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London’s equation from Abelian projection
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Confinement in non-Abelian gauge theories, such as QCD, is often explained using an analogy to type II
superconductivity. In this analogy the existence of the ‘‘Meissner’’ effect for quarks with respect to the QCD
vacuum is an important element. Here we show that by using the ideas of Abelian projection it is possible to
arrive at an effective London equation from a non-Abelian gauge theory.~London’s equation gave a phenom-
enological description of the Meissner effect prior to the Ginzburg-Landau or BCS theory of superconductors.!
The Abelian projected gauge field acts as the EM field in normal superconductivity, while the remaining
non-Abelian components form a gluon condensate which is described via an effective scalar field. This effec-
tive scalar field plays a role similar to the scalar field in Ginzburg-Landau theory.
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I. INTRODUCTION

One of the difficult aspects of QCD is that it is a nonline
theory. At the classical level one writes down the field eq
tions of the nonlinear theory, and by inspiration or nume
cally solves the field equations. For non-Abelian gauge th
ries this leads to interesting classical field configuratio
such as monopoles, merons, instantons, etc. In the quan
version of these theories there are suggestions of intere
configurations such as those listed above, for example,
chromoelectric flux tubes that are hypothesized to exist
tween quarks in the dual, color superconductivity picture
confinement.

Quantizing nonlinear field theories presents additio
challenges and questions. In the case of general relativit
complete quantum version of the theory exists. In the cas
QCD a quantum version of the theory exists, but because
QCD coupling constant is large, the standard perturba
quantum field theory techniques do not apply in the l
energy regime. This means that getting numerical predicti
out of QCD is difficult. At present there is no universal an
lytical technique for handling detailed questions about Q
~this is in contrast with QED and electroweak theory whe
the techniques of perturbative quantum field theory supp
general method for calculating results analytically!. The non-
perturbative aspects of QCD are dealt with using numer
techniques@1#.

In the 1950s Heisenberg and co-workers propose
scheme for investigating quantum, nonlinear spinor fie
@2#, which yielded interesting results concerning the spin a
charge of the electron. This nonperturbative quantizat
technique distinguished between field operators of inter
ing fields and field operators of noninteracting fiel
~Heisenberg’s ideas were developed before the widesp
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adoption of the path integral techniques for quantizing fi
theories and as such are given in terms of field operato!.
The algebra obeyed by the noninteracting field operator
just the standard canonical commutation relationships~see,
for example, p. 86 of Ref.@3#!. The algebra for the interact
ing fields, on the other hand, is determined from the Gree
functions for the field operators of the nonlinear field

G(x1 ,x2 , . . . ,xn)5^QuÂ(x1),Â(x2), . . . ,Â(xn)uQ&, where

Â(xi) is the field operator at positionxi ; G(x1 ,x2 , . . . ,xn) is
the Green’s function;uQ& is a quantum state. Conversely
theG(x1 ,x2 , . . . ,xn) are known then this gives the quantu
statesuQ&. The Green’s functions are determined from t
field equations in the following way: one starts with the cla
sical field equations and turns the classical fields into fi
operators. One uses these operator field equations to d
mine the lowest order Green’s functions. Next one app
various order derivative operators on these operator fi
equations to obtain equations which have higher order p
ers of the field operators, and which yield the higher ord
Green’s functions. In this way an infinite set of couple
differential equations are constructed which connect all
ders of Green’s functions. In general it is not possible
solve this system of differential equations analytically,
approximation techniques must be used.

Here we apply a version of Heisenberg’s method to n
Abelian gauge theory. In our treatment we assume that
non-Abelian gauge fields can be separated into two clas
stochastic, disordered fields and ordered fields. This is s
lar to Abelian projection ideas@7,8# where the diagona
gauge fields associated with the Abelian subgroup are
dered~an example of this ordering would be a non-zero e
pectation,^Az

diag&Þ0, inside a flux tube stretched betwee
quarks! and with the off-diagonal gauge fields being diso
dered so that^Am

o f f&50 outside of the flux tube@but
^(Am

o f f)2&Þ0 outside the flux tube#. This picture also has
some common points with the work of Nielsen, Olesen a
others@4–6# on the response of the QCD vacuum to a h
©2002 The American Physical Society07-1
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mogeneous color magnetic fieldH. In Ref. @4# it was shown
that a homogeneous SU~2! magnetic field lowered the energ
of the vacuum, but was unstable. This instability was
moved by the formation of domains@5#. These domains took
the form of SU~2! magnetic flux tubes which formed a ran
dom SU~2! magnetic quantum liquid@6# with the property
that ^H&50 and^H2&Þ0. The difference with our approac
outlined above is that we assume the expectation values
in terms of the gauge potentials rather than the magn
field—^Am

o f f&50 and ^(Am
o f f)2&Þ0. Also, in line with the

ideas of the Abelian projection, the diagonal, Abelian pot
tials (Az

diag) and the off-diagonal, non-Abelian potentia
(Am

o f f) play different roles in the present paper.
In applying these ideas to an SU~2! gauge theory we as

sume that the off-diagonal components form a conden
which can be described by an effective scalar field simila
that in Ginzburg-Landau theory@9#. This is also related to
work by Cornwall@10,11# where a connection is establishe
between a scalar field and the expectation of the Yang-M
field strength tensor squared—f(x)↔^TrGmn

2 &. In the
present work we follow the Abelian projection ideas a
assign different roles to the Abelian and the off-diagon
non-Abelian gauge potentials. Only the off-diagonal gau
potentials are assumed be involved in the condensate.
respect to this condensate the field equation for the Abe
component then takes the form of the London equation
that the Abelian field develops a mass as it penetrates
regions characterized by a non-zero value for the o
diagonal condensate. The mass of the Abelian field and
assumed effective mass of the condensate are not the s
which is in contrast to Refs.@10,11# where all the SU~2!
gauge potentials play an equivalent role, leading to a sin
common effective mass for all the gluons.

II. SEPARATION OF COMPONENTS

In this section we follow the conventions of Ref.@8#.
Starting with the SU~N! gauge group with generatorsTB we
define the SU~N! gauge fields,Am5A m

BTB. Let G be a sub-
group of SU~N! and SU(N)/G is a coset. Then the gaug
field Am can be decomposed as

Am5A m
BTB5am

a Ta1Am
mTm, ~1!

am
a PG and Am

mPSU~N!/G ~2!

where the indicesa,b,c . . . belong to the subgroupG and
m,n, . . . to the coset SU(N)/G; B are SU(N) indices.
Based on this the field strength can be decomposed as

F mn
B TB5F mn

a Ta1F mn
m Tm ~3!

where

F mn
a 5fmn

a 1Fmn
a PG, ~4!

fmn
a 5]man

a2]nam
a 1 f abcam

b an
cPG, ~5!
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Fmn
a 5 f amnAm

mAn
nPG, ~6!

F mn
m 5Fmn

m 1Gmn
m PSU~N!/G, ~7!

Fmn
m 5]mAn

m2]nAm
m1 f mnpAm

n An
pPSU~N!/G, ~8!

Gmn
m 5 f mnb~Am

n an
b2An

nam
b !PSU~N!/G, ~9!

where f ABC are the structural constants of SU(N). The
SU(N) Yang-Mills field equations can be decomposed as

dn~famn1Famn!52 f amnAn
m~Fnmn1Gnmn!, ~10!

Dn~Fmmn1Gmmn!52 f mnb@An
n~fbmn1Fbmn!

2an
b~Fnmn1Gnmn!# ~11!

where dn@•••#a5]n@•••#a1 f abcan
b@•••#c is the covariant

derivative on the subgroupG and Dn@•••#m5]n@•••#m

1 f mnpAn
n@•••#p.

Specializing in the SU~2! case we letSU(N)→SU(2),
G→U(1), andf ABC→eABC. Setting the indices asa53 and
consequentlym,n51,2, our classical equations become

]n~fmn1Fmn!52e3mnAn
m~Fnmn1Gnmn!, ~12!

Dn~Fmmn1Gmmn!52e3mn@An
n~fmn1Fmn!

2an~Fnmn1Gnmn!#. ~13!

SinceG5U(1) we havedn5]n .

III. HEISENBERG QUANTIZATION

In quantizing the classical system given in Eqs.~12!, ~13!
via Heisenberg’s method one first replaces the classical fi
by field operatorsam→âm andAm

m→Âm
m . This yields the fol-

lowing differential equations for the operators:

]n~f̂mn1F̂mn!52e3mnÂn
m~ F̂nmn1Ĝnmn!, ~14!

Dn~ F̂mmn1Ĝmmn!52e3mn@Ân
n~f̂mn1F̂mn!

2ân~ F̂nmn1Ĝnmn!#. ~15!

These nonlinear equations for the field operators of the n
linear quantum fields can be used to determine expecta
values for the field operatorsâm and Âm

m ~e.g. ^âm&, where
^•••&5^Qu•••uQ& and uQ& is some quantum states!. One
can also use these equations to determine the expect
values of operators that are built up from the fundamen
operatorsâm and Âm

m . For example, the ‘‘electric’’ field op-

erator, Êz5]0âz2]zâ0 giving the expectation̂ Êz&. The
simple gauge field expectation values,^Am(x)&, are obtained
by average Eqs.~14!, ~15! over some quantum stateuQ&
7-2
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^Qu]n~f̂mn1F̂mn!1e3mnÂn
m~ F̂nmn1Ĝnmn!uQ&50, ~16!

^QuDn~ F̂mmn1Ĝmmn!1e3mn@Ân
n~f̂mn1F̂mn!2ân~ F̂nmn1Ĝnmn!#uQ&50. ~17!
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One problem in using these equations to obtain expecta
values like ^Am

m& is that these equations involve not on
powers or derivatives of̂Am

m& ~i.e. terms like]a^Am
m& or

]a]b^Am
m&) but they also contain terms likeG mn

mn5^Am
mAn

n&.
Starting with Eqs.~16!, ~17! one can generate an operat
differential equation for the productÂm

mÂn
n , thus allowing the

determination of the Green’s functionG mn
mn . However, this

equation will, in turn, contain other, higher order Green
functions. Repeating these steps leads to an infinite se
equations connecting Green’s functions of ever increas
order. This construction, leading to an infinite set of coupl
differential equations, does not have an exact, analytical
lution and so must be handled using some approximatio

Operators are only well determined if there is a Hilb
space of quantum states. Thus we need to ask abou
definition of the quantum statesuQ& in the above construc
tion. The resolution to this problem is as follows: There is
one-to-one correspondence between a given quantum
uQ& and the infinite set of quantum expectation values o
any product of field operators,G mn•••

mn•••(x1 ,x2 . . . )
5^QuAm

m(x1)An
n(x2) . . . uQ&. So if all the Green’s

functions—G mn•••
mn•••(x1 ,x2 . . . )—are known then the quan

tum statesuQ& are known, i.e. the action ofuQ& on any
product of field operatorsÂm

m(x1)Ân
n(x2) . . . is known. The

Green’s functions are determined from the above, infinite
of equations~following Heisenberg’s idea!.

Another problem associated with products of field ope
tors like Âm

m(x)Ân
n(x) which occur in Eq. 15 is that the two

operators occur at the same point. For anon-interactingfield
it is well known that such products have a singularity. In th
paper we are consideringinteractingfields so it is not known
if a singularity would arise for such products of operato
evaluated at the same point. Physically it is hypothesized
there are situations in interacting field theories where th
singularities do not occur@e.g. for flux tubes in Abelian or
non-Abelian theory quantities like the ‘‘electric’’ field insid
the tube,^Ez

a&,`, and energy density«(x)5^(Ez
a)2&,`

are nonsingular#. Here we take as an assumption that su
singularities do not occur.

We now enumerate our basic assumptions.
~1! After quantization the componentsÂm

m(x) become sto-
chastic. In mathematical terms we write this assumption

^Am
m~x!&50, ^Am

m~x!An
n~x!&52w~x!dmnhmn ~18!

wherew(x) is some scalar field,h5$11,21,21,21%. This
would give a problem with the time components in th
^A0

mA0
m&,0. Thus to deal with this we also assume that

fields are static and have no time component, i.e.A0
m50.
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~2! The componentsam
a of the subgroup G can have som

order so that certain expectation values can have non-
values, for example,

^Hz
a&5^~¹3aW !z&Þ0. ~19!

Such conditions are meant to imply thatam
a ~or certain quan-

tities derived from it! develops a non-zero expectation val
for some non-trivial, non-vacuum boundary conditions~e.g.
the presence of external quarks!. Such conditions are no
connected with vacuum states since this would imply a v
lation of the Lorentz symmetry of the QCD vacuum.

~3! The gauge potentialsam
a and Am

m are not correlated.
Mathematically this means that

^ f ~am
a !g~An

m!&5^ f ~am
a !&^g~Am

m!& ~20!

where f ,g are any functions.
These assumptions are a variation of the Abelian pro

tion ideas, since there the SU(N)/G components of the
gauge fields are suppressed. The characterization of the
diagonal fields as stochastic is a result of the first part of
~18!, ^Am

m(x)&50. The second part of Eq.~18! is related to
some recent work@12,13# which demonstrates the physic
importance of the expectation value of the square of the n
Abelian gauge potential to the dynamics of non-Abelian fie
theory. The surprising thing about this is that the no
Abelian gauge potential~and its square! is gaugevariant,
and one would think that physical quantities should only
constructed from gaugeinvariant quantities. In previous
work @6,10,11# one had conditions similar to the first a
sumption above, but in terms of the expectation values of
Yang-Mills field strength tensor and its square—^Gmn&50
and ^Gmn

2 &Þ0. One way of looking at the condition
^Am

m(x)An
n(x)&52w(x)dmnhmn , is that it represents the

condensation of the off-diagonal SU~2! gluons into effective
scalar fields,w(x). This provides a physical motivation for
connection of the present work to the Ginzburg-Land
model of superconductivity. In Ginzburg-Landau theory t
scalar field represents a condensation of electrons, i.e.
Cooper pairs. This association between the expectation o
square of the off-diagonal gauge potentials with a scalar fi
is also similar to Ref.@10# except there the association wa
between̂ Gmn

2 &Þ0 and the scalar field.

IV. LONDON’S EQUATION

In this section we want to show how London’s equati
emerges from Eqs.~14!, ~15! under the setup outlined above
London’s equation describes the Meissner effect in ordin
superconductivity. Showing that the same equation eme
from a quantized non-Abelian gauge theory gives suppor
7-3



e
i

ld

T

a

ff-

lu
Eq

se

t e

e

e

a

ase.
d

-
ass
ten-
pre-
und
For
an

U
of

ult
ur

ion
ing
red

ian
a-

ner
on-

our

set
tic

n-
to
er-
ld

s. In

VLADIMIR DZHUNUSHALIEV AND DOUGLAS SINGLETON PHYSICAL REVIEW D 65 125007
the dual superconducting picture of the QCD vacuum. B
cause of the stochastic assumption above we will not be
terested in the off-diagonal components of the gauge fie
^Am

m&. Thus we will not worry about Eq.~15! which is the
equation that determines these off-diagonal components.
Abelian fieldam is determined from Eq.~14! which is linear
in am . Because of this we take the Abelian gauge field
classical@14#. This leads to the following equation:

]n~fmn1^Fmn&!52e3mn~^An
mFnmn&1^An

mGnmn&!.
~21!

Note the Abelian term,fmn, is treated classically while the
remaining terms which involve combinations of the o
diagonal fields are treated as quantum degrees of freedom
the expectation values. To calculate these expectation va
we take, as a first approximation, the scalar function of
~18! as a constant, i.e.w(x)5w0

^Am
m~x!An

n~x!&52w0dmnhmn . ~22!

Then this gives

^Fmn&5e3mn^Am
mAn

n&50, ~23!

^An
mGnmn&5enp3~^An

mApm&an2^An
mApn&am!

523 w0e3mnam. ~24!

The next term is

^An
mFnmn&5^An

m]mAnn&2^An
m]nAnm&

1enpq^An
mApmAqn&. ~25!

For the disordered, non-diagonal components we will
^Am1

m1(x)Am2

m2(x) . . . Amn

mn(x)&[0 if n is odd. For the other

terms in the right-hand side of Eq.~25! we note that

]a^Am
mAn

n&5^]aAm
mAn

n&1^Am
m]aAn

n&50,

^]aAm
mAn

n&52^Am
m]aAn

n&. ~26!

For these stochastic, non-diagonal components the las
pression should not depend on the order of the indices (m,n)
and (m,n), i.e. ^]aAm

mAn
n&5^]aAn

nAm
m&5^Am

m]aAn
n&. Using

this with Eq.~26! gives

^]aAm
mAn

n&5^Am
m]aAn

n&50. ~27!

Putting all this together gives from Eq.~21!

]nfmn56 w0am. ~28!

Applying the Lorentz gauge condition,]nan50, then yields

]n]nam526 w0am. ~29!

This is London’s equation for the U~1! ordered phase in the
presence of the disordered SU~2!/U~1! phase. To demonstrat
how this leads to a Meissner-like effect for the U~1! gauge
field, am , we take half of all space as being filled by th
12500
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stochastic phase@e.g. w(x)5w0Þ0 for y.0 andw(x)50
for y,0#. In this case the Abelian gauge field has only
dependence ony, am(y), and Eq.~29! becomes

d2am

dy2
56 w0am ~30!

which has the solution

am5a0me2A6 w0y. ~31!

Thus the magnetic fieldHz5H0ze
2A6 w0y is exponentially

damped as it penetrates the region with the stochastic ph
From Eqs.~30!,~31! the effective mass of the Abelian fiel

is me f f5A6 w0. On the other hand, Eq.~22! ~up to a group
factor of 2/3) is similar to the relationship given in Ref.@11#
@see Eq.~32! of that reference# between the effective gluon
mass and the expectation of the square ofall the gauge po-
tentials. Thus from Eq.~22! we find that in our model the
effective mass of the SU~2! gluons associated with the off
diagonal gauge potentials is different from the effective m
of the gauge boson associated with the Abelian gauge po
tial. The difference in masses between the condensate re
sented by the scalar field and the gauge boson is also fo
in spontaneous symmetry breaking of a gauge symmetry.
example, consider the Ginzburg-Landau Lagrangian with
Abelian gauge field,Am , and a complex scalar field,w, de-
scribing the condensate

LGL5~Dmw!~Dmw!* 2m2uwu22luwu4 ~32!

where Dm5]m1 ieAm . The condensate has a mass ofm
while the gauge bosonAm will acquire a mass ofAe2m2/2l.
In our case the condensate comes from the same set of S~2!
gauge fields as the Abelian gauge field. The different roles
the Abelian and off-diagonal, non-Abelian gauge fields res
from using ideas similar to Abelian projection through o
first assumption given in Eq.~18! above.

V. CONCLUSIONS

In this paper we have shown how the London equat
emerges from a non-Abelian gauge theory by combin
ideas of a nonperturbative quantization technique pionee
by Heisenberg and co-workers, with ideas similar to Abel
projection. The importance of this is that the London equ
tion gives a phenomenological description of the Meiss
effect in superconductors, and the vacuum of some n
Abelian gauge theories~e.g. QCD! is often modeled as a
dual superconductor in order to explain confinement. In
approach we split the gauge group@SU~2! in our case# into a
subgroup@U~1! in our case# and the coset space@SU~2!/U~1!
in our case#. The gauge bosons associated with the co
SU~2!/U~1! were taken to be in an disordered, stochas
phase,̂ Am

m(x)&50. Mathematically this statement was co
tained in Eq.~18! where the scalar field can be compared
the scalar field in the Ginzburg-Landau treatment of sup
conductivity. In the Ginzburg-Landau model the scalar fie
represents a condensation of electrons into Cooper pair
7-4
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our work the scalar field can be thought of as a condensa
of gluons. Just as the EM field is excluded from the sup
conductor, so in our example is the diagonal, Abelian ga
field excluded from the disordered phase.

There is a difference between Abelian projection and
treatment in the present paper. In the Abelian projection
off-diagonal components are constructed by applying ga
fixing, but in our case they emerge from applying the th
assumptions given in Sec. III to the dynamical equations
the first approximation we have neglected the dynamical
havior of the stochastic phase by settingw(x)5w0. In this
way we obtained an equation for the Abelian components
the gauge field which was similar to London’s equation
the vector potential in superconductivity theory. Higher ord
approximations in the above procedure would result
higher order powers and derivatives ofw. This would hope-
fully lead to dynamical equations forw(x) similar to the field
equations which result from the Ginzburg-Landau Lagra
I.

f

.

12500
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ian given in Eq.~32!. @Note in this regard that there are tw
scalar fields in Eq.~32!, since therew is complex, and in Eq.
~18! there are also effectively two scalar fields coming fro
m5n51 andm5n52]. In this case one would be able t
construct Nielsen-Olesen flux tube solutions@15#, which
would be very suggestive toward making a firm connect
with the dual superconducting model of QCD. Such a co
struction of an effective Ginzburg-Landau equation forw
would be important in bolstering the claim of a connecti
between our approach and the dual superconducting m
of the QCD vacuum.
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