an electron trapped
a magnetic field of strengthB is ~in SI units!

vc5
eB

me
. ~66!

Therefore,

me\vc5~e\!B5~1.7310253kg2 m2/s2/T!B, ~67!

which is independent of the electron massme . For a trapping
field strength ofB56 T, we obtain

me\vc5e\B5~1.0310252kg2 m2/s2!. ~68!

Even though we anticipate that measuring the energy le
accurately for very largen would be difficult, let us assume
for the sake of argument that deviations as large as\vc
would be detectable. Then, the absence of such a devia
for the nth energy level would imply

S be\B

2 Dn2,1, ~69!

or

b,S 2

e\BD 1

n2
5

~2.031052m2/J2 s2!

n2
. ~70!

This translates into

\Ab,AS 2\

eBD 1

n2
5

~1.531028 m!

n
, ~71!

as a limit for the minimal length, Eq.~3!, and

1

Ab
.AS e\B

2 Dn25~7.1310227kg m/s!n

5~13 eV/c!n, ~72!
12502
-

ls

on

for the string momentum scale.
Aside from the technical question of whether one c

measure the energy levels accurately for largen, we must
require thatn satisfy

n\vc

mec
2

!1, ~73!

for our electron to stay nonrelativistic. This leads to the co
straint

n!
mec

2

\vc
5

~mec!2

~e\!B
'109. ~74!

This condition also maintains the radius of the electro
cyclotron motion to be well within the geometry of the Pe
ning trap. Therefore, the maximum value ofn that can be
used to constrainb would ben;108 if we allow for a 10%
relativistic correction. So the best limit onb that can be
achieved will be

\Ab,10216m,
1

Ab
.1 GeV/c. ~75!

Obtaining a better limit would be difficult since improvin
the limit on Ab by an order of magnitude requires the im
provement of the limit onb by two orders of magnitude.

VI. DISCUSSION AND CONCLUSIONS

We have obtained the exact energy eigenvalues and ei
states of the harmonic oscillator when the coordinate
momentum operators satisfy the modified commutation re
tions Eq.~1! or Eq. ~26!.

The energy levels, Eqs.~23! and~57!, grow asn2 for large
n. The reason for thisn2 behavior can be understood as fo
lows: The change of variable fromp to r in the 1D problem
changes thep2 kinetic term into a tan2Abr potential which
is bounded atr56p/2Ab. For higher dimensions, the ef
fective potential is tan2Ab1b8r plus a centrifugal barrier
cot2Ab1b8r which introduces a wall atr5p/2Ab1b8 in
addition to the one atr50. For higher energy eigenstate
the potentials are in essence square wells, leading to thn2

dependence of the energy. Indeed, the energy eigenvalu
a spherically symmetric square well potential of radi
p/2Ab1b8 are given approximately by

En'\vS m\v

2 D ~b1b8!S n1
D11

2 D 2

. ~76!

The parameterg, introduced in Eqs.~4! and ~29! has no
effect on the energy eigenvalues and only results in the w
functions acquiring an extra factor of

@11~b1b8!p2#2d/2 ~77!

which cancels theg dependence in the weight function of th
inner product, Eqs.~5! and ~30!.

The original
7-7
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~D1n21!!

~D21!!n!
~78!

fold degeneracy of thenth energy state is broken, leavin
only the

~D1 l 21!!

~D21!! l !
2

~D1 l 23!!

~D21!! ~ l 22!!
~79!

fold degeneracy for each value ofl due to rotational symme
try @14#. This loss of degeneracy can be interpreted as
breaking of self-supersymmetry of the harmonic oscilla
@18#. The natural question arises whether an analogue e
on the level of field theory as a potentially new mechani
for supersymmetry breaking.

Potential constraints onb that can be placed by measu
ing the energy levels of an electron trapped in a strong m
A
,

,

.
.

12502
e
r
ts

g-

netic field have been discussed. Even under optimistic
sumptions, the constraints that can be imposed are wea

In addition to affecting the energy levels of quantum m
chanical systems, the modified commutation relations, E
~1! and ~26!, may have other far reaching consequences
subsequent papers, we will discuss their effects on the ca
lation of the cosmological constant@13#, and the motion of
macrosopic objects@19#.
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