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Clash of symmetries on the brane
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If our (311)-dimensional universe is a brane or domain wall embedded in a higher dimensional space, then
a phenomenon we term the ‘‘clash of symmetries’’ provides a new method of breaking some continuous
symmetries. A globalGcts^ Gdiscretesymmetry is spontaneously broken toHcts^ Hdiscrete, where the continuous
subgroupHcts can be embedded in several different ways in the parent groupGcts, andHdiscrete,Gdiscrete. A
certain class of topological domain wall solutions connects two vacua that are invariant underdifferently
embedded Hcts subgroups. There is then enhanced symmetry breakdown to the intersection of these two
subgroups on the domain wall. This is the ‘‘clash.’’ In the brane limit, we obtain a configuration withHcts

symmetries in the bulk but the smaller intersection symmetry on the brane itself. We illustrate this idea using
a permutation symmetric three-Higgs-triplet toy model exploiting the distinctI 2, U2 and V2spin U~2!
subgroups of U~3!. The three disconnected portions of the vacuum manifold can be treated symmetrically
through the construction of a threefold planar domain wall junction configuration, with our universe at the
nexus. A possible connection withE6 is discussed.

DOI: 10.1103/PhysRevD.65.125013 PACS number~s!: 11.27.1d
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I. INTRODUCTION

The notion of symmetry lies at the base of modern p
ticle theory, as exemplified by the standard model. So
symmetries, such as electromagnetic gauge invariance
manifest: the zero-temperature vacuum state and all mat
systems except for superconductors exhibit the symmetr
an explicit fashion. The Glashow-Weinberg-Salam SU(2L
^ U(1)Y electroweak symmetry, on the other hand, is sp
taneously broken: the symmetry of the Lagrangian is
shared by the vacuum state. In the standard model, the
interactions of elementary Higgs bosons are responsible
making the vacuum asymmetric.

A common opinion is that spontaneous symmetry bre
ing via Higgs bosons is not completely satisfactory, beca
of the proliferation of parameters it brings. In the standa
model these are predominantly Yukawa coupling consta
while in extended theories parameters in the Higgs poten
can also abound. Hierarchies ina priori arbitrary parameter
values can also be seen as troubling. For these reasons
as an end in itself, a search for new ways of breaking sy
metries is well motivated.

The purpose of this work is not to do away with eleme
tary Higgs fields, but rather to show how they can indu
more symmetry breakdown than allowed by conventio
theory. The scope of the paper is to illustrate the basic i
through a nontrivial toy model, and then to discuss poss
future developments~especially a connection withE6).
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toner@caltech.edu

‡Email address: r.volkas@physics.unimelb.edu.au
§Email address: wali@physics.syr.edu
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In a conventional theory such as the standard model,
Higgs field configuration is assumed to be spatially homo
neous, with a vacuum expectation value derived by minim
ing the Higgs potential. However, it is well known that com
pletely stable solitonic configurations can also exist if t
vacuum manifold has the appropriate topology@1#. Although
such configurations have higher energy than the vacu
state, their topological stability allows their use as a ba
ground field. In this work, we will use domain wall configu
rations associated with spontaneously broken discrete s
metries. We will show how the symmetry group at the cen
of a domain wall can be smaller than what you get with
homogeneous vacuum configuration, through a phenome
we term the ‘‘clash of symmetries.’’ It arises when the sym
metry groupH of the vacuum manifold can be embedded
several ways within the parent groupG. The enhanced sym
metry breakdown is caused by the clash of the different
ternal orientations ofH within G. We will use theI 2, U2
andV2spin U~2! subgroups of U~3! in our toy model.

There is no observational evidence for a domain w
Higgs background of the conventional type in o
(311)-dimensional universe@2#. To use the clash of sym
metries for realistic model building, we will therefore ult
mately have to identify our universe as a submanifold o
higher dimensional space@3,4#. If the submanifold is infi-
nitely thin in the extra dimensions, then it is common
called a ‘‘brane,’’ with its complement termed the ‘‘bulk.
We will identify our universe with the center of a doma
wall configuration dynamically induced by Higgs field
which exist in the bulk. The symmetry group at the center
the wall is then the symmetry group of our universe. B
taking the appropriate limit, the domain wall can be ma
infinitely thin—our universe becomes a brane. Actually,
our toy model the most theoretically appealing configurat
will be a junction of three semi-infinite walls separated fro
each other by angles of 2p/3. In this case, it seems mos

of
s:
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natural to identify our~toy! universe with the three-way in
tersection point, the nexus. We will call this the ‘‘three-s
configuration.’’1

The proposal that we live in a domain wall was made lo
ago@3#. In recent times, the study of branes and/or subma
folds has become a major activity. Motivations include stri
theory, Regge-Teitelbaum gravity and the hierarchy prob
@4#. It is interesting that our motivation to consider bra
physics is the independent argument presented above. C
bining the clash of symmetries idea with other brane-wo
ideas may be a fruitful direction for future work.

Working independently and with a completely differe
motivation, Pogosian and Vachaspati recently discovere
class of SU(N) ^ Z2 Higgs-adjoint kinks featuring the clas
of symmetries idea@6#. They consider an SU(N)-adjoint
Higgs fieldF, with Higgs potential

V~F!52m2tr~F2!1gtr~F3!

1l1tr~F4!1l2@ tr~F2!#2. ~1!

In the absence of the cubic term (g50), there is aZ2 phase
symmetry,F↔2F, which is outside SU(N) for oddN>5.
For example, in the region of Higgs-parameter space wh
SU~5! breaks to SU(3)̂ SU(2)^ U(1), theauthors find do-
main wall solutions, for which the clash of symmetries r
sults in additional symmetry breaking to SU(2)2

^ U(1)2.2

In this context, quite different from the brane-world m
tivation, our paper will present another example of this ty
of kink configuration, within a U(3)̂ S3 three-Higgs-triplet
model. The S3 symmetry is a permutation symmetry actin
on the three Higgs triplets. Like Pogosian and Vachaspati,
impose the discrete symmetry by hand, by restricting te
that may appear in the Higgs potential. We, however, util
a permutation rather than phase discrete symmetry becau
can be easily generalized to other groups and other H
representations. This is a significant difference from
Pogosian-Vachaspati scenario, and for an SU~3! model it
seems to be a necessary ingredient.3 The threefold structure
of our vacuum manifold will lead us to construct the thre
star wall-junction configuration mentioned above, an ex
cise that is also of intrinsic technical interest@5,8#.

The rest of the paper is structured as follows. In the n
section, we introduce the toy model and discuss its o
dimensional kink configurations. Section III is devoted to t
three-star configuration. We describe a possible connec
with E6 in Sec. IV. Conclusions and future directions a

1Although our toy model will not incorporate gravity, it is rea
suring to note that gravity can be localized to such a brane junc
in the Randall-Sundrum scenario, provided a single fine-tuning
tween the cosmological constant and brane tensions is satisfied@5#.

2It is interesting to note that stable wall structures can exist eve
a discrete symmetry is explicitly broken@7#. This can apply for wall
configurations having an everywhere non-vanishing Higgs field
condition satisfied by the cases of interest in this paper.

3It turns out that the exact SU~3! analogue of the Pogosian
Vachaspati kink does not exist because of an accidental SO~8! sym-
metry.
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aired in Sec. V. The Appendixes establish that the dom
walls exhibiting the clash of symmetries will be global
stable in a region of parameter space.

II. TOY MODEL AND ITS ONE-DIMENSIONAL KINK
SOLUTIONS

A. The Higgs potential and the vacuum manifold

Consider a model with three Higgs tripletsF1,2,3 interact-
ing through the potential

V52m2~F1
†F11F2

†F21F3
†F3!

1k~F1
†F11F2

†F21F3
†F3!21l1~F1

†F1F2
†F2

1F2
†F2F3

†F31F3
†F3F1

†F1!1l2~F1
†F2F2

†F1

1F2
†F3F3

†F21F3
†F1F1

†F3!. ~2!

The symmetry group of this potential is

G5Gctŝ Gdiscrete

5SU~3! ^ U~1!1^ U~1!2^ U~1!3^ S3, ~3!

where the U~1!’s are individual overall phase symmetries f
theF ’s. The diagonal subgroup of the U~1!’s can be merged
with SU~3! to form U~3!, so Gcts5U(3)^ U(1)2 also. The
role of the discrete permutation symmetry S3 is to provide
topological stability for domain wall configurations. Thel2
term ensures that the continuous symmetry has a com
SU~3! for all three multiplets, and the sign ofl2 will cause
kinks displaying the clash of symmetries~‘‘asymmetric
kinks’’ ! to have a different energy from those that do n
~‘‘symmetric kinks’’!. We show below that the asymmetr
kink has lower energy ifl2.0, while the symmetric kink
has lower energy ifl2,0.

The U~1! phase symmetries are not germane to our an
sis. The potential in Eq.~2! was chosen purely for simplicity
By including terms such asF1

†F21F2
†F31F3

†F11H.c.,
the symmetry group can be reduced to the more eleg
U(3)^ S3. Inclusion of such terms would change the deta
of our analysis but not its spirit.

To simplify the exposition, we setk51 in Eq. ~2! by
rescaling the field and spacetime coordinates and measu
mass-dimension quantities in units ofumu, which is equiva-
lent to settingm251.

A straightforward analysis shows that there exist th
degenerate global minima of the form

Vacuum I: ^F1
†F1&5

1

2
, ^F2

†F2&5^F3
†F3&50, ~4!

Vacuum II: ^F2
†F2&5

1

2
, ^F1

†F1&5^F3
†F3&50,

~5!

Vacuum III: ^F3
†F3&5

1

2
, ^F1

†F1&5^F2
†F2&50,

~6!
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CLASH OF SYMMETRIES ON THE BRANE PHYSICAL REVIEW D65 125013
for the parameter region

l1.0, l11l2.0. ~7!

~Positivity of the potential requires the weaker conditio
l1.23 andl11l2.23.! Each global minimum of Eqs
~4!–~6! induces the spontaneous breakdowns

S3→S2>Z2,

U~3! ^ U~1!2→U~2! ^ U~1!2. ~8!

At the level of global vacuum configurations, aGcts transfor-
mation can always be used to bring the nonzero^F i& into the
form (1/A2,0,0)T. If this is done, then the unbroken U~2! and
S2 subgroups act on the second and third entries of the
lets. The vacuum manifold consists of three disconnec
pieces labeled I–III in Eqs.~4!–~6!, with each piece being
the set of allGcts transforms of (1/A2,0,0)T for the nonvan-
ishing ^F i&.

B. Clash of symmetries

A kink or one-dimensional domain wall configuration in
terpolates between elements of I and II, or II and III, or I a
III, with the vacuum states reached at spatial infinity,z5
6`. ~We will call z the coordinate perpendicular to the wa
For the purposes of the following mathematics, it does
matter how many additional spatial directions exist.! For the
sake of the example, focus on I↔II kinks. Let us use our
SU~3! freedom to set the vacuum I state atz52` to be

^F1&5S 1

A2
,0,0D T

, ^F2&5~0,0,0!T,

^F3&5~0,0,0!T. ~9!

The unbroken symmetry there is clearly U(2)I , where
U(2)I,II,III is defined to act on the (23,31,12) entries of t
triplets.4 A priori, the vacuum II state atz51` can be any
element of piece II of the vacuum manifold. While all su
kinks are in the same topological class, they are energetic
distinguished by thel2 term in V. Only the lowest energy
member of the class is guaranteed topological stability~see
below!.

The extreme cases are given by the symmetric kink
which

F1~2`!5S 1

A2
,0,0D T

, F2~2`!5~0,0,0!T,

F1~1`!5~0,0,0!T, F2~1`!5S 1

A2
,0,0D T

,

~10!

and by the asymmetric kink for which

4In the old days these were calledV-spin,U-spin andI-spin.
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F1~2`!5S 1

A2
,0,0D T

, F2~2`!5~0,0,0!T,

F1~1`!5~0,0,0!T, F2~1`!5S 0,
1

A2
,0D T

,

~11!

with F3(z)50 for both cases.
The basic clash of symmetries phenomenon is displa

by the asymmetric kink. The symmetric kink has U(2)I un-
broken for allz. For the asymmetric kink, thez52` sym-
metry is U(2)I while the z51` symmetry is thedifferent
group U(2)II . At all z in between, the symmetry is reduce
to

H IùII5U~2! IùU~2! II5U~1! III , ~12!

where U(1)III multiplies the third entry of eachF by the
same phase.@The groups U(1)I,II are similarly defined
through cyclic permutations of the subscripts, and all th
should not be confused with U(1)1,2,3.# Because the symme
try groups atz56` have two additional U~1! factors given
our simplified Higgs potential, the unbroken symmetry f
uzu,` is actually U(1)III ^ U(1)2. The extra generators ar
easily determined, and we will not display them.

C. Kink profiles

To derive the kink profiles, one solves for stat
z-dependent solutions to the Euler-Lagrange equatio
Adopting the ansatz

F15~f1,0,0!T, F25~0,f2,0!T, F35~0,0,f3!T,
~13!

with f1 , f2 andf3 real, the equations for the asymmetr
kinks are

f195f1@2112f1
21~21l1!~f2

21f3
2!#

and cyclic permutations, ~14!

where the prime denotes differentiation with respect toz. We
justify the ansatz of Eq.~13! in Appendix A, where we shall
see that it is both necessary and sufficient to obtain sta
domain wall configurations.

Returning to our I↔II example, we setf350, and re-
write the two remaining equations in terms of

S[f11f2 , A[f12f2 ~15!

to obtain

S952S1S 11
l1

4 DS31S 12
l1

4 DSA2, ~16!

A952A1S 11
l1

4 DA31S 12
l1

4 DAS2.

~17!
3-3



ic

-
n

file

ly
fo

ly

1

tu
r

o

ge
or-

3
hat
ffi-

the

on

ally,

tion

A. DAVIDSON, B. F. TONER, R. R. VOLKAS, AND K. C. WALI PHYSICAL REVIEW D65 125013
Notice that the value ofl2 has no effect on the asymmetr
kink profile.

The special parameter pointl154 sees the equations de
couple. The solutions with the correct boundary conditio
are then simply

S~z!5
1

A2
, ~18!

A~z!52
1

A2
tanh

z

A2
, ~19!

or, equivalently,

f1~z!5
1

2A2
S 12tanh

z

A2
D , ~20!

f2~z!5
1

2A2
S 11tanh

z

A2
D . ~21!

The hyperbolic tangent function is the archetypal kink pro
because it is analytically simple. Ifl1Þ4, then kink solu-
tions still exist but can usually be found numerically on
~there is another analytic solution describing a stable kink
l15` which we discuss below!. A feature of the hyperbolic
tangent solution is thatf1,2(z)1f1,2(2z)51/A2.

The brane limit corresponds to the wall being infinite
thin. To access it, the mass parameterumu must be reinstated
and taken to infinity (z becomesumuz). In this limit

f1~ umuz!→ Q~2z!

A2
, f2~ umuz!→ Q~1z!

A2
, ~22!

where Q is the Heaviside function. The function (
1tanhumuz)/2 is a ‘‘regularization’’ ofQ(z).

One can push the analysis a little further by using per
bation theory. Lete[l124 be a small expansion paramete
Writing

S~z!5
1

A2
1e dS~z!,

A~z!52
1

A2
tanh

z

A2
1e dA~z!,

~23!

substituting in Eqs.~16! and~17!, equating termsO(e), and
solving the resulting equations subject to the boundary c
ditions, we find that

dS~z!5
1

8A2
FA2z sinhA2z

22 coshA2z lnS 2 cosh
z

A2
D 11G , ~24!
12501
s
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n-

dA~z!5
z

32S tanh2
z

A2
21D . ~25!

These results give an indication of how the profiles chan
when one is away from the special point but in its neighb
hood. Note thatf1,2(z)1f1,2(2z)51/A2 no longer holds.
Examples of kink solutions are exhibited in Figs. 1, 2 and
for l150.1, 4 and 100, respectively. We have confirmed t
the perturbative results describe the curves well for su
ciently smalle.

We next calculate the energy per unit areas of the wall,
which is given by

s5E
2`

1`

dzF ~f18!21~f28!21V~f1 ,f2!1
1

4G , ~26!

where the 1/4 subtracts off the zero point energy. At
special parameter pointl154, one obtains

s5
A2

3
. ~27!

In Appendix B we use this result to show that the soluti
exhibited in Eqs.~20! and ~21! is globally stable. For other
parameter values, the energy can be computed numeric
as displayed in Fig. 4.

As mentioned above, there is a second analytic solu
valid for all l1,

FIG. 1. Asymmetric kink profiles forl150.1. The solid line
depictsf1, and the dashed linef2.

FIG. 2. As for Fig. 1 but withl154.
3-4
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CLASH OF SYMMETRIES ON THE BRANE PHYSICAL REVIEW D65 125013
f2~z!5H ~1/A2!tanhz/A2 for z.0,

0 for z,0,
~28!

with f1(z)5f2(2z). This solution has energy per unit are
s52A2/3 and though perturbatively unstable for all fini
l1, it is stable in thel1→` limit. This means that 2A2/3
provides an analytic upper bound ons for all values ofl1
and, in particular, establishes the existence of finite-ene
solutions.

It is apparent from Fig. 4 thats is monotonically increas-
ing with l1. We now establish this result analytically. Co
sider a certain value ofl1.0, for which the kink solution is
F15(f1,0,0)T, F25(0,f2,0)T. The l1 term in V is then
simply l1f1

2f2
2, which is non-negative for allz. Therefore if

we reduce the value ofl1, the same configuration~which
now no longer solves the Euler-Lagrange equations! has
lower energy per unit area. But the true solution by definit
solves the Euler-Lagrange equations, so it necessarily ha
even lower energy, energy and action minimization be
equivalent for static configurations.

With these results in hand, we may compare the asymm
ric kinks with their symmetric counterparts. To do that, w
simply change the ansatz by movingf2 from the second to
the first entry inF2. The Euler-Lagrange equations are t
same as Eq.~14!, save for the substitution

l1→l11l2 . ~29!

FIG. 3. As for Fig. 1 but withl15100.

FIG. 4. Energy per unit area as a function ofl1 for asymmetric
kinks. For symmetric kinks, replacel1 by l11l2.
12501
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The solutions look very similar, except that the special ‘‘h
perbolic tangent point’’ is nowl11l254.

So, for given values ofl1 and l2 obeying Eq.~7! there
are both asymmetric and symmetric kink solutions. Wh
one is energetically favored and therefore stable? We im
diately observe that it depends simply on which ofl1 or
l11l2 is larger, i.e. on the sign ofl2. The clash of symme-
tries is energetically favored ifl2.0 and energetically dis-
favored if l2,0.

III. PLANAR WALL-JUNCTION CONFIGURATION

A. Overview and numerical solution

Our toy model was chosen to produce a vacuum manif
of three disconnected pieces I–III as per Eqs.~4!–~6!. ~The
threefold structure is motivated byE6, see Sec. IV below.!
Each one-dimensional kink configuration, however, ma
use of only two out of the three possibilities. In the conte
of model building, even if we are only playing with toys a
this stage, it seems more natural to use all three pie
equally. Perhaps more importantly, clash-induced symm
breaking will be enhanced through the presence of all th
vacuum types.

To that end, we search for a domain wall junction co
figuration as depicted in Fig. 5. Three semi-infinite wa
meet at a point, the origin or nexus, at angles of 2p/3, di-
viding the two-dimensional plane into three sectors labe
I–III. Let ( r ,u) be the usual plane polar coordinates. W
impose boundary conditions in the obvious way: for a giv
u in sector I, the configuration is required to tend to
vacuum I state asr→`, with corresponding conditions in
sectors II and III. Away from the nexus, and close to a wa
we expect the configuration to tend to a one-dimensio
kink as a function of the coordinate perpendicular to t
wall. Let us call this setup a ‘‘three-star.’’ To calculate it, on
must solve the equations of motion, this time using the tw
dimensional Laplacian in place ofd2/dz2 on the left-hand
side of Eq. ~14!, static andz-independent solutions bein
sought.

FIG. 5. The three-star domain wall junction configuration. Ea
wall makes a 2p/3 angle with the neighboring walls. In sector I,
vacuum I state is reached asymptotically; correspondingly in sec
II and III. The two coordinate systems, (x,y) and (u,v,w), are
indicated.
3-5
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The brane limit is most conveniently written in terms
the Mandelstam-like variables~see Fig. 5!,

u5x, v52
1

2
x1

A3

2
y,

w52u2v52
1

2
x2

A3

2
y, ~30!

as

f1→Q~u!Q~2w!,

f2→Q~v !Q~2u!,
s

e
am
th

th
ty

e
on
W
n

n

ta

12501
f3→Q~w!Q~2v !. ~31!

@It is tempting to ‘‘regularize’’ this configuration by replacin
eachQ with a (11tanh)/2. We have checked that this su
gestive form captures the spirit of the three-star we h
produced numerically, but not its detail.#

There are three different types of three-stars: totally sy
metric, totally asymmetric, and mixed. The symmetric s
has the asymptotic vacuum states being cyclic permutat
of @^F1&5(1/A2,0,0)T, ^F2&5(0,0,0)T, ^F3&5(0,0,0)T#.
There is no clash of symmetries anywhere for this case:
unbroken symmetry is U(2)I everywhere.

The configuration we want is the totally asymmetric st
defined by the vacuum states:
Sector I: ^F1&5~1/A2,0,0!T, ^F2&5~0,0,0!T, ^F3&5~0,0,0!T,

Sector II: ^F1&5~0,0,0!T, ^F2&5~0,1/A2,0!T, ^F3&5~0,0,0!T,

Sector III: ^F1&5~0,0,0!T, ^F2&5~0,0,0!T, ^F3&5~0,0,1/A2!T.
n

u-
Ignoring the superfluous U~1!’s, the clash of symmetries ha
the pattern:

H IùII5U~2! IùU~2! II5U~1! III along wall III,

H IIùIII 5U~2! IIùU~2! III 5U~1! I along wall I,

H III ùI5U~2! III ùU~2! I5U~1! II along wall II.

At the nexus, the symmetry is completely destroyed:

H IùIIùIII 5U~2! IùU~2! IIùU~2! III 5$1%. ~32!

The totally asymmetric star is energetically favored ov
the mixed and symmetric stars for the same region of par
eter space in which the asymmetric kink is favored over
symmetric one. We place our toy (311)-dimensional uni-
verse at the nexus.

Figures 6, 7 and 8 show thef1 , f2 andf3 components
of the numerically computed asymmetric three-star for
parameter pointl154. Figure 9 displays the energy densi
of the three-star as a function ofx andy. We expect that the
three-star, defined by the 2p/3 angular separation of th
walls, is the lowest energy three-wall junction configurati
because it minimizes the total length of the domain walls.
have checked this numerically: in our simulations, junctio
with unequal angles between the walls relax to the 2p/3
angular configuration we describe.

B. Partial analytical results

We now present some analytical results for two differe
asymptotic regimes: off-wall and near-wall, both at larger.

Note first, though, that the threefold symmetry of the s
implies that if
r
-

e

e

e
s

t

r

f1~r ,u!5c~r ,u! ~33!

then

f2~r ,u!5cS r ,u2
2p

3 D , f3~r ,u!5cS r ,u1
2p

3 D .

~34!

Also, the functionf1 must be symmetric under the reflectio
v→2v, f2 underw→2w, andf3 underu→2u. This is
because a sector I vacuum preserves theF2↔F3 discrete
symmetry, and so on.

FIG. 6. Thef1 component of the asymmetric three-star config
ration for l154 as a function ofx andy.
3-6
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1. Large r, off-wall behavior

At large r, put

f1~r ,u!5 f ~u!1e~r ,u!, ~35!

where

f ~u!5H 1/A2 in sector I,

0 elsewhere,
~36!

and e(r ,u)!1. Equation ~34! is then used to determin
f2,3(r ,u). The perturbative requirement that the functi
e(r ,u) be small is met off-wall and at larger.

Substituting Eq.~35! into the Euler-Lagrange equation
and equating like powers ofe one obtains to zeroth order

1

r 2

d2f

du2
~u!

5 f ~u!H 2112 f ~u!21~21l1!F f S u2
2p

3 D 2

1 f S u1
2p

3 D 2G J , ~37!

and to first order

F ]2

]r 2
1

1

r

]

]r
1

1

r 2

]2

]u2Ge~r ,u!

5H 2116 f ~u!21~21l1!F f S u2
2p

3 D 2

1 f S u1
2p

3 D 2G J e~r ,u!12~21l1! f ~u!F f S u2
2p

3 D
3eS r ,u2

2p

3 D1 f S u1
2p

3 D eS r ,u1
2p

3 D G . ~38!

The zeroth order equation is satisfied by thef defined in Eq.
~36!.

FIG. 7. Thef2 component of the asymmetric three-star config
ration for l154 as a function ofx andy.
12501
The right-hand side of Eq.~38! must be treated on a secto
by sector basis. It gives rise to

F ]2

]r 2
1

1

r

]

]r
1

1

r 2

]2

]u2Ge~r ,u!

5H 2e~r ,u! for u in sector I,

l1

2
e~r ,u! elsewhere,

~39!

remembering that we must stay off-wall.
To solve Eq.~39!, we look for separated variable solu

tions:

e~r ,u!5R~r !T~u!. ~40!

Substituting in Eq.~39! produces

T9~u!52n2T~u!, ~41!

R9~r !1
1

r
R8~r !5S k21

n2

r 2 D R~r !, ~42!

wherek252 for u in sector I andk25l1/2 otherwise, and
we definek to be positive. The separation constant isn2, and
we require it to be positive. Equation~41! is solved by
T(u)5Tn(u)} cos(nu1d), where periodicity inu requiresn
to be an integer, andd is determined by requiring symmetr
underv→2v ~if u50 is thev50 line bisecting sector I,
thend50).

The radial equation~42! has the general solution

R~r !5c1I n~kr !1c2Kn~kr ! ~43!

wherec1,2 are constants andI n andKn are modified Besse
functions. The boundary conditions require us to choose

R~r !}Rn~r ![Kn~kr !, ~44!

which, for all n, has asymptotic behavior

- FIG. 8. Thef3 component of the asymmetric three-star config
ration for l154 as a function ofx andy.
3-7
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Rn~r !;
e2kr

Akr
. ~45!

Writing the general solution to Eq.~39! as a sum overn of
Rn(r )Tn(u) with undetermined coefficients, we find that

e~r ,u!;
e2kr

Akr
F~u!, ~46!

whereF is an undetermined angular function. The nature
F may well be different in sectors II and III from sector
just as the inverse decay lengthk takes different values if
l1Þ4. Notice thatl154 is the same special point that pr
duces hyperbolic tangent kinks. We saw earlier that th
kinks have the special propertyf1,2(z)1f1,2(2z)51/A2
~taking the I↔II case!. The equality of thek’s on both sides
of the wall is a similar special property for the star config
ration.

2. Large r, near-wall behavior

We will now explore near-wall behavior far from th
nexus, using wall II as our example. To begin with, the r
evant coordinates arer, the radial distance directly along th
wall, andw, perpendicular to the wall.

We again use a perturbative approach, writing

f1~r,w!5g~w!1d~r,w!, ~47!

f2.0, ~48!

f3~r,w!5g~2w!1d~r,2w!, ~49!

whered is small. Thew-parity relationship betweenf1 and
f3 is dictated by the threefold and reflection symmetries
the configuration. Although thef2 field is of orderd(r,w)
along wall II at larger, it enters quadratically into the Eule
Lagrange equations forf1,3 so it can be set to zeroa priori.

Note that the regime we explore here is physically se
rated from the off-wall regime probed above, even thou
both lie far from the nexus. If we setw to some finite value

FIG. 9. The energy density of the asymmetric three-star confi
ration for l154 as a function ofx andy.
12501
f

e

-

-

f

-
h

and taker→`, then the angular distance from the wall go
to zero:Du;w/r→0. By contrast, the off-wall region re
quires finiteDu.

Substitution of Eqs.~47!–~49! into the Euler-Lagrange
equations yields the zeroth order result

g9~w!5g~w!@2112g~w!21~21l1!g~2w!2#. ~50!

By symmetry, a similar equation withw→2w also holds.
Defining

S0~w!5g~w!1g~2w!, A0~w!5g~w!2g~2w!,
~51!

we recover Eqs.~16! and ~17!. This shows very clearly tha
the perpendicular near-wall behavior far from the origin
exactly the appropriate one-dimensional kink.

The first order analysis depends on the functiong. To
proceed analytically, we restrict the following to the spec
l154 case, so thatg(w)5@11tanh(w/A2)#/2A2. Setting

S[f11f35S0~w!1dS,

A[f12f35A0~w!1dA, ~52!

substituting in the Euler-Lagrange equations, and equa
terms to first order indS anddA we obtain:

¹2~dS!5dS~2116S0
2!52dS, ~53!

¹2~dA!5dA~2116A0
2!, ~54!

where we have also usedS0(w)51/A2.
We now switch to polar coordinates (r ,h) where tanh

5w/r andr 25r21w2. Searching for separated variable s
lutions in these coordinates, we set

dS~r ,h!5P~r !@W~h!1W~2h!#,

dA~r ,h!5P~r !@W~h!2W~2h!#. ~55!

Substitution in Eq.~53! then immediately yields

P9~r !1
1

r
P8~r !5S 21

n2

r 2 D P~r !, ~56!

wheren2.0 is the separation constant. We conclude tha

P~r !;
e2A2r

AA2r
, ;n ~57!

which matches exactly the asymptotic radial behavior,
~45!, found earlier in the off-wall regime.

Consider now Eq.~54!. Using Eq. ~56! and the known
function g, definingD(h)5W(h)2W(2h), we obtain

D9~h!

r 2D~h!
5232

n2

r 2
13 tanh2S r sinh

A2
D . ~58!

-

3-8
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CLASH OF SYMMETRIES ON THE BRANE PHYSICAL REVIEW D65 125013
For larger, the term depending on the separation constann2

is suppressed and can be omitted. For smallh, we can
change variables tow5rh to get

D9~w!

D~w!
'2313 tanh2

w

A2
. ~59!

The solution with the correct antisymmetry inw is then

D~w!}F3 tanh
w

A2
1

w

A2
S 123 tanh2

w

A2
D G . ~60!

The collection of results above demonstrates that one
make some progress in understanding the three-star con
ration analytically, even though an exact analytic solution
at present lacking.

IV. DISCUSSION

Our toy model was chosen not only to be mathematica
simple, but also because it can serve as a prototype f
more realistic theory motivated by E6. While it is beyond the
scope of this paper to explore this connection in detail,
would like to comment and speculate on possible future
rections.

The most direct connection is with the maximal SU(33

subgroup of E6, augmented by a discrete Z3 symmetry that
rotates the SU~3! factors. The complex, anomaly-free repr
sentation

~3,3,1! % ~1,3,3! % ~3,1,3!, ~61!

which arises from the decomposition of the 27 of E6, natu-
rally generalizes the three triplet Higgs boson content of
toy model. As is well known, one generation of quarks a
leptons can be placed in a similar representation. It would
interesting to apply the clash of symmetries idea in this c
text, to see what symmetry breaking patterns can be
duced.

In the future pursuit of serious brane model-buildin
there is no reason to restrict Higgs potentials to quartic fo
If, for instance, we have a three-star configuration in mi
then the underlying spacetime is at least 511 dimensional,
where renormalizability requires at most cubic potenti
~which are necessarily unbounded from below and thus
sumably unacceptable!. The question of renormalizatio
should sensibly be deferred until such time as a connec
with a proper theory of quantum gravity can be made.
recognize that many string-theoretic brane and brane ju
tion scenarios have already been proposed@9#.

If the full E6 is considered rather than just the SU(33

subgroup, then an important issue is domain wall stabi
The Z3 symmetry of the reduced theory, useful for wall st
bility, is then presumably embedded within the continuo
E6 symmetry. According to the general understanding of
fect formation, the breakdown of E6 to, first, SU(3)3^ Z3,
and then to some smaller subgroup, will imply the existen
of unstable vortex-wall hybrid structures rather than top
logically stable walls. While it may be possible for the inst
12501
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bility time scale to be very long, a bulk scalar field in the 2
of E6 offers another natural possibility. Recognizing that s
glets arise in the products 27̂27 and 27̂ 27^ 27, we see
that a general Higgs potential will respect aZ3 phasesym-
metry that may not be contained within E6.

The number ‘‘3’’ plays a prominent role in the grou
theory of E6: there are three SU~3! factors in the maximal
subgroup under discussion, and there are also three wa
embed electric chargeQ within the group. The latter fact ha
been remarked on before@10#, but perhaps it has not receive
the attention it deserves. From the perspective of the s
group chain E6→SO(10)̂ U(1)9→SU(5)^ U(1)8^ U(1)9,
the three electric charge assignments correspond to the
dard case whereQ lies within SU~5!, the flipped SU~5! case
where U(1)8 is also involved, and the flipped SO~10! case
where U(1)9 enters the definition ofQ. Now, there is another
long-standing mystery pertaining to the number three:
apparently superfluous replication of quark-lepton famili
The lack of a compelling explanation despite years
thought suggests that new approaches should be serio
considered. We speculate that the threeQ embeddings, the
three-star configuration derived from the triply degener
vacuum structure, and threefold quark/lepton family replic
tion may be connected.

V. CONCLUSION

Using a model field theory comprising three U~3! Higgs
triplets interacting through a permutation symmetric qua
potential, we have shown that domain wall and wall-juncti
solutions exist displaying the ‘‘clash of symmetries.’’ Th
symmetry breaking mechanism goes beyond standard s
taneous breaking by exploiting different embeddings of i
morphic subgroups in the parent group. Our example u
the I-, U- and V-spin U~2! subgroups of U~3!. We found
topologically stable domain wall solutions which asympto
to vacuum states corresponding to differently embedded
broken U~2! subgroups on opposite sides of the wall. No
asymptotically, the symmetry is further broken to the int
section of the asymptotically unbroken subgroups. T
phenomenon has been previosuly displayed in a differ
model and with different motivations in Ref.@6#. We propose
that such a kink-like configuration in the thin-wall or bran
limit may exist in a large extra dimension, with our univer
identified with the brane. In that case, some of the symme
breaking in our universe may be due to the clash of symm
tries. Increasing the number of spatial dimensions~notion-
ally! to five, we numerically constructed a wall-junctio
three-star configuration that exploits the clash phenome
to the full, with the joint or nexus identified with our~toy!
universe. Future work is motivated on several fronts: a p
sible connection with E6, a possible connection between th
three-star and threefold family replication, and degree
freedom localization to the brane.
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APPENDIX A: JUSTIFICATION OF THE KINK ANSATZ

In this appendix, we justify the asymmetric kink ansa
used in Sec. II C. We consider the casel2.0 and show that
a globally stable kink must fit this ansatz, Eq.~13!. ~Analo-
gous arguments show that the symmetric kink is globa
stable forl2,0.!

1. The two-triplet model

We begin by considering a simpler model with just tw
triplets and an exchange discrete symmetry. The Higgs
tential is obtained from Eq.~2! by takingF350.

Consider a general trial solution of the form

F i~z!5„f i ,1~z!,f i ,2~z!,f i ,3~z!…T, ~A1!

with i 51,2,3, which satisfies the asymmetric boundary c
ditions:

F1~2`!5S 1

A2
,0,0D T

, F2~2`!5~0,0,0!T,

F1~1`!5~0,0,0!T, F2~1`!5S 0,
1

A2
,0D T

.

~A2!

Define

u i5Af i ,1* f i ,11f i ,2* f i ,21f i ,3* f i ,3, ~A3!

and consider a second trial solution of the form

Q1~z!5„u1~z!,0,0…T, ~A4!

Q2~z!5„0,u2~z!,0…T.

We will show that the configuration of Eq.~A5! has energy
less than or equal to the energy of the initial trial solution
Eq. ~A1!. It is clear that this configuration satisfies th
boundary conditions.

Consider first the potential energy densityV@F1 ,F2#.
Clearly F1

†F15Q1
†Q1 andF2

†F25Q2
†Q2, so we need only

consider the term in the potential dependent onl2. But if
l2.0, then this term is positive forF1,2 of the form of Eq.
~A1! but zero for the configuration of Eq.~A4!. Thus
V@Q1 ,Q2#<V@F1 ,F2#.
12501
f

r

,

y

o-

-

f

We now turn to the kinetic energy densityT@Q1 ,Q2#:

(
i

Q i8
†Q i8

5(
i

~u i8!2

5(
i

1

4u i
2 ~f i ,1* f i ,18 1f i ,2* f i ,28 1f i ,3* f i ,38 1c.c.!2

<(
i

1

u i
2 ~ uf i ,1uuf i ,18 u1uf i ,2uuf i ,28 u1uf i ,3uuf i ,38 u!2

<
~ uf i ,1u21uf i ,2u21uf i ,3u2!

u i
2 ~ uf i ,18 u21uf i ,28 u21uf i ,38 u2!

5(
i

F i8
†F i8 , ~A5!

by the Cauchy-Schwarz inequality. SoT@Q1 ,Q2#
<T@F1 ,F2#, also.

2. The three-triplet model

We now add the third triplet to the model. Staying wi
l2.0 and applying the arguments of the previous section
suffices to consider a trial solution of the form

F1~z!5@f1~z!,0,0#T,

F2~z!5@0,f2~z!,0#T,

F3~z!5@0,0,f3~z!#T, ~A6!

with f i real. Note that the boundary conditions onf3 re-
quire it to vanish asymptotically. We now establish that th
trial solution has energy greater than or equal to the alte
tive trial solution,

Q1~z!5$A@f1~z!#21@f3~z!#2,0,0%T,

Q2~z!5„0,f2~z!,0…T,

Q3~z!5~0,0,0!T. ~A7!

Observe thatj(z)[A@f1(z)#21@f3(z)#2 obeys the correct
boundary conditions. Now, the kinetic energy density due
j obeys (j8)2,(f18)

21(f38)
2 by the Cauchy-Schwarz in

equality. In the potential energy density function, we ne
only consider thel1 term. For trial solution Eq.~A6! this
term is l1(f1

2f2
21f2

2f3
21f3

2f1
2), while for trial solution

Eq. ~A7! it is l1(j2f2
2)5l1(f1

2f2
21f3

2f2
2). The latter is

obviously smaller than the former.
So globally stable solutions in the two-triplet model a

also globally stable in the full three-triplet model.
3-10
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APPENDIX B: GLOBAL STABILITY OF THE l1Ä4
ANALYTIC SOLUTION

Consider the special parameter pointl154. We prove
global stability of the analytic solution, Eqs.~20! and ~21!,
by Bogomolnyi’s method@11#. The energy densitye@f1 ,f2#
of any solution fitting the ansatz given in Eq.~13! is

e@f1 ,f2#5f18
21f28

21V~f1 ,f2!1
1

4
~B1!

5S f181f1
21f2

22
1

2D 2

1~f2812f1f2!2

1
d

dzS f12
2

3
f1

322f2
2f1D . ~B2!
r
e,

.
ai
;

tt
v.

Tr
. A

s,

12501
The first two terms of this equation are non-negative, so
total kink energy is

E
2`

`

e@f1 ,f2#dz>E
2`

`

dz
d

dzS f12
2

3
f1

322f2
2f1D

5
A2

3
, ~B3!

where we have substituted for the boundary conditio
Since the analytic solution given in the main text, Eq.~27!,
saturates this lower bound, it is globally stable.
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