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From arbitrariness to ambiguities in the evaluation of perturbative physical amplitudes
and their symmetry relations
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A very general calculational strategy is applied to the evaluation of the divergent physical amplitudes which
are typical of perturbative calculations. With this approach in the final results all the intrinsic arbitrariness of
the calculations due to the divergent character is still present. We show that by using the symmetry properties
as a guide to search for tHeompulsory choices in such a way as to avoid ambiguities, a deep and clear
understanding of the role of regularization methods emerges. Requiring then a universal point of view for the
problem, as allowed by our approach, very interesting conclusions can be stated about the possible justifica-
tions of the most intriguing aspect of perturbative calculations in quantum field theory: the triangle anomalies.

DOI: 10.1103/PhysRevD.65.125017 PACS nuni$er11.10.Gh, 11.15.Bt, 11.30j

[. INTRODUCTION referring to cases where the degree of divergence involved is

higher than logarithmic, this is not what seems to happen.

In a certain way it seems that physicists are convinced’he ambiguities, on the other hand, are frequently associated
that quantum field theor¢QFT) is the correct framework for With violations of global and local gauge symmetries. Given
the description of fundamental interacting particle dynamicsthese aspects, manipulations and calculations involving di-
Within this framework, there is a well-established recipe forvergences are crucial to establish the predictive power of

the construction of a theory for any set of fields and symmeQFT (in perturbative calculations _ _
tries previously chosen and, in principle, we can find all the It can be said that the discussion about divergences in the

phenomenological consequences by solving the corresponH—erturbaﬂve solution of QFT has never dis_app_eared from the
iterature. Recently, however, many investigations have been

ing equations of motion. However, the exact solutions, whic¢ q " " volved in th luati f
would certainly be free from any ambiguities, are rarely pos- ocused on the questions Involved in the eévajuation of per-

sible and we need to have recourse to perturbative atyrbative amplitudes and their corresponding physical pre-
P Hiictions. Among others, we find the predictive power of the

proaches if‘ order tp make predictions. AS a CoNSEqUENGRa || known Nambu-Jona-LasinidNJL) model[1,2], the im-
many physical amplitudes become undefined quantities du lications of fermionic tensor densities in the hadronic phe-

to the presence of divergent integrals and we have to inte iomenology of low energy3], and, perhaps the most re-

pret them in such a way as to extract the physical content, 5 rkable one, the controversy involved in tBPT and
For this purpose it is necessary to manipulate and calculatgyrentz violations inducedor nop by the radiative correc-
the divergent integrals. To make this possible, some assumgyns[4,5). The aim of these investigations cited above is the
tions about the properties of such mathematical structures agg/ajuation of the divergent amplitudes. If in the method used
required. This is usually represented by the adoption of &ome types of ambiguity are still present, it is sufficient to
regularization scheme or an equivalent philosophy. There argrevent a definite physical prediction. These aspects are
many kinds of arbitrariness involved in this step. The firstclosely related to the main motivation of the present contri-
one concerns the regularization technique; once this is Bution.
choice, the final results cannot be dependent on the specific The present status of this problem can be summarized in a
aspects involved. The regularization technique should beery simple way: in all situations where the dimensional
only a tool to be used in the intermediate steps. The next typeegularization(DR) techniqug 6] can be applied, we have at
of arbitrariness is related to the routing of the internal lines.our disposal an apparently consistent recipe to avoid viola-
In principle, any routing should lead us to the same physications of symmetry relations, and simultaneously the presence
amplitude. This is associated with the most basic symmetrpf ambiguities. In situations where DR cannot be used, such
we use to construct QFT's: the space-time homogeneityas those where thes matrix plays an important role, we
Such a property materializes through the translational invarineed to have recourse to other techniques which do not nec-
ance of the fields, which means in perturbative language thagssarily exhibit the desirable consistency in all the problems.
the amplitudes should be invariant under a shift in the inteThis is clearly not the ideal situation and an alternative strat-
grated momenta. Because of the divergent character, strictlygy should be sought so that all the problems can be treated
in a consistent way within a unique recipe. The first require-
ment is that this procedure provides mappable results, one by
*Email address: orimar@ccne.ufsm.br one, to those of DR, in situations where this technique could
"Email address: dalla@fisica.ufmg.br be applied, but does not have any restriction of applicability
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out of the scope of DR. Such a method was developed pre- lim G, (k?A?)=1. 2
cisely with this motivatior]{ 7]. The strategy used consists in A2
avoiding the explicit evaluation of divergent integrals, using '

only very general properties of the eventual regulating dis- . o ) i
tribution, taken only in an implicit way in the intermediate The first property implies that all odd integrands vanish,
steps. By analyzing the final results thus obtained we caM/Nile the second one guarantees, in particular, that the value
identify a set of properties of divergent integrals that areOf the finite integrals in the amplitudes will not be modified.
responsible for the maintenance of the symmetry relationd\Ote that these requirements are completely general and are
The procedure is very simple, completely algebraic, and doe§ @greement with any reasonable 4D regularization. After
not present any restriction of applicability. We will use this th€seé assumptions we can manipulate the integrand of the
procedure to state a universal point of view to analyze symdivergent integrals by using identities to generate a math-
metry relations and ambiguities related to the arbitrarines§Matical expression where all the divergences are contained
involved in the choices of the labels for the internal line IN Momentum independent structures. Due to the fact that in
momenta. With this procedure, we can isolate in the physicaPerturbative amplitudes we always have propagators, an ad-
amplitudes the objects for which the role of the chosen spe€duate identity to achieve this goal is the followirig:

cific regularization becomes relevant. In a way we can say

that with our strategy we can unify such types of calculation. 1 N (— 1)i(ki2+ 2k; - k)l
Precisely for this reason a simple and rich analysis becomes T Z PRCNEE)
possible, as will become clear in what follows. [(ktkp)—m] =0 (k"—m?)
The purpose of this work is to investigate the possibility (— DN+ (K2 + 2k; - k)N+ L
of treating all the perturbative amplitudes in all theories and ! ! )
models, including the anomalous ones, through a unique (k2= mA)N* I (k+k;)2—m?]

point of view concerning the divergences. We will show that,

as a consequence of this requirement, the ambiguities need {therek. is (in principle) an arbitrary momentum used in the
be completely eliminated from the physical amplitudes, andting of an internal line. The value fdX in the above
an alternative way to look at triangle anomalies emerges in xpression can be adequately chosen to avoid unnecessary

natural way. _ _ algebraic difficulty. It can be taken as the smallest value that
We organized the work in the following way. In Sec. Il We |g54s the last term in the above expression to be a finite

present our calculational strategy for manipulations and Ca'rntegral. As a consequence, all the momentum dependent
culations of divergent integrals. Section Il is dedicated o5 of the amplitudes can be integrated without restrictions
the evaluation of some physical amplitudes, which are angqye to the connection limit requirement. The divergent struc-

lyzed in Sec. IV, concerning the symmetry relations and amyres obtained in this way, on the other hand, have no addi-
biguities, in order to identify the constraints on the consis+jgng) assumptions, andn the present discussipthey are

tency. In Sec. V we_study the point of view.of traditional \\ritten as a combination of five objects; namely,
treatments for the divergences and, finally, in Sec. VI we

present our final remarks and conclusions.

_J Ak 24K,k K Kg f d* 4kk,
Il. CALCULATIONAL METHOD TO MANIPULATE P A 2m)t (KR—m?)t Jap A(2m)* (kK2—m?)®
DIVERGENT INTEGRALS

o o ) d*k 4Kkgk,
Instead of specifying a regularization, we will adopt an —gayf T T o3
alternative strategy7] to perform all the calculations. To A(2m)" (k*—m?)

justify all the intermediate manipulations, we will assume the 44k Ak

presence of a generic regulating distribution only in an im- —g BT , )
plicit way. This can be schematically represented by HIa2m)* (K2—m?)3

d*k d%k , , . ,
[t [ = tof im 6 kP PN L L
(2m) (@m" Az “Caemt (e-meE Ja@m)t (é-m?)?
J d*k ©
= f(k). )
4
A(2m) J- dk 2Kk, f dk g,
V v - ’
Here the A;’s are parameters of the generic distribution B2 da@2m)* (k2—=m?)2  Ja2m)* (K2—m?)
G(A?,k) which in addition to the obvious finite character of (6)

the modified integral must have two other very general prop-

erties. It must be even in the integrating momentyrdue to 4k 1

Lorentz invariance maintenance, as well as having a well- lo (mZ):f (7)
defined connection limit: i.e., g A2m)* (K2—m?)?
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dk 1 The first one to be treated may be the one which corresponds
| quad M?) = 2T oo (8)  toa higher degree of divergence in fundamental theories: the
A(2m)" (k*=m%) cubic one. As a first step, after assuming the presence of a

generic distribution on the integrand, we write

It is important to emphasize that with this strategy it be-

comes possible to map the final expressions obtained by us d*k 2k, (ky-K)
onto the corresponding results from other techniques, due td,) ,= —f 2 ; >

the fact that all the steps are perfectly valid within reasonable A(2m)" (k"= m®)

regularization prescriptions, including the DR technique. All K 4.k K

we need is to evaluate the divergent structures obtained in Ky, K1akeg f 9apKuKy

the specific philosophy that we want to contact. In addition e A(2m)* (k2—m?)3

we focus on the fact that no shifts will be used on the general

routing assumed for all amplitudes. Consequently, it will be d*k 8k, Kkgk, K, d*k 6k‘1‘(k1-k)k#
possible to contact those results corresponding to the explicit N JA(277)4 (K2—m2)* B f (2m)*  (K2—m?)*

evaluation of surface terms in the eventual shifts performed

in the integrating momentum of the loop integralis very J d*k (k§+2kl~ k)4k,u ]

general character of the adopted strategy will become the (10
most important ingredient for the analysis we want to do, and
to support our conclusions. Another important aspect of the
procedure is that a definite value is attributed to each diver- . . .
gent integral involved is attributed. This value is used ever)Pn the nght-_hand S'de_Of the above equation, we used the
time the integrals are present in a physical amplitude in alldentity (3) with the choiceN=3, ruled out an odd integral,

theories and models, providing in this way a universal poin@"d dropped the subscript in the last two integrals, due to
of view for the problem. No expansions, limits, or not totally their finite characteftconnection limit requirementNow we

controlled procedures are included. All the manipulationsc@n Perform the integration of the finite terms without any

and calculations we need in the treatment of divergences ifEStriction. Using standard techniques to solve finite Feyn-
QFT are performed without the explicit calculation of a di- Man integrals we can easily verify that an exact cancellation
vergent integral, as will be explained. is obtained. Then we rewrite the result in terms of the objects

Another aspect we want to focus on is the question of the(4)_(8):
intrinsic arbitrariness of the perturbative calculations implied
by the divergences. All the arbitrariness is still present in our ) N
final expressions. The arbitrariness involved in the choice of (1) .= ~Kul quad M) =Kyl V] = 5 Kagkiaka,[Dapun]
labels for the internal lines is maintained by taking the most N 12
general ones and not performing shifts in the intermediate — 3 KaukiaKapl Aup] + 3 Kiky,[A L]
steps. The arbitrariness involved in the choice of the value to
be assumed for the undefined mathematical objedieice
of regularization is also present. We can say that with our
strategy we go as far as possible in the manipulations an
calculations of the divergent amplitudes. The next step afte?

our calculations necessarily involves arbitrariness. The adEduivalent to applying the regularization on the obtained ex-

vantage of our procedure is precisely to allow us to make &)Lesgion Eq.11). Following a similar procedure we also
clear and transparent analysis of the problem. The concl/RPtain

sions may help us to get understanding about some intriguing

guestions associated with the divergences in perturbative cal- _ 2) 4

culations; in particular, the question of the ambiguities, that 1= quad M) +Kykp,[A ] (12

is, the possibility that the physical amplitudes become depen-

dent on the arbitrariness involved. We are naturally guided oihers typical divergent integrals we need to use in per-

by the following desire: to choose what must be chosen, bufrpative calculations are those constructed with two propa-
to do it in a way so that the physical consequences do ”cﬁators defined as

become dependent on our choices, as we have always
learned in physics since our first lessons.
In order to clarify the procedure described above, let us f d%k (1:k“: Kk K?)

(2m)* (k2=m?)*[(k+kq)?—m?]

(11

Note that, as was said before, no specific assumption about
@e divergent integrals was made, which means that for these
teps all reasonable regularizations could be used. This is

explicitly evaluate some simple but representative divergent (1,;14;14")=
integrals, defined as

(2m)* [(k+ky)2=m?][(k+ky)2—m?]
(13)

4 .
(Il;llf):f d*k (1:k) _ (9) Let us take the linearly divergent one, which is the follow-
(2m)* [(k+kq)2—m?] ing:
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1 d'k  4k.k 1 _ 1
(12),= =5 (ke kZ)Uzj (27)4('(2_—”;)3 +Zzo((kl—kz){mz)}—Z(k1+k2)u

- f L X(k1+k2>yzo[(k1—k2>2;m21)'
(2m)* (K=m?)°[(k+ky)?—m?]
It is easy to note that all Feynman integrals can be easily

2
+f d*k (ka+2kz-k)%K,, +f d* treated by the described procedure. It is always possible to
(2m)* (k2—=m?)3[ (k+k,)%2—m?] (2)* identify a set of structure functions analogous to Zyenes,
irrespective of the number of propagators and loops in-
(k2+ 2k - k) (K5+ 2Ky Kk, volved. If there are more loops, new basic objects will be
X( m2)2[ (K+ ky)2— m2][ (K+ k)2 — m?2] - (14 added to the se#)—(8). For the present discussion the con-

sidered set of integrals will be enough.

In this case we used the identit@) with N=2 to rewrite
both propagators, and again we ruled out an odd integral and . PHYSICAL AMPLITUDES
dropped the subscript on the finite integrals thus obtained.

Solving then the finite ones, we obtain In this section we consider some specific examples of

amplitudes that can be evaluated using the divergent inte-

1 1 grals evaluated in the previous section. Although a few cases
1) = — = (Kki+k A T— =(ki+k Lo (m? will t_)e considered, the conclusions become transpgrent con-
(12) (kitko)alAap] = 5 (Katka) I log(M") cerning the aspects we want to focus on. The first simple and
important case is the one-point vector function related, for

i 5 5 o example, to the tadpole diagram in the lowest order of the
- (472 Zo(m*,m?, (ky—kz)%m*) ¢ . (15 electron self-energy in quantum electrodynant@&D). It is
defined by
Here we introduced the one-loop structure functions defined " .
by v J
T!(ky,m)= Tr —_—, (19
., plka.m) 2ot | Kk —m
Zk()\la)\21q2;)\2)
2o 2\ 2o 2 wherek, represents the arbitrary choice for the routing of
— Jldziln 92(1=2)+ (M- A5)Z— ) . (16) internal line momentum anuh is the 3 fermion mass. After
0 (—\?) the Dirac trace evaluation we get
which can be explicitly solved, but for the present discussion d%k k
this is immaterial. In order to simplify the notation, from TX:4 j n “2
now on we will adopiZy(m?,m?,q%;m?) =Z,(g?% m?) since (2m)" (k+ky)"—=

we are dealing with only one species of intermediate fer-

. d*k 1
mion. _ _ + klﬁf Z (- (20
Following strictly the same steps we can obtain the result (2m)" (k+ky)c—m

Inserting then the resulid1) and(12), we get

|2=I|og<m2>—<( 4W)2)Zo[(k1_kz)2;m2], (17

TX: A —Kyg[ Vg, ]— 3 KipK1aK1 [ Oapu,]

and after some algebraic effort L2 5
+3 klklv[AV,u,] +3 kl,u,kla'klﬁ[AaB]}' (21)

d*k K.k,
(|2)W=f i ) { (18 Asimilar structure is the scalar one-point function present in
A(2m)" (k*=m?) A(2) the fermion self-energy when, in the theory, there is a cou-
pling with a scalar field, for which only the result2) is
K,K, necessary:
X (—m?)3 + (K1aK1pt KaokoptKigka,)

TS(ky,m)=4m{l quad M) +kfk{[Ag T} (22

d'k  4k,kgk,k, [ _ _
Xf 1T ol 5 ([(kl—kz)ﬂ Next, with the integral$15), (17), and(18) we can construct
A2m)" (k*=m®) (4) a set of two-point functions playing an important role in
lowest order contributions for the self-energies of intermedi-
—Z,[ (K3 —kp)?%m?] ate bosons. They can be defined by the expression

X (ky—Kz),— (ki — kz)zgw]
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) d*k 1 1 w_ 4 ’
TIJ(kl,kz;m):j Tr Fi F] . T,uv_g[(kl_kZ) g,uv_(kl_kZ)p,(kl_kZ)V]
(27)* K+k,—m “k+k,—m

(23 i
><[Ilog(mz)_( )

Here k; and k, represent arbitrary choices for the internal (4)°?
line momenta. The difference between them is the external

momentum. Taking the operatorEiz[i;yS;yﬂ;i YuVs] X Zo[ (kg — k) 2:m?]
=(S,P,V,A), a set of functions can be constructed. The ad- ’
vantage of the use of these functions in our discussion is that

they are important structures in fundamental theories anénd

that they have very simple symmetry relations among them,

which work as necessary conditions for all calculational _,, 4 ) 5
methods to get the desired consistency in the divergent astuv= " 5[(kl_k2) 9ur~ (k1= k) (ks =K2), 1) Tiog(m®)
pects involved. The first two-point function we take into ac-

1 . 2m?+ (ky— k)2
3 (ki —kz)?

+A (29

v

count is the simplest on®.", written with the help of Eq. i 1 2m2+ (ky—ky)?
(17) as - st———
(4m)?/ |3 (ky—kp)?
) i
T = —4m'<k1—kz>ﬂ[ hoo(m*) =1 ¢ 47)2> X Zof (kg — kz)%m?] ] +0,,8M2 1jgg(m?)
i
XZonl—kz)Z?mz]]- @4 | |z (k) %m?] - A, (30)
(4m)?
From this, with the resultél5) and(17) we can write down where
the expression
1 1
TXS:_4m(k1+ kZ)ﬁ[A,B;L]’ (25) A,LLV:4[V,U,V]+(k1_k2)a(kl_k2)ﬂ{§maﬁuv+§A,u,ﬁgav
d th important one f fut lysi 2
and the very important one for our future analysis T Gunl gy Gl g §9aBA;w (kg —ky).,

TOV=—2¢,,05(ki— ko) s(Ki+Ko) {Ago].  (26)

The resulty12) and(17) allows us to write

4m?— (ky—ky)?
TS 4[ | quad )+ ¥| 1og(IM?)

4mP—(ky—kp)? [ i
Attt ( ( 4W)2)Zo((k1_k2)2§m2)]

+(K1—K2) o(K1—K2) gl A 5]

1 1
X(k1+kZ)B_(kl+kz)a(kl_kZ)B][gmaﬁuv+ §A,uﬁ

1
nga+ §A,nga,u +(kl+ k2)a(k1+k2),8[D

afBuv

_Avag,uB_ABVga,u,_BAaﬁg,u,V]' (31)

It is important to focus on very general aspects of the result
obtained. First, all the steps can be easily identified as valid
in any regularization scheme, since no specific calculations
for the divergent integrals were made. Only safe steps were

(K1t Kp) o(Ki+Ka) gl A gl (27 performed. The results were presented in terms of a mini-

and

mum number of structures, which allows us to make a very
simple and clear analysis. The choices for the routing of the
internal line momenta were taken as general as possible.
Consequently, all the potentially ambiguous terms still re-

1 1
TPP=4[ — I quadm?) + E(kl—kz)zl,og(mz)— E(kl—kz)2 main in the results. Let us now consider the constraints im-

i
X((47T)2 Zo[(kl_kz)zimz]] — (kg —ka)a(ky

posed for symmetry reasons in the explicit expressions of the
perturbative physical amplitudes.

IV. SYMMETRY RELATIONS

—k2) gl A gl — (K1 +Ka) o(Ki+K2) gL A ] (28 It is well known that the symmetry content of a QFT,

implemented in the construction of the invariant Lagrangian,

Finally, the resultg12), (15), (17), and (18) lead us to the states specific relations for the perturbative amplitudes in all

expressions

orders. We refer to the Ward-Takahashi and the Slanov-
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Taylor identities, and other general constraints like Furry’sare included, which from now on we denominatmsistency

theorem. This implies that the calculated amplitudes, indeeonditions The same conclusion can be extracted if we con-

pendent of the specific aspects of the regularization tectsider the explicit expression fd‘rX‘V’, Eq. (29), and contract

nigue applied, must obey these relations. It is very desirablg with the external momentum:

that such properties in all theories and models should be

simultaneously preserved, where they must be, as a conse- (kl—kz)ﬂTx\V’

guence of a unique rule, and that the correct result for the

violations should emerge in a natural way without changing =4 (Ky—Ky) V. + (KyoKy ko, — Ko Kok )Daﬁpv

the adopted rules, as is the case with the triangle anomalies. L v \1aR1pRlp R2at2pR2p) g

We understand that with our approach some clarifications

about these aspects can be given since there is no restriction —(kzk — K2k )ﬁ—(k Ko Kk

of applicability. Through the adopted strategy it becomes 1p T2R2p) 3 171am1p

possible to seek the necessary properties so that the divergent

integrals lead us to the desired consistency. After that, if one — Ky, Ko Ky )EA J (36)

wants, one can construct a consistent technique. This means e

inverting the usual procedure, which is to propose at the

starting point a specific regularization, and then to test thélote that a conserved vector current cannot be obtained by

consistency. Having this in mind, we can verify a set of Wardthinking about convenient choices for the arbitrary momenta

identities relating the fermionic Green’s functions directly K1 and k, due to the fact that there are violating terms,

dictated by the vector current conservation and by the procoefficients of all piece§l,z,,,V,,, andA,,, which are

portionality between the axial-vector and pseudoscalar cuthdependent of such eventual choicesnambiguous It

rents, as well as other constraints imposedX§T symme-  Seems there is no way to escape the conditi@®. In a

tries. similar way to TX, some considered two-point functions
We can start with the simplest amplitude that carries aneed to vanish identically on general symmetry grounds.

Lorentz index, theT,(I,m). The general symmetry grounds They areT);° and T4} which state, respectively,

in Furry’s theorem state that only a vanishing value is rea-

sonable, so we need to satisfy (ky+ka)gA . 5=0,
0=—ky5Vp,— 3 K1gK1aK1, T appn™ 3 kiklvA v & uvap(Ka—=Ka) g(Ky+K2) (A, =0. (37
+ %klﬂklaklﬁAaﬁ. (32 For these two specific situations, both options are available:

choosingk; andk, in a convenient way and constructing
There are two different ways to satisfy the above result. The\'*9=0. It is also interesting to consider the contractions
first one is the choick,; =0 sincek, is arbitrary. We can ith external momenta once symmetry relations can be gen-
question if it is always possible to make this choice. Think-erated. For such contractions we get
ing separately about this amplitude, the answer can be posi-

tive, but we note that it is possible to relate this amplitude to (ky— kz)MTVSZ —4m(ky—Kp) (ki +Ko) gA 5, (38
other purely fermionic vector functions which have more .
than one Lorentz index, lik&" . This relation can easily be (Ki—ky) . TAY=26  (ki—ky) . (K, — ki)
constructed by noting the identity v Tays TRpvafiTL T2 TR
X(kyitKkp) A,
- . . (39)
k) v ks T Y (ko kg —m (K= ko), TAY=28 (ks — ko) (Ko~ ky) g
L L X (K +Ko) e g 40
=Y Y . (33) VS .
[K+k,—m] [k+ky—m] A conserved vector current foF,° can be obtained by the

choice k;=—k;, as well as by taking\,°7=0. However,
"Both contractions involving ¥ vanish identically indepen-
dent of the possible choices, just because the antisymmetric
(kl—kz),LTX\V/:T\V/(kzim)—T\,,/(kl;m), (34)  £uvap is contracted with a symmetric object in two of its
indices. The vector current must be conserved, but the axial-
which also needs to be zero due to vector current conservaector current must not. So there is only one consistent value
tion, sincek, andk, refer to momenta of théTX\V/ amplitude.  for T;AL\VI: the identically zero value. Otherwise a symmetry

The choicek; =k,=0 simultaneously cannot be at our dis- relation is broken. We can add to this argument another very
posal, so we need to use a second way to satisfyd.We  general aspect that forces us to obtain a zero valugﬁéjr

Taking the traces and integrating both sides in the mome
tum k we get the relation

construct a regularization requiring that the properties (andT\f): unitarity. If the amplitude does not vanish then it
req req_ xreq needs to develop an imaginary part R € k,)?=4m? to be
Ouguv=Vuy=4,,=0 (39 consistent with unitarityCutkosky’s ruleg
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Clearly, independent of the possibilities involved, this prop-ences have a physical meaning. A physical process requires
erty cannot be present in the resy®8) and(26) for TVS and the symmetrization of the final states. So to construct a sym-

Tﬁ\y’, respectively. The above argument will become verymetry relation we need to include the direct and the crossed
important. diagrams.
Now we can take thé’AA symmetry content for analysis. In order to clarify the notation, let us consider an ex-

The proportionality between the axial-vector and the pseudoample. Ifl'i=7y,,I';}=v,, andI'y=1, the physical process,
scalar current states that we need to obtain g ( symmetnzed in the final states, is written as

—ky),, Tha=—2miT,”, and another similar condition for

the contraction involving the Lorentz index. Using the ex- s W swy, swy
plicit expression obtained foF4%, Eq. (30), we get T, =T, (K ke kssm)+T7 ¥ (11,15,135m), (44)
(kl_kZ)MTﬁﬁ
where the first term means the direct channel with external
O
_ _ -~ aBpv momenta defined big;—k,=0q,k;—k;=p,k;—k,=p’, and
=44 (ko= K1) o Vo, T+ (Kq oKq gk, — Koo ko gk 3 h2 3 M 1 "2
(( 2~ K)aVar+ (Kiakaghe, ~Kaokopka,)— the second one is the crossed channel whgrel,=q, !5
A —1l,=p’,I;—1,=p. Note that the routing is taken as the
+(kiklp_kngp)%—i_(klvklaklﬁ most general one, diagram by diagram, since the eventual

ambiguities present in a particular Green’s function do not
> have the same meaning as those associated with any other,
_k2yk2ak2,8)_Aaﬁ} —2miTPA, (41)  even though the extgrnal momenta are t.he same ones. If_ we
3 take the same meaning for the parametrization of the routing

h . letelv simil h btained f of internal lines in both diagrams we will be assuming a
The constraints are completely similar to those obtained fo[,; e gq| meaning for the completely undefined quantities

TYV sinceTP* is nonambiguous. These conditions can be

wy? v present in a Feynman diagram.
put mP'i\erms of the value for the, amplitude, irrespective of ~ after these necessary definitions we consider in a more
the T, " calculation, if we note the identity detailed way a very important case of such a three-point
function: T{. To generate a relation among these Green's
. 1 1 functions and others, we first note the convenient identity
(ki—k3) '}’v')’S— 7’#'}’5—
K+ Ky — K+ Ky—
omil i 1 1 1 - 1 1 1
=Zmiy 1y,y Y Yy - v
Sktkp—m CKtkp—m| Kt Kp—m sk Y T ™ Y k ke T“ Kt ke
1 w) , 1 1
—YvYs, . _7s- =—\1Y
K+ K —m T ke m Kt kg
After taking the traces and integrating both sides in the mo- 1 ) 1
mentumk, Eqg.(41) results. The above procedure can be used 7vk Y75
+ kz_ m k+ kl_

to relate the conditions to be imposed on ttme-(1)-point
Green’s functions to the Ward identity involving-point [ 1 1 1 ]
—2mi

Green'’s functions without explicit evaluation of timepoint Yy Vs Yu
structures. Frequently, this is a procedure used in discussions kK+Kko—m “K+ks—m " k+Ky—
relative to violation of symmetry relations or the triangle (45)
anomaly phenomenon. This is a very important aspect of

perturbative QFT. Let us then investigate the Ward identities

involving three-point functions in this way. We can define all Taking the traces and integrating both sideskinve can

of them as identify the relation among the amplitudes
T'szf ' Tr[r- ! T !
2mt | ke k—m Kt k—m (ka— ko) Tan(ky Ko ks m)——2m|TPVV(k1,k2,k3;m)
K-+ kg—m +Ti(keko;m). (46)

Here the I' operators assume[1; Y53 Yu il Yu sl
=(S,P,V,A) and kq,k,,k; represent arbitrary choices for So the symmetry relations that relate the procegsesv/V
the involved momenta of the internal lines. Only their differ- and P— VYV become
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TR, V= —2miTE YV T4V (kg ko m) P, TS, AM=2mi[ TS AP+ am(ks+ky) f Ag,]
=Tl (kg ke sm) +TOY(14 1 55m) —4m(la+15) LAl (57)
~Ton(lg,l15m), (47) BTy, "F=0, (58)

where the crossed channel was included. The above relationp, Ty, "= 2mi[ T} ~FP]—4m(k,+k3) J[A 1 ]
can easily be extracted from the current algebra procedure. It At | A 59
must be noted that the Ward identity can be satisfied, if and M2 +13)a[Aanl, (59)
only if all four integrals on the right side vanish identically. A—AA_ _ o iTP—AAL _ T

We identified such integrals with the previously studied two- T 2MiT,, " 28 uuapl (Ks—ka) gkt ks)e

point functionT,’j\V’. Substituting the results obtained we get +(Ki—K2) g(K1+Ko) ][ Ago ]+ 28 4 yapl (13
the expression
=) p(li+13) e+ (11— 12) g1+ 1) [ A g, ],
CIAT';\\;VVV: - 2miTZ:VV+ 2& p0pl (K1 —Kg) (K1 +K3) ¢ (60)
kK plkatko)elA g P Th A= 2miTR, A= 26, 0l (Ko — ko) (ks ko) ¢
~28umapl (117 13) (11 1a); +(kg— o) g(kot Ka) el A gl + 28 gl (15
(o= 1) g(l1+12) ]Ag, . (48) ~ly)g
Following the same strategy, many other relations can be X(I3+1g) e+ (11— 13) 5(11+12)A[Ac,], (6D

constructed. In all cases we simply substitute the results ob-
tained for the corresponding two-point functions after the p, T3 **=2miT, A+ 26, .4l (K1 —ks) s(k; +ks) ¢
symmetry relation for the three-point functions has been con-

structed. To be as brief as possible we simply quote the re- +(kg—ka) g(katKs) ][ Aol +28) yapl (13
maining results: —12) 1o+ 1g) e+ (11=12) g1+ 1) A ],
PuTaw =28 xuapl (ko= K1) g(Ky ko) e+ (Ks—ko) g (62
X (katKa) J[Agal+ 2enpapl (13~ 11) g1+ 13) PN =2miT A (14 9) 411 18) p— (1
+(|2_|3)ﬁ(|2+|3)§][A§a]’ (49) +I3)a(|2+I3)B][Da,8)\v_g)x,BAva_g)\aAVﬁ
p;TQ;VVV: zskuaﬁ[(kﬁg_kl)ﬁ(kl—'_ k3)§+(k2_k3)ﬁ _3gAVAaB]_[(kl+k2)a(kl+kZ)B+(k2
X (kg +Ka) e J[A el + 28 apl (12— 11) 11+ 12) +K3) o(KatK3) gl[Daprnr=9rgAva— el g
+(13=12) g1 +13) [ A ], 50 2
(Is=l2)platla)llAcal 0 =30\, Al t §[k2a(kl+ K3) g—Kap(kq
TY 755=2(Kaokaps— Kaakag) [ A sl + 2(1 20l 25— 3]
T el a2tz e 3(‘3)) k) ot a1~ 12)p= lap(11=12) I Dapn,s
X[A gl 51
g + el t Gral g, (63)
Y77 =2(Ksakap— Koukop)[Aapl+2(15al 55~ 120l 26) and finally
X[Aagl, B2 TV =Lkt ko) alky+ ko) g (Kot Kg) oKy +Ks) g]
A\ Th5P=—2mi[ TP SP] = 2i (K kap— KaaKop) [ A o] X[Oapur=Iuad g™ 9val up= 39,8 4l
—2i(I3al 35— 1 24l 26)[ A, (53 A1 +12)o(l1+12) g= (11 +13) o (11 +13) 4]
— X Da v CVAV - VaA -3 VACV
p,T5, Y= 4m(ks— kD) d A g, ] +4m(11— 1) A ] Blapur™ Guehop ™ Oraus ™ 30,B as]
2
=8mp§[A§V], (54 + §[klﬁ(k3_k2)a_kla(k3_k2)ﬁ
r+S—VV__
T =AMk —ka) LA g, ]+ 4am(I3—11) A, ] +lia(3=12) e 1alla=12) s D apus
=8mpA,], (55 + 0,0l st Gral gl (64)
pﬂTlS;AA: 2mi[ TS~ PA1—4m(ks+ ko) A, ] Let us consider the values for our divergent basic objects
from the point of view of very representative techniques to
+aAm(l3+1,5) A ], (56) handle divergences, in order to then perform the analysis. We
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refer to the remaining objects in the calculated expressions d2°k Kk k Kekig i 1
for the amplitudes and the symmetry relations considered, f Y :( )—[g 9p:+ 9,50,
since these values assumed a crucial role in the Ward identity (2m)2e (K2=m?)« | (4m))4"7" g
preservation as shown in Eqg.8)—(64).

INa—w—2)

o m2\a—w—2"
V. BASIC DIVERGENT OBJECTS VERSUS I'(a)(—m?)
REGULARIZATION (68)

In the preceding sections, taking specific examples of sets,
of amplitudes, we considered the aspects of ambiguities aq%
symmetry relations. All the conditions were put in terms of
three differences among divergent integrals of the same de- 0 2
gree of divergence. From the results obtained by our calcu- f d=k  2k,k, f d=k 9ur (69)
lational strategy we can get the corresponding ones furnished (2m)%° (k*—m?)? (2m)%° (K*—m?) '
by traditional regularization methods or equivalent philoso-
phies. All we need is to specify the values attributed to the 2w 2w
objects(4)—(8) by the method adopted. In this section we j d*k  4k,k, f d=k Guv (70)
want to analyze how representative treatments of diver- (2m)%° (k2—m?)3 (2m)2° (K2—m?)?’
gences specify the values of these objects.

e comparison with the results can be used to identify the
lations

f d?“k 24kaMkBk§_ f d?“k 4k,3k§
A. Dimensional regularization (277)4 (k2—m2)4 v (277)4 (kz—m2)3

For the evaluation of the momentum integrals in the DR
technique[8] we take as a starting point the validity of the d2ek 4kgk,
expression T Ous (2m)* (KC—m?)3

d*k ! fdz‘”k akk,
(2m)2” [k2+2q-k—H?]* 98] 2w (e—md)E

i IN'la—w) .
B . 65
((477)“’>1"(a)(_q2_|_|2)aw (65

|(2w,a,Q)=f

So the consistency conditions that emerged in our analysis
o ) ) are automatically satisfied in the DR technique. It is possible
In situations where the divergent integrals are<{(w) We o say that the consistency of the DR scheme resides pre-
admit that the integrall(2w,«,q) is an analytic function of  ¢jsely in this fact. The results produced by the technique are
the variablew which is continuous and CompleX. On the automatica”y free from ambiguities and are Symmetry pre-
right-hand side the gamma function is changed from the Euserying. It is allowed to perform shifts on the integrating
ler function to its analytic ContinuatiOI(lin the regiona momentum, but it is not a Compu|sory Operation_ The prop-
<w): the Weierstrass function. The divergences will emergeerties(69)—(71) eliminate all the possible dependence on the
as poles at specific values far. An important aspect of our choices of internal line momenta. Because of this conclusion
discussion is that once the resu) is clearly established it is easy to see that in all problems where the DR technique
we can use it to produce relations among integrals withougan be applied if we tak&l,z,,=V,,=A,,=0 and write
being concerned about the divergences. The specific relationge objectsl|og(m2) and |quad(m2) [taking in their coeffi-

of interest here can be produced by the adequate differentigjents the appropriate values for the traces of yhmatrices

tion of both sides of Eq(65) relative to theq momentum, tr( —yﬂryv)zzwgl“” and so oﬂ] according to the expressions
?ng then taking as zero. Following this procedure, we can directly dictated by Eq(65), a perfect map can be obtained.
in

B. The Pauli-Villars covariant regularization

d2ek 1 i INa—w) . . . .
f = , To evaluate any divergent integral from the point of view
(2m)%@ (kK2—m?)* | (4m)°)T(a)(—m?)*® of the Pauli-Villars(PV) prescription[9], we initially take
(66)  the substitution
f a2k Kk, i V1 I(m)—>20 ail (A, (72)
— — 1=
@m® (&-m3)= |\ (4m)=) 27"
Mla—w—1 whereay=1 andAy=m. All the othera; andA; parameters
(a—w—1) ’ (67) need to be chosen in such a way as to construct a superpo-
['(a)(—m?)e @t sition leading to the desirable results, guided, for example,
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by the maintenance of the Ward identity. In terms of this dk 1
recipe let us consider the values of the three relevant differ- f IR
ences. First, A(2m)* (K2—m?)
4
f dk akk, f 'k g, - aif dk 1
A(27T)4 (k2_m2)3_ A(27T)4 (k2_m2)2 =0 (2’7T)4 (kz )
dk  4kk, dk g, _ [ 9% ] ag a a,
=2 a J - —J - “aemt ka2 koA ke Az
<0 | Ja2m)t (K2—-AD3  Ja2m)* (K2—A?)2 (27) 0 1 2
2 d*k
~S a f d AT =f K4 (ag+ @y + @) — K[ ag(AZ+A2)
=0 A(27T)4 (kZ_AiZ)S (27T)
: 1 +ay(Aj+ A +a A+ AD)]+aAlAS
= - = 73
= {((477) )( 2)} (73 +a;A3A5+a,A2A3)

To satisfy the above consistency condition all we need is to « 1
choose a set of;’s so that¥;_,a;=0. The next condition, (kZ—A )(K?—A )(k2 g) '
the one relative t@1 leads to the result

(76)

auv s
The condition=;a; =0 appears in th&* coefficient, which is
Deapur=[9u9ap1 9audrpt 9ar9p,] the highest power of the integrated momentum. The condi-
i 5 tion EizoaiAi2=0 is present in thek? coefficient. Even
X D ai| — || = _)] (74)  though the choices we make were dictated by our consis-
=0 (4m)? 6 tency conditions, it is interesting to note that they are obvi-

ous ingredients in order to guarantee the regularizability of
which is then simultaneously satisfied with the same choiceéhe corresponding divergent integral. With this recipe we
of coefficients as the one previously considered. The relatiopeed to add powers &f only in the denominator to modify
involving quadratic divergencesVf,) can be evaluated in the behavior in the region of high values of the integrating

the same way: momentum. Solving the equations, we get the expression
d* 2Kk, dk 1 d% 1 (m*-AD)
V#V:-E a; 4,2 A2\2 f —’f
=0 A(2m)" (K°= A7) A(2m)* (K2—m?) (2m)* (K2—m?) (k3—A?)
d4k Ouv (mZ_AZ)
_f 4 (2 - 2 X 22 ' (77)
A(2m)" (kK= A7) (k3—A3%)
__ Y ' f d* 1 and because of the finite character of the modified integral
2 =0 " Ja2m)* (KP—AP) the solution is immediate.
d*k 1 C. Surface term evaluation
5 2 iqa_ g2 7D . . . .
=0 A(27'f) (k A7) In the literature about divergences in QFT there is another

procedure which plays an important role: the explicit evalu-
So if we choose, in addition to the choigga; =0, the val-  atjon of surface terms. They are involved when shifts in the
ues fora; and A7 so thatZ;_oaA?=0, we getV,,=0. integrated momentum are performed to relate one specific
There are no new facts in the conditions derived above. Acchoice for the internal line momenta with another one. This
tually, they are the same ones used in the QED treatmenis frequently used in the verification of the Ward identities
guided by the maintenance of gauge invariance in thénvolving situations where DR cannot be used. The most
vacuum polarization tensor, in the vanishing of the tadpoleemarkable one is the justification of the violations of sym-
diagram of the electron self-energy, and so on. To completenetry relations in theAVV triangle amplitude10,11]. Be-
this subsection we need to show how the Pauli-Villars resultgause in our calculations the choices for the routing of inter-
can be extracted from ours. The first step is obviously to tak@al line momenta were adopted as the most general ones, and
Ouwpur=V.=4,,=0, and then evaluate the remaining di- no shifts were taken in the performing steps, it is possible to
vergent objects according to the PV prescription with themap our results onto those corresponding to this specific pro-
conditions;a;=0, andZ, oalA =0 dictated by the above cedure. All we need is to relate the consistency conditions to
investigations. the surface terms. This is not a difficult job if we note a small

Explicitly, for the quadratic divergent object we have number of relations such as
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P K K Kk onto the corresponding results of any traditional regulariza-
/2 g,uV Ny . . . . . .

T\l T —2a—————. tion technique or equivalent philosophy. In this framework it

9Ky \ (K>=m?) (k*=m") (k=m°) becomes possible to state clearly the relevant issues concern-

(78 ing regularizations, ambiguities, and symmetry relations.
Regularizations can be classified into two basic classes. In

So, if we integrate both sides in the momentknwe have the first class we can put the regularizations obeying the

f Ak g ( K, >_f dk 9, consistency conditions
(2m)* M (K2=m?)e) ) (@2m)* (K-m?) Oreg,,= Vie9=Are9=0. (83
d%k k,k, In this class we find the popular and convenient DR tech-
- J 12 £ et l” nique. A second class of regularizations can be characterized
(2m)* (k*=m?) by
(79) re re re
(058 Vi A #0. (84)

Now, takinga=1 anda=2, respectively, we obtain
In this class we find the surface term evaluation analysis that
d'k 9 ke, | v is commonly found in the literature devoted to the triangle
f (2m)* K, | (k2—m?) T Tuw (80) anomaliegwhere DR cannot be straightforwardly applied
The two classes defined above lead to drastically different
Pk 9 K despriptior_ls Qf pertqrbative amplitu_des in two respects.
f ( ( las ) =—A,, (82) (i) Ambiguities: Since the potentially ambiguous terms of

2m)* 9K, | (k2—m?)? all amplitudes are always multiplied by one of the objects
(4)—(6), the first class of regularizations will completely

and following the same procedure we can state that eliminate the ambiguities. For the second class, physical am-
plitudes will become ambiguous so that we will have to

d'k 0 [ Kukekg | make choices for the nonphysical quantities. The predictive

f (2m)* 9K, | (K2—m?)3 =~ Dapus- (82) power of QFT is clearly affected; predictions cannot be made

in a definite way, fundamental symmetries like the space-

On the left-hand side of the last three equations we have affme homogeneity may be broken, and so on.

integral of a total derivative which is a surface term in con- (i) Symmetry relations: We noticed that the potential

sequence of the Gauss theorem. When the integrand is cofymmetry violating terms are always multiplied by one of

vergent or logarithmically divergent in the region of high the objects4)—(6), like the ambiguous terms. However, note

values for the momentum, the surface terms vanish identithat all the ambiguous terms are symmetry violating ones,

cally; otherwise they do not. We can evaluate the values foPut the symmetry violating terms are not always ambiguous.
the surface terms related to the objeflsg,, . V,,, and The last sentence means thgt the second f:lass of regulariza-
A,,. For example A,,= _igw/32772 and O,s,, tions cannot lead us to consistent re§ults just bgcause there
=[0,90p+ 9aulupt gaygﬁ#](i/(47'r)2)(—5/6). These val- are cases Wherg no choices can avoid the violations. '

ues can be found in many papers or textbooks about triangle At this point, if one wants to look at all QFT perturbative
anomalies. It is important to note that if this interpretation isProblems in the same way, one must consider the question of
adopted the values fak,, andO,,,, are completely well tnapgle anomalies. It seems that there are two situations
defined and finite. The main aspect is that in this specifi¢vhich should be taken into account.

point of view what we denominate the consistency condition (i) In the first class of regularizations, apparently all am-

is not satisfied. Consequently, the amplitudes we calculateBlitudes become automatically unambiguous and symmetry
in Secs. Ill and IV are not free from ambiguities and thePreserving. In particular, the right-hand sides of E@)-
Ward identities are not automatically satisfied. This way of(50) and(60)—(62) seem to imply that no violations of axial
looking at divergences in perturbative calculations of QFT isSymmetry relations can be obtained. How, then, can we re-

clearly not compatible with that of DR and the PV technique.Cover the triangle anomalies in this class of regularizations?
We return to this crucial question in a moment.

(i) In the second class of regularizations, interpreting the
objects (4)—(6) as surface terms, we can get violations of

The divergent content of all the considered amplitudessymmetry relations in théAVV and AAA triangle ampli-
and their respective Ward identities can be put in terms ofudes. This is precisely the traditional procedure used to jus-
only five basic objects, Eq$4)—(8). The strategy adopted to tify the anomalies. It is easy to show from our results that
handle the divergent Feynman integrals preserves all arbsuch a description is immediately recovered. For this purpose
trariness and allows us to emphasize exactly where choicésis enough to get the value for the, , object dictated by its
have to be made in the perturbative calculations, in order tsurface’s term interpretationA ,,= —igw/32772. Taking
obtain a definite value for the physical amplitudes. The respecifically theAVV case, we assume, as usual, k,, and
sults obtained within the adopted strategy can be mappekh, which are the arbitrary choices for the internal line mo-

VI. FINAL REMARKS AND CONCLUSIONS
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menta, to be linear combinations of the physical momenta obelonging to the first class, like DR, eliminating all the am-

the external vectors, namely,andp’, as follows: biguities, while in the treatment of anomalous amplitudes we
o, must use the second class of regularizations. This seems to

ki=ap’+bp, be the present status of the problem in the literature. We find

, this attitude unaceptable because it implies that identical

=bp+(a— . . ) S

ke=bp+(a=1)p’, (85) mathematical structures can receive different values in dif-

ks=ap'+(b+1)p. ferent' amplitudes. Even though the choice of rggularization

is arbitrary, to use two types of such mathematical tools be-

Notice thatk,—k,=p’, ks—k,;=p, andks—k,=p’+p=q, longing to different classes in the same problem could rep-

where q is the momentum of the axial vector. The resultsresent an excessive degree of arbitrariness.
corresponding to the contribution of the direct channel in  Up to this point we have used the results produced within
Egs.(48)—(50) become our general framework only to show that there are aspects in
the present status of the treatment of divergences that could
g TAVY= —2minL\V’V+(a_S) 2,050 PP, (86) be questionable. However, we now want to show that it is, in
81 fact, possible to treat all the situations in a consistent way by
the same method. Taking into account what we have learned,

avy (1—a). L it is clear that only the first class of regularizations can pro-
puTxuv_V'skmﬁp P 87 yide us consistent results, at least for the nonanomalous
cases. We now need to explain how triangle anomaly phe-
(1+Db) nomena can be accounted for from this point of view. The
P T == Wis)\uaﬁp,apﬁ- (88 crucial issue is to get the expected results for AfeA and

AVV triangle amplitudes, in spite of the ambiguity elimina-

Note that there are no choices for the parametesid b tion as a consequence of the imposition of the consistency
such that the violating terms are simultaneously eliminatedconditions. The first step is naturally to explain why the zero
Closer contact with the usual results can be obtained if th¥@lue for the AV structure is not incompatible with the
contribution of the crossed diagram is added, assuming thanomaly phenomena. Actually the phenomenological foun-
same Significance for the arbitrary internal momenta, k.’e_, dations of the triangle anomalies reside in the connection of
equal tol’s in Egs.(48)—(50). Then we get the AVV amplitude with the neutral electromagnetic pion
decay. Through standard methods of current algebra, the par-
(a—b). s tial conservation of axial-vector current hypothesis, and the
?'%Wﬁp p”, (89 Lehmann-Symanzik-Zimmerman formalism, four constraints
are imposed on th&VV amplitude. Three of them are the

A—VV__ rP—VV
QXTW ——2m|TMV +

Ay (b—a+2). Vg Ward identities related to Eq§48)—(50) and the fourth one
Pu TN =gz EnvapP P (90 is the low energy ling o0, T4,,,"Y=0. In the context of the
Sutherland-Veltman paradox, it was stated that it is not pos-
(b—a+2) sible to obtain in any calculational method an expression for
PTG = Tis)\ﬂaﬁp’apﬁ- (91)  the AVV amplitude such that all four constraints are simul-

taneously satisfied. This is a property of th&'V mathemati-
Putting a=1, the above results can be recognized as th&2l structure. Given these statements, £48)—(50) reveal
usual one$10—15. So, adopting this point of view, we have only that after the evaluation of th&VV structure and the
a justification for the violation of at least one of the abovecontractions with the external momenta are performed, math-
symmetry relations, because there is no value for the arbematical structures identical to that AV should be identi-
trary parameteb such that all the Ward identities can be fied. The low energy limit and the three Ward identities must
simultaneously satisfied. However, as we have discussedpt be simultaneously satisfied with or without tA& cor-
this procedure will lead us to many undesirable features imesponding terms. This means that even whenAe(am-
other physical amplitudes; namely, ambiguities and viola-biguoug terms are eliminated through the consistency con-
tions of nonanomalous symmetry relations. In particular, thiglitions it is expected that the triangle anomaly phenomena
justification for the triangle anomalies is founded in a non-should emerge in a natural way in the problem. In order to
zero value for theAV two-point function, as can be seen verify the complete set of ingredients present in the
from Egs.(48)—(50) and (38)—(40). However, theAV two-  Sutherland-Veltman paradox, it becomes necessary to make
point function must be identically zero for many reasons.an explicit evaluation, within our calculational framework, of
Therefore the procedure is in some sense not consistent. the AVV mathematical structure. All the details involved will
In view of the above statements, one might conclude thabe presented elsewhef&6]. The main results can be de-
it is not possible to treat all the situations involving diver- scribed as it follows. If we adopt strictly the same strategy
gences in QFT from a unique perspective, and that one has ttescribed in Sec. Il to manipulate the Feynman integrals in-
adopt a case-by-case approach. This would mean that, in thwelved, an expression for thAVV amplitude can be ob-
nonanomalous amplitudes, we must apply a regularizatiotained where all the eventual arbitrariness is still present. The
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contractions with the external momenta can be written, for — (k,—k,), TAVV= —2mi{TPV (100
. . . Auv uv J-
the contribution of the direct channel, as
If we include the crossed diagram’s contribution, we get

i
(Ka—Ky), Thry=(ka—ky) TR0+ ﬁ)svﬁkf aevv_ [ /
p#T)\MV = m Syﬁxgpgpﬁi (101
X (kg—k1) (k1 —Kz) g, (92)
i
i p;TA*VVV=—(— BuprPePp, (102
(kl—kz)vT’:XVV=(kl—kz)VF’QXVV—(Q)Sﬂm " 4| MO
X (ko—kp) (k=Ko 93 AT Y= —2miTP VY, (103

The set of results obtained is in agreement with the state-
ments of the Sutherland-Veltman paradox. Only one of the
four symmetry properties, the axial Ward identity, was pre-
5 served. However, as is well known, the low energy limit is
X (k3—kq)e(ki—ka) gl 2m&ool, (94) related to the neutral electromagnetic pion decay. So, in or-
der for theAVV amplitude to conform to the phenomenol-
ogy, we have to modify the calculated expression inadn
TVV=¢ 5 (Ky—Kq) g+ (Ka—Kp) g A = &0 pe(Ka— Ka) E%?tvgsya;?/mf:;ng the correct behavior to the low energy

i
(ks— kz)xTﬁ,\{y: (ks— kz)xFAVV"‘ m) Euevp

Auv

where we have defined

XA —¢ (ko—Kks3)gA :+ & [(ki+ks)
wé uNBELR2 3/ B=2vé mvha 1 2)B . , . , _
(TR V(B D phys= Th V(PP = TR Y(0),

+(kg+ky) 1A 45, (95) (104

andé&gyg is the same finite integral that arises in the evaluationyhere
of the PVV three-point function:

1 TAHVVV(O):_(i_)8 ) [p _p/]' (105)
TZYV:(T#) Me (K1~ ko) p(Ks— K1)l £00)- (96) e 42| HNERETE

- . ~is, as it should be, the required anomalous term. Conse-
In addltlon, Iooklng at Eq3(92)—(94), we can see that it is quenﬂy, we get for thé\VV physica| amp“tude
possible to identifyAV two-point functions given by Eq.

(26). To make clear this observation, note that pu(TR )phy=0, (106
(ks— kz)xrﬁ,\f;\//: 2& ,,0pl (K1 —Kg) g(K1+K3) ¢ pﬂ(Tf;’VVV)phy= 0, (107
+(ka—K1)g(Ki+Ko) e]Agy . (97) - P
2 R Ze ¢ q)\(Tﬁ,u.yVV)phy: _zml{T,ZV vV
With these identifications, Eq94) can be put precisely in .
the form of Eq.(46) so that the corresponding relation be- o e, Ip.ph] (108
tween Green’s functions is preserved before any assumption 22| HrepLEatpd

about the involved arbitrariness. On the other hand, given the
results(92) and(93), it is easy to see that the corresponding So the vector Ward identities are recovered as a conse-
relations between Green’s functions stated for the contracguence of the low energy limit fixing. The axial Ward iden-
tions with the momentakg—k;),, and k,—k),, Egs.(49)  tity must be accepted as violated. This is a consequence of an
and (50), respectively, are not satisfied. Next, in order to bearbitrary choice. Note that this point of view for the diver-
consistent in the perturbative calculations, we must adopgences gives a fundamental character to the arbitrariness in-
A¢,=0, eliminating then theAV corresponding structures volved in the triangle anomalies. The arbitrariness involved
present on the right hand side of E¢82)—(94). We get then in the redefinition of the calculated expression is authorized
by the impossibilities contained in the context of the
AVV i Sutherland-Veltman paradox. Finally, it is easy to verify that
(ka=Kq) , Thpw= a2 e,pne(ka—Ky) (K1 —Ka) g, the same values for the Feynman integrals involved in the
. (98) explicit evaluation of theAVV (and AAA) anomalous am-
plitude will lead us to symmetry preserving results for all
i other three-point functions.
_ AVV_ | _ _ After these important remarks the conclusion of the
(ka=ka), Ty ( 2>8“’8x§(k3 Kelka—ka)g, present investigation can be safely stated: If we define a
(99 strategy to handle the divergences through the consistency
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conditions (i.e., if we adopt a regularization belonging to clusion can be stated. A consistent interpretation for the per-
what we denominate the first clasall amplitudes will be- turbative amplitudes cannot admit them as ambiguous. The
come nonambiguous and symmetry preserving where thegmbiguities represent violations of fundamental symmetries
must be, and they will exhibit the correct violations whereused to construct the theories and the destruction of the pre-
they need to. The violations naturally appear with the correctlictive power of the QFT’s. In fact, they are not necessary in
value required by the phenomenology, but without having tcany case; not even for the justification of the triangle anoma-
admit the ambiguous character. The final picture that haes. Adopting this point of view, some clarifications can be
emerged from this analysis is in accordance with our expecimmediately obtained in many controversies present nowa-
tations. If there are quantum physical phenomena in naturejays in the literature, where the manipulation and calculation
as the anomalies seem to be, it is desirable to justify thenof divergent amplitudes play a crucial rdl&-5].

without resorting to typical ingredients of perturbative solu-

tlons_, such as amblgl_utles or infinities. This is due to the fact ACKNOWLEDGMENTS

that in an exact solution, which would certainly be free from
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