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We study the three-dimensional Georgi-Glashow model to demonstrate how magnetic monopoles can be
studied fully nonperturbatively in lattice Monte Carlo simulations, without any assumptions about the smooth-
ness of the field configurations. We examine the apparent contradiction between the conjectured analytic
connection of the “broken” and “symmetric” phases, and the interpretation of the ifi@ssthe free energy
of the fully quantized 't Hooft—Polyakov monopole as an order parameter to distinguish the phases. We use
Monte Carlo simulations to measure the monopole free energy and its first derivative with respect to the scalar
mass. On small volumes we compare this to semiclassical predictions for the monopole. On large volumes we
show that the free energy is screened to zero, signaling the formation of a confining monopole condensate. This
screening does not allow the monopole mass to be interpreted as an order parameter, resolving the paradox.
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I. INTRODUCTION example of this is the Abelian Higgs model, in which the
vortex tension indeed acts as an order paranj&tef).

On the level of classical field equations, the three- On the other hand, it is not even obvious that the mono-
dimensional Georgi-Glashow model has two phases: Whepole mass can be given a rigorous definition in a fluctuating
the mass parameter of the Higgs field is negative, th€B5U theory, because, in general, one cannot assume that the field
gauge symmetry is broken into(l, and when it is positive configurations that contribute to the partition function are in
the symmetry is unbroken. The phase of the system can bhsome sense close to solutions of classical field equations.
determined by a local measurement of, say, the scalar fieltthis problem was solved in Ref10], however, where the
Tr ®2, which vanishes in the symmetric phase but is nonzerenonopole mass was defined as the increase of the free en-
in the broken phase. ergy when the total magnetic charge of the system is in-

In the broken phase, the field equations have a topologiereased by one. Furthermore, it was shown how this quantity
cally nontrivial solution, the 't Hooft—Polyakov monopole can be measured in Monte Carlo simulations.

[1,2], whose energy is concentrated around a pointlike core. Thus, we have a well defined observable, the monopole
The mass, i.e., the total energy carried by a monopole, demass, which could naturally be expected to be zero in the
creases when the mass parameter approaches zero from Bgmmetric phase and nonzero in the broken phase, and still
low, and vanishes in the symmetric phase, in the sense thgte phases are believed to be analytically connected. The
the solution is indistinguishable from the trivial vacuum so-purpose of this paper is to explain this apparent paradox.

lution. First, we present a calculation based on a simple dilute

In many cases, however, we are more interested in thmonopole gas approximation, which predicts that although
behavior of the model when fluctuations are taken into acthe monopole free energy is indeed nonzero and roughly
count. It is immaterial whether the fluctuations are thermalequal to its classical value in a system of intermediate vol-
fluctuations in a classical field theory or quantum fluctua-ume, it decays to zero at exponentially large volumes. There-
tions in a Wick-rotated (2 1)-dimensional quantum field fore, it should actually vanish everywhere in the thermody-
theory. Both of these systems are described by the same paramic limit. This calculation is very similar to Polyakov's
tition function, and we shall make no distinction betweenargumen{11,12 that the photon has an exponentially small
them. Nevertheless, we shall call the treatment based on clasyass in the broken phase.
sical field equations “semiclassical” even though it is no  Second, we measure the monopole free energy directly in
more accurate in a classical field theory at a nonzero tema Monte Carlo simulation on different volumes using the
perature than it is in a quantum field theory. method developed in Ref10]. We find that the monopole

When fluctuations are present, the above simple picturéree energy has a volume-independent value in a wide range
changes completely. In particular, the “symmetric” and of lattice sizes, which shows that it corresponds to a local-
“broken” phases are believed to be analytically connected tdzed, pointlike object. In agreement with the analytical argu-
each othel[3—6]. Order parameter candidates that are noiments, however, it eventually starts to decrease, when the
gauge invariant, such a&sb), vanish in both phases, and volume is large enough.
positive definite observables, such asd®f mentioned The vanishing of the monopole free energy in the infinite
above, are nonzero in both phases. It would seem natural thablume limit implies that the monopoles condense. This
a quantity like the mass of a 't Hooft—Polyakov monopole,leads to confinement of electric charge according to the dual
however, should be protected against the effects of the flusuperconductor picturel3], and our results can therefore be
tuations by its topology, and that it should therefore serve asonsidered as a numerical verification of Polyakov's semi-
an order parameter for the phase transition. If this were thelassical argumentl2] that the Higgs phase is confining. In
case, the phases could not be analytically connected. Orgarticular, since the monopole free energy vanishes in both
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phases in the infinite volume limit, it does not act as an order The coupling constang3, has the dimensions of mass,
parameter, and this resolves the apparent paradox betweeraad we can write the parameters of the theory in terms of
smooth crossover and the nonanalytic behavior of the monadimensionless ratios with the coupling constant
pole mass in the semiclassical approximation.
Within the framework of high-temperature dimensional
reduction14], the three-dimensional Georgi-Glashow model X=
is an effective theory for the Yang-Mills theory at high tem-
peraturegsee, for exampld,15] and references therginrhe
phase transition of our model, however, is not related to the
deconfinement phase transition of the Yang-Mills theory or m?(g2)
QCD. On the other hand, our methods can be generalized to = 3
four dimensions in a straightforward way, and they may 93
therefore be applicable also to studying Abelian monopoles
[16] in the Yang-Mills theory, in particular whether they con- The notation here reflects the fact that the theory is super-
dense at the transition point as has been suggested as a pformalizablgin three dimensions and thus only the sca-
sible “mechanism” for confinemerit13]. lar mass needs a renormalization counterterm. Even this is
Monopole free energies in the Yang-Mills theory haveOnly necessary up to the two loop level, and its value is
been studied before by several grolifg—20 using differ-  known both in theMS schemd21] and in lattice regulariza-
ent techniques. In Ref§17,2q fixed boundary conditions tion[22,23. In Eq.(4), m?(g3) is theMS renormalized mass
were used to create a monopole, but this leads to significantith renormalization SC&|¢L=9§-
boundary effects. In Ref$18,19 a monopole creation op-  To study this model in a fully nonperturbative manner, we
erator was used, which lets one measure not only the massérmulate the theory in a way that allows numerical solution
but also correlation functions of the monopole field. With by Monte Carlo simulation on a cubic, Euclidean lattice con-
periodic boundary conditions, howevgr, the operator creategsting of L® sites, labeled by a triplet of integeri
not only a monopole, but also an antimonopole somewhere o e
in the system in order to satisfy Gauss’s law. The advantagé(x’y.'z)' The action is given b= 2L(x), with the La-
of our approach is that the system really has a nonzero maé;_ranglan
netic charge, and because translation invariance is preserved, 1
no singularities can arise even near the boundaries of the £(x)=8>, [1——Tr Uii(X)
lattice. I<] 2 :
The structure of the paper is as follows. We start by dis- - S s A
cussing the three-dimensional Georgi-Glashow model and ~Tre()Ui(x) P (X+ U (x)]
the lattice definition of its magnetic monopoles in Sec. Il. In
Sec. lll, we use semiclassical results to motivate our numeri-
cal results. We present details of the Monte Carlo simulation§,pare m?2

iod in s V. and th I biained in Sec. V/ is the bare lattice mass parameter apd
carrie out In Sec. 1V, ana t e resu ts obtained in Sec. '=4/(ag§) is the conventional notation for the bare lattice
Finally we discuss our findings in Sec. VI.

gauge coupling.
We shall treat this lattice theory as an approximation to
Il. THE GEORGI-GLASHOW MODEL the continuum one, and therefore we parametrize the theory
in terms of the renormalized continuum couplings defined in
WEqs.(S) and(4). We are able to do this because the relation-
ships between the lattice and continuum couplings are
known [22,23, but we shall postpone discussion of them

()

Sl >

4

+>, {2a[Trd?(x)

+m?ad Trd2(x) +adN\[Trd2(x) 1%, (5)

In the continuum, the three-dimensional Georgi-Glasho
model is defined by the Lagrangian

L= ETr(FijFij)JrTr[Di ®][D;,®]+m? Tr d2 until Sec. IV. We shall also express all quantities in con-
2 tinuum units.
+N(Tr®?)?, (N .
A. Magnetic monopoles
where® is in the adjoint representation of the &Y gauge It is very well known that, in the continuum, the field

group, D= d;+igzA; andF;; =(igs) "YD; ,Dj]. The parti-  equations have topologically non-trivial solutions, 't Hooft-
tion function of the theory is formally defined as the pathPolyakov monopole$l,2]. They can be characterized by a
integral nonzero winding number of the Higgs field at the spatial

infinity,
Z=f DODA, exp(—f dxL

This can be interpreted as a three-dimensional Euclidean .
quantum field theory, or as a classical statistical field theorywhere ® = ®(d?) 2 Although Ny, itself is gauge invari-
with the HamiltoniangH = [d3x L. ant, the integrand is not, and therefore it does not have a

. (2

1 A .
Nw=mfdzskei,—kTr@(aiq))(ajq))ez, (6)
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direct physical interpretation. It can be easily seen, however, *
that Ny, actually corresponds to the magnetic charge associ- Z= H Zq,, (12
ated with the residual (1) gauge invariance. Qu=-=

To see this, let us define the magnetic fiel i ) )
g o B We define the free energy of a given topological sector by

1 ~ 1 - - -

Bizifijk Tr(I)FJk+ ETI’CI)(DJCD)(DkCI)) . (7) FQM=—|I’]ZQM, (13)
. . . , = > and the free energy of a monopole as the free energy differ-

This |s. a gauge |[1var|ant quantity, .ahd. agrees Witk A; in ~ ence of sectorQy=1 and 0,

the unitary gaug® = o3. Therefore it is indeed the magnetic

field associated with the residual1) symmetry. The corre- AF=F,—F,. (14)

sponding magnetic charge densipy, =V -5, has the fol-
lowing properties: First, becaugg, is given by a total de- Semiclassically.Zq, = exd—SQu)], where S(Qy) is the
rivative, the charge inside a given volume can be expressegktion of the monopole solution with char@g, . S(Q,) can
as a surface integral. Therefore any local deformation of theilso be interpreted as the mass of a monopole, and with a
fields inside the volume cannot change the charge inside thelight abuse of language we can generalize into the fully
Y0|{Jmfe- Second, the magnetic charge inside a given volumgonperturbative case by defining the monopole “madsly
is, in fact,

M =g3AF. (15)

| g3y, T
Q'V'_j d XPM_ENW’ ®) The semiclassical picture would predict that monopoles are
massive in the broken phase and massless in the symmetric
and is therefore quantized in units ofrflg. These two prop- phase. If this were true, the mass would serve as an order
erties imply that the only way the charge inside a volume carparameter for the phase transition.
be changed is by moving a magnetic monopole in or out of
the volume. In other words, the magnetic charges are topo-
logically stable. )
What is less well known is that these same properties are e measure the monopole free energy following the
also true for the lattice theory. We can define the analogue dnethod of Ref[10], which for convenience we briefly re-
Eq. (7) as view in this section.
Our strategy is to work on a finite sized system, and im-
B,= €k ik - (9) pose boundary _Conditions_ that force the tota_l magnetic
charge of the lattice to be either odd or even, whilst preserv-
Here o is the lattice W) field strength tensor, ing the translation invariance of the system. This is important
because translation invariance guarantees the absence of
i =TrIT (X)U; )T, (X+ 1)U (X+ DT, (X+1+)) boundary effects. o .
Gauss'’s law rules out periodic boundary conditions, as the
xuj(§+j)n+(§+j)u;”(§), (10)  total charge is constrained to be zero. However, translation
invariance is preserved by any boundary conditions that are

andH+=%(1+<i>). In the continuum limit,8; approaches periodic up to symmetries of the Lagrangian, and in general

22 . . . ; hey allow a nonzero magnetic charge. For instance,
aB,; . If we define the magnetic charge inside a lattice cell aé‘ C-periodic boundary conditions24]

B. Boundary conditions

/3M<x”>=2 [Bi(x+1)—Bi(x)], (12) d(n+L))=—0,®(n)o,=d*(n),

it satisfies the same conditions that guarantee in the con- Ui(n+Ly)=ozUk(n) o= Ui (n). (16)
tinuum the topological stability of magnetic monopoles: the . )
charge is quantized and can be written as a surface integrd@fe such that the net magnetic charge can be nonzero, but it
These are the same properties that ensure the stability & constrained to be evgi0]. We shall refer to calculations
monopoles in the continuum, and thereby magnetic mono4Sing such boundary conditions with a subscript “0.”

poles are well defined and absolutely stable objects even in a Similarly, if the fields are constrained to behave as
discrete lattice theory, unlike the instantons of the four-

dimensional Yang-Mills theory. d(n+ Lj)= —o;®(n)ay,
Because of the quantization and stability of magnetic
charge, it makes sense to consider “microcanonical” parti- Up(n+ Lj)zgjuk(n)gj ) (17)

tion functionsZQM which are restricted to configurations

with a given magnetic charg®,,. The full, “canonical”  on moving around the lattice, the net magnetic charge is odd.
partition function is then simply We term these “twisted C-periodig boundary conditions,”
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and denote results so obtained by a subscript “1.” It is easyin the main, however, we shall study the derivativeAd¥
to see that both sets of boundary conditions are symmetriesith respect to the scalar mass parameter,
of the lattice Lagrangian.

By a gauge transformation, the twisted boundary condi- 1 0AF

(Trd?), (Trd?),
tions may be rewritten aquntwisted C-periodic boundary -

) : (23)

I8 2 2
conditions everywhere save at the edges of the lattice, where 9s 9y 93 93
Us(x,L,L—1)=—U3*(x,0L—1), where V is the volume of the system. We know that for
sufficiently largey in the symmetric phase the free energy of
Uy(L—1L,2)=—-U,;*(L—1,072), the monopole will go to zerdat least in the large volume
limit). If we see the derivative becoming zero, the free en-
Uy (L—1y,L)=—U;*(L—1y,0). (18  ergy is at most a constant. In Sec. IV we also measure the
free energy at a point in the symmetric phase and find it to be
By a suitable redefinition of the fields consistent with zero. If the derivative is zero all over the
symmetric phase, it is reasonable to assume, then, that the
Us(%,N,N=1)——Us(x,N,N—1), free energy itself is becoming zero.

Ui;(N—1N,z2)——U;(N—1N,2),
Ill. SEMICLASSICAL EXPECTATIONS
Us(N=1y,N)——U3(N=-1y,N), (19 We now turn our attention to the semiclassical predictions
for the 't Hooft—Polyakov monopolésee, for instancé;12]),

% which we would like to compare our results from the fully
quantized theory.

€ In the broken phase of the theory the scalar field gains a
vacuum expectation valu¢/EV)

we can express the twisted boundary conditions as a theo
with C-periodic boundary conditions everywhere, but with
an additional term in the action that depends solely on th
gauge fields:

zlzf DU;D® exp(—S—AS), (20) v_ Y 2

where the change in the action is
The semiclassical solution of unit winding number is the 't
Hooft—Polyakov monopolgl,2], associated with an isolated
AS= ﬂ{ 2 TrUpy(X.Yo.20)+ 2, TrUsi4(Xo.Y.2o) zero of the scalar field. Away from this, the scalar field de-
X=0 y=0 cays towards its vacuum expectation valMEV), with a
characteristic length scale

£93=(\-y) L (25)

The gauge field simultaneously decays from beindZtb
being asymptotically (1) with a length scale

L-1 L-1

L-1

+ Z’o TrU5(X0,Y0,2) | (21

We emphasize that, because EB0) is equivalent to Eq.
(17) with the translation invariant boundary conditions, the
choice of coordinatesxg,yq,29) does not affect any observ-

able, and, in particular, it does not fix the location of the ( -1

v

monopole on the lattice. 5992_
93

In physical termsAS gives a negative gauge coupling to
three orthogonal stacks of plaquettes which are pierced b
three mutually intersecting lines on the lattice. These line
are known in the literature as 't Hooft ling&5]. A single,
open 't Hooft line creates a pair of Dirac monopoles, and ha
been used to measure their interaction potential in R26s-
30]. It should be noted, however, that Dirac monopoles ar
rather different from 't Hooft—Polyakov monopoles. They
have only half the magnetic charge of the latter, and are
singular, non-dynamical objects. In our case, the 't Hooft
lines are closed by the boundary conditions, and therefore M=47Tif(X) 27)
they do not create any singularities, but a nonsingular 93 O3
't Hooft—Polyakov monopole.

The free energyAF (or the “mass’) of a monopole is \here f(x) is the 't Hooft function. To satisfy the Bogo-
defined by analogy with Eq14) as molny lower bound on the mas®&0)=1. Also, it is known
numerically (see, for example[31]) that for smallx, f(x)

)=—|n<eXD(—AS)>- (22 =ltx. . . .
The derivative of this mass, as in EQJ), is

e thus have a picture where asymptotically the gauge fields
are Abelian, save within some extended core whose size is
efined by the above length scales where the gauge fields
‘unwind” into the full SU(2) gauge manifold. We shall find
éhat this scenario remains at least qualitatively valid when
quantum corrections are introduced.
The mass of this object is, semiclassically,

Zy

AF:Fl_FOE_ln(ZO
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PR 20 B. Intermediate volumes
—— (28

Let us then consider a system that is large enough to
comfortably accommodate one monopole, but is so small
that the fluctuations are not likely to create isolated mono-
poles (or, more accurately, well separated monopole-
antimonopole paips This is the case wheé<al<D. That
is, the entropy-action balance is dominated by the action
cost, which limits us to the minimum number of monopoles
' (29) (and antimonopolesequired to satisfy the boundary condi-

Assuming that the monopoles are pointlike and noninter
acting, we can roughly estimate their density to[ bé]
tions.

Vo ( v )7’2 p( M
6 % TN
o ) We expect the free energy difference, E2R), to be that
which ls_suppressed by the _exponentlal of the mass. We mayatween a system of one monopole and an uncharged box.
also define a mean separatibnof the monopoles as Because a monopole is a localized object, the regions far
from the monopole core are unaware of the twist in the
boundary conditionsAF only gets a contribution from the
(30 monopole core and is therefore independent of the volume.
In this case, the identification d&fF with the monopole mass
makes sense, and a comparison between the measured values
WhenM>g§, there is a hierarchy betwe&nhand the funda- and the semiclassical formulee above yields information on
mental |ength Sca|e$S and §g1 and therefore the above as- the radiative corrections to the semiclassical mOﬂOpOle.
sumption of pointlike monopoles is valid.
This is the semiclassical picture for infinite volume. What C. Large volumes
we are interested in is what happens in the quantized theory As the volume is increased such tizt>D, the entropy

of finite volume, and the interplay of the system siaé,  ain in introducing well separated monopole-antimonopole

with the scales above. Particularly, we wish to know the fatepairs into the vacuum outweighs the action cost and the

of the monopole mass on large length scales. mean density of topological objects is no longer expected to

be the minimum commensurate with the boundary condi-

A. Small volumes tions. The free energy required to introduce an extra mono-

ole into the system is now less than the mass of the single
onopole, as we demonstrate with a simple model.

1
(Dg3)®

ol S

Let us first briefly discuss what happens when the volum
of the system is comparable to, or smaller than, the length
scales discussed before. The core size of a monopole is given
by the correlation lengtl§ (we assume for sake of argument ) o )
that ¢, and&, are comparableand therefore iaL<¢, there Following Ref.[32], where a similar effect was discussed
is no room for a monopole in the system. If the system ign the case of vortices in (21) dimensions, we assume that
forced by twisted boundary conditions to contain one monohe density of monopoles is low enough, so that the probabil-
pole, its core will fill the lattice and the whole system will be ity of finding one in any subvolume of space is independent
in the confining phase. On the other hand, the untwiste@f Whether there are monopoles present elsewhere in the sys-
system is in the Higgs phase. The free energy densities dgm- In other words, the monopoles are assumed to be point-
these two phases differ by a certain nonzero amaufit  like or that overlap of the cores is of vanishing measure. As
which is essentially the latent heat, and as this is the case f#iScussed above, this dilute monopole gas approximation is

1. The dilute monopole gas

the whole volume, we have believed to be valid deep in the broken phase.
The probability of findingn monopoles or antimonopoles
AF~L3Af. (31 (we do not distinguishin a volumeV follows Poissonian
statistics

Thus, we can conclude that whah< ¢, AF should scale as
the volume of the system.
When the volume is increased=al<2.5¢, the fields ) = ii n

; p(n;V) (voV)". (32
start to approach the (W) of the Higgs vacuum far from the Nn!
monopole core of the twisted system. Nonetheless, the core
will be affected by the boundary conditions, and in general a
restriction in the core size by the boundary will lead to anWe apply this to the volume of the whole lattide= (aL)®
increase in thgabsolute value of thefree energy and its =g§6(4L/ﬁ)3. We find different normalization factors for
derivatives. As a rough estimate, if the total non-Abelian fluxtwisted [ne odd, and NV;=sinh@yV)] and untwisted[n
inside the monopole core is roughly constant, then the fluxe even, and\V,=coshg,V)] boundary conditions.
density will vary as the inverse of the volume. The total The free energy of the systeor its derivative is exten-
energy of the system would then vary BS3. (The figure  sive and the sum of the free energy of the components for a
2.5¢ is a rough limit derived from our resuljs. dilute gas, and considering the entire system we obtain
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Po

1

Jd AF
N 2

n;v
% & p(n;V)

1 Po
NO neEevenn(g%) p(n )

—2vV

e 0
:4(&3
J3

wherep, was defined in Eq(28). Equation(33) gives the
desired plateau for intermediate but then decays to zero as
V—oo, beginning onc&/=V_, such thatvgV.=1. Note that
since vV is simply the typical number of monopoles and
antimonopoles created by fluctuations, this result shows that
the monopole free energy decays as soon as the fluctuations
can create isolated monopoles.

Crucial in the above calculation is the assumption that the
monopoles are noninteracting. Although the monopoles at
least s_em|cla§3|cally hz_;tve a Ior_wg_ran_g_e Coulomb interaction, FIG. 1. Isosurfaces Tb2=3.89 (light) and 3 (1—Tr U; /2)
we believe this approximation is justified, because the |nter-:O 18 (dark in a typical field p _ - 2

L L o . . ypical field configuration ak=0.05, y=0.45
action is nonconfining. Nevertheless, it is only an approxi-

- d theref . b di ical simul andB=18. In order to reduce noise, the configuration was averaged
r_natlon, andt e(e ore It must be tested In numerical simu abver 50 subsequent Monte Carlo sweeps.
tions, as we do in Sec. V.

q We _;:an a}{lgo dstee thalt t_f:et a?r?vi argéj_ment _Woulld brea[I§hase transition can only be seen in practice by measuring
own It we tried o apply 1t 1o the tour-dimensional Case, \,,,4c41 ohservables such as the vortex tension or the photon

wh.ere the monopples are world lines rather than pointlik ass[9]. In the present case, the predicted nonzero photon

objects. In a Euclidean theory, the action of the monopolqnaSS has not been observed in simulatig]. It is clear

world line WO.UId be propo_rtlonal to its lenth’ a_nd_ t.he“?forefrom the results presented here that the reason for this lies in
vy would vanish exponentially when the limit of infinite time the very large volumes required
e

dimension is taken. The same happens for vortices in th
three-dimensional (1) theory[9]. In future work we aim to
verify that this is also true for vortices in a non-Abelian IV. LATTICE MONTE CARLO SIMULATIONS

theory. On the other hand, if one of the three dimensions is \ye simulate the Georgi-Glashow model on the lattice via
compact as in the (£ 1)-dimensional case at a nonzero tem-,nte Carlo importance sampling of the partition functions
perature,vy is finite, and again the vortex free energy van-¢o poth the C-periodic and twistedC-periodic boundary
ishes in the infinite volume limif32]. conditions. Updates to the lattice were performed as com-
pound sweeps consisting of one heatbath update to the gauge
and scalar fields, followed by two over-relaxation steps to
The prediction of the dilute monopole gas approximationeach. Measurements were made once per compound sweep.
that the monopole free energy vanishes in both phases in the Statistical errors were estimated by jack-knife analysis,
infinite volume limit is compatible with the properties the dividing the data sets into ten bins. For most lattices, the bin
phase diagram of the theory is believed to have. Vanishingize was much longer than the autocorrelation time of the
free energy means that the monopoles condense, and accoabservables, making them independent. This could be seen in
ing to the dual superconductor pictUrks], this gives rise to  an approximate decrease in the statistical errors @bl Hs
confinement. the number of measurementd, was increased. The only
Indeed, it is known semiclassically that the nonzerolattice on which this was not readily apparent was fhe
monopole density gives the photon a nonzero mass even irn 4.5, L=46, where the errors did not show such a reduc-
the Higgs phasll], and this leads to confinement. Thus it tion. This may indicate that, despite considerable computa-
is natural to assume that the Higgs phase is analytically cortional effort, the ensemble size is still such that the autocor-
nected to the confining pha$é,5]. Again, this can only be relation time was comparable to the bin size. Error estimates
true if the monopole free energy vanishes in the Higgs phasdor this ensemble should thus be treated as lower bounds.
because otherwise it would act as an order parameter signal- To illustrate that the twisted bounary conditiofis) in-
ing a transition from the Higgs to the confining phase. deed generate a monopole, we show in Fig. 1 the isosurfaces
Previous studie§5] have supported the idea of a smooth of Tr ®2 and the gauge action densty_;(1-TrU;;/2) ina
crossover between the phases, but as they only concentratggbical field configuration ak=0.05, y=0.45 and3=18.
on local quantities, they cannot be regarded as proofs. Fofhe gauge action peaks and @f dips around the same
instance, in the three-dimensional Abelian Higgs model, theoint, exactly as is expected to happen near the monopole

Vov (33)

1— e—4V0V

2. Confinement
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TABLE I. Lattices used to study the monopole free energy bysimulation algorithm, maintaining comparable precision in

the method of progressive twisting. the free energy derivative requires CPU time risingL&s
> This limits the results of this study to=<46. Calculations of
X y B ags L the derivative with respect to the scalar mass used between
0.35 ~10,-3, -1, -05,1, 10 180 0222 16 2000_0_0 and 500000 measurements for each of the boundary
condition choices.
core. Because of thermal fluctuations, the isosurfaces are not B. Lattice parameters
spherical. The physical and lattice parameter values used are listed
for reference in Tables | and II.
A. Observables In this section we discuss simulations of the (U

We measure the free energy and its derivative with respedg€0rgi-Glashow model in three Euclidean dimensions. The
to the scalar mass. The former is done via &9). In prac- action for the theory has been given in E§).. In addition to
tice this does not work; the importance sampling of thethe parameters that define our theory in the continuum limit,
theory with untwisted boundary conditions has very smallx andy, there are two addltlonal complications in the lattice
overlap with that of the twisted partition function. This leads theory: the lattice spacingg3, and the volume,4g3L)?, of
to strong sign fluctuations iA'S which leads to a poor con- the cubic lattice on which we perform the simulations.

vergence of its average through Monte Carlo simulation. Detailed investigations of finite volume effects and scal-
Instead, as in Refd9,26,27, we can introduce a set of ing of correlation lengths have bgen performed for the
ensembles defined by a real parameter[0,1]: =2+ 1 pure gauge S(2) and Georgi-Glashow field theories

zssf DU,D® exp(—S—&AS), (34)

in [15,33. Here we summarize the findings briefly for the
benefit of nonspecialist readers.
The lattice calculations yield dimensionless results, which
may be interpreted as being the physical result multiplied by
where e=0 is the untwisted case, ane=1 represents the lattice spacing raised to their naive dimensions, and
twisted boundary conditions. We then write which we denote via a circumflex accent. We remove the
dependence on the unknown lattice spacing by multiplying
Aszl =fld£<AS> (35) the result with the appropriate power ¢¥I‘=4/(ag§), and
0 0 a therefore it is natural to express the results in terms of pow-
ers ofgs, which has the dimensions @Mas$*2. For suffi-
where the subscript indicates that the expectation value ciently fine lattices, the agreement with the continuum limit
must be measured using E&4). This gives us the absolute will be within the statistical errors of the lattice data, but on
value of AF, but with the cost that we have to measurecoarser lattices there may in principle be deviations. The
expectation values at nonphysical valuessofWe call this  results in Refs[15,33 are indicative of the continuum limit
the “method of progressive twisting.” Calculations of the for 8=4.5, which includes relatively coarse lattices at the
free energy by progressive twisting typically used 10000 tdower end of this rangéas we discuss later
20000 measurements for each of 37 values of the twisting The lattice theory in Eq(5) is parameterized by three
parameterg, which are then numerically integrate@or an  couplings m?,\,3). In order to vary the lattice spacing, we
alternative approach, see RE29].) wish to changeB whilst maintaining the same continuum
Alternatively, the derivative of the free energy, E3),  theory[i.e., (x,y)]. This is commonly referred to as moving
may be measured directly, which avoids the reweightingalong “lines of constant physics.” These trajectories have
problem. We are, however, calculating an intensive quantityseen calculatei22,23 in the limit 83—, and they are be-
as the difference of two approximately extensive numberslieved to be valid for lattices finer thg=4.5-5.0:
Maintaining a constant error on the former demands increas-

ing accuracy in the latter for increasing volume. Even allow- 4
ing for self-averaging and the good scaling properties of the B= a_gz'
3

TABLE II. Lattices used to study the system size dependence of N _ng
=X03,

the derivative of the monopole free energy.

2 2
X y B ags L m_4%y_(4+5x) 3.175;9_ 1 . (20x—10¢2)
0.35 —-0.124 45 0.889 4,6, 8, 10, 12, 14, 16, 18, 20, J3 4mag; 16w
22, 24, 28, 32, 36, 40, 46 6

6.0 0.667 4, 6,8, 10 x(ln—2+0.09 +11.6¢+8.7|. (36)

9.0 0.444 4,6, 8, 10, 12, 14, 16 agds

12.0 0.333 4,6, 8, 10, 12, 14, 16, 20

180 0.222 4,6, 8,10, 12, 14, 16,20  Again, we address the range of applicability in a later sec-

tion. We are primarily interested in testing the idea that the 't
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Hooft-Polyakov monopoles condense. The measurement o x=0.35, y=-0.124

this is a fine balance. Whilst monopoles are topologically ' ' ‘ ' '
stable even if their core is smaller than the lattice spacing, it 0r &y T
should be much larger than that to ensure they resemble th k" - &g
semiclassical 't Hooft-Polyakov solution. Experience indi- &g,
cates that the correlation lengths of the gauge and scalar fiel s

should be at least 2 or 3 lattice spacings. Simultaneously, ir 10 & '
order to see the screening of the free energy that signals th > |

formation of the plasma, we require lattices that @meich § -ﬁg > >
larger than the mean separation of the monopoles, such thé\.'-om ! . .
it is possible for screening of magnetic charge to occur. © A ag2=0.222 S . ==
Given that these two scales may be widely separated, itisno  -20 |- (;ag:2=0.333 -~ =1 =
at all clear that we will be able to achieve the balance using v ag, =0.444 s o
a lattice sizel, which can be realistically simulated on the ¥ ag, =0.667 iy <
resources available. 2 :g;v:?',gfvgﬁt .

We can use the known, semiclassical description of the
monopoles[11] to estimate the parameters needed for the 30 ] 5 3 4 5 6 7
lattice. Such estimates are, of course, only expected to b gL

accurate up to numerical factors which may be important
here. Nonetheless, we may hope the results are indicative at FIG. 2. The derivative of the monopole free energy as a function
least, and the exercise gives some insight into the possibRf (smal) lattice size at=0.35, andy=—0.124.
screening mechanism.

The monopole densit{29) has a maximum value of just which are both suitably larger than the lattice grid size. Finer
under 0.000345. Screening will become apparent when thi@ttices were used to resolve better the small volume
physical volumegSV=(4L/B)3, is such thatr,V,=1; this  behavior.

yields
V. RESULTS
4L, [ v B @7 A. Small volumes
_2 — ,
B gg " As discussed in Sec. Il A the free energ¥ is expected
to be proportional to the volume of the system whes ¢.
We studied this in our simulations by measuringyitderiva-
L.=3.568. (38

tive with couplingsx=0.35 andy= —0.124. Obviously, this
should behave in the same way as the free energy difference
If a conservative value of. .=16 is chosen to allow for jtself. The results from lattices of different sizes and different
possible suppression of the monopole density, this indicateigittice spacings are plotted in Fig. 2 as functions of the
that the gauge coupling is restricted to Be<4.5. Our pri-  physical lattice sizeagiL. At small L the data show very
mary interest is in observing the monopole screening, so it ifittle scaling violation. This suggests that we are not seeing a
not strictly necessary that the perturbative lines of constanghysically interesting effect here and supports the idea that
physics still hold on our lattices. We would like to maintain the behavior with_ has a simple origin. We show a fit of the
some contact with continuum physics, however, and thus geyrm —dgL%, whered,,, are free parameters. Whilst the
no lower thang=4.5. power law fits well by eye, the precise nature of the data
Using Eg. (29), the maximum monopole density is makes the fits all quite poory® DOF=5). The fit shown is
reached forw/g;=0.421. We are most interested in the fatetq the 8=18.0 data only, and gives; =4.2 (5).Whilst not
of the monopole mass in the region of the phase diagrarprecisely 3, this gives qualitative support to our simple pic-
where there is a crossover between the two phases. For thigre.
reason we seleot=0.35, and thuy=—0.124. At this pa- Beyondg2L =3.5 we see different behavior. The deriva-
rameter set, the gauge correlation length is, in units of thgye now decreases towards a plateau on intermediate scales.
lattice spacing, Whilst this decay may be a power law, we find the data
insufficient to support a precise fit. The value of the plateau
does show evidence of a discretization effect. We may at-
tempt to quantify this through a continuum extrapolation of
the data ag§L=5.3, admittedly still in the transient region,
but where we have results for four couplings. We show the
data in Fig. 3, along with a fit assuming only a leading order
correction to scaling that is quadratic in the lattice spacing.
5 This describes the dajg=6.0 well (with y?>/DOF=0.178).
2 P Even 8=4.5 only deviates from this line by 7%, which
&= 4 ( \/_y) =3.20, (40 backs up our previous statements on scaling and the applica-

-1
ggzg(%) —267, (39)

and the scalar field correlation length is
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B B=18, x=0.35, y=—0.5, L=16
12.0 9.0 6.0 45 2000 ‘
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I
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A

- 1000 v i
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FIG. 5. Measuring the monopole free energy by progressive
FIG. 3. Continuum limit of the derivative of the free energy at twisting of an intermediately sized system. We show a 180° rotation
x=0.35 andy= —0.124 for fixed physical volumeg3L =5.3. of the data to highlight the asymmetry.

bilty of the perturbative lines of constant physiassed o SNQ"N 1N Fi0-4. Zg?cgﬁg”\f\'/g'%i?s‘émfgé’t”gﬁﬁi datta well
maintain constantg,y as we vanedﬁ). In addlt!on, this f.'t rgdiatively corrected 't Hooft function. We fingl. to be con-
suggests that residual lattice spacing corrections are mdeeS Ltent with zero fox=0.35

very small atB= 18, being around 2% in this case. g

! : . . Alternatively, we can measure the mass directly by the
In the region of intermediate volumes, when the tW'Stedmethod of progressive twisting for fixedy. We show such
lattice supports a single monopole, we may attempt to Meas ca|cylation in Fig. 5. The dominant error arises from the

sure the mass directly, to test the applicability of the semi|most complete cancellation of the areas under the curve on

classical results to fully quantized excitations. We have Wasjther side ofs =0.5. To illustrate this we plot also the same
methods of approaching this. Less prone to statistical uncegyrye rotated through 180°.

tainty is to use measurements of the derivative of the mass \we summarize these estimatesf¢x) in Table Ill, and in
dM/dy over a range ity at fixedx. We make a “mean field”  Fig. 6 where we show a fit to differegtas per Eq(27). The
assumption that we can describe this data using the formulasasses and their derivatives behave much as the semiclassi-
of Sec. lll, allowing for a shift in the phase transition by the cal expectations. Similarly the 't Hooft function, within the
substitutiony—y—y.. Typical data, with such a fit, are limits of our statistical errors, does not appear to differ mark-

edly due to radiative corrections. There is, however, a con-

B=18, x=0.35 siderable variation in the datayat —0.124 as we change,

w w ‘ and we may worry about systematic effects in our results.
The first source of these is discretization effects. The major-
"""" Q--ﬁ*—ﬂ--ﬁ_x:__ﬁ_ ity of our estimates are fg8=18.0, and as we have argued

= Ee above, the residual lattice spacing effects are small here. The
variation ing in the table is also in part due to a correspond-
ing change in the physical volume of the system, and we
may ask whether all our measurements are for “plateau”

|
=
wﬂw-—ﬂ'“’M

>

2 20| - ojsqrtly.y) masses uncontaminated by the transient small volume ef-

N -y, ¢ fects. We believe such biases to be small, especiallyyfor

S oL=16 <-—1. As we varyy in Fig. 4 there is a great change in the
% Z'I:jgg - correlation lengthss ¢ for fixed volume. That the different

effectivevolumes considered agree suggests we are indeed
seeing the intermediate plateau unaffected by sinatban-
sients. We are thus confident that our errors on these esti-

-40 - i mates off(x) are accurate. The joint fit in Fig. 6 yields
10 —‘8 —‘6 , _‘4 _‘2 6 f(0.35)=1.23(12).
FIG. 4. The derivative of the monopole free energy for interme- B. Intermediate and large volumes
diate system sizes for fixed Also shown is a semiclassically in- The large to intermediate system size data for the deriva-
spired fit to the data. tive of the free energy are shown in Fig. 7. For the interme-
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TABLE lll. Estimates of the monopole mass and the 't Hooft function.

X Method y M/g3 f(x) B L
0.05 deriv. 1.06611) 18.0 16-20
0.35 deriv. 1.25714) 18.0 16-24
0.35 prog. twist -10 50.8(14.9 1.07 (31 18.0 16
0.35 prog. twist -3 33.3(5.5 1.28(22) 18.0 16
0.35 prog. twist -1 18.2(4.7) 1.21(32 18.0 16
0.35 prog. twist —-0.5 13.4(1.9 1.26(18) 18.0 16
0.35 prog. twist 1 1420 18.0 16
0.35 prog. twist 10 1.51.2 18.0 16
0.35 prog. twist —0.124 2.8(1.6) 0.53(31 4.5 16
0.35 prog. twist —0.124 5.8(1.8 1.10(35 9.0 16
0.35 prog. twist -0.124 6.3(2.4 1.19(46) 12.0 16

diate system size it is clear that the data are well represented We can attempt to describe the screening by fitting over a
by a constant independent of the lattice size, and we use susimilar range using a fitting ansatz suggested by the dilute

a hypothesis: gas model:
1 oM —2¢cq(ag?L)3
= 1 oM e 2ci(ag;
Sy 2 © (41) - oV 2113
g2dyg2 ° 2y 4cocy(agsl) 1o i) (42

wherec, is as before, and,=v,/g5. We show such fits
over similar ranges in Table V. For intermedit¢he fits are
similar to those obtained using just a constant description. As
'data from larger systems is included, however, we see that
the ansatz now remains good. A comparison of the two fits is
Qlotted in Fig. 7.

We may calculate front; the mean density of mono-
Ies,volgg= 1.3(3)x 10" °, which makes their mean sepa-

where we expect the parametey to be po/gg. We show
such fits in Table IV. Our method is to begin with a low
upper limit for the fitting range, and to then increase this
including progressively more data in the fit. Tyé per de-
gree of freedom and) (if our fitted form is the correct
model, the probability that our data could have arisen a
random fluctuations around that modeémain (very) ac-
ceptable up toL~40. It is clear that beyond this the fits P°
become unacceptable: the behavior has changed as a con&&on
guence of screening. 5
g;D=42.63.3 (43

B=18, x=0.35, L=16

T T T T T T [3:4.5, X=O.35, y=—0.124
60 L — . . . _ 0 [ i
semiclassical fit /,
» 5 P I —
s § i ErEYET T -
=2 S
'S >~
20 + 1
-20 B
ol \ ry CN
1 1 1 1 L 1 L _30 1 L 1 1 Il
-8 -4 0 4 8 0 10 20 30 40 50
y g L
FIG. 6. The monopole free energy as a functionyofor an FIG. 7. The derivative of the monopole free energy as a function
intermediately sized system. A semiclassically inspired fit is shownpf lattice size aj{B=4.5, x=0.35, andy= —0.124. Also shown are
giving a value of the 't Hooft function. fits assuming no screening and a dilute gas screening picture.
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TABLE V. Fitting the derivative of the free energy with an TABLE V. Fitting the derivative of the free energy with a dilute

unscreened ansatz in E@l). gas screening ansatz in Eg42).
Liow Lhigh  Npor Co x?/DOF Q Liow Lnigh Npor Co c1(X10°) x*/DOF  Q
6 32 10 12.43158) 0.686 0.722 6 32 9 12.49944) 0.151(93 0.938 0.490
6 36 11 12.42658) 1.106 0.353 6 36 10 12.50044) 0.187(40) 0.867 0.564
6 40 12 12.42158) 1.704 0.066 6 40 11  12.50244) 0.202(35 0.826 0.614
6 46 13 12.41958 1.813 0.040

458 10 32 7 12.44583) 1.36(106 0.816 0.582
10 32 8 12.70582) 0.772 0.628 10 36 8 12.45183) 1.82(47) 0.753 0.675
10 36 9 12.68982) 1.229 0.272 10 40 9 12.45483) 1.99(37) 0.722 0.689
10 40 10 12.67182) 1.873 0.044 10 46 10 12.44983) 1.79(35) 0.773 0.655
10 46 11 12.67182) 1.976 0.027

monopole gas approximation, which predicts that the free
or, in lattice units at3=4.5, D=47.8(3.7). From this it is energy vanishes in the infinite volume limit at any values of
clear that we do not have the lattice volume necessary to sébe couplings.

a complete screening of the free energy.&tD. We cannot In the dual supercc_)nductor_ picture, the vanishing mono-
therefore completely rule out from our data the possibilityPCl€ free energy implies confinement, and therefore our re-
that AF remains finite even in the infinite volume limit. sults are numerical evidence for Polyakov's prediction that

As was seen for small system sizes, the plateau values 1€ Higgs phase of this theory is confining. Furthermore, if
least are heavily influenced by discretization effectsgat the€ monopole free energy vanishes everywhere, it cannot be
—4.5. To perform a scaling study of the screening mechat/sed as an orde_r parameter, and ther_ef_ore our re_s;ults strongly
nism is beyond our current means. Nonetheless, for a den$UPPOrt the conjecture that the confining and Higgs phases
onstration of the mechanism such effects are immaterial an@€ analytically connected to one another.
do not affect the qualitative arguments. Neither, of course, can the monopole mass measured from

Note also that no attempt has been made to estimate hef@€ plateau in the free energy for intermediate system sizes
the systematic errors in the monopole density. To do s&Ct t0 distinguish the phases. It is nonzero in the deep Higgs
would require a comparison of different screening hypoth-Phase and zero in the deep symmetric phase. This plateau

eses and fit functions, something that the data is, unfortud0€S not exist, however, everywhere in the phase diagram,
nately, not accurate enough to address satisfactorily. notably.near the transition line itself. The mean monopole
separation there will be comparable to the core size and no

plateau would be observed. Thus the “mass” is ill-defined
and cannot serve as an order parameter.

In this paper, we have used a fully nonperturbative tech- Our findings suggest a straightforward generalization to
nique to measure the free energy of a 't Hooft—Polyakovother cases. In a Euclidean formulation in any number of
monopole in the three-dimensional Georgi-Glashow modeldimensions, any pointlike topological defect that has finite
This was achieved by simulating systems with two differentaction, will always have a nonzero density at any nonzero
boundary conditions, both of which are periodic up to sym-temperature. This means that these objects always have a
metries of the Lagrangian. This preserves the lattice translazero free energy. An extended topological defect, such as a
tion invariance of the system and therefore makes sure thewgiring or a domain wall, is, however, either a closed loop,
are no boundary effects. surface, etc., in which case it does not contribute to the glo-

We found that in the Higgs phase the free energy reacheblal properties of the systems, or it has an infinite action. In
a constant value at intermediate volumes, which shows that the latter case, the fluctuations cannot generate them, and
is associated with a localized object. This is the quantuniheir free energy remains nonzero even in the infinite volume
analogue of the 't Hooft—Polyakov monopole. We measurdimit. Because the free energy can be used as an order pa-
its mass by two different methods, and find it compatiblerameter, this suggests that models with extended topological
with semiclassical expectations. “Mean field” application of defects always have a true phase transition rather than a
the classical relations appears successful, and we can maksooth crossover. This question will be studied further in a
estimates of the quantum corrected 't Hooft function. Ourfuture publication.
best estimates aref(0.05)=1.066(11) and f(0.35)
=1.257(14) from the derivative of the mass with respect to
y, and f(0.35)=1.23(12) by the method of progressive
twisting. These estimates are both self-consistent, and in We would like to thank Mikko Laine and Kari Rummu-
agreement with the classical variatib(x)=1+x for small  kainen for useful discussions. This work was supported by
x [31], indicating that radiative corrections are small. PPARGQUK) and by the ESF COSLAB Programme. The

When the volume increased above a certain critical valuegomputational work was carried out on the U.K. Computa-
however, the free energy started to approach zero. This isonal Cosmology Consortium COSMOS Origin2000 super-
consistent with an analytical calculation within the dilute computer.

VI. CONCLUSIONS
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