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The two loop effective potential of masslesg* theory is presented in several regularization and renor-
malization prescriptions and the dynamical symmetry breaking solution is obtained in the strong-coupling
situation in several prescriptions except the Coleman-Weinberg prescription. The beta function in the broken
phase becomes negative and the UV fixed point turns out to be a strong-coupling one, and its numeric value
varies with the renormalization prescriptions, a detail which is different from the asymptotic-free solution in
the one loop case. The symmetry-breaking phase is shown to be an entirely strong-coupling phase. The reason
for the relevance of the renormalization prescriptions is shown to be due to the nonperturbative nature of the
effective potential. We also reanalyze the two loop effective potential by adopting a differential equation
approach based on the understanding that all the quantum field theories are ill-defined formulations of the
“low-energy” effective theories of a complete underlying theory. The relevance of the prescriptions of fixing
the local ambiguities to physical properties such as symmetry breaking is further emphasized. We also tenta-
tively propose a rescaling insensitivity argument for fixing the quadratic ambiguities. Some detailed properties
of the strongly coupled broken phase and related issues are discussed.

DOI: 10.1103/PhysRevD.65.125009 PACS nun§er11.30.Qc, 11.10.Gh, 11.15.Tk

[. INTRODUCTION to search for nontrivial solutions of the model. If symmetry
breaking can be dynamically realized together with
The standard modéEM) has now been firmly established asymptotic freedom or nontriviality, then it will shed new
with most of its predictions experimentally confirmed. New light on the confinement of color and symmetry breaking of
physics beyond the SM are being intensively explored fromthe standard model. Thus it is worthwhile to see if the inter-
theoretical perspective, but no concrete experimental eviesting nontrivial one loop solution can still exist after includ-
dence has yet been found. A major motivation to go beyondng higher loop corrections or how it “evolves” in the pres-
the SM has been to get rid of those theoretically unsatisfacence of higher-order quantum corrections.
tory aspects of the SM such as the hierarchy or naturalness In this paper, we provide a detailed report of our recent
problem[1] and the triviality[2] of the Higgs sector, and that investigation of the existence and new featuitany) of the
there are too many parameters to be explained. Thus moabntrivial dynamical symmetry-breaking solution of the
particle theorists believe that the SM is only an effectivequartic interaction by studying the two loop effective poten-
theory of a fundamental theory. The currently prevailing di-tial [9]. For convenience, we will consider the simplest scalar
rection to go beyond the SM has been string the[8)/ model—the massless¢* model with Z, symmetry—with
and/or supersymmetric field theoridd]. These theories which the first example of dynamical symmetry breaking
modify the SM profoundly. As a matter of fact, the most was demonstratedL0]. There is also a technical concern in
demanding task in and beyond SM physics is to find the trughoosing the massless scalar theory: there is a nonconvexity
mechanism of symmetry breaking to replace the Higgs sectdn the tree interactions that affects the Higgs model and often
that suffers the above-mentioned defects and is held as pheemplicates the use of effective potential methdd4],
nomenological. In this connection, there has been anothewhile in massless models the tachyon mass term does not
important theoretical direction that does not modify the SMexist and the configuration of the expectation value of the
so profoundly: the technicolor model and its descend@dits  scalar field can be naturally interpreted as the homogeneous
All the above theoretical constructions share a common feaargument of the effective potential.
ture: the elementary Higgs scalar fields are excluded and the In the meantime, we need to consider the regularization
solution to the hierarchy and triviality problem must be in aand renormalization problems in the nonperturbative regime.
nonperturbative regimgs]. Since the effective potential is nonperturbative in nature, its
However, more than a decade ago, there were some efegularization and renormalization might become more
forts to revive thex¢* interaction from the perturbative subtle. There have long been standard procedures to carry
triviality by showing that the one loop effective potential of out perturbative renormalization, but in nonperturbative con-
the massless\¢* permitted a nontrivial nonperturbative texts the renormalization often needs to be dealt with case by
renormalization 6], i.e., B(\)<0, in contrast with the per- case, example by example. Moreover, the nonperturbative
turbative renormalization, wher8(\)>0 (leading to trivi-  context sometimes allows for an alternative renormalization
ality). On the other hand, it has been recently proposed thatolution, for example the nontrivial or asymptotic free solu-
color confinement is closely related to flavor symmetrytion for the one loop potential ok ¢* mentioned above
breaking[7] and even that color symmetry be realized via[6,12]. Other examples of the subtleties associated with regu-
the Higgs mechanism8]. In a sense, the Higgs model or larization and renormalization can be found in the recent
\ ¢* interaction is still useful and should be explored furtherapplications of the effective-field-theory methdd3] to
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nucleon interactiongl4—17, where the framework in use is
necessarily nonperturbative. We hope our experiences here
might be useful in carrying out renormalization within non-
perturbative contexts.

The paper is organized in the following way. The two
loop effective potential will be given in dimensional and cut-
off regularization, respectively, in Sec. Il. The bare and
renormalized effective potentials obtained in different
schemes will also be listed there. Then in Sec. lll we inves-
tigate the existence and the properties of the dynamical sym-
metry breaking solutiofs) via the effective potentials ob-
tained with various intermediate  renormalization
prescriptions. The prescription dependence of the solution is
exhibited and explained. Sec. IV will be devoted to a new
approach for evaluating the loop diagrams, and the relevance
of the intermediate renormalization is highlighted. Some
properties and features of the symmetry-breaking solution in
the two effective potentials are also presented. Some discus-
sion and a summary will be given in the final section.

Il. REGULARIZATION AND RENORMALIZATION

PHYSICAL REVIEW D65 125009
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Here we have Wick-rotated all the loop integrals into Euclid-
As is stated in the Introduction, we will consider the ean space. Let us calculate the three integrals in two regular-
massless ¢* model withZ, symmetry: invariance under the ization schemes: dimensional and cutoff. As these integrals
transformation of¢p— — ¢. The algorithm for the two loop have already been calculated in the literature both in dimen-

effective potential is well known according to Jackitg],

sional regularization and in cutoff schemes, we will only

need to list the results here.

1
_ - 2\ 44
L= 2 (0¢)" =2\, @ A. Dimensional and cutoff regularizations
In dimensional regularization, these integrals have been
1 calculated in the literature, s¢&9]. Here we list the two
= 44 = 2 _ 242 ’
Vien=he™F 510(Q) +3T(Q) =487 ¢7,(Q), loop diagram(the sunset diagrayfor example; the other
(2) integrals will be delegated to Appendix A:
|
4eD D
M4E|(2D)(Q)=fﬂ d“kd"l 1
(2m)2°  (K2+ Q%) (124 Q2)[(k+1)2+0?]
307 {1+(3—2L)e+[2L2—6L+7+65—£7(2)]€%} 7
= - € - — 3 €
2(4m)te? :
with S=37_ [1/(2+3n)?],L=L+ y—In 4, andL=In(Q%u?).
Similarly, in cutoff regularization, we find, from Reff18],
d*kdl 1
@)= |

A28 (K2+ Q%) (124 Q2)[(k+1)2+02]

! 2A2 3Qz| A +302 Qz+ (A2 8
= - ——In"— n—-+o .
(4m)* 2 A2 A?

Note that the~A? term in the two loop integral is not explicitly given [18].
Note that the leading “low-energy” content of the sunset diag(éme double-log termnobtained in dimensional regular-
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ization differs from that obtained in the cutoff scheme. However, this does not matter because, after subtracting the subdiver-
gences in such diagranis9], the “nonlocal” term will be the samé.

B. Bare and renormalized effective potential

With the preceding preparations, we can write down the bare effective potential obtained, respectively, in dimensional and
cutoff regularizations:

_ 3
(D)Q 1 —Z+L_§ 3\ - 12 i 12 ) 1 32
Viz(Q)= Ta2n (87)2 (4m)’ —+ H(L-1)?+2( ——+L-3
_ 3)\? 5
+2| L-=| +7+65-2¢(2)| [, ©
2 3
1
L L?—g 2AZ  BNAZLY  BAAZ
Vi (Q)=0* + LY)2-2+2(LY-1)2] [ +0? + -
(2|)( ) 144\ (877)2 (4m )4[( ) ( )] (877)2 (471-)4 (477)4

(10

where L =In(Q%A?). Here we have omitted all the field- _ 1 [ N L L
independent terms. In the remaining part of this section, we\/(gf‘fk"“’)(ﬂ):()“{ Tt ~+ 4[3L2—L]],
will focus on the renormalization OVEZDR)(Q) andV{5}(Q). (8m)"  (4m)

The renormalization will be done in the modified minimal (13
subtraction MIS) scheme fovV{5)(Q) (cf. [19]), while for

V{)(©) the renormalization will be done in three prescrip- VIEW ()= 1 . L . 3\
tions: the one defined by Jackiit8], the one adopted by (20 144 (87)% (4m)*
Coleman and Weinbergl0], and a new prescriptionu3 (a
simulation ofMS, see Appendix B The results read v, - 205
X|3L2—L+ — (14)
12
— 3
) L=3 a3\ with the notations defined as L=In(Q%u3).L
Vay () =0% 77+ 82 (4m* =IN(QZ12\ 120), andL =In(QZ12\ u2) — 2. In all the
above formulas the scheme dependence of field strength and
coupling constant are understood. Note that;ﬂie Jackiw,
— _ o o and Coleman-Weinberg prescriptions were applied to the
X[3L —10L+11+12S~57°] | , (1) same bare effective potential, i.e., that calculated in the cut-
off scheme.
~ 1 C. Prescription dependence
L R
2 3\ ~ ~ Upon appropriate rescaling of the subtraction scales, all
ViV (@)=04 3247, o PP )

144\ + (877)2+ (477)4[ versions of the effective potential take the following form
(12) (we will drop all the dressing symbols

1 L—1/2

Vay(Q)=0* T T (817)2

YIn a diagrammatic or perturbative framework, such independence
of regularization schemes is beyond doubt. But in a nonperturbative
framework, such independence is controvergl&l-17,2Q. Since
our calculation is a systematic summation of infinite diagrams +

[L2+2(L-1)*+a] (15)

(hence nonperturbatiyevhere only a few diagrams are UV ill- am
defined, this subtle point does not concern us here. There are also
some reference®1] where related issues are discussed. with L=In(Q%u?). Now we see the explicit dependence of
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TABLE I. Values of & in various schemes. particle irreducible diagrams. While here we encounter the
essential presence of double log terms in the sum of one-
Scheme @ particle irreducible diagrams at the two loop lewacall that

the effective potential is the generating functional of the one-
2 _o particle irreducible diagramsit is not difficult to see that a
Ka still higher power of log terms can generally show up in

Jackiw ~a higher loop one-particle irreducible diagrams.
Coleman-Weinberg 164

MS —2.6878

Ill. EFFECTIVE POTENTIAL AND THE
the effective potential upon the intermediate renormalization SYMMETRY-BREAKING SOLUTION
prescriptions expressed lay which varies across schemes as
exhibited in Table I.

Here the scheme dependerioegularization and/or renor-
malization of the effective potential as a nonperturbative
quantity (summing over infinitely many one and two loop
one-particle irreducible diagramsliffers from that of the

Now let us start to determine the minima of the two loop
effective potentials that are renormalized in the prescriptions
specified in the preceding section. We will work with the
general parametrization form of E@l5). Our goal is to
solve the first-order equation

perturbative framework22] that arises from the truncation T
of perturbation serieé sum of a finite number of connected 4V (VI 47) =0, (16)
diagrams.? The difference ina could not be removed dé

through redefinition of the coupling constaand perhaps of

field strength without changing the functional dependenceWhich becomes the following equation upon substituting Eq.
upon the field expectation value, This is a crucial differ- (19 into it:

ence. The main obstacles here &rethe presence of the

double log dependence af (in [IN(12x ¢?/ 1?)]?) and (ii) 2V(2)y(Q?) 1
the nonperturbative feature of the effective potential, i.e., the 4\ pQ? 04 + (87)2 + (4 )4(6|—_4) =0.
sum over infinitely many diagrams. 7 7 (17)

If one redefines the coupling constant and expands the
new coupling constant in terms of the old one like in the
perturbative caseN! =\A+ar2+br3+--.), one could at
best arrive at the other schemes’ resudlgs extra higher-
order terms that take the form \"¢*In(¢%u?),n=3. The
same is true for the redefinition @ or (). Since the effec-
tive potential is nonperturbative in terms »fand ¢ in na-
ture, one should not discard such higher-order terms due to 2

. ; - A
consistency due to their nontrivial dependence upbn 3|_2+(__ 1
which will affect the symmetry-breaking status, unlike in the 3\
perturbative case. Otherwise, as will be clear shortly, even if
one puts the consistency aside and discards such terms, tHere it is obvious that the existence of real number solutions
symmetry breaking behaviowill be changeddue to such depends on bothw and \. Since a is renormalization-
redefinition and approximation. Thus even with the intermejprescription-dependent, it is natural to expect that the solu-
diate renormalization done in the standard way, the nonpetion and its existence are also prescription-dependent. Since
turbative results depend on the prescriptions quite nontrivisymmetry breaking is a physical phenomenon, one usually
ally. To the best of our knowledge, this new feature in theanticipates that the occurrence of symmetry breaking should
nonperturbative framework has not been explicitly and parbe independent of a manipulation of infinities, that is, inde-
ticularly pointed out. pendent of renormalization schemes. Here we see a counter-

If there are no double log terms present in the effectiveexample. In this connection, we would like to mention other
potential except the single log terms, then the constant termsonperturbative examples discussed in R24], where the
can be easily redefined away or absorbed into the single loghysical predictions depend on the renormalizati@amd
terms without leading to a new extra functional dependenceegularization prescription in use. The reason is basically
upon ¢ that can affect the symmetry breaking. In gaugethe same as was given in the preceding subsection.
theories, there are only single log terms in the sum of one-

An obvious solution isp=0, which is the symmetric so-
lution in the perturbativéweak-coupling regime, while the
existence of the nonzero expectation value solution is deter-
mined by the existence of a real number solutior. @b the
following algebraic equation:

1 4
L+a+
27\?

0. (18)

A. Determinants of the symmetry-breaking solution

2Rigorously speaking, this property has been established only in NOW let us examine the symmetry-breaking solution in
mass-independent subtraction schemes or in massless theories offiPre detail. Since we must start from a stable micropoten-
the high-energy region where mass effects are negligible. The noriial, the coupling\ must be a positive real number. Now let
trivial influence of renormalization prescriptions in defining massesus closely examine Eq18). For Eq.(18) to possess a finite
has been recently emphasizg2B] in theories with unstable el- real number solution, we must impose the following criterion

ementary particlegike W*,Z° bosons in electroweak theodry in terms ofa and\:
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FIG. 1. The two loop effective potential in various renormalization prescriptions with different values of coupling constant. In all the four
prescriptiond (a)—(d)], the horizontal axis represents the quantiy2\ ¢/ u while the vertical axis represen\&z,)/,u“.

477_2 2 16774 5 MZ 1 4772
— . —_— —_ [
A=(K—1) -12| a+ 7}\2) Pr(Nlmal)=5-exp el 1- 5= VA (23
1 472\ 2 But the solutions corresponding ko (\) are local maxima
=347 36a—| 1+ T) }20- (190 (tachyonig; only theL . (\) solutions are local minima. This

can be seen from the second-order derivative of the effective

_ L . : otential atQ2 (which is exactly the effective mass
This inequality is only valid for certain ranges afand\: P = ( y 3

7V (1) 18\202
! Mef + (\)=— =+x—JA. (29
— ' 2 4
a<ys, (20) 06)% | oo, (2m)
42 Because of the presence of the local maxima
a

- 21 (= \(w?12))exp{H[1-(47%3N) — VAT}) between the local
v4—36a—1 minima ¢=0 and = \(x2/12\)exp{A[1— (472/3\) + VAL,
the symmetry breaking must be a first-order phase transition
when it happens, in accordance with the recent re$ak
obtained through other approaches. This is also clear from
Fig. 1, in which the shape of the effective potential is de-
1 472 picted in several renormalization prescriptions for differ-
L.(\)= —{1— —+ A}. (22 ent values of the coupling constant.
6 3\ The inequality(20) tells us that the renormalization pre-
scriptions do affect physical contents in the nonperturbative
From this and the definitions=In(Q%u?),Q=/ 2>\¢2, we  framework: Not all prescriptions could be compatible with
can find the nonzero solutions @f, which read symmetry breaking as far as the two loop effective potential

A=Ng=

Then the solutions to Eq18) can be found provided the
above two requirements are satisfied in certain schemes,
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is concernedthe stability of such solutions will be discussed  TABLE II. Critical values of the coupling constant in various
shortly). From Table | in Sec. Il we see the following: For schemes.
the two loop effective potential, the Coleman-Weinberg

scheme failed to predict dynamical symmetry breaking as the Scheme Ner Ner
cri}chal ilnequqlity (20) is badly violated therepcy=16% S 4.368 52024
=3>15, While the other three schemes do allow for 2 5.1152 6.5797

symmetry-breaking solutions. The situation is not affected by
the rescaling of the subtraction points. One can check that
even in the original forncf. Eq. (3.17) in Ref. [18]], the
inequality corresponding to Eq19) could not be satisfied 15 criterion turns out to be a requirement of the renormal-
(see Appendix ¢ in fact the corresponding is strictly o4 coupling constant, i.e.,
negative for non-negative values of the renormalized cou-

pling . Figure 1 also exhibits such a prescription depen-

Jackiw 6.5797 10.698

d ~ 47T2
ence. AN =
Now we find a strong dependence of “physical” proper- 4—36a—27-1
ties upon renormalization prescriptions, though it is demon-
strated within a model that is not quite realistic. This is not 4m?
. ; o X| >Ng=——x—]. (28)
totally unexpected if one recalls that the effective potential is J4—36a—1

a nonperturbative object, as was noted in the preceding sec-

tion. The only unexpected point is that the pioneering préy, | the schemes with symmetry breaking, the two critical

?Actignlof dyn\?vm.icgl symrrr:etry bre%k?nghhals be(?fn r?ade Nalues of the coupling constant are greater than 1. We can
€ Loleman-weinberg scheme used indne Ioopellective - oqh0ige that symmetry breaking could not happen in the

potential, while . this scheme becomes mpompaﬂble W't%eak—coupling regime. The critical couplings in various pre-
symmetry breaking after the two loop contributions were 'n'scriptions are exhibited in Table I

clr:m!ed. In_ljat():t, fth?hfreedotrr_] ff dre?tormallzat!on &resirlgjtll_(t)n Now we see that dynamical symmetry breaking does hap-
choices will be further restricted arter Imposing the Stability ho, iy certain  renormalization schemes in the strong-

condition for the solutions, which be made clear in the nex oupling regime. On the other hand, the stability requirement

subsection. also imposes a further constraint on the prescription choices
in order to predict symmetry breaking. In this connection,
B. Stability of symmetry breaking and the criterion note that the stable conditig27) amounts to the following
for the coupling constant mathematical requirement:
From the above discussions, it is not clear yet whether the 2 2
symmetry-breaking solutions are stable or not, i.e., we have 1+ 4l) <—23—36a. (29)
not confronted our intermediately renormalized effective po- A

tential with physical conditions or requirements, which cor-

responds to solving the renormalized quantities in terms oSince the left-hand side of this inequality could not be less
physical quantities. To this end, let us calculate the vacuurthan 1", we obtain the following criterion for, or for
energy density of the symmetry-breaking phase. Using Egscheme choices:

(17), we have

E (N )=V \/12>\<l'>2)|¢2:¢2+

wIN

; (30

a<-—

2.2 which is a more stringent requirement tharc 75.
(12 %) 3\

~ 5|1t -5 BL.=2)
2

2(8m)? 29

C. RG invariance of vacuum energy and beta function

_ _ _ _ _ _ Since the vacuum energy is a physical entity, it must be
with the symbols defined in the previous subsections. Sinceenormalization-group-invariant, i.e., insensitive to the

the weak-coupling vacuum state€ 0) energy is zero, for choice of subtraction point within a scheme,

the symmetry-breaking states to be stable we must require

that dE.(\,u) 0
M =U.

d (31
E.(\,u)<O, (26)

We must stress that this condition in fact defines a fundamen-

tal physical scale as input in this broken phase that should be

obtained from some kind of experimental measurements,

5 corresponding to the important and necessary step after

2 2w renormalization is done, i.e., to confront the renormalized

“3 o @7 amplitudes with experiments or other physical inputs or con-

that is,
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ditions where the physical scales come fr¢26]. Conse- , 2°
quently, a fundamental physical scale is introduced into the
effective potential.

From this equation, we can determine the beta function of 16
A as was done in Ref6]. First, let us rewrite the vacuum
energy density as

4

N
LI L L I L L L L

E+=—ﬁs+()\)e2“(”, 32) ‘:
with e.(N\)=1+(3N27?)[3L,(N\)—2]=3\/ 6
47?(\JA—3). Then we find from Eq(31) that , F 82024 T
4o (VM 4o, (VR O) B)=0, (33 |
or equivalently, 00: e e e 500
B(R)Eud—)\=—4M- (34) FIG. 2. The running behavior of th l t :‘ i
d,u {8+()\)82L+(}\)}’ L 2. g benavior o € coupling constant in various

prescriptions. The UV fixed points can be found as the asymptotic

Since £ (\) is positive definite provided the symmetry- lines. We have exhibited the UV fixed point for tMS case.
breaking solution is stable,

e () 4m? BappM)=—4(\=Re), Ae(Re), (39
{8+(>\)82L*(”}'=(—+)\ (1 9_)\)

(1+4m2I\) with the obvious solution
+—

2L, (\)
3)\ ]e +M>0 (35

and hence the beta function is negative definite as long as the M 0 0

broken phase is stable, g e (0) (40

12 e, (N)
2

3477 1+47?
+K++7T)\

0. (36
39 which could also be obtained as a crude approximation of

Eq. (32). The RG-invariant scalg3 should be a function of
o ] the vacuum energy density as the fundamental physical scale
This is true for all three schemes allowing for the for this theory. Moreover, the running is relatively milder in
symmetry-breaking solution. When the coupling becomes inthe UV region, which means that the coupling constant does
finitely strong, i.e.,A—, the beta function approaches a not become very large at energies that are not too low. The
straight line: true running behavior defined by E@2) has been plotted in

_ Fig. 2.
BV |x—emr =4, @7 Now it is clear that we obtainedreontrivial theory with a
while when the coupling approaches the critical valye, ~ honzero UV fixed pointh, i.e., a strong coupling, as is

the beta function also approaches a straight line with th&lear from Table I, in contrast to the one loop case. From
same ratio: Eq. (40) we can identify an IR pole in terms @f2, unlike the

IR Landau pole in QCD, thus it is new at least in a theoret-

BN |h—i+~—4(N—\g). (38) ical sense. No matter what kind of phenomenon it defines, it

“ is clear that within the two loop effective potential, the dy-

The wonderful thing that enhances our faith in the twonamical symmetry-breaking phase is nontrivial without
loop effective potential is that all schemésxcept the asymptotic freedom, which means this phase is a totally
Coleman-Weinberg schemeredict the same kind of run- strong-coupling phase. Since this property is true in a num-
ning behavior of the couplingthe same kind of beta ber of renormalization prescriptions that satisfy the criterion
function),® and we could roughly imitate the true beta func- (30), we feel that it is at least an interesting phenomenon that
tion with the following qualitative approximation: deserves further examination. We emphasize that our deriva-
tion here has not employed any unconventional or special
assumptions or approximations. All the techniques and argu-

3This is true in fact for all the prescriptions as long as the criterionments are well known and well established. From now on,
(30) is satisfied, since the beta function is basically the same excepv€ denote this solution as SCRDSB for the strong coupling

the UV fixed point varies with prescription. regime beta dynamical symmetry breaking.

B(N)=—
{8+()\)
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D. Further details about the SCRDSB 104

Before speculating on this SCRDSB solution, let us ex- i a=—2.6878
amine the scale dependence patterns of the main quantities of i
interests.

First let us look at the order parameter of the symmetry- .
breaking, i.e., the square vacuum expectation value of the -«
scalar fieldq’)i , O, equivalently,Qi . Inverting the dimen-
sionless function of coupling, we can express the running of
the coupling in the following form by taking the vacuum
energy density as fundamental in £§2), i.e.,

[—2E |
2_ L (x + Y Y R
u-=8me +(N) e () (41) 1010 102 10 10*

+

1021

Combining this relation with the definition df, , we find FIG. 3. The running behavior of the effective mass in M8
the dependence &2 upon the running scale, scheme with—2E., set to 1.

Q2 (\)=pule-+M=87J-2E, /e, (N), (42) Q% is no longer RG-invariar(t], in contrast to the one loop
effective potential case.
or, equivalently, Similarly, we can obtain the asymptotic behavior of the
effective mass defined in ER4). Using Eq.(42), we have

2N = 2my—2E.fe (A) (43) , 18\2 \/Ta
3\ m2(\)= : (48)
ef (2m)2 YV e+ (\)

Since the coupling runs, the order parameter also runs fro
its dependence upan, (\), therefore we need to study the
running behavior ofe . (\). Bearing in mind the running
behavior described in E¢40), we have

’V\mh the above preparations, we find that

O | N O O O W

(49
8+()‘)”%—>°€_’%\/m, or in terms of the running scale,
so-1) . mgﬁ(ﬂz)bw“%v ma( w2~ p® (50)
e+(Mh-iz— 12 (A=Rg), (44)

Here we found new asymptotic behaviors that differ from

both the asymptotic freedom and the triviality solutions. The
with 6= \4—36a— 27 being positive definite in all the three effective masgself-energy at zero momentiibecomes sin-

schemes compatible with symmetry-breaking. Using Eqgular at both IR and UV ends. Only in the moderate energy
(40), we find that in both IR and UV regions, region characterized by the typical energy scale—the
vacuum energy density—can we have finite effective mass.
1 (Of course we must be aware that since the dynamics of

&4 (p)oe—;. (45  SCRDSB exists entirely in a strong-coupling regime, the un-

~ calculated higher-order loop corrections will probably
change the situation obtained here and make it even more

Then we obtain the asymptotic behaviors of the order paramgomplicated. The running behavior of the effective mass is

eterQ? in both IR and UV regions, plotted in Fig. 3.
At this stage, one would naturally ask about the
Qi(,u)oc,uz. (46) asymptotic behaviors of the effective coupling, defined as

)\eﬁ()\)E&4V(2|)/(<9¢)4H¢2=¢2+. The dependence of this
But the asymptotic behavior ap% is somewhat different,  four-point vertex function upon the renormalized coupling
reads
G2 (Wlpwp® L (Wuoxn® 4D

3\
; . =— 44 2\ + + 2
which means that the square vacuum expectation value of the Nei(M) 2774{1677 132m°K +9(61+ 3a)A
field vanishes more rapidly thaﬂﬁ . We note that due to the

extra term ol . in the vacuum energy density, the parameter +ON(4m?+ 63N )L, +8INLY ). (52)
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After some calculations, we have this approach, the solutions would naturally contain un-
known constants parametrizing the ill-definedness or incom-
pletenessto be fixed by physical “boundary conditionsbf

the effective theories. It is obvious that this approaeleds
neither artificial reqularizations nor complicated procedures

NeM) =~ 1003 NeV)l -7, ~10PNe, (52

or equivalently
A. Recalculating the loop diagrams

1 . . .

A o~ —— ~10%. 53 Now we demonstrate this method with the sunset dia-
o) o ut? e )l ®3 gram, the two loop integral,(€)).

(i) First, we differentiate it twice with respect to mass

Note that the effective coupling becomes more singular thafadare () to remove all overall ill-definednesidiver-
the effective mass does in the IR limit. gence,
Since both the effective mass and the effective coupling 52
become extremely singular in the IR limit, it is not difficult
to see that in the low-energy region, the kinetic energy of the d(0)2
scalar field is negligible and the static potential energy domi-
nates, thus it seems impossible to find free scalar field quanta +3lg:(2;1,2( Q) (54)
as asymptotic states. In this sense the elementary scalar field
seems to be “confined” somehow even in the high-energyyith
ranges. We might detect some kind of bound states of such a
scalar field, with the new bound states also being scalar
states. So, even though we found a scalar particle, there may | 6:(a 8 (1)
be another problem with regard to whether the detected par-
ticles are elementary ones or bound states of the elementary =

IH(Q)E6I 6:(3;1;1)(Q)+3| 0:(2;2;1)(9)

J d*kd*l

ones. In addition, the coupling is still strong in the high- (2m)8(k2+ Q) (k+1)2+ Q21812+ 02

energy region, though not infinitely strong. The situation en- (55)
countered here seems to indicate that the Higgs model can
allow for another scenario and symmetry-breaking mecha-
nism provided one explores it nonperturbativey. The HiggsThe result is a sum of new diagrams without any overall
scalar quanta seem to be hidden “heros” that did not like todivergence. Among these diagramg,(s.q1.1)({2) still con-

be “shown off” in the asymptotic states. tains a subdivergence in thentegration,
IV. A DIFFERENTIAL EQUATION APPROACH ANALYSIS d?
2)=
Now we employ a new approach without explicit regula- Lk )_J' (2m)(k+1)2+ Q212+ Q3?)

tors or deformations to calculate the loop diagrams. This

approach is based on the standard point of view that all the o ) _
known quantium field theorie@FT's) are effective theories (i) Second, we treat this divergent subdiagram in the
for a completely well-defined quantum theory containingSame way to arrive at the following inhomogeneous differ-
“correct” high-energy detail§27]. We should make it clear ential equation:

that the UV structures of our present QFT’s are inevitably

incorrect or inaccurate and should be replaced by the “cor- 1 (1 dx

rect” underlying ones that are unknown to us yet, hence cer- (992|(1,1)(Q,k2): J’ (56)

tain diagrams cannot be directly computed within the present ' (4m)%)0 Q2+ (x—x*)k?

formulation of QFT’s.(In conventional methods, one intro-
duces artificial regularizations to imitate the underlying UV

and its solution

structures.
Fortunately, since differentiating a loop diagram with re-
spect to its “low-energy” parametefsnomenta and ma&s -1 1 Q%+ (x—x?)k?
that characterize the “effective” QFTlamounts to inserting l1:0)(Q,k%) = 2f X| In————+cyy,
“low-energy” vertices to this diagrantthis is valid in both (4m)"Jo HpDE (57)

the underlying theory and the effective theojjeshich in

turn reduces the divergence degree of the diagram in terms of
the effective QFT’s, we can compute a potentially divergentwith c; being the integration constants to be fixed through
loop diagram after differentiating them with respect to thephysical “boundary conditions.”

(external momenta and/or ma&s for appropriate times. In (iii) Now we can compute the right-hand side of Esf)
other words, we can calculate the ill-defined diagrams byand obtain again an inhomogeneous differential equation as
solving certain well-defined differential equatioh®8]. In  below,
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02 physically Third, the BPHZ ends up with the introduction of

) 3| In—5—+cy— 1) infinite bare quantities while there is no room in principle for

d Q)= MpDE 58 such infinite quantities at all if one adopts the underlying
Jqy2 of(Q)=— (4m)*02 ' (58) theory standpoint. Fourth, the application of BPHand

other conventional programsn nonperturbative circum-
stances is rather involved, which might preclude any useful
and the solution to it reads (or trustworthy predictiong 24], while the differential equa-
tion approach makes the calculation easier and the physical
predictions more accessibl24].
2 In fact, one often relies on a good regularization method
In——+c¢;—2 to make the subtraction simpler, e.g., dimensional regulariza-
MpDE tion for gauge theories. Recently, it has been shown that in

2

12(0)=—

QZ
2(4m)*
dimensional regularization some subtraction is done implic-

+20§] (59) itly without introducing countertermg20]. That is, we rely

—(c;—1)%+1+2c]
heavily upon the regularization method, which could discard

. 5 ) 0o ) divergences “invisibly.” If one disregards the underlying
with uppe, €1, andc; being the constantSndependent of  theory point of view, in which there is no divergence but
masses, coupling, and momenta be fixed by “boundary  there are ambiguities, then there seems to be no good reason
conditions.” The single loop integrals can be done in thetg prefer the regularization methods tisitnply discard some
same way and are listed in Appendix A. of the divergences without subtractioRor example, the

It is not difficult to see that, before fixing the constants, modified minimal subtraction in dimensional regularization
this differential equation approach provides the most generalpes not lead to useful predictions in the nonperturbative
parametrization of the ill-defined loop diagrams. Any consis-applications of the effective-field-theory methdd3] to
tent regularization and/or renormalizatishould bea special  nucleon interactiong15], which is followed by the works
solution to these differential equations provided the counterthat employ unconventional renormalization methods
terms are local functions of the momenta and regsOne  [14,17,30. Applying the underlying-theory-based differen-

might feel that this approach is merely another form of thetja| equation approach, will make the problem easier to re-
powerful Bogolobov-Parasiuk-Hepp-ZimmermaBPHZ)  solve[31].

program[29]. To respond, we note the following. First, one
must employ a regularization method in BPHZ. Second, the
local terms in BPHZ are prefixed through the Taylor expan-
sion of the amplitudes, a crucial technical point, while in the Now we arrive at the following general form of the effec-
differential equation approach the local terms trde fixed tive potential with unknown constants to be fixed:

B. Relevance of the fixing of the local ambiguities

0 3
2

VENR0) =04 [(L—1)2+2(L—2)2-2(c,—1)%+2+4c!]

s " (8m)? " (4m)*

2, 6N (Co[L—1]+2c))

QZ
i 2(4m)? (4m)*

, (60)

where L =In(Q%u250) +¢; and all theg-independent con- We may expect that there should be at least a fundamental
stant terms are discarded as they are irrelevant to our discugcale to characterize thguantumfluctuations of the scalar
sions here. Naive dimensional analysis tells us that we havéeld. As we are mainly concerned with the symmetry-
three-dimensional constants2,e, ¢,, andc), and two di- breal_<|ng solution, we temporarily take the vacuum energy
mensionless constants; andc?. In all the conventional densﬂy to play the role of the f_undamental scale. Generally
prescriptions, the terms quadratic @b are discarded some- speaking, all the three-d_lmensmnal constants should be of
how: In dimensional regularization, it is done due to thethe same order of magnitude were they not zero. Then the
vanishing (the “invisible” subtraction of power diver- signs and magnitudes of, c5, ¢;, andc{ will be crucial to
gences, while in cutoff regularization it is just subtractedthe existence of symmetry-breaking solutiOO§andcf can
away by counterterms. Here we must fix it via sound physibe put into one constant as this will not change the prob-
cal arguments. lem. Then Eq(60) becomes
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. 3 theory-based differential equation there are no divergences to

L- 5 3\ be subtracted but only ambiguities to be fixéd big im-
VERPQ)=04 + + provement Then setting these dimensional constants equal
144 (8m)?  (4m)* to zero based on the insensitivity argument is just like what

we usually do in solving the Laplace equation or the Sehro
dinger equation, namely imposing sound boundary condi-
tions. Thus the underlying theory and differential equation
approach offer a new way to understand the vanishing of the
quadratic divergence: not from the symmetry argument but

C, 6A(cy[L—1]+2ch) from the insensitivity of the effective theories’ quantities to

> 2 the rescaling of the underlying structur@spresented by the

2(4m) (4) arbitrary constanis

X[(L—1)2+2(L-2)%+a]

+07?

(61)
2. Relevance of dimensionless constant(s)
Of course there might be other possibilities. We will no
h b . h iaht b longer investigate this topic here. Now let us temporarily
what number we assign te, there might be symranetry- adopt the rescaling insensitivity requirement and focus on
breaking in this effective potential provided tbgandc; are 14 other constants in the effective potential, i&pe anda

appropriately chosen_, s_ay;2>0,cg=0. This i_S because i the following form of the effective potential:
when() becomes vanishingly small, the potential reduces to

With the presence af, andcj, we will find that no matter

1 L[-112
6x Q2L VEPE ) =04 ——+ ——
VE5|?E><Q>~CZW, (62 =) 144 (8)?
+(4 )4[E2+2(E—1)2+a] (63)
a

where ¢=0 is a local maximum (clear evidence of
symmetry-breaking which is true even itg is not zero as
long as it is not too large compareddg. Of course, if we set
both ¢, and cg equal to zero, therw will determine the
existence of symmetry-breaking solutions.

where L=In(Q%u3,0) —1. Now sincea is dimensionless
and ,LL,%DE only appears in the logarithmic functions, the res-
caling insensitivity requirement is basically satisfigehich

is just the variant form of renormalization-group invariance

] T ] ~_ However, this requirement does not automatically avoid the
The most important point is that if one adopts a fixing aqditional “sensitivity” to the definition of the dimensionless

prescription so that the quadratic terms are present, then We,nstanta (or ¢, andc’). The reason for this has already
can in no way remove them by redefinition of the coupling,qan, given in Sec. II.

constant(and perhapsp) without altering the symmetry-

breaking status. That means the fixing schemes with qua- 3. Nonexistence of asymptotic freedom

dratic terms are at least inequivalent to those without. As the . ,
underlying theory is still unknown, we have to resort to ex- S & by-product we can determine whether the UV fixed

perimental or other physical means to fix them. Of course foPCINt could be zero within the two loop effective potential.
such an unrealistic model, experimental data are unavailabl&!€re 1S the reasoning. In order to get the asymptotic free
thus we need to search for physical arguments. In the atgolution, i.e.A=0, it is clear from Eq/(28) that we must
sence of obvious good clues to use, a tentative argumefigquire the constant to be infinitely large,

might be that, due to the presence of the dimensional con-

stantsc, andcg as the coefficient of the quadratic terms, the

1. The rescaling insensitivity requirement and fine tuning

effective potential would be rather sensitive to the rescaling 47 0= —o 64)
of these dimensional constants, in contrast to the relatively [4=36a—27—1 “« '

milder rescaling behavior described by the logarithmic de-

pendence upon the dimensional constafg. Then for the

“low-energy” effective potential to be less sensitive to the This is in fact a divergent constant. No sensible renormaliza-

rescaling of the underlying details, we must fix the dimen-tion prescription could allow for such a divergent number. If

sional constants, andc$ to be zero. one adopts the underlying theory point of view, it is also an
One might argue that this is just the unnatural fine tuningunacceptable choice of definition. Otherwise, it might imply

If the differential equation approach is taken as another wayhat the underlying structures do not decouple with the “low-

to “renormalize” QFT’s, this is true. However, if we adopt energy” effective theories. Therefore, we conclude that the

the underlying theory point of view, we feel that this is a UV fixed point at the two loop level cannot be zero, i.e., the

very natural argument. This is because in the underlyingsolution cannot be an asymptotic one, if we accept the pa-
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rametrization Eq(63) or Eg. (15). Generally the magnitude tions on the solutions obtained from the Laplace or Schro
of a should be of order not much bigger thar’lthen the dinger equation. In this way, we arrive at a new
magnitude of the UV fixed point value afshould be around understanding of the naturalness problem.
47°/60~0.6, that is, roughly of the order 1, which means  Furthermore, we also showed that there could not be rea-
that the broken phase cannot be a weak coupling one even §bnable prescriptions that would allow for asymptotic free-
the high-energy region. dom in the broken phase as long as the two loop effective
potential is considered. In the underlying theory understand-
ing, this is also true.
Since more efforts in the realistic model are needed, we
To recapitulate, in Secs. Il and Ill, we made use of thewill refrain here from making further comments. Our only
well-known two loop calculations to search for the aim here is to call attention to the reexamination of our trivi-
symmetry-breaking solutions. Our results here are new iryity conviction about the ¢* model and to the investigation
two respects(i) First, the striking prescription dependence of jts new nonperturbative propertidthe perturbative re-
of the nonperturbative framework differs from that of the gime is unavoidably trivial
standard perturbative framewofR2], in other words, the ~ In summary, we reconsidered the masslags® model

perturbative scheme dependence pattern is no longer valid fith Z, symmetry and found that at two loop level the non-

nonperturbative cont'ex'ts. Thus We can understgnd the. "CSerturbative effective potential’s predictability of symmetry
evance of the prescription found in nonperturbative applica;

tions as in Refs{14—17 and[24]; (i) Second, we foundin breaking depen_ds_ upon the renormalization pr_escripti_ons ip
a number of renormalization prescriptigrieat the massless use. Th_e prescription used by Coleman ?”d Wemt_)erg m_thelr
A ¢* model could also allow for a totallynonperturbative ploneering work_[lo]_ was shown to be |_ncompat|lz_>le W't.h
strong coupling dynamics regime with a negative beta func_symmetr_y_—breaklng in the tWO_IOOP eff.ect|ve. potential, Wh'le
tion (SCRDSB, and therefore could be nontrivial, at least in "€ modified minimal subtraction in dimensional regulariza-
the two loop effective potential. tion, Jackiw’s prescription, and others were shc_>wn .to be able
Although this phenomenofBCRDSB is only discovered 0 accommodate the symmetry-breaking solution in the two
in the two loop effective potential, we found that there is at/00p effective potential. The reason for the relevance of the
least one thing in common with the one loop case, namely@rescriptions in nonperturbative contexts was given. The po-
the existence of a nontrivial phase of dynamics with brokeriential was also recalculated and reanalyzed in a differential
symmetry that is strongly coupled at least in the IR region.equation approach based on the standard point of view that a
Considering the new kind of diagrams beginning to appeacomplete theory underlies all the QFT’s that suffer UV di-
from the two loop level(the sunset diagram, elc.such  vergences. The relevance of the prescriptions for fixing the
“consensus” is conspicuous. We think the nontrivial solution local ambiguities was stressed and the rationality of this ap-
might persist after including still higher-order contributions, proach was highlighted.
with the running behaviors being more complicated, perhaps
with more stringent constraints on the scheme choices.
As far as the two loop effective potential is concerned, it ACKNOWLEDGMENTS
is very difficult to define asymptotic final states, thus the

scalar field theories with quartic interaction is rather different 1€ authors are grateful to W. Zhu for critical discussions
from the gauge theories: it may have a broken phase th&nd encouragements. We also benefited from conversations

exists entirely in the strong-coupling regime. Thus such scalvith Professor Xun Xue. This work is supported in part by
lar field theories with quartic interactions might not permit the National Natural Science Foundation of China, under

the elementary scalar fields to appear in the final asymptoti€rant No. 10075020.
states. This scenario might be of certain reference value to
Higgs physics.

Another main task that has been performed is that we APPENDIX A
reanalyzed the loop diagrams from the underlying theory
point of view, which takes all the presently known QFT'’s
that suffer UV ill-definedness to be ill-defined formulations
of the effective “low-energy” sectors. Then we showed
clearly that the prescriptions or choices for fixing the local
ambiguitiesare relevant to physical properties encoded in
the nonperturbative effective potential, especially for the e D 5
qguadratic terms. In contrast to the conventional regulariza- ZGI(D)(Q)=J puecd kI +Q_
tion and renormalization programs where power divergences Ko )P k2
are present and must be subtracted careffile tuning, in

V. DISCUSSIONS AND SUMMARY

In this appendix, we write down all the needed one loop
integrals calculated, respectively, in the dimensional, cutoff,
and differential equation approach:

the underlying theory understanding, we can fix them to be QT (1+e) A’ ‘

zero under the insensitivity requirement. This is a natural == 2 1 — > |
procedure that is usually done in electrodynamics and quan- (4m)°e(1-€)(2=e) | Q

tum mechanics, i.e., imposing appropriate boundary condi- (A1)
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2eAD
pd”k 1
p2PQ)= f Y
(2m)° K2+ Q
QT (1+ Arp?\ €
_ (1+e) oy , (A2)
(47)%e(1—¢€)
d*k 02
15V Q =f In| 1+ —
o () A(2m)* k2
1 A%+Q? A%+ Q72
= A%n - Q%n
2(4)2 2 2
+A2%207%}, (A3)
4
IEA’(Q)—J d*k 1
A(2m)* k2+(22
1 A%+Q?
= —02n +A%), (A9
(41r)2 0?2
1o(Q) ! 94| Qz+ 3/2
= —|In C1—
° (4m)?| 2| uhoe '
+c,0%+ 03] , (A5)
1 2
1,(Q)= Q2 In +ci—1|+cyp. (AB)
(477) MPDE

Note that in the differential equation approach there appear
unknown constants in the integrals parametrizing the ill de-
finedness. The constants should be fixed by “boundary con-

ditions” as discussed above.

APPENDIX B

In this section, we describe the% scheme that mimics

PHYSICAL REVIEW D 65 125009

subtract the cutoff-containing parts. Let us demonstrate it
with the sunset diagram.
First let us list all the relevant integrals or diagrams:

1 A%+ 0?2
M) = —0%n +A2
m)? 02
A2
= A2—0Q%n—+0o(A"?}, (BL
(am)? oz (A7) (B1)

1 1 2
(11)(Qk) (4m)? deXIn—Qz-i-x(l—x)kz_l
+0(A?), (B2)
302 02
M) = 2_ 200 2tt
1§ (Q)—(Am)A{ZA > In e

2

2 Q -2
+3Q InPJro(A )t (B3)

The counterterm for subdivergenceligﬁ‘)(ﬂ) comes from

the log in I(1 (42, k?) containingA as an argument, i.e.,
from In(AZ/,u) together with factors from graph topology
and angular integration. Thus the counterterm for the sunset
diagram reads

c.t(l)= (122 ¢2<InA )xl‘lM(Q)

(4m)?

A% Q2 A?

12202
In—In— +A%n— . (B4)
A? u?

~ (4m)*

PE

Here we selected an arbitrary scale to balance the dimension
in the argument of log. After removing the subdivergence,

the MS scheme in dimensional regularization, i.e., we merelywe get for the sunset diagram

e\t 02 \?
—48)\2¢2I(2A)(Q)+c.t.(1):(477)4 (Inp—l) —1f—

6 Q4 | 02\? ) 0?2

(4m* | u? u?

8AA%0Z% 1202 A2 Q2 A2
+ Q2n—In—+ A2ln—

(4m*  (4m)* w? AZ w?
AZ

6N Q4 N—

w? A? BAA02 A% 8AA202
+—A2—IN—| {+ —In—— —.
(4m)* w? 4am* wp?  (4m)*

(B5)
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Now we see all remaining divergences are purely “local” 3 _ #? 25
and can be removed through introducing a second counter- a=——, = , In———.
term c.t(2), 3272 4(4m)* M2 6
(Cy
AZ
6)\04In—2 5 From the first-order condition, we find the following equa-
o m AT tion:
c.t(2)= 2 2—|1In 5
(4) M
2y 212 2 2 2205
6)\/\292 A2 8)\A292 2| 1+anl+a“N“l“+Db\ I+a)\¥
— 2 |I’1—2+ ek (B6)
(4m)*  wp®  (4m) +an+2a2\2 +br2=0, (C2
which contains no finite part, and the renormalized sunset
diagram now takes the following form: that is,
[_48)\2¢2|(2A)(Q)](Mi)5 —48)\2¢2| (ZA)(Q) +Ct(1) 232)\2|2+(23)\+ 2b)\2+ 282)\2)|
205
+ct(2) 2+ an+bAZ a2 o =0, (C3)
_aatff o2 2 &
T am? n; -2 n; : The corresponding delta reads
(B7) A=(2ar +2bA2+ 2a202)2
APPENDIX C 205
—8a’\? 2+a)\+b)\2+a2)\2§)
In this appendix, we verify that even in the original pa-
rametrization the Coleman-Weinberg scheme is still incom- 3\ |2 N 195\2
patible with the DSB solution. The two loop effective poten- =_ ( ) [ 3+ + ] <0. (Cv
tial in Ref.[18] reads 1672 1672 4(4m)*

4

A 205
=i 14+anl+a2\22+br2 +a2\2—],

ViU
v 41 36

(2

This inequality implies the incompatibility of the Coleman-
Weinberg scheme with symmetry-breaking at two loop level.
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