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Monopole mass in the three-dimensional Georgi-Glashow model
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We study the three-dimensional Georgi-Glashow model to demonstrate how magnetic monopoles can be
studied fully nonperturbatively in lattice Monte Carlo simulations, without any assumptions about the smooth-
ness of the field configurations. We examine the apparent contradiction between the conjectured analytic
connection of the ‘‘broken’’ and ‘‘symmetric’’ phases, and the interpretation of the mass~i.e., the free energy!
of the fully quantized ’t Hooft–Polyakov monopole as an order parameter to distinguish the phases. We use
Monte Carlo simulations to measure the monopole free energy and its first derivative with respect to the scalar
mass. On small volumes we compare this to semiclassical predictions for the monopole. On large volumes we
show that the free energy is screened to zero, signaling the formation of a confining monopole condensate. This
screening does not allow the monopole mass to be interpreted as an order parameter, resolving the paradox.
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I. INTRODUCTION

On the level of classical field equations, the thre
dimensional Georgi-Glashow model has two phases: W
the mass parameter of the Higgs field is negative, the SU~2!
gauge symmetry is broken into U~1!, and when it is positive
the symmetry is unbroken. The phase of the system ca
determined by a local measurement of, say, the scalar
Tr F2, which vanishes in the symmetric phase but is nonz
in the broken phase.

In the broken phase, the field equations have a topol
cally nontrivial solution, the ’t Hooft–Polyakov monopol
@1,2#, whose energy is concentrated around a pointlike c
The mass, i.e., the total energy carried by a monopole,
creases when the mass parameter approaches zero from
low, and vanishes in the symmetric phase, in the sense
the solution is indistinguishable from the trivial vacuum s
lution.

In many cases, however, we are more interested in
behavior of the model when fluctuations are taken into
count. It is immaterial whether the fluctuations are therm
fluctuations in a classical field theory or quantum fluctu
tions in a Wick-rotated (211)-dimensional quantum field
theory. Both of these systems are described by the same
tition function, and we shall make no distinction betwe
them. Nevertheless, we shall call the treatment based on
sical field equations ‘‘semiclassical’’ even though it is n
more accurate in a classical field theory at a nonzero t
perature than it is in a quantum field theory.

When fluctuations are present, the above simple pic
changes completely. In particular, the ‘‘symmetric’’ an
‘‘broken’’ phases are believed to be analytically connected
each other@3–6#. Order parameter candidates that are
gauge invariant, such aŝF&, vanish in both phases, an
positive definite observables, such as TrF2 mentioned
above, are nonzero in both phases. It would seem natural
a quantity like the mass of a ’t Hooft–Polyakov monopo
however, should be protected against the effects of the fl
tuations by its topology, and that it should therefore serve
an order parameter for the phase transition. If this were
case, the phases could not be analytically connected.
0556-2821/2002/65~12!/125008~12!/$20.00 65 1250
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example of this is the Abelian Higgs model, in which th
vortex tension indeed acts as an order parameter@7–9#.

On the other hand, it is not even obvious that the mo
pole mass can be given a rigorous definition in a fluctuat
theory, because, in general, one cannot assume that the
configurations that contribute to the partition function are
some sense close to solutions of classical field equati
This problem was solved in Ref.@10#, however, where the
monopole mass was defined as the increase of the free
ergy when the total magnetic charge of the system is
creased by one. Furthermore, it was shown how this quan
can be measured in Monte Carlo simulations.

Thus, we have a well defined observable, the monop
mass, which could naturally be expected to be zero in
symmetric phase and nonzero in the broken phase, and
the phases are believed to be analytically connected.
purpose of this paper is to explain this apparent paradox

First, we present a calculation based on a simple dil
monopole gas approximation, which predicts that althou
the monopole free energy is indeed nonzero and roug
equal to its classical value in a system of intermediate v
ume, it decays to zero at exponentially large volumes. The
fore, it should actually vanish everywhere in the thermod
namic limit. This calculation is very similar to Polyakov’
argument@11,12# that the photon has an exponentially sm
mass in the broken phase.

Second, we measure the monopole free energy directl
a Monte Carlo simulation on different volumes using t
method developed in Ref.@10#. We find that the monopole
free energy has a volume-independent value in a wide ra
of lattice sizes, which shows that it corresponds to a loc
ized, pointlike object. In agreement with the analytical arg
ments, however, it eventually starts to decrease, when
volume is large enough.

The vanishing of the monopole free energy in the infin
volume limit implies that the monopoles condense. T
leads to confinement of electric charge according to the d
superconductor picture@13#, and our results can therefore b
considered as a numerical verification of Polyakov’s se
classical argument@12# that the Higgs phase is confining. I
particular, since the monopole free energy vanishes in b
©2002 The American Physical Society08-1
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phases in the infinite volume limit, it does not act as an or
parameter, and this resolves the apparent paradox betwe
smooth crossover and the nonanalytic behavior of the mo
pole mass in the semiclassical approximation.

Within the framework of high-temperature dimension
reduction@14#, the three-dimensional Georgi-Glashow mod
is an effective theory for the Yang-Mills theory at high tem
peratures~see, for example,@15# and references therein!. The
phase transition of our model, however, is not related to
deconfinement phase transition of the Yang-Mills theory
QCD. On the other hand, our methods can be generalize
four dimensions in a straightforward way, and they m
therefore be applicable also to studying Abelian monopo
@16# in the Yang-Mills theory, in particular whether they co
dense at the transition point as has been suggested as a
sible ‘‘mechanism’’ for confinement@13#.

Monopole free energies in the Yang-Mills theory ha
been studied before by several groups@17–20# using differ-
ent techniques. In Refs.@17,20# fixed boundary conditions
were used to create a monopole, but this leads to signifi
boundary effects. In Refs.@18,19# a monopole creation op
erator was used, which lets one measure not only the m
but also correlation functions of the monopole field. W
periodic boundary conditions, however, the operator cre
not only a monopole, but also an antimonopole somewh
in the system in order to satisfy Gauss’s law. The advant
of our approach is that the system really has a nonzero m
netic charge, and because translation invariance is prese
no singularities can arise even near the boundaries of
lattice.

The structure of the paper is as follows. We start by d
cussing the three-dimensional Georgi-Glashow model
the lattice definition of its magnetic monopoles in Sec. II.
Sec. III, we use semiclassical results to motivate our num
cal results. We present details of the Monte Carlo simulati
carried out in Sec. IV, and the results obtained in Sec
Finally we discuss our findings in Sec. VI.

II. THE GEORGI-GLASHOW MODEL

In the continuum, the three-dimensional Georgi-Glash
model is defined by the Lagrangian

L5
1

2
Tr~Fi j Fi j !1Tr@Di ,F#@Di ,F#1m2 Tr F2

1l~Tr F2!2, ~1!

whereF is in the adjoint representation of the SU~2! gauge
group,Di5] i1 ig3Ai and Fi j 5( ig3)21@Di ,D j #. The parti-
tion function of the theory is formally defined as the pa
integral

Z5E DFDAi expS 2E d3xLD . ~2!

This can be interpreted as a three-dimensional Euclid
quantum field theory, or as a classical statistical field the
with the HamiltonianbH5*d3xL.
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The coupling constant,g3
2, has the dimensions of mas

and we can write the parameters of the theory in terms
dimensionless ratios with the coupling constant

x5
l

g3
2

~3!

and

y5
m2~g3

2!

g3
4

. ~4!

The notation here reflects the fact that the theory is sup
renormalizable~in three dimensions!, and thus only the sca
lar mass needs a renormalization counterterm. Even th
only necessary up to the two loop level, and its value
known both in theMS scheme@21# and in lattice regulariza-
tion @22,23#. In Eq.~4!, m2(g3

2) is theMS renormalized mass
with renormalization scalem5g3

2.
To study this model in a fully nonperturbative manner, w

formulate the theory in a way that allows numerical soluti
by Monte Carlo simulation on a cubic, Euclidean lattice co
sisting of L3 sites, labeled by a triplet of integersxW

5(x,y,z). The action is given byS5(xWL(xW ), with the La-
grangian

L~xW !5b(
i , j

F12
1

2
Tr Ui j ~xW !G1(

i
$2a@Tr F2~xW !

2Tr F~xW !Ui~xW !F~xW1 ı̂ !Ui
†~xW !#

1m2a3 Tr F2~xW !1a3l@Tr F2~xW !#2%, ~5!

where m2 is the bare lattice mass parameter andb
54/(ag3

2) is the conventional notation for the bare lattic
gauge coupling.

We shall treat this lattice theory as an approximation
the continuum one, and therefore we parametrize the the
in terms of the renormalized continuum couplings defined
Eqs.~3! and~4!. We are able to do this because the relatio
ships between the lattice and continuum couplings
known @22,23#, but we shall postpone discussion of the
until Sec. IV. We shall also express all quantities in co
tinuum units.

A. Magnetic monopoles

It is very well known that, in the continuum, the fiel
equations have topologically non-trivial solutions, ’t Hoof
Polyakov monopoles@1,2#. They can be characterized by
nonzero winding number of the Higgs field at the spat
infinity,

NW5
1

16p i E d2Ske i jk Tr F̂~] iF̂!~] jF̂!PZ, ~6!

where F̂5F(F2)21/2. Although NW itself is gauge invari-
ant, the integrand is not, and therefore it does not hav
8-2
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direct physical interpretation. It can be easily seen, howe
that NW actually corresponds to the magnetic charge ass
ated with the residual U~1! gauge invariance.

To see this, let us define the magnetic field as@1#

Bi5
1

2
e i jkFTr F̂F jk1

1

2ig
Tr F̂~D jF̂!~DkF̂!G . ~7!

This is a gauge invariant quantity, and agrees with¹W 3AW3 in

the unitary gaugeF̂5s3. Therefore it is indeed the magnet
field associated with the residual U~1! symmetry. The corre-
sponding magnetic charge density,rM5¹W •BW , has the fol-
lowing properties: First, becauserM is given by a total de-
rivative, the charge inside a given volume can be expres
as a surface integral. Therefore any local deformation of
fields inside the volume cannot change the charge inside
volume. Second, the magnetic charge inside a given volu
is, in fact,

QM5E d3xrM5
4p

g
NW , ~8!

and is therefore quantized in units of 4p/g. These two prop-
erties imply that the only way the charge inside a volume
be changed is by moving a magnetic monopole in or ou
the volume. In other words, the magnetic charges are to
logically stable.

What is less well known is that these same properties
also true for the lattice theory. We can define the analogu
Eq. ~7! as

B̂i5e i jka jk . ~9!

Herea jk is the lattice U~1! field strength tensor,

a i j 5Tr P1~xW !Ui~xW !P1~xW1 ı̂ !U j~xW1 ı̂ !P1~xW1 ı̂1 ̂ !

3Ui
†~xW1 ̂ !P1~xW1 ̂ !U j

†~xW !, ~10!

and P15 1
2 (11F̂). In the continuum limit,B̂i approaches

a2Bi . If we define the magnetic charge inside a lattice cel

r̂M~xW !5(
i

@B̂i~xW1 ı̂ !2B̂i~xW !#, ~11!

it satisfies the same conditions that guarantee in the c
tinuum the topological stability of magnetic monopoles: t
charge is quantized and can be written as a surface inte
These are the same properties that ensure the stabilit
monopoles in the continuum, and thereby magnetic mo
poles are well defined and absolutely stable objects even
discrete lattice theory, unlike the instantons of the fo
dimensional Yang-Mills theory.

Because of the quantization and stability of magne
charge, it makes sense to consider ‘‘microcanonical’’ pa
tion functions ZQM

which are restricted to configuration

with a given magnetic chargeQM . The full, ‘‘canonical’’
partition function is then simply
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QM52`

`

ZQM
. ~12!

We define the free energy of a given topological sector b

FQM
52 ln ZQM

, ~13!

and the free energy of a monopole as the free energy di
ence of sectorsQM51 and 0,

DF5F12F0 . ~14!

Semiclassically,ZQM
5exp@2S(QM)#, where S(QM) is the

action of the monopole solution with chargeQM . S(Q1) can
also be interpreted as the mass of a monopole, and wi
slight abuse of language we can generalize into the fu
nonperturbative case by defining the monopole ‘‘mass’’M by

M5g3
2DF. ~15!

The semiclassical picture would predict that monopoles
massive in the broken phase and massless in the symm
phase. If this were true, the mass would serve as an o
parameter for the phase transition.

B. Boundary conditions

We measure the monopole free energy following t
method of Ref.@10#, which for convenience we briefly re
view in this section.

Our strategy is to work on a finite sized system, and i
pose boundary conditions that force the total magne
charge of the lattice to be either odd or even, whilst prese
ing the translation invariance of the system. This is import
because translation invariance guarantees the absenc
boundary effects.

Gauss’s law rules out periodic boundary conditions, as
total charge is constrained to be zero. However, transla
invariance is preserved by any boundary conditions that
periodic up to symmetries of the Lagrangian, and in gene
they allow a nonzero magnetic charge. For instan
‘‘ C-periodic boundary conditions’’@24#

F~n1L ̂ !52s2F~n!s25F* ~n!,

Uk~n1L ̂ !5s2Uk~n!s25Uk* ~n!. ~16!

are such that the net magnetic charge can be nonzero, b
is constrained to be even@10#. We shall refer to calculations
using such boundary conditions with a subscript ‘‘0.’’

Similarly, if the fields are constrained to behave as

F~n1L ̂ !52s jF~n!s j ,

Uk~n1L ̂ !5s jUk~n!s j . ~17!

on moving around the lattice, the net magnetic charge is o
We term these ‘‘twisted (C-periodic! boundary conditions,’’
8-3
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and denote results so obtained by a subscript ‘‘1.’’ It is ea
to see that both sets of boundary conditions are symme
of the lattice Lagrangian.

By a gauge transformation, the twisted boundary con
tions may be rewritten as~untwisted! C-periodic boundary
conditions everywhere save at the edges of the lattice, w

U3~x,L,L21!52U3* ~x,0,L21!,

U1~L21,L,z!52U1* ~L21,0,z!,

U1~L21,y,L !52U1* ~L21,y,0!. ~18!

By a suitable redefinition of the fields

U3~x,N,N21!→2U3~x,N,N21!,

U1~N21,N,z!→2U1~N21,N,z!,

U1~N21,y,N!→2U1~N21,y,N!, ~19!

we can express the twisted boundary conditions as a th
with C-periodic boundary conditions everywhere, but w
an additional term in the action that depends solely on
gauge fields:

Z15E DUiDF exp~2S2DS!, ~20!

where the change in the action is

DS5bF (
x50

L21

Tr U23~x,y0 ,z0!1 (
y50

L21

Tr U13~x0 ,y,z0!

1 (
z50

L21

Tr U12~x0 ,y0 ,z!G . ~21!

We emphasize that, because Eq.~20! is equivalent to Eq.
~17! with the translation invariant boundary conditions, t
choice of coordinates (x0 ,y0 ,z0) does not affect any observ
able, and, in particular, it does not fix the location of t
monopole on the lattice.

In physical terms,DS gives a negative gauge coupling
three orthogonal stacks of plaquettes which are pierced
three mutually intersecting lines on the lattice. These lin
are known in the literature as ’t Hooft lines@25#. A single,
open ’t Hooft line creates a pair of Dirac monopoles, and
been used to measure their interaction potential in Refs.@26–
30#. It should be noted, however, that Dirac monopoles
rather different from ’t Hooft–Polyakov monopoles. The
have only half the magnetic charge of the latter, and
singular, non-dynamical objects. In our case, the ’t Ho
lines are closed by the boundary conditions, and there
they do not create any singularities, but a nonsingu
’t Hooft–Polyakov monopole.

The free energyDF ~or the ‘‘mass’’! of a monopole is
defined by analogy with Eq.~14! as

DF5F12F0[2 lnS Z1

Z0
D52 ln^exp~2DS!&. ~22!
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In the main, however, we shall study the derivative ofDF
with respect to the scalar mass parameter,y,

1

g3

]DF

]y
5g3

6VS ^Tr F2&1

g3
2

2
^Tr F2&0

g3
2 D , ~23!

where V is the volume of the system. We know that fo
sufficiently largey in the symmetric phase the free energy
the monopole will go to zero~at least in the large volume
limit !. If we see the derivative becoming zero, the free e
ergy is at most a constant. In Sec. IV we also measure
free energy at a point in the symmetric phase and find it to
consistent with zero. If the derivative is zero all over t
symmetric phase, it is reasonable to assume, then, tha
free energy itself is becoming zero.

III. SEMICLASSICAL EXPECTATIONS

We now turn our attention to the semiclassical predictio
for the ’t Hooft–Polyakov monopole~see, for instance,@12#!,
to which we would like to compare our results from the ful
quantized theory.

In the broken phase of the theory the scalar field gain
vacuum expectation value~VEV!

v
g3

5A2y

2x
. ~24!

The semiclassical solution of unit winding number is the
Hooft–Polyakov monopole@1,2#, associated with an isolate
zero of the scalar field. Away from this, the scalar field d
cays towards its vacuum expectation value~VEV!, with a
characteristic length scale

jsg3
25~A2y!21. ~25!

The gauge field simultaneously decays from being SU~2! to
being asymptotically U~1! with a length scale

jgg3
25S v

g3
D 21

. ~26!

We thus have a picture where asymptotically the gauge fie
are Abelian, save within some extended core whose siz
defined by the above length scales where the gauge fi
‘‘unwind’’ into the full SU~2! gauge manifold. We shall find
that this scenario remains at least qualitatively valid wh
quantum corrections are introduced.

The mass of this object is, semiclassically,

M

g3
2

54p
v
g3

f ~x! ~27!

where f (x) is the ’t Hooft function. To satisfy the Bogo
molny lower bound on the mass,f (0)51. Also, it is known
numerically ~see, for example,@31#! that for smallx, f (x)
.11x.

The derivative of this mass, as in Eq.~23!, is
8-4
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p0

g3
2

[
]

]y

M

g3
2

52
2p

A22xy
. ~28!

Assuming that the monopoles are pointlike and nonin
acting, we can roughly estimate their density to be@11#

n0

g3
6

5S v
g3

D 7/2

expS 2
M

g3
2D , ~29!

which is suppressed by the exponential of the mass. We
also define a mean separationD of the monopoles as

1

~Dg3
2!3

[
n0

g3
6

. ~30!

WhenM@g3
2, there is a hierarchy betweenD and the funda-

mental length scalesjs andjg , and therefore the above a
sumption of pointlike monopoles is valid.

This is the semiclassical picture for infinite volume. Wh
we are interested in is what happens in the quantized th
of finite volume, and the interplay of the system size,aL,
with the scales above. Particularly, we wish to know the f
of the monopole mass on large length scales.

A. Small volumes

Let us first briefly discuss what happens when the volu
of the system is comparable to, or smaller than, the len
scales discussed before. The core size of a monopole is g
by the correlation lengthj ~we assume for sake of argume
thatjg andjs are comparable!, and therefore ifaL&j, there
is no room for a monopole in the system. If the system
forced by twisted boundary conditions to contain one mo
pole, its core will fill the lattice and the whole system will b
in the confining phase. On the other hand, the untwis
system is in the Higgs phase. The free energy densitie
these two phases differ by a certain nonzero amountD f ,
which is essentially the latent heat, and as this is the cas
the whole volume, we have

DF'L3D f . ~31!

Thus, we can conclude that whenaL!j, DF should scale as
the volume of the system.

When the volume is increased,j&aL&2.5j, the fields
start to approach the U~1! of the Higgs vacuum far from the
monopole core of the twisted system. Nonetheless, the
will be affected by the boundary conditions, and in genera
restriction in the core size by the boundary will lead to
increase in the~absolute value of the! free energy and its
derivatives. As a rough estimate, if the total non-Abelian fl
inside the monopole core is roughly constant, then the
density will vary as the inverse of the volume. The to
energy of the system would then vary asL23. ~The figure
2.5j is a rough limit derived from our results.!
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B. Intermediate volumes

Let us then consider a system that is large enough
comfortably accommodate one monopole, but is so sm
that the fluctuations are not likely to create isolated mo
poles ~or, more accurately, well separated monopo
antimonopole pairs!. This is the case whenj!aL!D. That
is, the entropy-action balance is dominated by the act
cost, which limits us to the minimum number of monopol
~and antimonopoles! required to satisfy the boundary cond
tions.

We expect the free energy difference, Eq.~22!, to be that
between a system of one monopole and an uncharged
Because a monopole is a localized object, the regions
from the monopole core are unaware of the twist in t
boundary conditions.DF only gets a contribution from the
monopole core and is therefore independent of the volu
In this case, the identification ofDF with the monopole mass
makes sense, and a comparison between the measured v
and the semiclassical formulæ above yields information
the radiative corrections to the semiclassical monopole.

C. Large volumes

As the volume is increased such thataL@D, the entropy
gain in introducing well separated monopole-antimonop
pairs into the vacuum outweighs the action cost and
mean density of topological objects is no longer expected
be the minimum commensurate with the boundary con
tions. The free energy required to introduce an extra mo
pole into the system is now less than the mass of the sin
monopole, as we demonstrate with a simple model.

1. The dilute monopole gas

Following Ref.@32#, where a similar effect was discusse
in the case of vortices in (211) dimensions, we assume th
the density of monopoles is low enough, so that the proba
ity of finding one in any subvolume of space is independ
of whether there are monopoles present elsewhere in the
tem. In other words, the monopoles are assumed to be p
like or that overlap of the cores is of vanishing measure.
discussed above, this dilute monopole gas approximatio
believed to be valid deep in the broken phase.

The probability of findingn monopoles or antimonopole
~we do not distinguish! in a volumeV follows Poissonian
statistics

p~n;V!5
1

N
1

n!
~n0V!n. ~32!

We apply this to the volume of the whole latticeV5(aL)3

5g3
26(4L/b)3. We find different normalization factors fo

twisted @nP odd, and N15sinh(n0V)# and untwisted@n
P even, andN05cosh(n0V)# boundary conditions.

The free energy of the system~or its derivative! is exten-
sive and the sum of the free energy of the components f
dilute gas, and considering the entire system we obtain
8-5
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]

]y

DF

g3
2

5
1

N1
(

nP odd
nS p0

g3
2D p~n;V!

2
1

N0
(

nP even
nS p0

g3
2D p~n;V!

54S p0

g3
2D n0V

e22n0V

12e24n0V
~33!

wherep0 was defined in Eq.~28!. Equation~33! gives the
desired plateau for intermediateV, but then decays to zero a
V→`, beginning onceV*Vc , such thatn0Vc51. Note that
since n0V is simply the typical number of monopoles an
antimonopoles created by fluctuations, this result shows
the monopole free energy decays as soon as the fluctua
can create isolated monopoles.

Crucial in the above calculation is the assumption that
monopoles are noninteracting. Although the monopoles
least semiclassically have a long range Coulomb interact
we believe this approximation is justified, because the in
action is nonconfining. Nevertheless, it is only an appro
mation, and therefore it must be tested in numerical simu
tions, as we do in Sec. V.

We can also see that the above argument would br
down if we tried to apply it to the four-dimensional cas
where the monopoles are world lines rather than point
objects. In a Euclidean theory, the action of the monop
world line would be proportional to its length, and therefo
n0 would vanish exponentially when the limit of infinite tim
dimension is taken. The same happens for vortices in
three-dimensional U~1! theory@9#. In future work we aim to
verify that this is also true for vortices in a non-Abelia
theory. On the other hand, if one of the three dimension
compact as in the (211)-dimensional case at a nonzero te
perature,n0 is finite, and again the vortex free energy va
ishes in the infinite volume limit@32#.

2. Confinement

The prediction of the dilute monopole gas approximat
that the monopole free energy vanishes in both phases in
infinite volume limit is compatible with the properties th
phase diagram of the theory is believed to have. Vanish
free energy means that the monopoles condense, and ac
ing to the dual superconductor picture@13#, this gives rise to
confinement.

Indeed, it is known semiclassically that the nonze
monopole density gives the photon a nonzero mass eve
the Higgs phase@11#, and this leads to confinement. Thus
is natural to assume that the Higgs phase is analytically c
nected to the confining phase@4,5#. Again, this can only be
true if the monopole free energy vanishes in the Higgs ph
because otherwise it would act as an order parameter sig
ing a transition from the Higgs to the confining phase.

Previous studies@5# have supported the idea of a smoo
crossover between the phases, but as they only concent
on local quantities, they cannot be regarded as proofs.
instance, in the three-dimensional Abelian Higgs model,
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phase transition can only be seen in practice by measu
nonlocal observables such as the vortex tension or the ph
mass@9#. In the present case, the predicted nonzero pho
mass has not been observed in simulations@5,6#. It is clear
from the results presented here that the reason for this lie
the very large volumes required.

IV. LATTICE MONTE CARLO SIMULATIONS

We simulate the Georgi-Glashow model on the lattice
Monte Carlo importance sampling of the partition functio
for both the C-periodic and twistedC-periodic boundary
conditions. Updates to the lattice were performed as co
pound sweeps consisting of one heatbath update to the g
and scalar fields, followed by two over-relaxation steps
each. Measurements were made once per compound sw

Statistical errors were estimated by jack-knife analys
dividing the data sets into ten bins. For most lattices, the
size was much longer than the autocorrelation time of
observables, making them independent. This could be see
an approximate decrease in the statistical errors as 1/AN as
the number of measurements,N, was increased. The onl
lattice on which this was not readily apparent was theb
54.5, L546, where the errors did not show such a redu
tion. This may indicate that, despite considerable compu
tional effort, the ensemble size is still such that the autoc
relation time was comparable to the bin size. Error estima
for this ensemble should thus be treated as lower bound

To illustrate that the twisted bounary conditions~17! in-
deed generate a monopole, we show in Fig. 1 the isosurf
of Tr F2 and the gauge action density( i , j (12Tr Ui j /2) in a
typical field configuration atx50.05, y50.45 andb518.
The gauge action peaks and TrF2 dips around the same
point, exactly as is expected to happen near the mono

FIG. 1. Isosurfaces TrF253.89 ~light! and ( i , j (12Tr Ui j /2)
50.18 ~dark! in a typical field configuration atx50.05, y50.45
andb518. In order to reduce noise, the configuration was avera
over 50 subsequent Monte Carlo sweeps.
8-6
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core. Because of thermal fluctuations, the isosurfaces are
spherical.

A. Observables

We measure the free energy and its derivative with resp
to the scalar mass. The former is done via Eq.~22!. In prac-
tice this does not work; the importance sampling of t
theory with untwisted boundary conditions has very sm
overlap with that of the twisted partition function. This lea
to strong sign fluctuations inDS which leads to a poor con
vergence of its average through Monte Carlo simulation.

Instead, as in Refs.@9,26,27#, we can introduce a set o
ensembles defined by a real parameter,«P@0,1#:

Z«[E DUiDF exp~2S2«DS!, ~34!

where «50 is the untwisted case, and«51 represents
twisted boundary conditions. We then write

DF5E
0

1

d«
]F«

]«
5E

0

1

d«^DS&« , ~35!

where the subscript« indicates that the expectation valu
must be measured using Eq.~34!. This gives us the absolut
value of DF, but with the cost that we have to measu
expectation values at nonphysical values of«. We call this
the ‘‘method of progressive twisting.’’ Calculations of th
free energy by progressive twisting typically used 10000
20000 measurements for each of 37 values of the twis
parameter,«, which are then numerically integrated.~For an
alternative approach, see Ref.@29#.!

Alternatively, the derivative of the free energy, Eq.~23!,
may be measured directly, which avoids the reweight
problem. We are, however, calculating an intensive quan
as the difference of two approximately extensive numbe
Maintaining a constant error on the former demands incre
ing accuracy in the latter for increasing volume. Even allo
ing for self-averaging and the good scaling properties of

TABLE I. Lattices used to study the monopole free energy
the method of progressive twisting.

x y b ag3
2 L

0.35 210, 23, 21, 20.5, 1, 10 18.0 0.222 16

TABLE II. Lattices used to study the system size dependenc
the derivative of the monopole free energy.

x y b ag3
2 L

0.35 20.124 4.5 0.889 4, 6, 8, 10, 12, 14, 16, 18, 2
22, 24, 28, 32, 36, 40, 46

6.0 0.667 4, 6, 8, 10
9.0 0.444 4, 6, 8, 10, 12, 14, 16
12.0 0.333 4, 6, 8, 10, 12, 14, 16, 20
18.0 0.222 4, 6, 8, 10, 12, 14, 16, 20
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simulation algorithm, maintaining comparable precision
the free energy derivative requires CPU time rising asL6.
This limits the results of this study toL<46. Calculations of
the derivative with respect to the scalar mass used betw
200000 and 500000 measurements for each of the boun
condition choices.

B. Lattice parameters

The physical and lattice parameter values used are li
for reference in Tables I and II.

In this section we discuss simulations of the SU~2!
Georgi-Glashow model in three Euclidean dimensions. T
action for the theory has been given in Eq.~5!. In addition to
the parameters that define our theory in the continuum lim
x andy, there are two additional complications in the latti
theory: the lattice spacing,ag3

2, and the volume, (ag3
2L)3, of

the cubic lattice on which we perform the simulations.
Detailed investigations of finite volume effects and sc

ing of correlation lengths have been performed for thed
5211 pure gauge SU~2! and Georgi-Glashow field theorie
in @15,33#. Here we summarize the findings briefly for th
benefit of nonspecialist readers.

The lattice calculations yield dimensionless results, wh
may be interpreted as being the physical result multiplied
the lattice spacing raised to their naive dimensions, a
which we denote via a circumflex accent. We remove
dependence on the unknown lattice spacing by multiply
the result with the appropriate power ofb54/(ag3

2), and
therefore it is natural to express the results in terms of po
ers ofg3, which has the dimensions of~mass! 1/2. For suffi-
ciently fine lattices, the agreement with the continuum lim
will be within the statistical errors of the lattice data, but o
coarser lattices there may in principle be deviations. T
results in Refs.@15,33# are indicative of the continuum limi
for b*4.5, which includes relatively coarse lattices at t
lower end of this range~as we discuss later!.

The lattice theory in Eq.~5! is parameterized by thre
couplings (m2,l,b). In order to vary the lattice spacing, w
wish to changeb whilst maintaining the same continuum
theory@i.e., (x,y)#. This is commonly referred to as movin
along ‘‘lines of constant physics.’’ These trajectories ha
been calculated@22,23# in the limit b→`, and they are be-
lieved to be valid for lattices finer thanb.4.5–5.0:

b5
4

ag3
2

,

l5xg3
2 ,

m2

g3
4
'y2~415x!

3.1759

4pag3
2

2
1

16p2 F ~20x210x2!

3S ln
6

ag3
2

10.09D 111.6x18.7G . ~36!

Again, we address the range of applicability in a later s
tion. We are primarily interested in testing the idea that th

of
8-7
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Hooft-Polyakov monopoles condense. The measuremen
this is a fine balance. Whilst monopoles are topologica
stable even if their core is smaller than the lattice spacing
should be much larger than that to ensure they resemble
semiclassical ’t Hooft-Polyakov solution. Experience ind
cates that the correlation lengths of the gauge and scalar
should be at least 2 or 3 lattice spacings. Simultaneously
order to see the screening of the free energy that signals
formation of the plasma, we require lattices that are~much!
larger than the mean separation of the monopoles, such
it is possible for screening of magnetic charge to occ
Given that these two scales may be widely separated, it is
at all clear that we will be able to achieve the balance us
a lattice size,L, which can be realistically simulated on th
resources available.

We can use the known, semiclassical description of
monopoles@11# to estimate the parameters needed for
lattice. Such estimates are, of course, only expected to
accurate up to numerical factors which may be import
here. Nonetheless, we may hope the results are indicativ
least, and the exercise gives some insight into the poss
screening mechanism.

The monopole density~29! has a maximum value of jus
under 0.000345. Screening will become apparent when
physical volume,g3

6V[(4L/b)3, is such thatn0Vc51; this
yields

4Lc

b
*S n0

g3
6U

max
D 21/3

, ~37!

Lc*3.56b. ~38!

If a conservative value ofLc516 is chosen to allow for
possible suppression of the monopole density, this indic
that the gauge coupling is restricted to beb<4.5. Our pri-
mary interest is in observing the monopole screening, so
not strictly necessary that the perturbative lines of cons
physics still hold on our lattices. We would like to mainta
some contact with continuum physics, however, and thus
no lower thanb54.5.

Using Eq. ~29!, the maximum monopole density i
reached forv/g350.421. We are most interested in the fa
of the monopole mass in the region of the phase diag
where there is a crossover between the two phases. For
reason we selectx50.35, and thusy520.124. At this pa-
rameter set, the gauge correlation length is, in units of
lattice spacing,

ĵg5
b

4 S v
g3

D 21

52.67, ~39!

and the scalar field correlation length is

ĵs5
b

4
~A2y!2153.20, ~40!
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which are both suitably larger than the lattice grid size. Fin
lattices were used to resolve better the small volu
behavior.

V. RESULTS

A. Small volumes

As discussed in Sec. III A the free energyDF is expected
to be proportional to the volume of the system whenL&j.
We studied this in our simulations by measuring itsy deriva-
tive with couplingsx50.35 andy520.124. Obviously, this
should behave in the same way as the free energy differe
itself. The results from lattices of different sizes and differe
lattice spacings are plotted in Fig. 2 as functions of t
physical lattice sizeag3

2L. At small L the data show very
little scaling violation. This suggests that we are not seein
physically interesting effect here and supports the idea
the behavior withL has a simple origin. We show a fit of th
form 2d0Ld1, whered$0,1% are free parameters. Whilst th
power law fits well by eye, the precise nature of the d
makes the fits all quite poor (x2/DOF*5). The fit shown is
to theb518.0 data only, and givesd154.2 (5).Whilst not
precisely 3, this gives qualitative support to our simple p
ture.

Beyondg3
2L.3.5 we see different behavior. The deriv

tive now decreases towards a plateau on intermediate sc
Whilst this decay may be a power law, we find the da
insufficient to support a precise fit. The value of the plate
does show evidence of a discretization effect. We may
tempt to quantify this through a continuum extrapolation
the data atg3

2L55.3, admittedly still in the transient region
but where we have results for four couplings. We show
data in Fig. 3, along with a fit assuming only a leading ord
correction to scaling that is quadratic in the lattice spaci
This describes the datab>6.0 well ~with x2/DOF50.178).
Even b54.5 only deviates from this line by 7%, whic
backs up our previous statements on scaling and the app

FIG. 2. The derivative of the monopole free energy as a funct
of ~small! lattice size atx50.35, andy520.124.
8-8
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MONOPOLE MASS IN THE THREE-DIMENSIONAL . . . PHYSICAL REVIEW D 65 125008
bility of the perturbative lines of constant physics~used to
maintain constantx,y as we variedb). In addition, this fit
suggests that residual lattice spacing corrections are ind
very small atb518, being around 2% in this case.

In the region of intermediate volumes, when the twist
lattice supports a single monopole, we may attempt to m
sure the mass directly, to test the applicability of the se
classical results to fully quantized excitations. We have t
methods of approaching this. Less prone to statistical un
tainty is to use measurements of the derivative of the m
dM/dy over a range iny at fixedx. We make a ‘‘mean field’’
assumption that we can describe this data using the form
of Sec. III, allowing for a shift in the phase transition by th
substitution y→y2yc . Typical data, with such a fit, are

FIG. 3. Continuum limit of the derivative of the free energy
x50.35 andy520.124 for fixed physical volume,g3

2L55.3.

FIG. 4. The derivative of the monopole free energy for interm
diate system sizes for fixedx. Also shown is a semiclassically in
spired fit to the data.
12500
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shown in Fig. 4. The mean field assumption fits the data w
and from the coefficientc0 we may extract a value for the
radiatively corrected ’t Hooft function. We findyc to be con-
sistent with zero forx50.35.

Alternatively, we can measure the mass directly by
method of progressive twisting for fixedx,y. We show such
a calculation in Fig. 5. The dominant error arises from t
almost complete cancellation of the areas under the curv
either side of«50.5. To illustrate this we plot also the sam
curve rotated through 180°.

We summarize these estimates off (x) in Table III, and in
Fig. 6 where we show a fit to differenty as per Eq.~27!. The
masses and their derivatives behave much as the semic
cal expectations. Similarly the ’t Hooft function, within th
limits of our statistical errors, does not appear to differ ma
edly due to radiative corrections. There is, however, a c
siderable variation in the data aty520.124 as we changeb,
and we may worry about systematic effects in our resu
The first source of these is discretization effects. The ma
ity of our estimates are forb518.0, and as we have argue
above, the residual lattice spacing effects are small here.
variation inb in the table is also in part due to a correspon
ing change in the physical volume of the system, and
may ask whether all our measurements are for ‘‘platea
masses uncontaminated by the transient small volume
fects. We believe such biases to be small, especially foy
<21. As we varyy in Fig. 4 there is a great change in th
correlation lengthsj$s,g% for fixed volume. That the differen
effectivevolumes considered agree suggests we are ind
seeing the intermediate plateau unaffected by smallL tran-
sients. We are thus confident that our errors on these
mates of f (x) are accurate. The joint fit in Fig. 6 yield
f (0.35)51.23(12).

B. Intermediate and large volumes

The large to intermediate system size data for the der
tive of the free energy are shown in Fig. 7. For the interm

-

FIG. 5. Measuring the monopole free energy by progress
twisting of an intermediately sized system. We show a 180° rota
of the data to highlight the asymmetry.
8-9
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TABLE III. Estimates of the monopole mass and the ’t Hooft function.

x Method y M /g3
2 f (x) b L

0.05 deriv. 1.066~11! 18.0 16220
0.35 deriv. 1.257~14! 18.0 16224
0.35 prog. twist 210 50.8~14.4! 1.07 ~31! 18.0 16
0.35 prog. twist 23 33.3~5.5! 1.28 ~22! 18.0 16
0.35 prog. twist 21 18.2~4.7! 1.21 ~32! 18.0 16
0.35 prog. twist 20.5 13.4~1.9! 1.26 ~18! 18.0 16
0.35 prog. twist 1 1.4~2.1! 18.0 16
0.35 prog. twist 10 1.5~1.2! 18.0 16
0.35 prog. twist 20.124 2.8~1.6! 0.53 ~31! 4.5 16
0.35 prog. twist 20.124 5.8~1.8! 1.10 ~35! 9.0 16
0.35 prog. twist 20.124 6.3~2.4! 1.19 ~46! 12.0 16
nt
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-
-
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ion
diate system size it is clear that the data are well represe
by a constant independent of the lattice size, and we use
a hypothesis:

1

g3
2

]

]y

M

g3
2

5c0 ~41!

where we expect the parameterc0 to be p0 /g3
2. We show

such fits in Table IV. Our method is to begin with a lo
upper limit for the fitting range, and to then increase th
including progressively more data in the fit. Thex2 per de-
gree of freedom andQ ~if our fitted form is the correct
model, the probability that our data could have arisen
random fluctuations around that model! remain ~very! ac-
ceptable up toL;40. It is clear that beyond this the fit
become unacceptable: the behavior has changed as a c
quence of screening.

FIG. 6. The monopole free energy as a function ofy for an
intermediately sized system. A semiclassically inspired fit is sho
giving a value of the ’t Hooft function.
12500
ed
ch

,

s

se-

We can attempt to describe the screening by fitting ove
similar range using a fitting ansatz suggested by the di
gas model:

1

g3
2

]

]y

M

g3
2

54c0c1~ag3
2L !3

e22c1(ag3
2L)3

12e24c1(ag3
2L)3 ~42!

where c0 is as before, andc15n0 /g3
6. We show such fits

over similar ranges in Table V. For intermediateL the fits are
similar to those obtained using just a constant description
data from larger systems is included, however, we see
the ansatz now remains good. A comparison of the two fit
plotted in Fig. 7.

We may calculate fromc1 the mean density of mono
poles,n0 /g3

651.3(3)31025, which makes their mean sepa
ration

g3
2D542.6~3.3! ~43!

,
FIG. 7. The derivative of the monopole free energy as a funct

of lattice size atb54.5, x50.35, andy520.124. Also shown are
fits assuming no screening and a dilute gas screening picture.
8-10
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or, in lattice units atb54.5, D̂547.8(3.7). From this it is
clear that we do not have the lattice volume necessary to
a complete screening of the free energy atL@D̂. We cannot
therefore completely rule out from our data the possibi
that DF remains finite even in the infinite volume limit.

As was seen for small system sizes, the plateau value
least are heavily influenced by discretization effects atb
54.5. To perform a scaling study of the screening mec
nism is beyond our current means. Nonetheless, for a d
onstration of the mechanism such effects are immaterial
do not affect the qualitative arguments.

Note also that no attempt has been made to estimate
the systematic errors in the monopole density. To do
would require a comparison of different screening hypo
eses and fit functions, something that the data is, unfo
nately, not accurate enough to address satisfactorily.

VI. CONCLUSIONS

In this paper, we have used a fully nonperturbative te
nique to measure the free energy of a ’t Hooft–Polyak
monopole in the three-dimensional Georgi-Glashow mod
This was achieved by simulating systems with two differe
boundary conditions, both of which are periodic up to sy
metries of the Lagrangian. This preserves the lattice tran
tion invariance of the system and therefore makes sure t
are no boundary effects.

We found that in the Higgs phase the free energy reac
a constant value at intermediate volumes, which shows th
is associated with a localized object. This is the quant
analogue of the ’t Hooft–Polyakov monopole. We meas
its mass by two different methods, and find it compatib
with semiclassical expectations. ‘‘Mean field’’ application
the classical relations appears successful, and we can m
estimates of the quantum corrected ’t Hooft function. O
best estimates are f (0.05)51.066(11) and f (0.35)
51.257(14) from the derivative of the mass with respect
y, and f (0.35)51.23(12) by the method of progressiv
twisting. These estimates are both self-consistent, and
agreement with the classical variationf (x).11x for small
x @31#, indicating that radiative corrections are small.

When the volume increased above a certain critical va
however, the free energy started to approach zero. Th
consistent with an analytical calculation within the dilu

TABLE IV. Fitting the derivative of the free energy with a
unscreened ansatz in Eq.~41!.

L low Lhigh NDOF c0 x2/DOF Q

6 32 10 12.431~58! 0.686 0.722
6 36 11 12.426~58! 1.106 0.353
6 40 12 12.421~58! 1.704 0.066
6 46 13 12.419~58! 1.813 0.040

10 32 8 12.705~82! 0.772 0.628
10 36 9 12.689~82! 1.229 0.272
10 40 10 12.677~82! 1.873 0.044
10 46 11 12.671~82! 1.976 0.027
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monopole gas approximation, which predicts that the f
energy vanishes in the infinite volume limit at any values
the couplings.

In the dual superconductor picture, the vanishing mo
pole free energy implies confinement, and therefore our
sults are numerical evidence for Polyakov’s prediction t
the Higgs phase of this theory is confining. Furthermore
the monopole free energy vanishes everywhere, it canno
used as an order parameter, and therefore our results stro
support the conjecture that the confining and Higgs pha
are analytically connected to one another.

Neither, of course, can the monopole mass measured f
the plateau in the free energy for intermediate system s
act to distinguish the phases. It is nonzero in the deep Hi
phase and zero in the deep symmetric phase. This pla
does not exist, however, everywhere in the phase diagr
notably near the transition line itself. The mean monop
separation there will be comparable to the core size and
plateau would be observed. Thus the ‘‘mass’’ is ill-defin
and cannot serve as an order parameter.

Our findings suggest a straightforward generalization
other cases. In a Euclidean formulation in any number
dimensions, any pointlike topological defect that has fin
action, will always have a nonzero density at any nonz
temperature. This means that these objects always ha
zero free energy. An extended topological defect, such a
string or a domain wall, is, however, either a closed loo
surface, etc., in which case it does not contribute to the g
bal properties of the systems, or it has an infinite action.
the latter case, the fluctuations cannot generate them,
their free energy remains nonzero even in the infinite volu
limit. Because the free energy can be used as an order
rameter, this suggests that models with extended topolog
defects always have a true phase transition rather tha
smooth crossover. This question will be studied further in
future publication.
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TABLE V. Fitting the derivative of the free energy with a dilut
gas screening ansatz in Eq.~42!.

L low Lhigh NDOF c0 c1(3105) x2/DOF Q

6 32 9 12.499~44! 0.151~93! 0.938 0.490
6 36 10 12.500~44! 0.187~40! 0.867 0.564
6 40 11 12.502~44! 0.202~35! 0.826 0.614

10 32 7 12.445~83! 1.36 ~106! 0.816 0.582
10 36 8 12.451~83! 1.82 ~47! 0.753 0.675
10 40 9 12.454~83! 1.99 ~37! 0.722 0.689
10 46 10 12.449~83! 1.79 ~35! 0.773 0.655
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