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Self-gravitating domain walls and the thin-wall limit
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We analyze the distributional thin-wall limit of self-gravitating scalar field configurations representing thick
domain wall geometries. We show that thick-wall solutions can be generated by appropiate scaling of the
thin-wall ones, and obtain an exact solution for a domain wall that interpolates between AdS4 asymptotic vacua
and has a well-defined thin-wall limit. Solutions representing scalar field configurations obtained via the same
scaling but that do not have a thin-wall limit are also presented.
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I. INTRODUCTION

The gravitational properties of domain walls have be
studied in the past due to their striking implications for co
mology. Recently, however, they have been the object
intense investigation for different reasons. On the one ha
it has been pointed out that four-dimensional gravity can
realized on a thin wall interpolating between AdS spacetim
@1#. In addition, wall configurations are relevant for the stu
of renormalization group equation~RGE! flows in the con-
text of AdS/CFT ~conformal field theory! correspondence
@2#.

The first attempts to study these gravitational proper
were based on the so-called thin wall limit@3,4#. In a four-
dimensional spacetime, the wall is treated as an infinit
thin 211 surface. The spacetime outside the wall is given
vacuum solutions to the Einstein field equations with a p
nar symmetry, and one can use the Darmois-Israel@5# thin
wall formalism to match solutions across the surface. Un
this approximation, it is possible to find exact solutions re
resenting an infinitely thin wall with an associated surfa
energy density. Spacetimes containing a thin domain w
have therefore distributional curvatures and ener
momentum tensors, proportional to delta functions suppo
in the wall’s surface.

However, as pointed out in@6#, these thin walls may be
very artificial constructions in the sense that they do
necessarily correspond to the appropriate limit of a thick
main wall. Thick domain walls are solutions to the coupl
Einstein-scalar field equations interpolating between min
of a potential with a spontaneously broken discrete sym
try. In order for these thick walls to have a thin wall limit a
appropriate distributional treatment of the curvature a
energy-momentum tensors is required. As is well know
computing the curvature tensor from a metric requires n
linear operations which are not defined within the framew
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of distribution theory, and this imposes strong constraints
the class of metrics whose curvature tensors make sens
distributions@7#.

The first exact thick wall solution inD54 was obtained
by Goetz@8#. The only other solution in the literature is tha
of Refs.@9,10#, for a thick wall without reflection symmetry
Numerical solutions were found in@6# ~see also reference
therein!. The thin wall limit of these solutions has not bee
studied. All of these solutions represent walls in spacetim
without a cosmological constant.

The purpose of this paper is twofold. First, we analyze
thin wall limit of thick wall solutions. We find that the solu
tion of @8# has a well-defined thin wall limit. We also show
that this solution can be obtained by an appropriate sca
of a solution of Einstein’s equations in vacuum with a plan
symmetry. Using this fact, we generate a number of ex
solutions to the Einstein-scalar field equations using
vacuum solutions. We then show that the only wall that c
be considered a thick domain wall and that possesses a
wall limit is that of Ref.@8#.

Second, we look for solutions representing a domain w
embedded in a four-dimensional spacetime with a nega
cosmological constant. We show how the scaling proced
can be modified to generate such solutions, and find an e
solution for a thick domain wall interpolating between tw
AdS4 vacua. This wall is then shown to have a curvature a
energy-momentum tensor well defined as distributions
the corresponding distributional thin-wall limit is obtaine
The possibility of obtaining this solution within the supe
gravity inspired first order formalism of Refs.@11,12# is also
investigated, and the scalar field potential is shown to sat
the requirements for the existence of stable AdS vacua.

The paper is organized as follows. In the next section
study the thin wall limit of thick wall solutions. In Sec. III
we show how exact solutions can be found by scaling t
wall spacetimes, and show that the new solutions found
not represent true domain walls. In Sec. IV, a new solut
for a domain wall in an AdS spacetime is found and an
lyzed. We summarize our results on Sec. V, and include
Appendix for the reader interested in the details of the d
tributional analysis.
©2002 The American Physical Society10-1
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II. FROM THICK TO THIN DOMAIN WALLS

Consider the spacetime (R4, g), where the metric in a
particular coordinate system is given by

gab5cosh~bx/d!22d@2dtadtb1dxadxb

1e2bt~dyadyb1dzadzb!# ~1!

whereb andd are constants. In Refs.@8–10#, this spacetime
has been shown to be the one generated by a ‘‘thick’’ dom
wall, i.e. it is a solution to the coupled Einstein-scalar fie
equations:

Rab2
1

2
gabR58pTab , ~2!

Tab5¹af¹bf2gabS 1

2
¹cf¹cf1V~f! D ~3!

and

¹a¹af2
dV~f!

df
50, ~4!

with

f5f0tan21
„sinh~bx/d!…, f0[Ad~12d!

4p
~5!

and

V~f!5
112d

8pd
b2@cos~f/f0!#2(12d) ~6!

where 0,d,1. These solutions represent a domain wall
~finite! thicknessd. The scalar field takes values6f0p/2 at
x56`, corresponding to two consecutive minima of t
potential, and interpolates smoothly between these value
the origin.

The metric~1! is only one of many possible thick doma
wall solutions which can be obtained under the requireme
~i! V(f)>0, ~ii ! gab]af]bf.0, and~iii ! reflection symme-
try. However, Eqs.~1!, ~5!, ~6! are the only analytic solution
encountered in the literature so far@8# ~for a study of their
properties, see@10,13#!. Numerical treatments can be foun
in @6# and references therein.

Next, consider thed→1 andd→0 limits of this space-
time:

~1! For d→1 we havef50,V(f)53b2, and the metric

gab5„cosh~bx!…22@2dtadtb1dxadxb

1e2bt~dyadyb1dzadzb!# ~7!

turns out to be a solution to the Einstein field equations
the vacuum with a cosmological constant term

Rab2
1

2
gabR1gabL50, ~8!
12501
in

f

at

s:

r

where L5V(f)ud5153b2. Under the assumption that th
energy-momentum tensor of a thin wall can be approxima
by a cosmological constant outside the wall~where the
nearly-constant potential term is dominating!, the solution
~7! of Eq. ~8! can be interpreted as representing the spa
time at some distance from the wall@14#. However, notice
that there is no thin wall at the origin or elsewhere, the m
ric being well-defined in all spacetime and having a nons
gular curvature tensor. In fact, the limitd→1 can be consid-
ered as representing a wall of infinite thickness.

~2! We turn now to thed→0 limit. In order to compute
this limit we consider the curvature tensor and the Einst
tensor as distributional tensor fields. As is well known, t
curvature tensor being nonlinear does not make sense in
eral as a distribution. However, the metric~1! is a smooth
metric that belongs to the class of regular metrics@7#, and for
a regular metric the curvature tensor makes sense as a d
bution. Since any contraction of a distribution is also a d
tribution, for a regular metric the Einstein tensor is well d
fined as a distribution.

Taking thed→0 limit, we find

lim
d→0

gab5e22buxu
„2dtadtb1dxadxb

1e2bt~dyadyb1dzadzb!…, ~9!

which for x,0 andx.0 is a vacuum solution of the Ein
stein field equations@14#, and

lim
d→0

Gb
a524bd~x!@]tadtb1]yadyb1]zadzb#. ~10!

This means that the spacetime (R4, g), with the metric
given by Eq.~1!, can be identified in the limitd→0 with the
spacetime (R4,g), with g given by Eq.~9!, generated by a
thin domain wall with energy-momentum tensor given by

8pTb
a524bd~x!@]tadtb1]yadyb1]zadzb#. ~11!

As expected, Eq.~11! can be obtained from Eq.~9! by
using the formalism of Israel@5# to treat surface layers.

Actually, to be rigorous, one should prove that the met
~1! provides a sequence of metrics that satisfies the requ
convergence condition of@7#. Then the limit of the curvature
tensor exists and is the curvature tensor of the limit met
We leave this rather technical proof for the Appendix.

Remarkably enough, the metrics~1!, solution to the
coupled Einstein-scalar field equations, and Eq.~7!, vacuum
solution, can be rewritten simply as

dgab5 f 2d~x/d!@2dtadtb1dxadxb

1e2bt~dyadyb1dzadzb!# ~12!

gab5 f 2~x!@2dtadtb1dxadxb

1e2bt~dyadyb1dzadzb!# ~13!

respectively, wheref (x)5cosh(bx)21. This opens up the in-
teresting possibility of generating ‘‘thick wall’’ solutions
from the ‘‘thin wall’’ ones, i.e. by scaling vacuum solution
0-2
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with positive, negative or null cosmological constant. In t
next section, we will explore this possibility.

III. FROM THIN TO THICK WALLS

We wish to find solutions to the coupled Einstein-sca
field equations~2!–~4! with a planar symmetry, where th
scalar fieldf is static. In its most general form, the metr
can be written

gab5 f ~x!2@2dtadtb1dxadxb#1B~x,t !2@~12kr 2!21dr2

1r 2dw2# ~14!

wherek is the curvature of thex,t5const surfaces. Requir
ing that f be a function of the coordinate perpendicular
the wall only, and that the spacetime be boost-invarian
directions parallel to the wall, it can be shown@14# that

B~x,t !5 f ~x!C~ t ! ~15!

where the functionC(t) satisfies~dot indicates differentia-
tion with respect tot)

C̈~ t !

C~ t !
5

Ċ~ t !2

C~ t !2
1

k

C~ t !2
5b2. ~16!

The time dependence of the solutions depends on the
of the constantb2. For positively curved (k.0) or planar
(k50) walls,b2 is positive and we have

C~ t !5ebt, when k50 ~17!

C~ t !5cosh~bt !, b25k, when k.0 ~18!

whereas for negatively curved (k,0) walls the sign ofb2 is
arbitrary, and three solutions are possible:

C~ t !5sinh~bt !, b252k ~19!

5A2kt, b250 ~20!

5sin~bt !, b25k. ~21!

Then the system~2!–~4! reduces to just two equations fo
the potential and the scalar field. Define~prime denotes de
rivative respect tox)

u~x![
f ~x!8

f ~x!
; ~22!

then

f825
1

4p
@2u~x!81u~x!22b2# ~23!

V~f!5
1

8p f 2
@2u~x!822„u~x!21b2

…#.

~24!
12501
r

n

gn

The solution of Refs. @8,10# is found with f (x)
5@cosh(bx/d)#2d, with k50 and C(t) given by Eq.~17!,
while as noted in the previous section, a vacuum solut
with a cosmological constant is obtained withf (x)
5@cosh(bx)#21 and the same curvature and time dependen

We have found that this is a general result:the system
~23!, ~24! can be integrated with the scaled function

f ~x!5 f 0~x/d!d, ~25!

where f0(x) is a solution to the Einstein field equations
vacuum with a cosmological constant for the metric~14!.

This is easily shown. Substituting Eq.~25! in Eq. ~23!

f825
1

4p F2
1

d
u0~x/d!81u0~x/d!22b2G ~26!

where now prime denotes derivative with respect to the
gument. Sincef 0 satisfies the Einstein equations~8!, we have

u0~x/d!812„u0~x/d!22b2
…52L f 0~x/d!2 ~27!

u0~x/d!22b22u0~x/d!850, ~28!

and substituting in Eqs.~26!, ~24!

f5Ad~12d!

4p

L

3 Ex0

x/d
f 0~j!dj, ~29!

V~x!5
1

8p

L

3 S 112d

d D f 0~x/d!2(12d). ~30!

It is then possible to generate solutions representin
self-gravitating scalar field wall using the vacuum solutio
of Ref. @14#. The time dependence of the metric and t
curvature of the wall will be preserved.

For vacuum solutions with Eqs.~14!, ~15! and negative
cosmological constant we get:

~1! with f 0(x)5@sinh(bx)#21, corresponding to a vacuum
solution withL523b2, a solution of Eqs.~2!–~6! with

f ~x!5@sinh~bx/d!#2d

f~x!5f0 coth21@cosh~bx/d!#,

f0[2Ad~d21!

4p

V~f!5
b2

8p

2d11

d
@sinh~f/f0!#2(12d). ~31!

As in the vacuum case,C(t) is given by either Eqs.~17!,
~18!, or ~19! when the curvature of the wall is zero, positiv
or negative respectively;

~2! with f 0(x)5@11ax#21, corresponding to a vacuum
solution withL523a2, a solution of Eqs.~2!–~6! with

f ~x!5@11ax/d#2d

f~x!5f0ln~11ax/d!,
0-3
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f0[Ad~d21!

4p

V~f!5
a2

8p

2d11

d
exp@2~d21!f/f0#. ~32!

In this case the plane wall corresponds to a static solu
C(t)51, but a nonstatic wall is possible with negative cu
vature andC(t) given by Eq.~20!;

~3! with Eqs.~14!, ~15! and f 0(x)5@cos(bx)#21, vacuum
solution withL523b2, a solution of Eqs.~2!–~6! with

f ~x!5@cos~bx/d!#2d

f~x!5f0 tanh21@sin~bx/d!#,

f0[Ad~d11!

4p

V~f!5
b2

8p

2d21

d
@cosh~f/f0!#2(12d). ~33!

The wall must have in this case negative curvature andC(t)
given by Eq.~21!. A fourth nontrivial vacuum solution exist
with L50, namely

f ~x!5e6bx ~34!

but obviously it cannot generate a thick wall solution by t
same scaling procedure.

All of these solutions have an energy-momentum ten
of the form

Tb
a52r~x!@]tadtb1]yadyb1]zadzb#1p~x!]xadxb

~35!

compatible with a static scalar field wall. In the first solutio
the parameterd can be interpreted as the wall’s thicknes
just as in the solution of the previous section. However,
tice that this spacetime contains a singularity which seem
be much worse than the one produced by a source con
trated on a thin wall. In this example the metric is not reg
lar, and we cannot assign to it a distributional source follo
ing the approach of@7#.

In fact, none of these solutions represents adomainwall.
Namely, none of the potentials above has minima or is e
bounded from below. These wall solutions are not topolo
cally protected, and their stability is thus not guaranteed.
example, take case~1! above. Althoughf takes constan
values at infinity, it does not interpolate smoothly betwe
them.

Notice also that far from the walls one recovers t
vacuum solutions. Again, take case~1!: the metric has the
same asymptotic behavior as the domain wall solution
Sec. II,

gab→e2buxu@2dtadtb1dxadxb1e2bt~dyadyb1dzadzb!#

when buxu→`. ~36!
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This is an important point: finding a vacuum solution to t
Einstein equations with planar symmetry and then using
thin shell formalism of Israel may produce a thin wall whic
is not the thin limit of a scalar thick domain wall. In thi
sense, the thin wall solution is less artificial if it can b
obtained as the limit of a smooth configuration.

It is possible however to find other solutions to Eqs.~23!,
~24!, not generated by thin wall ones, that do represen
thick domain wall with a well defined thin wall limit, as we
do in the next section.

IV. A THICK DOMAIN WALL WITH COSMOLOGICAL
CONSTANT

In this section we consider thick domain walls embedd
in a spacetime with a negative cosmological constantL. The
caseL,0 is particularly interesting because the positive
fective gravitational mass density of AdS4 spacetime may
counteract the negative effective gravitational mass den
of the domain wall. On the other hand, a certain type of th
solutions may be realized as supersymmetric bosonic fi
configuration@15#. Clearly, forL,0 we are looking for do-
main wall solutions where the effective potentialVeff[V
1L/8p is not necessarily positive-definite, requiring on
that it is bounded from below.

Assuming a conformally flat symmetricansatz for the
metric

gab5 f ~x!2@2dtadtb1dxadxb1dyadyb1dzadzb#
~37!

and also that the scalar field depends only onx, the equations
of motion are Eqs.~23!, ~24! whereb50, and with the ad-
dition of a cosmological constant term2L/8p to the right-
hand side of Eq.~24!.

We look for reflection symmetric domain wall solution
for L,0. Under the requirements

~i! V(f).0
~ii ! limuxu→0

uf(x)8u50

~iii ! f8(0)50 ~nonsingular solution!
~iv! ( f 2)8ux5050 ~reflection symmetry!

we find the solution

f ~x!5~11a2x2!(21/2), ~38!

f~x!5f0 tan21~ax!, ~39!

V~f!5
1

2p
a2 cos2~f/f0!, ~40!

L523a2, ~41!

wheref05A1/4p. This solution represents a class of grav
tating domain walls that interpolate smoothly between t
minima of the potentialV(f), the spacetime being asymp
totically AdS4. With the coordinate change

aj5sinh21~ax!, ~42!

the line element takes the form
0-4
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gab5cosh22~aj!@2dtadtb1dyadyb1dzadzb#1dj2,
~43!

which asymptotically behaves as AdS4

gab→4e22auju@2dtadtb1dyadyb1dzadzb#1dj2

when auju→`. ~44!

We now wish to consider the thin wall limit. Howeve
AdS4 domain wall solutions generically have two free p
rameters: one for the asymptotic AdS curvature and one
the wall’s width. Thus, in order to introduce a second para
eter in the solution found, we make a scaling of the me
tensor as in the previous section.

Consider the scaled metric

gabdxadxb5cosh22d~aj/d!@2dtadtb1dyadyb

1dzadzb#1dj2. ~45!

We find this time

f~j!5f0 tan21 sinh~aj/d!, ~46!

V~f!5
1

8p
a2S 31

1

d D cos2~f/f0!, ~47!

L523a2 ~48!

with f05Ad/4p. It is easy to see that the metric~45! is a
regular metric in the differentiable structure provided by t
coordinate chart$t,j,y,z%. It follows that the curvature and
Einstein tensor fields are well defined as distributions.

Computations analogous to the ones in the Appen
show that

lim
d→0

gab54e22auju~2dtadtb1dyadyb1dzadzb!1djadjb ,

~49!

which is also a regular metric and

lim
d→0

~Gb
a1Lgb

a!524ad~j!~] t
adtb1]y

adyb1]z
adzb!

~50!

wherej50 is the codimension one hypersurface where
thin wall is located andL is given by Eq.~48!.

Thus, we have found a two-parameter family of se
gravitating scalar fields with a thick domain wall profile in
terpolating between two AdS4 vacua. Furthermore, these s
lutions have a distributional curvature tensor with a we
defined thin wall limit in the sense of Ref.@7#.

As stated above, the domain wall spacetime considere
this section is asymptotically AdS4. It is known that restric-
tions on the potential are to be imposed from the requirem
that there exist a stable AdS vacuum@16,17#. In D dimen-
sions, for a model with Lagrangian density

L5A2gF1

2
R2

1

2
~]f!22V~f!G ~51!
12501
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vacuum stability requiresV to take the form

V52~D22!F ~D22!S dW

df D 2

2~D21!W2G ~52!

whereW(f) is any function with at least one critical poin
@17#. Critical points ofW are also critical points ofV and in
the context of supergravity theories the critical points ofW
yield stable AdS vacua@11#.

For the domain wall solution~45!–~48!, this is equivalent
to requiring that

V5Veff5V1L54F2S dW

df D 2

23W2G ~53!

with V and L given by Eqs.~47! and ~48!, respectively. It
follows that in this case

W~f!5
1

2
b sin~f/f0! ~54!

whose critical points aref56pf0/2. Whether a supergrav
ity theory can be constructed so that the supersymmetry c
ditions lead to Eq.~54! is a question beyond the scope of th
paper. But since the critical points of Eq.~54! are the
asymptotic values off, as given by Eq.~46!, this suggests
that these asymptotic AdS vacua are stable.

It should be noted that Eqs.~45!–~48! can be param-
etrized by Eq.~54!, so we could have found it using the firs
order formalism of@11,12#. However, Eq.~46! is not the
familiar kink which one usually encounters in the literatur
whether supersymmetric or not@18,12#. Finally, in Ref.@19#
an example with a superpotential similar to Eq.~54! has been
considered inD55, in the study of how four-dimensiona
gravity arises on a thick wall interpolating between tw
AdS5 spacetimes.

V. CONCLUDING REMARKS

We have studied the thin-wall limit of thick domain wa
solutions in a~311!-dimensional spacetime. We have show
that the solution~1! of Ref. @8# represents a spacetime with
regular metric in the sense of Ref.@7#, and that the thin wall
limit can be taken rigorously in distribution theory. Not su
prisingly, in the thin-wall limit solution~1! becomes the
well-known thin wall solution of@3#. We have also demon
strated that this thick solution can be obtained by appro
ately scaling thin, i.e. vacuum, ones. However, althou
other solutions to the Einstein-scalar field coupled equati
can be systematically obtained by the same procedure
does not follow that these new solutions are thick walls, ev
if they have the appropriate asymptotic behavior far from
origin and the stress-energy tensor of a wall. The scalar fi
potential is in general not bounded from below and the sc
field configurations are not topologically protected, th
probably unstable.

Using a similar scaling procedure, we have obtained
solution representing a thick domain wall embedded in
AdS4 spacetime. The cosmological constant, as expecte
0-5
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related to the wall’s surface energy density. This solution w
shown to have a thin-wall limit, with a stress-energy ten
which is well defined as a distribution. The potential is po
tive definite and the scalar field smoothly interpolates
tween two AdS vacua. Moreover, the scalar field potential
this solution has been shown to satisfy the requirements
the existence of stable AdS vacua, being derivable from
superpotential function. The possible connection with sup
gravity theories, and the stability of the solution under p
turbations are currently under investigation.
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APPENDIX

In this paper we use the definition of tensor distributi
given by Geroch and Traschen. The reader is referred to@7#
for details.

Definition. A symmetric tensor fieldgab will be called a
regular metric provided that~i! gab and (g21)ab exist every-
where and are locally bounded and~ii ! the weak derivative of
gab in some smooth metrichab exists and is locally squar
integrable.

The curvature tensor and the Einstein tensor of a reg
metric make sense as distributions, therefore it makes s
to write Einstein’s equations with a distributional energ
momentum tensor. Furthermore, these idealized ma
sources are necessarily concentrated on submanifold
codimension of at most one.

First define conveniently the smooth tensor fields

Sab[2dtadtb1dxadxb1e2bt~dyadyb1dzadzb!
~A1!

~S21!ab[2] t
a] t

b1]x
a]x

b1e22bt~]y
a]y

b1]z
a]z

b!. ~A2!

Now let

ngab5cosh~bnx!22/nSab, gab5e22buxuSab ~A3!

and
e

th

12501
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~ ng21!ab5cosh~bnx!2/n~S21!ab,

~g21!ab5e2buxu~S21!ab. ~A4!

Let Uab be a test tensor field defined onR4. We have

ngabU
ab5cosh~nbx!22/n@2Utt1Uxx

1e2bt~Uyy1Uzz!# ~A5!

and

gabU
ab5e22buxu@2Utt1Uxx1e2bt~Uyy1Uzz!#.

~A6!

Clearly, ngab andgab are locally bounded. LetUab be a test
tensor field defined onR4. We have

~ ng21!abUab5cosh~nbx!2/n@2Utt1Uxx

1e22bt~Uyy1Uzz!# ~A7!

and

~g21!abUab5e22buxu@2Utt1Uxx1e22bt~Uyy1Uzz!#.
~A8!

Hence (ng21)ab and (g21)ab are locally bounded also.
Now choose as a smooth derivative operator¹a , the one

compatible with the Minkowski metrichab and letUcab be a
test tensor field onR4. The weak derivative inhab of ngab
andgab exist everywhere and are given by

¹c~ ngab!@Ucab#[2 ngab@¹cU
cab#5E

R4 nWcabU
cabvh

~A9!

and the equivalent expression forgab , where

nWcab52b cosh~nbx!22/n

3$tanh~nbx!dxc@2dtadtbdxadxb1e2bt~dyadyb

1dzadzb!#2e2btdtc~dyadyb1dzadzb!% ~A10!

and
Wcab5H 2be2bx@dxc~2dtadtb1dxadxb!1e2bt~dtc1dxc!~dyadyb1dzadzb!#, x,0

2be22bx@2dxc~2dtadtb1dxadxb!1e2bt~dtc2dxc!~dyadyb1dzadzb!#, x.0,
~A11!
with vh the volume element inhab and where it is under-
stood thathab and its inverse are used to raise and low
tensor indices. It then follows that¹c( ngab)[ nWcab and
¹cgab[Wcab are locally square integrable. Therefore bo
ngab andgab are regular metrics.
r
Now we can consider the limitn→`.
Theorem. Let ngab and gab be regular metrics. Let~i!

ngab and (ng21)ab be locally uniformly bounded and~ii !

ngab, ( ng21)ab and the weak derivative¹c( ngab) converge
locally in square integral togab , (g21)ab and¹cgab respec-
0-6
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tively. Then the corresponding curvature distributionsnRabc
d

converge toRabc
d in the following sense: for any test fiel

Ud
abc ,

lim
n→`

nRabc
d @Ud

abc#5Rabc
d @Ud

abc#. ~A12!

~See@7# for the proof.!
It is straightforward to prove that Eqs.~A3!–~A8! and

Eqs. ~A10!, ~A11! satisfy the conditions of the above the
rem. We have

u~ ngabuUab!u<u~SabuUab!u ~A13!

and

u„~ ng21!abuUab…u<@2 cosh~bx!#2u„~S21!abuUab…u.
~A14!

It follows that ngabU
ab and (ng21)abUab are bounded by

smooth tensor fields with compact support, i.e. test fie
Thereforengab and (ng21)ab are locally uniformly bounded
tu

12501
s.

Let Uabcd be a test tensor field onR4. Define

rn~ ng,g![E
R4

~ ngab2gab!~ ngcd2gcd!U
abcdvh .

~A15!

It is easy to see that

lim
n→`

rn~ ng,g!50. ~A16!

Then ngab converges locally in square integral togab . The
equivalent relation holds true for (ng21)ab. Finally, let
Uabcde f be a test tensor field onR4. We have

lim
n→`

E
R4

~ nWabc2Wabc!~ nWcd f2Wcd f!U
abcde fvh50.

~A17!

Therefore nWabc converges locally in square integral t
Wabc .
ys.
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