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Pair production in a rotating strong magnetic field
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We calculate the production probability of @an-e* pair in a strong rotating magnetic field. After deriving
some selection rules concerning the states in which the pair can be created and their connection with the time
variation of the magnetic field, we conclude that for pair production the change of direction of the magnetic
field is a much more efficient mechanism than the change of its strength.
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I. INTRODUCTION Il. THEORETICAL MODEL

In what follows we describe the theoretical model we will

One of the most interesting physical phenomena that stillise to calculate the production probabilityesf-e™ pairs in
needs a complete explanation is gamma-ray bursig]. a strong magnetic field. Our starting point is a second quan-
They are pulses of soft gamma rays that satellites registdized Dirac fieldW(r,t) in the presence of a classical four-
now more than once a day. Many models have been praeotential A“(r,t) =[V(r,t),A(r,t)].
posed to explain the general features of gamma-ray bursts The dynamics of the Dirac fielt(r,t) is described by
such as their duration§10-100 s), their central frequency the second quantized Hamiltonian
w(hw,~10 keV-1 MeV) or the total energy carried
(~10°-10* ergs) [3]. There are also many hypotheses
about their origin but various recent models connect the pro- H(t)ZJ dreT(r,t)H(r,—iV,t)¥(r,t) (1)
duction of gamma-ray bursts with the formation of neutron
stars or black holep4-9].

Barbiellini et al. have proposed a model in which gamma- with
ray bursts are the synchrotron radiation emitted by electrons
and positrons moving in relativistic regimes in the magnetic
field around neutron stars or black hol&€). It is interesting
now to understand how electrons and positrons can be cre-
ated around these massive objects. where—e(e>0) is the charge of the electron.

It is believed that the huge gravitational fields produced Concerning the magnetic field, we note that the physical
by black holes can prime a mechanism of pair productiorsystem we are studying has two scales of length and time:
[11,17 even if there are situations in which the approxima-one related to the elementary partic{@€mpton wavelength
tion of flat spacetime can be safely ugd@]. In the case of of the electronx=7%/mc and x/c) and the other related to
neutron stars it seems reasonable to neglect the effects of tilee macroscopic source of the magnetic field itggipical
gravitational field with respect to that of the magnetic fieldsdimension and typical evolution time of a neutron staihe
produced by these stars. order of magnitude of the macroscopic scale is much larger

In this paper we connect the creationedf-e™ pairs with than that of the microscopic one, and this allows us to con-
the very strong time dependent magnetic fields which argider the magnetic field as uniform in space and slowly vary-
present around these stellar objectsB.,=m?2c3/fie=4.4 Ing in time. In this way we can calculate the probability
X101 G) [14,19 neglecting the effects of the gravitational prodgcnon by using the_ad|abat_|c_perturbat|(_)n theory up to
field. From this point of view we are dealing with a typical the first order{18]. The time variation of(t) implies that

problem of pair creation in an external not quantized electrozh(fr(’}latr.e varying ctu;rents tha: r?lve rse tto Bh'(sj ?ﬁeCt' IThte
magnetic field. Of course, the peculiar features of our modef2'cHation we want to present here 1S intended 1o apply to
e regions where conduction currents are not present; in

X . . tﬁ
depend on the particular physical system we are studying Mese regions there are, in general, displacement currents due

they will pfhs(;?#ed ": tthe foII](c)Wlng p?ra]cgr?(;:)h. S'T'Iar phro- to the time variation of the induced electric fi¢kbe Eq(5),
cesses, with artterent types of magnetic-eld vanations, Nave o oy 1n turn these currents will yield a correction Bft)

been studied both in the case of a pure strength variation o ional tof i . h lcul
B(t) [16] and for some particular variation of strength and ProPortiona toB(t) and not uniform in space. The calcula-
direction[17]. tions are carried out at the first orderBit), so, consistently,

in the unperturbed Hamiltonian we include neither the field
E(t), nor any contribution proportional tB(t).
*Email address: dipiazza@ts.infn.it A particular time evolution for the magnetic field will be
TEmail address: giorgio@ts.infn.it considered:

H(r,—iV,t)=a-[—iV+eA(r,t)]+ Bm—eV(r,t), (2
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B,(t) 0 In classical mechanics the electron performs a motion
B B along a helix whose axis is parallel B We will call R? the
B(t)=| By(D) | =B(t) 0986(0 ' ) square of the distance of the axis of the helix from the origin.
B.(1) sind(t) Since we will need it in the following, we define the quantity
. . , I RZ, which isR? in the case in which the magnetic field lies
i.e., the field changes both in strength and in direction but ilong thez axis.
always remains in thg-z plane. We assume=0 as our To study the analogous problem in relativistic quantum

initial time and 9(0)=0 and B(0)=B,, as the initial condi-  mechanics we need to solve the eigenvalue equation

tions for the magnetic field. The approximation of a strong

magnetic field is always valid if we also assume that)B( Hy=[a-[—iV+eA(r)]+Bm]y=cy. 9
=B, for t>0 and that B>B,, .

V(At)cogveni(;ent choice of the four-potential “f¢,t) is | e define the rotation operator along thexis
r,t)=0 an

1 R(9)=e" "% tand= ﬂ, (10)
A(r,t)=—§[r><B(t)]. (4) B,

here J7,= L,+ S, is the x component of the one-particle

This is the so-called symmetric gauge and with this choice o otal angular momentum operator, then

the potentials the electric field is given b€ c=1 units are
used throughout RU>IHR () =H =a-[~iV+eA (N]+Bm, (11
JA(r,t) 1 : R - .
T:E[rx B(t)]. (5) whereA’(r) is the vector potential in the symmetric gauge

corresponding to a magnetic fieB®' directed along thez
Is’flxis and with strength B\/By2+ BZZ. Now, we solve the
{aquation

E(r,t)=-—

We shall see that the electric field plays a fundamental role i
the interpretation of our results. We remark, however, tha
the validity of the adiabatic treatment is ensured in the lim-

ited spacetime region whet&|<|B| [18]. Hy'=ey'. (12
Finally, in this gauge the one-particle Hamiltonig) be- . _ , ,
comes It can easily be showfi20] that the eigenvectorg’ of H

can be indicated as
H(r,—iV,t)=a- [ —iV+eA(r,t)]+B8m 6
( med (ol © gl j(r),  j={ng.ko,ng} (13
with A(r,t) given by Eg.(4), while the second quantized
Hamiltonian is and the quantum numbers correspond to the fact that these
functions are the common basis of the complete set of com-
muting observables built up by the Hamiltoniafi, the lin-
H(t)=J drw(r,)yH(r,—iV,H)W(r,t) (1) ear momentum along P,, the total angular momentum
alongz 7,, andR%,:

with H(r,—iV,t) given by Eq.(6).

In order to apply the adiabatic perturbation theory we H' ¢ j(r)==wjil (1), (143
have to determine the instantaneous eigenvalues and eigen-
states of the Hamiltonia(v) [18]. It is useful to this end to P, J.(r)zkl/,'i (1), (14b

recall some well known results about the motion of a rela-
tivistic electron in a constant and uniform magnetic field.

o
jzwir,j(r):(nd_ng"'g ’p’i,j(r)r (149
A. Arelativistic electron in a constant and uniform magnetic
field
. P 2ng+1 |
In this paragraph we want to collect some results about R j(N=—gg— ¥= (1), (14d
the motion of a relativistic electron in a constant and uniform
magnetic field 19,20. We will work in the symmetric gauge h
and, for later convenience, we will put the magnetic field on"/n€re
they-z plane: w;=\m?+k*+eB(2ng+ 1+ ) (15)
0
1 are the Landau levels for a particle with char and
B= Ey o AlN== EUXB]' ®) where the quantum numbers (F:)an assume the fgﬁf)wing val-
z ues:
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ng=0,1,... (16) o
j|¢+,j(r):(nd_ng+§ e (1), (250
+2n77
k—_T, n—O,l..., (17) , 2ng+l
Rﬂ/’r,j(r): eB l/fr,j(r)y (250
o=*+1, (18
with
ng=0,1,.... (19 ;
PI=R () PRx(D), (26)
It is worth noting that the energies; never depend on the
quantum numben, and that the energies; with nyj=0 and jﬁRl(ﬁ)jZRX( D), (27
o=—1 do not depend on B. We will call the corresponding
states withng=0 ando=—1 transverse ground states. R? :RI(a)ngRX(ﬁ)_ (28

The longitudinal momenta in Eq17) have been dis-
cretized by limiting our region of integration by means of theIn these equation® and | are the linear momentum and
two planesz=*+Z/2 and by applying the periodic boundary the total angular momentum along the direction of the mag-
conditions to the basig’. ;(r) [see Eqs(20a,(20b) and(22)  netic field whileR? has been defined at the beginning of this
below]. We have to do this because the adiabatic perturbatioparagraph.
theory is easier to use for discrete energy spddi8h How-
ever, at the end of the calculation we will perform the limit B. Second quantization of a Dirac field in a constant

Z—00, and uniform magnetic field

The bispinorsy. (r) have the following expressions: : - . .
pinorsy. (1) g &xp The next step in determining the instantaneous eigenval-

ol (1) ues and eigenvectors of the Hamiltonién is to second
l

wj+m quantize the Dirac fieldV (r,t) in the presence of the static
o=\ —1_ Y , (208 magnetic field given by Eq(8).
' wj+m @i (r) In order to do this we have to expand the operatdr,t)
in the basisy. ;(r) obtained in the previous paragraph. Ac-
V' , tually, to obtain the right interpretation of the Fock states of
n (= /W;L m W, +m @ (r) , (200) g:: positrons we will consider the following orthonormal ba-
‘ Wi ) :
®j(r)

uj(r): l/er,nd,k,zr,ng(r)r
where
) vilN=0¥_n —k—gn.(r). (29
V=0 [-iV+eA'(r)]. (21 i Vg k. il
N . . , . This is an orthonormal basis because we only exchanged the
In cylindrical coordinate §, ¢,2) the spinorsp|(r) are given bispinors .. j(r), which are an orthonormal basis, among

by them. As it can easily be obtained from E¢&59—(25d), the

Lo one particle states;(r) satisfy the eigenvalue equations
e|kz el(nd—ng)¢

! )= — —f ! R’ y 22 ~
@ (r) Z an e ng.ng(P) (22) Ho (1) = — o, (1), (30
where the radial functiong;, , (o) are invariant under the Pj(r)=—kv;(r), (32)
exchange ohy andng and
g
L 0 j”u,-(r)=—<nd—ng+§ vi(r), (32)
1= 0), f'l:(l)_ (23)
R2 B 2nd+ 1 33
It is now easy to see that the functions Loj(N=—gg—vilh, (33
Y (=R (D)L (1) (24)  where
solve our initial problem; in fact, they solve the equations Vv,: Vm?+Kk?+eB(2ng+1-0) (39
Hipe (1) =W (1), (258  are the Landau levels for a particle with chame
By expanding the field operator¥(r,t) in the
P j(r) =k (1), (25b) {uj(r),v;(r)} basis
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\If(r,t)=; c;(Ou; (N +df(t)v;(r), (35)
the second quantized relevant operators become

H= f drwT(r, tyHW(r,t)

=; (w;N;+w;N;)+Eg, (369
P||=J drwT(r,t)yPW(r,t)

=; k(N;+N;), (36
J”=f drwt(r, ) W (r,t)

=§j‘, (nd—ng+% (N,+1N)), (360

whereNJ:cJ-T(t)cj(t) ande=d;r(t)dj(t) do not depend on
time and where the zero-point energy will be set to zero.

From Eq.(34) it is clear that the energiestj do not depend
onny and the transverse ground states of the positron are that

with ng=0 ando=+1.

We conclude this paragraph by noting that the vectors
v;(r) of the basig29) can be obtained in a more formal way.

First, we solve the eigenvalue equation

[a-[—iV—eA(n)]+Amly. (1 ==wJ. ;(r) (37

for a particle with charge in the magnetic field8). Then the
v;(r) functions are obtained by applying the charge conju-,,
gation operator to the positive energy solutions of this equa-

tion:
v(N=1y2% (1) =iBayy; ;(r). (39)

III. TRANSITION MATRIX ELEMENTS
AND SELECTION RULES

PHYSICAL REVIEW D 65 125019

The first order amplitude for creating @ -e* pair in the
state|n,—(t)=1;F1j,(t):1>z|jj '(t)) from the vacuum state
|0(t)) at a timet is given by[18]
' (MIHI0(7)

Wj(T)"‘\TVj/(T)

t
')’jj’(t):fod

XEX%ifOTdT/[Wj(T/)+\7er(T')] @)

In this formula it is tacitly assumed that the depletion of the
vacuum due to the transition to thg'(t)) states is negli-
gible [18].

The time derivative of the Hamiltonian can be written in
the following useful form:

H(t)=VgH(t)-B(t)

=f drw T (r,t) Ve[ H(r,—iV,t)]W(r,t)-B(t)
e N .
__Ef drv'(r,t)(rXa)W(r,t)-B(t)

. € d\I”T
_—Efr (ORI HD](rX a)

XRIO)]W' (r,t)-B(t)

_ e rt ’ 7
——Ef dr v''(r,t)(rXxe)¥'(r,t)-B'(t),

(42)
where
0 0
B/(t)=| cosd(t)By(t)—sind(t)B,(t) | =| B(t)d(t)
Sin9(1)By(t) +cosd(t)B,(t) B(t)
(43
with
By(1)
tand(t)= B.(D (44)

At this point we have all the theoretical tools needed 054 wherel'' (r,t) is the field operator in the case in which
calculate the pair creation probability in the framework ofthe magnetic field is along the axis and its strength is
the adiabatic perturbation theory. In fact, if the magnetic fleldB(t): B2(t) + B2(D)

y 2\

is given by Eq.(3) then the instantaneous eigenvectors of the

Hamiltonian(7) are the states

{ny(O}:{n;(0)}) (39)

with the corresponding instantaneous eigenvalues

E(t)=; w; () () +Ww; ()N (1). (40)

The form of the vectoB’ (t) shows that the effects of the

change of the direction and of the change of the strength of
the magnetic field have been completely disentangled. In
fact, we can connect the time variation of the magnetic field
to some selection rules concerning the states in which the
e -e" pair can be created. To do this we define the operator

T'(t)=— gf drv'T(r,t)(rx a)¥'(r,t). (45)
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TABLE I. Selection rules. 0
Transition operator Selection rule 1
. ) PN ug(r,t 0 ,
it 9(1)=0 () ji(e) +ije)=0 o)
it B(t)=0 () ji(e)+iyeh)=+1 ok
Wg(t)+m
Since T'(t) is a vector operator and the staté€xt)) and 0
[jj’(t)) are instantaneous eigenstates of the total angular K
momentumJ;(t) given in Eq.(36) then see Table [lalso see -
Eq. (43) and the last line of Eq(42)], where vg(r,t)e Wg(t)+m |, (51
0

) g
Jj=ng—ng+ (46) 1

E .

with

The first of these selection rules has an interesting classical
counterpart. In fa_ct, following the interpretation of the pair Wg(t):Wnd=0,k,zr=fl,n (1) = m2+ K2, (523
creation in the Dirac hole theory, this selection rule means 9
that an electron in a slowly varying magnetic field with con- ~ ~ —
stant direction going from a negative energy level to a posi- Wg(t):Wnd,k,rr:+1,ng:0(t): vme+ kS, (52
tive one conserves its total angular momentum. Analogously, _ _ _
in classical mechanics the angular momentum of the electroand then they are all eigenstatesfwith the same eigen-
is, in the same physical situation, an adiabatic invarfiagt. ~ value —3 and for evenyt. This implies that ifB(t) changes

Another important selection rule can be obtained. In factonly in strength the creation of a pair in which the electron

it can easily be shown that and the positron are both in a transverse ground state is for-
bidden. In other words, only the rotation Bft) allows the
(i (D|VH()|0(t))- B(t) creation of a pair with both the electron and the positron in a

transverse ground state. In the next section we will see why

L, , -, this selection rule is so important.
=(Ji" [T (m]o(t)-B'(t)

IV. ROTATING MAGNETIC FIELD

e .
== A / / . : N :
- zf druj'(r,)(rxajv;,(r,t)-B'(1) In this section we want to investigate in detail the effects
of the rotation ofB(t); then we will consider the case in
, ) which
0
where we have defined the one-particle transition matrix el- )
ements B(t)=By| Sihwt (53
coswt

! e 7 !
T”,(t)z — EJ druj T(r,t)(rXa)vj,(r,t). (48 and thensee Eq(43)]

. . : 0
If the magnetic field has a constant directjai(t) =0] only )
the matrix elements T, (t) play a role(see Table)l It can B'(t)=| @By |. (54
also be seen that K «), anticommutes with the one-particle 0

spin operatoss, :
We have checked that iPyq (t)=P(|0(t))—|gg’(1))) is
[(rXa),,S,],=0 (49)  the probability transition to a state in which the electron and
the positron are both in a transverse ground statePapdt)

and then ifuj’(r,t) and vj',(r,t) are eigenstates of, the IS the probability transition to another state then

selection rule
Pji (1) ( m?
—_— <

o(uj)+o(v],)=0 (50 Pegr() | €Bo

3/2
<1. (55)

holds. Now, from Eqgs(20a),(20b) and(29) it can be shown In this case we are allowed in first approximation to neglect
that the transverse ground states have the following spinall the transitions to states in which at least the electron or
structure the positron is not in a transverse ground state. However, in
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the Appendix we will study the general features of the am-4ransverse motion. The coherent states for the transverse mo-

plitudes of these remaining transitions. tion have a good spatial localization in the plane orthogonal
There are only two transition amplitudes different from to the magnetic field and this will give us the possibility to

zero which contribute to the creation of a pair in which theunderstand the role of the electric field which is not uniform

electron and the positron are both in a transverse grounih the process of pair creation.

state. We recall that the transverse ground states are that with It can easily be shown from Eq&739),(57b) that the tran-

ng=0 ando=—1 for the electron and that with,=0 and  sition amplitude to the stafe e") is

o=+1 for the positron. The only final pair states which are

allowed are the states :2 ()% p(+) eBy(n+ 1)@
Ye-e+ (1) n n+1 32 3
Ing=0k,0=—1ng; n ek
nj=ng+1k'=—k,o'=+10,=0), (56 xel*Hsingyt+ 2 bl BTy
[ng=0k,o=—1ng; eBonmo
X —5 € singt
ng=ng—1k'=—ko’'=+1n,=0), (56b) 82 &
where for simplicity we have omitted their time dependence. =Lk T ) (62)
The transition amplitudes corresponding to these states are N
respectively where
eBy(ng+1) Mo .
(D) (t)= [T T eyt g [eBomw
V(1) = €'k sing,t, (57a — o [220Y et i
32 85 L(k,t) 37 SE e'®k sing,t (63
)ty — eBong Mw ot it 57h o
Y=\ 75 3 ekising,d, (57b ﬂ“:):go [b{)* b JnF T
where we have sé¢see Eqs(523,(52b)] +b§1‘)* bﬁt)l* \/ﬁ]_ (64)
1= Wy(t) =Wqy(t) = Vm?+k>. (58)

In this way the longitudinal and the transverse part of the
Actually, we want to consider the probability that the transition amplitude have been disentangled and only the

electron and the positron are created in wave packets whidqngitudinal part depends dnObviously, the corresponding
are linear superpositions of transverse ground states. We wiifoPability transition which is the square modulus of the

consider the following pair state: amplitude(62) can also be divided into a longitudinal part
and a transverse part.
le"eT)y=|e")|e") (59 We will first calculate the longitudinal part of this prob-
. ability. The probability that the electrotpositrorn will be
with created with a longitudinal momentum betwddn-k) and
k+dk(—k—dk) is
|e*>=n2 b(n;)|o,k,—1,ng>, (609 .
9 _ 2 =
dP_(k,t)=|L(k,1)]| 27Tdk
= bng, —k,+1,0), 60D
&) nzd ny I ) (60hy _eBy etz
i =3, (Mo ot 2a0k (65)
where
wheree,— g(k) for continuousk and the corresponding total
bg;): 1 | e*(l/Z)\a_|2arlg, (613 probability per unit time is
ng!
dP (1) eByZ » sin2e(k)t
1 , dL( ' i (mw)zf dk—— 0 (66)
bl =g~ W2, (61b) v o ek

We can give an asymptotic estimate of this integral by as-
As is evident from these equations we chose a double plarguming to be interested only in timé¢such thatmt>1. By
wave for the longitudinal motion and a double coherent statgonsidering the astrophysical system sketched in the Intro-
(in ny for the electron and im; for the positron for the  duction to which we imagine applying our theory, this as-
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sumption is very realistic. The asymptotic estimate can bélow, there is an interesting relation betweeand the mean
performed by using the method proposed[&8] and the value of the operatdR? in the statesa_) and|a. ). In fact,
result is

o 4 5 2la.]?+1 2 )
dP.(t) eByZ{w\?® [m . B Ri(e’)=<a:|Rl|a:>:e—Bo=e—BO|a:| :
dt 64w \m| Vmen2mttg) (69 (75
Now we will calculate the transverse part of E§2) or,  where we have assumed tr@(ei) aremacroscopiauan-

equivalently, its complex conjugate tities and then

- eB
T (@)= 2 [bf by in+1+b[bi%Vn]. (69 a=\|a_[*+]a. [~ \/7°[Rf(e—>+Rf(e+>].
n=

(76)
From Egs.(619,(61b) we have i .
If we define the “mean” quantity
—e (a_[?+|ay P2
Pleme R(e )T R(e")
le: 2 (77)

o[ (aa)"  (a—ay)"
ano o _ nl o n - N .
we can write the transverse probability per unit area as
_ 2 2
:(a_+a+)e (Ja_[*+|ay] )/zea—”‘+_ (69) dPT (eBO)ZRZ o8
dA, 27 ™ (78)

Then the probability to create a pair with the electron in a
coherent state betweén ) and|a_+da ) and the posi-

) _ wheredA, = 7dR? .
tron in a coherent state betwepn, ) and|a, +da, ) is - e

Since Eq.(78) does not depend o if we put together
Egs.(67) and(78) and divide byZ we obtain the probability

= 2= (la—|*+ay?) g2R(a—ay) o :
dP(a.)=|a_+a.|% e ’ per unit time and unit volumdV=ZdA,

da_ da, .
X —— . (70) dP(t) m*| eB, ,sin(2mt+ 7/4)
T ~au" 5| 7= (Rpgo) —————,
dvdt 2 | 4 /zm? Jmt
It can be show19] that the phase af . («.) is connected (79

to the azimuth of the mean position of the elect(pasitron ) o )
in the plane orthogonal toB(t) while the modulus where the~ reminds us that this is an asymptotic formula

la_| (Jay|) is connected to the mean distance of the elecvalid for mt>1. The fact that this probability grows with

tron (positron in the same plane from the origin. Then, since Rum ¢an be understood in terms of the electric figitt,t)
we are not interested in the exact position of the pair we sés€e Ed.(5)]. In fact, for a purely rotating magnetic field
2R2

_ i B
a.=|a.|e'?= (71 Eﬁ(r,t)+E§(r,t)=w4 0%2, (80)

and integrate on the angle’ls. and ¢ :
2 s In order to connect this quantity witR, ,, we observe that
dP(|ax)=4la||a.|(la-|?+|a [P (el

X1o(2la_||a.|)d|a_|d]a,], (72

X=X, =R, (t)cos¢(t), (81

whereR, (t) and ¢(t) are the polar coordinates in the plane
where l4(x) is the modified Bessel function of zero order orthogonal toB(t). If we define the functionfiz(Ri) as the
[21]. In order to obtain a more transparent formula we defingyverage of %(r,t)JrEg(r,t) on the angleg(t) we obtain

the variablesx and ¢ by means of the equations from Egs.(80) and (81)
|a_|=a cosy, wZBg
EVR)=(E+E),=—5—RI. (82
|ay|=asiny, (73

and we integrate on the phage Since|a_| and|a., | vary With this formula the probability79) can be written in c.g.s.

from 0 to, « andy vary from O toee and from O tow/2, units as
respectively. After performing the integral ot we obtain 2 .
the differential probability dP(t) _ ¢ BofyRim) sin(2ct/A + m/4)
, dvdt  x*16x%2  B? Jet/x
dP(a)=a%(1-e ?*)da. (74) (83
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whereX=#%/mc is the Compton wavelength of the electron means of the Fondi per la Ricerca scientifica—Universita
and whereB.,=m?c%/ef. The fact that the probability de- di Trieste.

pends only on {{r,t) and E(r,t) can be explained by re-

writing the transition matrix elementd7) as
(Ji"(®|VeHM®[O(t))- B(t)
=—ef drE’(r,t)-[uj’T(r,t)avj’,(r,t)],

where

APPENDIX

In this appendix we study the general features of the tran-
sition amplitudes to those states in which the electron and/or
the positron are not in a transverse ground state. First of all
we write the corresponding transition matrix elements
(jj"()[H(1)]0(t)). In fact, since in the case of a purely ro-
tating magnetic field these transition matrix elements and the

energiesw;(t) and\7vj(t) are actually time independent the

E’(r,t)=%[r><B’(t)] (85)

is the electric field seen from the frame which rotates around
the x axis and whose axis is instantaneously parallel to
B(t). Now, the particular structure of the function$(r,t)
andv| (r,t) for transverse ground statesee Eq(51)] makes

it so that only thew, term contributes to the transition. This
term contains only Hr,t) which is a linear superposition of
E,(r,t) and E(r,t); in fact

E;(r,t) =coswtE,(r,t)+sinwtE(r,t). (86)

V. CONCLUSIONS

In this paper we have continued the study of the electron-
positron production in a slowly varying strong magnetic field
B(t). We have seen that the time variation of the field is
connected to selection rules on the state in which the pair can
be created. In particular, only if the direction®ft) changes
with time is it possible to create a pair with the electron and
the positron both in a transverse ground state. Since the en-
ergies of these states do not depend on the magnetic field and
sinceB(t) is very strong these energies are much lower than
that of the other levels. This feature makes the probability of
creating a pair in these states much larger than the other
probabilities and we can conclude that the change of direc-
tion of the magnetic field is a pair creation mechanism much
more efficient than the change of its strength.

Finally, by choosing a well spatially localized state in the
plane orthogonal t@(t) as the pair state, we have shown
how the pair production probability can be interpreted in
terms of the nonuniform electric field present in consequence
of the time variation ofB(t). Our results indicate that the
probability per unit volume and unit time depends on the
square of the electric field.

As we recalled in the Introduction, the interest for the
e -e* production in these physical situations arises from the
fact that these particles could be an intermediate step in the
final generation of gamma rays. In view of this fact we in-
tend to explore also the related process where the variation of
a strong magnetic field gives rise to the direct production of
photons.
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corresponding amplitudes are given [sge Eq.(41)]

<” ,(t)|H£t)|O(t)> e(i/Z)(WﬁVVj')t
(W +wj,)?

Yji (1) =2

1 ~
><sin§(wj+wj,)t. (A1)

The transition matrix elements different from zero are

(ng,k,0,ng;Ng+1,—k,—o,ng[H(1)|0)

:<nd ,k,O',ng+ 1;ng ,—k,_O',nd|H(t)|o>

eBy 1
:UMJ' 7(ng+1) ET

i’

1 k? | 2ng+1
— | 1- =]+
eBy E2 EZ

i’ i’

+o

] , (A2)

<nd+ 1,k,0',ng ;ng,—k,—a,nd||;|(t)|0>

=(ng,k,o,ng;ng, —k,—a,ng+1|H(t)|0)

EBO 3
:0'./\/]]/ T(nd+1) ET

i’
2ng+2

11k2+
eBo|\" E,|  E2,

] , (A3)

(ng,k,o,ng;ng k', —a,ng+1[H(1)[0)

=(ng+1k,0,ng;ng,k',—0o,ng|H(1)|0)

eBg iAk
:./\/jjr T(nd+1)ETI(K)' (A4)
i’
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(ng.k,o,ng;ng k', ,ng|H(t)|0)

(kk’ .
5~
Ejj/

ik
- T(an+ 1)5k,*k’
i’

, (A5)

(ng.k,—1ng;ng+1,—k,—1ng—1|H(t)|0)
=(ng,k,—1ng+1;ny,—k,—1n4—1|H(1)|0)
2ik
—./\[”/ET\/nd(ng“' 1),

i’

(AB)

(ng K, +1ng;ng+1,—k,+1ng+1[H(1)|0)

=(ng,k,+1ng+1;ng,—k,+1n4+1[H(1)|0)

2ik
=/\/'“-,ET\/(nd+l)(ng+1), (A7)
i’
(ng.k,+1ng;ng,K',+1ng+2[H(1)|0)
=(ng+2k,—1ng;ng,k',—1,ng/H(1)[0)

2Ny
=— > [lkék,_kr'f'eBo_lZ-(K)]

i’

XA (ng+2)(ng+1).

(A8)

In order to simplify the previous formulas we omitted the
time dependence of the states and we used a compact nof&-5) and

tion to label the pair statgsee Eqs(563,(56b)]. We also
defined the quantities

Ak=k' -k, (A9)
K=k’ +Kk, (A10)
ES = (w;+m)(wj, +m), (A11)
N _eBO WJ+mVVJ/+m A12
=2 N 2w o, (A12)
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Finally, we note that the function

z/2 e*ikZ
(k)= f dz z——
-z/2 Z

(A13)

becomes proportional to the derivative of thefunction in
the limit Z—oo.

All the previous matrix elements can be divided into two
groups: the ones related to transitions in which the longitu-
dinal linear momentum conserves and the others character-
ized by the presence of the functi@K) in which it does
not. Of course, this fact is due to the dependence of the
transition operators om[see Eqs(47) and(48)]. As can be
seen from Eqs(84) and (85) it is the x component of the
“rotated” electric field E’(r,t) which depends om.

Finally, we observe that if we sum the probabilities cor-
responding to the previous matrix elements by means of Eq.
(A1) with respect to the quantum numbey all the series
converge. Only the series corresponding to the matrix ele-
ments(A3) diverge logarithmically and it is not so obvious
how to give a physical interpretation of such a kind of diver-
gence. However, we can understand qualitatively why the
probability of creating a pair with larger and largey and
then with larger and larger energy decreases so slowly. In
fact, the quantum number; is connected to the radiys of
the helix along which a classical electron performs its mo-
tion. In particular, it can be shown thaﬁ~nd [19]. From
this point of view while creating a pair with larger and larger
ng needs an amount of energy proportionakfin, [see Egs.
(34)], the pair itself extends over a volume increas-
ing with ny, so one can think that the energy of the magnetic
field available for the pair creation also increases wigh

We conclude by noting that all the amplitudes have been
calculated up to the first order in the derivative of the mag-
netic field. It is possible to estimate the second order contri-
butions and, in the case of a purely rotating magnetic field,
this task is not particularly difficult. One can compute, e.g.,
the depletion of the vacuum state and the scattering of the
produced pair in the nonstationary field. In view of the
present level of knowledge of the phenomenological aspects
these refinements have not been worked out completely and
are not presented.
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