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2Universidade Cato´lica de Petrópolis, Rua Bara˜o do Amazonas, 124, 25685-070, Petro´polis, Rio de Janeiro, Brazil

3Physics Department, Federal University of Minas Gerais, ICEx, P.O. Box 702, 30.161-970, Belo Horizonte MG, Brazil
4Physics Department, University of Sa˜o Paulo, P.O. Box 66318, 05315-970, Sa˜o Paulo, SP, Brazil

~Received 3 April 2002; published 18 June 2002!

We compare a momentum space implicit regularization~IR! framework with other renormalization methods
which may be applied to dimension specific theories, namely differential renormalization~DfR! and the
Bogolubov-Parasiuk-Hepp-Zimmermann~BPHZ! formalism. In particular, we define what is meant by mini-
mal subtraction in IR in connection with DfR and dimensional renormalization. We illustrate with the calcu-
lation of the gluon self-energy a procedure by which a constrained version of IR automatically ensures gauge
invariance at the one-loop level and handles infrared divergences in a straightforward fashion. Moreover, using
thew4

4 theory setting sun diagram as an example and comparing explicitly with the BPHZ framework, we show
that IR directly displays the finite part of the amplitudes. We then construct a parametrization for the ambiguity
in separating the infinite and finite parts whose parameter serves as a renormalization group scale for the
Callan-Symanzik equation. Finally we argue that constrained IR, constrained DfR, and dimensional reduction
are equivalent within one-loop order.
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I. INTRODUCTION

It is well known that the higher the symmetry degree o
quantum field-theoretic model the more stringent are
constraints on a consistent regularization scheme to ha
the divergences which appear in diagrammatic expansi
For example, whereas a sharp cutoff may be success
employed in most scalar field theories to reflect the corr
physics in perturbation theory, it does not work so well
ready for Abelian gauge field theories. For gauge field th
ries, dimensional renormalization~DR! is one of the most
suitable frameworks because the amplitudes can be re
malized using, for instance, a minimal subtraction sche
~MS! and can readily satisfy the Slavnov-Taylor identities

However, some symmetries which are present in the in
ger dimension may not have a direct analogue inn dimen-
sions. This is the case of supersymmetric~SUSY!, chiral, and
topological field theories~the so-called dimension specifi
theories!. Some modifications of DR can be effected in ord
to mend certain shortcomings. For instance one may c
struct an extension of the algebra of theg5 matrix to dimen-
sion n and control eventual spurious anomalies by impos
the Slavnov-Taylor identities as constraint equations. Thi
the usual procedure in the electroweak sector of the stan
model. In Chern-Simons theories it may be necessary to
ploy a hybrid regularization procedure by adding higher

*Electronic address: msampaio@fisica.ufmg.br
†Electronic address: scarp@qft.ucp.br
‡Electronic address: brigitte@teor.fis.uc.pt
§Electronic address: brizola@fisica.ufmg.br
i Electronic address: carolina@fisica.ufmg.br,

carolina@fma.if.usp.br
¶Electronic address: sgobira@fisica.ufmg.br
0556-2821/2002/65~12!/125023~11!/$20.00 65 1250
e
le
s.

lly
ct
-
-

or-
e

e-

r
n-

g
is
rd
-

-

variant derivative terms in the Lagrangian which improv
the ultraviolet behavior. The remaining divergences are d
with DR and by adopting an extension of the Levi-Civit
tensor algebra to be compatible with analytical continuat
on the space-time dimension. The main drawback in the
ample above is that the calculation may become extrem
complicated beyond the one-loop order. A variant of D
called dimensional reduction~DRed! was proposed by Siege
@1#. The latter differs from DR in the sense that the contin
ation from 4 ton dimensions is made by compactificatio
Thus whereas the momentum~or space-time! integrals aren
dimensional, the number of field components remains
changed. Such a procedure, however, may introduce amb
ities in the finite parts of the amplitudes as well as in th
divergent parts in high order corrections. DRed has b
largely employed especially in supersymmetric models as
invariance of the action with respect to SUSY transform
tions and holds in general only for specific values ofn. Un-
fortunately DRed appears to work well only at the one-lo
level. In fact, DRed can be shown to be inconsistent in g
eral with analytical continuation@2,3# wheng5 matrices and
em1m2 . . . tensors are considered. In general, a pragmatic
titude is adopted in handling the shortcomings brought
flawed regularization frameworks, especially when t
model in consideration is known to be free of anomalies.
other words the task of treating the infinities in diagramma
calculations, especially for theories which are sensitive
dimensional continuation, without introducing ambiguiti
stemming from the regulator employed~that is to say, a
regulator-independent method! is still a subject of major in-
terest. Ultimately it is desirable to construct a framework
which one has simultaneously the following:~1! no need to
add structure to the Lagrangian and hence complicate
Feynman rules;~2! ~non-Abelian! gauge invariance is sys
tematically guaranteed without having to be imposed as c
©2002 The American Physical Society23-1
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straint equations order by order;~3! control upon infrared
divergences without introducing additional machinery; a
~4! a method that is friendly from the calculational view
point.

The task of treating the ultraviolet infinities in a regulato
free fashion has been firstly conceived within t
Bogolubov-Parasiuk-Hepp-Zimmermann~BPHZ! formalism
@4#. This framework relies ultimately on Weinberg’s theore
which states that a Feynman graph converges if the degre
divergence of the graph and all its subgraphs is negativ
systematic implementation of this idea is the Dyso
scheme which is based on the idea that differentiation w
respect to the external momentum turns the graph less d
gent. Hence in Dyson’s method the divergent parts of a gr
G are subtracted by applying Taylor operatorstd(g) where
d(g) is the degree of superficial divergence starting from
smallest subgraphs. When overlapping divergences o
care must be exercised in such a subtraction procedure.
BPHZ framework is the generalization of the Dyson proc
dure to include overlapping diagrams by means of a w
prescribed formula called the forest formula. Althou
BPHZ is a very powerful framework which enables us
construct proofs of renormalizability to all orders, gauge
variance and hence the Slavnov-Taylor identities should
imposed as constraint equations. The reason why gaug
variance is broken when the BPHZ method is applied
non-Abelian gauge theories lies in the subtraction proc
which is based on expanding around an external momen
and thus modifying the structure of the corresponding am
tude. Some modifications in the BPHZ framework~soft
BPHZ scheme! must be made to handle infrared divergenc
because in the original formulation the subtraction is c
structed at zero external momentum@5#.

Differential renormalization~DfR! @7–16# and implicit
regularization ~IR! ~please see@17–23# for applications!
seem to be very promising in this sense since they do
modify the space-time dimension or introduce an expl
regulator at any step of the calculation. The former is
position space method~contact with momentum space
made by means of Fourier transforms! whereas the latter is
essentially constructed in momentum space. We shall dis
these methods in greater detail throughout this paper.
believe that the comparison which we shall outline here w
show that IR is a promising candidate for handling div
gences in field-theoretical calculations~UV and infrared! in
general in a symmetry-preserving fashion yet being sim
from the computational point of view.

This paper is organized as follows. In Sec. I we give
brief description of DfR and IR and compare them with D
We work out a few examples inf4 theory and QED where
we discuss the role played by momentum-routing invaria
in connection with gauge invariance to effect a constrain
version of IR. We also claim that to one-loop order dime
sional reduction, DfR and IR are equivalent, and we defi
what is meant by minimal subtraction in IR. In Sec. II w
compute explicitly the setting sun diagram in both BPHZ a
IR and compare with DfR. This is a nontrivial example b
cause it possesses an interesting divergent structure
which we will clearly see the advantages of applying IR a
12502
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DfR especially in obtaining the finite part. In Sec. III w
calculate the gluon self-energy in QCD within IR to sho
that it can consistently handle the infrared divergences
well as readily display the finite part expressed by a class
well defined functions. We conclude by outlining a few a
plications in which IR could be useful and perhaps mo
advantageous.

II. RELATIONSHIP BETWEEN DIFFERENTIAL,
IMPLICIT AND DIMENSIONAL RENORMALIZATION

DfR was introduced by Freedman, Johnson, and Lato
@7# as a method of regularization and renormalization in
ordinate~Euclidian! space. The idea is that the product
propagators is not a distribution and so it has no Fou
transform. In DfR, renormalization is the procedure whi
extends products of distributions into distributions by sub
tuting bad-behaved expressions by derivatives of w
behaved ones@8# which are understood as distributions, th
is to say, the derivatives are meant to act on test function
automatically delivers finite Green’s functions~which are
identical to the bare ones for separate points but behave
enough at coincident points! without introducing an interme-
diate regulator or counterterm. For instance, suppose tha
have an amplitude proportional to the product of massl
propagators

D0~x!5
1

4p2x2
, x25xmxm . ~1!

Although Eq.~1! is a well defined distribution its square
not. According to DfR we search forG such that

1

x4
5hG~x2! ~2!

which also guarantees manifest Euclidian invariance.
solving such a differential equation we gain arbitrary sca
among whichM, which is introduced for dimensional rea
sons in

G~x2!52
1

4

lnx2M2

x2
, ~3!

can be shown to play the role of a scale variable in
~Callan-Symanzik! renormalization group equation satisfie
by the renormalized amplitude. The latter is constructed
substituting the left-hand side~lhs! of Eq. ~2! with its right-
hand side~rhs! whereG given by Eq.~3!, that is

D0
2~x!→F S 1

4p2x2D 2G
R

52
1

~4p2!2

1

4
h

lnx2M2

x2
. ~4!

Now G(x2) does have a Fourier transform, name
p2ln(p2/M̄2)/p2, which enables us to write the Fourier tran
form of Eq. ~4! as ~in the Minkowski space!
3-2
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F E
k

1

k2~k2p!2G
R

5bln
M̄2

p2
, ~5!

where

b5
i

~4p!2
, ~6!

*k[*d4k/(2p)4 and M̄[2M /gE , gE being the Euler’s
constant. A comparison between DfR and DR’s can be ea
made. For the sake of clarity, we briefly outline it here for t
case of massless theories following@6,15#.

Power law singularities of the typeuxu2n cannot have
their degree of divergence decreased by using the ident

uxu2p5
huxu2p12

~2p12!~n2p!
~7!

and settingp5n because of the pole 1/(n2p). Alternatively
we may try and regulate by dimensional continuation m
ing away fromn by 2r e and thus using Eq.~7! to get

m r euxu2n1r e5
1

e
m r e

1

r ~22n1r e!
huxu2n1r e12

52
1

e

4pn/2

r ~22n1r e!G~ n
2 21!

d (n)~x!

1
1

2~22n!
hS lnm2uxu2

uxun22 D 1O~e!. ~8!

Thus in the dimensional approach the singularityx50 is
regulated by an infinite counterterm proportional
d (n)(x)/e. There is also aO(e0) piece in the term propor
tional tod (n)(x) ~the finite counterterm!. If we subtract such
counterterms we will be left with a term which is just th
result obtained within DfR after identifyingM with m. Alter-
natively we can use Eq.~8! to compute the regularized valu
of D0

2(x). Given that the massless propagator inn dimen-
sions is D0(x)52G(n/221)uxu22n/(4pn/2) and hD0(x)
5d (n)(x), we have

m2e
G2~n/221!

42pn
x422n5

1

~4p2!2 Fp2
1

e
d (n)~x!

2
1

4
h

ln~x2m2pgEe2!

x2 G
1O~e!. ~9!

Some comments are in order. The set of rules of DfR@10#
which fix local counterterms to establish Eq.~4! is called
constrained differential renormalization~CDfR!. In particu-
lar, in CDfR one does not introduce arbitrary constants
singular behavior worse thanx24. CDfR can be shown to
implement gauge invariance automatically at least to o
loop order. From Eq.~9! it is clear that CDfR and DR’s with
12502
ily

-

r

-

a fixed initial condition given by Eq.~9! are equivalent unde
a MS scheme upon the identificationM25m2pgEe2. As a
matter of fact, CDfR is identical to dimensional reduction
one-loop order. In dimensional reduction the coefficients
the basic functions~finite, noncounterterm parts! are never
projected inton dimensions because all the algebra is p
formed in the physical dimension of the theory just as
CDfR. This is not the case of DR in whichn can appear
multiplying the basic functions which in turn produce diffe
ent results from dimensional reduction.

IR is a momentum space framework which somewhat
sembles BPHZ in the sense that one algebraically man
lates the integrand of the amplitude in order to isolate
infinities. The idea is to isolate the divergences as basic
vergent integrals~independent of the external momenta!,
e.g.,

I log~m2!5E
k

1

~k22m2!2
~10!

by using judiciously the identity

1

@~k1ki !
22m2#

5(
j 50

N
~21! j~ki

212ki•k! j

~k22m2! j 11

1
~21!N11~ki

212ki•k!N11

~k22m2!N11@~k1ki !
22m2#

,

~11!

whereki are the external momenta andN is chosen so tha
the last term is finite under integration overk. Such basic
divergent integrals which characterize the divergent struc
of the underlying model need not be evaluated: they can
fully absorbed in the definition of the renormalization co
stants. We shall come back to this issue in connection w
what is meant by MS within IR and its relation to DR an
DfR. An important ingredient of IR is that local arbitrar
counterterms parametrized by~finite! differences of diver-
gent integrals of the same superficial degree of diverge
may be cast into a set of consistency relations@19,20#. They
were shown to be connected to momentum-routing inv
ance in the loop of a Feynman diagram. Should they van
~as indeed they do in DR! then one would automatically hav
momentum-routing invariance and~Abelian! gauge invari-
ance. In other words, by setting the consistency relation
zero @say, constrained IR~CIR!# one has the analogue t
CDfR at one-loop order. Forn54 they read

Ymn
2 [E

k

gmn

k22m2
22E

k

kmkn

~k22m2!2
, ~12!

Ymn
0 [E

k

gmn

~k22m2!2
24E

k

kmkn

~k22m2!3
, ~13!

Ymnab
2 [g$mngab%E

k

1

k22m2
28E

k

kmknkakb

~k22m2!3
, ~14!
3-3
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Ymnab
0 [g$mngab%E

k

1

~k22m2!2
224E

k

kmknkakb

~k22m2!4
,

~15!

etc., whereg$mngab% stands forgmngab1gmagnb1gmbgna .
Generically we may writeYmn

0 5a igmn , etc. with a i arbi-
trary and finite.

It is well known, however, that a shift ink is immaterial
only if Ds<0, Ds being the superficial degree of divergenc
otherwise a surface term should be added. This is an ind
tion that one should be careful in what concerns the mom
tum routing when divergences higher than logarithmic ar
in Feynman diagram calculations. Perturbation theory ma
a peculiar use of this feature for in some cases gauge inv
ance relies on adopting a special momentum routing@24#. A
related issue is that while a shift in the integration variable
allowed within dimensional regularization, the algebra
properties ofg5 clash with analytical continuation on th
space-time dimension. In such cases, in IR we work w
arbitrary values for the consistency relations until the end
the calculation so that physical conditions determine~or not!
their value. For instance, a democratic display of the Ad
Bardeen-Bell-Jackiw triangle anomaly can only be achie
for arbitrary values of Eq.~13!.

A. Examples

Here we illustrate the correspondence between the di
ent regularization frameworks in the context of a MS ren
malization scheme in masslessf4 theory and QED. In par-
ticular we study the Ward identity involving the QED verte
function whose finite part is easily obtained within IR a
we analyze the role played by the consistency relations
arbitrary momentum routing. The 4-point function of th
g/4!f4

4 theory to one-loop orderG\
4(p) is proportional to (m

is an infrared cutoff!

A[E
k

1

~k22m!2@~k2p!22m2#
. ~16!

In IR we apply Eq.~11! once to get

A53I log~m2!2bE
0

1

dzlnS p2z~z21!

2m2
11D , ~17!

with p25s,t,u. In Eq. ~17! we must separate the ultraviole
and infrared divergences~for the casem→0) before pro-
ceeding to renormalization. This can be easily accomplis
by using the identity

I log~m2!5I log~l2!1blnS l2

m2D , ~18!

which holds for arbitraryl. This enables us to write
12502
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G\
4~p!5

g2

2 F I log~l2!1blnS l2

m2D 2b

3E
0

1

dzlnS p2z~z21!

2m2
11D Up25sG

5
g2

2 H I log~l2!1blnS l2

m2D 2b

3F221aslnS as11

as21D G J , ~19!

with as5A4m2/s11. Hence we define the MS within the IR
method by subtractingI log(l2) to yield

G\
4RuMS~p!5

b g2

2 F lnS l̄2

m2D 2aslnS as11

as21D G , ~20!

which is just the result obtained in DfR@14# with l̄2[l2e2

5M̄2. Notice that in the limit wherem→0, m cancels out in
the equation above, as it should. That is because the infr
divergent piece of the logarithmbln(l2/m2) cancels out with
another piece coming from the finite part of the amplitud
This enables us to write

A MS
R 5blnS l̄2

p2D . ~21!

Therefore we have in the MS scheme as defined above fo
the same prescription as defined by Eq.~5! in DfR. More-
over, one can verify thatl̄ plays the role of the renormaliza
tion group scale in the Callan-Symanzik equation. This
expected since it parametrizes the arbitrariness in separa
the divergent from the finite part. In the massless limit t
Callan-Symanzik equation for the 4-point function reads

S l̄
]

]l̄
1b

]

]g
14gfD GR

(4)~p2!50, ~22!

from which we compute the standard valueb
53g2/(16p2).

We also expect IR to be identical todimensional reduc-
tion ~as DfR is! at the one-loop level for the Lorentz algeb
which determines the coefficients of the finite parts in IR th
are effected in the integer dimension, sayn54. In order to
illustrate this point, as well as to pinpoint the role played
the consistency relations in IR in connection with mome
tum routing and gauge invariance let us study the QED W
identity involving the vertex function in IR. The electro
self-energy in the Feynman gauge is written as (e251)

S5E
k
gm

1

k”1k” 12m
gn

gmn

~k1k2!22mg
2

3-4
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⇒2
S

2
5~k” 122m!I 1gmI m, ~23!

wheremg is an infrared regulator,k1 , k2 are arbitrary mo-
menta running in the loop such thatk12k25p, p being the
external momentum, which we shall parametrize bya by
settingk15(11a)p andk25ap, and

I ,I m5E
k

1,km

@~k1k1!22m2#@~k1k2!22mg
2#

.

Now within the spirit of IR we use Eq.~11! to write

I 5I log~m2!2E
k

k2
212k•k21m22mg

2

~k22m2!2@~k1k2!22mg
2#

2E
k

k1
212k•k1

~k21m2!@~k1k2!22mg
2#@~k1k1!22m2#

5I log~m2!2b Z0~mg
2 ,m2,p2;m2!, ~24!

in which Z0 is part of a class of functions which characteri
Feynman diagram calculations to one-loop order,

Zk~l1
2 ,l2

2 ,p2;l2!5E
0

1

dz zkln
p2z~12z!1~l1

22l2
2!z2l1

2

2l2
.

~25!

We can similarly calculateI m to get

I m52
1

2
~k11k2!mI log~m2!1~k11k2! l1 pm

1b k2
m Z0~mg

2 ,m2,p2;m2!2b pm Z1~mg
2 ,m2,p2;m2!,

~26!

wherel1 is defined from Eq.~13! as

Ymn
0 [l1gmn

and is in principle undetermined. The limitmg→0 is well
defined for the Zk functions and Z1(0,m2,p2;m2)
51/2Z0(0,m2,p2;m2). This enables us to write

S~p!52~p”24m!@ I log~m2!2b Z0~0,m2,p2;m2!#

1~2a11!l1p” . ~27!

In order to establish the value ofl1 it is natural to check
whether the Ward identity which relatesS to the vertex func-
tion can place any constraint onl1. Consider the QED ver-
tex function with incoming momentap and q and outgoing
momentump1q @28#:

2 iLm~p,q!5 i E
k
ga

gab

k22mg
2

gb

1

k”1q”2m
gm

1

k”2p”2m
.

~28!
12502
Within the framework of IR we can write, after some tedio
yet straightforward algebra,

2 iLm~p,q!5gnY0
mn1gmI log~m2!12bgm~ Z̃2Z0!

1bj00~4m~p1q!m22m2gm22q”gmp” !

12b~p”1q” !gmp” j0112bq”gm~p”1q” !j10

28mb~pmj011qmj10!

24b~pmp” j021qmq” j20!

1b~pmq”1qmp” ! j11, ~29!

where

Z05Z0„m
2,m2,~p2q!2;m2

…,

Z̃5Z̃~mg
2 ,m2,p,q!

[E
0

1

dzE
0

12z

dy lnS Q~p,q,y,z,mg
2 ,m2!

2m2 D ,

jmn5jmn~mg
2 ,m2,p,q!

[E
0

1

dzE
0

12z

dy
ynzm

Q~p,q,y,z,mg
2 ,m2!

,

Q~p,q,y,z,mg
2 ,m2!5p2y~12y!1q2z~12z!22p•qyz

1~z1y!~mg
22m2!2mg

2 . ~30!

Now we writeY0
mn5l2gmn in Eq. ~29!, l2 being an arbitrary

parameter, and redefine

S~p” !5S̃~p” !1~2a11!l1p” ,

Lm~p,q!5L̃m~p,q!1gml2 ~31!

which with the help of the relations displayed in the Appe
dix, enable us to verify promptly that

~p2q!mL̃m~p,q!5S̃~p” !2S̃~q” !. ~32!

Hence the Ward identity is fulfilled if

l25~2a11!l1 .

The natural choice is to setl15l250, which automatically
implements both gauge and momentum-routing invaria
~CIR!. Notice that by settingl150 in Eq. ~27! leads to the
same result as obtained in CDfR and dimensional reduc
@16# ~which is, however, different from DR within the sam
subtraction scheme! as we too have worked in four dimen
sions.

This illustrates the equivalence between CIR, CDfR, a
dimensional reduction to one-loop level. For instance,
superfield calculation of the one-loop correction to the vec
propagator is gauge invariant in the dimensional reduct
scheme only if@26#
3-5
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I m5E
k

pm12km

k2~k1p!2
50. ~33!

We can easily evaluate the integral above within IR to sh
that it reduces to

I IR
m 5pnYmn

0 ~34!

showing that CIR (Ymn
0 50) may be a safe framework t

handle the problem. In principle IR is generalizable to high
loop calculations, avoiding the breakdown of symmetr
such as gauge invariance and supersymmetry@25#.

III. IR, BPHZ, AND DFR: A TWO-LOOP EXAMPLE

In order to illustrate the correspondence between
BPHZ formalism and IR, we shall compute the two-loo
correction to the 2-point function inf4

4 theory in both meth-
ods and compare with DfR. The amplitude is depicted in F
1 ~setting-sun diagram!. The computation of the finite part o
this diagram is notoriously difficult in DR, for instance
However, for both IR and DfR@13# it can be readily dis-
played.

The BPHZ scheme relies on the forest formula to perfo
the subtraction of the divergences from an amplitude@4#. Let
I G

` be the integrand of such an amplitude associated wi
graphG. Then the subtracted integrand is given by

RG5 (
UPf

)
gPU

2tg
d(g)I G

` , ~35!

wheref is the set of all the forestsU of G, including the
empty set@29#, d(g) is the superficial degree of divergenc
of the subgraphg, and td(g) is the Taylor operator which
corresponds to an expansion around 0 to orderd(g) in the
external momentum to the subgraph. For the sunset diag
the subgraphs are shown in Fig. 2. Therefore we can w
f5$B,G,g1 ,g2 ,g3 ,Gg1 ,Gg2 ,Gg3%. Thus

RG5~12tg1

0 2tg2

0 2tg3

0 2tG
2 1tG

2 tg1

0 1tG
2 tg2

0 1tGtg3

0 !I G
`

~36!

which are ordered so that ifg1,g2 thentg1
lies on the right

of tg2
. The amplitude for the sunset diagram is superficia

quadratically divergent. It reads

FIG. 1. Sunset diagram.
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G\2
(2)

~p!5
g2

6 E
k1 ,k2

I G
` ,

I G
`5D~k11p!D~k2!D~k11k2!

with

D~k![
1

k22m2
. ~37!

Therefore we get, using Eq.~36!,

RG5I G
`2tG

2 I G
`2D~k2!2~12tG

2 !D~k11p!. ~38!

If one uses a regulator, it can be shown that the te
D(k2)2(12tG

2 )D(k11p) above actually vanishes. Thi
comes from the fact that

F~p!5E
k
~12tG

2 !D~k1p!

is independent ofp and thereforeF(p)5F(0)50. Thus ac-
cording to the BPHZ forest formula, the finite amplitude
obtained through the subtractions:

E
k1 ,k2

RG5E
k1 ,k2

I G
`2E

k1 ,k2

tG
2 I G

` ,

E
k1 ,k2

tG
2 I G

`5I 111~m2!2p2I 112~m2!

14E
k1 ,k2

~p•k1!2D~k1!3D~k2!D~k11k2!,

~39!

whereI mnp(m
2) stands for

E
k1 ,k2

1

~k1
22m2!m~k2

22m2!n@~k11k2!22m2#p
. ~40!

FIG. 2. Subgraphsg1 ,g2, andg3.
3-6
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The integralsI mnp are convergent only ifm1p.2, n1p
.2, m1n.2, m1n1p.4 are satisfied@30#. In order to
display the finite part of the setting-sun amplitude there
still some work to do in Eq.~39!. In particular one would
have to adopt a regulator to proceed in this task, the re
being regulator independent as guaranteed by the BP
scheme. That is to say, what the BPHZ scheme guarante
us is which subtractions one ought to perform in order
render the amplitude finite and that the result is regular
tion independent.

Now let us evaluate Eq.~37! in the light of IR. Because
d(G)52 all we need is to apply Eq.~11! up to N52 in
D(k11p) so to display the infinities in terms of basic dive
gent integrals which are cleared out of external moment
get

D~k11p!5D~k1!2~p212k1•p!D2~k1!1~p212p•k1!2

3D3~k1!2~p212p•k1!3D3~k1!D~k11p!,

~41!

which enables us to write

6

g2
G (2)~p!5I 111~m2!2p2I 112~m2!

14E
k1 ,k2

~p•k1!2D~k1!3D~k2!D~k11k2!

1p4I 3112E
k1 ,k2

~p212p•k1!3D~k1!3D~k2!

3D~k11k2!D~k11p!. ~42!

Notice that the first three terms in the rhs of the equat
above are just the terms which were prescribed to be s
tracted using the BPHZ scheme; the fourth term and fi
term ~let us call themF4 andF5 for definiteness! are clearly
divergent but their difference is finite. To see that let us i
late the divergence in both terms as a function of one-lo
momentum variable only using Eq.~11!. Thus

F45p4I log~m2!E
k1

D~k1!32p4E
k1 ,k2

~k1
212k1•k2!

3D~k1!3D~k2!2D~k11k2!, ~43!

whereas
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F55I log~m2!E
k1

~p212p•k1!3D~k1!3D~k11p!

2E
k1 ,k2

~p212k1•p!3~k1
212k1•k2!D~k1!3

3D~k2!2D~k11k2!D~k11p!. ~44!

By using Feynman parameters to evaluate the first term
F4 andF5 one can show that they cancel out. Therefore
can write the finite partF5F42F5 of the setting-sun ampli-
tude as

F5
g2

6 E
k1 ,k2

@~p212k1•p!3~k1
212k1•k2!

3D~k1!3D~k2!2D~k11k2!D~k11p!

2p4~k1
212k1•k2!D~k1!3D~k2!2D~k11k2!#. ~45!

In order to make contact with other regularization and
renormalization frameworks let us take a closer look at
divergent structure ofG (2)(p), namely,

g2

6 S I 111~m2!2p2I 112~m2!

14E
k1 ,k2

~p•k1!2D~k1!3D~k2!D~k11k2! D . ~46!

It is easy to show that the third term above may be written

p2@ I 112~m2!1m2I 113~m2!#

and that

I 11352
b

2m2
I log~m2!1N, N finite

N52E
k1 ,k2

~k1
212k1•k2!3D~k1!3D~k2!2D~k11k2!.

~47!

Also let us split the logarithmic divergence using Eq.~18!.
Collecting all the results together we have@31#
G\2
(2)R

~p!5
g2

6 F2
b2p2

2
lnS l2

m2D 2E
k1 ,k2

~p41m2p2!~k1
212k1•k2!D~k1!3D~k2!2D~k11k2!

1E
k1 ,k2

~p212k1•p!3~k1
212k1•k2!D~k1!3D~k2!2D~k11k2!D~k11p!G , ~48!
3-7
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where

G\2
(2)

~p!2G\2
(2)R

~p!5
g2

6 S I 111~m2!2
bp2

2
I log~l2! D .

~49!

The equation~48! obtained within IR is the momentum spac
analogue of the result presented in@13# in DfR,

G\2
(2)uR~x,M !5

g2

96~4p2!3 F ~h29m2!~h2m2!

3@m2K0~mx!K1
2~mx!1m2K0

3~mx!#

12p2ln
M̄2

m2
~h2m2!d (4)~x!G . ~50!

Here, too, as it was claimed in@13# for DfR, one has been
able to display the finite part of the setting-sun diagram i
closed and compact form in an easy fashion with the adv
tage of working directly in the momentum space. Notice t
the scalel in Eq. ~48! is just the analogue ofM̄ in the
equation above and plays the role of scale in the Cal
Symanzik equation satisfied byGR

(2)(p). For instance, form
→0, GR

(2)(p2) is well defined and obeys

S l
]

]l
1b

]

]g
12gfDGR

(2)~p2!50, ~51!

from which we may calculate the lowest order value ofgf ,
namely,

gf5
1

12

g2

~16p2!2
. ~52!

In fact it can be shown thatgf to lowest order is simply the
coefficient of the logarithmic divergence lnL2/m2 @27#. By
using a general parametrization forI log(l2) @20#, viz. @32#

I log~l2!5blnS L2

l2 D 1h ~53!

(L is an UV cutoff andh an arbitrary constant! in Eq. ~49!
we see that the coefficient of the logarithmic divergen
evaluates togf given in Eq.~52!. Alternatively one can ap-
ply DR to evaluateI log(l2) which gives bG(e)5b@1/e
2gE1O(e)#.

We can also study the setting-sun diagram with arbitr
routing. Let us split the external momentump between the
upper and lower lines in Fig. 1 so that the amplitude rea

G\2
(2)

~p,a,b!5
g2

6 E
k1 ,k2

D~k11ap!D~k11k2!D~k21bp!

[
g2

6 E
k1 ,k2

I G
`~a,b! ~54!
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with a1b51. Using the forest formula one can sho
within the BPHZ framework that

E
k1 ,k2

RG5E
k1 ,k2

I G
`~a,b!2I 111~m2!1~a1b!2I 112~m2!

24~a1b!2E
k1 ,k2

~p•k1!2

3D~k1!3D~k2!D~k11k2!. ~55!

To work out Eq.~54! within IR, it suffices to expandD(k1
1ap) andD(k21bp) using Eq.~11! up to N52 to get

G\2
(2)

~p,a,b!5I 111~m2!2~a1b!2p2I 112~m2!

14~a1b!2E
k1 ,k2

~p•k1!2

3D~k1!3D~k2!D~k11k2!

1finite ~a,b512a!, ~56!

which turns out to be identical to Eq.~42!, as it should,
because the finite part above can be shown to be indepen
of a. No consistency relations have appeared in this exam
as the momentum-routing independence in the setting-
diagram is trivial. In@21# we calculate theb function of f4

4

theory to two-loop order within IR.

IV. GLUON SELF-ENERGY OF QCD

In both Abelian and non-Abelian gauge field theory t
gauge boson self-energy is bound by gauge invariance
have the structurei (p2gmn2pmpn)P(p2). For QCD, the
cancellations that lead to this structure are more comp
than for QED and rely on a gauge invariant regularizat
framework to handle both the ultraviolet and infrared dive
gences. It is well known that adding a small mass for
gluon breaks gauge invariance although it may be sa
done for the photon.

It will be interesting to see how gauge invariance
implemented in IR for the gluon self-energy in connecti
with the consistency conditions~12!–~15!. Let p be the ex-
ternal momentum. The diagrams that contribute to the glu
self-energy to one-loop order are well known:~1! the gluon
tadpolePmn

ab(1), ~2! the gluon loopPmn
ab(2), ~3! the ghost

loop Pmn
ab(3), and~4! the fermion loopPmn

ab(4). Hence the
gluon self-energy is given by

Pmn
ab5Pmn

ab~1!1Pmn
ab~2!1Pmn

ab~3!1Pmn
ab~4!. ~57!

The Feynman rules in momentum space for QCD can
found in any textbook@27#. It is straightforward to show tha

Pmn
ab~1!52g2C2~G!dab3E

k

gmn

k22m2

523g2gmnC2~G!dabI quad~m2!.
~58!
3-8
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The gluon loop is equally simple to be displayed within I
It reads

Pmn
ab~2!5

1

2Ek
g2f acdf bcdNmn

2 i

k22m2

2 i

~k1p!22m2
,

~59!

where

Nmn5@gmr~p2k!s1grs~2k1p!m1gsm~2k22p!r#

3@dr
n~k2p!s1grs~22k2p!n1ds

n ~k12p!r#

52pmpn25~pmkn1pnkm!210kmkn

2gmn@~p2k!21~k12p!2#. ~60!

Using that

~p2k!21~k12p!25~k1p!21k214p2, ~61!

we may write

Pmn
ab~2!52

1

2
g2C2~G!dab$~2pmpn24p2gmn!J~p2,m2!

2gmn@2I quad~m2!1papbYab
0 #

210@pnJm~p2,m2!1Jmn~p2,m2!#%, ~62!

whereas the ghost loop is given by

Pmn
ab~3!52E

k

i

k22m2

i

@~k1p!22m2#
g2f dacf cbd

3~p1k!mkn

52g2dabC2~G!@pnJm~p2,m2!1Jmn~p2,m2!#,

~63!

in which we have used the notation

Jmn5Qmn
(2)2p2Qmn

(0)14papbQmnab
(0) ~64!

1bS pmpn

3 F1

6
2

1

p2
~p22m2!Z0G D ~65!

2
p2gmn

6 F1

3
1

1

2p2
~2p214m2!Z0G , ~66!

Jm522paQam
(0)1

1

2
pm b Z0, ~67!

J5I log~m2!2Z0 , ~68!

with the Z0 functions defined as in Eq.~25!,

Z05Z0~m2,m2,p2;m2! ~69!

and
12502
.
Qmn

(0)5E
k

kmkn

~k22m2!3
,

Qmn
(2)5E

k

kmkn

~k22m2!2
, ~70!

Qmnab
(0) 5E

k

kmknkakb

~k22m2!4
.

Hence we can write Eq.~13! asYmn
0 5gmnI log(m2)24Qmn

(0) ,
etc. Then it follows that

Pmn
ab~1!1Pmn

ab~2!1Pmn
ab~3!5g2C2~G!dab~p2gmn2pmpn!

3F2b
2

9
1

5

3

3~ I log~m2!2bZ0!G . ~71!

The fermion loop contribution to the gluon self-energy
identical to the vacuum polarization tensor of QED exce
for the color and number of fermions (Nf) factors. It has
been computed within IR elsewhere@20#. Here we only write
the result in which we have already subtractedI log(l2) ~that
is to say we have employed the minimal subtraction in I!
and set the consistent relations to zero~CIR!:

Pmn
ab~4!52

i

144p2
g2

Nf

2
dab~pmpn2p2gmn!

3@12Z0~mf
2 ,mf

2 ,p2;l2!14#. ~72!

Now the limit wherem→0 can be safely taken because u
ing Eq. ~18! and that

Z0~m2,m2,p2;m2!5 ln
l2

m2
1Z0~m2,m2,p2;l2!, ~73!

one can show that

I log~m2!2bZ0~m2,m2,p2;m2!

5I log~l2!2bZ0~m2,m2,p2;l2!, ~74!

and

Z0~0,0,p2;l2!5 ln
p2

l2
22. ~75!

Let us also take the limit of massless fermions. Thus we h

Pmn
ab~4!5

i

144p2
g2

Nf

2
dab~pmpn2p2gmn!

3@12ln~ l̄2/p2!24#. ~76!
3-9
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Bringing all the results together enables us to write the co
plete gluon self-energy to one-loop order, after minima
subtracting in the sense of IR the divergence expresse
I log(l2) and settingYmn

0 to zero as

Pmn
ab5

i

144p2
g2dab~pmpn2p2gmn!$@15C2~R!26Nf #

3 ln~ l̄2/p2!22C2~R!12Nf% ~77!

which is just the result obtained in DfR@12# after identifying
l with the differential renormalization arbitrary scaleM̄ . No-
tice that both the massive and massless cases can be str
forwardly handled in IR.

V. CONCLUSIONS

In this paper we compared three frameworks, namely
ferential ~DfR!, implicit ~IR!, and BPHZ regularization
and/or renormalization, which being strictly defined in t
physical dimension of the underlying theory may overco
the problems that arise when applying dimensional regu
ization and variants to dimension-specific theories, such
supersymmetric, topological, or chiral quantum field the
ries.

The purpose was to motivate the answer to a few qu
tions related to the consistency and applicability of IR
handling infinities in Feynman diagram calculations, nam
~1! study how infrared divergences are treated within t
scheme;~2! understand how~non-Abelian! gauge invariance
can be automatically implemented within a constrained v
sion of IR; ~3! define what a minimal subtraction renorma
ization is in IR in analogy with dimensional and differenti
renormalization;~4! argue on the equivalence among I
DfR, and DRed to one-loop order; and~5! motivate IR as a
practical and consistent tool for loop calculations
dimension-specific theories.

Since in implicit regularization the divergences are d
played in the form of basic divergent integrals it is natural
ask what is meant by minimal subtraction in such a sche
We have shown that the logarithmic divergences expres
by I log(m2) can be split as in Eq.~18! to give rise to an
arbitrary scale which plays the role of the renormalizat
scale in the Callan-Symanzik equation. By subtract
I log(l2) when a logarithmic divergence occurs we have
finite part which is identical to the result in differential reno
malization~with l playing the role of the arbitrary scaleM in
DfR! and dimensional regularization~except for a local
counterterm!. We define such a renormalization scheme in
as minimal. In constrained DfR the arbitrary scale is a
taken from the logarithmic divergences only@15# @functions
with singular behavior worse than logarithmic (x24) are re-
duced to derivatives of less singular functions without int
ducing extra dimensionful constants#. This is the main ingre-
dient that fixes the renormalization scheme in~constrained!
DfR and automatically preserves gauge invariance at lea
one-loop order. We showed in the calculation of the glu
self-energy that a constrained version of IR preserves ga
invariance just as it does for Abelian gauge theories@19#.
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Constraining IR amounts to setting some well defined fin
differences between divergent integrals of the same degre
divergence to zero@19,20#. Such differences are called con
sistency relations and were shown to be connected
momentum-routing invariance in the loops.

In order to illustrate the relationship between the BPH
and the IR schemes we have computed the setting-sun
gram. The BPHZ scheme is a very powerful tool for all ord
proofs, for instance, and it delivers unambiguously the ter
which ought to be subtracted in order to render the amplit
finite by means of the forest formula. It is a subtracti
method which is regularization independent in what conce
the finite part. In order to proceed to the calculation in ord
to extract the finite part, one has to apply ultimately a reg
larization scheme. However, symmetries may be broken
the course of such operations such as gauge invariance
we have seen within IR certain surface terms are importan
order to preserve gauge invariance. Moreover, an expan
around zero in the external momentum potentially breaks
gauge invariant structure of the underlying amplitude.
controlling surface terms and using an identity at the leve
the integrand~11! we have verified that IR has control upo
gauge invariance at least to one-loop order. In other wo
in IR the finite part is delivered automatically and no dama
is made to the integrand whereas arbitrary local terms
duly parametrized in IR by the consistency relations. A pro
of renormalizability to all orders in an alternative fashion
BPHZ has been constructed forw6

3 theory within IR. Al-
though we have restricted ourselves to the gluon self-ene
surely one should verify if the other Slavnov-Taylor iden
ties are satisfied as well, by calculating the vertex functio
of QCD @25#.

Finally we conclude that both DfR and IR are potentia
good frameworks to apply in dimension-specific problems
order to avoid ambiguities and spurious anomalies. IR is p
ticularly friendly from the calculational viewpoint with the
advantage of working directly in the momentum space.
believe that computations beyond one-loop order in Che
Simons matter theories as well as in supersymmetric mo
may profit from IR since such a method does not modify
underlying theory and operates in the physical dimension
the theory.1
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APPENDIX

The following relations between the functionsZk andjmn

can be easily checked and can simplify the explicit verific
tion of the Ward identity involving the electron self-energ
and the vertex function:

1Please see Ref.@33# as an illustration of how DfR works in the
presence of infrared divergencies.
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2j00!

11/2~q21mg
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11/2~p21mg
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wherejmn5jmn(m2,m2,p,q) and we have abbreviated

Zk~m2,m2,p2;m2![Zk~p2;m2!. ~A7!
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@19# A.P. Baêta Scarpelli, M. Sampaio, and M.C. Nemes, Phy
Rev. D63, 046004~2001!.
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