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London’s equation from Abelian projection
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Confinement in non-Abelian gauge theories, such as QCD, is often explained using an analogy to type Il
superconductivity. In this analogy the existence of the “Meissner” effect for quarks with respect to the QCD
vacuum is an important element. Here we show that by using the ideas of Abelian projection it is possible to
arrive at an effective London equation from a non-Abelian gauge thdospdon’s equation gave a phenom-
enological description of the Meissner effect prior to the Ginzburg-Landau or BCS theory of superconductors.
The Abelian projected gauge field acts as the EM field in normal superconductivity, while the remaining
non-Abelian components form a gluon condensate which is described via an effective scalar field. This effec-
tive scalar field plays a role similar to the scalar field in Ginzburg-Landau theory.
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[. INTRODUCTION adoption of the path integral techniques for quantizing field
theories and as such are given in terms of field operators
One of the difficult aspects of QCD is that it is a nonlinear The algebra obeyed by the noninteracting field operators is
theory. At the classical level one writes down the field equajust the standard canonical commutation relationsiige,
tions of the nonlinear theory, and by inspiration or numeri-for example, p. 86 of Ref.3]). The algebra for the interact-
cally solves the field equations. For non-Abelian gauge theoing fields, on the other hand, is determined from the Green'’s
ries this leads to interesting classical field configurationfunctions for the field operators of the nonlinear fields,
such_ as monopoles, merons, instantons, ett_:. In the_ quanti_zgéxl,xzy o ,xn)=<Q|A(xl),A(x2), o ,A(xn)lQ), where
version of these theories there are suggestions of mterestl%(x_) is the field operator at positioq : G(x;,X x.) is
configurations such as those listed above, for example, th% ! ) ! . ' L2y e .
chromoelectric flux tubes that are hypothesized to exist belh€ Green's function|Q) is a quantum_sta_te. Conversely if
Xo, ... X,) are known then this gives the quantum

tween quarks in the dual, color superconductivity picture oftheg(xy, X .
confinement. states|Q). The Green’s functions are determined from the

Quantizing nonlinear field theories presents additionafield equations in the following way: one starts with the clas-
challenges and questions. In the case of general relativity néica@l field equations and turns the classical fields into field
complete quantum version of the theory exists. In the case dlPerators. One uses these operator field equations to deter-
QCD a quantum version of the theory exists, but because th@ine the lowest order Green’s functions. Next one applies
QCD coupling constant is large, the standard perturbativ¥arious order derivative operators on these operator field
quantum field theory techniques do not apply in the low€duations to obtain equations which have higher order pow-
energy regime. This means that getting numerical prediction§'s of the field operators, and which yield the higher order
out of QCD is difficult. At present there is no universal ana-Green’s functions. In this way an infinite set of coupled,
lytical technique for handling detailed questions about Qcpdifferential equations are constructed which connect all or-
(this is in contrast with QED and electroweak theory whereders of Green's functions. In general it is not possible to
the techniques of perturbative quantum field theory supply £0ve this system of differential equations analytically, so
general method for calculating results analyticalhe non- ~ @PProximation techniques must be used.
perturbative aspects of QCD are dealt with using numerical Here we apply a version of Heisenberg’s method to non-
techniqueg1]. Abelian gauge theory. In our treatment we assume that the

In the 1950s Heisenberg and co-workers proposed BON-Abelian gauge fields can be separated into two classes:
scheme for investigating quantum, nonlinear spinor field$tochastic, _dlsorde_red .fleld.s and ordered fields. Thls is simi-
[2], which yielded interesting results concerning the spin andar to Abelian projection idea$7,8] where the diagonal
charge of the electron. This nonperturbative quantizatiordauge fields associated with the Abelian subgroup are or-
technique distinguished between field operators of interactdered(an example of this ordering would be a non-zero ex-
ing fields and field operators of noninteracting fieldsPectation,(AS™%#0, inside a flux tube stretched between
(Heisenberg's ideas were developed before the widespredtarks and with the off-diagonal gauge fields being disor-

dered so that(A%")=0 outside of the flux tube[but

((A%%)#0 outside the flux tube This picture also has
*Electronic address: dzhun@hotmail.kg some common points with the work of Nielsen, Olesen and
Electronic address: dougs@csufresno.edu others[4—6] on the response of the QCD vacuum to a ho-
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mogeneous color magnetic fieltl In Ref.[4] it was shown P2 —faMAMAN C G, 6)
that a homogeneous $2) magnetic field lowered the energy # .
of the vacuum, but was unstable. This instability was re-

m _pgm m
moved by the formation of domaif§]. These domains took Fun= Pt Gy e SUN)/G, @
the form of SU2) magnetic flux tubes which formed a ran-
dom SU2) magnetic quantum liquidi6] with the property Fo,=d,A0—a,Al+fMPATAN e SUN)/G, (8)
that(H)=0 and(H?)#0. The difference with our approach
outlined above is that we assume the expectation values are Gl,= fm”b(Azatj—AgaZ) e SUN)/G, (9)

in terms of the gauge potentials rather than the magnetic

_ﬁeld_(AZ”):O gnd((A_Z”)_zﬁo. Also, in line with the  \yhere fABC are the structural constants of SU) The

|(_jeas oL_the Abelian prOJec'uon, the dlagonal,.Abellan the”SU(N) Yang-Mills field equations can be decomposed as

tials (A7'?% and the off-diagonal, non-Abelian potentials

(Asz) play different roles in the pl’esent paper. dv( ¢a;LV+ q)a/.LV): _famnAm(Fn;LV+ Gn,U,V)1 (10)
In applying these ideas to an &) gauge theory we as- g

sume that the off-diagonal components form a condensate , . ) )

which can be described by an effective scalar field similar to D (F™+ GM) = — M AY( P4+ D P17)

that in Ginzburg-Landau theorj®]. This is also related to — ab(FMr 4+ GNeY)] (11)

work by Cornwall[10,11] where a connection is established v

between a scalar field and the expectation of the Yang-Mills a a. rabc.b c _

field strength tensor squaredp(x)«—(TrG3,). In the where d,[-- - J"=g,[-- - "+ 17%a,[ - -]" is tﬂf covarle:nnt

present work we follow the Abelian projection ideas andder,'TYﬂ“f,e on pthe subgrouf and D,[---]"=d,[--]

assign different roles to the Abelian and the off-diagonal,“”c A,v[ ] "

non-Abelian gauge potentials. Only the off-diagonal gauge Specializing ,'fécthe EB((J:Z) case we Ie_iSl_J(N)—>SU(2),

potentials are assumed be involved in the condensate. Wiff — U (1), andf"==— =¥, Setting the indices a&=3 and

respect to this condensate the field equation for the AbeliaRPnsequentlyn,n=1,2, our classical equations become

component then takes the form of the London equation, so

that the Abelian field develops a mass as it penetrates into I,(PH"+DH)=— SMAT(FM+GMY),  (12)

regions characterized by a non-zero value for the off-

diagonal condensate. The mass of the Abelian field and the  p (F™v+GM")= _63mn[Ar;(¢,uV+ DHY)

assumed effective mass of the condensate are not the same,

which is in contrast to Refd.10,11 where all the S(R) —a,(F""+G"")]. (13
gauge potentials play an equivalent role, leading to a single
common effective mass for all the gluons. SinceG=U(1) we haved, =4, .

IIl. SEPARATION OF COMPONENTS IIl. HEISENBERG QUANTIZATION

In quantizing the classical system given in EG®), (13)

In this section we follow the conventions of RdB].  via Heisenberg's method one first replaces the classical fields
Starting with the SUN) gauge group with generatof$’ e py field operators,—a, andAT— A", This yields the fol-
define the SUN) gauge fields,4, = AJT®. Let G be a sub-  |gwing differential equations for the operators:
group of SUN) and SU(N)/G is a coset. Then the gauge

field A, can be decomposed as a,,(&s#’#(i)”“”): B e3m“AT(|5”“V+G”“V), (14)

AM=A5TB=aZTa+ ALT™, (1) . . .. .
DV(quv+ Gm,u.l/): _ ESmn[Ag(¢uv+ (D,U.V)
a%eG and ATe SU(N)/G 2 - -
g e SUN ? —a,(F™+G")]. (15)
where the indices,b,c ... belong to the subgrou@ and
m,n, ... to the coset SW)/G; B are SUN) indices. These nonlinear equations for the field operators of the non-

Based on this the field strength can be decomposed as  linear quantum fields can be used to determine expectation
5 values for the field operatoré;M and AZ‘ (e.g.(éﬂ>, where
Fo =70 TR Fn T B (---)=(Q|---|Q) and |Q) is some quantum stajesOne
can also use these equations to determine the expectation
where values of operators that are built up from the fundamental
operatorsé# and AZ‘. For example, the “electric” field op-
erator, E,= doa,— d,a, giving the expectation(E,). The
simple gauge field expectation valuésl ,(x)), are obtained
— bc,b o
by, =d,a,— a8, + 1@ aeG, (5 by average Eqg14), (15) over some quantum staf®)

Fav= b+ @, €6, (4)

125007-2



LONDON’S EQUATION FROM ABELIAN PROJECTION PHYSICAL REVIEW D65 125007

(Qla(pH"+DHY)+ EMMAT(FMr+ GM)|Q) =0, (16)

(QID,(F™+G™) + MA (¢ + dr") —a,(F™+ G™")]|Q)=0. (17)

One problem in using these equations to obtain expectation (2) The componentai of the subgroup G can have some
values like (A7) is that these equations involve not only order so that certain expectation values can have non-zero
powers or derivatives ofA}) (i.e. terms liked (A}) or  values, for example,

d,95(A})) but they also contain terms lik@ )= (ATAD).

Starting with Egs.(16), (17) one can generate an operator (H3)=((Vxa),)+#0. (19

. . . ~ ~ n .
differential equation for the produéf;‘AV, thus allowing the Such conditions are meant to imply ﬂq} (or certain quan-

o , P :
determination of the Green's functiogi,,, . However, this e gerived from it develops a non-zero expectation value
equation will, in turn, contain other, higher order Green's¢,. some non-trivial, non-vacuum boundary conditidesg.
functions. Repeating these steps leads to an infinite set gfo presence of external quarkSuch conditions are not

equations connecting Green's functions of ever increasing,nnacted with vacuum states since this would imply a vio-
order. This construction, leading to an infinite set of coupled,tion of the Lorentz symmetry of the QCD vacuum.

ldl{'ferentlgl equatlotns, (:loesdlnc(;t h"’?"e an exact, a”?'yt";_a' S0 (3) The gauge potentialaj and A,T are not correlated.
ution and so must be handled using some approximation. Mathematically this means that

Operators are only well determined if there is a Hilbert
space of quantum states. Thus we need to ask about the (f(a®)g(AM)=(f(a?))(g(A™) (20)
definition of the quantum statd®) in the above construc- e . a
tion. The resolution to this problem is as follows: There is awheref,g are any functions.
one-to-one correspondence between a given quantum state These assumptions are a variation of the Abelian projec-
|Q) and the infinite set of quantum expectation values ovetion ideas, since there the SN)J/G components of the
any product of field operators,gl"jﬂj_‘j(xl,xz o) gauge fields are suppressed. The characterization of the off-
=<Q|AE(X1)A2(X2) ...|Q). So if all the Green's diagonalfields as stochastic is a result of the first part of Eq.
functions—g MM (X, X, . . . )—are known then the quan- (18), (A}}(x))=0. The second part of Eq18) is related to
tum states|Q) are known, i.e. the action dfQ) on any some recent work12,13 W.hICh demonstrates the physical
product of field operatoré\;T(xl)ArV‘(xz) ... is known. The importance of the expectation value qf the square of.the non-
Green'’s functions are determined from the above, infinite s belian gﬁuge potgqtlal t%'the dynamlcr? of.nonr;AbetI:an field
of equations(following Heisenberg's idea theory. The surprising thing about this is that the non-

Another problem associated with products of field opera/*Pe€lian gauge potentialand its squareis gaugevariant,

tors like AZ‘(X)AZ(X) which occur in Eq. 15 is that the two and one would think that physical quantities should only be

. ; o constructed from gaugénvariant quantities. In previous
operators occur at the same point. Faram-interactingfield

o X . . work [6,10,11 one had conditions similar to the first as-
it is well known tha_t su_c_h produ_cts _have a S.'ngma”ty' In thlssumption above, but in terms of the expectation values of the
paper we are consideringteractingfields so it is not known

! . ; - Yang-Mills field strength tensor and its squar =0
if a singularity would arise for such products of operators 9 g quargss,)

evaluated at the same point. Physically it is hypothesized th atnd <GW>¢O' One way of looking at the condition,

m n — mn H H
there are situations in interacting field theories where thes A#((jX)Av(t).(» ftr(f (x)f(fS d.nﬂ”’ :S&Bhaf I re_ptresefptst_ the
singularities do not occure.g. for flux tubes in Abelian or condensation ol the ofi-diagona gluons Into eflective

non-Abelian theory quantities like the “electric” field inside SCa1ar fieldse(x). This provides a physical motivation for a

the tube,(E3)<, and energy densitye(x)=<(Ea)2><oo connection of the present work to the Ginzburg-Landau
1 z 1 z

: . model of superconductivity. In Ginzburg-Landau theory the
are nonsinguldr Here we take as an assumption that such . . ;
X o scalar field represents a condensation of electrons, i.e. the
singularities do not occur. . ; e :
. . Cooper pairs. This association between the expectation of the
We now enumerate our basic assumptions.

square of the off-diagonal gauge potentials with a scalar field

(1) After quantization the componendg)(x) become sto-  is aiso similar to Ref[10] except there the association was
chastic. In mathematical terms we write this assumption aSbetween(Gz y#0 and the scalar field
mv :

(AT(x))=0, (AZX)AN(X)==¢(x)6™"y,, (18) IV. LONDON'S EQUATION

In this section we want to show how London’s equation
wherep(x) is some scalar fieldy={+1,—1,—1,—1}. This  emerges from Eqg14), (15) under the setup outlined above.
would give a problem with the time components in that| ondon’s equation describes the Meissner effect in ordinary
(AG'A7)<0. Thus to deal with this we also assume that thesuperconductivity. Showing that the same equation emerges
fields are static and have no time component, Ag=0. from a quantized non-Abelian gauge theory gives support to
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the dual superconducting picture of the QCD vacuum. Bestochastic phaspe.g. ¢(x)=¢y#0 for y>0 and ¢(x)=0
cause of the stochastic assumption above we will not be infor y<0]. In this case the Abelian gauge field has only a
terested in the off-diagonal components of the gauge fieldsgJependence ow, a,(y), and Eq.(29) becomes

(A). Thus we will not worry about Eq(15) which is the

equation that determines these off-diagonal components. The

Abelian fielda

.. is determined from Eq(14) which is linear

in a,. Because of this we take the Abelian gauge field as

classical[14]. This leads to the following equation:

D, ( 7+ (DH)) = — EMY(ATF )+ (ATGH7))
(21)

Note the Abelian termg*”, is treated classically while the Thus the magnetic fieldH,=Hqe~

d’a,
ay? =6 ¢oa, (30
which has the solution
a,=ag,e Ve, (32)

B¢y is exponentially

remaining terms which involve combinations of the off- damped as it penetrates the region with the stochastic phase.
diagonal fields are treated as quantum degrees of freedom via From Eqs(30),(31) the effective mass of the Abelian field
the expectation values. To calculate these expectation valuéMei=\6 ¢o. On the other hand, E¢22) (up to a group

we take, as a first approximation, the scalar function of Eqfactor of 2/3) is similar to the relationship given in REf1]

(18) as a constant, i.ep(X) = ¢q

(AROOAN(X)) == 08™"7,,, . (22
Then this gives
(®,,,)=TYATAT) =0, (23
(ATG™7) = e"P3((ATAPH) " — (ATAP)a)
=3 poe>M"a*, (24)
The next term is
(ATE"2) = (AT9#A™) —(AT9"A)
+ e"PY AMAPLATYY, (25)

[see EQq.(32) of that referenckbetween the effective gluon
mass and the expectation of the squaralbthe gauge po-
tentials. Thus from Eq(22) we find that in our model the
effective mass of the S@) gluons associated with the off-
diagonal gauge potentials is different from the effective mass
of the gauge boson associated with the Abelian gauge poten-
tial. The difference in masses between the condensate repre-
sented by the scalar field and the gauge boson is also found
in spontaneous symmetry breaking of a gauge symmetry. For
example, consider the Ginzburg-Landau Lagrangian with an
Abelian gauge fieldA,,, and a complex scalar field;, de-
scribing the condensate

LeL=(D,¢)(D,@)* —m?p|>=\|p|*

where D ,=d,+ieA,. The condensate has a mass nof
while the gauge bosoA,, will acquire a mass of/e?m?/2\.

(32

FO; the (rj]jsordered,mnon-diagonal components we Will sef, o case the condensate comes from the same set(@j SU
(ALLOQAZ(X) .. .A(x))=0 if nis odd. For the other gauge fields as the Abelian gauge field. The different roles of

terms in the right-hand side of E(R5) we note that
Il ARAL)Y =D ALAL) (AL AL) =0,

<‘9aA,TA?/> == <A/T‘9aA?/>

(26)

the Abelian and off-diagonal, non-Abelian gauge fields result
from using ideas similar to Abelian projection through our
first assumption given in Eq18) above.

V. CONCLUSIONS

For these stochastic, non-diagonal components the last ex- In this paper we have shown how the London equation

pression should not depend on the order of the indioes)
and (u,v), i.e. (d,ALAY)=(3,AAT)=(A%d,A7). Using
this with Eq.(26) gives

(3,ATIAD) = (A9, A7) =0. (27
Putting all this together gives from E¢R1)
d,p*"=6 poat. (289

Applying the Lorentz gauge conditiod,a”=0, then yields

d,0"ak=—6 ppar. (29

This is London’s equation for the (W) ordered phase in the
presence of the disordered &JU(1) phase. To demonstrate

how this leads to a Meissner-like effect for thé1) gauge

field, a,,,

emerges from a non-Abelian gauge theory by combining
ideas of a nonperturbative quantization technique pioneered
by Heisenberg and co-workers, with ideas similar to Abelian
projection. The importance of this is that the London equa-
tion gives a phenomenological description of the Meissner
effect in superconductors, and the vacuum of some non-
Abelian gauge theoriege.g. QCD is often modeled as a
dual superconductor in order to explain confinement. In our
approach we split the gauge grol®U(2) in our casginto a
subgroug U(1) in our casé¢ and the coset spa¢8U(2)/U(1)

in our casé The gauge bosons associated with the coset
SU(2)/U(1) were taken to be in an disordered, stochastic
phase,(AlT(x))zo. Mathematically this statement was con-
tained in Eq.(18) where the scalar field can be compared to
the scalar field in the Ginzburg-Landau treatment of super-
conductivity. In the Ginzburg-Landau model the scalar field

we take half of all space as being filled by the represents a condensation of electrons into Cooper pairs. In
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our work the scalar field can be thought of as a condensatioian given in Eq.(32). [Note in this regard that there are two
of gluons. Just as the EM field is excluded from the superscalar fields in Eq(32), since therep is complex, and in Eq.
conductor, so in our example is the diagonal, Abelian gauge18) there are also effectively two scalar fields coming from
field excluded from the disordered phase. m=n=1 andm=n=2]. In this case one would be able to
There is a difference between Abelian projection and thegnstruct Nielsen-Olesen flux tube solutiofs5], which

treatment in the present paper. In the Abelian projection thgyould be very suggestive toward making a firm connection
off-diagonal components are constructed by applying gauggjith the dual superconducting model of QCD. Such a con-
fixing, but in our case they emerge from applying the threestrction of an effective Ginzburg-Landau equation for
assumptions given in Sec. Ill to the dynamical equations. IRyoyld be important in bolstering the claim of a connection

havior of the stochastic phase by settiagx) = ¢o. In this  of the QCD vacuum.

way we obtained an equation for the Abelian components of
the gauge field which was similar to London’s equation for

the vector potential in superconductivity theory. Higher order ACKNOWLEDGMENTS
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