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From arbitrariness to ambiguities in the evaluation of perturbative physical amplitudes
and their symmetry relations
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A very general calculational strategy is applied to the evaluation of the divergent physical amplitudes which
are typical of perturbative calculations. With this approach in the final results all the intrinsic arbitrariness of
the calculations due to the divergent character is still present. We show that by using the symmetry properties
as a guide to search for the~compulsory! choices in such a way as to avoid ambiguities, a deep and clear
understanding of the role of regularization methods emerges. Requiring then a universal point of view for the
problem, as allowed by our approach, very interesting conclusions can be stated about the possible justifica-
tions of the most intriguing aspect of perturbative calculations in quantum field theory: the triangle anomalies.
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I. INTRODUCTION

In a certain way it seems that physicists are convin
that quantum field theory~QFT! is the correct framework for
the description of fundamental interacting particle dynam
Within this framework, there is a well-established recipe
the construction of a theory for any set of fields and symm
tries previously chosen and, in principle, we can find all
phenomenological consequences by solving the corresp
ing equations of motion. However, the exact solutions, wh
would certainly be free from any ambiguities, are rarely p
sible and we need to have recourse to perturbative
proaches in order to make predictions. As a conseque
many physical amplitudes become undefined quantities
to the presence of divergent integrals and we have to in
pret them in such a way as to extract the physical cont
For this purpose it is necessary to manipulate and calcu
the divergent integrals. To make this possible, some assu
tions about the properties of such mathematical structures
required. This is usually represented by the adoption o
regularization scheme or an equivalent philosophy. There
many kinds of arbitrariness involved in this step. The fi
one concerns the regularization technique; once this
choice, the final results cannot be dependent on the spe
aspects involved. The regularization technique should
only a tool to be used in the intermediate steps. The next t
of arbitrariness is related to the routing of the internal lin
In principle, any routing should lead us to the same phys
amplitude. This is associated with the most basic symm
we use to construct QFT’s: the space-time homogene
Such a property materializes through the translational inv
ance of the fields, which means in perturbative language
the amplitudes should be invariant under a shift in the in
grated momenta. Because of the divergent character, str
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referring to cases where the degree of divergence involve
higher than logarithmic, this is not what seems to happ
The ambiguities, on the other hand, are frequently associ
with violations of global and local gauge symmetries. Giv
these aspects, manipulations and calculations involving
vergences are crucial to establish the predictive power
QFT ~in perturbative calculations!.

It can be said that the discussion about divergences in
perturbative solution of QFT has never disappeared from
literature. Recently, however, many investigations have b
focused on the questions involved in the evaluation of p
turbative amplitudes and their corresponding physical p
dictions. Among others, we find the predictive power of t
well-known Nambu-Jona-Lasinio~NJL! model@1,2#, the im-
plications of fermionic tensor densities in the hadronic ph
nomenology of low energy@3#, and, perhaps the most re
markable one, the controversy involved in theCPT and
Lorentz violations induced~or not! by the radiative correc-
tions @4,5#. The aim of these investigations cited above is t
evaluation of the divergent amplitudes. If in the method us
some types of ambiguity are still present, it is sufficient
prevent a definite physical prediction. These aspects
closely related to the main motivation of the present con
bution.

The present status of this problem can be summarized
very simple way: in all situations where the dimension
regularization~DR! technique@6# can be applied, we have a
our disposal an apparently consistent recipe to avoid vio
tions of symmetry relations, and simultaneously the prese
of ambiguities. In situations where DR cannot be used, s
as those where theg5 matrix plays an important role, we
need to have recourse to other techniques which do not
essarily exhibit the desirable consistency in all the proble
This is clearly not the ideal situation and an alternative st
egy should be sought so that all the problems can be tre
in a consistent way within a unique recipe. The first requi
ment is that this procedure provides mappable results, on
one, to those of DR, in situations where this technique co
be applied, but does not have any restriction of applicabi
©2002 The American Physical Society17-1



pr
in
ng
is

te
ca
r
n
o
is
m

es
ne
ic
p
sa
on
m

ity
n
qu
at
ed
n
in

e
ca
to
n
m
is
al
w

an

h
m

on
of
op

e

h,
alue
d.

are
ter
the
th-
ined
t in
ad-

e

ssary
hat
nite
dent
ons
uc-
ddi-

O. A. BATTISTEL AND G. DALLABONA PHYSICAL REVIEW D 65 125017
out of the scope of DR. Such a method was developed
cisely with this motivation@7#. The strategy used consists
avoiding the explicit evaluation of divergent integrals, usi
only very general properties of the eventual regulating d
tribution, taken only in an implicit way in the intermedia
steps. By analyzing the final results thus obtained we
identify a set of properties of divergent integrals that a
responsible for the maintenance of the symmetry relatio
The procedure is very simple, completely algebraic, and d
not present any restriction of applicability. We will use th
procedure to state a universal point of view to analyze sy
metry relations and ambiguities related to the arbitrarin
involved in the choices of the labels for the internal li
momenta. With this procedure, we can isolate in the phys
amplitudes the objects for which the role of the chosen s
cific regularization becomes relevant. In a way we can
that with our strategy we can unify such types of calculati
Precisely for this reason a simple and rich analysis beco
possible, as will become clear in what follows.

The purpose of this work is to investigate the possibil
of treating all the perturbative amplitudes in all theories a
models, including the anomalous ones, through a uni
point of view concerning the divergences. We will show th
as a consequence of this requirement, the ambiguities ne
be completely eliminated from the physical amplitudes, a
an alternative way to look at triangle anomalies emerges
natural way.

We organized the work in the following way. In Sec. II w
present our calculational strategy for manipulations and
culations of divergent integrals. Section III is dedicated
the evaluation of some physical amplitudes, which are a
lyzed in Sec. IV, concerning the symmetry relations and a
biguities, in order to identify the constraints on the cons
tency. In Sec. V we study the point of view of tradition
treatments for the divergences and, finally, in Sec. VI
present our final remarks and conclusions.

II. CALCULATIONAL METHOD TO MANIPULATE
DIVERGENT INTEGRALS

Instead of specifying a regularization, we will adopt
alternative strategy@7# to perform all the calculations. To
justify all the intermediate manipulations, we will assume t
presence of a generic regulating distribution only in an i
plicit way. This can be schematically represented by

E d4k

~2p!4
f ~k!→E d4k

~2p!4
f ~k!$ lim

L i
2→`

GL i
~k,L i

2!%

5E
L

d4k

~2p!4
f ~k!. ~1!

Here the L i ’s are parameters of the generic distributi
G(L i

2 ,k) which in addition to the obvious finite character
the modified integral must have two other very general pr
erties. It must be even in the integrating momentumk, due to
Lorentz invariance maintenance, as well as having a w
defined connection limit: i.e.,
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lim
L i

2→`

GL i
~k2,L i

2!51. ~2!

The first property implies that all odd integrands vanis
while the second one guarantees, in particular, that the v
of the finite integrals in the amplitudes will not be modifie
Note that these requirements are completely general and
in agreement with any reasonable 4D regularization. Af
these assumptions we can manipulate the integrand of
divergent integrals by using identities to generate a ma
ematical expression where all the divergences are conta
in momentum independent structures. Due to the fact tha
perturbative amplitudes we always have propagators, an
equate identity to achieve this goal is the following@7#:

1

@~k1ki !
22m2#

5(
j 50

N
~21! j~ki

212ki•k! j

~k22m2! j 11

1
~21!N11~ki

212ki•k!N11

~k22m2!N11@~k1ki !
22m2#

, ~3!

whereki is ~in principle! an arbitrary momentum used in th
routing of an internal line. The value forN in the above
expression can be adequately chosen to avoid unnece
algebraic difficulty. It can be taken as the smallest value t
leads the last term in the above expression to be a fi
integral. As a consequence, all the momentum depen
parts of the amplitudes can be integrated without restricti
due to the connection limit requirement. The divergent str
tures obtained in this way, on the other hand, have no a
tional assumptions, and~in the present discussion! they are
written as a combination of five objects; namely,

!abmn5E
L

d4k

~2p!4

24kmknkakb

~k22m2!4
2gabE

L

d4k

~2p!4

4kmkn

~k22m2!3

2ganE
L

d4k

~2p!4

4kbkm

~k22m2!3

2gamE
L

d4k

~2p!4

4kbkn

~k22m2!3
, ~4!

Dmn5E
L

d4k

~2p!4

4kmkn

~k22m2!3
2E

L

d4k

~2p!4

gmn

~k22m2!2
,

~5!

¹mn5E
L

d4k

~2p!4

2knkm

~k22m2!2
2E

L

d4k

~2p!4

gmn

~k22m2!
,

~6!

I log~m2!5E
L

d4k

~2p!4

1

~k22m2!2
~7!
7-2
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FROM ARBITRARINESS TO AMBIGUITIES IN THE . . . PHYSICAL REVIEW D 65 125017
I quad~m2!5E
L

d4k

~2p!4

1

~k22m2!
. ~8!

It is important to emphasize that with this strategy it b
comes possible to map the final expressions obtained b
onto the corresponding results from other techniques, du
the fact that all the steps are perfectly valid within reasona
regularization prescriptions, including the DR technique.
we need is to evaluate the divergent structures obtaine
the specific philosophy that we want to contact. In addit
we focus on the fact that no shifts will be used on the gen
routing assumed for all amplitudes. Consequently, it will
possible to contact those results corresponding to the exp
evaluation of surface terms in the eventual shifts perform
in the integrating momentum of the loop integrals. This very
general character of the adopted strategy will become
most important ingredient for the analysis we want to do, a
to support our conclusions. Another important aspect of
procedure is that a definite value is attributed to each div
gent integral involved is attributed. This value is used ev
time the integrals are present in a physical amplitude in
theories and models, providing in this way a universal po
of view for the problem. No expansions, limits, or not tota
controlled procedures are included. All the manipulatio
and calculations we need in the treatment of divergence
QFT are performed without the explicit calculation of a d
vergent integral, as will be explained.

Another aspect we want to focus on is the question of
intrinsic arbitrariness of the perturbative calculations impl
by the divergences. All the arbitrariness is still present in
final expressions. The arbitrariness involved in the choice
labels for the internal lines is maintained by taking the m
general ones and not performing shifts in the intermed
steps. The arbitrariness involved in the choice of the valu
be assumed for the undefined mathematical objects~choice
of regularization! is also present. We can say that with o
strategy we go as far as possible in the manipulations
calculations of the divergent amplitudes. The next step a
our calculations necessarily involves arbitrariness. The
vantage of our procedure is precisely to allow us to mak
clear and transparent analysis of the problem. The con
sions may help us to get understanding about some intrig
questions associated with the divergences in perturbative
culations; in particular, the question of the ambiguities, t
is, the possibility that the physical amplitudes become dep
dent on the arbitrariness involved. We are naturally guid
by the following desire: to choose what must be chosen,
to do it in a way so that the physical consequences do
become dependent on our choices, as we have alw
learned in physics since our first lessons.

In order to clarify the procedure described above, let
explicitly evaluate some simple but representative diverg
integrals, defined as

~ I 1 ;I 1
m!5E d4k

~2p!4

~1;km!

@~k1k1!22m2#
. ~9!
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The first one to be treated may be the one which correspo
to a higher degree of divergence in fundamental theories:
cubic one. As a first step, after assuming the presence
generic distribution on the integrand, we write

~ I 1!m52E
L

d4k

~2p!4

2km~k1•k!

~k22m2!2

1k1nk1ak1bH E
L

d4k

~2p!4

4gabkmkn

~k22m2!3

2E
L

d4k

~2p!4

8kakbkmkn

~k22m2!4 J 2H E d4k

~2p!4

6k1
4~k1•k!km

~k22m2!4

2E d4k

~2p!4

~k1
212k1•k!4km

~k22m2!4@~k1k1!22m2#
J . ~10!

On the right-hand side of the above equation, we used
identity ~3! with the choiceN53, ruled out an odd integral
and dropped the subscriptL in the last two integrals, due to
their finite character~connection limit requirement!. Now we
can perform the integration of the finite terms without a
restriction. Using standard techniques to solve finite Fe
man integrals we can easily verify that an exact cancella
is obtained. Then we rewrite the result in terms of the obje
~4!–~8!:

~ I 1!m52k1mI quad~m2!2k1b@¹bm#2 1
3 k1bk1ak1n@habmn#

2 1
3 k1mk1ak1b@Dab#1 1

3 k1
2k1n@Dmn#. ~11!

Note that, as was said before, no specific assumption a
the divergent integrals was made, which means that for th
steps all reasonable regularizations could be used. Th
equivalent to applying the regularization on the obtained
pression Eq.~11!. Following a similar procedure we als
obtain

I 15I quad~m2!1k1mk1n@Dmn#. ~12!

Others typical divergent integrals we need to use in p
turbative calculations are those constructed with two pro
gators, defined as

~ I 2 ;I 2
m ;I 2

mn!5E d4k

~2p!4

~1;km;kmkn!

@~k1k1!22m2#@~k1k2!22m2#
.

~13!

Let us take the linearly divergent one, which is the follow
ing:
7-3
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~ I 2!m52
1

2
~k11k2!aE

L

d4k

~2p!4

4kakm

~k22m2!3

1E d4k

~2p!4

~k1
212k1•k!2km

~k22m2!3@~k1k1!22m2#

1E d4k

~2p!4

~k2
212k2•k!2km

~k22m2!3@~k1k2!22m2#
1E d4k

~2p!4

3
~k1

212k1•k!~k2
212k2•k!km

~k22m2!2@~k1k1!22m2#@~k1k2!22m2#
. ~14!

In this case we used the identity~3! with N52 to rewrite
both propagators, and again we ruled out an odd integral
dropped the subscriptL on the finite integrals thus obtained
Solving then the finite ones, we obtain

~ I 2!m52
1

2
~k11k2!a@Dam#2

1

2
~k11k2!mH I log~m2!

2S i

~4p!2D Z0~m2,m2,~k12k2!2;m2!J . ~15!

Here we introduced the one-loop structure functions defi
by

Zk~l1
2 ,l2

2 ,q2;l2!

5E
0

1

dzzk lnS q2z~12z!1~l1
22l2

2!z2l1
2

~2l2!
D , ~16!

which can be explicitly solved, but for the present discuss
this is immaterial. In order to simplify the notation, from
now on we will adoptZ0(m2,m2,q2;m2)5Z0(q2;m2) since
we are dealing with only one species of intermediate f
mion.

Following strictly the same steps we can obtain the re

I 25I log~m2!2S i

~4p!2D Z0@~k12k2!2;m2#, ~17!

and after some algebraic effort

~ I 2!mn5E
L

d4k

~2p!4

kmkn

~k22m2!2
2H ~k1

21k2
2!E

L

d4k

~2p!4
~18!

3
kmkn

~k22m2!3
1~k1ak1b1k2ak2b1k1bk2a!

3E
L

d4k

~2p!4

4kakbkmkn

~k22m2!4 J 1S i

~4p!2D H @~k12k2!m

3~k12k2!n2~k12k2!2gmn#F2Z2@~k12k2!2;m2#
12501
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1
1

4
Z0~~k12k2!2;m2!G2

1

4
~k11k2!m

3~k11k2!nZ0@~k12k2!2;m2#J .

It is easy to note that all Feynman integrals can be ea
treated by the described procedure. It is always possibl
identify a set of structure functions analogous to theZk ones,
irrespective of the number of propagators and loops
volved. If there are more loops, new basic objects will
added to the set~4!–~8!. For the present discussion the co
sidered set of integrals will be enough.

III. PHYSICAL AMPLITUDES

In this section we consider some specific examples
amplitudes that can be evaluated using the divergent i
grals evaluated in the previous section. Although a few ca
will be considered, the conclusions become transparent c
cerning the aspects we want to focus on. The first simple
important case is the one-point vector function related,
example, to the tadpole diagram in the lowest order of
electron self-energy in quantum electrodynamics~QED!. It is
defined by

Tm
V~k1 ,m!5E d4k

~2p!4
TrH gm

1

~k”1k” 1!2m
J , ~19!

where k1 represents the arbitrary choice for the routing
internal line momentum andm is the 1

2 fermion mass. After
the Dirac trace evaluation we get

Tm
V54H E d4k

~2p!4

km

~k1k1!22m2

1k1mE d4k

~2p!4

1

~k1k1!22m2J . ~20!

Inserting then the results~11! and ~12!, we get

Tm
V54$2k1b@¹bm#2 1

3 k1bk1ak1n@!abmn#

1 1
3 k1

2k1n@Dnm#1 2
3 k1mk1ak1b@Dab#%. ~21!

A similar structure is the scalar one-point function presen
the fermion self-energy when, in the theory, there is a c
pling with a scalar field, for which only the result~12! is
necessary:

TS~k1 ,m!54m$I quad~m2!1k1
bk1

a@Dba#%. ~22!

Next, with the integrals~15!, ~17!, and~18! we can construct
a set of two-point functions playing an important role
lowest order contributions for the self-energies of interme
ate bosons. They can be defined by the expression
7-4
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Ti j ~k1 ,k2 ;m!5E d4k

~2p!4
TrH G i

1

k”1k” 12m
G j

1

k”1k” 22m
J .

~23!

Here k1 and k2 represent arbitrary choices for the intern
line momenta. The difference between them is the exte
momentum. Taking the operatorsG i5@ 1̂;g5 ;gm ; igmg5#
5(S,P,V,A), a set of functions can be constructed. The
vantage of the use of these functions in our discussion is
they are important structures in fundamental theories
that they have very simple symmetry relations among th
which work as necessary conditions for all calculation
methods to get the desired consistency in the divergent
pects involved. The first two-point function we take into a
count is the simplest oneTm

AP , written with the help of Eq.
~17! as

Tm
AP524mi~k12k2!mH I log~m2!2S i

~4p!2D
3Z0@~k12k2!2;m2#J . ~24!

From this, with the results~15! and~17! we can write down
the expression

Tm
VS524m~k11k2!b@Dbm#, ~25!

and the very important one for our future analysis

Tmn
AV522«mnab~k12k2!b~k11k2!j@Dja#. ~26!

The results~12! and ~17! allows us to write

TSS54H I quad~m2!1
4m22~k12k2!2

2
I log~m2!

2
4m22~k12k2!2

2 S i

~4p!2D Z0~~k12k2!2;m2!J
1~k12k2!a~k12k2!b@Dab#

1~k11k2!a~k11k2!b@Dab#, ~27!

and

TPP54H 2I quad~m2!1
1

2
~k12k2!2I log~m2!2

1

2
~k12k2!2

3S i

~4p!2D Z0@~k12k2!2;m2#J 2~k12k2!a~k1

2k2!b@Dab#2~k11k2!a~k11k2!b@Dab#. ~28!

Finally, the results~12!, ~15!, ~17!, and ~18! lead us to the
expressions
12501
l
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Tmn
VV5

4

3
@~k12k2!2gmn2~k12k2!m~k12k2!n#

3H I log~m2!2S i

~4p!2D F1

3
1

2m21~k12k2!2

~k12k2!2

3Z0@~k12k2!2;m2#G J 1Amn ~29!

and

Tmn
AA52

4

3
@~k12k2!2gmn2~k12k2!m~k12k2!n#H I log~m2!

2S i

~4p!2D F1

3
1

2m21~k12k2!2

~k12k2!2

3Z0@~k12k2!2;m2#G J 1gmn8m2H I log~m2!

2S i

~4p!2D Z0@~k12k2!2;m2#J 2Amn , ~30!

where

Amn54@¹mn#1~k12k2!a~k12k2!bF1

3
!abmn1

1

3
Dmbgan

1gamDbn2gmnDab2
2

3
gabDmnG1@~k12k2!a

3~k11k2!b2~k11k2!a~k12k2!b#F1

3
!abmn1

1

3
Dmb

3gna1
1

3
DbngamG1~k11k2!a~k11k2!b@!abmn

2Dnagmb2Dbngam23Dabgmn#. ~31!

It is important to focus on very general aspects of the re
obtained. First, all the steps can be easily identified as v
in any regularization scheme, since no specific calculati
for the divergent integrals were made. Only safe steps w
performed. The results were presented in terms of a m
mum number of structures, which allows us to make a v
simple and clear analysis. The choices for the routing of
internal line momenta were taken as general as poss
Consequently, all the potentially ambiguous terms still
main in the results. Let us now consider the constraints
posed for symmetry reasons in the explicit expressions of
perturbative physical amplitudes.

IV. SYMMETRY RELATIONS

It is well known that the symmetry content of a QF
implemented in the construction of the invariant Lagrangi
states specific relations for the perturbative amplitudes in
orders. We refer to the Ward-Takahashi and the Slan
7-5
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Taylor identities, and other general constraints like Furr
theorem. This implies that the calculated amplitudes, in
pendent of the specific aspects of the regularization te
nique applied, must obey these relations. It is very desira
that such properties in all theories and models should
simultaneously preserved, where they must be, as a co
quence of a unique rule, and that the correct result for
violations should emerge in a natural way without chang
the adopted rules, as is the case with the triangle anoma
We understand that with our approach some clarificati
about these aspects can be given since there is no restri
of applicability. Through the adopted strategy it becom
possible to seek the necessary properties so that the dive
integrals lead us to the desired consistency. After that, if
wants, one can construct a consistent technique. This m
inverting the usual procedure, which is to propose at
starting point a specific regularization, and then to test
consistency. Having this in mind, we can verify a set of Wa
identities relating the fermionic Green’s functions direc
dictated by the vector current conservation and by the p
portionality between the axial-vector and pseudoscalar
rents, as well as other constraints imposed byCPT symme-
tries.

We can start with the simplest amplitude that carrie
Lorentz index, theTm

V( l ,m). The general symmetry ground
in Furry’s theorem state that only a vanishing value is r
sonable, so we need to satisfy

052k1b¹bm2 1
3 k1bk1ak1n!abmn1 1

3 k1
2k1nDnm

1 2
3 k1mk1ak1bDab . ~32!

There are two different ways to satisfy the above result. T
first one is the choicek150 sincek1 is arbitrary. We can
question if it is always possible to make this choice. Thin
ing separately about this amplitude, the answer can be p
tive, but we note that it is possible to relate this amplitude
other purely fermionic vector functions which have mo
than one Lorentz index, likeTmn

VV . This relation can easily be
constructed by noting the identity

~k12k2!mH gn

1

~k”1k” 1!2m
gm

1

~k”1k” 2!2m
J

5gn

1

@k”1k” 22m#
2gn

1

@k”1k” 12m#
. ~33!

Taking the traces and integrating both sides in the mom
tum k we get the relation

~k12k2!mTmn
VV5Tn

V~k2 ;m!2Tn
V~k1 ;m!, ~34!

which also needs to be zero due to vector current conse
tion, sincek1 andk2 refer to momenta of theTmn

VV amplitude.
The choicek15k250 simultaneously cannot be at our di
posal, so we need to use a second way to satisfy Eq.~32!. We
construct a regularization requiring that the properties

!abmn
reg 5¹mn

reg5Dmn
reg50 ~35!
12501
s
-

h-
le
e

se-
e
g
s.
s
ion
s
ent
e
ns
e
e

-
r-

a

-

e

-
si-
o

n-

a-

are included, which from now on we denominateconsistency
conditions. The same conclusion can be extracted if we co
sider the explicit expression forTmn

VV , Eq. ~29!, and contract
it with the external momentum:

~k12k2!mTmn
VV

54H ~k12k2!a¹an1~k1ak1bk1r2k2ak2bk2r!
!abrn

3

2~k1
2k1r2k2

2k2r!
Drn

3
2~k1nk1ak1b

2k2nk2ak2b!
2

3
DabJ . ~36!

Note that a conserved vector current cannot be obtained
thinking about convenient choices for the arbitrary mome
k1 and k2, due to the fact that there are violating term
coefficients of all pieces!abmn ,¹mn , and Dmn , which are
independent of such eventual choices~nonambiguous!. It
seems there is no way to escape the conditions~35!. In a
similar way to Tm

V , some considered two-point function
need to vanish identically on general symmetry groun
They areTm

VS andTmn
AV which state, respectively,

~k11k2!bDmb50,

«mnab~k22k1!b~k11k2!jDja50. ~37!

For these two specific situations, both options are availa
choosingk1 and k2 in a convenient way and constructin
Dmb

reg50. It is also interesting to consider the contractio
with external momenta once symmetry relations can be g
erated. For such contractions we get

~k12k2!mTm
VS524m~k12k2!m~k11k2!bDmb , ~38!

~k12k2!mTmn
AV52«mnab~k12k2!m~k22k1!b

3~k11k2!jDja , ~39!

~k12k2!nTmn
AV52«mnab~k12k2!n~k22k1!b

3~k11k2!jDja . ~40!

A conserved vector current forTm
VS can be obtained by the

choice k152k2, as well as by takingDmn
reg50. However,

both contractions involvingTmn
AV vanish identically indepen-

dent of the possible choices, just because the antisymm
«mnab is contracted with a symmetric object in two of i
indices. The vector current must be conserved, but the ax
vector current must not. So there is only one consistent va
for Tmn

AV : the identically zero value. Otherwise a symmet
relation is broken. We can add to this argument another v
general aspect that forces us to obtain a zero value forTmn

AV

~andTm
VS): unitarity. If the amplitude does not vanish then

needs to develop an imaginary part at (k12k2)254m2 to be
consistent with unitarity~Cutkosky’s rules!.
7-6



p

r

.
d
(
r
-

fo
b
f

o
e

io
le
t
tie
al

r
r-

ires
ym-
sed

x-
,

nal

e
tual
not
ther,
f we
ting
a

ies

ore
int
n’s

FROM ARBITRARINESS TO AMBIGUITIES IN THE . . . PHYSICAL REVIEW D 65 125017
Clearly, independent of the possibilities involved, this pro
erty cannot be present in the results~25! and~26! for Tm

VS and
Tmn

AV , respectively. The above argument will become ve
important.

Now we can take theTmn
AA symmetry content for analysis

The proportionality between the axial-vector and the pseu
scalar current states that we need to obtain isk1

2k2)mTmn
AA522miTn

PA , and another similar condition fo
the contraction involving then Lorentz index. Using the ex
plicit expression obtained forTmn

AA , Eq. ~30!, we get

~k12k2!mTmn
AA

54H ~k22k1!a¹an1~k1ak1bk1r2k2ak2bk2r!
!abrn

3

1~k1
2k1r2k2

2k2r!
Drn

3
1~k1nk1ak1b

2k2nk2ak2b!
2

3
DabJ 22miTn

PA . ~41!

The constraints are completely similar to those obtained
Tmn

VV , sinceTn
PA is nonambiguous. These conditions can

put in terms of the value for theTn
V amplitude, irrespective o

the Tn
PA calculation, if we note the identity

~k12k2!mH igng5

1

k”1k” 12m
igmg5

1

k”1k” 22m
J

52miH igng5

1

k”1k” 12m
g5

1

k”1k” 22m
J 2gn

1

k”1k” 22m

2gng5

1

k”1k” 12m
g5 . ~42!

After taking the traces and integrating both sides in the m
mentumk, Eq.~41! results. The above procedure can be us
to relate the conditions to be imposed on the (n21)-point
Green’s functions to the Ward identity involvingn-point
Green’s functions without explicit evaluation of then-point
structures. Frequently, this is a procedure used in discuss
relative to violation of symmetry relations or the triang
anomaly phenomenon. This is a very important aspec
perturbative QFT. Let us then investigate the Ward identi
involving three-point functions in this way. We can define
of them as

Ti jk5E d4k

~2p!4
TrH G i

1

k”1k” 12m
G j

1

k”1k” 22m

3Gk

1

k”1k” 32m
J . ~43!

Here the G operators assume @ 1̂;g5 ;gm ; igmg5#
5(S,P,V,A) and k1 ,k2 ,k3 represent arbitrary choices fo
the involved momenta of the internal lines. Only their diffe
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ences have a physical meaning. A physical process requ
the symmetrization of the final states. So to construct a s
metry relation we need to include the direct and the cros
diagrams.

In order to clarify the notation, let us consider an e
ample. IfG i5gm ,G j5gn , andGk51, the physical process
symmetrized in the final states, is written as

Tmn
S→VV5Tmn

SVV~k1 ,k2 ,k3 ;m!1Tnm
SVV~ l 1 ,l 2 ,l 3 ;m!, ~44!

where the first term means the direct channel with exter
momenta defined byk32k25q,k32k15p,k12k25p8, and
the second one is the crossed channel wherel 32 l 25q,l 3
2 l 15p8,l 12 l 25p. Note that the routing is taken as th
most general one, diagram by diagram, since the even
ambiguities present in a particular Green’s function do
have the same meaning as those associated with any o
even though the external momenta are the same ones. I
take the same meaning for the parametrization of the rou
of internal lines in both diagrams we will be assuming
universal meaning for the completely undefined quantit
present in a Feynman diagram.

After these necessary definitions we consider in a m
detailed way a very important case of such a three-po
function: Tlmn

AVV . To generate a relation among these Gree
functions and others, we first note the convenient identity

~k32k2!lH gn

1

k”1k” 22m
iglg5

1

k”1k” 32m
gm

1

k”1k” 12m
J

52H igng5

1

k”1k” 32m
gm

1

k”1k” 12m
J

1H gn

1

k”1k” 22m
igmg5

1

k”1k” 12m
J

22miH gn

1

k”1k” 22m
g5

1

k”1k” 32m
gm

1

k”1k” 12m
J .

~45!

Taking the traces and integrating both sides ink we can
identify the relation among the amplitudes

~k32k2!lTlmn
AVV~k1 ,k2 ,k3 ;m!522miTmn

PVV~k1 ,k2 ,k3 ;m!

2Tnm
AV~k3 ,k1 ;m!

1Tmn
AV~k1 ,k2 ;m!. ~46!

So the symmetry relations that relate the processesA→VV
andP→VV become
7-7



ti
e
an
y.
o
e

b
o
he
on
r

cts
to
We

O. A. BATTISTEL AND G. DALLABONA PHYSICAL REVIEW D 65 125017
qlTlmn
A→VV522miTmn

P→VV1Tmn
AV~k1 ,k2 ;m!

2Tnm
AV~k3 ,k1 ;m!1Tnm

AV~ l 1 ,l 2 ;m!

2Tmn
AV~ l 3 ,l 1 ;m!, ~47!

where the crossed channel was included. The above rela
can easily be extracted from the current algebra procedur
must be noted that the Ward identity can be satisfied, if
only if all four integrals on the right side vanish identicall
We identified such integrals with the previously studied tw
point functionTmn

AV . Substituting the results obtained we g
the expression

qlTlmn
A→VV522miTmn

P→VV12«mnab@~k12k3!b~k11k3!j

1~k22k1!b~k11k2!j#Dja

22«mnab@~ l 12 l 3!b~ l 11 l 3!j

1~ l 22 l 1!b~ l 11 l 2!j#Dja . ~48!

Following the same strategy, many other relations can
constructed. In all cases we simply substitute the results
tained for the corresponding two-point functions after t
symmetry relation for the three-point functions has been c
structed. To be as brief as possible we simply quote the
maining results:

pmTlmn
A→VV52«lnab@~k22k1!b~k11k2!j1~k32k2!b

3~k21k3!j#@Dja#12«lnab@~ l 32 l 1!b~ l 11 l 3!j

1~ l 22 l 3!b~ l 21 l 3!j#@Dja#, ~49!

pn8Tlmn
A→VV52«lmab@~k32k1!b~k11k3!j1~k22k3!b

3~k21k3!j#@Dja#12«lmab@~ l 22 l 1!b~ l 11 l 2!j

1~ l 32 l 2!b~ l 21 l 3!j#@Dja#, ~50!

qlTl
V→SS52~k2ak2b2k3ak3b!@Dab#12~ l 2al 2b2 l 3al 3b!

3@Dab#, ~51!

qlTl
V→PP52~k3ak3b2k2ak2b!@Dab#12~ l 3al 3b2 l 2al 2b!

3@Dab#, ~52!

qlTl
A→SP522mi@TP→SP#22i ~k3ak3b2k2ak2b!@Dab#

22i ~ l 3al 3b2 l 2al 2b!@Dab#, ~53!

pmTmn
S→VV54m~k32k1!j@Djn#14m~ l 12 l 2!j@Djn#

58mpj@Djn#, ~54!

pn8Tmn
S→VV54m~k12k2!j@Djm#14m~ l 32 l 1!j@Djm#

58mpj8@Djm#, ~55!

pmTmn
S→AA52mi@Tn

S→PA#24m~k31k2!j@Djn#

14m~ l 31 l 2!j@Djn#, ~56!
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pn8Tmn
S→AA52mi@Tm

S→AP#14m~k31k2!j@Djm#

24m~ l 31 l 2!j@Djm#, ~57!

qlTlm
V→AP50, ~58!

pmTlm
V→AP52mi@Tl

V→PP#24m~k21k3!a@Dal#

24m~ l 21 l 3!a@Dal#, ~59!

qlTlmn
A→AA522miTmn

P→AA12«mnab@~k32k1!b~k11k3!j

1~k12k2!b~k11k2!j#@Dja#12«mnab@~ l 3

2 l 1!b~ l 11 l 3!j1~ l 12 l 2!b~ l 11 l 2!j#@Dja#,

~60!

pmTlmn
A→AA52miTln

A→PA22«lnab@~k12k2!b~k11k2!j

1~k32k2!b~k21k3!j#@Dja#12«lnab@~ l 3

2 l 2!b

3~ l 11 l 3!j1~ l 12 l 3!b~ l 11 l 3!j#@Dja#, ~61!

pn8Tlmn
A→AA52miTlm

A→AP12«lmab@~k12k3!b~k11k3!j

1~k32k2!b~k21k3!j#@Dja#12«lmab@~ l 3

2 l 2!b~ l 21 l 3!j1~ l 12 l 2!b~ l 11 l 2!j#@Dja#,

~62!

pmTlmn
V→AA52miTln

V→PA1@~ l 11 l 3!a~ l 11 l 3!b2~ l 2

1 l 3!a~ l 21 l 3!b#@!abln2glbDna2glaDnb

23glnDab#2@~k11k2!a~k11k2!b1~k2

1k3!a~k21k3!b#@!abln2glbDna2glaDnb

23glnDab#1
2

3
@k2a~k11k3!b2k2b~k1

1k2!a1 l 3a~ l 12 l 2!b2 l 3b~ l 12 l 2!a#@!abln

1gnaDlb1glaDnb#, ~63!

and finally

qlTlmn
V→VV5@~k11k2!a~k11k2!b2~k11k3!a~k11k3!b#

3@!abmn2gmaDnb2gnaDmb23gmnDab#

1@~ l 11 l 2!a~ l 11 l 2!b2~ l 11 l 3!a~ l 11 l 3!b#

3@!abmn2gmaDnb2gnaDmb23gmnDab#

1
2

3
@k1b~k32k2!a2k1a~k32k2!b

1 l 1b~ l 32 l 2!a2 l 1a~ l 32 l 2!b#@!abmn

1gmaDnb1gnaDmb#. ~64!

Let us consider the values for our divergent basic obje
from the point of view of very representative techniques
handle divergences, in order to then perform the analysis.
7-8
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FROM ARBITRARINESS TO AMBIGUITIES IN THE . . . PHYSICAL REVIEW D 65 125017
refer to the remaining objects in the calculated express
for the amplitudes and the symmetry relations conside
since these values assumed a crucial role in the Ward ide
preservation as shown in Eqs.~48!–~64!.

V. BASIC DIVERGENT OBJECTS VERSUS
REGULARIZATION

In the preceding sections, taking specific examples of
of amplitudes, we considered the aspects of ambiguities
symmetry relations. All the conditions were put in terms
three differences among divergent integrals of the same
gree of divergence. From the results obtained by our ca
lational strategy we can get the corresponding ones furnis
by traditional regularization methods or equivalent philos
phies. All we need is to specify the values attributed to
objects~4!–~8! by the method adopted. In this section w
want to analyze how representative treatments of div
gences specify the values of these objects.

A. Dimensional regularization

For the evaluation of the momentum integrals in the D
technique@8# we take as a starting point the validity of th
expression

I ~2v,a,q!5E d2vk

~2p!2v

1

@k212q•k2H2#a

5S i

~4p!vD G~a2v!

G~a!~2q22H2!a2v
. ~65!

In situations where the divergent integrals are (a<v) we
admit that the integralI (2v,a,q) is an analytic function of
the variablev which is continuous and complex. On th
right-hand side the gamma function is changed from the
ler function to its analytic continuation~in the regiona
<v): the Weierstrass function. The divergences will eme
as poles at specific values forv. An important aspect of ou
discussion is that once the result~65! is clearly established
we can use it to produce relations among integrals with
being concerned about the divergences. The specific rela
of interest here can be produced by the adequate differe
tion of both sides of Eq.~65! relative to theq momentum,
and then takingQ as zero. Following this procedure, we ca
find

E d2vk

~2p!2v

1

~k22m2!a
5S i

~4p!vD G~a2v!

G~a!~2m2!a2v
,

~66!

E d2vk

~2p!2v

kmkn

~k22m2!a
5S i

~4p!vD 1

2
gmn

3
G~a2v21!

G~a!~2m2!a2v21
, ~67!
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E d2vk

~2p!2v

kmknkjkb

~k22m2!a
5S i

~4p!vD 1

4
@gmngbj1gmbgnj

1gmjgnb#
G~a2v22!

G~a!~2m2!a2v22
.

~68!

The comparison with the results can be used to identify
relations

E d2vk

~2p!2v

2kmkn

~k22m2!2
5E d2vk

~2p!2v

gmn

~k22m2!
, ~69!

E d2vk

~2p!2v

4kmkn

~k22m2!3
5E d2vk

~2p!2v

gmn

~k22m2!2
, ~70!

E d2vk

~2p!4

24knkmkbkj

~k22m2!4
5gmnE d2vk

~2p!4

4kbkj

~k22m2!3

1gmbE d2vk

~2p!4

4kjkn

~k22m2!3

1gnbE d2vk

~2p!4

4kjkm

~k22m2!3
.

~71!

So the consistency conditions that emerged in our anal
are automatically satisfied in the DR technique. It is possi
to say that the consistency of the DR scheme resides
cisely in this fact. The results produced by the technique
automatically free from ambiguities and are symmetry p
serving. It is allowed to perform shifts on the integratin
momentum, but it is not a compulsory operation. The pro
erties~69!–~71! eliminate all the possible dependence on t
choices of internal line momenta. Because of this conclus
it is easy to see that in all problems where the DR techni
can be applied if we take!abmn5¹mn5Dmn50 and write
the objectsI log(m2) and I quad(m

2) @taking in their coeffi-
cients the appropriate values for the traces of theg matrices
tr(gmgn)52vgmn , and so on# according to the expression
directly dictated by Eq.~65!, a perfect map can be obtaine

B. The Pauli-Villars covariant regularization

To evaluate any divergent integral from the point of vie
of the Pauli-Villars~PV! prescription@9#, we initially take
the substitution

I ~m!→(
i 50

aiI ~L i !, ~72!

wherea051 andL05m. All the otherai andL i parameters
need to be chosen in such a way as to construct a supe
sition leading to the desirable results, guided, for examp
7-9
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by the maintenance of the Ward identity. In terms of th
recipe let us consider the values of the three relevant dif
ences. First,

H E
L

d4k

~2p!4

4kmkn

~k22m2!3
2E

L

d4k

~2p!4

gmn

~k22m2!2J
5(

i 50
aiH E

L

d4k

~2p!4

4kmkn

~k22L i
2!3

2E
L

d4k

~2p!4

gmn

~k22L i
2!2J

5(
i 50

aiH E
L

d4k

~2p!4

L i
2

~k22L i
2!3J

5(
i 50

ai H S i

~4p!2D S 2
1

2D J . ~73!

To satisfy the above consistency condition all we need is
choose a set ofai ’s so that( i 50ai50. The next condition,
the one relative to!abmn , leads to the result

!abmn5@gmngab1gamgnb1gangbm#

3(
i 50

ai H S i

~4p!2D S 2
5

6D J , ~74!

which is then simultaneously satisfied with the same cho
of coefficients as the one previously considered. The rela
involving quadratic divergences (¹mn) can be evaluated in
the same way:

¹mn5(
i 50

aiH E
L

d4k

~2p!4

2kmkn

~k22L i
2!2

2E
L

d4k

~2p!4

gmn

~k22L i
2!
J

52
gmn

2 (
i 50

aiE
L

d4k

~2p!4

1

~k22L i
2!

1
gmn

2 (
i 50

aiL i
2E

L

d4k

~2p!4

1

~k22L i
2!2

. ~75!

So if we choose, in addition to the choice( iai50, the val-
ues for ai and L i

2 so that ( i 50aiL i
250, we get¹mn50.

There are no new facts in the conditions derived above.
tually, they are the same ones used in the QED treatm
guided by the maintenance of gauge invariance in
vacuum polarization tensor, in the vanishing of the tadp
diagram of the electron self-energy, and so on. To comp
this subsection we need to show how the Pauli-Villars res
can be extracted from ours. The first step is obviously to t
!abmn5¹mn5Dmn50, and then evaluate the remaining d
vergent objects according to the PV prescription with
conditions( iai50, and( i 50aiL i

250 dictated by the above
investigations.

Explicitly, for the quadratic divergent object we have
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E
L

d4k

~2p!4

1

~k22m2!

5(
i 50

aiE d4k

~2p!4

1

~k22L i
2!

5E
L

d4k

~2p!4 H a0

k22L0
2

1
a1

k22L1
2

1
a2

k22L2
2J

5E d4k

~2p!4
$k4~a01a11a2!2k2@a0~L1

21L2
2!

1a1~L0
21L2

2!1a2~L0
21L1

2!#1a0L1
2L2

2

1a1L0
2L2

21a2L1
2L0

2%

3H 1

~k22L0
2!~k22L1

2!~k22L2
2!
J . ~76!

The condition( iai50 appears in thek4 coefficient, which is
the highest power of the integrated momentum. The con
tion ( i 50aiL i

250 is present in thek2 coefficient. Even
though the choices we make were dictated by our con
tency conditions, it is interesting to note that they are ob
ous ingredients in order to guarantee the regularizability
the corresponding divergent integral. With this recipe
need to add powers ofk2 only in the denominator to modify
the behavior in the region of high values of the integrati
momentum. Solving the equations, we get the expressio

E
L

d4k

~2p!4

1

~k22m2!
→E d4k

~2p!4

1

~k22m2!

~m22L1
2!

~k2
22L1

2!

3
~m22L2

2!

~k2
22L2

2!
, ~77!

and because of the finite character of the modified integ
the solution is immediate.

C. Surface term evaluation

In the literature about divergences in QFT there is anot
procedure which plays an important role: the explicit eva
ation of surface terms. They are involved when shifts in
integrated momentum are performed to relate one spe
choice for the internal line momenta with another one. T
is frequently used in the verification of the Ward identiti
involving situations where DR cannot be used. The m
remarkable one is the justification of the violations of sy
metry relations in theAVV triangle amplitude@10,11#. Be-
cause in our calculations the choices for the routing of int
nal line momenta were adopted as the most general ones
no shifts were taken in the performing steps, it is possible
map our results onto those corresponding to this specific
cedure. All we need is to relate the consistency condition
the surface terms. This is not a difficult job if we note a sm
number of relations such as
7-10
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]

]kn
S km

~k22m2!aD 5
gmn

~k22m2!a
22a

kmkn

~k22m2!a11
.

~78!

So, if we integrate both sides in the momentumk, we have

E d4k

~2p!4

]

]kn
S km

~k22m2!aD 5E d4k

~2p!4

gmn

~k22m2!a

22aE d4k

~2p!4

kmkn

~k22m2!a11
.

~79!

Now, takinga51 anda52, respectively, we obtain

E d4k

~2p!4

]

]kn
S km

~k22m2!
D 52¹mn , ~80!

E d4k

~2p!4

]

]kn
S km

~k22m2!2D 52Dmn , ~81!

and following the same procedure we can state that

E d4k

~2p!4

]

]kn
S kmkakb

~k22m2!3D 52!abmn . ~82!

On the left-hand side of the last three equations we have
integral of a total derivative which is a surface term in co
sequence of the Gauss theorem. When the integrand is
vergent or logarithmically divergent in the region of hig
values for the momentum, the surface terms vanish ide
cally; otherwise they do not. We can evaluate the values
the surface terms related to the objects!abmn ,¹mn , and
Dmn . For example Dmn52 igmn/32p2 and !abmn

5@gmngab1gamgnb1gangbm#( i /(4p)2)(25/6). These val-
ues can be found in many papers or textbooks about tria
anomalies. It is important to note that if this interpretation
adopted the values forDmn and!abmn are completely well
defined and finite. The main aspect is that in this spec
point of view what we denominate the consistency condit
is not satisfied. Consequently, the amplitudes we calcula
in Secs. III and IV are not free from ambiguities and t
Ward identities are not automatically satisfied. This way
looking at divergences in perturbative calculations of QFT
clearly not compatible with that of DR and the PV techniqu

VI. FINAL REMARKS AND CONCLUSIONS

The divergent content of all the considered amplitud
and their respective Ward identities can be put in terms
only five basic objects, Eqs.~4!–~8!. The strategy adopted t
handle the divergent Feynman integrals preserves all a
trariness and allows us to emphasize exactly where cho
have to be made in the perturbative calculations, in orde
obtain a definite value for the physical amplitudes. The
sults obtained within the adopted strategy can be map
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onto the corresponding results of any traditional regulari
tion technique or equivalent philosophy. In this framework
becomes possible to state clearly the relevant issues con
ing regularizations, ambiguities, and symmetry relations.

Regularizations can be classified into two basic classes
the first class we can put the regularizations obeying
‘‘consistency conditions’’

!abmn
reg 5¹mn

reg5Dmn
reg50. ~83!

In this class we find the popular and convenient DR te
nique. A second class of regularizations can be character
by

~!abmn
reg ;¹mn

reg ;Dmn
reg!5” 0. ~84!

In this class we find the surface term evaluation analysis
is commonly found in the literature devoted to the triang
anomalies~where DR cannot be straightforwardly applied!.

The two classes defined above lead to drastically differ
descriptions of perturbative amplitudes in two respects.

~i! Ambiguities: Since the potentially ambiguous terms
all amplitudes are always multiplied by one of the obje
~4!–~6!, the first class of regularizations will complete
eliminate the ambiguities. For the second class, physical
plitudes will become ambiguous so that we will have
make choices for the nonphysical quantities. The predic
power of QFT is clearly affected; predictions cannot be ma
in a definite way, fundamental symmetries like the spa
time homogeneity may be broken, and so on.

~ii ! Symmetry relations: We noticed that the potent
symmetry violating terms are always multiplied by one
the objects~4!–~6!, like the ambiguous terms. However, no
that all the ambiguous terms are symmetry violating on
but the symmetry violating terms are not always ambiguo
The last sentence means that the second class of regula
tions cannot lead us to consistent results just because t
are cases where no choices can avoid the violations.

At this point, if one wants to look at all QFT perturbativ
problems in the same way, one must consider the questio
triangle anomalies. It seems that there are two situati
which should be taken into account.

~i! In the first class of regularizations, apparently all a
plitudes become automatically unambiguous and symm
preserving. In particular, the right-hand sides of Eqs.~48!-
~50! and~60!–~62! seem to imply that no violations of axia
symmetry relations can be obtained. How, then, can we
cover the triangle anomalies in this class of regularizatio
We return to this crucial question in a moment.

~ii ! In the second class of regularizations, interpreting
objects ~4!–~6! as surface terms, we can get violations
symmetry relations in theAVV and AAA triangle ampli-
tudes. This is precisely the traditional procedure used to
tify the anomalies. It is easy to show from our results th
such a description is immediately recovered. For this purp
it is enough to get the value for theDmn object dictated by its
surface’s term interpretation:Dmn52 igmn/32p2. Taking
specifically theAVV case, we assume, as usual,k1 , k2, and
k3, which are the arbitrary choices for the internal line m
7-11
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menta, to be linear combinations of the physical momenta
the external vectors, namely,p andp8, as follows:

k15ap81bp,

k25bp1~a21!p8, ~85!

k35ap81~b11!p.

Notice thatk12k25p8, k32k15p, andk32k25p81p5q,
where q is the momentum of the axial vector. The resu
corresponding to the contribution of the direct channel
Eqs.~48!–~50! become

qlTlmn
AVV522miTmn

PVV1
~a2b!

8p2
i«mnabp8apb, ~86!

pmTlmn
AVV5

~12a!

8p2
i«lnabp8apb, ~87!

pn8Tlmn
AVV52

~11b!

8p2
i«lmabp8apb. ~88!

Note that there are no choices for the parametersa and b
such that the violating terms are simultaneously eliminat
Closer contact with the usual results can be obtained if
contribution of the crossed diagram is added, assuming
same significance for the arbitrary internal momenta, i.e.,k’s
equal tol ’s in Eqs.~48!–~50!. Then we get

qlTlmn
A→VV522miTmn

P→VV1
~a2b!

4p2
i«mnabp8apb, ~89!

pmTlmn
A→VV5

~b2a12!

8p2
i«lnabp8apb, ~90!

pn8Tlmn
A→VV52

~b2a12!

8p2
i«lmabp8apb. ~91!

Putting a51, the above results can be recognized as
usual ones@10–15#. So, adopting this point of view, we hav
a justification for the violation of at least one of the abo
symmetry relations, because there is no value for the a
trary parameterb such that all the Ward identities can b
simultaneously satisfied. However, as we have discus
this procedure will lead us to many undesirable features
other physical amplitudes; namely, ambiguities and vio
tions of nonanomalous symmetry relations. In particular, t
justification for the triangle anomalies is founded in a no
zero value for theAV two-point function, as can be see
from Eqs.~48!–~50! and ~38!–~40!. However, theAV two-
point function must be identically zero for many reaso
Therefore the procedure is in some sense not consisten

In view of the above statements, one might conclude t
it is not possible to treat all the situations involving dive
gences in QFT from a unique perspective, and that one ha
adopt a case-by-case approach. This would mean that, in
nonanomalous amplitudes, we must apply a regulariza
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belonging to the first class, like DR, eliminating all the am
biguities, while in the treatment of anomalous amplitudes
must use the second class of regularizations. This seem
be the present status of the problem in the literature. We
this attitude unaceptable because it implies that ident
mathematical structures can receive different values in
ferent amplitudes. Even though the choice of regularizat
is arbitrary, to use two types of such mathematical tools
longing to different classes in the same problem could r
resent an excessive degree of arbitrariness.

Up to this point we have used the results produced wit
our general framework only to show that there are aspect
the present status of the treatment of divergences that c
be questionable. However, we now want to show that it is
fact, possible to treat all the situations in a consistent way
the same method. Taking into account what we have lear
it is clear that only the first class of regularizations can p
vide us consistent results, at least for the nonanoma
cases. We now need to explain how triangle anomaly p
nomena can be accounted for from this point of view. T
crucial issue is to get the expected results for theAAA and
AVV triangle amplitudes, in spite of the ambiguity elimin
tion as a consequence of the imposition of the consiste
conditions. The first step is naturally to explain why the ze
value for the AV structure is not incompatible with th
anomaly phenomena. Actually the phenomenological fo
dations of the triangle anomalies reside in the connection
the AVV amplitude with the neutral electromagnetic pio
decay. Through standard methods of current algebra, the
tial conservation of axial-vector current hypothesis, and
Lehmann-Symanzik-Zimmerman formalism, four constrai
are imposed on theAVV amplitude. Three of them are th
Ward identities related to Eqs.~48!–~50! and the fourth one
is the low energy limql→0qlTlmn

A→VV50. In the context of the

Sutherland-Veltman paradox, it was stated that it is not p
sible to obtain in any calculational method an expression
the AVV amplitude such that all four constraints are sim
taneously satisfied. This is a property of theAVV mathemati-
cal structure. Given these statements, Eqs.~48!–~50! reveal
only that after the evaluation of theAVV structure and the
contractions with the external momenta are performed, m
ematical structures identical to that ofAV should be identi-
fied. The low energy limit and the three Ward identities mu
not be simultaneously satisfied with or without theAV cor-
responding terms. This means that even when theAV ~am-
biguous! terms are eliminated through the consistency c
ditions it is expected that the triangle anomaly phenom
should emerge in a natural way in the problem. In order
verify the complete set of ingredients present in t
Sutherland-Veltman paradox, it becomes necessary to m
an explicit evaluation, within our calculational framework,
theAVV mathematical structure. All the details involved w
be presented elsewhere@16#. The main results can be de
scribed as it follows. If we adopt strictly the same strate
described in Sec. II to manipulate the Feynman integrals
volved, an expression for theAVV amplitude can be ob-
tained where all the eventual arbitrariness is still present.
7-12
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contractions with the external momenta can be written,
the contribution of the direct channel, as

~k32k1!mTlmn
AVV5~k32k1!mGlmn

AVV1S i

8p2D «nblj

3~k32k1!j~k12k2!b , ~92!

~k12k2!nTlmn
AVV5~k12k2!nGlmn

AVV2S i

8p2D «mblj

3~k32k1!j~k12k2!b , ~93!

~k32k2!lTlmn
AVV5~k32k2!lGlmn

AVV1S i

4p2D «mjnb

3~k32k1!j~k12k2!b@2m2j00#, ~94!

where we have defined

Glmn
AVV5«mnbj@~k22k1!b1~k32k1!b#Dlj2«nlbj~k22k3!b

3Dmj2«mlbj~k22k3!bDnj1«mnla@~k11k2!b

1~k31k1!b#Dab , ~95!

andj00 is the same finite integral that arises in the evaluat
of the PVV three-point function:

Tmn
PVV5S 1

4p2D m«mnab~k12k2!b~k32k1!a~j00!. ~96!

In addition, looking at Eqs.~92!–~94!, we can see that it is
possible to identifyAV two-point functions given by Eq
~26!. To make clear this observation, note that

~k32k2!lGlmn
AVV52«mnab@~k12k3!b~k11k3!j

1~k22k1!b~k11k2!j#Dja . ~97!

With these identifications, Eq.~94! can be put precisely in
the form of Eq.~46! so that the corresponding relation b
tween Green’s functions is preserved before any assump
about the involved arbitrariness. On the other hand, given
results~92! and~93!, it is easy to see that the correspondi
relations between Green’s functions stated for the cont
tions with the momenta (k32k1)m and (k12k2)n , Eqs.~49!
and ~50!, respectively, are not satisfied. Next, in order to
consistent in the perturbative calculations, we must ad
Dja50, eliminating then theAV corresponding structure
present on the right hand side of Eqs.~92!–~94!. We get then

~k32k1!mTlmn
AVV5S i

8p2D «nblj~k32k1!j~k12k2!b ,

~98!

~k12k2!nTlmn
AVV52S i

8p2D «mblj~k32k1!j~k12k2!b ,

~99!
12501
r

n

on
e

c-

pt

~k32k2!lTlmn
AVV522mi$Tmn

PVV%. ~100!

If we include the crossed diagram’s contribution, we get

pmTlmn
A→VV5S i

4p2D «nbljpjpb8 , ~101!

pn8Tlmn
A→VV52S i

4p2D «mbljpjpb8 , ~102!

qlTlmn
A→VV522mi$Tmn

P→VV%. ~103!

The set of results obtained is in agreement with the st
ments of the Sutherland-Veltman paradox. Only one of
four symmetry properties, the axial Ward identity, was p
served. However, as is well known, the low energy limit
related to the neutral electromagnetic pion decay. So, in
der for theAVV amplitude to conform to the phenomeno
ogy, we have to modify the calculated expression in anad
hoc way, by fixing the correct behavior to the low energ
limit by defining

~Tlmn
A→VV~p,p8!!phys5Tlmn

A→VV~p,p8!2Tlmn
A→VV~0!,

~104!

where

Tlmn
A→VV~0!52S i

4p2D «mnlj@pj2pj8#, ~105!

is, as it should be, the required anomalous term. Con
quently, we get for theAVV physical amplitude

pn8~Tlmn
A→VV!phy50, ~106!

pm~Tlmn
A→VV!phy50, ~107!

ql~Tlmn
A→VV!phy522mi$Tmn

P→VV%

2S i

2p2D «mnab@papb8 #. ~108!

So the vector Ward identities are recovered as a con
quence of the low energy limit fixing. The axial Ward ide
tity must be accepted as violated. This is a consequence o
arbitrary choice. Note that this point of view for the dive
gences gives a fundamental character to the arbitrarines
volved in the triangle anomalies. The arbitrariness involv
in the redefinition of the calculated expression is authoriz
by the impossibilities contained in the context of th
Sutherland-Veltman paradox. Finally, it is easy to verify th
the same values for the Feynman integrals involved in
explicit evaluation of theAVV ~and AAA) anomalous am-
plitude will lead us to symmetry preserving results for
other three-point functions.

After these important remarks the conclusion of t
present investigation can be safely stated: If we defin
strategy to handle the divergences through the consiste
7-13
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conditions ~i.e., if we adopt a regularization belonging
what we denominate the first class! all amplitudes will be-
come nonambiguous and symmetry preserving where
must be, and they will exhibit the correct violations whe
they need to. The violations naturally appear with the corr
value required by the phenomenology, but without having
admit the ambiguous character. The final picture that
emerged from this analysis is in accordance with our exp
tations. If there are quantum physical phenomena in nat
as the anomalies seem to be, it is desirable to justify th
without resorting to typical ingredients of perturbative so
tions, such as ambiguities or infinities. This is due to the f
that in an exact solution, which would certainly be free fro
divergences and ambiguities, the anomalies must still
present. At this point, it seems that a clean and sound c
a
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clusion can be stated. A consistent interpretation for the p
turbative amplitudes cannot admit them as ambiguous.
ambiguities represent violations of fundamental symmet
used to construct the theories and the destruction of the
dictive power of the QFT’s. In fact, they are not necessary
any case; not even for the justification of the triangle anom
lies. Adopting this point of view, some clarifications can
immediately obtained in many controversies present no
days in the literature, where the manipulation and calculat
of divergent amplitudes play a crucial role@1–5#.
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