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We discuss time-dependent backgrounds of type-1IB supergravity realizing gravitation duals of gauge theo-
ries formulated in de Sitter space-time as a tool of embedding de Sitter space in a supergravity. We show that
only the gravitational duals to nonconformal gauge theories are sensitive to a specific value of a Hubble
parameter. We consider two nontrivial solutions of this type: a gravity dual to six-dimensgigralittle string
theory, and to a four-dimensional cascading B&{(M) X SU(N) supersymmetric gauge theofyelated to
fractional D3-branes on a singular conifold according to Klebanov and co-workeran accelerating uni-
verse. In both cases we argue that the IR singularity of the geometry is regulated by the expansion of the gauge
theory background space-time.
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[. INTRODUCTION Maldacena look like when the gauge theory space-time back-
ground is de Sitter? This is a perfectly valid “deformation”

Gauge-theory—gravity dualityrelates a gauge theory on of the gauge theory background where one “turns on” a
the world volume of a large number of D-branes to purelyHubble parameter. And thus, provided the original gauge-
supergravity backgrounds where the branes are replaced lgyavity correspondence was exact, one should be able to map
the corresponding fluxes. In the simplest case, the duality ighis deformation onto the dual supergravity. In this paper, we
realized[2] by a system ofN D3-branes in a flat type-1IB  describe such a map. We would like to emphasize that, much
string theory background. At small 't Hooft couplirggN like in the original Maldacena correspondence, the gauge
<1, the system is best described by open strings and realizéseory space-time is not dynamical on the gauge theory side
SU(N) N=4 supersymmetric gauge theory. In the limit of of the correspondence. In other words, on the gauge theory
strong 't Hooft coupling, this gauge theory has a perturbativeside of the correspondence, we completely neglect the back-
description as type-IIB supergravity compactified on AdS reaction of the gauge theory dynamics on the background,
X S°, with N units of the Ramond-Ramor@&R) 5-form flux  and we ignore background fluctuations as well. The story on
through the & If this is a genuine equivalence, then phe-the gravity side of the correspondence is drastically different:
nomena observed on the gauge theory side should havehere, as in the original Maldacena correspondence, what was
dual description in string theory on AgS S°. In particular,  the gauge theory background becomes a part of a dynamical
any deformation on the gauge theory visible in the laNje- type-lIB supergravity background. Thus, finding a gravity
limit should have a counterpart in the dual gravitational de-dual to a gauge theory on @ecoupled dS background
scription, and vice versa. would provide an embedding of this space-time into dynami-

As in [3], we use “deformations” in a generalized sense.cal supergravity. Put differently, we want to view “cosmo-
For example, Klebanov-Witten dualif$] describing regular logical” deformation of the gauge-gravity correspondence as
D3-branes placed at a conical singularity in type-1IB stringa tool of embedding a de Sitter space-time into a
theory can be thought of as 2, orbifold of the original supergravity
duality of Maldacend2] along with a certain mass deforma-  The paper is organized as follows. In the next section, we
tion that leaves only a quarter of the original supersymmesdescribe a motivation for a time-dependent metric ansatz of
tries unbroken. One could go a step further and considetype-1IB supergravity background dual to a gauge theory in
deformations of a background space-time in which one foran accelerating universe. We observe that de Sitter deforma-
mulates gauge dynamics. [8], a gauge-gravity correspon- tion applied to the\'=4 SU(N) supersymmetric Yang-Mills
dence was considered in which Minkowski background(SYM) gauge-gravity correspondence does not give rise to a
space-time of the Klebanov-Strasslé@(S) [5] cascading different geometry on the dual supergravity side: all we get is
gauge theory was replaced with</® or (in a Euclidean a de Sitter slicing of the AdS factor in the original Maldacena
case S*. It was argued there that the curvature of the back-duality. Nonetheless, we expect the deformed gauge theory
ground geometry provided an infrared cutoff on the gaugedo be physically rather different from the undeformed one. In
theory dynamics and resolved the Klebanov-TseythiT) particular, because of the conformal coupling of the gauge
[6] naked singularity. theory scalars to the scalar curvature, in th& 0 (H is the

A natural extension to the proposal [#] is to ask the expansion rate of the univepsease, the SYM theory would
following question: what would the gauge-gravity duality of

%Related ideas of realizing de Sitter gravity in warped compacti-
For reviews and references see, €., fications of type-IIB string theory were discussed .
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not have a moduli space. We further show that conformal pend on theM, coordinates, though botMy and ug can

gauge theories are the only examples for which supergravitflave explicitr dependencélt seems natural to assume that

duals for the nonzero Hubble parametdrare related by such “separation of variables” would hold even when we

some coordinate reparametrization to theéi=0 supergrav- start deforming the gauge theory space-tiMg. Specifi-

ity duals. cally, taking thed-dimensional gauge theory in an accelerat-
We then move on to consider nonconformal examples iring universe,

Secs. lll and IV. In Sec. Ill, we present supergravity dual to

(1, 1) little string theory(LST) in an inflationary patch of the (ds)?2=—dt?+e?"dx?, (2.2

dS. The H=0 solution reproduces the Bogomol'nyi-

Prasad-SummerfielBPS system ofN>1 Neveu-Schwarz which forH=0 has a dual supergravity background with the

5-branegNS5-branel and thus has curvature singularity ~ metric (2.1), we assume the metric ansatz of the dual super-

the Einstein frameat the branes core. From the dual gaugegravity for generaH to be

theory perspective, this singularity is generated by the zero

modes of thed=6 SYM theory, which is the infrared limit (dMg)2—(dM5)2=(ds])2. (2.3
of (1, 1) LST. We explicitly demonstrate that de Sitter defor-
mation of LST regulates this curvature singularity. In the orthonormal frame

In Sec. IV, we briefly discuss gravitational dual to
Klebanov-Tseytlin—Klebanov-StrassldKT/KS) cascading el=c,dt,
gauge theory6,5] in an accelerating universe. We show that
the KT deformation is related by a Wick rotation plus some
scaling of the KT gauge theory orf $reviously considered
in [3]. Thus the infrared singularity of the extremal KT ge- .,
ometry is resolved foH=0 as explained if3]. We con- & =¢Cdr,
clude in Sec. V.

etl=ellcidx, i=1,.d-1, (2.9

e, j=d+2,..,10 such thaele'=(dug_q)? (2.5
Il. SUPERGRAVITY DUALS OF GAUGE THEORIES o _ S
IN AN ACCELERATING UNIVERSE the Ricci components of the metric are time-independent, so
in this frame the supergravity fluxes and the dilaton would be
We mentioned in the Introduction that given the original time-independent as well.
gauge-gravity duality of Maldacena, there is a simple way to  We begin explicit examples by considering the case of the
embed dS space-time into supergravity. The reason for this ig 0 deformation of the gauge-gravity correspondence dis-
that since we can deform a background space-time of theyssed i 4] where the gauge theory is conformal, namely
gauge theory from Minkowski to a flat Robertson-Walker D3 branes at a conical singularftye observe that the dual
universe by simply “turning on” a Hubble parameter, we supergravity background fdd #0 still remains Adgx S°:
should be able to do this in the supergravity dual to thisthe only difference is that now we are doing a de Sitter
gauge theory. slicing of the AdS factor in the metric.
Typically, in a gauge-gravity correspondence the dual su- Type-IIB equations of motion can be solved analytically
pergravity metrié can be written as in this case. We find

dsie=c2(dMg)?+codr?+ (dug_g)?, (2.1 A<= p2(— d 2+ e2Hid2)

whereM is ad-dimensional Minkowski space-time, which L2dp?

is related to the space-time background of the dual gauge + LZH2+ 2
. . p

theory, and wg_4 (for a fixed 7) is a compact

(9—d)-dimensional R!emann|an manifold that gncodes thewhere (dsT1,1)2 is the standard metric oﬁ'“:[SU(Z)

gauge theory dynamics at energy scéle-p with c,dr % SU(2)]/U(1) and

~dpl/p asp—oc. From now on we consider only the cases

where c; depend only orr.® The metric onMy does not

depend on the angles @fy_4 while (dug_4)? does not de-

+L2dsT (2.6)

L*=4mgN(a')Z, (2.7

with N being the number of D3-branes. The mefit&6) is

3A similar phenomenon for the RS? deformation of thev=4  Supported by the following five-form flux:

SYM theory was emphasized [8].

“4It would be very interesting to study de Sitter deformations of Fs=Fs+*Fs, Fs=—L*dvolri. (2.9
gauge theories from a purely field-theoretic perspective. In this pa-
per, we focus on the supergravity part of the de Sitter deformed

gauge-gravity correspondence. "The examples wheralM4)? has arr dependence correspond to
SWe always work in the Einstein frame. gauge theories formulated on compact manifolds g9,8).
5This is not always the case, as, for example, in Polchinski- ®There is an obvious generalization to A#SS® and other con-
Strassler gauge-gravity correspondefige formal cases.

125015-2



GAUGE-GRAVITY CORRESPONDENCE INAN . .. PHYSICAL REVIEW B5 125015

The above solution is related by a coordinate transformatiohange of variables, as in the case above. We will argue that
to the extremal l=0) D3-brane solution. Indeed, first in- this is so only when the gauge theory in the duality corre-

troduce spondence is conformal. Let
1 (ds2e)®=(c)?(—dt?+d%®)
7= ﬁe—Ht. (2.9 oaia 0
+(cy)°dro+(dug_g) (2.19
Then the change of variables that do the job is be a supergravity metric in the origin@lgauge-gravity cor-
respondence, and
p
= he e (210 (dsihe)?=(cy)%(—d7?+ e 7dx?)
+(c)%dp®+ (dpg—g)? (2.19
~  JL*H%+p? L?H?r d
dt=— —pdr——T—g, (2.11) is the metric corresponding to itd#0 deformation. We
p VLH +p= P want to know when Eq(2.16) is related by some coordinate

T reparametrization to Eq2.15. Replacingr— (1/H)e "7 in
wherer andt are the radial and the time coordinates of theEq. (2.16, we get

H=0 solution. Note that in Eq2.11), d’t=0, so this equa- .
i i i 1
tion can indeed be integrated (dS'fOE)ZZ Hsz(_deJFd?z)
_ L2H2+ Ze*H'[
T= H—p (2.12 +c3dp?+ (dug_g)?. (2.17
p

Let us ignore for now the internal piece of the metric. Com-
From the coordinate transformatioi2.10 and (2.12 we  paringdx? pieces of the metric in Eq$2.17) and(2.15), we
see that de Sitter slicing of AdS as in Eq.(2.6), covers see that

“half” (t=0 region of its Poincarepatch. It is easy to see c1(p)
that this slicing can be obtained from the analytical continu- cd(r)= 1P , (2.19
ation (along with some scaling limijsof the Euclidean AdS Hr

in the “hyperboloid” parametrizatiod. Really, for the
AdSy. 1 the metric in this parametrization is given by

so that

_ [ci(p)]'Tdp—cyi(p)dT

dSigs,, ,=Sint? p(dS")?+dp? dr TR

(2.19
=sintf p[d72+sir? 7(dS'~1)]2+dp?.
(2.13

Now the Wick rotation of Eq(2.13, —ir, and the “de-
compactification” limit of §7! (dS'"1)?—(dR'"1)?,

Taking the most general ansatz fdir

dt=g1(p,7)d7+gs(p,7)dp, (2.20
and matching Eqg2.17) and(2.15, we find

along with7=1 give eSO P+ A0 P
_ - 91(p,7)= O 20T , (2.23
dShgs, ,, = SInf? p[ —d7?+e27(dR 1) 12+ dp? ci(rH7ey(r)]
. dr? o [c2(N)]ea(p)]’
AT AR @4 e OO RO A T
2.2

wherer =sinhp. Thus, the coordinate transformatiof@s10) "

and(2.12 must be represented by theorresponding scaling PUS We have a constraint

limit of the) Wick rotation of local coordinate transforma- _ rA0/ N2 112 20427 0/ N2

tions relating Poincarand “hyperboloid” parametrizations 0=—[ca(r)]Tcu(p) 17+ calp) " HTca(r) ]

of the Euclidean AdS space. _ +cy(p)2H22[cd(r) 12 (2.23
In the rest of this section, we address the question of when

the H#0 deformation of a given gauge-gravity duality is Since we should be able to integrate £2,20),

related to the original H=0) correspondence by some

0That is, a gauge theory is formulated in Minkowski space-time.
This is a Euclidean AdS ; parametrization where the constant 'We are assuming that th§ warp factor in Eq.(2.15 is non-
radial slice is 8. trivial, that is, not a constant.
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dt=0. (2.24 (dsyoe)?=c3(—dt?+e?Hidx?)
. . . 2
It turns out, given the above expressions, that we can rewrite C3
Eq. (2.24 as +chdp?+ Z(9§+9§+9§), 3.1
_d [c2(n)]’ (2.25 where c;=c;(p), andg; are the S2) left-invariant one-
dr|c9(r)cd(n)|’ ' forms,
Without loss of generality, we can assume that in the original g1=cos¢ df+singsing dy,
duality*?
g,=sin¢ df@—cos¢ sind di, (3.2
cd(r)=r. (2.26)
g3=dg¢+cosh di.
From Eq.(2.25 we find then
We assume the dilatofP=In g to be a function ofp only
CO_E 2.27) and the same NS-NS 3-form fluxes as in the extremal case,
2 I .

p
Hz=ng,;0g,0gs, (3.3

whereL is some constant. Finally, the only waggy_o)>

and (d,ug_g)2 could ever match is when they are indepen-where n is related to the number of NS5-branes. Solving

dent of p andr correspondingly. Thus we conclude that the type-11B supergravity equations, we get

metric (2.15 is actually

0 2 2 0= _gécfcg_ ’ + 32”2(2202 (3.9
(dsyoe) = (dsags,, )"+ (dug—q)*, (2.28 | 0sCo | c3g; | '
where the metric onug_4 does not depend on the AgdS 'cicfcg"’ c‘l‘cz
radial coordinate. The AdS factor in E(.28 points to the 0= — ——3(5H?g,c5+8n%c?), (3.5
conformal invariance of the dual gauge theory. L C2 ] 03
The above discussion suggests that for the embedding of a o et 6
de Sitter space-time in supergravity, we should look for de- 0= C3C3Cy| 2C102( cd—1on2) 3.6
formations of gauge-gravity duality where the gauge theory | Cr | 95033 9sCs ' :
is not conformal. We will present explicit examples of such
deformations in the next two sections. along with the first-order constraint
Ill. (1, 1) LST IN AN ACCELERATING UNIVERSE 0= 1 gcg FEABA 17 B2, 12
AND THE IR SINGULARITY RESOLUTION T [csca]"TerCs]" — C51(9s)
BY INFLATION

+4g.c5(16n%ci—3g.ca ci+5H%c3]). (3.
In this section, we describid 0 deformations of thél, 9sC2l 13053l c4 - B9
1) little string theory, realized on the world volume of NS5- |1 is consistent with Eqs(3.4—(3.7) to choose an ansatz for

branes in type-IIB string theory. The effective infrared de-he warp factors:; similar to the extremal NS5-brane solu-
scription of the LST is in terms al=6 N=2 supersymmet- o

ric Yang-Mills theory. As this gauge theory is not conformal,
we expect to get a nontrivial embedding ofgdom its H ci=fg ¥, cy=cy=2nYyg V4. (3.9
#0 deformation.

In the extremal caséi =0, the supergravity approxima- \ve will end up with the following equations fdf,gs:
tion breaks down near the core of the branes. This curvature

singularity can be thought of as being generated by the zero 617 o 46
X Os
modes of the IR freel=6 SYM theory. Since a Hubble 0=|—7%| +—, (3.9
parameter provides an infrared cutoff on the dynamics of the 9s s
theory, we expect that it should regulate the curvature singu- L 101 4 ) )
larity of the extremal background. We argue that this is in- o=|[% f n 2 7(40H"n+ %)
=l\f B T (3.10
deed so. ) og gs
We take the following ansatz for the metric of LST holo-
graphic dual in the inflationary patch of the dS along with a first-order constraint

0=g2(60H?n+2 f?)
2This fixes an arbitrary choice of a radial coordinate in Eq.

(2.15. —(15g2[f'12—129.f'gsf +[9i1%f%).  (3.1D)
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Though we cannot solve Eg&.9)—(3.11) analytically, it is  ality in string unitsx [10]. In our case, though we described
straightforward to exhibit a smooth solution. Really, aa two-parameter familyfgy,H} of the regular solutions of

smooth solution ap—0 is Egs. (3.9-(3.11), the H dependence of the geometry can
Lo s 4 6 also be eliminated by redefining the time coordinate r
9s=9ol1—7p"+375p"+O(p")], (312  =1/He M. This is not very illuminating, as in doing so we
are changing the reference energy scale from the LST per-
f=2Hn"p—gp3+ i7sp°+ O(p")], (3.13  gpective. Rather, we continue measuring all energies in string

. . . . units. To relategy and H, we study the propagation of a
wherego is an integration cpnstant related to the string Cou'minimally coupled scalar in the backgrouf®i1) and on the
pling. As p—, we rather find® NS5-brane probe. Specifically, consider a massless sgalar

minimally coupled to the Einstein metri8.1) with zero an-

3/4,— 1/2
9s—0op™€ 7, T—HNTN20p. (3.14 gular momentum o$°. The corresponding wave equation is
Note that the curvature of E43.1) can be maintained arbi— 0=— g Moy ]+eHtay
trarily small by takingg, small. Thus thed # 0 deformation
indeed regulates the strong curvature region of the extremal e5Htg§(p) 8(p)
NS5-brane background. On the other hand, from Bdl4 + Anfi(p) dp 2(p) X | (3.1
S

we see that turning on a Hubble parameter induces a loga-

rithmic correction to the asymptotically linear dilaton back- herej denotes the spatial directions on the NS5-brane. The
ground of the extremal NS5-branes. This should be COnpast term in Eq.(3.16 can be interpreted as @dependent
geometry, where one still recovers an asymptotically lineayz g—(3.11), we can explicitly factor out thég,,H! depen-

dilaton[10]. o _ dence of this operator,
From the above analysis, it appears that given the Hubble
parameteH, and for a fixed number of NS5-branes, there is eMigZ(p) [f5%p) St
a one-parameter family of the LST de Sitter deformations, anfip) 7\ gZp) =e " HO(p)[--*].
characterized byg,. Furthermore, it isg, and notH that S (3.17)

controls the curvature of the geometB:1). This is surpris-

ing, as LST does not have any continuous coupling constanssuming the factorized dependencexodn p,

Also, physically, we expect that the supergravity approxima-

tion describing deformed LST should break down for suffi- x(t,X;p)=k(p)x(t,X), (3.18
ciently smallH (in string unitg, as this theory should still be

weakly coupled at low energies. This suggests gigatannot ~ We get from Eq(3.16

it;\%:efdres%.p\;a\/r:?:dtetrﬁa:? what follows, we argue that this is 0= — oM ag] + €M+ eSHHAA ()T, (3.19

9o~ 1H*, (3.15 Wher_e)\(p)El/K(p)O(p)[K(p)]. As in the original gauge-
gravity correspondence of Maldacena, we would like to in-

so that smally, (necessary for the validity of the supergrav- t€rPretp as a(measured in string unitsholographic renor-
ity description corresponds to a large Hubble parameter inMalization groupRG) scale. Thus the dynamics §fshould
string units, and thus the full picture is consistent with thePe qualitatively similar to the dynamics of the generically
general lore for the absence of a dual supergravity descrigh@ssivescalary propagating along a probe NS5-brane ori-
tion to a weakly coupled gauge theory. Before we procee@nted alondt,x}, and sitting at a fixed radial coordinage
with an argument for Eq(3.15), we would like to mention With a sca!arn minimally Couple_d to the induced I_Elnsteln
that a somewhat similar phenomenon occurs in the neaff@me metric on the probe, we find its wave equation to be
extremal deformation of the NS5-brangk0]. Really, the 9 1
near-extremal deformation of LST is characterized by a 0=—a[e™Mgn]+e’ n+emPg; YA p) 7,
single parametef, namely the energy density. On the (3.20

other hand, its holographic dual naively has two paramyyherem is a constant mass of. Extracting theg, depen-
eters: rg (the location of the black five-branes horiz@nd  jence of the last term in EG3.20 and comparing with Eq.

gn (the value of the string coupling at the horizoit turns (3.19, we are led to the identificatiof8.15
out that by a simple change of a radial coordinate, the back- '

ground geometry of the near-extremal NS5-branes can be g
shown to depend only on a combinaticfig?, which can be
further identified with the energy density above the extrem- We believe that the above arguments relaiggindH are
qualitatively correct, and apparently lead to the expected
physical picture. It is important to find a more precise under-
13These asymptotics can also be verified by numerical integratiorstanding of this relation, or in other words the map between
4Classically, the temperature of the LST is independent of the¢he supergravity parametefgy,H} and their LST dual. This
energy density. will likely require an understanding of how to measure en-

12142
0 H<.
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ergies in nonstatic, asymptotically nonflat supergravity back- 1 1

grounds. Finally, it is well known that string propagation in €y = —dé;, €4 = —=sing,dgf;.

the throat geometry of the near-extremal NS5-branes corre- G NG

sponds to an exact conformal field thed@FT).* It would _ _ _

be interesting to see whether there is a CFT description of AS for the matter fields, we will assume that the dilatn

the (1,1) LST in the de Sitter background presented here. May depend om, and our ansatz for the-form fields will be
exactly as in the extremal KT ca$6] and in[13,3],

IV. de SITTER DEFORMATIONS

OF THE KTKS BACKGROUNDS Fa=Pe,ll(eq, e, —ep,l0ey,),
Our aim in this section will be to explore dS embedding @4
in th_e supergravity in the context of the correspo_nding defor- B,= f(u)(e¢lDe¢l—e92De¢z),
mation of the KT mode|6]. Here, the conformal invariance
of the gauge theory on the D3-branes at a conical singularity
[4] is broken by adding fractional D3-branfk2]. We also Fs=F+*F,
comment on the de Sitter deformation of the KS background
[5]. —K(u)e,Oe, Oey e, 4
We will start with the same ansatz as[i8] and simply F=K(uje, ey, Tegr,0ey,0ey,, “.9

replace 13 “longitudinal” directions by the Robertson-
Walker metric with flat spacelike hypersurfaces, K(u)=Q+2Pf(u),

where, as i 6], the expression foK follows from the Bi-
anchi identity for the 5-form. The constan@@ and P are
proportional to the numbers of standard and fractional D3-
As we show!® there will be a direct relation to the KT model pranes.
on ' considered iff3]. We could now directly derive the corresponding system of
As in [6], we will impose the requirement that the back- type-1IB supergravity equations of motion describing the
ground has Abelian symmetry associated with th@)liber  radial evolution of the five unknown functions of
of T"* as we will consider a phase where chiral symmetry isy: vy zw,K,®. A better approach is to notice that the back-
restored.” Our general ansatz for a ten-dimensiof®D)  ground we consider here could be obtained from the KT
Einstein-frame metric will involve three functioysz andw  model on $ discussed if3]. Really, the only difference of
of radial coordinates,*® our case from the ‘Scompactification of3] is the replace-
ment of the “longitudinal” directiong4.1) with (dS"?,

(dMH)2=—dt?+e?Midx2. (4.

dsie=e*(dM})2+e 2 e'¥du?+e¥(dMs)?].
(4.2 (dME)2— (dM,)2=(dS")?2

_ 2 H 2 H 2 H 2
HereM; is a deformation of the ¥ metric, =da”+si’ a[dp®+ i’ B(dy*+sin yd6?)].

(4.6
(dM5)2=e‘g“’eﬁﬁez"’(eﬁl‘*'e(z,sl"‘eil‘*'eéz). Now, Wick rotation of Eq.(4.6), a—i«a, and the scaling
4.3 limiton S® parametrized by3,y,8, (dS%)?— dx?, along with
a>1 gives
e,=3(dy+cosh dep;+cosbde,),
(ds")?— —da?+e?*dx?, (4.7

15
See, for examplef11]. which is precisely Eq(4.1) with H=1. Thus, the resulting

16 . . . . .
- would like to thank Arkady Tseytlin for pointing this out. equation¥’ are just the straightforward modification of Eqgs.
Much like in the case of the LST on the de Sitter space-time, we(4 7)—(4.12 of [3]

expect the Hubble scale to realize an IR cutoff on the gauge theory
dynamics. Thus for sufficiently highl (which we take to be the
case in this sectionwe expect restoration of the chiral symmetry in 10y” —8e®(6e~ 2" —e ™ 12) - 30H2e!Y 42+ d"=0, (4.9
the dual gauge theory.

8Eor H=0, this metric can be brought into a more familiar form 8y, 2 tow
dsie=h""4(r)(dM} %) 2+ hYr)[dr?+r2dsf], whereh=e"%, 10w"—12e%(e”"—e ) - ®"=0,
r=e"*" ande!®du?=dr2. Whenw=0 ande®=r*=1/4u, the (4.9
transverse 6D space is the standard conifold With=T*%. Smallu
thus corresponds to large distances in 5D and vice versa. In the
AdS; region, largeu is near the origin of AdSspace, whilei=0 is We also obtained these equations directly in the background
its boundary. (4.2.
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12 an exact modulus of the cascading gauge theory, dual to the
D"+ e_‘b+4z_4y_4w(w— ez®+8y+8WP2) =0, (410  sum of the individual gauge couplings
47" — KZeSZ_ ef<b+4zf4y74w 1 A A
—=—+ — =const. (4.14
K2 9s 91 9>
X —4P2+e2¢+8y+8WP2) —12H%'Y"*=0, (4.1
As both the finite temperature and the Hubble parameter
(e~ PHaz-dy-awK )y 2p2Kef2=, (4.12  breaks supersymmetry, this modulus is expected to be lifted,
thus developing a nontrivial radial dependence in the dual
with the first-order constraint supergravity.
KrZ
By'?=2z'2-5w'?—§@'?—je PN, V. CONCLUDING REMARKS
5 dor-a7 8 Cow 10w In this paper, we presented a simple framework on how
—3H%!¥ 42— ¥ (ge V- 1MW) one can embed an accelerating universe in the supergravity.
The idea is to start with a gauge-gravity duality of Mal-
+zePraztayranp2y 2 el2K2=0, (413  dacena, and consider deformations of this duality where

Minkowski background space-time of the gauge theory is

Lacking the exact solution of the above system, it was nonereplaced with a de Sitter space-time.
theless demonstrated [8] the existence of a smooth inter-  We argued that to get nontrivial time-dependent solutions
polation(in radial coordinate onlybetween(i) a nonsingular  (j.e., unrelated by coordinate reparametrization to a static
short-distance region where the 10D background is approXisolution, the starting point for the deformation must be a
mately AdSx T** written in the coordinates where the  gravitational dual to a nonconformal gauge theory. We dis-
=const slice is § and(ii) a long-distance region where the cussed two examples of such deformations: the little string
10D background approaches the KT solution. This washeory and the KT model. In both cases, conformal invari-
shown by starting with the short-distanée=> or p=0)  ance is broken by consideringdding NS5- (D5-) branes.
region, i.e., Adgx T** space(with the radius determined by We argued that the expansion of the background geometry on
the effective chargeK, ) and demonstrating that by doing the gauge theory side serves as an infrared cutoff in the dual
perturbation theory in the small paramefef/K, <1 one  supergravity. In particular, for a sufficiently high expansion
can match it onto the KT asymptotics at large distan@es rate this resolves a naked singularity of the KT solufi6h
—0 or p—x). The crucial point was thad(P?/K, ) pertur- There are several interesting future directions. The
bations were regular at small distances. One can literallyacuum state in an accelerating universe has a nonzero
repeat this analysis ¢8] in our case to argue that for a large Gibbons-Hawking temperatur&g,=H/27, analogous to
enough Hubble parametef, the naked singularity of the KT the Hawking temperature of a black hole. The KT deforma-
geometry will be resolved. Here the short-distance region is @on discussed here is very similar to the finite temperature
direct product of approximately a de Sitter slicing of AdS deformation of the KT solution considered ja3,15. By
(as in Sec. Il and a ! coset. comparing a critical expansion rate for the#0 deforma-

The de Sitter deformations of the KT model above and oftion of the KT model with the critical temperature for its
the LST in the previous section are similar in that as ondfinite-temperature deformation, one should be able to relate
turns off a Hubble parametéor, rather, sufficiently lowers the Gibbons-Hawking temperature of the expanding universe
it), one ends up with a singular geometry. One way to turn orwith the temperature of the gauge theory in the standard
small (vanishingly small de Sitter deformation is to start near-extremal deformation.
with a gauge-gravity correspondence for a confining gauge Another interesting question is the dynamical stability of
theory such as, say, the KS mod®]. It is straightforward to  the deformed backgrounds discussed here. Since de Sitter
repeat the above analysis for the deformed KS backgroundeformation breaks supersymmetry, one has to worry about
and obtain a consistent system of equations. We do ngiotential tachyons. The similarity of this deformation with
present this system here due to its complexity and the fadhe near-extremal one suggests that the KT model is likely to
that we could not find an analytical solution. The added dif-be stable, while there could be a tachyon in the LST defor-
ficulty (compare to the extremal KS backgroyincomes mation, in analogy witf11]. It would be nice to explicitly
from the fact that it is inconsisteiion the level of equations verify these conjectures. In the case of the KS deformation,
of motion) to demandH # 0 along with a constant dilaton. A at least for small values of the Hubble parameter, we expect
similar phenomenon has been observed in studies of th® get a stable nonsupersymmetric background. The argu-
near-extremal deformation of the KS backgro@idd]: itwas  ment is identical to the one given ji6]: the original super-
shown there that a black hole with a regular Schwarzschildjravity background had a mass gap, and thus a small defor-
horizon in the KS geometry necessarily has a nonconstamhation should not produce a tachyon.
dilaton. This observation has a simple physical interpreta- In this paper weonly constructed de Sitter backgrounds in
tion. In the extremal KS solution, the string coupliggwas  supergravity. It is important to understand the spectrum of

125015-7



ALEX BUCHEL PHYSICAL REVIEW D 65 125015

density fluctuations and the physics of D-brane probes in ACKNOWLEDGMENTS
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