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We compare a momentum space implicit regularizati®) framework with other renormalization methods
which may be applied to dimension specific theories, namely differential renormaliz@ié) and the
Bogolubov-Parasiuk-Hepp-ZimmermaBPH2) formalism. In particular, we define what is meant by mini-
mal subtraction in IR in connection with DfR and dimensional renormalization. We illustrate with the calcu-
lation of the gluon self-energy a procedure by which a constrained version of IR automatically ensures gauge
invariance at the one-loop level and handles infrared divergences in a straightforward fashion. Moreover, using
the goj{ theory setting sun diagram as an example and comparing explicitly with the BPHZ framework, we show
that IR directly displays the finite part of the amplitudes. We then construct a parametrization for the ambiguity
in separating the infinite and finite parts whose parameter serves as a renormalization group scale for the
Callan-Symanzik equation. Finally we argue that constrained IR, constrained DfR, and dimensional reduction
are equivalent within one-loop order.
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[. INTRODUCTION variant derivative terms in the Lagrangian which improves
the ultraviolet behavior. The remaining divergences are dealt
It is well known that the higher the symmetry degree of awith DR and by adopting an extension of the Levi-Civitta
guantum field-theoretic model the more stringent are théensor algebra to be compatible with analytical continuation
constraints on a consistent regularization scheme to handtn the space-time dimension. The main drawback in the ex-
the divergences which appear in diagrammatic expansionample above is that the calculation may become extremely
For example, whereas a sharp cutoff may be successfullpomplicated beyond the one-loop order. A variant of DR
employed in most scalar field theories to reflect the correctalled dimensional reductioibRed was proposed by Siegel
physics in perturbation theory, it does not work so well al-[1]. The latter differs from DR in the sense that the continu-
ready for Abelian gauge field theories. For gauge field theoation from 4 ton dimensions is made by compactification.
ries, dimensional renormalizatiofDR) is one of the most Thus whereas the momentuior space-timgintegrals aren
suitable frameworks because the amplitudes can be renodimensional, the number of field components remains un-
malized using, for instance, a minimal subtraction schemehanged. Such a procedure, however, may introduce ambigu-
(MS) and can readily satisfy the Slavnov-Taylor identities. ities in thefinite parts of the amplitudes as well as in the
However, some symmetries which are present in the intedivergent parts in high order corrections. DRed has been
ger dimension may not have a direct analogue idimen-  largely employed especially in supersymmetric models as the
sions. This is the case of supersymmet8tISY), chiral, and invariance of the action with respect to SUSY transforma-
topological field theoriesthe so-called dimension specific tions and holds in general only for specific valuesnofJn-
theorie$. Some modifications of DR can be effected in orderfortunately DRed appears to work well only at the one-loop
to mend certain shortcomings. For instance one may corlevel. In fact, DRed can be shown to be inconsistent in gen-
struct an extension of the algebra of thgmatrix to dimen-  eral with analytical continuatiof2,3] when ys matrices and
sionn and control eventual spurious anomalies by imposing,,,.,... tensors are considered. In general, a pragmatic at-
the Slavnov-Taylor identities as constraint equations. This isitude is adopted in handling the shortcomings brought by
the usual procedure in the electroweak sector of the standafthwed regularization frameworks, especially when the
model. In Chern-Simons theories it may be necessary to enmodel in consideration is known to be free of anomalies. In
ploy a hybrid regularization procedure by adding higher co-other words the task of treating the infinities in diagrammatic
calculations, especially for theories which are sensitive to
dimensional continuation, without introducing ambiguities
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straint equations order by orde3) control upon infrared DfR especially in obtaining the finite part. In Sec. Il we

divergences without introducing additional machinery; andcalculate the gluon self-energy in QCD within IR to show

(4) a method that is friendly from the calculational view- that it can consistently handle the infrared divergences as

point. well as readily display the finite part expressed by a class of
The task of treating the ultraviolet infinities in a regulator- Well defined functions. We conclude by outlining a few ap-

free fashion has been firstly conceived within thePlications in which IR could be useful and perhaps more

Bogolubov-Parasiuk-Hepp-ZimmermaBPHZ) formalism ~ advantageous.

[4]. This framework relies ultimately on Weinberg's theorem

which states that a Feynman graph converges if the degree of  1I. RELATIONSHIP BETWEEN DIFFERENTIAL,

divergence of the graph and all its subgraphs is negative. A IMPLICIT AND DIMENSIONAL RENORMALIZATION

systematic implementation of this idea is the Dyson’s )

scheme which is based on the idea that differentiation with_ DfR was introduced by Freedman, Johnson, and Latorre

respect to the external momentum turns the graph less divet/] s @ method of regularization and renormalization in co-

gent. Hence in Dyson’'s method the divergent parts of a grapfrdinate (Euclidian space. The idea is that the product of

G are subtracted by applying Taylor operat6?§”) where propagators is not a dlstrlb_utlo_n ar_1d so it has no Fou_rler

d(y) is the degree of superficial divergence starting from thdransform. In DfR, rer_10r_mal!zat|o_n IS t_he_pro_cedure Wh'Ch

smallest subgraphs. When overlapping divergences occﬁxtends products of distributions into distributions by substi-

care must be exercised in such a subtraction procedure. Tté}étik?g téad-behaviq hexpress(ijons b)('j degyati_\t/)es_ of V\r’]e"'
BPHZ framework is the generalization of the Dyson proce-; ehaved onef3] which are understood as distributions, that

dure to include overlapping diagrams by means of a wells to say, the derivatives are meant to act on test functions. It
prescribed formula called the forest formula. Although fautor_natically delivers finite Green's fun_ctioniwhich are
BPHZ is a very powerful framework which enables us toidentical to the bare ones for separate points but behave well
construct proofs of renormalizability to all orders, gauge in_enough at coincident pointsithout mtroducmg an interme-
variance and hence the Slavnov-Taylor identities should b late regulator_or counterterm. For instance, suppose that we
imposed as constraint equations. The reason why gauge i ave an amplitude proportional to the product of massless

variance is broken when the BPHZ method is applied tg°ropagators
non-Abelian gauge theories lies in the subtraction process
which is based on expanding around an external momentum A _
and thus modifying the structure of the corresponding ampli- o(X)= A72x2
tude. Some modifications in the BPHZ framewofkoft
BPHZ schempmust be made to handle infrared divergenciesythough Eq.(1) is a well defined distribution its square is
because in the original formulation the subtraction is cony,ot According to DR we search fd® such that
structed at zero external momentyif].

Differential renormalization(DfR) [7—16] and implicit 1
regularization (IR) (please sed17-23 for application$ Z—0OG(x?) )
seem to be very promising in this sense since they do not x*
modify the space-time dimension or introduce an explicit
regulator at any step of the calculation. The former is thewhich also guarantees manifest Euclidian invariance. In
position space methodcontact with momentum space is solving such a differential equation we gain arbitrary scales
made by means of Fourier transformghereas the latter is among whichM, which is introduced for dimensional rea-
essentially constructed in momentum space. We shall discus®ns in
these methods in greater detail throughout this paper. We
believe that the comparison which we shall outline here will 1 Inx2M?2
show that IR is a promising candidate for handling diver- G(x?)=-— 1 > 3
gences in field-theoretical calculatiofidV and infrared in X
general in a symmetry-preserving fashion yet being simple ) ]
from the Computationa| point Of View_ can be ShOWﬂ '-:0 p|ay the I’O!e Of a Scale Va-nable -|n-the

This paper is organized as follows. In Sec. | we give a(Callan-Symanz!}( renorma_llzatlon group equation satisfied
brief description of DfR and IR and compare them with DR. Py the renormalized amplitude. The latter is constructed by
we discuss the role played by momentum-routing invarianc&and side(rhs) whereG given by Eq.(3), that is
in connection with gauge invariance to effect a constrained

X2= XX, - (1)

version of IR. We also claim that to one-loop order dimen- ) 1 \? 1 1 Inx®M?
sional reduction, DfR and IR are equivalent, and we define Ag(x)— A2 = (472)2 ZD 2 )
what is meant by minimal subtraction in IR. In Sec. Il we R

compute explicitly the setting sun diagram in both BPHZ and .

IR and compare with DfR. This is a nontrivial example be-Now G(x?) does have a Fourier transform, namely
cause it possesses an interesting divergent structure from?In(p?/M?)/p?, which enables us to write the Fourier trans-
which we will clearly see the advantages of applying IR andform of Eq. (4) as(in the Minkowski spacke
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1 M2 a fixed initial condition given by Eq9) are equivalent under
fﬁ =bln—, (5) a MS scheme upon the identificatidn®= u?myge?. As a
kk“(k=p)“] 4 p matter of fact, CDfR is identical to dimensional reduction to
one-loop order. In dimensional reduction the coefficients of
where the basic functiongfinite, noncounterterm padt@re never

. projected inton dimensions because all the algebra is per-
b= ' ©6) formed in the physical dimension of the theory just as in
(42’ CDfR. This is not the case of DR in which can appear

multiplying the basic functions which in turn produce differ-

fi=Jd*/(2m)* and M=2M/yz, ye being the Euler's ent results from dimensional reduction.
constant. A comparison between DfR and DR’s can be easily IR is @ momentum space framework which somewhat re-

made. For the sake of clarity, we briefly outline it here for theSembles BPHZ in the sense that one algebraically manipu-
case of massless theories followif@y15]. lates the integrand of the amplitude in order to isolate the

their degree of divergence decreased by using the identity Vergent integrals(independent of the external momepta
e.qg.,

PR L N ™
X e —

(=p+2)(n—p)
and settingp=n because of the pole X p). Alternatively
we may try and regulate by dimensional continuation mov-y ysing judiciously the identity
ing away fromn by —re and thus using Eq.7) to get

1
Ilog(mz)ZJ— (10

k(kz— m2)2

L L 1 EN‘, (— 1)l (K2+ 2k; - k)!
€ly|— €__ € - e+2 = i
W e g T [(krk)?=m?] (= (é=m?)i*E
1 472 (= DN+ 2k k)N
=—- 5 (x) K2— m2N*FL (Kk+ Kk )2—m?2]’
€r(2—n+rel(2—1) (Ke=m) ™ ket k)™=l
(11)
1 Inu?|x|? .
+ 2(2=n) - +0(e). (8) wherek; are the external momenta ahtlis chosen so that
x| the last term is finite under integration ovier Such basic

divergent integrals which characterize the divergent structure
of the underlying model need not be evaluated: they can be
fully absorbed in the definition of the renormalization con-
stants. We shall come back to this issue in connection with
what is meant by MS within IR and its relation to DR and
DfR. An important ingredient of IR is that local arbitrary
counterterms parametrized Hffinite) differences of diver-
gent integrals of the same superficial degree of divergence
may be cast into a set of consistency relatift®20. They
were shown to be connected to momentum-routing invari-
ance in the loop of a Feynman diagram. Should they vanish
(as indeed they do in DRhen one would automatically have

Thus in the dimensional approach the singulasity O is
regulated by an infinite counterterm proportional to
5M(x)/e. There is also a@)(e°) piece in the term propor-
tional to 5 (x) (the finite counterterm If we subtract such
counterterms we will be left with a term which is just the
result obtained within DfR after identifyiniyl with . Alter-
natively we can use E@8) to compute the regularized value
of Ag(x). Given that the massless propagatornimimen-
sions is Ag(x)=—T(n/2—1)|x|2" " (47"?) and DAq(x)
=5"(x), we have

2
Mzer (n/2— 1)X4—2n: 1 7_r2}5(n)(x) momentum-routing invariance an@belian) gauge invari-
4270 (47%)? € ance. In other words, by setting the consistency relations to
zero [say, constrained IRCIR)] one has the analogue to
1 In(x®u’myge?) CDfR at one-loop order. Fan=4 they read
4 X2
e T —zf ks (12
+O(€). (9) mv kk2—m2 k(kZ_mZ)Z'

Some comments are in order. The set of rules of DIR]

which fix local counterterms to establish Egt) is called 0 _ Ouv KK, 13

constrained differential renormalizatid@€DfR). In particu- # k(K2 —m?)2 k(k2—m?)3’ (13

lar, in CDfR one does not introduce arbitrary constants for

singular behavior worse thax 4. CDfR can be shown to 1 K k kK

implement gauge invariance automatically at least to one- 2 =g,,.9 f _ f wvia /3’ (14)
loop order. From Eq(9) it is clear that CDfR and DR’s with prap=SturSab | o 2 k(k?—m?)3
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1 K,k kK
[ Juets rip)=

(k2_m2)4’

N,

)\2
||Og(>\2)+b|n<—2) -b
o

2505
xfldzln(p 2z—1) +1)

0 —,uz

0 _ -
YMV&ﬁ:g{MVgaﬁ}fk(kz_ m2)2 a

(19

p251

etc., Whereg{wgaﬁ} stands forg,,,9.5% 9,098 945900 -
Generically we may writeY ,,= a;g,,, etc. with ; arbi-

trary and finite. 92 A2
It is well known, however, that a shift ik is immaterial = 3| Ilog()\z)+bln —2) —-b
only if A;<0, A4 being the superficial degree of divergence, I
otherwise a surface term should be added. This is an indica-
tion that one should be careful in what concerns the momen- x| —2+ asln< ast 1) H , (19)
tum routing when divergences higher than logarithmic arise as—1

. (20

in Feynman diagram calculations. Perturbation theory makes
a peculiar use of this feature for in some cases gauge invanyith a = \/4u?/s+ 1. Hence we define the MS within the IR
ance relies on adopting a special momentum rout#dg. A method by subtracting,og()\z) to yield
related issue is that while a shift in the integration variable is

allowed within dimensional regularization, the algebraic b g2 N2 at1

properties ofys clash with analytical continuation on the F2R|Ms(p):_ In(—) —asln(s—)

space-time dimension. In such cases, in IR we work with 2 u? as—1

arbitrary values for the consistency relations until the end of

the calculation so that physical conditions deternfiorenot  which is just the result obtained in DfR4] with \2=\2€?

their value. For instance, a democratic display of the Adler-— y12 Notice that in the limit wherg.—0, u cancels out in
Bardeen-Bell-Jackiw triangle anomaly can only be achieveqe equation above, as it should. That is because the infrared
for arbitrary values of Eq(13). divergent piece of the logarithimin(A% «?) cancels out with
another piece coming from the finite part of the amplitude.
A. Examples This enables us to write

Here we illustrate the correspondence between the differ- >
ent regularization frameworks in the context of a MS renor- AR =bln 7‘_ (21)
. . . MS 2]
malization scheme in masslegé theory and QED. In par- p
ticular we study the Ward identity involving the QED vertex
function whose finite part is easily obtained within IR and Therefore we have in the MS scheme as defined above for IR
we analyze the role played by the consistency relations anghe same prescription as defined by Eg). in DfR. More-

arbitrary momentum routing. The 4-point function of the qyey one can verify that plays the role of the renormaliza-
g/4! ¢, theory to one-loop orddry(p) is proportional to & tion group scale in the Callan-Symanzik equation. This is

is an infrared cutoff

1

In IR we apply Eq.(11) once to get

272(z—1
pz( )+1

1
A=3||OQ(M2)—bf dzln( -
0 — K

fk(kz—mzuk—mz—uz]'

expected since it parametrizes the arbitrariness in separating
the divergent from the finite part. In the massless limit the
Callan-Symanzik equation for the 4-point function reads

r{p?=o, (22)

ped +B iy
o Cag e
from which we compute the standard valueg

=3g%/(1672).
We also expect IR to be identical timensional reduc-

tion (as DfR i9 at the one-loop level for the Lorentz algebra
with p?=s,t,u. In Eq. (17) we must separate the ultraviolet which determines the coefficients of the finite parts in IR that

and infrared divergenceffor the casex—0) before pro- &€ effected in the integer dimension, say4. In order to

ceeding to renormalization. This can be easily accomplishelflustrate this point, as well as to pinpoint the role played by
by using the identity the consistency relations in IR in connection with momen-

tum routing and gauge invariance let us study the QED Ward
identity involving the vertex function in IR. The electron

A2 self-energy in the Feynman gauge is written e$<(1)
||09(M2)=||Og()\2)+b|n(—2) , (18
o

1 Ipuv
which holds for arbitraryx. This enables us to write k' " Kkt+kg—m(k+ky) = puf
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py
== =(ki—2m)l+y,1*, (23)

where u,, is an infrared regulatok, , k, are arbitrary mo-
menta running in the loop such thiat—k,=p, p being the
external momentum, which we shall parametrize dyby
settingk,;=(1+ a)p andk,= ap, and

| '”:f 1k#
’ K[ (k+kp)2=m?][(K+kz)2— u3]’

Now within the spirit of IR we use Eq11) to write

, K3+ 2k-kp+m?— u’
IZI'Og(m)_f 2 2\2 2 2
k(k==m?)[(k+ky)“—uy]

—f k%+2k-k,
k(k?+m?)[(k+kp)?— w3 ][ (k+ky)?—m?]

:I|Og(m2)_b ZO(M§1m2,p2;m2), (24)

in which Z, is part of a class of functions which characterize

Feynman diagram calculations to one-loop order,

p?z(1—2)+ (N3—\3)z—\?
—2\2 ’

1
208300 = [ az #in
0
(25

We can similarly calculaté, to get

1
1= = 5 (ky ko)l iog(M?) + (K +kp) Ay p*

+b K5 Zo(5,m?,p%m?) —b p Zy (u, m?, p%im?),
(26)

where), is defined from Eq(13) as

szz)\lg/.w

and is in principle undetermined. The limit,— 0 is well
defined for the Z, functions and Z,(0,m? p?m?)
=1/2Z,(0,m?,p% m?). This enables us to write

3(p)=—(Pp—4m)[ljog(M*) —b Zo(0,m?,p%;m?)]
+(2a+1)\p. (27)

In order to establish the value &f it is natural to check
whether the Ward identity which relat&sto the vertex func-
tion can place any constraint ony. Consider the QED ver-
tex function with incoming momentp and q and outgoing
momentump-+q [28]:

gef 1 L1
k2= 2 Pkerdg—m  Kk—p—m’
(28

—iM(p,q>=ifkya

PHYSICAL REVIEW D 65 125023

Within the framework of IR we can write, after some tedious
yet straightforward algebra,

—IA*(P,0)=7,Y§"+ ¥*|10g(MP) +2by*(Z~ Zo)
+be%(am(p+q)#—2m?y# — 24 y*p)
+2b(p+d) y*pEo+2bhy (p+¢) £°
—8mb(p”¢+g”g™)

—4b(p“pEPH+ g 4E”)
+b(ptd+qrp) £, (29
where
Zy=Zo(m?,m?,(p—q)%m?),
Z=Z(p5.m%p.q)

— 2 2
zfldzfl dym(Q(p,q,y,z,uy,m )),
0 0

_m2

£M= M u? m?,p,q)

1 1-z y“zm
Ef dzf dy RN
o Jo Q(p,a,y,z,u5,m")
Q(p,a.y,z,u?,m?)=p?y(1-y)+0°2(1-2)—2p-qyz

+(z+y)(pd—m?) —u?. (30)

Now we writeY §”=\,g*” in Eq.(29), A, being an arbitrary
parameter, and redefine

S(P)=3(p)+ (2a+1)\p,

A*(p,q)=A*(p,q)+ ¥\, (32)

which with the help of the relations displayed in the Appen-
dix, enable us to verify promptly that

(P—a) A“(p,a)=2(p)— (). (32)
Hence the Ward identity is fulfilled if
)\22(2a+ 1))\1

The natural choice is to sat;=\,=0, which automatically
implements both gauge and momentum-routing invariance
(CIR). Notice that by setting.;=0 in Eq. (27) leads to the
same result as obtained in CDfR and dimensional reduction
[16] (which is, however, different from DR within the same
subtraction schemeas we too have worked in four dimen-
sions.

This illustrates the equivalence between CIR, CDfR, and
dimensional reduction to one-loop level. For instance, the
superfield calculation of the one-loop correction to the vector
propagator is gauge invariant in the dimensional reduction
scheme only if26]
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k1+p —kytp

v
Y
"'E

p—k,
N (ki=—k2) ki+p Y (ki=-p)
-k —k,
14
FIG. 1. Sunset diagram.
u pH+2k# 0 33
Ji(k+p)® = B (k2=0)

FIG. 2. Subgraphs,,y,, and ys.
We can easily evaluate the integral above within IR to show grapnga. vz &

that it reduces to

2) g°
5 (p)= _J Ié )
Tfe=p"YC, (34) " 6 Ji, ko

showing that CIR wa=0) may be a safe framework to lg=A(ki+p)A(kz)A(ky+kp)
handle the problem. In principle IR is generalizable to higher .
loop calculations, avoiding the breakdown of symmetriesw'th
such as gauge invariance and supersymniesy.

A(k)=——.
I1l. IR, BPHZ, AND DFR: A TWO-LOOP EXAMPLE K M

(37)

In order to illustrate the correspondence between therherefore we get, using E¢B6),
BPHZ formalism and IR, we shall compute the two-loop
correction to the 2-point function gy theory in both meth- Re=lg—t3la—A(kn)2(1—t3)A(k,+p). (38
ods and compare with DfR. The amplitude is depicted in Fig.
1 (setting-sun diagrajnThe computation of the finite part of If one uses a regulator, it can be shown that the term

this diagram is notoriously difficult in DR, for instance. A(kz)z(l—té)A(lir p) above actually vanishes. This
However, for both IR and DfR13] it can be readily dis- comes from the fact that

played.

The BPHZ scheme relies on the forest formula to perform
the subtraction of the divergences from an amplititleLet F(p)= f (1-t2)A(k+p)
I ¢ be the integrand of such an amplitude associated with a K

graphG. Then the subtracted integrand is given by is independent op and thereforeé= (p) = F(0)=0. Thus ac-
cording to the BPHZ forest formula, the finite amplitude is
Re= 2 H _td(y)lé (35) obtained through the subtractions:
Ue¢ yeU Y ,

_ ® 2 »
where ¢ is the set of all the forestdl of G, including the fkl’szG_ fklykzlG_ fkl,kztGIG’
empty sef{29], d(y) is the superficial degree of divergence
of the subgraphy, andt%? is the Taylor operator which
corresponds to an expansion around 0 to odieyr) in the rJ té'é:|1ll(,u,2)—p2|112(,u2)
external momentum to the subgraph. For the sunset diagrant 12
the subgraphs are shown in Fig. 2. Therefore we can write

$»={3,G,71,72,:73.Gv1,Gy2,Gys}. Thus +4fk . (p-kq)2A(Kp)3A(Kp) A(Ky+Ky),
1:82

_ /140 40 .0 .2, 2.0 2.0 G40
Ro=(1—t5 —t] —t) —tg+tgt) +15t) +t5)Ig (39
(36)

wherel ,n(1?) stands for
which are ordered so that 4, C y, thenty1 lies on the right

of t, . The amplitude for the sunset diagram is superficially _
quadratically divergent. It reads ke ko(KE — %) ™(K5— 11?)"[ (Ky +Kp)? — u?]P

1

(40)
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The integralsl ,,, are convergent only im+p>2, n+p ) ) 5 5
>2, m+n>2, m+n+p>4 are satisfied30]. In order to Fs=liog(1 )Jk (P“+2p-kq)°A(ky)*A(ky+p)
display the finite part of the setting-sun amplitude there is !

still some work to do in Eq(39). In particular one would 5 a2 5
have to adopt a regulator to proceed in this task, the result - fk ; (P=+2ky - p) (ki + 2Ky - ko) A(Ky)

being regulator independent as guaranteed by the BPHZ 12

scheme. That is to say, what the BPHZ scheme guarantees to X A(Ky)2A(ky+ky)A(Ky+p). (44)

us is which subtractions one ought to perform in order to _ _ _
render the amplitude finite and that the result is regularizaBy using Feynman parameters to evaluate the first terms in
tion independent. F, andF5 one can show that they cancel out. Therefore we

Now let us evaluate Eq37) in the light of IR. Because can write the finite par¥=F,— F5 of the setting-sun ampli-
d(G)=2 all we need is to apply Eq11) up toN=2 in tude as
A(ky+p) so to display the infinities in terms of basic diver-
gent integrals which are cleared out of external momenta to o
get =L tprrakpid ok k)
A(ky+p)=A(Ky) = (p?+2ky - p)A%(ky) +(p?+2p-ky)? o

3 2
X A3(ky) — (p?+2p-ky)3A3(Ky)A (K +p), X A(ky)?A(ky)“A(Ky+kp)A(ky+p)

—PA(k3+ 2Ky - ko) A (Kq)®A(K)*A (kg k)] (45)

(41)
which enables us to write In order to make contact with other regularization and/or
renormalization frameworks let us take a closer look at the
6 divergent structure of ®)(p), namely,
;F(z)(p):|111(M2)_p2|112(,u2)

2

g
+4fk (pk)?A (kA (A Ky ) E('“l(“Z)—pzlmmz)
112

. 2 3
+p4|311_ fk ) (p2+2pk1)3A(k1)3A(k2) +4fkl,k2(p kl) A(kl) A(kZ)A(k1+k2) . (46)

1
It is easy to show that the third term above may be written as

P21 g u?) + 12114 1?)]

XA(kitky)A(ky+p). (42

Notice that the first three terms in the rhs of the equation

above are just the terms which were prescribed to be subynd that

tracted using the BPHZ scheme; the fourth term and fifth

term (let us call them, andF 5 for definitenesgare clearly

divergent but their difference is finite. To see that let us iso- b

late the divergence in both terms as a function of one-loop !115=— ——liog(#?)+N, N finite
momentum variable only using E¢L1). Thus 2u

NZ—J’ (ki+2kl-kz)XA(kl)SA(kz)zA(kl-i-k2).
k1.ko

F,=p*l ZJAk3—4f k2+ 2k, -k

4= P liog(1%) ke (ky)°=p kl,kz( 1 1-ka) (47

X A(Kp)3A(Kp)?A (K +Ks), 43
(ka)"A ko)A lka t ko) “3 Also let us split the logarithmic divergence using E#9).

whereas Collecting all the results together we ha\ad]
MR g2 b2p2 )\2
IR (p)=<| - In| — —f (p*+ u2p?) (K5 + 2Ky - ko) A (K1) 3A (Kp) A (Ky + k)

6 2 MZ kq.kp

+f (p?+2ky- p)3(K2+ 2Ky - ko) A (k1) 3A (k) ?A (kg + ko) A(ky+p) |, (48
kq ko
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where with a+B=1. Using the forest formula one can show
within the BPHZ framework that
2) or 9 o bPP
Féz(p)_rﬁz (p)zg l111( )_Tllog()\ ) |- B ) 5 5
J' RG:f lg(a@,B) = l111( %) +(a+ B) 7l 11 1)
(49 Ky ko ky ko
The equationi48) obtained within IR is the momentum space — Ao+ )ZJ (p-ky)?
analogue of the result presented i8] in DfR, atp Ky ko P-Ka
5 g2 X A(Kq)*A(Kp) A Ky +ks). (55
T2|r(xM)= ——— 1 (0—-9u?)(0-u?) S
96(47°) To work out Eq.(54) within IR, it suffices to expana (k;

+ and A (k,+ using Eq.(11) up toN=2 to get
X LK ol ) K30 + 2K ) ] @P) andA(kzp) using Eq.(11) up g
2 I'2(p,a,B)=1114p?) — (a+ B)2p? 114 n?)

+2w2InM—2(D—,u2) SM(x) |. (50)
o

+4<a+ﬂ>2fk (pky?
ko

Here, too, as it was claimed i3] for DfR, one has been '

able to display the finite part of the setting-sun diagram in a X A(Kp)3A(kp) A(ky + ko)
closed and compact form in an easy fashion with the advan- - o
tage of working directly in the momentum space. Notice that +inite (a,f=1-a), (56

the scalen in Eq. (48) is just the analogue oM in the  \hich turns out to be identical to Eq42), as it should,
equation above and plays the role of scale in the Callanpecause the finite part above can be shown to be independent
Symanzik equation satisfied B<)(p). For instance, fop.  of a. No consistency relations have appeared in this example
—0, F(RZ)(pz) is well defined and obeys as the momentum-routing independence in the setting-sun
diagram is trivial. In[21] we calculate thg8 function of ¢4
J J - ithi
)\5_’_[;@_’_2% F(RZ)(pZ)=O, (51) theory to two-loop order within IR.

IV. GLUON SELF-ENERGY OF QCD
from which we may calculate the lowest order valueygf,

namely, In both Abelian and non-Abelian gauge field theory the
gauge boson self-energy is bound by gauge invariance to
1 g2 have the structuré (p®g,,,— pﬂpv)H(pz). For QCD, the
Vo= 5 (52)  cancellations that lead to this structure are more complex
12 (167 than for QED and rely on a gauge invariant regularization

framework to handle both the ultraviolet and infrared diver-

In fact it can be shown thag, to lowest order is simply the gences. It is well known that adding a small mass for the
coefficient of the logarithmic divergenceAu® [27]. By  gluon breaks gauge invariance although it may be safely

using a general parametrization fqgg()\z) [20], viz. [32] done for the photon.

It will be interesting to see how gauge invariance is

) A2 implemented in IR for the gluon self-energy in connection

liog(A%)=bIn F T (53 with the consistency conditiond2)—(15). Let p be the ex-
ternal momentum. The diagrams that contribute to the gluon

(A is an UV cutoff andz an arbitrary constapin Eq. (49) self—energa)g to one-loop order are weaIL knowi) the gluon
we see that the coefficient of the logarithmic divergencetadp()'eal;[w(l)v (2) the 9'“0”_|OOPHW(§b), (3) the ghost
evaluates toy, given in Eq.(52). Alternatively one can ap- 100p IT/,(3), and(4) the fermion looplT/,(4). Hence the
ply DR to evaluatel,q(\?) which gives bI'(e)=b[1/e  gluon self-energy is given by
—ve+0(e)].

)\//%/e cafn)also study the setting-sun diagram with arbitrary HZBZHZS(lHHZE(ZHHZ%(?’HHZ?M)- (57)
routing. Let us split the external momentymmbetween the

upper and lower lines in Fig. 1 so that the amplitude readsThe Feynman rules in momentum space for QCD can be

found in any textbook27]. It is straightforward to show that

2
@) :g_f
th(p,a,ﬂ) 6 kl’kZA(k1+ ap)A(k1+ kZ)A(k2+Bp) Hig(l)z—gzcz(G)éabS 2g/.LV ;
kk®—
2
S Y (54 — —3020,,,Co(G) ™ guad 2.
6 Jk, k, (598
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The gluon loop is equally simple to be displayed within IR.
It reads

K= p? (k+p)?-p?
(59

1
Hil:}(z) — Efkg2facdfbch

where
N*“"=[g*"(p—k)7+g7(2k+p)*+g7*(—k—2p)*]
X[3,(k=P)ot9po( —2k—p)"+ 5 (k+2p),]
=2p,p,—5(p.k,+p,k,)—10k,k,
~ 0L (P—K)?+ (k+2p)?].

Using that

(60)
(p—Kk)?+ (k+2p)?=(k+p)2+k3+4p?, (61)
we may write

1
2

— 0,021 quad 1)+ PPPY 0 4]

1125(2) 92C5(G) 6%°{(2p,.p,—4p?g,,,) I(p?, 1?)

= 100p, (% 12 + 3PP D) T, (62)
whereas the ghost loop is given by
i
Hab 3 :_f 2fdaCfcbd
ol kk?— u? [(k+ p)z—uz]g
X(p+k).K,
=—g?8%°Co(G)[P,J (P %) +,u(P2 12)],
(63)
in which we have used the notation
=00 - p?0 )+ 4p pfO )., (64)
PuPy|l 1,
PGy 1+ ! 2+4m?)Z 66
7% |3 2_p2(_p m%)Zo|, (66)
_ a@(0) 1
J,=—2p ®w+§pubzo, (67)
3=110g(1) ~Zo, (68)
with the Z, functions defined as in E¢25),
Zo=Zo(pu? 1% p% 1) (69)

and

PHYSICAL REVIEW D 65 125023

@<0):f&
nv k(k2_M2)3,
K,k
@ | Sy
0@)- Jk(kZ—mZ’ 70
MO =JM
pmvaf k(k2_M2)4'

Hence we can write Eq13) asY,=g,,,l10g(1?) —407),

etc. Then it follows that

I125(1) +1125(2) + [13%(3) = g°C( G) 8*(p?Q ., — P,P,)

b2 5

x 3

X(Ilog(ﬂz)_bzo) . (73)

The fermion loop contribution to the gluon self-energy is
identical to the vacuum polarization tensor of QED except
for the color and number of fermiond\¢) factors. It has
been computed within IR elsewhdi20]. Here we only write
the result in which we have already subtractg,@()\z) (that

is to say we have employed the minimal subtraction in IR
and set the consistent relations to z&éGIR):

14472

N
2

b _ f
5o (4)=— 92— 6*°(p,p,— P°,..)

X[12Zo(mZ,m? ,p%\?)+4]. (72

Now the limit wherex— 0 can be safely taken because us-
ing Eq. (18) and that

2

A
Zo(pu?, 12, p% pu?) =In— + Zo(w? w2 p%5N3), (79
o
one can show that
log(1?) —bZo( 2, %, p%; p?)
=l1og(N?) —bZo( 2, u?,p%\?), (74
and
p2
Zo(0,0p%\%) = lnF -2. (75)

Let us also take the limit of massless fermions. Thus we have

b —

N
1aa29 2 (PP PG,

X [12In(\%p?)—4]. (76)
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Bringing all the results together enables us to write the com€onstraining IR amounts to setting some well defined finite
plete gluon self-energy to one-loop order, after minimallydifferences between divergent integrals of the same degree of
subtracting in the sense of IR the divergence expressed hgivergence to zer19,20. Such differences are called con-
||og()\2) and settingY?w to zero as sistency relatlons _and were _shown to be connected to
momentum-routing invariance in the loops.

i In order to illustrate the relationship between the BPHZ

‘;’iz 2925""b(pﬂpy— P29, ){[15C,(R) —6N;] and the IR schemes we have computed the setting-sun dia-
144 gram. The BPHZ scheme is a very powerful tool for all order
— proofs, for instance, and it delivers unambiguously the terms
XIn(A%/p?) —2C5(R) +2N¢} (77)  which ought to be subtracted in order to render the amplitude

L _ _ . " finite by means of the forest formula. It is a subtraction
which is just the result obtained in DfR 2] after identifying  method which is regularization independent in what concerns
\ with the differential renormalization arbitrary scdle No-  the finite part. In order to proceed to the calculation in order
tice that both the massive and massless cases can be straigiot-extract the finite part, one has to apply ultimately a regu-

forwardly handled in IR. larization scheme. However, symmetries may be broken in
the course of such operations such as gauge invariance. As
V. CONCLUSIONS we have seen within IR certain surface terms are important in

order to preserve gauge invariance. Moreover, an expansion
In this paper we compared three frameworks, namely difaround zero in the external momentum potentially breaks the
ferential (DfR), implicit (IR), and BPHZ regularization gauge invariant structure of the underlying amplitude. By
and/or renormalization, which being strictly defined in thecontrolling surface terms and using an identity at the level of
physical dimension of the underlying theory may overcomethe integrand11) we have verified that IR has control upon
the problems that arise when applying dimensional regulard@uge invariance at least to one-loop order. In other words,
ization and variants to dimension-specific theories, such al IR the finite part is delivered automatically and no damage

supersymmetric, topological, or chiral quantum field theo-IS made to the inpegrand Whereas'arbitrary Ioc_:al terms are
ries. duly parametrized in IR by the consistency relations. A proof

The purpose was to motivate the answer to a few quesQf renormalizability to all orders in an alternative fashion to

tions related to the consistency and applicability of IR in SPHZ has been constructed farg theory within IR. Al-

handling infinities in Feynman diagram calculations, namel)}hough we have restricted ourselves to the gluon self-energy,

(1) study how infrared divergences are treated within thisSurely one should verify if the other Slavnov-Taylor identi-

scheme(2) understand hownon-Abelian gauge invariance gfestérg [s;é]lsfled as well, by calculating the vertex functions
can be au'tomanc.ally 'mp'emef‘t‘?d within a cc_)nstramed ver Finally Wé conclude that both DfR and IR are potentially
sion of IR; (3) define what a minimal subtraction renormal- o, frameworks to apply in dimension-specific problems in
ization is in I_R in analogy with dlmen5|_onal and differential qer to avoid ambiguities and spurious anomalies. IR is par-
renormalization;(4) argue on the equivalence among IR, sicylarly friendly from the calculational viewpoint with the
DfR, and DRed to one-loop order; ari®) motivate IR as @  advantage of working directly in the momentum space. We
practical and consistent tool for loop calculations inpelieve that computations beyond one-loop order in Chern-
dimension-specific theories. Simons matter theories as well as in supersymmetric models
Since in implicit regularization the divergences are dis-may profit from IR since such a method does not modify the
played in the form of basic divergent integrals it is natural tounderlying theory and operates in the physical dimension of
ask what is meant by minimal subtraction in such a schemehe theora
We have shown that the logarithmic divergences expressed
by liog(#?) can be split as in Eq(18) to give rise to an ACKNOWLEDGMENTS

arbitrary scale which plays the role of the renormalization The authors thank Dr. Marcelo Gomes and Dici& Ab-
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as minimal. In constrained DfR the arbitrary scale is also

taken from the logarithmic divergences ofly5] [functions APPENDIX

with singular behavior worse than logarithmix(*) are re- The following relations between the functiodig and£™"
duced to derivatives of less singular functions without intro-can be easily checked and can simplify the explicit verifica-
ducing extra dimensionful constahtFhis is the main ingre-  tion of the Ward identity involving the electron self-energy
dient that fixes the renormalization scheme(@onstrainegl  and the vertex function:

DfR and automatically preserves gauge invariance at least to

one-loop order. We showed in the calculation of the gluom————

self-energy that a constrained version of IR preserves gauge'Please see Ref33] as an illustration of how DfR works in the
invariance just as it does for Abelian gauge theofi#8].  presence of infrared divergencies.
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2 1 2. 2 2y 2 2 /1 2.2
q°8o1— P-9é10= E{Zo(q ;M%) —Zo(p.q;m?) + p“Eoo}, P*€11~ P02~ 5 —Ezo((p+Q) ;m<)
(A1) 1
1(—Zy(p+q)%;m? L (a2 m2) 4 2
0%£11— P.Qéz= E[Of + Zzo(q ;M) +p“oal, (A5)
d 2; 2 ~
O(meM qum) , A2) 2 M2 p.a)=L12Zo(p— )2 mP) — (1/2+ u2E%)
1( 1 2 32 + 1207+ s —m?) €0
25 _tl e Ll =
q°8o2— P-9é11 2( 5 TM 00| + 5 10T 5 Sonfs +1/2(p2+,uf/— m2) 0L (AB)
(A3)
1 [1 q? 3p? where ™= £™Y(m? m?,p,q) and we have abbreviated
P20~ P.Qén= E[ 13T m*&qo| + 75014‘ 7510 ,
(A4) Z(m?,m?,p%;m?) =Z,(p%m?). (A7)
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