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Pair production in a rotating strong magnetic field
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We calculate the production probability of ane2-e1 pair in a strong rotating magnetic field. After deriving
some selection rules concerning the states in which the pair can be created and their connection with the time
variation of the magnetic field, we conclude that for pair production the change of direction of the magnetic
field is a much more efficient mechanism than the change of its strength.
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I. INTRODUCTION

One of the most interesting physical phenomena that
needs a complete explanation is gamma-ray bursts@1,2#.
They are pulses of soft gamma rays that satellites reg
now more than once a day. Many models have been
posed to explain the general features of gamma-ray bu
such as their duration (;10–100 s), their central frequenc
vc(\vc;10 keV–1 MeV) or the total energy carrie
(;1050–1054 ergs) @3#. There are also many hypothes
about their origin but various recent models connect the p
duction of gamma-ray bursts with the formation of neutr
stars or black holes@4–9#.

Barbiellini et al.have proposed a model in which gamm
ray bursts are the synchrotron radiation emitted by electr
and positrons moving in relativistic regimes in the magne
field around neutron stars or black holes@10#. It is interesting
now to understand how electrons and positrons can be
ated around these massive objects.

It is believed that the huge gravitational fields produc
by black holes can prime a mechanism of pair product
@11,12# even if there are situations in which the approxim
tion of flat spacetime can be safely used@13#. In the case of
neutron stars it seems reasonable to neglect the effects o
gravitational field with respect to that of the magnetic fie
produced by these stars.

In this paper we connect the creation ofe2-e1 pairs with
the very strong time dependent magnetic fields which
present around these stellar objects (@Bcr5m2c3/\e.4.4
31013 G) @14,15# neglecting the effects of the gravitation
field. From this point of view we are dealing with a typic
problem of pair creation in an external not quantized elec
magnetic field. Of course, the peculiar features of our mo
depend on the particular physical system we are studying
they will be stated in the following paragraph. Similar pr
cesses, with different types of magnetic-field variations, h
been studied both in the case of a pure strength variatio
B(t) @16# and for some particular variation of strength a
direction @17#.

*Email address: dipiazza@ts.infn.it
†Email address: giorgio@ts.infn.it
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II. THEORETICAL MODEL

In what follows we describe the theoretical model we w
use to calculate the production probability ofe2-e1 pairs in
a strong magnetic field. Our starting point is a second qu
tized Dirac fieldC(r ,t) in the presence of a classical fou
potential Am(r ,t)5@V(r ,t),A(r ,t)#.

The dynamics of the Dirac fieldC(r ,t) is described by
the second quantized Hamiltonian

H~ t !5E drC†~r ,t !H~r ,2 i“,t !C~r ,t ! ~1!

with

H~r ,2 i“,t !5a•@2 i“1eA~r ,t !#1bm2eV~r ,t !, ~2!

where2e(e.0) is the charge of the electron.
Concerning the magnetic field, we note that the physi

system we are studying has two scales of length and ti
one related to the elementary particles~Compton wavelength
of the electron|5\/mc and |/c) and the other related to
the macroscopic source of the magnetic field itself~typical
dimension and typical evolution time of a neutron star!. The
order of magnitude of the macroscopic scale is much lar
than that of the microscopic one, and this allows us to c
sider the magnetic field as uniform in space and slowly va
ing in time. In this way we can calculate the probabili
production by using the adiabatic perturbation theory up
the first order@18#. The time variation ofB(t) implies that
there are varying currents that give rise to this effect. T
calculation we want to present here is intended to apply
the regions where conduction currents are not present
these regions there are, in general, displacement currents
to the time variation of the induced electric field@see Eq.~5!,
below#. In turn these currents will yield a correction toB(t)
proportional toB̈(t) and not uniform in space. The calcula
tions are carried out at the first order inḂ(t), so, consistently,
in the unperturbed Hamiltonian we include neither the fie
E(t), nor any contribution proportional toB̈(t).

A particular time evolution for the magnetic field will b
considered:
©2002 The American Physical Society19-1



t

ng
(

o

e
ha
m

d

we
ig

la

ou
rm

on

ion

in.
ty
s

m

e

e

ese
om-

val-

ANTONINO DI PIAZZA AND GIORGIO CALUCCI PHYSICAL REVIEW D 65 125019
B~ t !5S Bx~ t !

By~ t !

Bz~ t !
D 5B~ t !S 0

cosq~ t !

sinq~ t !
D , ~3!

i.e., the field changes both in strength and in direction bu
always remains in they-z plane. We assumet50 as our
initial time andq(0)50 and B(0)5B0 as the initial condi-
tions for the magnetic field. The approximation of a stro
magnetic field is always valid if we also assume that Bt)
>B0 for t.0 and that B0@Bcr .

A convenient choice of the four-potential Am(r ,t) is
V(r ,t)50 and

A~r ,t !52
1

2
@r3B~ t !#. ~4!

This is the so-called symmetric gauge and with this choice
the potentials the electric field is given by (\5c51 units are
used throughout!

E~r ,t !52
]A~r ,t !

]t
5

1

2
@r3Ḃ~ t !#. ~5!

We shall see that the electric field plays a fundamental rol
the interpretation of our results. We remark, however, t
the validity of the adiabatic treatment is ensured in the li
ited spacetime region whereuEu,uBu @18#.

Finally, in this gauge the one-particle Hamiltonian~2! be-
comes

H~r ,2 i“,t !5a•@2 i“1eA~r ,t !#1bm ~6!

with A(r ,t) given by Eq.~4!, while the second quantize
Hamiltonian is

H~ t !5E drC†~r ,t !H~r ,2 i“,t !C~r ,t ! ~7!

with H(r ,2 i“,t) given by Eq.~6!.
In order to apply the adiabatic perturbation theory

have to determine the instantaneous eigenvalues and e
states of the Hamiltonian~7! @18#. It is useful to this end to
recall some well known results about the motion of a re
tivistic electron in a constant and uniform magnetic field.

A. A relativistic electron in a constant and uniform magnetic
field

In this paragraph we want to collect some results ab
the motion of a relativistic electron in a constant and unifo
magnetic field@19,20#. We will work in the symmetric gauge
and, for later convenience, we will put the magnetic field
the y-z plane:

B5S 0

By

Bz

D , A~r !52
1

2
@r3B#. ~8!
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In classical mechanics the electron performs a mot
along a helix whose axis is parallel toB. We will call R'

2 the
square of the distance of the axis of the helix from the orig
Since we will need it in the following, we define the quanti
Rxy

2 which is R'
2 in the case in which the magnetic field lie

along thez axis.
To study the analogous problem in relativistic quantu

mechanics we need to solve the eigenvalue equation

Hc5†a•@2 i“1eA~r !#1bm‡c5«c. ~9!

If we define the rotation operator along thex axis

Rx~q!5e2 iqJx, tanq5
By

Bz
, ~10!

where Jx5Lx1Sx is the x component of the one-particl
total angular momentum operator, then

Rx~q!HR x
†~q!5H85a•@2 i“1eA8~r !#1bm, ~11!

whereA8(r ) is the vector potential in the symmetric gaug
corresponding to a magnetic fieldB8 directed along thez
axis and with strength B5ABy

21Bz
2. Now, we solve the

equation

H8c85«c8. ~12!

It can easily be shown@20# that the eigenvectorsc8 of H8
can be indicated as

c6, j8 ~r !, j 5$nd ,k,s,ng% ~13!

and the quantum numbers correspond to the fact that th
functions are the common basis of the complete set of c
muting observables built up by the HamiltonianH8, the lin-
ear momentum alongz Pz , the total angular momentum
alongz Jz, andRxy

2 :

H8c6, j8 ~r !56wjc6, j8 ~r !, ~14a!

Pzc6, j8 ~r !5kc6, j8 ~r !, ~14b!

Jzc6, j8 ~r !5S nd2ng1
s

2 Dc6, j8 ~r !, ~14c!

Rxy
2 c6, j8 ~r !5

2ng11

eB
c6, j8 ~r !, ~14d!

where

wj5Am21k21eB~2nd111s! ~15!

are the Landau levels for a particle with charge2e and
where the quantum numbers can assume the following
ues:
9-2



ng

he
ry

tio

it

d
ag-
is

val-

c

c-
of
a-

the
g

PAIR PRODUCTION IN A ROTATING STRONG . . . PHYSICAL REVIEW D65 125019
nd50,1, . . . ~16!

k56
2np

Z
, n50,1 . . . , ~17!

s561, ~18!

ng50,1, . . . . ~19!

It is worth noting that the energieswj never depend on the
quantum numberng and that the energieswj with nd50 and
s521 do not depend on B. We will call the correspondi
states withnd50 ands521 transverse ground states.

The longitudinal momenta in Eq.~17! have been dis-
cretized by limiting our region of integration by means of t
two planesz56Z/2 and by applying the periodic bounda
conditions to the basisc6, j8 (r ) @see Eqs.~20a!,~20b! and~22!
below#. We have to do this because the adiabatic perturba
theory is easier to use for discrete energy spectra@18#. How-
ever, at the end of the calculation we will perform the lim
Z→`.

The bispinorsc6, j8 (r ) have the following expressions:

c1, j8 ~r !5Awj1m

2wj
S w j8~r !

V8

wj1m
w j8~r !D , ~20a!

c2, j8 ~r !5Awj1m

2wj
S 2

V8

wj1m
w j8~r !

w j8~r !
D , ~20b!

where

V85s•@2 i“1eA8~r !#. ~21!

In cylindrical coordinate (r,f,z) the spinorsw j8(r ) are given
by

w j8~r !5
eikz

AZ

ei (nd2ng)f

A2p
f s8Rnd ,ng

8 ~r!, ~22!

where the radial functionsRnd ,ng
8 (r) are invariant under the

exchange ofnd andng and

f 118 5S 1

0D , f 218 5S 0

1D . ~23!

It is now easy to see that the functions

c6, j~r !5R x
†~q!c6, j8 ~r ! ~24!

solve our initial problem; in fact, they solve the equations

Hc6, j~r !56wjc6, j~r !, ~25a!

Pic6, j~r !5kc6, j~r !, ~25b!
12501
n

Jic6, j~r !5S nd2ng1
s

2 Dc6, j~r !, ~25c!

R'
2 c6, j~r !5

2ng11

eB
c6, j~r !, ~25d!

with

Pi5R x
†~q!PzRx~q!, ~26!

Ji5R x
†~q!JzRx~q!, ~27!

R'
2 5R x

†~q!Rxy
2 Rx~q!. ~28!

In these equationsPi andJi are the linear momentum an
the total angular momentum along the direction of the m
netic field whileR'

2 has been defined at the beginning of th
paragraph.

B. Second quantization of a Dirac field in a constant
and uniform magnetic field

The next step in determining the instantaneous eigen
ues and eigenvectors of the Hamiltonian~7! is to second
quantize the Dirac fieldC(r ,t) in the presence of the stati
magnetic field given by Eq.~8!.

In order to do this we have to expand the operatorC(r ,t)
in the basisc6, j (r … obtained in the previous paragraph. A
tually, to obtain the right interpretation of the Fock states
the positrons we will consider the following orthonormal b
sis:

uj~r !5c1,nd ,k,s,ng
~r !,

v j~r !5sc2,ng ,2k,2s,nd
~r !. ~29!

This is an orthonormal basis because we only exchanged
bispinorsc6, j (r ), which are an orthonormal basis, amon
them. As it can easily be obtained from Eqs.~25a!–~25d!, the
one particle statesv j (r ) satisfy the eigenvalue equations

Hv j~r !52w̃jv j~r !, ~30!

Piv j~r !52kv j~r !, ~31!

Jiv j~r !52S nd2ng1
s

2 D v j~r !, ~32!

R'
2 v j~r !5

2nd11

eB
v j~r !, ~33!

where

w̃j5Am21k21eB~2ng112s! ~34!

are the Landau levels for a particle with chargee.
By expanding the field operatorC(r ,t) in the

$uj (r ),v j (r )% basis
9-3
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C~r ,t !5(
j

cj~ t !uj~r !1dj
†~ t !v j~r !, ~35!

the second quantized relevant operators become

H5E drC†~r ,t !HC~r ,t !

5(
j

~wjNj1w̃j Ñj !1E0 , ~36a!

Pi5E drC†~r ,t !PiC~r ,t !

5(
j

k~Nj1Ñj !, ~36b!

Ji5E drC†~r ,t !JiC~r ,t !

5(
j

S nd2ng1
s

2 D ~Nj1Ñj !, ~36c!

whereNj5cj
†(t)cj (t) andÑj5dj

†(t)dj (t) do not depend on
time and where the zero-point energyE0 will be set to zero.
From Eq.~34! it is clear that the energiesw̃j do not depend
on nd and the transverse ground states of the positron are
with ng50 ands511.

We conclude this paragraph by noting that the vect
v j (r ) of the basis~29! can be obtained in a more formal wa
First, we solve the eigenvalue equation

†a•@2 i“2eA~r !#1bm‡c̃6, j~r !56w̃j c̃6, j~r ! ~37!

for a particle with chargee in the magnetic field~8!. Then the
v j (r ) functions are obtained by applying the charge con
gation operator to the positive energy solutions of this eq
tion:

v j~r !5 ig2c̃1, j* ~r !5 iba2c̃1, j* ~r !. ~38!

III. TRANSITION MATRIX ELEMENTS
AND SELECTION RULES

At this point we have all the theoretical tools needed
calculate the pair creation probability in the framework
the adiabatic perturbation theory. In fact, if the magnetic fi
is given by Eq.~3! then the instantaneous eigenvectors of
Hamiltonian~7! are the states

u$nj~ t !%;$ñ j~ t !%& ~39!

with the corresponding instantaneous eigenvalues

E~ t !5(
j

wj~ t !nj~ t !1w̃j~ t !ñ j~ t !. ~40!
12501
at

s

-
-

f
d
e

The first order amplitude for creating ane2-e1 pair in the
stateunj (t)51;ñ j 8(t)51&[u j j 8(t)& from the vacuum state
u0(t)& at a timet is given by@18#

g j j 8~ t !5E
0

t

dt
^ j j 8~t!uḢ~t!u0~t!&

wj~t!1w̃j 8~t!

3expH i E
0

t

dt8@wj~t8!1w̃j 8~t8!#J . ~41!

In this formula it is tacitly assumed that the depletion of t
vacuum due to the transition to theu j j 8(t)& states is negli-
gible @18#.

The time derivative of the Hamiltonian can be written
the following useful form:

Ḣ~ t !5“BH~ t !•Ḃ~ t !

5E drC†~r ,t !“B@H~r ,2 i“,t !#C~r ,t !•Ḃ~ t !

52
e

2E drC†~r ,t !~r3a!C~r ,t !•Ḃ~ t !

52
e

2E drC8†~r ,t !Rx@q~ t !#~r3a!

3R x
†@q~ t !#C8~r ,t !•Ḃ~ t !

52
e

2E dr C8†~r ,t !~r3a!C8~r ,t !•Ḃ8~ t !,

~42!

where

Ḃ8~ t !5S 0

cosq~ t !Ḃy~ t !2sinq~ t !Ḃz~ t !

sinq~ t !Ḃy~ t !1cosq~ t !Ḃz~ t !
D 5S 0

B~ t !q̇~ t !

Ḃ~ t !
D ,

~43!

with

tanq~ t !5
By~ t !

Bz~ t !
~44!

and whereC8(r ,t) is the field operator in the case in whic
the magnetic field is along thez axis and its strength is
B(t)5ABy

2(t)1Bz
2(t).

The form of the vectorḂ8(t) shows that the effects of th
change of the direction and of the change of the strength
the magnetic field have been completely disentangled
fact, we can connect the time variation of the magnetic fi
to some selection rules concerning the states in which
e2-e1 pair can be created. To do this we define the opera

T8~ t !52
e

2E drC8†~r ,t !~r3a!C8~r ,t !. ~45!
9-4
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Since T8(t) is a vector operator and the statesu0(t)& and
u j j 8(t)& are instantaneous eigenstates of the total ang
momentumJi(t) given in Eq.~36! then see Table I@also see
Eq. ~43! and the last line of Eq.~42!#, where

j i5nd2ng1
s

2
. ~46!

The first of these selection rules has an interesting class
counterpart. In fact, following the interpretation of the pa
creation in the Dirac hole theory, this selection rule mea
that an electron in a slowly varying magnetic field with co
stant direction going from a negative energy level to a po
tive one conserves its total angular momentum. Analogou
in classical mechanics the angular momentum of the elec
is, in the same physical situation, an adiabatic invariant@22#.

Another important selection rule can be obtained. In fa
it can easily be shown that

^ j j 8~ t !u“BH~ t !u0~ t !&•Ḃ~ t !

5^ j j 8~ t !uT8~ t !u0~ t !&•Ḃ8~ t !

52
e

2E druj8
†~r ,t !~r3a!v j 8

8 ~r ,t !•Ḃ8~ t !

5T j j 8
8 ~ t !•Ḃ8~ t !, ~47!

where we have defined the one-particle transition matrix
ements

T j j 8
8 ~ t !52

e

2E druj8
†~r ,t !~r3a!v j 8

8 ~r ,t !. ~48!

If the magnetic field has a constant direction@q̇(t)50# only
the matrix elements Tj j 8z

8 (t) play a role~see Table I!. It can
also be seen that (r3a)z anticommutes with the one-particl
spin operatorSz :

@~r3a!z ,Sz#150 ~49!

and then ifuj8(r ,t) and v j 8
8 (r ,t) are eigenstates ofSz the

selection rule

s~uj8!1s~v j 8
8 !50 ~50!

holds. Now, from Eqs.~20a!,~20b! and~29! it can be shown
that the transverse ground states have the following sp
structure

TABLE I. Selection rules.

Transition operator Selection rule

if q̇(t)50 Tz8(t) j i(e
2)1 j i(e

1)50

if Ḃ (t)50 Ty8(t) j i(e
2)1 j i(e

1)561
12501
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ug8~r ,t !}S 0

1

0

2
k

wg~ t !1m

D ,

vg8~r ,t !}S 0

2
k

w̃g~ t !1m

0

1

D , ~51!

with

wg~ t !5wnd50,k,s521,ng
~ t !5Am21k2, ~52a!

w̃g~ t !5w̃nd ,k,s511,ng50~ t !5Am21k2, ~52b!

and then they are all eigenstates ofSz with the same eigen-
value2 1

2 and for everyt. This implies that ifB(t) changes
only in strength the creation of a pair in which the electr
and the positron are both in a transverse ground state is
bidden. In other words, only the rotation ofB(t) allows the
creation of a pair with both the electron and the positron i
transverse ground state. In the next section we will see w
this selection rule is so important.

IV. ROTATING MAGNETIC FIELD

In this section we want to investigate in detail the effe
of the rotation ofB(t); then we will consider the case i
which

B~ t !5B0S 0

sinvt

cosvt
D ~53!

and then@see Eq.~43!#

Ḃ8~ t !5S 0

vB0

0
D . ~54!

We have checked that ifPgg8(t)5P„u0(t)&→ugg8(t)&… is
the probability transition to a state in which the electron a
the positron are both in a transverse ground state andPj j 8(t)
is the probability transition to another state then

Pj j 8~ t !

Pgg8~ t !
&S m2

eB0
D 3/2

!1. ~55!

In this case we are allowed in first approximation to negl
all the transitions to states in which at least the electron
the positron is not in a transverse ground state. Howeve
9-5



m

m
he
un
w

re

ce
a

e
hi
w

la
ta

mo-
nal
to
rm

the
the

he
rt

-

l

as-

tro-
s-

ANTONINO DI PIAZZA AND GIORGIO CALUCCI PHYSICAL REVIEW D 65 125019
the Appendix we will study the general features of the a
plitudes of these remaining transitions.

There are only two transition amplitudes different fro
zero which contribute to the creation of a pair in which t
electron and the positron are both in a transverse gro
state. We recall that the transverse ground states are that
nd50 ands521 for the electron and that withng50 and
s511 for the positron. The only final pair states which a
allowed are the states

und50,k,s521,ng ;

nd85ng11,k852k,s8511,ng850&, ~56a!

und50,k,s521,ng ;

nd85ng21,k852k,s8511,ng850&, ~56b!

where for simplicity we have omitted their time dependen
The transition amplitudes corresponding to these states
respectively

g (1)~ t !5AeB0~ng11!

32

mv

«k
3

ei«kt sin«kt, ~57a!

g (2)~ t !5AeB0ng

32

mv

«k
3

ei«kt sin«kt, ~57b!

where we have set@see Eqs.~52a!,~52b!#

«k5wg~ t !5w̃g~ t !5Am21k2. ~58!

Actually, we want to consider the probability that th
electron and the positron are created in wave packets w
are linear superpositions of transverse ground states. We
consider the following pair state:

ue2e1&5ue2&ue1& ~59!

with

ue2&5(
ng

bng

(2)u0,k,21,ng&, ~60a!

ue1&5(
nd8

bn
d8

(1)und8 ,2k,11,0&, ~60b!

where

bng

(2)5
1

Ang!
e2(1/2)ua2u2a

2

ng, ~61a!

bn
d8

(1)
5

1

And8!
e2(1/2)ua1u2a

1

nd8 . ~61b!

As is evident from these equations we chose a double p
wave for the longitudinal motion and a double coherent s
~in ng for the electron and innd8 for the positron! for the
12501
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transverse motion. The coherent states for the transverse
tion have a good spatial localization in the plane orthogo
to the magnetic field and this will give us the possibility
understand the role of the electric field which is not unifo
in the process of pair creation.

It can easily be shown from Eqs.~57a!,~57b! that the tran-
sition amplitude to the stateue2e1& is

ge2e1~ t !5(
n

bn
(2)* bn11

(1)*AeB0~n11!

32

mv

«k
3

3ei«kt sin«kt1(
n

bn
(2)* bn21

(1)*

3AeB0n

32

mv

«k
3

ei«kt sin«kt

5L~k,t !T~a6! ~62!

where

L~k,t !5AeB0

32

mv

«k
3

ei«kt sin«kt ~63!

T~a6!5 (
n50

`

@bn
(2)* bn11

(1)* An11

1bn
(2)* bn21

(1)* An#. ~64!

In this way the longitudinal and the transverse part of
transition amplitude have been disentangled and only
longitudinal part depends ont. Obviously, the corresponding
probability transition which is the square modulus of t
amplitude~62! can also be divided into a longitudinal pa
and a transverse part.

We will first calculate the longitudinal part of this prob
ability. The probability that the electron~positron! will be
created with a longitudinal momentum betweenk(2k) and
k1dk(2k2dk) is

dPL~k,t !5uL~k,t !u2
Z

2p
dk

5
eB0

32
~mv!2

sin2 «~k!t

«6~k!

Z

2p
dk, ~65!

where«k→«(k) for continuousk and the corresponding tota
probability per unit time is

dPL~ t !

dt
5

eB0Z

64p
~mv!2E

2`

`

dk
sin 2«~k!t

«5~k!
. ~66!

We can give an asymptotic estimate of this integral by
suming to be interested only in timest such thatmt@1. By
considering the astrophysical system sketched in the In
duction to which we imagine applying our theory, this a
9-6
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sumption is very realistic. The asymptotic estimate can
performed by using the method proposed in@23# and the
result is

dPL~ t !

dt
;

eB0Z

64p S v

mD 2A p

mt
sinS 2mt1

p

4 D . ~67!

Now we will calculate the transverse part of Eq.~62! or,
equivalently, its complex conjugate

T* ~a6!5 (
n50

`

@bn
(2)bn11

(1) An111bn
(2)bn21

(1) An#. ~68!

From Eqs.~61a!,~61b! we have

T* ~a6!5e2(ua2u21ua1u2)/2

3 (
n50

` Fa2

~a2a1!n

n!
1a1

~a2a1!n

n! G
5~a21a1!e2(ua2u21ua1u2)/2ea2a1. ~69!

Then the probability to create a pair with the electron in
coherent state betweenua2& and ua21da2& and the posi-
tron in a coherent state betweenua1& and ua11da1& is

dP~a6!5ua21a1u2e2(ua2u21ua1u2)e2R(a2a1)

3
da2

p

da1

p
. ~70!

It can be shown@19# that the phase ofa2 (a1) is connected
to the azimuth of the mean position of the electron~positron!
in the plane orthogonal toB(t) while the modulus
ua2u (ua1u) is connected to the mean distance of the el
tron ~positron! in the same plane from the origin. Then, sin
we are not interested in the exact position of the pair we

a65ua6ueif6 ~71!

and integrate on the anglesf2 andf1 :

dP~ ua6u!54ua2uua1u~ ua2u21ua1u2!e2(ua2u21ua1u2)

3I 0~2ua2uua1u!dua2udua1u, ~72!

where I 0(x) is the modified Bessel function of zero ord
@21#. In order to obtain a more transparent formula we defi
the variablesa andc by means of the equations

ua2u5a cosc,

ua1u5a sinc, ~73!

and we integrate on the phasec. Sinceua2u and ua1u vary
from 0 to`, a andc vary from 0 to` and from 0 top/2,
respectively. After performing the integral onc we obtain
the differential probability

dP~a!5a3~12e22a2
!da. ~74!
12501
e

-

et

e

Now, there is an interesting relation betweena and the mean
value of the operatorR'

2 in the statesua2& andua1&. In fact,

R'
2 ~e6!5^a6uR'

2 ua6&5
2ua6u211

eB0
.

2

eB0
ua6u2,

~75!

where we have assumed thatR'
2 (e6) aremacroscopicquan-

tities and then

a5Aua2u21ua1u2.AeB0

2
@R'

2 ~e2!1R'
2 ~e1!#.

~76!

If we define the ‘‘mean’’ quantity

R'm5AR'
2 ~e2!1R'

2 ~e1!

2
~77!

we can write the transverse probability per unit area as

dPT

dA'

.
~eB0!2

2p
R'm

2 , ~78!

wheredA'5pdR'm
2 .

Since Eq.~78! does not depend ont, if we put together
Eqs.~67! and~78! and divide byZ we obtain the probability
per unit time and unit volumedV5ZdA'

dP~ t !

dVdt
;

m4

2 S eB0

4Apm2D 3

~R'mv!2
sin~2mt1p/4!

Amt
,

~79!

where the; reminds us that this is an asymptotic formu
valid for mt@1. The fact that this probability grows with
R'm can be understood in terms of the electric fieldE(r ,t)
@see Eq.~5!#. In fact, for a purely rotating magnetic field

Ey
2~r ,t !1Ez

2~r ,t !5
v2B0

2

4
x2. ~80!

In order to connect this quantity withR'm we observe that

x5x'5R'~ t !cosf~ t !, ~81!

whereR'(t) andf(t) are the polar coordinates in the plan
orthogonal toB(t). If we define the functionE yz

2 (R') as the
average of Ey

2(r ,t)1Ez
2(r ,t) on the anglef(t) we obtain

from Eqs.~80! and ~81!

E yz
2 ~R'![^Ey

21Ez
2&f5

v2B0
2

8
R'

2 . ~82!

With this formula the probability~79! can be written in c.g.s.
units as

dP~ t !

dVdt
;

c

|416p3/2

B0E yz
2 ~R'm!

Bcr
3

sin~2ct/|1p/4!

Act/|
,

~83!
9-7
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where|5\/mc is the Compton wavelength of the electro
and whereBcr5m2c3/e\. The fact that the probability de
pends only on Ey(r ,t) and Ez(r ,t) can be explained by re
writing the transition matrix elements~47! as

^ j j 8~ t !u“BH~ t !u0~ t !&•Ḃ~ t !

52eE drE 8~r ,t !•@uj8
†~r ,t !av j 8

8 ~r ,t !#, ~84!

where

E8~r ,t !5
1

2
@r3Ḃ8~ t !# ~85!

is the electric field seen from the frame which rotates aro
the x axis and whosez axis is instantaneously parallel t
B(t). Now, the particular structure of the functionsuj8(r ,t)
andv j8(r ,t) for transverse ground states@see Eq.~51!# makes
it so that only theaz term contributes to the transition. Th
term contains only Ez8(r ,t) which is a linear superposition o
Ey(r ,t) and Ez(r ,t); in fact

Ez8~r ,t !5cosvtEz~r ,t !1sinvtEy~r ,t !. ~86!

V. CONCLUSIONS

In this paper we have continued the study of the electr
positron production in a slowly varying strong magnetic fie
B(t). We have seen that the time variation of the field
connected to selection rules on the state in which the pair
be created. In particular, only if the direction ofB(t) changes
with time is it possible to create a pair with the electron a
the positron both in a transverse ground state. Since the
ergies of these states do not depend on the magnetic field
sinceB(t) is very strong these energies are much lower th
that of the other levels. This feature makes the probability
creating a pair in these states much larger than the o
probabilities and we can conclude that the change of di
tion of the magnetic field is a pair creation mechanism mu
more efficient than the change of its strength.

Finally, by choosing a well spatially localized state in t
plane orthogonal toB(t) as the pair state, we have show
how the pair production probability can be interpreted
terms of the nonuniform electric field present in conseque
of the time variation ofB(t). Our results indicate that th
probability per unit volume and unit time depends on t
square of the electric field.

As we recalled in the Introduction, the interest for t
e2-e1 production in these physical situations arises from
fact that these particles could be an intermediate step in
final generation of gamma rays. In view of this fact we i
tend to explore also the related process where the variatio
a strong magnetic field gives rise to the direct production
photons.
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APPENDIX

In this appendix we study the general features of the tr
sition amplitudes to those states in which the electron an
the positron are not in a transverse ground state. First o
we write the corresponding transition matrix elemen

^ j j 8(t)uḢ(t)u0(t)&. In fact, since in the case of a purely ro
tating magnetic field these transition matrix elements and
energieswj (t) and w̃j (t) are actually time independent th
corresponding amplitudes are given by@see Eq.~41!#

g j j 8~ t !52
^ j j 8~ t !uḢ~ t !u0~ t !&

~wj1w̃j 8!
2

e( i /2)(wj 1w̃j 8)t

3sin
1

2
~wj1w̃j 8!t. ~A1!

The transition matrix elements different from zero are

^nd ,k,s,ng ;ng11,2k,2s,nduḢ~ t !u0&

5^nd ,k,s,ng11;ng ,2k,2s,nduḢ~ t !u0&

5sNj j 8AeB0

2
~ng11!H 1

Ej j 8
2

1sF 1

eB0
S 12

k2

Ej j 8
2 D 1

2nd11

Ej j 8
2 G J , ~A2!

^nd11,k,s,ng ;ng ,2k,2s,nduḢ~ t !u0&

5^nd ,k,s,ng ;ng ,2k,2s,nd11uḢ~ t !u0&

5sNj j 8AeB0

2
~nd11!H 3

Ej j 8
2

1sF 1

eB0
S 12

k2

Ej j 8
2 D 1

2nd12

Ej j 8
2 G J , ~A3!

^nd ,k,s,ng ;ng ,k8,2s,nd11uḢ~ t !u0&

5^nd11,k,s,ng ;ng ,k8,2s,nduḢ~ t !u0&

5Nj j 8AeB0

2
~nd11!

iDk

Ej j 8
2 I~K !, ~A4!
9-8
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^nd ,k,s,ng ;ng ,k8,s,nduḢ~ t !u0&

5Nj j 8FsS kk8

Ej j 8
2 21D I~K !

2
ik

Ej j 8
2 ~2nd11!dk,2k8G , ~A5!

^nd ,k,21,ng ;ng11,2k,21,nd21uḢ~ t !u0&

5^nd ,k,21,ng11;ng ,2k,21,nd21uḢ~ t !u0&

52Nj j 8

2ik

Ej j 8
2

And~ng11!, ~A6!

^nd ,k,11,ng ;ng11,2k,11,nd11uḢ~ t !u0&

5^nd ,k,11,ng11;ng ,2k,11,nd11uḢ~ t !u0&

5Nj j 8

2ik

Ej j 8
2

A~nd11!~ng11!, ~A7!

^nd ,k,11,ng ;ng ,k8,11,nd12uḢ~ t !u0&

5^nd12,k,21,ng ;ng ,k8,21,nduḢ~ t !u0&

52
2Nj j 8

Ej j 8
2 @ ikdk,2k81eB0I~K !#

3A~nd12!~nd11!. ~A8!

In order to simplify the previous formulas we omitted th
time dependence of the states and we used a compact
tion to label the pair states@see Eqs.~56a!,~56b!#. We also
defined the quantities

Dk5k82k, ~A9!

K5k81k, ~A10!

Ej j 8
2

5~wj1m!~w̃j 81m!, ~A11!

Nj j 85
eB0

2
vAwj1m

2wj

w̃j 81m

2w̃j 8

. ~A12!
12501
ta-

Finally, we note that the function

I~k!5E
2Z/2

Z/2

dz z
e2 ikz

Z

5H 0 if k50,

i
~21!n

k
if k5

2pn

Z
Þ0

~A13!

becomes proportional to the derivative of thed function in
the limit Z→`.

All the previous matrix elements can be divided into tw
groups: the ones related to transitions in which the long
dinal linear momentum conserves and the others chara
ized by the presence of the functionI(K) in which it does
not. Of course, this fact is due to the dependence of
transition operators onz @see Eqs.~47! and ~48!#. As can be
seen from Eqs.~84! and ~85! it is the x component of the
‘‘rotated’’ electric field E8(r ,t) which depends onz.

Finally, we observe that if we sum the probabilities co
responding to the previous matrix elements by means of
~A1! with respect to the quantum numbernd all the series
converge. Only the series corresponding to the matrix e
ments~A3! diverge logarithmically and it is not so obviou
how to give a physical interpretation of such a kind of dive
gence. However, we can understand qualitatively why
probability of creating a pair with larger and largernd and
then with larger and larger energy decreases so slowly
fact, the quantum numbernd is connected to the radiusr' of
the helix along which a classical electron performs its m
tion. In particular, it can be shown thatr'

2 ;nd @19#. From
this point of view while creating a pair with larger and larg
nd needs an amount of energy proportional toAnd @see Eqs.
~15! and~34!#, the pair itself extends over a volume increa
ing with nd , so one can think that the energy of the magne
field available for the pair creation also increases withnd .

We conclude by noting that all the amplitudes have be
calculated up to the first order in the derivative of the ma
netic field. It is possible to estimate the second order con
butions and, in the case of a purely rotating magnetic fie
this task is not particularly difficult. One can compute, e.
the depletion of the vacuum state and the scattering of
produced pair in the nonstationary field. In view of th
present level of knowledge of the phenomenological asp
these refinements have not been worked out completely
are not presented.
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@3# P. Mészáros, astro-ph/0111170.
@4# B. Paczyn´ski, Astrophys. J. Lett.494, L45 ~1998!.
@5# M. Vietri and L. Stella, Astrophys. J. Lett.507, L45 ~1998!.
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