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Self-gravitating domain walls and the thin-wall limit
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We analyze the distributional thin-wall limit of self-gravitating scalar field configurations representing thick
domain wall geometries. We show that thick-wall solutions can be generated by appropiate scaling of the
thin-wall ones, and obtain an exact solution for a domain wall that interpolates betwegmgdBptotic vacua
and has a well-defined thin-wall limit. Solutions representing scalar field configurations obtained via the same
scaling but that do not have a thin-wall limit are also presented.
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I. INTRODUCTION of distribution theory, and this imposes strong constraints on
the class of metrics whose curvature tensors make sense as
The gravitational properties of domain walls have beerdistributions[7].
studied in the past due to their striking implications for cos- The first exact thick wall solution D =4 was obtained
mology. Recently, however, they have been the object oby Goetz[8]. The only other solution in the literature is that
intense investigation for different reasons. On the one handyf Refs.[9,10], for a thick wall without reflection symmetry.
it has been pointed out that four-dimensional gravity can béNumerical solutions were found if6] (see also references
realized on a thin wall interpolating between AdS spacetimeshereir). The thin wall limit of these solutions has not been
[1]. In addition, wall configurations are relevant for the studystudied. All of these solutions represent walls in spacetimes
of renormalization group equatiofRGE) flows in the con-  without a cosmological constant.
text of AdS/CFT (conformal field theory correspondence The purpose of this paper is twofold. First, we analyze the
[2]. thin wall limit of thick wall solutions. We find that the solu-
The first attempts to study these gravitational propertiesion of [8] has a well-defined thin wall limit. We also show
were based on the so-called thin wall lifi&,4]. In a four-  that this solution can be obtained by an appropriate scaling
dimensional spacetime, the wall is treated as an infinitelyof a solution of Einstein’s equations in vacuum with a planar
thin 2+ 1 surface. The spacetime outside the wall is given bysymmetry. Using this fact, we generate a number of exact
vacuum solutions to the Einstein field equations with a plasolutions to the Einstein-scalar field equations using the
nar symmetry, and one can use the Darmois-Isfagthin vacuum solutions. We then show that the only wall that can
wall formalism to match solutions across the surface. Undebe considered a thick domain wall and that possesses a thin
this approximation, it is possible to find exact solutions rep-wall limit is that of Ref.[8].
resenting an infinitely thin wall with an associated surface Second, we look for solutions representing a domain wall
energy density. Spacetimes containing a thin domain walémbedded in a four-dimensional spacetime with a negative
have therefore distributional curvatures and energycosmological constant. We show how the scaling procedure
momentum tensors, proportional to delta functions supportedan be modified to generate such solutions, and find an exact
in the wall's surface. solution for a thick domain wall interpolating between two
However, as pointed out if6], these thin walls may be AdS, vacua. This wall is then shown to have a curvature and
very artificial constructions in the sense that they do notnergy-momentum tensor well defined as distributions and
necessarily correspond to the appropriate limit of a thick dothe corresponding distributional thin-wall limit is obtained.
main wall. Thick domain walls are solutions to the coupledThe possibility of obtaining this solution within the super-
Einstein-scalar field equations interpolating between minimayravity inspired first order formalism of Refil1,127 is also
of a potential with a spontaneously broken discrete symmeinvestigated, and the scalar field potential is shown to satisfy
try. In order for these thick walls to have a thin wall limit an the requirements for the existence of stable AdS vacua.
appropriate distributional treatment of the curvature and The paper is organized as follows. In the next section we
energy-momentum tensors is required. As is well knownstudy the thin wall limit of thick wall solutions. In Sec. lIl,
computing the curvature tensor from a metric requires nonwe show how exact solutions can be found by scaling thin
linear operations which are not defined within the frameworkwall spacetimes, and show that the new solutions found do
not represent true domain walls. In Sec. IV, a new solution
for a domain wall in an AdS spacetime is found and ana-
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[l. FROM THICK TO THIN DOMAIN WALLS where A =V(¢)|s—,=382% Under the assumption that the
energy-momentum tensor of a thin wall can be approximated
by a cosmological constant outside the walNhere the
nearly-constant potential term is dominatinghe solution

Consider the spacetimeR{, g), where the metric in a
particular coordinate system is given by

_ 5) 20 — n (7) of Eq. (8) can be interpreted as representing the space-
Gap=COSH X/ 0) ] ~ dtdty+ dxadx, time at some distance from the wéll4]. However, notice
+e?P(dy,dy,+dz,dz)] (1)  that there is no thin wall at the origin or elsewhere, the met-

ric being well-defined in all spacetime and having a nonsin-
whereB and § are constants. In Refs8—10], this spacetime gular curvature tensor. In fact, the limit—1 can be consid-
has been shown to be the one generated by a “thick” domairred as representing a wall of infinite thickness.
wall, i.e. it is a solution to the coupled Einstein-scalar field (2) We turn now to thes— 0 limit. In order to compute
equations: this limit we consider the curvature tensor and the Einstein
tensor as distributional tensor fields. As is well known, the

R._ } R—87T 5 curvature tensor being nonlinear does not make sense in gen-
ab™ 5Yab T lab 2 eral as a distribution. However, the metfit) is a smooth
metric that belongs to the class of regular metfis and for
1 a regular metric the curvature tensor makes sense as a distri-
Tab=VadVod—ap EVC¢V°¢+V(¢) (3)  bution. Since any contraction of a distribution is also a dis-
tribution, for a regular metric the Einstein tensor is well de-
and fined as a distribution.
Taking the5—0 limit, we find
VVeh— d\é(j) o, ) 1 9= &M (it + 0l
with +e?7'(dy.dyp+dz,dz,)), 9

5(1—96) which for x<0 andx>0 is a vacuum solution of the Ein-
b= potan 1(sinh(Bx/5)), Po= e (5)  stein field equation§l4], and

lim Gi=—4B8(x)[ dt?dt,+ dydy,+ dz3dz,]. (10

and 50
Vid)= 1+ Zéﬁz[coq 81 bo) 20— ® This means that the spacetimB*( g), with the metric
8méd 0 given by Eq.(1), can be identified in the limif— 0 with the

spacetime R*,g), with g given by Eq.(9), generated by a
where 0<5<1. These solutions represent a domain wall ofthin domain wall with energy-momentum tensor given by
(finite) thicknesss. The scalar field takes values¢ym/2 at

x=+o0, corresponding to two consecutive minima of the 8mTp=—4B8(x)[ot*dt,+ dy?dyp+dz°dz,].  (11)
potential, and interpolates smoothly between these values at )
the origin. As expected, Eq(11) can be obtained from Ed9) by

The metric(1) is only one of many possible thick domain using the formalism of Isragb] to treat surface layers. _
wall solutions which can be obtained under the requirements; Actually, to be rigorous, one should prove that the metric
(i) V(4)=0, (i) g9, d,¢>0, and(iii ) reflection symme- (1) provides a sequence of metrics that satisfies the required
try. However, Egs(1), (5), (6) are the only analytic solutions Convergence condition ¢7]. Then the limit of the curvature
encountered in the literature so 8] (for a study of their tensor exists and is the curvature tensor of the limit metric.
properties, se€10,13). Numerical treatments can be found We leave this rather technical proof for the Appendix.

in [6] and references therein. Remarkably enough, the metridd), solution to the
Next, consider the>—1 and 5—0 limits of this space- coupled Einstein-scalar field equations, and &g} vacuum
time: solution, can be rewritten simply as

— — 2 H
(1) For 6—1 we havep=0\V(¢)=38, and the metric sJap=F22(xI ) — dt dty + dx,dx,

Jab= (COSH BX)) ™[ — dt dt,+ dx,dx, +e?P(dy,dy,+dz,dz,)] (12)

2t
+ e (dyady,+ dz,dz,) ] @) Jab=F2(X)[ — dtadty +dxadX

turns out to be a solution to the Einstein field equations for +e28(dy,dy,+dzdz)] (13)
the vacuum with a cosmological constant term
respectively, wheré(x) =cosh3x) L. This opens up the in-
Ro.— E R+ A=0 ) teresting possibility of generating “thick wall” solutions
ab™ 2 Yab™ T Gab ’ from the “thin wall” ones, i.e. by scaling vacuum solutions
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with positive, negative or null cosmological constant. In the The solution of Refs.[8,10] is found with f(x)

next section, we will explore this possibility. =[coshx/8)] %, with k=0 and C(t) given by Eq.(17),
while as noted in the previous section, a vacuum solution
Il. FROM THIN TO THICK WALLS with a cosmological constant is obtained with(x)

) ] . ) ) =[cosh(Bx)]"! and the same curvature and time dependence.
We wish to find solutions to the coupled Einstein-scalar \we have found that this is a general restite system

field equations(2)—(4) with a planar symmetry, where the (23) (24) can be integrated with the scaled function
scalar field¢ is static. In its most general form, the metric

can be written f(x)="fo(x/8)°, (25)

Gap=T(X)[ —dtdt,+dx,dx, ]+ B(x,t)[(1— «kr?) 1dr? where f(x) is a solution to the Einstein field equations in
- vacuum with a cosmological constant for the mettd).
+rode?] 14 This is easily shown. Substituting E5) in Eq. (23)

wherex is the curvature of the,t=const surfaces. Requir- , 1

ing that ¢ be a function of the coordinate perpendicular to ¢ éﬂ - Euo(xlﬁ)’+uo(x/5)2—,82 (26)

the wall only, and that the spacetime be boost-invariant in

directions parallel to the wall, it can be sho\t¥] that where now prime denotes derivative with respect to the ar-

gument. Sincd, satisfies the Einstein equatiof®, we have
B(x,t)=f(x)C(t) (15
Ug(X/ )" +2(Ug(X/ 8)°— B2)=—Afo(xI5)? (27
where the functionC(t) satisfies(dot indicates differentia-
tion with respect ta) Uo(X/ 8)%— B%—uq(x/8)' =0, (28

C(t) C(t)2 K and substituting in Eqg26), (24)

= + =p2 (16)
C(t) ct)?2 c(t)? P _[a(1=8) A [xo
=N "7 §J;() fo(£)d¢, (29

1A

87 3

The time dependence of the solutions depends on the sign
of the constan{8?. For positively curved £>0) or planar
(k=0) walls, 82 is positive and we have 1+26

1)

) fo(x/5)2(19), (30)

C(t)=ef', when «=0 (17
It is then possible to generate solutions representing a
C(t)=coshpBt), B°=«k, when k>0 (18 self-gravitating scalar field wall using the vacuum solutions
of Ref. [14]. The time dependence of the metric and the

whereas for negatively curved € 0) walls the sign of3?is  curvature of the wall will be preserved.

arbitrary, and three solutions are possible: For vacuum solutions with Eq$14), (15 and negative
cosmological constant we get:
C(t)=sinh(gt), B*=—« (19 (1) with fo(x)=[sinh(Bx)]"%, corresponding to a vacuum

solution with A= —332, a solution of Eqs(2)—(6) with

f(x)=[sinh(Bx/8)]?
d(X)= ¢ coth™ [ cosh Bx/ )],
Then the systen?)—(4) reduces to just two equations for
the potential and the scalar field. Defif@ime denotes de-

 [s-1)
rivative respect tox) $o=" Ax

=—«t, pB%=0 (20)

=sin(Bt), PB%=«. (21)

)’ 2 25+1
U(X)Ef(—x); (22 V(¢):§—W 5 [sinh( @/ )19, (31)
then As in the vacuum caseC(t) is given by either Eqs(17),

(18), or (19) when the curvature of the wall is zero, positive
1 or negative respectively;
12— " r__ ’ 2_ 2 ’
¢= gp LU0 TR0 BT (23 (2) with fo(x)=[1+ ax] %, corresponding to a vacuum
solution with A = —3a?, a solution of Eqs(2)—(6) with
1

[ U0 = 2007+ A fO=[1+axia]?
w

V(g)=
(24 d(X)= doIn(1+ ax/ ),
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5(6—1) This is an important point: finding a vacuum solution to the
¢o= yp Einstein equations with planar symmetry and then using the
thin shell formalism of Israel may produce a thin wall which
P is not the thin limit of a scalar thick domain wall. In this
a® 26+1 . ) . R,
V(¢)=g - —5 exd2(6-1)¢/ bol. (32)  sense, the thin wall solution is less artificial if it can be

obtained as the limit of a smooth configuration.
. , . It is possible however to find other solutions to E(3),
In this case the plane_wall cqrresponds to_ a statlc. solut|0|@24)’ not generated by thin wall ones, that do represent a
C(t)=1, but a nonstatic wall is possible with negative cur-hick domain wall with a well defined thin wall limit, as we
vature andC(t) given by Eq.(20); do in the next section.
(3) with Egs.(14), (15) andfy(x) =[cos@Bx)] %, vacuum

. . _ 2 . _ .
solution with A =—34%, a solution of Eqs(2)~(6) with IV. A THICK DOMAIN WALL WITH COSMOLOGICAL

f(X)=[COE(,BX/5)]_‘$ CONSTANT
In this section we consider thick domain walls embedded
B(X)= o tanh [ sin(Bx/ 8)], in a spacetime with a negative cosmological constarithe
caseA <0 is particularly interesting because the positive ef-
B [8(5+1) fective gravitational mass density of AgSpacetime may
bo= A counteract the negative effective gravitational mass density
of the domain wall. On the other hand, a certain type of these
B2 25-1 solutions may be realized as supersymmetric bosonic field
V(d)= P [cosH ¢/ o) 129, (33)  configuration[15]. Clearly, for A<0 we are looking for do-

main wall solutions where the effective potentils=V
+ A/87 is not necessarily positive-definite, requiring only
that it is bounded from below.

Assuming a conformally flat symmetriansatzfor the

The wall must have in this case negative curvature @(tj
given by Eq.(21). A fourth nontrivial vacuum solution exists
with A=0, namely

metric
B
fg=e (34) Gap=F () — dt,dt,+ dx,dx, + dy.dy,+dz.dz,]
but obviously it cannot generate a thick wall solution by the (37)
same scaling procedure. and also that the scalar field depends onlypthe equations

All of these solutions have an energy-momentum tensops motion are Eqs(23), (24) where 8=0, and with the ad-
of the form dition of a cosmological constant termA /8 to the right-
hand side of Eq(24).

We look for reflection symmetric domain wall solutions
for A<0. Under the requirements

Ti=—p(x)[at?dt,+ dy?dy,+ 9z2d z,] + p(x) Ix¥d X,
(35

compatible with a static scalar field wall. In the first solution, (!,) V,(d’)>0 ,

the parametes can be interpreted as the wall's thickness, (1) Ilm‘x‘_>0|¢>(x) |=0

just as in the solution of the previous section. However, no- (iii) ¢'(0)=0 (nonsingular solution
tice that this spacetime contains a singularity which seems to (iv) (f2)’|,_,=0 (reflection symmetry
be much worse than the one produced by a source concewe find the solution

trated on a thin wall. In this example the metric is not regu-

lar, and we cannot assign to it a distributional source follow- f(x)=(1+a?x?)("12), (38
ing the approach df7].

In fact, none of these solutions representoaainwall. B(X)= o tan *(ax), (39
Namely, none of the potentials above has minima or is even 1
bounded from below. These wall solutions are not topologi- _ 2
cally protected, and their stability is thus not guarantezd. Igor Vig)= 27 cos($/ o). (40
example, take cas€l) above. Although¢ takes constant
values at infinity, it does not interpolate smoothly between A=—3a? (42)

them.

Notice also that far from the walls one recovers thewheredo=y1/4mr. This solution represents a class of gravi-
vacuum solutions. Again, take cagB: the metric has the tating domain walls that interpolate smoothly between two
same asymptotic behavior as the domain wall solution ofminima of the potentiaV(¢), the spacetime being asymp-

Sec. I, totically AdS,. With the coordinate change
Jab— € A —dt,dt,+ dx,dx, +e?A(dy,dy,+dz,dz,)] ag=sinh *(ax), (42)
when  B|x|—x. (36)  the line element takes the form
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Qap=Cosh 2(a&)[ —dt,dt,+dy,dy,+dz,dz, ]+ dé?, vacuum stability require¥ to take the form
(43 5
which asymptotically behaves as AdS V= 2(D_2)[(D_2)<@ —(D-1W? (52)
Jab—4e 2l — dtydty+ dyady, + dz,d2,] +d&> whereW(¢) is any function with at least one critical point
when  alg—. (44) [17]. Critical points ofW are also critical points of and in

the context of supergravity theories the critical points/éf
We now wish to consider the thin wall limit. However, Yield stable AdS vacugll].
AdS, domain wall solutions generically have two free pa- For the domain wall solutiof45)—(48), this is equivalent
rameters: one for the asymptotic AdS curvature and one fol0 requiring that
the wall’s width. Thus, in order to introduce a second param- dW 2
eter in thg solution fqund, we.make a scaling of the metric V=Veﬁ=V+A=4[2(—) —3W2
tensor as in the previous section. d¢

Consider the scaled metric ) . )
with V and A given by Eqgs.(47) and (48), respectively. It

(53

JapdX@dXxP= cosh 2%( &/ 8)[ — dt,dt,+dy,dy, follows that in this case
+dz,dz,]+dé2. (45) L
We find this time W(¢) =7 Bsin($/¢o) (54)
B(§)=potan *sinha ¢l ), (46)  whose critical points areb= = 7 $,/2. Whether a supergrav-
L1 chions 16ad 1o Ea(54 1 & question beyond the sbope of s
Vig)= @az 3t B cos(/ bo), “7) paper. But sincqe the cri?ical pointsyof E@54) a?e the

asymptotic values ofp, as given by Eq(46), this suggests
A=-3a? (48)  that these asymptotic AdS vacua are stable.

It should be noted that Eq$45)—(48) can be param-
with ¢o=yol4m. It is easy to see that the metrid5) is a  etrized by Eq(54), so we could have found it using the first
regular metric in the differentiable structure provided by theorder formalism of[11,17. However, Eq.(46) is not the
coordinate charft,&,y,z}. It follows that the curvature and familiar kink which one usually encounters in the literature,

Einstein tensor fields are well defined as distributions. whether supersymmetric or ngt8,172. Finally, in Ref.[19]
Computations analogous to the ones in the Appendban example with a superpotential similar to E5¢) has been
show that considered inD=5, in the study of how four-dimensional

_ 2l gravity arises on a thick wall interpolating between two
limg,,=4e (—dtydt,+dy,dy,+dz,dz,) +dédé,, AdS; spacetimes.

6—0
(49
V. CONCLUDING REMARKS
hich is al I i . . . . .
which is also a regular metric and We have studied the thin-wall limit of thick domain wall
lim (G2 + Agd) = — 4a8(&)(92dt, + d2dy, + 92dz,) solutions in a3+ 1)-dimensional spacetime. We have shown
520 ' y z that the solutior(1) of Ref.[8] represents a spacetime with a

(500  regular metric in the sense of R¢T], and that the thin wall
limit can be taken rigorously in distribution theory. Not sur-
whereé=0 is the codimension one hypersurface where theprisingly, in the thin-wall limit solution(1) becomes the
thin wall is located and\ is given by Eq.(48). well-known thin wall solution of3]. We have also demon-
Thus, we have found a two-parameter family of self-strated that this thick solution can be obtained by appropri-
gravitating scalar fields with a thick domain wall profile in- ately scaling thin, i.e. vacuum, ones. However, although
terpolating between two AdSracua. Furthermore, these so- other solutions to the Einstein-scalar field coupled equations
lutions have a distributional curvature tensor with a well-can be systematically obtained by the same procedure, it
defined thin wall limit in the sense of Rf7]. does not follow that these new solutions are thick walls, even
As stated above, the domain wall spacetime considered iif they have the appropriate asymptotic behavior far from the
this section is asymptotically AdSIt is known that restric-  origin and the stress-energy tensor of a wall. The scalar field
tions on the potential are to be imposed from the requiremengotential is in general not bounded from below and the scalar
that there exist a stable AdS vacud®,17. In D dimen-  field configurations are not topologically protected, thus

sions, for a model with Lagrangian density probably unstable.
1 N Using a similar scaling procedure, we have obtained a
I e e 2 solution representing a thick domain wall embedded in an
£ 95 R 2(5¢>) V¢) (52) AdS, spacetime. The cosmological constant, as expected, is
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related to the wall's surface energy density. This solution was (n9~1)2P=cosh gnx)2N(S~1)aL,
shown to have a thin-wall limit, with a stress-energy tensor
which is well defined as a distribution. The potential is posi- (g~ 1)ab= 25 1)ab, (A4)

tive definite and the scalar field smoothly interpolates be- ) _ _
tween two AdS vacua. Moreover, the scalar field potential for - Let U?° be a test tensor field defined &f. We have
this solution has been shown to satisfy the requirements for

the existence of stable AdS vacua, being derivable from a ngabuab: cosh{nBx) 2 — Utt+yx
superpotential function. The possible connection with super- ot
gravity theories, and the stability of the solution under per- +e?P(UY+ U] (A5)
turbations are currently under investigation. and
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project C-1066-01-05-B. Clearly, ,gap andg,p are locally bounded. Ldd ,,, be a test

tensor field defined oR*. We have
APPENDIX

—1yab — 2in

In this paper we use the definition of tensor distribution (ng " Wap=cosinBx) ™ = Ut Uex
given by Geroch and Traschen. The reader is referrdd]to +e 2P(U, +U,,)] (A7)
for detalils.

Definition A symmetric tensor field),, will be called a 5,9
regular metric provided thdt) g,, and (@ *)2° exist every-
where and are locally bounded afiid the weak derivative of _ _ _
Oap iN Some smooth metrigy,;, exists and is locally square (9 H™Uap=e Zﬂlxl[_uﬁ+uxx+e ZBt(UW+UZZ)]A8
integrable. (A8)

The curvature tensor and the Einstein tensor of a regulafience (,g~1)2" and @@~ 1), are locally bounded also.
metric make sense as distributions, therefore it makes sense Now choose as a smooth derivative operdlgr the one

to write Einstein’s equations with a distributional energy- compatible with the Minkowski metrig,;, and letU®3® be a

momentum tensor. Furthermore, these idealized mattggct tensor field ofR*. The weak derivative iMap OF nGan
sources are necessarily concentrated on submanifolds gf,qq_ exist everywhere and are given by an T nea
codimension of at most one. a

First define conveniently the smooth tensor fields ca cab cab
Ve(nGan)[U b]E — nGap VU= JR“ nWeapU w,

Sap=—dt,dty+ dx,dx,+ e?’'(dy,dy,+dz,dz,) (A9)
(A1)
and the equivalent expression fox,, where
S 1= —525P+ 9350 + @28 (33P0 + 924P). A2
s R (Boy+ &) B2 W28 costingx) 2"
Now let x {tanh(nBx)dx [ — dt,dt,dx,dx,+e?’'(dy,dy,
nJab=COSHABNX) 2", gap=e 2PS,,  (A3) +dz,dz,)] - e*'dte(dy,dyy +dzdz,)}  (A10)
and and
|
23e?P{ dx.(—dtdty+dx,dx,) + e (dt.+ dx.) (dy.dy,+ dz,dz,)], x<0
Weab= (A11)

28e 2P —dx ( — dt,dt,+ dx,dx,) + e?P(dt.— dx.) (dy,dy,+dz,dz,)], x>0,

with o, the volume element im,, and where it is under- Now we can consider the limit—oo.

stood thatz,, and its inverse are used to raise and lower Theorem Let ,g,, and g,, be regular metrics. Lefi)
tensor indices. It then follows tha,( ,Jap)= Weap @nd  nJap and (9~ 12" be locally uniformly bounded andii)
VeGap=W,ap, are locally square integrable. Therefore both ,g.p, (,g~1)2° and the weak derivativE,( ,g,,) converge
ndap @ndg,y, are regular metrics. locally in square integral tg,,, (g~ %) andV,g,, respec-
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tively. Then the corresponding curvature distributigfs . Let U2*°? be a test tensor field oR*. Define
converge toRY, . in the following sense: for any test field
abc
Ug™ pn(ng,9)= fRA( nGab— Jab) (ndcda— gcd)Uadew,,.
lim (RSpd U5 1=REpd UG™. (A12) (A15)

n—oo
It is easy to see that
(See[ 7] for the proof)
It is straightforward to prove that Eq$A3)—(A8) and limp,(,9,9)=0. (A16)
Egs. (A10), (Al1l) satisfy the conditions of the above theo- n—e

rem. We have ) )
Then g4, converges locally in square integral ¢g,. The

|(nGablU3P)|<|(SaplUD)] (A13)  equivalent relation holds true for ¢ 1)2°. Finally, let

] yabcdefha 3 test tensor field oR*. We have
an

[((hg™H*Uap)|<[2 costiBx) 1% (S™H)"| Uab)l(.AM) lim f o Wabe™ Wapo) (nWegr—Wea) U, =0.

(A17)
It follows that ,g,,U?® and (,g~*)2°U , are bounded by
smooth tensor fields with compact support, i.e. test fieldsTherefore \W,,. converges locally in square integral to
Therefore,g,, and (,g~1)2° are locally uniformly bounded. W,,.
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