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Gauge-gravity correspondence in an accelerating universe

Alex Buchel
Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030

~Received 19 March 2002; published 7 June 2002!

We discuss time-dependent backgrounds of type-IIB supergravity realizing gravitation duals of gauge theo-
ries formulated in de Sitter space-time as a tool of embedding de Sitter space in a supergravity. We show that
only the gravitational duals to nonconformal gauge theories are sensitive to a specific value of a Hubble
parameter. We consider two nontrivial solutions of this type: a gravity dual to six-dimensional~1, 1! little string
theory, and to a four-dimensional cascading SU(N1M )3SU(N) supersymmetric gauge theory~related to
fractional D3-branes on a singular conifold according to Klebanov and co-workers!, in an accelerating uni-
verse. In both cases we argue that the IR singularity of the geometry is regulated by the expansion of the gauge
theory background space-time.
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n
ely
d
y

liz
of
iv
S

e-
ve

-
e

e

ng

-
e

id
fo
-
nd

ck
g

of

ck-
’’

’ a
ge-
map
we
uch
uge
side
ory

ack-
nd,
on
nt:
was
ical

ity

mi-
-
as
a

we
z of

in
ma-

to a
t is
na
ory
In
ge

cti-
I. INTRODUCTION

Gauge-theory–gravity duality1 relates a gauge theory o
the world volume of a large number of D-branes to pur
supergravity backgrounds where the branes are replace
the corresponding fluxes. In the simplest case, the dualit
realized@2# by a system ofN D3-branes in a flat type-IIB
string theory background. At small ’t Hooft couplinggsN
!1, the system is best described by open strings and rea
SU(N) N54 supersymmetric gauge theory. In the limit
strong ’t Hooft coupling, this gauge theory has a perturbat
description as type-IIB supergravity compactified on Ad5
3S5, with N units of the Ramond-Ramond~RR! 5-form flux
through the S5. If this is a genuine equivalence, then ph
nomena observed on the gauge theory side should ha
dual description in string theory on AdS53S5. In particular,
any deformation on the gauge theory visible in the largeN
limit should have a counterpart in the dual gravitational d
scription, and vice versa.

As in @3#, we use ‘‘deformations’’ in a generalized sens
For example, Klebanov-Witten duality@4# describing regular
D3-branes placed at a conical singularity in type-IIB stri
theory can be thought of as aZ2 orbifold of the original
duality of Maldacena@2# along with a certain mass deforma
tion that leaves only a quarter of the original supersymm
tries unbroken. One could go a step further and cons
deformations of a background space-time in which one
mulates gauge dynamics. In@3#, a gauge-gravity correspon
dence was considered in which Minkowski backgrou
space-time of the Klebanov-Strassler~KS! @5# cascading
gauge theory was replaced with R3S3 or ~in a Euclidean
case! S4. It was argued there that the curvature of the ba
ground geometry provided an infrared cutoff on the gau
theory dynamics and resolved the Klebanov-Tseytlin~KT!
@6# naked singularity.

A natural extension to the proposal of@3# is to ask the
following question: what would the gauge-gravity duality

1For reviews and references see, e.g.,@1#.
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Maldacena look like when the gauge theory space-time ba
ground is de Sitter? This is a perfectly valid ‘‘deformation
of the gauge theory background where one ‘‘turns on’
Hubble parameter. And thus, provided the original gau
gravity correspondence was exact, one should be able to
this deformation onto the dual supergravity. In this paper,
describe such a map. We would like to emphasize that, m
like in the original Maldacena correspondence, the ga
theory space-time is not dynamical on the gauge theory
of the correspondence. In other words, on the gauge the
side of the correspondence, we completely neglect the b
reaction of the gauge theory dynamics on the backgrou
and we ignore background fluctuations as well. The story
the gravity side of the correspondence is drastically differe
here, as in the original Maldacena correspondence, what
the gauge theory background becomes a part of a dynam
type-IIB supergravity background. Thus, finding a grav
dual to a gauge theory on a~decoupled! dS background
would provide an embedding of this space-time into dyna
cal supergravity. Put differently, we want to view ‘‘cosmo
logical’’ deformation of the gauge-gravity correspondence
a tool of embedding a de Sitter space-time into
supergravity.2

The paper is organized as follows. In the next section,
describe a motivation for a time-dependent metric ansat
type-IIB supergravity background dual to a gauge theory
an accelerating universe. We observe that de Sitter defor
tion applied to theN54 SU(N) supersymmetric Yang-Mills
~SYM! gauge-gravity correspondence does not give rise
different geometry on the dual supergravity side: all we ge
a de Sitter slicing of the AdS factor in the original Maldace
duality. Nonetheless, we expect the deformed gauge the
to be physically rather different from the undeformed one.
particular, because of the conformal coupling of the gau
theory scalars to the scalar curvature, in theHÞ0 ~H is the
expansion rate of the universe! case, the SYM theory would

2Related ideas of realizing de Sitter gravity in warped compa
fications of type-IIB string theory were discussed in@7#.
©2002 The American Physical Society15-1
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ALEX BUCHEL PHYSICAL REVIEW D 65 125015
not have a moduli space.3,4 We further show that conforma
gauge theories are the only examples for which supergra
duals for the nonzero Hubble parameterH are related by
some coordinate reparametrization to theirH50 supergrav-
ity duals.

We then move on to consider nonconformal examples
Secs. III and IV. In Sec. III, we present supergravity dual
~1, 1! little string theory~LST! in an inflationary patch of the
dS6 . The H50 solution reproduces the Bogomol’ny
Prasad-Summerfield~BPS! system ofN@1 Neveu-Schwarz
5-branes~NS5-branes!, and thus has curvature singularity~in
the Einstein frame! at the branes core. From the dual gau
theory perspective, this singularity is generated by the z
modes of thed56 SYM theory, which is the infrared limit
of ~1, 1! LST. We explicitly demonstrate that de Sitter defo
mation of LST regulates this curvature singularity.

In Sec. IV, we briefly discuss gravitational dual
Klebanov-Tseytlin–Klebanov-Strassler~KT/KS! cascading
gauge theory@6,5# in an accelerating universe. We show th
the KT deformation is related by a Wick rotation plus som
scaling of the KT gauge theory on S4 previously considered
in @3#. Thus the infrared singularity of the extremal KT g
ometry is resolved forHÞ0 as explained in@3#. We con-
clude in Sec. V.

II. SUPERGRAVITY DUALS OF GAUGE THEORIES
IN AN ACCELERATING UNIVERSE

We mentioned in the Introduction that given the origin
gauge-gravity duality of Maldacena, there is a simple way
embed dS space-time into supergravity. The reason for th
that since we can deform a background space-time of
gauge theory from Minkowski to a flat Robertson-Walk
universe by simply ‘‘turning on’’ a Hubble parameter, w
should be able to do this in the supergravity dual to t
gauge theory.

Typically, in a gauge-gravity correspondence the dual
pergravity metric5 can be written as

ds10E5c1
2~dMd!21c2

2dr21~dm92d!2, ~2.1!

whereMd is a d-dimensional Minkowski space-time, whic
is related to the space-time background of the dual ga
theory, and m92d ~for a fixed t! is a compact
(92d)-dimensional Riemannian manifold that encodes
gauge theory dynamics at energy scaleE;r with c2dr
;dr/r asr→`. From now on we consider only the cas
where ci depend only onr.6 The metric onMd does not
depend on the angles ofm92d while (dm92d)2 does not de-

3A similar phenomenon for the R3S3 deformation of theN54
SYM theory was emphasized in@3#.

4It would be very interesting to study de Sitter deformations
gauge theories from a purely field-theoretic perspective. In this
per, we focus on the supergravity part of the de Sitter deform
gauge-gravity correspondence.

5We always work in the Einstein frame.
6This is not always the case, as, for example, in Polchins

Strassler gauge-gravity correspondence@8#.
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pend on theMd coordinates, though bothMd and md can
have explicitr dependence.7 It seems natural to assume th
such ‘‘separation of variables’’ would hold even when w
start deforming the gauge theory space-timeMd . Specifi-
cally, taking thed-dimensional gauge theory in an acceler
ing universe,

~dsd
H!252dt21e2Htdx̄2, ~2.2!

which for H50 has a dual supergravity background with t
metric ~2.1!, we assume the metric ansatz of the dual sup
gravity for generalH to be

~dMd!2→~dMd
H!2[~dsd

H!2. ~2.3!

In the orthonormal frame

e15c1dt,

ei 115eHtc1dxi , i 51,...d21, ~2.4!

ed115c2dr,

ej , j 5d12,...,10 such thatejej[~dm92d!2, ~2.5!

the Ricci components of the metric are time-independent
in this frame the supergravity fluxes and the dilaton would
time-independent as well.

We begin explicit examples by considering the case of
HÞ0 deformation of the gauge-gravity correspondence d
cussed in@4# where the gauge theory is conformal, name
D3 branes at a conical singularity.8 We observe that the dua
supergravity background forHÞ0 still remains AdS53S5:
the only difference is that now we are doing a de Sit
slicing of the AdS factor in the metric.

Type-IIB equations of motion can be solved analytica
in this case. We find

ds10
2 5r2~2dt21e2Htdx̄2!

1
L2dr2

L2H21r2 1L2dsT1,1
2 , ~2.6!

where (dsT1,1)2 is the standard metric onT1,15@SU(2)
3SU(2)#/U(1) and

L454pgsN~a8! 27
16 , ~2.7!

with N being the number of D3-branes. The metric~2.6! is
supported by the following five-form flux:

F55F51!F5 , F552L4d volT1,1. ~2.8!f
a-
d

i-

7The examples where (dMd)2 has anr dependence correspond t
gauge theories formulated on compact manifolds as in@9,3#.

8There is an obvious generalization to AdS53S5 and other con-
formal cases.
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GAUGE-GRAVITY CORRESPONDENCE IN AN . . . PHYSICAL REVIEW D65 125015
The above solution is related by a coordinate transforma
to the extremal (H50) D3-brane solution. Indeed, first in
troduce

t5
1

H
e2Ht. ~2.9!

Then the change of variables that do the job is

r 5
r

Ht
5reHt, ~2.10!

d t̃52
AL2H21r2

r
dt2

L2H2t

AL2H21r2

dr

r2 , ~2.11!

wherer and t̃ are the radial and the time coordinates of t
H50 solution. Note that in Eq.~2.11!, d2 t̃ 50, so this equa-
tion can indeed be integrated

t̃ 5
AL2H21r2e2Ht

Hr
. ~2.12!

From the coordinate transformations~2.10! and ~2.12! we
see that de Sitter slicing of AdS5 , as in Eq.~2.6!, covers
‘‘half’’ ~ t̃>0 region! of its Poincare´ patch. It is easy to see
that this slicing can be obtained from the analytical contin
ation ~along with some scaling limits! of the Euclidean AdS
in the ‘‘hyperboloid’’ parametrization.9 Really, for the
AdSd11 the metric in this parametrization is given by

dsAdSd11

2 5sinh2 r~dSd!21dr2

5sinh2 r@dt21sin2 t~dSd21!#21dr2.

~2.13!

Now the Wick rotation of Eq.~2.13!, t→ i t, and the ‘‘de-
compactification’’ limit of Sd21, (dSd21)2→(dRd21)2,
along witht@1 give

dsAdSd11

2 5sinh2 r@2dt21e2t~dRd21!#21dr2

5r 2@2dt21e2t~dRd21!#21
dr2

11r 2 , ~2.14!

wherer[sinhr. Thus, the coordinate transformations~2.10!
and~2.12! must be represented by the~corresponding scaling
limit of the! Wick rotation of local coordinate transforma
tions relating Poincare´ and ‘‘hyperboloid’’ parametrizations
of the Euclidean AdS space.

In the rest of this section, we address the question of w
the HÞ0 deformation of a given gauge-gravity duality
related to the original (H50) correspondence by som

9This is a Euclidean AdSd11 parametrization where the consta
radial slice is Sd.
12501
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change of variables, as in the case above. We will argue
this is so only when the gauge theory in the duality cor
spondence is conformal. Let

~ds10E
0 !25~c1

0!2~2dt21dx̄2!

1~c2
0!2dr21~dm92d

0 !2 ~2.15!

be a supergravity metric in the original10 gauge-gravity cor-
respondence, and

~ds10E
H !25~c1!2~2dt21e2Htdx̄2!

1~c2!2dr21~dm92d!2 ~2.16!

is the metric corresponding to itsHÞ0 deformation. We
want to know when Eq.~2.16! is related by some coordinat
reparametrization to Eq.~2.15!. Replacingt→(1/H)e2Ht in
Eq. ~2.16!, we get

~ds10E
H !25

c1
2

H2t2 ~2dt21dx̄2!

1c2
2dr21~dm92d!2. ~2.17!

Let us ignore for now the internal piece of the metric. Co
paringdx̄2 pieces of the metric in Eqs.~2.17! and~2.15!, we
see that

c1
0~r !5

c1~r!

Ht
, ~2.18!

so that

dr5
@c1~r!#8tdr2c1~r!dt

Ht2@c1
0~r !#8

. ~2.19!

Taking the most general ansatz fordt,

dt5g1~r,t!dt1g2~r,t!dr, ~2.20!

and matching Eqs.~2.17! and ~2.15!, we find

g1~r,t!5
c1~r!A@c2

0~r !#21t2@c1
0~r !8#2

c1
0~r !Ht2@c1

0~r !#8
, ~2.21!

g2~r,t!52
@c2

0~r !#2@c1~r!#8

Htc1
0~r !@c1

0~r !#8A@c2
0~r !#21t2@c1

0~r !8#2
,

~2.22!

plus we have a constraint11

052@c2
0~r !#2@c1~r!8#21c2~r!2H2@c2

0~r !#2

1c2~r!2H2t2@c1
0~r !8#2. ~2.23!

Since we should be able to integrate Eq.~2.20!,

10That is, a gauge theory is formulated in Minkowski space-tim
11We are assuming that thec1

0 warp factor in Eq.~2.15! is non-
trivial, that is, not a constant.
5-3
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ALEX BUCHEL PHYSICAL REVIEW D 65 125015
d2t[0. ~2.24!

It turns out, given the above expressions, that we can rew
Eq. ~2.24! as

05
d

dr F @c1
0~r !#8

c1
0~r !c2

0~r !G . ~2.25!

Without loss of generality, we can assume that in the origi
duality12

c1
0~r !5r . ~2.26!

From Eq.~2.25! we find then

c2
05

L

r
, ~2.27!

whereL is some constant. Finally, the only way (dmd29)2

and (dmd29
0 )2 could ever match is when they are indepe

dent ofr and r correspondingly. Thus we conclude that t
metric ~2.15! is actually

~ds10E
0 !5~dsAdSd11

!21~dm92d!2, ~2.28!

where the metric onm92d does not depend on the AdSd11
radial coordinate. The AdS factor in Eq.~2.28! points to the
conformal invariance of the dual gauge theory.

The above discussion suggests that for the embedding
de Sitter space-time in supergravity, we should look for
formations of gauge-gravity duality where the gauge the
is not conformal. We will present explicit examples of su
deformations in the next two sections.

III. „1, 1… LST IN AN ACCELERATING UNIVERSE
AND THE IR SINGULARITY RESOLUTION

BY INFLATION

In this section, we describeHÞ0 deformations of the~1,
1! little string theory, realized on the world volume of NS
branes in type-IIB string theory. The effective infrared d
scription of the LST is in terms ofd56 N52 supersymmet-
ric Yang-Mills theory. As this gauge theory is not conform
we expect to get a nontrivial embedding of dS6 from its H
Þ0 deformation.

In the extremal case,H50, the supergravity approxima
tion breaks down near the core of the branes. This curva
singularity can be thought of as being generated by the z
modes of the IR freed56 SYM theory. Since a Hubble
parameter provides an infrared cutoff on the dynamics of
theory, we expect that it should regulate the curvature sin
larity of the extremal background. We argue that this is
deed so.

We take the following ansatz for the metric of LST hol
graphic dual in the inflationary patch of the dS6 :

12This fixes an arbitrary choice of a radial coordinate in E
~2.15!.
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~ds10E!25c1
2~2dt21e2Htdx̄2!

1c2
2dr21

c3
2

4
~g1

21g2
21g3

2!, ~3.1!

where ci5ci(r), and gi are the SU~2! left-invariant one-
forms,

g15cosf du1sinf sinu dc,

g25sinf du2cosf sinu dc, ~3.2!

g35df1cosu dc.

We assume the dilatonF[ ln gs to be a function ofr only
and the same NS-NS 3-form fluxes as in the extremal ca

H35ng1∧g2∧g3 , ~3.3!

where n is related to the number of NS5-branes. Solvi
type-IIB supergravity equations, we get

05Fgs8c1
6c3

3

gsc2
G81

32n2c1
6c2

c3
3g3

, ~3.4!

05Fc18c1
5c3

3

c2
G82

c1
4c2

gsc3
3 ~5H2gsc3

618n2c1
2!, ~3.5!

05Fc38c3
2c1

6

c2
G82

2c1
6c2

gsc3
3 ~gsc3

4212n2!, ~3.6!

along with the first-order constraint

05
12gs

2c3
4

c1
4 @c3c1#8@c1

5c3#82c3
6c1

2~gs8!2

14gsc2
2~16n2c1

223gsc3
4@c1

215H2c3
2# !. ~3.7!

It is consistent with Eqs.~3.4!–~3.7! to choose an ansatz fo
the warp factorsci similar to the extremal NS5-brane solu
tion,

c15 f gs
21/4, c25c352n1/2gs

21/4. ~3.8!

We will end up with the following equations forf ,gs :

05Fgs8 f 6

gs
3 G 81

2 f 6

gs
2 , ~3.9!

05F S gs

f 4D 8 f 10

gs
3 G81

2 f 4~40H2n1 f 2!

gs
2 , ~3.10!

along with a first-order constraint

05gs
2~60H2n12 f 2!

2~15gs
2@ f 8#2212gs8 f 8gsf 1@gs8#2f 2!. ~3.11!

.

5-4
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GAUGE-GRAVITY CORRESPONDENCE IN AN . . . PHYSICAL REVIEW D65 125015
Though we cannot solve Eqs.~3.9!–~3.11! analytically, it is
straightforward to exhibit a smooth solution. Really,
smooth solution asr→0 is

gs5g0@12 1
7 r21 5

378r41O~r6!#, ~3.12!

f 52Hn1/2@r2 1
63 r31 1

1470r
51O~r7!#, ~3.13!

whereg0 is an integration constant related to the string co
pling. As r→`, we rather find13

gs→g0r3/4e2r, f→Hn1/2A20r. ~3.14!

Note that the curvature of Eq.~3.1! can be maintained arbi
trarily small by takingg0 small. Thus theHÞ0 deformation
indeed regulates the strong curvature region of the extre
NS5-brane background. On the other hand, from Eq.~3.14!
we see that turning on a Hubble parameter induces a lo
rithmic correction to the asymptotically linear dilaton bac
ground of the extremal NS5-branes. This should be c
trasted with the finite-energy density regularization of t
geometry, where one still recovers an asymptotically lin
dilaton @10#.

From the above analysis, it appears that given the Hub
parameterH, and for a fixed number of NS5-branes, there
a one-parameter family of the LST de Sitter deformatio
characterized byg0 . Furthermore, it isg0 and notH that
controls the curvature of the geometry~3.1!. This is surpris-
ing, as LST does not have any continuous coupling const
Also, physically, we expect that the supergravity approxim
tion describing deformed LST should break down for su
ciently smallH ~in string units!, as this theory should still be
weakly coupled at low energies. This suggests thatg0 cannot
be a free parameter. In what follows, we argue that this
indeed so. We find that

g0;1/H4, ~3.15!

so that smallg0 ~necessary for the validity of the supergra
ity description! corresponds to a large Hubble parameter
string units, and thus the full picture is consistent with t
general lore for the absence of a dual supergravity desc
tion to a weakly coupled gauge theory. Before we proce
with an argument for Eq.~3.15!, we would like to mention
that a somewhat similar phenomenon occurs in the n
extremal deformation of the NS5-branes@10#. Really, the
near-extremal deformation of LST is characterized by
single parameter,14 namely the energy densitym. On the
other hand, its holographic dual naively has two para
eters: r 0 ~the location of the black five-branes horizon! and
gh ~the value of the string coupling at the horizon!. It turns
out that by a simple change of a radial coordinate, the ba
ground geometry of the near-extremal NS5-branes can
shown to depend only on a combinationr 0

2/gh
2, which can be

further identified with the energy density above the extre

13These asymptotics can also be verified by numerical integrat
14Classically, the temperature of the LST is independent of

energy density.
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ality in string unitsm @10#. In our case, though we describe
a two-parameter family$g0 ,H% of the regular solutions of
Eqs. ~3.9!–~3.11!, the H dependence of the geometry ca
also be eliminated by redefining the time coordinatet→t
[1/He2Ht. This is not very illuminating, as in doing so w
are changing the reference energy scale from the LST
spective. Rather, we continue measuring all energies in st
units. To relateg0 and H, we study the propagation of
minimally coupled scalar in the background~3.1! and on the
NS5-brane probe. Specifically, consider a massless scax
minimally coupled to the Einstein metric~3.1! with zero an-
gular momentum onS3. The corresponding wave equation

052] t@e5Ht] tx#1e3Ht] i
2x

1
e5Htgs

2~r!

4n f4~r!
]rF f 6~r!

gs
2~r!

]rxG , ~3.16!

wherei denotes the spatial directions on the NS5-brane. T
last term in Eq.~3.16! can be interpreted as ar-dependent
mass term operator on the LST space-time. Using E
~3.9!–~3.11!, we can explicitly factor out the$g0 ,H% depen-
dence of this operator,

e5Htgs
2~r!

4n f4~r!
]rF f 6~r!

gs
2~r!

]r¯G[e5HtH2O~r!@¯#.

~3.17!

Assuming the factorized dependence ofx on r,

x~ t,x̄;r!5k~r!x̃~ t,x̄!, ~3.18!

we get from Eq.~3.16!

052] t@e5Ht] tx̃ #1e3Ht] i
2x̃1e5HtH2l~r!x̃, ~3.19!

wherel(r)[1/k(r)O(r)@k(r)#. As in the original gauge-
gravity correspondence of Maldacena, we would like to
terpretr as a~measured in string units! holographic renor-
malization group~RG! scale. Thus the dynamics ofx̃ should
be qualitatively similar to the dynamics of the generica
massivescalarh propagating along a probe NS5-brane o
ented along$t,x̄%, and sitting at a fixed radial coordinater.
With a scalarh minimally coupled to the induced Einstei
frame metric on the probe, we find its wave equation to

052] t@e5Ht] th#1e3Ht] i
2h1e5Htm2gs

21/2~r!h,
~3.20!

wherem is a constant mass ofh. Extracting theg0 depen-
dence of the last term in Eq.~3.20! and comparing with Eq.
~3.19!, we are led to the identification~3.15!,

g0
21/2;H2.

We believe that the above arguments relatingg0 andH are
qualitatively correct, and apparently lead to the expec
physical picture. It is important to find a more precise und
standing of this relation, or in other words the map betwe
the supergravity parameters$g0 ,H% and their LST dual. This
will likely require an understanding of how to measure e

n.
e
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ALEX BUCHEL PHYSICAL REVIEW D 65 125015
ergies in nonstatic, asymptotically nonflat supergravity ba
grounds. Finally, it is well known that string propagation
the throat geometry of the near-extremal NS5-branes co
sponds to an exact conformal field theory~CFT!.15 It would
be interesting to see whether there is a CFT description
the ~1,1! LST in the de Sitter background presented here

IV. de SITTER DEFORMATIONS
OF THE KTKS BACKGROUNDS

Our aim in this section will be to explore dS embeddi
in the supergravity in the context of the corresponding de
mation of the KT model@6#. Here, the conformal invarianc
of the gauge theory on the D3-branes at a conical singula
@4# is broken by adding fractional D3-branes@12#. We also
comment on the de Sitter deformation of the KS backgrou
@5#.

We will start with the same ansatz as in@6# and simply
replace 113 ‘‘longitudinal’’ directions by the Robertson
Walker metric with flat spacelike hypersurfaces,

~dM4
H!252dt21e2Htdx̄2. ~4.1!

As we show,16 there will be a direct relation to the KT mode
on S4 considered in@3#.

As in @6#, we will impose the requirement that the bac
ground has Abelian symmetry associated with the U~1! fiber
of T1,1 as we will consider a phase where chiral symmetry
restored.17 Our general ansatz for a ten-dimensional~10D!
Einstein-frame metric will involve three functionsy, z, andw
of radial coordinateu,18

ds10E
2 5e2z~dM4

H!21e22z@e10ydu21e2y~dM5!2#.
~4.2!

HereM5 is a deformation of the T1,1 metric,

~dM5!25e28vec
21e2c~eu1

2 1ef1

2 1ef1

2 1ef2

2 !,

~4.3!

ec5 1
3 ~dc1cosu1df11cosu2df2!,

15See, for example,@11#.
16I would like to thank Arkady Tseytlin for pointing this out.
17Much like in the case of the LST on the de Sitter space-time,

expect the Hubble scale to realize an IR cutoff on the gauge th
dynamics. Thus for sufficiently highH ~which we take to be the
case in this section!, we expect restoration of the chiral symmetry
the dual gauge theory.

18For H50, this metric can be brought into a more familiar for
ds10E

2 5h21/2(r )(dM4
H50)21h1/2(r )@dr21r 2ds5

2#, whereh5e24z,
r 5ey1w, and e10ydu25dr2. When w50 ande4y5r 451/4u, the
transverse 6D space is the standard conifold withM55T1,1. Smallu
thus corresponds to large distances in 5D and vice versa. In
AdS5 region, largeu is near the origin of AdS5 space, whileu50 is
its boundary.
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A6
sinu idg fi .

As for the matter fields, we will assume that the dilatonF
may depend onu, and our ansatz for thep-form fields will be
exactly as in the extremal KT case@6# and in @13,3#,

F35Pec∧~eu1
∧ef1

2eu2
∧ef2

!,

~4.4!

B25 f ~u!~ef1
∧ef1

2eu2
∧ef2

!,

F55F1* F,

F5K~u!ec∧eu1
∧eg f1

∧eu2
∧ef2

, ~4.5!

K~u!5Q12P f~u!,

where, as in@6#, the expression forK follows from the Bi-
anchi identity for the 5-form. The constantsQ and P are
proportional to the numbers of standard and fractional D
branes.

We could now directly derive the corresponding system
type-IIB supergravity equations of motion describing t
radial evolution of the five unknown functions o
u: y,z,w,K,F. A better approach is to notice that the bac
ground we consider here could be obtained from the
model on S4 discussed in@3#. Really, the only difference of
our case from the S4 compactification of@3# is the replace-
ment of the ‘‘longitudinal’’ directions~4.1! with (dS4)2,

~dM4
H!2→~dM4!2[~dS4!2

5da21sin2 a@db21sin2 b~dg21sin2 gdd2!#.

~4.6!

Now, Wick rotation of Eq.~4.6!, a→ ia, and the scaling
limit on S3 parametrized byb,g,d, (dS3)2→dx̄2, along with
a@1 gives

~dS4!2→2da21e2adx̄2, ~4.7!

which is precisely Eq.~4.1! with H51. Thus, the resulting
equations19 are just the straightforward modification of Eq
~4.7!–~4.12! of @3#,

10y928e8y~6e22w2e212w!230H2e10y24z1F950, ~4.8!

10w9212e8y~e22w2e212w!2F950,
~4.9!

e
ry

he
19We also obtained these equations directly in the backgro

~4.2!.
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F91e2F14z24y24wS K82

4P22e2F18y18wP2D50, ~4.10!

4z92K2e8z2e2F14z24y24w

3S K82

4P2 1e2F18y18wP2D212H2e10y24z50, ~4.11!

~e2F14z24y24wK8!822P2Ke8z50, ~4.12!

with the first-order constraint

5y8222z8225w822 1
8 F822 1

4 e2F14z24y24w
K82

4P2

23H2e10y24z2e8y~6e22w2e212w!

1 1
4 eF14z14y14wP21 1

8 e8zK250. ~4.13!

Lacking the exact solution of the above system, it was no
theless demonstrated in@3# the existence of a smooth inte
polation~in radial coordinate only! between~i! a nonsingular
short-distance region where the 10D background is appr
mately AdS53T1,1 written in the coordinates where theu
5const slice is S4, and~ii ! a long-distance region where th
10D background approaches the KT solution. This w
shown by starting with the short-distance~u5` or r50!
region, i.e., AdS53T1,1 space~with the radius determined b
the effective chargeK* ! and demonstrating that by doin
perturbation theory in the small parameterP2/K* !1 one
can match it onto the KT asymptotics at large distances~u
→0 or r→`!. The crucial point was thatO(P2/K* ) pertur-
bations were regular at small distances. One can liter
repeat this analysis of@3# in our case to argue that for a larg
enough Hubble parameterH, the naked singularity of the KT
geometry will be resolved. Here the short-distance region
direct product of approximately a de Sitter slicing of Ad5
~as in Sec. II! and a T1,1 coset.

The de Sitter deformations of the KT model above and
the LST in the previous section are similar in that as o
turns off a Hubble parameter~or, rather, sufficiently lowers
it!, one ends up with a singular geometry. One way to turn
small ~vanishingly small! de Sitter deformation is to star
with a gauge-gravity correspondence for a confining ga
theory such as, say, the KS model@5#. It is straightforward to
repeat the above analysis for the deformed KS backgro
and obtain a consistent system of equations. We do
present this system here due to its complexity and the
that we could not find an analytical solution. The added d
ficulty ~compare to the extremal KS background! comes
from the fact that it is inconsistent~on the level of equations
of motion! to demandHÞ0 along with a constant dilaton. A
similar phenomenon has been observed in studies of
near-extremal deformation of the KS background@14#: it was
shown there that a black hole with a regular Schwarzsc
horizon in the KS geometry necessarily has a noncons
dilaton. This observation has a simple physical interpre
tion. In the extremal KS solution, the string couplinggs was
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an exact modulus of the cascading gauge theory, dual to
sum of the individual gauge couplings

1

gs
5

4p

g1
2 1

4p

g2
2 5const. ~4.14!

As both the finite temperature and the Hubble parame
breaks supersymmetry, this modulus is expected to be lif
thus developing a nontrivial radial dependence in the d
supergravity.

V. CONCLUDING REMARKS

In this paper, we presented a simple framework on h
one can embed an accelerating universe in the supergra
The idea is to start with a gauge-gravity duality of Ma
dacena, and consider deformations of this duality wh
Minkowski background space-time of the gauge theory
replaced with a de Sitter space-time.

We argued that to get nontrivial time-dependent solutio
~i.e., unrelated by coordinate reparametrization to a st
solution!, the starting point for the deformation must be
gravitational dual to a nonconformal gauge theory. We d
cussed two examples of such deformations: the little str
theory and the KT model. In both cases, conformal inva
ance is broken by considering~adding! NS5- ~D5-! branes.
We argued that the expansion of the background geometr
the gauge theory side serves as an infrared cutoff in the
supergravity. In particular, for a sufficiently high expansi
rate this resolves a naked singularity of the KT solution@6#.

There are several interesting future directions. T
vacuum state in an accelerating universe has a non
Gibbons-Hawking temperatureTGH5H/2p, analogous to
the Hawking temperature of a black hole. The KT deform
tion discussed here is very similar to the finite temperat
deformation of the KT solution considered in@13,15#. By
comparing a critical expansion rate for theHÞ0 deforma-
tion of the KT model with the critical temperature for it
finite-temperature deformation, one should be able to re
the Gibbons-Hawking temperature of the expanding unive
with the temperature of the gauge theory in the stand
near-extremal deformation.

Another interesting question is the dynamical stability
the deformed backgrounds discussed here. Since de S
deformation breaks supersymmetry, one has to worry ab
potential tachyons. The similarity of this deformation wi
the near-extremal one suggests that the KT model is likel
be stable, while there could be a tachyon in the LST de
mation, in analogy with@11#. It would be nice to explicitly
verify these conjectures. In the case of the KS deformat
at least for small values of the Hubble parameter, we exp
to get a stable nonsupersymmetric background. The a
ment is identical to the one given in@16#: the original super-
gravity background had a mass gap, and thus a small de
mation should not produce a tachyon.

In this paper weonly constructed de Sitter backgrounds
supergravity. It is important to understand the spectrum
5-7
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density fluctuations and the physics of D-brane probes
these geometries.

Recently, Giddings, Kachru, and Polchinski@17# studied
the embedding of the KS model in the type-IIB string co
pactifications in the context of moduli stabilization and ge
eration of large hierarchies of physical scales. It would
very interesting to explore de Sitter deformation of the
models.
O

e
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