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Dynamical symmetry breaking of lf4 theory in the two loop effective potential

Ji-Feng Yang and Jian-Hong Ruan
Department of Physics, East China Normal University, Shanghai 200062, China

~Received 28 January 2002; published 3 June 2002!

The two loop effective potential of masslesslf4 theory is presented in several regularization and renor-
malization prescriptions and the dynamical symmetry breaking solution is obtained in the strong-coupling
situation in several prescriptions except the Coleman-Weinberg prescription. The beta function in the broken
phase becomes negative and the UV fixed point turns out to be a strong-coupling one, and its numeric value
varies with the renormalization prescriptions, a detail which is different from the asymptotic-free solution in
the one loop case. The symmetry-breaking phase is shown to be an entirely strong-coupling phase. The reason
for the relevance of the renormalization prescriptions is shown to be due to the nonperturbative nature of the
effective potential. We also reanalyze the two loop effective potential by adopting a differential equation
approach based on the understanding that all the quantum field theories are ill-defined formulations of the
‘‘low-energy’’ effective theories of a complete underlying theory. The relevance of the prescriptions of fixing
the local ambiguities to physical properties such as symmetry breaking is further emphasized. We also tenta-
tively propose a rescaling insensitivity argument for fixing the quadratic ambiguities. Some detailed properties
of the strongly coupled broken phase and related issues are discussed.

DOI: 10.1103/PhysRevD.65.125009 PACS number~s!: 11.30.Qc, 11.10.Gh, 11.15.Tk
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I. INTRODUCTION

The standard model~SM! has now been firmly establishe
with most of its predictions experimentally confirmed. Ne
physics beyond the SM are being intensively explored fr
theoretical perspective, but no concrete experimental
dence has yet been found. A major motivation to go beyo
the SM has been to get rid of those theoretically unsatis
tory aspects of the SM such as the hierarchy or naturaln
problem@1# and the triviality@2# of the Higgs sector, and tha
there are too many parameters to be explained. Thus m
particle theorists believe that the SM is only an effect
theory of a fundamental theory. The currently prevailing
rection to go beyond the SM has been string theory@3#
and/or supersymmetric field theories@4#. These theories
modify the SM profoundly. As a matter of fact, the mo
demanding task in and beyond SM physics is to find the t
mechanism of symmetry breaking to replace the Higgs se
that suffers the above-mentioned defects and is held as
nomenological. In this connection, there has been ano
important theoretical direction that does not modify the S
so profoundly: the technicolor model and its descendants@5#.
All the above theoretical constructions share a common
ture: the elementary Higgs scalar fields are excluded and
solution to the hierarchy and triviality problem must be in
nonperturbative regime@4#.

However, more than a decade ago, there were some
forts to revive thelf4 interaction from the perturbative
triviality by showing that the one loop effective potential
the masslesslf4 permitted a nontrivial nonperturbativ
renormalization@6#, i.e., b(l),0, in contrast with the per-
turbative renormalization, whereb(l).0 ~leading to trivi-
ality!. On the other hand, it has been recently proposed
color confinement is closely related to flavor symme
breaking@7# and even that color symmetry be realized v
the Higgs mechanism@8#. In a sense, the Higgs model o
lf4 interaction is still useful and should be explored furth
0556-2821/2002/65~12!/125009~15!/$20.00 65 1250
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to search for nontrivial solutions of the model. If symmet
breaking can be dynamically realized together w
asymptotic freedom or nontriviality, then it will shed ne
light on the confinement of color and symmetry breaking
the standard model. Thus it is worthwhile to see if the int
esting nontrivial one loop solution can still exist after inclu
ing higher loop corrections or how it ‘‘evolves’’ in the pres
ence of higher-order quantum corrections.

In this paper, we provide a detailed report of our rece
investigation of the existence and new features~if any! of the
nontrivial dynamical symmetry-breaking solution of th
quartic interaction by studying the two loop effective pote
tial @9#. For convenience, we will consider the simplest sca
model—the masslesslf4 model with Z2 symmetry—with
which the first example of dynamical symmetry breaki
was demonstrated@10#. There is also a technical concern
choosing the massless scalar theory: there is a nonconv
in the tree interactions that affects the Higgs model and o
complicates the use of effective potential methods@11#,
while in massless models the tachyon mass term does
exist and the configuration of the expectation value of
scalar field can be naturally interpreted as the homogene
argument of the effective potential.

In the meantime, we need to consider the regularizat
and renormalization problems in the nonperturbative regim
Since the effective potential is nonperturbative in nature,
regularization and renormalization might become mo
subtle. There have long been standard procedures to c
out perturbative renormalization, but in nonperturbative co
texts the renormalization often needs to be dealt with case
case, example by example. Moreover, the nonperturba
context sometimes allows for an alternative renormalizat
solution, for example the nontrivial or asymptotic free so
tion for the one loop potential oflf4 mentioned above
@6,12#. Other examples of the subtleties associated with re
larization and renormalization can be found in the rec
applications of the effective-field-theory method@13# to
©2002 The American Physical Society09-1
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nucleon interactions@14–17#, where the framework in use i
necessarily nonperturbative. We hope our experiences
might be useful in carrying out renormalization within no
perturbative contexts.

The paper is organized in the following way. The tw
loop effective potential will be given in dimensional and cu
off regularization, respectively, in Sec. II. The bare a
renormalized effective potentials obtained in differe
schemes will also be listed there. Then in Sec. III we inv
tigate the existence and the properties of the dynamical s
metry breaking solution~s! via the effective potentials ob
tained with various intermediate renormalizatio
prescriptions. The prescription dependence of the solutio
exhibited and explained. Sec. IV will be devoted to a n
approach for evaluating the loop diagrams, and the releva
of the intermediate renormalization is highlighted. Som
properties and features of the symmetry-breaking solutio
the two effective potentials are also presented. Some dis
sion and a summary will be given in the final section.

II. REGULARIZATION AND RENORMALIZATION

As is stated in the Introduction, we will consider th
masslesslf4 model withZ2 symmetry: invariance under th
transformation off→2f. The algorithm for the two loop
effective potential is well known according to Jackiw@18#,

L5
1

2
~]f!22lf4, ~1!

V(2l )[lf41
1

2
I 0~V!13lI 1

2~V!248l2f2I 2~V!,

~2!
12500
re

t
-
-

is

ce
e
in
s-

V[A12lf2, ~3!

I 0~V!5E d4k

~2p!4
lnS 11

V2

k2 D , ~4!

I 1~V!5E d4k

~2p!4

1

k21V2
, ~5!

I 2~V!5E d4kd4l

~2p!8

3
1

~k21V2!~ l 21V2!@~k1 l !21V2#
. ~6!

Here we have Wick-rotated all the loop integrals into Eucl
ean space. Let us calculate the three integrals in two regu
ization schemes: dimensional and cutoff. As these integ
have already been calculated in the literature both in dim
sional regularization and in cutoff schemes, we will on
need to list the results here.

A. Dimensional and cutoff regularizations

In dimensional regularization, these integrals have b
calculated in the literature, see@19#. Here we list the two
loop diagram~the sunset diagram! for example; the other
integrals will be delegated to Appendix A:
-

m4eI 2
(D)~V!5E m4edDkdDl

~2p!2D

1

~k21V2!~ l 21V2!@~k1 l !21V2#

52
3V2

2~4p!4e2
$11~322L̄ !e1@2L̄226L̄1716S2 5

3 z~2!#e2% ~7!

with S5(n50
` @1/(213n)2#,L̄5L1g2 ln 4p, andL5 ln(V2/m2).

Similarly, in cutoff regularization, we find, from Ref.@18#,

I 2
(L)~V!5E

L

d4kd4l

~2p!8

1

~k21V2!~ l 21V2!@~k1 l !21V2#

5
1

~4p!4 H 2L22
3V2

2
ln2

V2

L2
13V2ln

V2

L2
1o~L22!J . ~8!

Note that the;L2 term in the two loop integral is not explicitly given in@18#.
Note that the leading ‘‘low-energy’’ content of the sunset diagram~the double-log term! obtained in dimensional regular
9-2
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ization differs from that obtained in the cutoff scheme. However, this does not matter because, after subtracting the s
gences in such diagrams@19#, the ‘‘nonlocal’’ term will be the same.1

B. Bare and renormalized effective potential

With the preceding preparations, we can write down the bare effective potential obtained, respectively, in dimensio
cutoff regularizations:

V(2l )
(D) ~V!5V4H 1

144l
1

2
1

e
1L̄2

3

2

~8p!2
1

3l

~4p!4 F S 2
1

e
1L̄21D 2

1~ L̄21!212S 2
1

e
1L̄2

3

2D 2

12S L̄2
3

2D 2

1716S2
5

3
z~2!GJ , ~9!

V(2l )
(L) ~V!5V4H 1

144l
1

LL
V2

1

2

~8p!2
1

3l

~4p!4
@~LL

V!22212~LL
V21!2#J 1V2H 2L2

~8p!2
1

3lL2LL
V

~4p!4
2

8lL2

~4p!4J ,

~10!
-
w

al

p-

and

the
cut-

all
m

of

nc
tiv

m
-
a

where LL
V5 ln(V2/L2). Here we have omitted all the field

independent terms. In the remaining part of this section,
will focus on the renormalization ofV(2l )

(D) (V) andV(2l )
(L) (V).

The renormalization will be done in the modified minim
subtraction (MS) scheme forV(2l )

(D) (V) ~cf. @19#!, while for
V(2l )

(L) (V) the renormalization will be done in three prescri
tions: the one defined by Jackiw@18#, the one adopted by
Coleman and Weinberg@10#, and a new prescription,mL

2 ~a
simulation ofMS, see Appendix B!. The results read

V(2l )
(MS)~V!5V4H 1

144l
1

L̄2
3

2

~8p!2
1

3l

~4p!4

3@3L̄2210L̄111112S2 8
9 p2#J , ~11!

V
(2l )
(mL

2 )
~V!5V4H 1

144l
1

L̃2
1

2

~8p!2
1

3l

~4p!4
@3L̃224L̃#J ,

~12!

1In a diagrammatic or perturbative framework, such independe
of regularization schemes is beyond doubt. But in a nonperturba
framework, such independence is controversial@14–17,20#. Since
our calculation is a systematic summation of infinite diagra
~hence nonperturbative! where only a few diagrams are UV ill
defined, this subtle point does not concern us here. There are
some references@21# where related issues are discussed.
12500
eV(2l )
(Jackiw)~V!5V4H 1

144l
1

Ľ

~8p!2
1

3l

~4p!4
@3Ľ22Ľ#J ,

~13!

V(2l )
(CW)~V!5V4H 1

144l
1

L̆

~8p!2
1

3l

~4p!4

3F3L̆22L̆1
205

12 G J ~14!

with the notations defined as L̃5 ln(V2/mL
2 ),Ľ

5ln(V2/12lmJackiw
2 ), andL̆5 ln(V2/12lmCW

2 )2 25
6 . In all the

above formulas the scheme dependence of field strength
coupling constant are understood. Note that themL

2 , Jackiw,
and Coleman-Weinberg prescriptions were applied to
same bare effective potential, i.e., that calculated in the
off scheme.

C. Prescription dependence

Upon appropriate rescaling of the subtraction scales,
versions of the effective potential take the following for
~we will drop all the dressing symbols!:

V(2l )~V!5V4H 1

144l
1

L21/2

~8p!2

1
3l

~4p!4
@L212~L21!21a#J ~15!

with L[ ln(V2/m2). Now we see the explicit dependence

e
e

s

lso
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JI-FENG YANG AND JIAN-HONG RUAN PHYSICAL REVIEW D65 125009
the effective potential upon the intermediate renormalizat
prescriptions expressed bya, which varies across schemes
exhibited in Table I.

Here the scheme dependence~regularization and/or renor
malization! of the effective potential as a nonperturbati
quantity ~summing over infinitely many one and two loo
one-particle irreducible diagrams! differs from that of the
perturbative framework@22# that arises from the truncatio
of perturbation series~a sum of a finite number of connecte
diagrams!.2 The difference ina could not be removed
through redefinition of the coupling constant~and perhaps of
field strength! without changing the functional dependen
upon the field expectation value,f. This is a crucial differ-
ence. The main obstacles here are~i! the presence of the
double log dependence onf „in @ ln(12lf2/m2)#2

… and ~ii !
the nonperturbative feature of the effective potential, i.e.,
sum over infinitely many diagrams.

If one redefines the coupling constant and expands
new coupling constant in terms of the old one like in t
perturbative case (l85l1al21bl31•••), one could at
best arrive at the other schemes’ resultsplus extra higher-
order terms that take the form;lnf4ln(f2/m2),n>3. The
same is true for the redefinition off or V. Since the effec-
tive potential is nonperturbative in terms ofl andf in na-
ture, one should not discard such higher-order terms du
consistency due to their nontrivial dependence uponf,
which will affect the symmetry-breaking status, unlike in t
perturbative case. Otherwise, as will be clear shortly, eve
one puts the consistency aside and discards such terms
symmetry breaking behaviorwill be changeddue to such
redefinition and approximation. Thus even with the interm
diate renormalization done in the standard way, the non
turbative results depend on the prescriptions quite nontr
ally. To the best of our knowledge, this new feature in t
nonperturbative framework has not been explicitly and p
ticularly pointed out.

If there are no double log terms present in the effect
potential except the single log terms, then the constant te
can be easily redefined away or absorbed into the single
terms without leading to a new extra functional depende
upon f that can affect the symmetry breaking. In gau
theories, there are only single log terms in the sum of o

2Rigorously speaking, this property has been established on
mass-independent subtraction schemes or in massless theories
the high-energy region where mass effects are negligible. The
trivial influence of renormalization prescriptions in defining mas
has been recently emphasized@23# in theories with unstable el
ementary particles~like W6,Z0 bosons in electroweak theory!.

TABLE I. Values ofa in various schemes.

Scheme a

MS 22.6878

mL
2 22

Jackiw 2
5
4

Coleman-Weinberg 161
3

12500
n

e

e

to

if
the

-
r-
i-

r-

e
s
g
e

-

particle irreducible diagrams. While here we encounter
essential presence of double log terms in the sum of o
particle irreducible diagrams at the two loop level~recall that
the effective potential is the generating functional of the o
particle irreducible diagrams!, it is not difficult to see that a
still higher power of log terms can generally show up
higher loop one-particle irreducible diagrams.

III. EFFECTIVE POTENTIAL AND THE
SYMMETRY-BREAKING SOLUTION

Now let us start to determine the minima of the two lo
effective potentials that are renormalized in the prescripti
specified in the preceding section. We will work with th
general parametrization form of Eq.~15!. Our goal is to
solve the first-order equation

dV(2l )~A12lf2!

df
50, ~16!

which becomes the following equation upon substituting E
~15! into it:

24lfV2S 2V(2l )~V2!

V4
1

1

~8p!2
1

3l

~4p!4
~6L24!D 50.

~17!

An obvious solution isf50, which is the symmetric so
lution in the perturbative~weak-coupling! regime, while the
existence of the nonzero expectation value solution is de
mined by the existence of a real number solution ofL to the
following algebraic equation:

3L21S 4p2

3l
21DL1a1

16p4

27l2
50. ~18!

Here it is obvious that the existence of real number soluti
depends on botha and l. Since a is renormalization-
prescription-dependent, it is natural to expect that the so
tion and its existence are also prescription-dependent. S
symmetry breaking is a physical phenomenon, one usu
anticipates that the occurrence of symmetry breaking sho
be independent of a manipulation of infinities, that is, ind
pendent of renormalization schemes. Here we see a cou
example. In this connection, we would like to mention oth
nonperturbative examples discussed in Ref.@24#, where the
physical predictions depend on the renormalization~and
regularization! prescription in use. The reason is basica
the same as was given in the preceding subsection.

A. Determinants of the symmetry-breaking solution

Now let us examine the symmetry-breaking solution
more detail. Since we must start from a stable micropot
tial, the couplingl must be a positive real number. Now le
us closely examine Eq.~18!. For Eq.~18! to possess a finite
real number solution, we must impose the following criteri
in terms ofa andl:

in
r in
n-
s

9-4
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FIG. 1. The two loop effective potential in various renormalization prescriptions with different values of coupling constant. In all t
prescriptions@~a!–~d!#, the horizontal axis represents the quantityA12lf/m while the vertical axis representsV(2l ) /m4.
,
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D[S 4p2

3l
21D 2

212S a1
16p4

27l2 D
5

1

3 F4236a2S 11
4p2

l D 2G>0. ~19!

This inequality is only valid for certain ranges ofa andl:

a,
1

12
, ~20!

l>lcr[
4p2

A4236a21
. ~21!

Then the solutions to Eq.~18! can be found provided the
above two requirements are satisfied in certain schemes

L6~l!5
1

6 F12
4p2

3l
6ADG . ~22!

From this and the definitionsL[ ln(V2/m2),V[A12lf2, we
can find the nonzero solutions off, which read
12500
f6
2 ~l;@m,a#!5

m2

12l
expH 1

6 F12
4p2

3l
6ADG J . ~23!

But the solutions corresponding toL2(l) are local maxima
~tachyonic!; only theL1(l) solutions are local minima. This
can be seen from the second-order derivative of the effec
potential atV6

2 ~which is exactly the effective mass!,

meff;6~l![
]2V(2l )

~]f!2 I
f25f6

56
18l2V6

2

~2p!4
AD. ~24!

Because of the presence of the local maxi

„6A(m2/12l)exp$ 1
12@12(4p2/3l)2AD#%… between the loca

minima f50 and6A(m2/12l)exp$ 1
12@12(4p2/3l)1AD#%,

the symmetry breaking must be a first-order phase trans
when it happens, in accordance with the recent results@25#
obtained through other approaches. This is also clear f
Fig. 1, in which the shape of the effective potential is d
picted in several renormalization prescriptions (a) for differ-
ent values of the coupling constant.

The inequality~20! tells us that the renormalization pre
scriptions do affect physical contents in the nonperturba
framework: Not all prescriptions could be compatible w
symmetry breaking as far as the two loop effective poten
9-5
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is concerned~the stability of such solutions will be discusse
shortly!. From Table I in Sec. II we see the following: Fo
the two loop effective potential, the Coleman-Weinbe
scheme failed to predict dynamical symmetry breaking as

critical inequality ~20! is badly violated there,aCW5161
3

5 196
12 @ 1

12 , while the other three schemes do allow f
symmetry-breaking solutions. The situation is not affected
the rescaling of the subtraction points. One can check
even in the original form@cf. Eq. ~3.17! in Ref. @18##, the
inequality corresponding to Eq.~19! could not be satisfied
~see Appendix C!, in fact the correspondingD is strictly
negative for non-negative values of the renormalized c
pling l. Figure 1 also exhibits such a prescription depe
dence.

Now we find a strong dependence of ‘‘physical’’ prope
ties upon renormalization prescriptions, though it is dem
strated within a model that is not quite realistic. This is n
totally unexpected if one recalls that the effective potentia
a nonperturbative object, as was noted in the preceding
tion. The only unexpected point is that the pioneering p
diction of dynamical symmetry breaking has been made
the Coleman-Weinberg scheme used in theone loopeffective
potential, while this scheme becomes incompatible w
symmetry breaking after the two loop contributions were
cluded. In fact, the freedom of renormalization prescript
choices will be further restricted after imposing the stabil
condition for the solutions, which be made clear in the n
subsection.

B. Stability of symmetry breaking and the criterion
for the coupling constant

From the above discussions, it is not clear yet whether
symmetry-breaking solutions are stable or not, i.e., we h
not confronted our intermediately renormalized effective p
tential with physical conditions or requirements, which c
responds to solving the renormalized quantities in terms
physical quantities. To this end, let us calculate the vacu
energy density of the symmetry-breaking phase. Using
~17!, we have

E1~l,m![V(2l )~A12lf2!uf25f
1
2

52
~12lf1

2 !2

2~8p!2 F11
3l

2p2
~3L122!G ~25!

with the symbols defined in the previous subsections. Si
the weak-coupling vacuum state (f50) energy is zero, for
the symmetry-breaking states to be stable we must req
that

E1~l,m!<0, ~26!

that is,

L1>
2

3
2

2p2

9l
. ~27!
12500
e

y
at

-
-

-
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-
n
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e
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ire

This criterion turns out to be a requirement of the renorm
ized coupling constant, i.e.,

l>l̂cr[
4p2

A4236a22721

3S .lcr5
4p2

A4236a21
D . ~28!

In all the schemes with symmetry breaking, the two critic
values of the coupling constant are greater than 1. We
conclude that symmetry breaking could not happen in
weak-coupling regime. The critical couplings in various pr
scriptions are exhibited in Table II.

Now we see that dynamical symmetry breaking does h
pen in certain renormalization schemes in the stro
coupling regime. On the other hand, the stability requirem
also imposes a further constraint on the prescription cho
in order to predict symmetry breaking. In this connectio
note that the stable condition~27! amounts to the following
mathematical requirement:

S 11
4p2

l D 2

<223236a. ~29!

Since the left-hand side of this inequality could not be le
than 11, we obtain the following criterion fora, or for
scheme choices:

a<2 2
3 , ~30!

which is a more stringent requirement thana, 1
12 .

C. RG invariance of vacuum energy and beta function

Since the vacuum energy is a physical entity, it must
renormalization-group-invariant, i.e., insensitive to t
choice of subtraction point within a scheme,

m
dE1~l,m!

dm
50. ~31!

We must stress that this condition in fact defines a fundam
tal physical scale as input in this broken phase that should
obtained from some kind of experimental measureme
corresponding to the important and necessary step a
renormalization is done, i.e., to confront the renormaliz
amplitudes with experiments or other physical inputs or c

TABLE II. Critical values of the coupling constant in variou
schemes.

Scheme lcr l̂cr

MS 4.368 5.2024

mL
2 5.1152 6.5797

Jackiw 6.5797 10.698
9-6
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DYNAMICAL SYMMETRY BREAKING OF lf4 THEORY . . . PHYSICAL REVIEW D 65 125009
ditions where the physical scales come from@26#. Conse-
quently, a fundamental physical scale is introduced into
effective potential.

From this equation, we can determine the beta function
l as was done in Ref.@6#. First, let us rewrite the vacuum
energy density as

E152
m4

2~8p!2
«1~l!e2L1(l), ~32!

with «1(l)[11(3l/2p2)@3L1(l)22#53l/
4p2(AD23). Then we find from Eq.~31! that

4«1~l!e2L1(l)1$«1~l!e2L1(l)%8b~l!50, ~33!

or equivalently,

b~l![m
dl

dm
524

«1~l!e2L1(l)

$«1~l!e2L1(l)%8
. ~34!

Since «1(l) is positive definite provided the symmetry
breaking solution is stable,

$«1~l!e2L1(l)%85H «1~l!

l S 11
4p2

9l D
1

~114p2/l!

3l J e2L1(l).0 ~35!

and hence the beta function is negative definite as long as
broken phase is stable,

b~l!52
12l«1~l!

H «1~l!S 31
4p2

3l D1114p2/lJ ,0. ~36!

This is true for all three schemes allowing for th
symmetry-breaking solution. When the coupling becomes
finitely strong, i.e.,l→`, the beta function approaches
straight line:

b~l!ul→`→24l, ~37!

while when the coupling approaches the critical valuel̂cr ,
the beta function also approaches a straight line with
same ratio:

b~l!ul→l̂
cr
1;24~l2l̂cr!. ~38!

The wonderful thing that enhances our faith in the tw
loop effective potential is that all schemes~except the
Coleman-Weinberg scheme! predict the same kind of run
ning behavior of the coupling~the same kind of beta
function!,3 and we could roughly imitate the true beta fun
tion with the following qualitative approximation:

3This is true in fact for all the prescriptions as long as the criter
~30! is satisfied, since the beta function is basically the same ex
the UV fixed point varies with prescription.
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bappr~l!524~l2l̂cr!, lP~ l̂cr ,`!, ~39!

with the obvious solution

l2l̂cr5
m0

4

m4
, mP~0,̀ ! ~40!

which could also be obtained as a crude approximation
Eq. ~32!. The RG-invariant scalem0

2 should be a function of
the vacuum energy density as the fundamental physical s
for this theory. Moreover, the running is relatively milder
the UV region, which means that the coupling constant d
not become very large at energies that are not too low.
true running behavior defined by Eq.~32! has been plotted in
Fig. 2.

Now it is clear that we obtained anontrivial theory with a
nonzero UV fixed point,l̂cr , i.e., a strong coupling, as i
clear from Table II, in contrast to the one loop case. Fr
Eq. ~40! we can identify an IR pole in terms ofm2, unlike the
IR Landau pole in QCD, thus it is new at least in a theor
ical sense. No matter what kind of phenomenon it defines
is clear that within the two loop effective potential, the d
namical symmetry-breaking phase is nontrivial witho
asymptotic freedom, which means this phase is a tot
strong-coupling phase. Since this property is true in a nu
ber of renormalization prescriptions that satisfy the criter
~30!, we feel that it is at least an interesting phenomenon t
deserves further examination. We emphasize that our der
tion here has not employed any unconventional or spe
assumptions or approximations. All the techniques and a
ments are well known and well established. From now
we denote this solution as SCRDSB for the strong coupl
regime beta dynamical symmetry breaking.

n
pt

FIG. 2. The running behavior of the coupling constant in vario
prescriptions. The UV fixed points can be found as the asympt
lines. We have exhibited the UV fixed point for theMS case.
9-7
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D. Further details about the SCRDSB

Before speculating on this SCRDSB solution, let us e
amine the scale dependence patterns of the main quantiti
interests.

First let us look at the order parameter of the symme
breaking, i.e., the square vacuum expectation value of
scalar fieldf1

2 , or, equivalently,V1
2 . Inverting the dimen-

sionless function of coupling, we can express the running
the coupling in the following form by taking the vacuu
energy density as fundamental in Eq.~32!, i.e.,

m258pe2L1(l)A22E1

«1~l!
. ~41!

Combining this relation with the definition ofL1 , we find
the dependence ofV2 upon the running scale,

V1
2 ~l!5m2eL1(l)58pA22E1 /«1~l!, ~42!

or, equivalently,

f1
2 ~l!5

2pA22E1 /«1~l!

3l
. ~43!

Since the coupling runs, the order parameter also runs f
its dependence upon«1(l), therefore we need to study th
running behavior of«1(l). Bearing in mind the running
behavior described in Eq.~40!, we have

«1~l!il→`→ 3l

4p2
A~1212a!,

«1~l!il→l̂
cr
1→ d~d21!

12p2
~l2l̂cr

1!, ~44!

with d[A4236a227 being positive definite in all the thre
schemes compatible with symmetry-breaking. Using
~40!, we find that in both IR and UV regions,

«1~m!}
1

m4
. ~45!

Then we obtain the asymptotic behaviors of the order par
eterV1

2 in both IR and UV regions,

V1
2 ~m!}m2. ~46!

But the asymptotic behavior off1
2 is somewhat different,

f1
2 ~m!im→`}m2, f1

2 ~m!im→0}m6, ~47!

which means that the square vacuum expectation value o
field vanishes more rapidly thanV1

2 . We note that due to the
extra term ofL1 in the vacuum energy density, the parame
12500
-
of
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e
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.
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he

r

V2 is no longer RG-invariant@6#, in contrast to the one loop
effective potential case.

Similarly, we can obtain the asymptotic behavior of t
effective mass defined in Eq.~24!. Using Eq.~42!, we have

meff
2 ~l!5

18l2

~2p!2
A22E1

«1~l!
. ~48!

With the above preparations, we find that

meff
2 ~l!il;`;l3/2, meff

2 ~l!il;l̂
cr
1;~l2l̂cr!

21/2,

~49!

or in terms of the running scale,

meff
2 ~m2!im;0;

1

m6
, meff

2 ~m2!im;`;m2. ~50!

Here we found new asymptotic behaviors that differ fro
both the asymptotic freedom and the triviality solutions. T
effective mass~self-energy at zero momentum! becomes sin-
gular at both IR and UV ends. Only in the moderate ene
region characterized by the typical energy scale—
vacuum energy density—can we have finite effective ma
~Of course we must be aware that since the dynamics
SCRDSB exists entirely in a strong-coupling regime, the u
calculated higher-order loop corrections will probab
change the situation obtained here and make it even m
complicated.! The running behavior of the effective mass
plotted in Fig. 3.

At this stage, one would naturally ask about t
asymptotic behaviors of the effective coupling, defined
leff(l)[]4V(2l ) /(]f)4if25f

1
2 . The dependence of thi

four-point vertex function upon the renormalized couplingl
reads

leff~l!5
3l

2p4
$16p41132p2l19~6113a!l2

19l~4p2163l!L1181l2L1
2 %. ~51!

FIG. 3. The running behavior of the effective mass in theMS
scheme with22E1 set to 1.
9-8
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After some calculations, we have

leff~l!il;`;101l3, leff~l!il;l̂cr
;102l̂cr , ~52!

or equivalently

leff~m!im;0;
1

m12
, leff~m!im;`;103. ~53!

Note that the effective coupling becomes more singular t
the effective mass does in the IR limit.

Since both the effective mass and the effective coup
become extremely singular in the IR limit, it is not difficu
to see that in the low-energy region, the kinetic energy of
scalar field is negligible and the static potential energy do
nates, thus it seems impossible to find free scalar field qu
as asymptotic states. In this sense the elementary scalar
seems to be ‘‘confined’’ somehow even in the high-ene
ranges. We might detect some kind of bound states of su
scalar field, with the new bound states also being sc
states. So, even though we found a scalar particle, there
be another problem with regard to whether the detected
ticles are elementary ones or bound states of the elemen
ones. In addition, the coupling is still strong in the hig
energy region, though not infinitely strong. The situation e
countered here seems to indicate that the Higgs model
allow for another scenario and symmetry-breaking mec
nism provided one explores it nonperturbativey. The Hig
scalar quanta seem to be hidden ‘‘heros’’ that did not like
be ‘‘shown off’’ in the asymptotic states.

IV. A DIFFERENTIAL EQUATION APPROACH ANALYSIS

Now we employ a new approach without explicit regu
tors or deformations to calculate the loop diagrams. T
approach is based on the standard point of view that all
known quantium field theories~QFT’s! are effective theories
for a completely well-defined quantum theory containi
‘‘correct’’ high-energy details@27#. We should make it clea
that the UV structures of our present QFT’s are inevita
incorrect or inaccurate and should be replaced by the ‘‘c
rect’’ underlying ones that are unknown to us yet, hence c
tain diagrams cannot be directly computed within the pres
formulation of QFT’s.~In conventional methods, one intro
duces artificial regularizations to imitate the underlying U
structures.!

Fortunately, since differentiating a loop diagram with r
spect to its ‘‘low-energy’’ parameters@momenta and mass~es!
that characterize the ‘‘effective’’ QFT’s# amounts to inserting
‘‘low-energy’’ vertices to this diagram~this is valid in both
the underlying theory and the effective theories!, which in
turn reduces the divergence degree of the diagram in term
the effective QFT’s, we can compute a potentially diverg
loop diagram after differentiating them with respect to t
~external! momenta and/or mass~es! for appropriate times. In
other words, we can calculate the ill-defined diagrams
solving certain well-defined differential equations@28#. In
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this approach, the solutions would naturally contain u
known constants parametrizing the ill-definedness or inco
pleteness~to be fixed by physical ‘‘boundary conditions’’! of
the effective theories. It is obvious that this approachneeds
neither artificial regularizations nor complicated procedure.

A. Recalculating the loop diagrams

Now we demonstrate this method with the sunset d
gram, the two loop integralI u(V).

~i! First, we differentiate it twice with respect to mas
square (V2) to remove all overall ill-definedness~diver-
gence!,

]2

] (V)2

I u~V![6I u:(3;1;1)~V!13I u:(2;2;1)~V!

13I u:(2;1;2)~V! ~54!

with

I u:(a;b;g)~V!

[E d4kd4l

~2p!8~k21V2!a@~k1 l !21V2#b~ l 21V2!g
.

~55!

The result is a sum of new diagrams without any over
divergence. Among these diagrams,I u:(3;1;1)(V) still con-
tains a subdivergence in thel integration,

I (1;1)~V,k2![E d4l

~2p!4@~k1 l !21V2#~ l 21V2!
.

~ii ! Second, we treat this divergent subdiagram in
same way to arrive at the following inhomogeneous diff
ential equation:

]V2I (1;1)~V,k2!5
21

~4p!2E0

1 dx

V21~x2x2!k2
~56!

and its solution

I (1;1)~V,k2!5
21

~4p!2E0

1

dxH ln
V21~x2x2!k2

mPDE
2

1c1J ,

~57!

with c1 being the integration constants to be fixed throu
physical ‘‘boundary conditions.’’

~iii ! Now we can compute the right-hand side of Eq.~54!
and obtain again an inhomogeneous differential equation
below,
9-9
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]2

] (V)2

I u~V!52

3S ln
V2

mPDE
2

1c121D
~4p!4V2

, ~58!

and the solution to it reads

I 2~V!52
3

2~4p!4 H V2F S ln
V2

mPDE
2

1c122D 2

2~c121!21112c1
uG12c2

uJ ~59!

with mPDE
2 , c1

u , andc2
u being the constants~independent of

masses, coupling, and momenta! to be fixed by ‘‘boundary
conditions.’’ The single loop integrals can be done in t
same way and are listed in Appendix A.

It is not difficult to see that, before fixing the constan
this differential equation approach provides the most gen
parametrization of the ill-defined loop diagrams. Any cons
tent regularization and/or renormalizationshould bea special
solution to these differential equations provided the coun
terms are local functions of the momenta and mass~es!. One
might feel that this approach is merely another form of
powerful Bogolobov-Parasiuk-Hepp-Zimmermann~BPHZ!
program@29#. To respond, we note the following. First, on
must employ a regularization method in BPHZ. Second,
local terms in BPHZ are prefixed through the Taylor expa
sion of the amplitudes, a crucial technical point, while in t
differential equation approach the local terms areto be fixed
cu
a

-
he

ed
s

12500
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e
-

physically. Third, the BPHZ ends up with the introduction o
infinite bare quantities while there is no room in principle f
such infinite quantities at all if one adopts the underlyi
theory standpoint. Fourth, the application of BPHZ~and
other conventional programs! in nonperturbative circum-
stances is rather involved, which might preclude any use
~or trustworthy! predictions@24#, while the differential equa-
tion approach makes the calculation easier and the phys
predictions more accessible@24#.

In fact, one often relies on a good regularization meth
to make the subtraction simpler, e.g., dimensional regular
tion for gauge theories. Recently, it has been shown tha
dimensional regularization some subtraction is done imp
itly without introducing counterterms@20#. That is, we rely
heavily upon the regularization method, which could disca
divergences ‘‘invisibly.’’ If one disregards the underlyin
theory point of view, in which there is no divergence b
there are ambiguities, then there seems to be no good re
to prefer the regularization methods thatsimply discard some
of the divergences without subtraction. For example, the
modified minimal subtraction in dimensional regularizati
does not lead to useful predictions in the nonperturba
applications of the effective-field-theory method@13# to
nucleon interactions@15#, which is followed by the works
that employ unconventional renormalization metho
@14,17,30#. Applying the underlying-theory-based differen
tial equation approach, will make the problem easier to
solve @31#.

B. Relevance of the fixing of the local ambiguities

Now we arrive at the following general form of the effe
tive potential with unknown constants to be fixed:
V(2l )
(PDE)~V!5V4H 1

144l
1

L̂2
3

2

~8p!2
1

3l

~4p!4
@~ L̂21!212~ L̂22!222~c121!21214c1

u#J
1V2H c2

2~4p!2
1

6l~c2@ L̂21#12c2
u!

~4p!4 J , ~60!
ntal
r
y-
rgy
ally

of
the

-

where L̂5 ln(V2/mPDE
2 )1c1 and all thef-independent con-

stant terms are discarded as they are irrelevant to our dis
sions here. Naive dimensional analysis tells us that we h
three-dimensional constants,mPDE

2 , c2, andc2
u , and two di-

mensionless constants,c1 and c1
u . In all the conventional

prescriptions, the terms quadratic inV are discarded some
how: In dimensional regularization, it is done due to t
vanishing ~the ‘‘invisible’’ subtraction! of power diver-
gences, while in cutoff regularization it is just subtract
away by counterterms. Here we must fix it via sound phy
cal arguments.
s-
ve

i-

We may expect that there should be at least a fundame
scale to characterize thequantumfluctuations of the scala
field. As we are mainly concerned with the symmetr
breaking solution, we temporarily take the vacuum ene
density to play the role of the fundamental scale. Gener
speaking, all the three-dimensional constants should be
the same order of magnitude were they not zero. Then
signs and magnitudes ofc2 , c2

u , c1, andc1
u will be crucial to

the existence of symmetry-breaking solutions.c1 andc1
u can

be put into one constanta as this will not change the prob
lem. Then Eq.~60! becomes
9-10
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V(2l )
(PDE)~V!5V4H 1

144l
1

L̂2
3

2

~8p!2
1

3l

~4p!4

3@~ L̂21!212~ L̂22!21a#J
1V2H c2

2~4p!2
1

6l~c2@ L̂21#12c2
u!

~4p!4 J .

~61!

With the presence ofc2 andc2
u , we will find that no matter

what number we assign toa, there might be symmetry
breaking in this effective potential provided thec2 andc2

u are
appropriately chosen, say,c2.0,c2

u50. This is because
whenV becomes vanishingly small, the potential reduces

V(2l )
(PDE)~V!;c2

6lV2L̂

~4p!4
, ~62!

where f50 is a local maximum ~clear evidence of
symmetry-breaking!, which is true even ifc2

u is not zero as
long as it is not too large compared toc2. Of course, if we set
both c2 and c2

u equal to zero, thena will determine the
existence of symmetry-breaking solutions.

1. The rescaling insensitivity requirement and fine tuning

The most important point is that if one adopts a fixi
prescription so that the quadratic terms are present, then
can in no way remove them by redefinition of the coupli
constant~and perhapsf) without altering the symmetry
breaking status. That means the fixing schemes with q
dratic terms are at least inequivalent to those without. As
underlying theory is still unknown, we have to resort to e
perimental or other physical means to fix them. Of course
such an unrealistic model, experimental data are unavaila
thus we need to search for physical arguments. In the
sence of obvious good clues to use, a tentative argum
might be that, due to the presence of the dimensional c
stantsc2 andc2

u as the coefficient of the quadratic terms, t
effective potential would be rather sensitive to the resca
of these dimensional constants, in contrast to the relativ
milder rescaling behavior described by the logarithmic
pendence upon the dimensional constantmPDE

2 . Then for the
‘‘low-energy’’ effective potential to be less sensitive to th
rescaling of the underlying details, we must fix the dime
sional constantsc2 andc2

u to be zero.
One might argue that this is just the unnatural fine tuni

If the differential equation approach is taken as another w
to ‘‘renormalize’’ QFT’s, this is true. However, if we adop
the underlying theory point of view, we feel that this is
very natural argument. This is because in the underlyi
12500
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theory-based differential equation there are no divergence
be subtracted but only ambiguities to be fixed~a big im-
provement!. Then setting these dimensional constants eq
to zero based on the insensitivity argument is just like w
we usually do in solving the Laplace equation or the Sch¨-
dinger equation, namely imposing sound boundary con
tions. Thus the underlying theory and differential equati
approach offer a new way to understand the vanishing of
quadratic divergence: not from the symmetry argument
from the insensitivity of the effective theories’ quantities
the rescaling of the underlying structures~represented by the
arbitrary constants!.

2. Relevance of dimensionless constant(s)

Of course there might be other possibilities. We will n
longer investigate this topic here. Now let us temporar
adopt the rescaling insensitivity requirement and focus
the other constants in the effective potential, i.e.,mPDE

2 anda
in the following form of the effective potential:

V(2l )
(PDE)~V!5V4H 1

144l
1

L̃21/2

~8p!2

1
3l

~4p!4
@ L̃212~ L̃21!21a#J ~63!

where L̃5 ln(V2/mPDE
2 )21. Now sincea is dimensionless

andmPDE
2 only appears in the logarithmic functions, the re

caling insensitivity requirement is basically satisfied~which
is just the variant form of renormalization-group invarianc!.
However, this requirement does not automatically avoid
additional ‘‘sensitivity’’ to the definition of the dimensionles
constanta ~or c1 and c1

u). The reason for this has alread
been given in Sec. II.

3. Nonexistence of asymptotic freedom

As a by-product we can determine whether the UV fix
point could be zero within the two loop effective potentia
Here is the reasoning. In order to get the asymptotic f
solution, i.e.,l̂cr50, it is clear from Eq.~28! that we must
require the constanta to be infinitely large,

4p2

A4236a22721
50→a52`. ~64!

This is in fact a divergent constant. No sensible renormali
tion prescription could allow for such a divergent number.
one adopts the underlying theory point of view, it is also
unacceptable choice of definition. Otherwise, it might imp
that the underlying structures do not decouple with the ‘‘lo
energy’’ effective theories. Therefore, we conclude that
UV fixed point at the two loop level cannot be zero, i.e., t
solution cannot be an asymptotic one, if we accept the
9-11
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rametrization Eq.~63! or Eq. ~15!. Generally the magnitude
of a should be of order not much bigger than 102; then the
magnitude of the UV fixed point value ofl should be around
4p2/60;0.6, that is, roughly of the order 1, which mea
that the broken phase cannot be a weak coupling one eve
the high-energy region.

V. DISCUSSIONS AND SUMMARY

To recapitulate, in Secs. II and III, we made use of t
well-known two loop calculations to search for th
symmetry-breaking solutions. Our results here are new
two respects.~i! First, the striking prescription dependen
of the nonperturbative framework differs from that of th
standard perturbative framework@22#, in other words, the
perturbative scheme dependence pattern is no longer val
nonperturbative contexts. Thus we can understand the
evance of the prescription found in nonperturbative appli
tions as in Refs.@14–17# and@24#; ~ii ! Second, we found~in
a number of renormalization prescriptions! that the massles
lf4 model could also allow for a totally~nonperturbative!
strong coupling dynamics regime with a negative beta fu
tion ~SCRDSB!, and therefore could be nontrivial, at least
the two loop effective potential.

Although this phenomenon~SCRDSB! is only discovered
in the two loop effective potential, we found that there is
least one thing in common with the one loop case, nam
the existence of a nontrivial phase of dynamics with brok
symmetry that is strongly coupled at least in the IR regi
Considering the new kind of diagrams beginning to app
from the two loop level~the sunset diagram, etc.!, such
‘‘consensus’’ is conspicuous. We think the nontrivial soluti
might persist after including still higher-order contribution
with the running behaviors being more complicated, perh
with more stringent constraints on the scheme choices.

As far as the two loop effective potential is concerned
is very difficult to define asymptotic final states, thus t
scalar field theories with quartic interaction is rather differe
from the gauge theories: it may have a broken phase
exists entirely in the strong-coupling regime. Thus such s
lar field theories with quartic interactions might not perm
the elementary scalar fields to appear in the final asympt
states. This scenario might be of certain reference valu
Higgs physics.

Another main task that has been performed is that
reanalyzed the loop diagrams from the underlying the
point of view, which takes all the presently known QFT
that suffer UV ill-definedness to be ill-defined formulatio
of the effective ‘‘low-energy’’ sectors. Then we showe
clearly that the prescriptions or choices for fixing the loc
ambiguitiesare relevant to physical properties encoded
the nonperturbative effective potential, especially for t
quadratic terms. In contrast to the conventional regular
tion and renormalization programs where power divergen
are present and must be subtracted carefully~fine tuning!, in
the underlying theory understanding, we can fix them to
zero under the insensitivity requirement. This is a natu
procedure that is usually done in electrodynamics and qu
tum mechanics, i.e., imposing appropriate boundary co
12500
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tions on the solutions obtained from the Laplace or Sch¨-
dinger equation. In this way, we arrive at a ne
understanding of the naturalness problem.

Furthermore, we also showed that there could not be
sonable prescriptions that would allow for asymptotic fre
dom in the broken phase as long as the two loop effec
potential is considered. In the underlying theory understa
ing, this is also true.

Since more efforts in the realistic model are needed,
will refrain here from making further comments. Our on
aim here is to call attention to the reexamination of our tri
ality conviction about thelf4 model and to the investigation
of its new nonperturbative properties~the perturbative re-
gime is unavoidably trivial!.

In summary, we reconsidered the masslesslf4 model
with Z2 symmetry and found that at two loop level the no
perturbative effective potential’s predictability of symmet
breaking depends upon the renormalization prescription
use. The prescription used by Coleman and Weinberg in t
pioneering work@10# was shown to be incompatible wit
symmetry-breaking in the two loop effective potential, wh
the modified minimal subtraction in dimensional regulariz
tion, Jackiw’s prescription, and others were shown to be a
to accommodate the symmetry-breaking solution in the t
loop effective potential. The reason for the relevance of
prescriptions in nonperturbative contexts was given. The
tential was also recalculated and reanalyzed in a differen
equation approach based on the standard point of view th
complete theory underlies all the QFT’s that suffer UV d
vergences. The relevance of the prescriptions for fixing
local ambiguities was stressed and the rationality of this
proach was highlighted.
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APPENDIX A

In this appendix, we write down all the needed one lo
integrals calculated, respectively, in the dimensional, cut
and differential equation approach:

m2eI 0
(D)~V!5E m2edDk

~2p!D
lnS 11

V2

k2 D
52

V4G~11e!

~4p!2e~12e!~22e!
S 4pm2

V2 D e

,

~A1!
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m2eI 1
(D)~V!5E m2edDk

~2p!D

1

k21V2

52
V2G~11e!

~4p!2e~12e!
S 4pm2

V2 D e

, ~A2!

I 0
(L)~V!5E

L

d4k

~2p!4
lnS 11

V2

k2 D
5

1

2~4p!2 H L4ln
L21V2

L2
2V4ln

L21V2

V2

1L2V2J , ~A3!

I 1
(L)~V!5E

L

d4k

~2p!4

1

k21V2

5
1

~4p!2 H 2V2ln
L21V2

V2
1L2J , ~A4!

I 0~V!5
1

~4p!2 H V4

2 F ln
V2

mPDE
2

1c123/2G
1c2V21c3J , ~A5!

I 1~V!5
1

~4p!2 H V2F ln
V2

mPDE
2

1c121G1c2J . ~A6!

Note that in the differential equation approach there app
unknown constants in the integrals parametrizing the ill
finedness. The constants should be fixed by ‘‘boundary c
ditions’’ as discussed above.

APPENDIX B

In this section, we describe themL
2 scheme that mimics

theMS scheme in dimensional regularization, i.e., we mer
12500
ar
-

n-

y

subtract the cutoff-containing parts. Let us demonstrate
with the sunset diagram.

First let us list all the relevant integrals or diagrams:

I 1
(L)~V!5

1

~4p!2 H 2V2ln
L21V2

V2
1L2J

5
1

~4p!2 H L22V2ln
L2

V2
1o~L22!J , ~B1!

I (1;1)
L ~V,k2!5

1

~4p!2 S E0

1

dx ln
L2

V21x~12x!k2
21D

1o~L22!, ~B2!

I 2
(L)~V!5

1

~4p!4 H 2L22
3V2

2
ln2

V2

L2

13V2ln
V2

L2
1o~L22!J . ~B3!

The counterterm for subdivergence inI 2
(L)(V) comes from

the log in I (1;1)
L (V,k2) containingL as an argument, i.e.

from ln(L2/m2) together with factors from graph topolog
and angular integration. Thus the counterterm for the sun
diagram reads

c.t.~1!5
~12l!2

~4p!2
f2S ln

L2

m2D 3I 1
(L)~V!

5
12lV2

~4p!4 H V2ln
L2

m2
ln

V2

L2
1L2ln

L2

m2J . ~B4!

Here we selected an arbitrary scale to balance the dimen
in the argument of log. After removing the subdivergen
we get for the sunset diagram
248l2f2I 2
(L)~V!1c.t.~1!5

6lV4

~4p!4 H S ln
V2

L2
21D 2

21J 2
8lL2V2

~4p!4
1

12lV2

~4p!4 H V2ln
L2

m2
ln

V2

L2
1L2ln

L2

m2J
5

6lV4

~4p!4 H S ln
V2

m2 D 2

22 ln
V2

m2J 1

6lV4ln
L2

m2

~4p!4 H 22S ln
L2

m2D J 1
6lL2V2

~4p!4
ln

L2

m2
2

8lL2V2

~4p!4
.

~B5!
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Now we see all remaining divergences are purely ‘‘loca
and can be removed through introducing a second coun
term c.t.~2!,

c.t.~2!52

6lV4ln
L2

m2

~4p!4 H 22S ln
L2

m2D J
2

6lL2V2

~4p!4
ln

L2

m2
1

8lL2V2

~4p!4
, ~B6!

which contains no finite part, and the renormalized sun
diagram now takes the following form:

@248l2f2I 2
(L)~V!# (mL

2 )[248l2f2I 2
(L)~V!1c.t.~1!

1c.t.~2!

5
6lV4

~4p!4 H S ln
V2

m2 D 2

22 ln
V2

m2J .

~B7!

APPENDIX C

In this appendix, we verify that even in the original p
rametrization the Coleman-Weinberg scheme is still inco
patible with the DSB solution. The two loop effective pote
tial in Ref. @18# reads

Ṽ(2l )
(CW)5

lf4

4! S 11al l 1a2l2l 21bl2l 1a2l2
205

36 D ,
se

ula

.

s.

d

o

12500
’
r-

et

-

a5
3

32p2
, b5

23

4~4p!4
, l 5 ln

f2

M2
2

25

6
.

~C1!

From the first-order condition, we find the following equ
tion:

2S 11al l 1a2l2l 21bl2l 1a2l2
205

36 D
1al12a2l2l 1bl250, ~C2!

that is,

2a2l2l 21~2al12bl212a2l2!l

121al1bl21a2l2
205

18
50. ~C3!

The corresponding delta reads

D̃[~2al12bl212a2l2!2

28a2l2S 21al1bl21a2l2
205

18 D
52S 3l

16p2D 2H 31
l

16p2
1

195l2

4~4p!4J ,0. ~C4!

This inequality implies the incompatibility of the Coleman
Weinberg scheme with symmetry-breaking at two loop lev
nor-
ett.
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