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If our (3+1)-dimensional universe is a brane or domain wall embedded in a higher dimensional space, then
a phenomenon we term the “clash of symmetries” provides a new method of breaking some continuous
symmetries. A global «® GgiscreteSYmmetry is spontaneously brokenH@® H giscrete Where the continuous
subgroupH s can be embedded in several different ways in the parent g&up andH giscrets< Giscrete A
certain class of topological domain wall solutions connects two vacua that are invariant difielemtly
embedded s subgroups. There is then enhanced symmetry breakdown to the intersection of these two
subgroups on the domain wall. This is the “clash.” In the brane limit, we obtain a configurationHyjth
symmetries in the bulk but the smaller intersection symmetry on the brane itself. We illustrate this idea using
a permutation symmetric three-Higgs-triplet toy model exploiting the distirct U— and V—spin U?2)
subgroups of (B). The three disconnected portions of the vacuum manifold can be treated symmetrically
through the construction of a threefold planar domain wall junction configuration, with our universe at the
nexus. A possible connection witkg is discussed.

DOI: 10.1103/PhysRevD.65.125013 PACS nuniderll.27+d

[. INTRODUCTION In a conventional theory such as the standard model, the
Higgs field configuration is assumed to be spatially homoge-
The notion of symmetry lies at the base of modern parneous, with a vacuum expectation value derived by minimiz-
ticle theory, as exemplified by the standard model. Soméng the Higgs potential. However, it is well known that com-
symmetries, such as electromagnetic gauge invariance, apdetely stable solitonic configurations can also exist if the
manifest: the zero-temperature vacuum state and all materigshcuum manifold has the appropriate topolddy: Although
systems except for superconductors exhibit the symmetry isuch configurations have higher energy than the vacuum
an explicit fashion. The Glashow-Weinberg-Salam SU(2) state, their topological stability allows their use as a back-
®U(1)y electroweak symmetry, on the other hand, is sponground field. In this work, we will use domain wall configu-
taneously broken: the symmetry of the Lagrangian is notations associated with spontaneously broken discrete sym-
shared by the vacuum state. In the standard model, the selfietries. We will show how the symmetry group at the center
interactions of elementary Higgs bosons are responsible fasf a domain wall can be smaller than what you get with a
making the vacuum asymmetric. homogeneous vacuum configuration, through a phenomenon
A common opinion is that spontaneous symmetry breakwe term the “clash of symmetries.” It arises when the sym-
ing via Higgs bosons is not completely satisfactory, becausenetry groupH of the vacuum manifold can be embedded in
of the proliferation of parameters it brings. In the standardseveral ways within the parent gro@ The enhanced sym-
model these are predominantly Yukawa coupling constantanetry breakdown is caused by the clash of the different in-
while in extended theories parameters in the Higgs potentiaiernal orientations oH within G. We will use thel —, U —
can also abound. Hierarchies anpriori arbitrary parameter andV—spin U2) subgroups of (B) in our toy model.
values can also be seen as troubling. For these reasons, andThere is no observational evidence for a domain wall
as an end in itself, a search for new ways of breaking symHiggs background of the conventional type in our
metries is well motivated. (3+1)-dimensional universg?]. To use the clash of sym-
The purpose of this work is not to do away with elemen-metries for realistic model building, we will therefore ulti-
tary Higgs fields, but rather to show how they can inducemately have to identify our universe as a submanifold of a
more symmetry breakdown than allowed by conventionahigher dimensional spade,4]. If the submanifold is infi-
theory. The scope of the paper is to illustrate the basic ideaitely thin in the extra dimensions, then it is commonly
through a nontrivial toy model, and then to discuss possiblealled a “brane,” with its complement termed the “bulk.”
future developmentgespecially a connection withg). We will identify our universe with the center of a domain
wall configuration dynamically induced by Higgs fields
which exist in the bulk. The symmetry group at the center of
*Email address: davidson@bgumail.bgu.ac.il the wall is then the symmetry group of our universe. By
TPresent address: Department of Physics, California Institute ofaking the appropriate limit, the domain wall can be made
Technology, Pasadena, California 91125. Email addressinfinitely thin—our universe becomes a brane. Actually, in

toner@caltech.edu our toy model the most theoretically appealing configuration
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natural to identify our(toy) universe with the three-way in- aired in Sec. V. The Appendixes establish that the domain
tersection point, the nexus. We will call this the “three-starwalls exhibiting the clash of symmetries will be globally
configuration.™ stable in a region of parameter space.

The proposal that we live in a domain wall was made long

ago[3]. In recent times, the study of branes and/or submani- ||. Toy MODEL AND ITS ONE-DIMENSIONAL KINK

folds has become a major activity. Motivations include string SOLUTIONS
theory, Regge-Teitelbaum gravity and the hierarchy problem ) ) _
[4]. It is interesting that our motivation to consider brane A. The Higgs potential and the vacuum manifold

physics is the independent argument presented above. Com- Consider a model with three Higgs triplebs, , 5 interact-
bining the clash of symmetries idea with other brane-worlding through the potential
ideas may be a fruitful direction for future work.
Working independently and with a completely different ~ V=—m(®1d,+dId,+ D ld,)
motivation, Pogosian and Vachaspati recently discovered a + + fr 2 + +
class of SUN)®Z, Higgs-adjoint kinks featuring the clash TR(P1P+ DDy + PaP3) "+ Ay (PP PP,
of symmetries ided6]. They consider an SW)-adjoint Lol TPt Pl Do)+ + +
Higgs field®, with Higgs potential D203t Dabs®rPr) + Ao(D1P202P,
+ DD, P LD, + DI, DID,). 2
V(D) = —m2tr(d2) + yir(d?) S

LD + A [tH(D?)]2. 2 The symmetry group of this potential is

GC=G4® Gy
In the absence of the cubic terny£0), there is &, phase cts™ Pdiscrete

symmetry,®«— — ®, which is outside SU{) for odd N=5. =SU3)®@U(1);0U(1),®U(1)38S;, 3
For example, in the region of Higgs-parameter space where

SU(5) breaks to SU(3% SU(2)®U(1), theauthors find do- where the W1)’s are individual overall phase symmetries for
main wall solutions, for which the clash of symmetries re-the ®’s. The diagonal subgroup of the(l)'s can be merged
sults in additional symmetry breaking to SUE&)U(1)3.2 with SU(3) to form U(3), so Gys=U(3)@U(1)? also. The

In this context, quite different from the brane-world mo- role of the discrete permutation symmetry iS to provide
tivation, our paper will present another example of this typetopological stability for domain wall configurations. The
of kink configuration, within a U(3% S; three-Higgs-triplet ~ term ensures that the continuous symmetry has a common
model. The $ symmetry is a permutation symmetry acting SU(3) for all three multiplets, and the sign af, will cause
on the three Higgs triplets. Like Pogosian and Vachaspati, w&inks displaying the clash of symmetrieSasymmetric
impose the discrete symmetry by hand, by restricting term&inks”) to have a different energy from those that do not
that may appear in the Higgs potential. We, however, utilize(“symmetric kinks”). We show below that the asymmetric
a permutation rather than phase discrete symmetry becausekink has lower energy ik,>0, while the symmetric kink
can be easily generalized to other groups and other HiggRas lower energy ik,<0.
representations. This is a significant difference from the The U1) phase symmetries are not germane to our analy-
Pogosian-Vachaspati scenario, and for an(@Unodel it  Sis. The potential in Eq2) was chosen purely for simplicity.
seems to be a necessary ingredfefihe threefold structure By including terms such a®]d,+®ld;+dld,+H.c,,
of our vacuum manifold will lead us to construct the three-the symmetry group can be reduced to the more elegant
star wall-junction configuration mentioned above, an exerU(3)®S;. Inclusion of such terms would change the details
cise that is also of intrinsic technical inter¢5t8]. of our analysis but not its spirit.

The rest of the paper is structured as follows. In the next To simplify the exposition, we sek=1 in Eq. (2) by
section, we introduce the toy model and discuss its onerescaling the field and spacetime coordinates and measure all
dimensional kink configurations. Section Ill is devoted to themass-dimension quantities in units |ofi|, which is equiva-
three-star configuration. We describe a possible connectiolent to settingm?=1.
with Eg in Sec. IV. Conclusions and future directions are A straightforward analysis shows that there exist three

degenerate global minima of the form

Although our toy model will not incorporate gravity, it is reas-
suring to note that gravity can be localized to such a brane junction
in the Randall-Sundrum scenario, provided a single fine-tuning be-
tween the cosmological constant and brane tensions is safisfied 1

It is interesting to note that stable wall structures can exist even if  Vacuum Il:  (®1d,) =5 (Dld)=(dld,)=0,
a discrete symmetry is explicitly brok¢®d]. This can apply for wall

1
Vacuum l: (®by)=5, (®;P;)=(PiP3)=0, (4)

configurations having an everywhere non-vanishing Higgs field, a 5
condition satisfied by the cases of interest in this paper. 1

31t turns _ogt that the exa}ct SB) analogue of_the Pogosian- vacuum III: <<D£<I>3)=—, ((I)Id)ﬁz(d)%(bz):o,
Vachaspati kink does not exist because of an accidenté8)39m- 2
metry. (6)
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T
’ CI)Z(—OO):(O,O,O)T,

for the parameter region

1
CI)l(—OO)=<—,O,O

A;>0, A;+A,>0. 7) NA
(Positivity of the potential requires the weaker conditions 1 T
A>—3 andA;+A,>—3.) Each global minimum of Egs. ®,(+%)=(0,0,07, q>2(+m):<o,_,o) ,
(4)—(6) induces the spontaneous breakdowns \/E @
11
S3—$=2,,

with d5(z)=0 for both cases.
U(3)®U(1)2=U(2)@U(1)2 (8) The basic clash of symmetries phenomenon is displayed
by the asymmetric kink. The symmetric kink has U(2-
At the level of global vacuum configurationsGas transfor-  broken for allz. For the asymmetric kink, the= —« sym-
mation can always be used to bring the nonz&pg) into the  metry is U(2) while the z= +% symmetry is thedifferent
form (1/1/2,0,0)". If this is done, then the unbroker(2) and  group U(2),. At all zin between, the symmetry is reduced
S, subgroups act on the second and third entries of the tripto
lets. The vacuum manifold consists of three disconnected

pieces labeled I-1lI in Eqsi4)—(6), with each piece being Hini=U(2),NU2),=U1), (12
the set of allG transforms of (142,0,0) for the nonvan- o ]
ishing (®;). where U(1), multiplies the third entry of eacl® by the

same phase[The groups U(1), are similarly defined
through cyclic permutations of the subscripts, and all three
should not be confused with U(4) ;] Because the symme-
A kink or one-dimensional domain wall configuration in- try groups atz= =+ have two additional (L) factors given
terpolates between elements of | and II, or Il and IlI, or  andour simplified Higgs potential, the unbroken symmetry for
[ll, with the vacuum states reached at spatial infinity; |z|< is actually U(1),®U(1)2. The extra generators are
+oo, (We will call zthe coordinate perpendicular to the wall. easily determined, and we will not display them.
For the purposes of the following mathematics, it does not
matter how many additional spatial directions exifor the
sake of the example, focus om-lll kinks. Let us use our

SU(3) freedom to set the vacuum | statezat — to be To derive the kink profiles, one solves for static
zdependent solutions to the Euler-Lagrange equations.
Adopting the ansatz

B. Clash of symmetries

C. Kink profiles

(Pq)= ( i,0,0) , (®,)=(0,0,0T,

V2

(®3)=(0,00". ©)

q)l:(d)lioao)-rl ¢2:(0!¢210)T! (D3:(0’01¢3)T!
(13

with ¢,, ¢, and ¢3 real, the equations for the asymmetric
The unbroken symmetry there is clearly U(2)where kinks are
U(2),,i is defined to act on the (23,31,12) entries of the

triplets* A priori, the vacuum |l state at=+ can be any 1= pa[ —1+2¢5+(2+\1)(d5+ B3]
element of piece Il of the vacuum manifold. While all such i i
kinks are in the same topological class, they are energetically and cyclic permutations, (14)

distinguished by the\, term in V. Only the lowest energy

member of the class is guaranteed topological stabiitige where the prime denotes differentiation with respect /e

justify the ansatz of Eq13) in Appendix A, where we shall

bel_f_)rv]\g. extreme cases are given by the svmmetric kink foP€€ that it is both necessary and sufficient to obtain stable
which 9 y y domain wall configurations.

Returning to our 411 example, we setp;=0, and re-
write the two remaining equations in terms of

.
1
<P1(—°°)=(ﬁ.0.0) , Dy(—=)=(0,00T,

S=¢1tdy, A=d1— ¢ (19
1 T to obtain
Qy(+2)=(0,0,07, Dy(+»)= —2,0,0 ,
A A
(10) S'=-S+|1+ || 1~ Zl)SAZ, (16)
and by the asymmetric kink for which

M 3 M 2

A'=—A+ 1+Z A+ 1—Z AS.
“In the old days these were calld8ispin, U-spin andl-spin. (17)
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Notice that the value ok, has no effect on the asymmetric 08 . .

kink profile. 07 k& P N
The special parameter point =4 sees the equations de- 06 L J
couple. The solutions with the correct boundary conditions 05 L |

are then simply

04 - 4
1 03 b ]
S(2)=—+, (18) 02 | -
2 //
o1 - i
A(z)=— 2 tanh = (19) "o ; 0 ;5 10
\/E \/E’ z (scaled)
or. equivalentl FIG. 1. Asymmetric kink profiles fol;=0.1. The solid line
€4 Y: depicts¢,, and the dashed ling..
$1(2) ! (1 tanh 2 ) (20
1(2)= —=| L-tanh—|, z z
22 2 = 1.
V2 V2 5A(2) 32(tanr? % 1) (25)
bo(2)= i 1+tanhi). (21)  These results give an indication of how the profiles change
2\2 V2 when one is away from the special point but in its neighbor-

hood. Note thaip, {2z) + ¢,  —2) =1/y/2 no longer holds.
The hyperbolic tangent function is the archetypal kink profilegxamples of kink solutions are exhibited in Figs. 1, 2 and 3
because it is analytically simple. N;#4, then kink solu-  for \,=0.1, 4 and 100, respectively. We have confirmed that
tions still exist but can usually be found numerically only the perturbative results describe the curves well for suffi-
(there is another analytic solution describing a stable kink fogjently smalle.

)\120@ which we discuss beIO)NA feature of the hyperbolic We next calculate the energy per unit areaf the Wa”’

tangent solution is thap, »(z) + ¢1,2(—z)=1/\/§. which is given by
The brane limit corresponds to the wall being infinitely
thin. To access it, the mass parametsf must be reinstated +oo 2 o 1
and taken to infinity  becomegm|z). In this limit o= J_w dz| (1) +(P2)"+V(d1, )+ 7], (26
¢1(|m|z)_>(_z), bo(|m|z)— ®(+Z), 22 wher_e the 1/4 subtra_lcts off the zero_point energy. At the
J2 J2 special parameter point; =4, one obtains
where ® is the Heaviside function. The function (1 V2
+tanHm|2)/2 is a “regularization” of ® (2). 7= (27)

One can push the analysis a little further by using pertur-
bation theory. Lek=\;—4 be a small expansion parameter. |n Appendix B we use this result to show that the solution
Writing exhibited in Egs(20) and (21) is globally stable. For other
parameter values, the energy can be computed numerically,

1 . . .
S(2)= —— +€692), as displayed in Fig. 4.

2 As mentioned above, there is a second analytic solution
valid for all 4,
A(z) 1ch+5A() 0.8
z)=— — tanh—=+€ 5A(2), : ' ' ' '
‘/E ‘/E 0.7 e N
(23) 06 il
substituting in Eqs(16) and(17), equating term®©(e€), and 05 1
solving the resulting equations subject to the boundary con- 04 y .
ditions, we find that 03 L i
1 02 .
83(z)= —=| \2z sinhy/2z o1r T
8\/5 0 I o] 1 I
4 2 0 2 4
Z z (scaled)
—2 cosh/2zIn| 2 cosh— | +1], (24
NA FIG. 2. As for Fig. 1 but with;=4.
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0.8 T T T T ‘Wall I11 g
0.7
0.6
05 Sector II Sector I
0.4 v T~y
0.3
0.2
0.1 U,z
0
z (scaled) w Wall 1T
FIG. 3. As for Fig. 1 but withx ; =100. Wall T Sector III
FIG. 5. The three-star domain wall junction configuration. Each
_ (1/\/§)t<'ﬂth/\/E for z>0, o8 wall makes a 2r/3 angle with the neighboring walls. In sector I, a
22)= 0 for z<0, (28) vacuum | state is reached asymptotically; correspondingly in sectors
Il and Ill. The two coordinate systemsx,f) and (U,v,w), are
indicated.

with ¢41(z) = ¢»(—2). This solution has energy per unit area
o=24/2/3 and though perturbatively unstable for all finite The solutions look very similar, except that the special “hy-
A, it is stable in thex;—o limit. This means that 22/3  perbolic tangent point” is NOvk;+\,=4.

provides an analytic upper bound enfor all values of\; So, for given values ok, and\, obeying Eq.(7) there
and, in particular, establishes the existence of finite-energgre both asymmetric and symmetric kink solutions. Which
solutions. one is energetically favored and therefore stable? We imme-

It is apparent from Fig. 4 that is monotonically increas- diately observe that it depends simply on which )\gf or
ing with \1. We now establish this result analytically. Con- \;+ X is larger, i.e. on the sign of,. The clash of symme-
sider a certain value of,>0, for which the kink solution is tries is energetically favored i,>0 and energetically dis-
®,=(¢441,0,0)", ®,=(0,¢,,0)". The A, term inV is then  favored if\,<O0.
simply \ ; 23, which is non-negative for alt. Therefore if
we reduce the value of,, the same configuratiofwhich 1. PLANAR WALL-JUNCTION CONFIGURATION
now no longer solves the Euler-Lagrange equaliomas
lower energy per unit area. But the true solution by definition
solves the Euler-Lagrange equations, so it necessarily has an Our toy model was chosen to produce a vacuum manifold
even lower energy, energy and action minimization beingf three disconnected pieces I-Ill as per E@8—(6). (The
equivalent for static configurations. threefold structure is motivated Hyg, see Sec. IV below.

With these results in hand, we may compare the asymmeEach one-dimensional kink configuration, however, makes
ric kinks with their symmetric counterparts. To do that, weuse of only two out of the three possibilities. In the context
simply change the ansatz by movigg from the second to of model building, even if we are only playing with toys at
the first entry in®,. The Euler-Lagrange equations are thethis stage, it seems more natural to use all three pieces
same as Eq(14), save for the substitution equally. Perhaps more importantly, clash-induced symmetry
breaking will be enhanced through the presence of all three
vacuum types.

To that end, we search for a domain wall junction con-
figuration as depicted in Fig. 5. Three semi-infinite walls
meet at a point, the origin or nexus, at angles afl2 di-
viding the two-dimensional plane into three sectors labeled
I-IIl. Let (r,6) be the usual plane polar coordinates. We
impose boundary conditions in the obvious way: for a given
6 in sector |, the configuration is required to tend to a
vacuum | state as—o0, with corresponding conditions in
sectors Il and Ill. Away from the nexus, and close to a wall,
we expect the configuration to tend to a one-dimensional
kink as a function of the coordinate perpendicular to the
0 . : . . . wall. Let us call this setup a “three-star.” To calculate it, one
0 S 12002830 must solve the equations of motion, this time using the two-
dimensional Laplacian in place a?/dZ? on the left-hand

FIG. 4. Energy per unit area as a function\affor asymmetric ~ side of Eq.(14), static andz-independent solutions being
kinks. For symmetric kinks, replace, by A1+ \». sought.

A. Overview and numerical solution

)\1—))\1+)\2. (29)

Energy (scaled units)
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The brane limit is most conveniently written in terms of d3—O(W)O(—v). (3D
the Mandelstam-like variabldsee Fig. 5, , ) , . , : .
[It is tempting to “regularize” this configuration by replacing

1 \/§ each® with a (1+tanh)/2. We have checked that this sug-
Uu=x, v=- §X+ R4 gestive form captures the spirit of the three-star we have
produced numerically, but not its detail.
1 3 There are three different types of three-stars: totally sym-
W=—U—v=—zX——5Y, (30 metric, totally asymmetric, and mixed. The symmetric star
2 2 has the asymptotic vacuum states being cyclic permutations
as of [(®1)=(1/12,0,0), (®,)=(0,0,0)", (®3)=(0,0,0)'].
There is no clash of symmetries anywhere for this case: the
d1—0O(U)O(—w), unbroken symmetry is U(2)everywhere.
The configuration we want is the totally asymmetric star,
¢d,—O(v)O(—u), defined by the vacuum states:

Sector I: (d;)=(1/1/2,0,07, ($,)=(0,0,0T, (P3)=(0,0,07,
Sector Il: (®;)=(0,0,07, (®,)=(0,142,07, (P3)=(0,00",

Sector lll:  (®;)=(0,0,07, (P,)=(0,0,0, (P3)=(0,0,142)".

Ignoring the superfluous (@)’s, the clash of symmetries has 1(r,0)=y(r,0) (33
the pattern:
H|ﬂ|| = U(2)|ﬂ U(2)|| - U(l)m along Wa” ”I, then
Hinm=U(2)yNU(2),;=U(1), along walll,
27 2
Hini=U(2),,NU(2),=U(1), along wallll. do(r,0) =yl r,0— =3/ d3(r,0)=y| 1,6+ =/
At the nexus, the symmetry is completely destroyed: (34

Hininam=U(2),NU(2),NU2)y ={1}. (32
Also, the functiong; must be symmetric under the reflection
The totally asymmetric star is energetically favored overp — —v, ¢, underw— —w, and ¢35 underu— —u. This is
the mixed and symmetric stars for the same region of paramsecause a sector | vacuum preserves dhe-d5 discrete
eter space in which the asymmetric kink is favored over thesymmetry, and so on.
symmetric one. We place our toy ¢3L)-dimensional uni-
verse at the nexus.
Figures 6, 7 and 8 show th&;, ¢, and ¢35 components
of the numerically computed asymmetric three-star for the
parameter poink;=4. Figure 9 displays the energy density
of the three-star as a function gfandy. We expect that the
three-star, defined by therZ3 angular separation of the
walls, is the lowest energy three-wall junction configuration
because it minimizes the total length of the domain walls. We
have checked this numerically: in our simulations, junctions
with unequal angles between the walls relax to the/2
angular configuration we describe.

B. Partial analytical results

We now present some analytical results for two different
asymptotic regimes: off-wall and near-wall, both at large

Note first, though, that the threefold symmetry of the star FIG. 6. The¢, component of the asymmetric three-star configu-
implies that if ration for\;=4 as a function ok andy.
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FIG. 7. The¢, component of the asymmetric three-star configu-  FIG. 8. The¢; component of the asymmetric three-star configu-

ration forh;=4 as a function ok andy. ration forA;=4 as a function ok andy.
1. Large r, off-wall behavior The right-hand side of Eq38) must be treated on a sector
At larger, put by sector basis. It gives rise to
dr(r,0)=F(0)+€(r,0), (35) # 19 1 &
- FE‘F—Z—Z e(l’,&)
where or r< o0

1/\2 insector| 2e(r,0)  for 6 insectorl,

f(0)= (36) ={\
0 elsewhere, ?15(“9) elsewhere, 39

and €(r,0)<1. Equation(34) is then used to determine

#,Ar,0). The perturbative requirement that the functionremembering that we must stay off-wall.
€(r,6) be small is met off-wall and at large To solve EQ.(39), we look for separated variable solu-

Substituting Eq.(35) into the Euler-Lagrange equations, tions:
and equating like powers af one obtains to zeroth order

e(r,0)=R(r)T(0). (40)
1 d?f
- @(0) Substituting in Eq(39) produces
r
2|2 T'(6)==n?T(6), (4D)
=f(0){ —1+2f(6)?>+(2+\y) f(a—?)
2
o2 R”(r)+%R’(r)= |<2+n—2 R(r), (42
+f| o+ H (37) r

_ wherek?=2 for ¢ in sector | andk?=\4/2 otherwise, and
and to first order we definek to be positive. The separation constam?s and
we require it to be positive. Equatio1) is solved by
T(6)=T,(0) = cosh6+ ), where periodicity inf requiresn
to be an integer, and is determined by requiring symmetry
underv——v (if #=0 is thev=0 line bisecting sector |,

(92

J
a2 62

#? 1
or2 F e(r,0)

27\? then 5=0)
_l_ 2 _- y
_+ 1+67(0)"+ (24 1) f( 0 3 ) The radial equatiori42) has the general solution
27\? 2 -
wf o+ e(r,0)+2(2+)\1)f(0){f( 6— %) R(r)=Caln(kr)+coKn(kr) (43)
) 5 ) wherec, , are constants and, andK,, are modified Bessel
X e r,a—?ﬂ) +f( o+ ?77 . r,0+§ } (39) functions. The boundary conditions require us to choose
R(r) Ry (r)=Kpu(kr), (44)
The zeroth order equation is satisfied by flaefined in Eq.
(36). which, for all n, has asymptotic behavior
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and takep— 0, then the angular distance from the wall goes
to zero:A6~w/p—0. By contrast, the off-wall region re-
quires finiteA 6.

Substitution of Eqs(47)—(49) into the Euler-Lagrange
equations yields the zeroth order result

g"(W)=g(W)[ - 1+2g(W)?+(2+X\1)g(—w)?]. (50)

By symmetry, a similar equation wittv— —w also holds.

Defining
So(w)=g(w)+g(—w), Ao(W)=g(W)—g(—w),( )
51

we recover Egs(16) and(17). This shows very clearly that
the perpendicular near-wall behavior far from the origin is

FIG. 9. The energy density of the asymmetric three-star configuexactly the appropriate one-dimensional kink.

ration forh;=4 as a function ok andy.
e—kr
Vkr

Writing the general solution to E439) as a sum oven of
R, (r)T,(6) with undetermined coefficients, we find that

Rn(r)~ (45)

The first order analysis depends on the functgnTo
proceed analytically, we restrict the following to the special
N1=4 case, so thag(w)=[1+tanh(/y2)]/2\2. Setting

S= b1+ p3=Sp(W) + 35S,

A== Pp3=Ap(W) + A, (52

ek substituting in the Euler-Lagrange equations, and equating
e(r,0)~ \/_ F(6), (46) terms to first order indS and A we obtain:
kr
_ _ _ V2(6S)=6S(—1+6S5)=26S, (53
whereF is an undetermined angular function. The nature of
F may well be different in sectors Il and Ill from sector I, V2(5A):5A(—1+6A§), (54)

just as the inverse decay lengthtakes different values if
N17#4. Notice that\; =4 is the same special point that pro- \yhere we have also useb(w)=1/12.
duces hyperbolic tangent kinks. We saw earlier that these \yi now switch to polar coordinates,(;) where tany

kinks have the special proper; (z)+ b1 —2)=1/2 =w/p andr?=p?+w?. Searching for separated variable so-
(taking the k-1l case. The equality of the&'s on both sides  |tions in these coordinates, we set

of the wall is a similar special property for the star configu-

ration. oS(r, ) =P(N[W(7)+W(=1)],

2. Large r, near-wall behavior

SA(r,m)=P(r[W(n)—W(-17)]. (595
We will now explore near-wall behavior far from the o . _ '
nexus, using wall Il as our example. To begin with, the rel-Substitution in Eq(53) then immediately yields
evant coordinates age the radial distance directly along the
wall, andw, perpendicular to the wall. , 1. n?
We again use a perturbative approach, writing Pi(r)+ -P'(r)=| 2+ 2 P(r), (56)
$1(p.W)=g(W)+ 5(p,w), 4D wheren?>0 is the separation constant. We conclude that
$2=0, (48) o
_ P(r)~ , Vn (57
¢3(P1W)_g(_w)+5(Pa_W)a (49) A\ \/Er

where § is small. Thew-parity relationship betweet, and
¢4 is dictated by the threefold and reflection symmetries o
the configuration. Although the, field is of orderd(p,w)
along wall Il at largep, it enters quadratically into the Euler-
Lagrange equations fap, 3 so it can be set to zer priori.
Note that the regime we explore here is physically sepa-
rated from the off-wall regime probed above, even though
both lie far from the nexus. If we s&t to some finite value

tWhich matches exactly the asymptotic radial behavior, Eq.
(45), found earlier in the off-wall regime.

Consider now Eq(54). Using Eq.(56) and the known
function g, definingA (%) =W(#n) —W(— »), we obtain

A"(n) n? rsiny
————=-3—-—+3tanif :
r2A(7) 2 e ( 2 )

(58)
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For larger, the term depending on the separation constant bility time scale to be very long, a bulk scalar field in the 27
is suppressed and can be omitted. For smallwe can of Eg offers another natural possibility. Recognizing that sin-
change variables ta=r 7 to get glets arise in the products 827 and 2% 27227, we see
that a general Higgs potential will respecZa phasesym-
A"(w) w metry that may not be contained withiry.E
A(w) ~—3+3tanﬁﬁ. (59 The number “3” plays a prominent role in the group
theory of E: there are three S@3) factors in the maximal

The solution with the correct antisymmetrynis then subgroup under discussion, and there are also three ways to
embed electric charg® within the group. The latter fact has

W w w been remarked on befof&0], but perhaps it has not received
A(w)o 3tanh\/—§+ 5 1-3 tanr?ﬁ (60)  the attention it deserves. From the perspective of the sub-

group chain E—SO(10® U(1)"—SU(5)®U(1)' ®U(1)",

The collection of results above demonstrates that one calii€ three electric charge assignments correspond to the stan-
make some progress in understanding the three-star configEiéird case Wher@ I|es_ within SUS), the fl!pped SUb) case
ration analytically, even though an exact analytic solution isVhere U(1) is also involved, and the flipped $1D) case
at present lacking. where U(1)’ enters the def|n|t_|o.n d®. Now, there is another

long-standing mystery pertaining to the number three: the
apparently superfluous replication of quark-lepton families.

The lack of a compelling explanation despite years of

Our toy model was chosen not only to be mathematicallythought suggests that new approaches should be seriously
simple, but also because it can serve as a prototype for @onsidered. We speculate that the th@embeddings, the
more realistic theory motivated bysEWhile it is beyond the  three-star configuration derived from the triply degenerate
scope of this paper to explore this connection in detail, wevacuum structure, and threefold quark/lepton family replica-
would like to comment and speculate on possible future dition may be connected.
rections.

The most direct connection is with the maximal SU{3) V. CONCLUSION
subgroup of E, augmented by a discrete; Baymmetry that
rotates the S(B) factors. The complex, anomaly-free repre-  Using a model field theory comprising thre¢3) Higgs
sentation triplets interacting through a permutation symmetric quartic

B L potential, we have shown that domain wall and wall-junction
(33,)®(1,33)®(3,1,3, (61)  solutions exist displaying the “clash of symmetries.” This
symmetry breaking mechanism goes beyond standard spon-
which arises from the decomposition of the 27 gf Batu- taneous breaking by exploiting different embeddings of iso-
rally generalizes the three triplet Higgs boson content of thenorphic subgroups in the parent group. Our example used
toy model. As is well known, one generation of quarks andthe I-, U- and V-spin U2) subgroups of (B). We found
leptons can be placed in a similar representation. It would bé&pologically stable domain wall solutions which asymptote
interesting to apply the clash of symmetries idea in this conto vacuum states corresponding to differently embedded un-
text, to see what symmetry breaking patterns can be prdsroken U2) subgroups on opposite sides of the wall. Non-
duced. asymptotically, the symmetry is further broken to the inter-

In the future pursuit of serious brane model-building, section of the asymptotically unbroken subgroups. This
there is no reason to restrict Higgs potentials to quartic formphenomenon has been previosuly displayed in a different
If, for instance, we have a three-star configuration in mindmodel and with different motivations in R¢6]. We propose
then the underlying spacetime is at least b dimensional, that such a kink-like configuration in the thin-wall or brane
where renormalizability requires at most cubic potentialslimit may exist in a large extra dimension, with our universe
(which are necessarily unbounded from below and thus predentified with the brane. In that case, some of the symmetry
sumably unacceptable The question of renormalization breaking in our universe may be due to the clash of symme-
should sensibly be deferred until such time as a connectiotries. Increasing the number of spatial dimensi¢ngtion-
with a proper theory of quantum gravity can be made. Weally) to five, we numerically constructed a wall-junction
recognize that many string-theoretic brane and brane jundhree-star configuration that exploits the clash phenomenon
tion scenarios have already been propd$gd to the full, with the joint or nexus identified with outoy)

If the full Eg is considered rather than just the SU{3) universe. Future work is motivated on several fronts: a pos-
subgroup, then an important issue is domain wall stabilitysible connection with E a possible connection between the
The Z; symmetry of the reduced theory, useful for wall sta-three-star and threefold family replication, and degree of
bility, is then presumably embedded within the continuousfreedom localization to the brane.

Es symmetry. According to the general understanding of de-
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APPENDIX A: JUSTIFICATION OF THE KINK ANSATZ !

In this appendix, we justify the asymmetric kink ansatz
used in Sec. Il C. We consider the casg>0 and show that
a globally stable kink must fit this ansatz, Eq3). (Analo-

gous arguments show that the symmetric kink is globally — _ (ia> 1 Hbid® o et ur 12
stable forx,<0.) = o2 ([ d* 1%+ i )
i

1
<2 Sl 6l +1iall 62l +14ll 61 5D)2

1. The two-triplet model :2 q)i/Tq)i/ ’ (A5)
I

We begin by considering a simpler model with just two
triplets and an exchange discrete symmetry. The Higgs po-

tential is obtained from Eq(2) by taking®3=0. by the Cauchy-Schwarz inequality. SdT[@;,0;]
Consider a general trial solution of the form <T[®,P;], also.
CDi(Z) = (¢i’1(Z),¢i’2(Z),(ﬁi,g(Z))T, (Al) 2. The three-triplet model
with i =1,2,3, which satisfies the asymmetric boundary con- W& now add the third triplet to the model. Staying with
ditions: \>>0 and applying the arguments of the previous section, it
suffices to consider a trial solution of the form
T
1 _ T
d>1(—oo>:(_’°’°) . Dy(=#)=(0,00, Pr(2)= 102,007
V2
®,(2)=[0,¢(2),0]",
1 T
q)l(+oo):(01010)T1 (I)z(+00)=(0,ﬁ,0 . (1)3(2):[0101(1)3(2)]1-1 (A6)
(A2)

with ¢; real. Note that the boundary conditions ¢n re-
Define quire it to vanish asymptotically. We now establish that this
trial solution has energy greater than or equal to the alterna-
tive trial solution,

Oi=\bl1dbi ot dlobiat $isdia (A3)
and consider a second trial solution of the form 0:(2) =L A1(D +[£5(2)]%,007,
01(2)=(61(2),0.0", (A4) 02(2)=(0.42(2) 0",
0,(2)=(0,05(2),0)". 05(2)=(0,0,0". (A7)

We will show that the configuration of EGA5) has energy  Observe that(z)= [ ¢1(2)]°+[ #3(2)]° obeys the correct
less than or equal to the energy of the initial trial solution ofboundary conditions. Now, the kinetic energy density due to
Eqg. (Al). It is clear that this configuration satisfies the £ obeys @’)2<(¢1)2+(¢§)2 by the Cauchy-Schwarz in-
boundary conditions. equality. In the potential energy density function, we need
Consider first the potential energy densif®,,d,]. only consider thex; term. For trial solution Eq(A6) this
Clearly ®1®,=010, and®]®,=010,, so we need only term is \y(pZp5+ p5p3+ d5642), while for trial solution
consider the term in the potential dependentian But if — Eq. (A7) it is N1(&2¢3)=\1(Pid5+ dad3). The latter is
A,>0, then this term is positive fob, , of the form of Eq.  obviously smaller than the former.
(A1) but zero for the configuration of EqA4). Thus So globally stable solutions in the two-triplet model are
V[O,,0,]<V[D,,P,]. also globally stable in the full three-triplet model.
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APPENDIX B: GLOBAL STABILITY OF THE A;=4
ANALYTIC SOLUTION

Consider the special parameter poif=4. We prove
global stability of the analytic solution, Eq&0) and (21),
by Bogomolnyi’'s method11]. The energy density[ ¢4, $5]
of any solution fitting the ansatz given in E4.3) is

1
el by, b2]= 17+ $5°+ V(1.2 + 5 (B1)
1 2
=| i+t di— 5| +(drt26162)°
s gt 62080 ) (B2)
dz 1 3 1 291 -

PHYSICAL REVIEW D65 125013

The first two terms of this equation are non-negative, so the
total kink energy is

o o d 2 . )
| dorgaiaz= | darg| 615 0i-2620,

(B3)

where we have substituted for the boundary conditions.
Since the analytic solution given in the main text, E2jy),
saturates this lower bound, it is globally stable.
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