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Infrared exponent for gluon and ghost propagation in Landau gauge QCD
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In the covariant description of confinement, one expects the ghost correlations to be infrared enhanced.
Assuming ghost dominance, the long-range behavior of gluon and ghost correlations in Landau gauge QCD is
determined by one exponentk. The gluon propagator is infrared finite~vanishing! for k51/2 (k.1/2) which
is still under debate. Here, we study the critical exponent and coupling for the infrared conformal behavior
from the asymptotic form of the solutions to the Dyson-Schwinger equations in an ultraviolet finite expansion
scheme. The value fork is directly related to the ghost-gluon vertex. Assuming that it is regular in the infrared,
one obtainsk.0.595. This value maximizes the critical couplingac(k), yielding ac

max.(4p/Nc)0.709
'2.97 forNc53. For largerk the vertex acquires an infrared singularity in the gluon momentum; smaller ones
imply infrared singular ghost legs. Variations inac remain within 5% fromk50.5 to 0.7. Above this range,ac

decreases more rapidly withac→01 ask→12 which sets the upper bound onk.

DOI: 10.1103/PhysRevD.65.125006 PACS number~s!: 11.10.Gh, 11.10.Jj, 12.38.Aw, 12.38.Lg
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I. INTRODUCTION

In gauge theories without Higgs mechanism, particles c
rying the global charges of the gauge group cannot strictly
localized. Localized physical states are necessarily neutr
QED and colorless in QCD. The extension toall gauge in-
variant and thus physical states is possible only with a m
gap in the physical world. Then, color-electric charge sup
selection sectors do not arise in QCD and one conclu
confinement.

The necessary conditions for this were formulated m
than 20 years ago. In the next section we briefly recall th
conditions and how they constrain the infrared behavior
ghost and gluon propagators in the Landau gauge Q
Based on linear-covariant gauges, their derivation may
fully be divorced from perturbation theory. Their essence
quite generic and summarized in the Kugo-Ojima criter
which should apply in one way or another, whenever so
form of Becchi-Rouet-Stora~BRS! cohomology construction
does for gauge theories. One way towards a nonperturba
definition of the Landau gauge is provided via stochas
quantization for which the full five-dimensional BRS m
chinery is in the garage. The time-independent diffus
equation of this formulation is closely related to the Dyso
Schwinger equations~DSEs! in four dimensions as we de
scribe next. Some of the necessary extensions, which h
already been implemented in previous DSE studies of in
red exponents for other reasons, imply the Kugo-Ojima
terion. We summarize these studies and how they are
firmed qualitatively in this way, at the end of th
Introduction. These various issues related to our study
collected in Secs. I A–I D to supply additional backgrou
information.

In Sec. II, we set up the DSE structures relevant for
present study. We summarize the general properties of
ghost-gluon vertex, most importantly its nonrenormalizat
and ghost-antighost symmetry in the Landau gauge, wh
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will be essential for infrared critical exponents and coupli
later. We then present the ultraviolet subtraction proced
with the special care necessary to make sure that it does
artificially affect the infrared. Some confusion arose recen
concerning the relation between asymptotic infrared exp
sions and the renormalization group which we first clarify
Sec. III. We then review the nonperturbative definition of t
running coupling that is based on the nonrenormalization
the ghost-gluon vertex in the Landau gauge, and show tha
four dimensions it approaches a constantac in the infrared
whenever this vertex has an asymptotic conformal beha
also. As a by-product of the vertex nonrenormalization,
infrared behavior of both propagators thereby results to
determined by one unique exponentk in any given dimen-
sion. The general machinery to determine the infrared crit
exponent and coupling is outlined in Sec. IV. There, we a
discuss the results with an additional regularity assump
on the vertex in the infrared, which in four dimensions lea
to the values k'0.595 and ac[ac

max.(4p/Nc)0.709
'2.97 forNc53. We furthermore discuss the infrared tran
versality of the vertex and show how this resolves an app
ent contradiction with a previous study.

We then discuss more general vertices involving an ad
tional exponent which controls singularities in its extern
momenta to discuss bounds onac and k. Thereby we will
find that values ofk smaller than that for the regular verte
imply infrared divergences in ghost legs, whereas larger o
lead to an infrared divergence of the vertex in the glu
momentum. While the latter can only come together with
infrared vanishing gluon propagator, which will always ove
compensate this divergence, the former add to the infra
enhancement of ghost exchanges. In particular, this wo
have to happen for an infrared finite gluon propagator~with
k50.5) as presently favored by lattice simulations.

Our summary and conclusions are given in Sec. V, and
include two appendixes which may provide the interes
reader with some more technical details.

A. The Kugo-Ojima confinement criterion

Within the framework of BRS algebra, completeness
the nilpotent BRS-chargeQB , the generator of the BRS
©2002 The American Physical Society06-1
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CHRISTOPH LERCHE AND LORENZ VON SMEKAL PHYSICAL REVIEW D65 125006
transformations, in a state spaceV of indefinite metric is
assumed. The semidefinitephysicalsubspaceVphys5KerQB

is defined on the basis of this algebra by those states w
are annihilated by the BRS chargeQB . SinceQB

250, this
subspace contains the space ImQB of so-called daughte
states which are images of others, their parent states inV. A
physical Hilbert space is then obtained as~the completion of!
the covariant space of equivalence classes KerQB /Im QB ,
the BRS-cohomology of states in the kernel modulo those
the image ofQB , which is isomorphic to the spaceVs of
BRS singlets. It is easy to see that the image is furtherm
contained in the orthogonal complement of the kernel~given
completeness they are identical!. It follows that states in
Im QB do not contribute to the inner product inVphys.

Completeness is thereby important in the proof of posi
ity for physical states@1,2#, because it assures the absence
metric partners of BRS singlets, so-called ‘‘singlet pairs
With completeness, all states inV are either BRS singlets in
Vs or belong to so-called quartets which are metric-part
pairs of BRS-doublets~of parent with daughter states!; and
this then exhausts all possibilities. The generalization of
Gupta-Bleuler condition on physical states,QBuc&50 in
Vphys, eliminates half of these metric partners leaving u
paired states of zero norm which do not contribute to a
observable. This essentially is the quartet mechanism: Ju
in QED, one such quartet, the elementary quartet, is form
by the massless asymptotic states of longitudinal and ti
like gluons together with ghosts and antighosts which
thus all unobservable. In contrast to QED, however, one
pects the quartet mechanism also to apply to transverse g
and quark states, as far as they exist asymptotically. A vi
tion of positivity for such states then entails that they have
be unobservable also. Increasing evidence for this has b
seen in the transverse gluon correlations over the last y
@3#.

But that is only one aspect of confinement in this desc
tion. In particular, asymptotic transverse gluon and qu
states may or may not exist in the indefinite metric spaceV.
If either of them do, and the Kugo-Ojima criterion is realiz
~see below!, they belong to unobservable quartets. Then,
BRS transformations of their asymptotic fields entail th
they form these quartets together with ghost-gluon and
ghost-quark bound states, respectively@2#. It is furthermore
crucial for confinement, however, to have a mass gap
transverse gluon correlations. The massless transverse g
states of perturbation theory must not exist even though t
would belong to quartets due to color antiscreening and
perconvergence in QCD for less than ten quark flav
@4,5,3#.

Confinement depends on the realization of the unfix
global gauge symmetries. The identification of gaug
invariant physical states, which are BRS singlets, with co
singlets is possible only if the charge of global gauge tra
formations is BRS exactand unbroken. The sufficient con
ditions for this are provided by the Kugo-Ojima criterio
Considering the globally conserved current

Jm
a 5]nFmn

a 1$QB ,Dm
abc̄b% ~with ]mJm

a 50!, ~1!
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one realizes that the first of its two terms corresponds t
coboundary with respect to the space-time exterior deriva
while the second term is a BRS coboundary. Denoting th
charges byGa andNa, respectively,

Qa5E d3x~] iF0i
a 1$QB ,D0

abc̄b%!5Ga1Na. ~2!

For the first term herein there are only two options, it
either ill-defined due to massless states in the spectrum
]nFmn

a , or else it vanishes.
In QED massless photon states contribute to the a

logues of both currents in Eq.~1!, and both charges on th
right-hand side~rhs! in Eq. ~2! are separately ill-defined. On
can employ an arbitrariness in the definition of the genera
of the global gauge transformations~2!, however, to multiply
the first term by a suitable constant so chosen that th
massless contributions cancel. In this way one obtain
well-defined and unbroken global gauge charge which
places the naive definition in Eq.~2! above @6#. Roughly
speaking, there are two independent structures in the glob
conserved gauge currents in QED which both contain ma
less photon contributions. These can be combined to y
one well-defined charge as the generator of global ga
transformations leaving any other combination sponta
ously broken, such as the displacement symmetry which
to the identification of the photon with the massless Go
stone boson of its spontaneous breaking@2,7#.

If ]nFmn
a contains no massless discrete spectrum on

other hand, i.e., if there is no massless particle pole in
Fourier transform of transverse gluon correlations, thenGa

[0. In particular, this is the case for channels contain
massive vector fields in theories with the Higgs mechanis
and it is expected to be also the case in any color channe
QCD with confinement for which it actually represents o
of the two conditions formulated by Kugo and Ojima.
both these situations one first has equally, however,

Qa5Na5 HQB ,E d3xD0
abc̄bJ , ~3!

which is BRS exact. The second of the two conditions
confinement is that this charge be well-defined in the wh
of the indefinite metric spaceV. Together these condition
are sufficient to establish that all BRS-singlet physical sta
are also color singlets, and that all colored states are
subject to the quartet mechanism. The second condi
thereby provides the essential difference between the H
mechanism and confinement. The operatorDm

abc̄b determin-
ing the chargeNa will in general contain amasslesscontri-
bution from the elementary quartet due to the asympto

field ḡa(x) in the antighost field,c̄a →
x0→6`

ḡa1••• ~in the
weak asymptotic limit!,

Dm
abc̄b →

x0→6`

~dab1uab!]mḡb~x!1•••. ~4!

Here, the dynamical parametersuab determine the contribu-
tion of the massless asymptotic state to the composite fi
6-2
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INFRARED EXPONENT FOR GLUON AND GHOST . . . PHYSICAL REVIEW D 65 125006
g fabcAm
c c̄b →

x0→6`

uab]mḡb1•••. These parameters can b
obtained in the limitp2→0 from the Euclidean correlation
functions of this composite field, e.g.,

E d4xeip(x2y)^Dm
aece~x!g fbcdAn

d~y!c̄c~y!&

[S dmn2
pmpn

p2 D uab~p2!. ~5!

The theorem by Kugo and Ojima asserts that allQa5Na are
well-defined in the whole ofV ~and do not suffer from spon
taneous breakdown!, if and only if

uab[uab~0!5
!

2dab. ~6!

Then, the massless states from the elementary quartet d
contribute to the spectrum of the current inNa, and the
equivalence between physical BRS-singlet states and c
singlets is established@1,2,6#.

In contrast, if det(11u)Þ0, the global gauge symmetr
generated by the chargesQa in Eq. ~2! is spontaneously bro
ken in each channel in which the gauge potential contain
asymptotic massive vector field@1,2#. While this massive
vector state results to be a BRS singlet, the massless G
stone boson states which usually occur in some compon
of the Higgs field replace the third component of the vec
field in the elementary quartet and are thus unphysical. S
the broken charges are BRS exact, thishidden symmetry
breaking is not directly observable in the physical Hilb
space.

The different scenarios are classified according to the
alization of the global gauge symmetry on the whole of
indefinite metric space of covariant gauge theories. If it
unbroken, as in QED and QCD, the first condition is cruc
for confinement. Namely, it is then necessary to have a m
gap in the transverse gluon correlations, since otherwise
could in principle havenonlocal physical ~BRS-singlet and
thus gauge-invariant! states with color, just as one has gaug
invariant charged states in QED~e.g., the state of one elec
tron alone in the world with its long-range Coulomb tai!.
Indeed, with unbroken global gauge invariance, QED a
QCD have in common that any gauge invariant localiz
state must be chargeless/colorless@2#. The question is the
extension to nonlocal states as approximated by local o
In QED this leads to the so-called charge superselection
tors @8#, and nonlocal physical states with charge arise. If
QCD, with unbroken global gauge symmetryand mass gap,
everygauge-invariant state can be approximated by gau
invariant localized ones~which are colorless!, one concludes
thateverygauge-invariant~BRS-singlet! state must also be
color singlet.

B. Infrared dominance of ghosts in the Landau gauge

The ~second condition in the! Kugo-Ojima confinement
criterion, u521 leading to well-defined chargesNa, can in
Landau gauge be shown by standard arguments emplo
Dyson-Schwinger equations~DSEs! and Slavnov-Taylor
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identities ~STIs! to be equivalent to an infrared enhanc
ghost propagator@6#. In momentum space the nonperturb
tive ghost propagator of Landau gauge QCD is related to
form factor occurring in the correlations of Eq.~5! as fol-
lows:

DG~p!5
21

p2

1

11u~p2!
, with uab~p2!5dabu~p2!.

~7!

The Kugo-Ojima criterion,u(0)521, thus entails that the
Landau gauge ghost propagator should be more singular
a massless particle pole in the infrared. Indeed, there is q
compelling evidence for this exact infrared enhancemen
ghosts in the Landau gauge@9#. For lattice calculations of the
Landau gauge ghost propagator, see Refs.@10–12#. The
Kugo-Ojima confinement criterion was also tested on
lattice directly@13#.

Lattice verifications of the positivity violations for trans
verse gluon states by now have a long history@14–19#. Nu-
merical extractions of their indefinite spectral density fro
lattice data are reported in@20#. As mentioned, however, this
follows from color antiscreening and superconvergence
QCD already in perturbation theory@4,5#, and it is indepen-
dent of confinement.

Its remaining dynamical aspect resides in the cluster
composition property of local quantum field theory in th
formulation @8,2#. Within the indefinite inner product struc
ture of covariant QCD it can be avoided for colored cluste
only without mass gapin the full indefinite spaceV. In fact,
if the cluster decomposition property holds for a gaug
invariant product of two~almost local! fields, it can be
shown that both fields are gauge-invariant~BRS-closed!
themselves. With mass gap in the physical world, this th
eliminates the possibility of scattering a physical asympto
state into a color singlet consisting of widely separated c
ored clusters~the ‘‘behind-the-moon’’ problem! @2#.

The necessity for the absence of the massless particle
in ]nFmn

a in the Kugo-Ojima criterion shows that the~un-
physical! massless correlations to avoid the cluster deco
position property arenot the transverse gluon correlation
An infrared suppressed propagator for the transverse glu
in Landau gauge confirms this condition. This holds equa
well for the infrared vanishing propagator obtained fro
DSEs@21,23,22#, and conjectured in the studies of the imp
cations of the Gribov horizon@24,25#, as for the infrared
suppressed but possibly finite ones extracted from impro
lattice actions for quite large volumes@26–28#.

An infrared finite gluon propagator with qualitative sim
larities in the transverse components appears to result als
simulations using the Laplacian gauge@29#. Related to the
Landau gauge, this gauge fixing was proposed as an alte
tive for lattice studies in order to avoid Gribov copies@30#.
For a perturbative formulation see Ref.@31#. Due to intrinsic
nonlocalities, its renormalizability could not be demonstra
so far. Deviations from the Landau gauge condition we
observed already atO(g2) in the bare coupling in Ref.@32#.
Moreover, the gluon propagator was seen to develop a la
longitudinal component in the nonperturbative regime@29#.
6-3
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CHRISTOPH LERCHE AND LORENZ VON SMEKAL PHYSICAL REVIEW D65 125006
In fact, compared to the transverse correlations, it seem
provide the dominant component in the infrared, and it mi
in the end play a role analogous to that of the infrared
hanced ghost correlations in the Landau gauge. However
precise relation with Landau gauge still seems somewhat
clear. It is certainly encouraging nevertheless to first of
verify that no massless states contribute to the transv
gluon correlations of the Laplacian gauge either.

C. Nonperturbative Landau gauge

A problem mentioned repeatedly already, which is left
the dark in the description of confinement within the cova
ant operator formulation presented so far, is the possible
fluence of Gribov copies@24#.

Recently, renewed interest in stochastic quantization a
because it provides ways of gauge fixing in the presenc
Gribov copies, at least in principle@33,34#. The relation to
Dyson-Schwinger equations is provided by a tim
independent version of the diffusion equation in this a
proach in which gauge-fixing is replaced by a globally
storing drift-force tangent to gauge orbits in order to prev
the probability distribution from drifting off along gauge o
bit directions.

In particular, in the limit of the Landau gauge, it is th
conservative part of this drift-force, the derivative with r
spect to transverse gluon-field components of the Fadd
Popov action, which leads to the standard Dyson-Schwin
equations as clarified by Zwanziger@35#. He furthermore
points out that these equations are formally unchange
Gribov’s original suggestion to restrict the Faddeev-Pop
measure to what has become known as the interior of the
Gribov horizon is implemented. This is simply because
Faddeev-Popov measure vanishes there, and thus no bo
ary terms are introduced in the derivation of Dyso
Schwinger equations~DSEs! by this additional restriction.
Phrased otherwise, it still provides a measure such that
expectation values of total derivatives with respect to
fields vanish, which is all we need to formally derive th
same Dyson-Schwinger equations as those without res
tion.

In the stochastic formulation this restriction arises na
rally because the probability distribution gets concentra
on the ~first! Gribov region as the Landau gauge is a
proached. Therefore there should be no problem of princ
with the existence of Gribov copies in the standard DS
However, the distribution of the probability measure amo
the gauge orbits might be affected by neglecting~the non-
conservative! part of the drift force. Ways to overcome th
approximation are currently being investigated. Moreov
providing for a correct counting of gauge copies inside
Gribov region, the full stochastic equation will allow com
parison with results from Monte Carlo simulations using l
tice implementations of the Landau gauge in a much m
direct and reliable way. In particular, this should be the c
for the lattice analog of the stochastic gauge fixing used
simulations such as those of Refs.@16–18#.

Here, we restrict ourselves to the standard Landau ga
DSEs which are best justified nonperturbatively from the s
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chastic approach to be valid modulo the aforementioned
proximation. For their solutions, on the other hand, restr
ing the support of the Faddeev-Popov measure to the inte
of the Gribov region has the effect of additional bounda
conditions to select certain solutions from the set of all p
sible ones which might contain others as well. Consider t
invariant functionsZ(k2) andG(k2) to parametrize the Lan
dau gauge structure,

Dmn~k!5
Z~k2!

k2 S dmn2
kmkn

k2 D , DG~k!52
G~k2!

k2
,

~8!

in Euclidean momentum space of gluon and ghost propa
tor, respectively. Additionally when obtained as DSE so
tions, suitable boundary conditions have to be satisfied
these functions. The following infrared bounds were deriv
by Zwanziger for each of the two as properties of the pro
gators from the restricted measure.

The observation that the ‘‘volume’’ of configuration spa
in the infinite-dimensional~thermodynamic! limit is con-
tained in its surface lead to the so-calledhorizon condition
which entails that the ghost propagator must be more sin
lar than a massless particle pole in the infrared@35–37#,

lim
k2→0

G21~k2!50. ~9!

This condition is equivalent to the Kugo-Ojima criterion,u
521 for well-defined color charges in the Landau gaug
cf., Eqs.~6! and ~7! with G(k2)51/@11u(k2)#.

From the proximity of the Gribov horizon in infrared d
rections Zwanziger furthermore concluded@25# that

lim
k2→0

Z~k2!/k250. ~10!

This removes the massless transverse gluon states of pe
bation theory as also required by the Kugo-Ojima criterio
The infrared vanishing of the gluon propagator is a stron
requirement than this, however. It currently remains an o
question why this has not been seen in Monte Carlo sim
tions as yet. An infrared suppression of the gluon propaga
itself, rather thanZ(k2), was observed for the Landau gaug
in @38# and, more considerably, at large volumes in SU~2! in
the three-dimensional case@39–41#, as well as in Coulomb
gauge@42#. The three-dimensional results are interesting
that the large distance gluon propagator measured t
seems incompatible with a massive behavior at low mome
~that was noted also in@18#!. At very large volumes, it even
becomes negative@40,41#. This is the same qualitative be
havior as obtained for the one-dimensional Fourier transfo
of the DSE results of@22,23# at small values for the remain
ing momentum components, cf., Fig. 4 of@9# versus Fig. 2 of
@40# or Fig. 6 of @41#. Qualitatively, the different dimension
ality should not matter much here. On the other hand,
extrapolation of the zero momentum propagator in@41# leads
to a finite result which, however, still decreases~slowly! with
the volume. This suggests that the physical volumes may
6-4
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INFRARED EXPONENT FOR GLUON AND GHOST . . . PHYSICAL REVIEW D 65 125006
be too small yet and that further study of the volume dep
dence of the zero momentum gluon propagator might be n
essary@43#.

D. Infrared exponents in previous studies

Within the standard BRS or Faddeev-Popov formulati
the functions in Eq.~8! have been studied from Dyson
Schwinger equations~DSEs! for the propagators in variou
truncation schemes of increasing levels of sophistica
@3,44#. Typically, the known structures in the three-point ve
tex functions, most importantly from their Slavnov-Tayl
identities and exchange symmetries, have thereby been
ployed to establish closed systems of nonlinear integ
equations that are complete on the level of the gluon, gh
and quark propagators in Landau gauge. This is possible
systematically neglecting contributions from explicit fou
point vertices to the propagator DSEs as well as nontri
four-point scattering kernels in the constructions of the thr
point vertices@3,22#. Employing a one-dimensional approx
mation, numerical solutions were then obtained in Refs.@22#
and @23#.

Asymptotic expansion techniques were developed to a
lytically study the behavior of the solutions in the infrare
The leading infrared behavior was thereby determined
one unique exponentk'0.92,

Z~k2! ;
k2→0S k2

s D 2k

and G~k2! ;
k2→0S s

k2D k

, ~11!

with a renormalization group invariants, see Sec. III A. The
general bounds 0,k,1 were established in Ref.@22# based
on the additional requirement thatZ andG have no zeros or
poles along the positive real axis, i.e., in the Euclidean
main. Below, we will verify the positivity for the leading
infrared behavior of both these functions in the same ran
independent of the one-dimensional approximation, a
based on some few and quite generic properties of the gh
gluon vertex alone.

The infrared behavior in Eq.~11! was later confirmed
qualitatively by studies of further truncated DSEs. In R
@45#, a tree-level ghost gluon vertex was used in combinat
with a one-dimensional approximation which lead to a va
of k'0.77 for the infrared exponent of ghost and glu
propagation in Landau gauge. Then, in the first infra
asymptotic study of the ghost-gluon system without o
dimensional approximation, the value ofk51 was obtained
in Ref. @46#. There is, however, an issue about infrared tra
versality of the gluon propagator, as we will explain belo
which was not addressed in this study. As a result, the cor
value for the tree-level vertex is the same as that deri
herein for any ghost-gluon vertex with regular infrared lim
k'0.595, which was first reported for the tree-level vert
independently in Refs.@47# and@35#. As we furthermore find
in our present study, inconsistency arises fork→1 ~from
below!, and this limit, the upper bound onk, is therefore
excluded.

With 1/2,k, all these values of the infrared expone
share, however, the same qualitative infrared behavior.
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gluon propagator vanishes while the ghost propagator is
frared enhanced. Then, the Kugo-Ojima criterion and
boundary conditions~9! and ~10! are both satisfied. The ho
rizon condition seems understandable because the restri
to the Gribov region leads to a positive measure which w
implicitly also assumed by requiring solutions without nod
in @22#. Here, depending on the infrared behavior of t
ghost-gluon vertex, we will find that this requirement cou
in principle be maintained also fork,1/2. Taken by itself, it
only leads to 0,k,1, and thus to the horizon condition~9!.
Eventually, with decreasingk for values smaller than 1/2
infrared singularities in ghost exchanges become too str
for a local field theory description. Aroundk51/2, however,
this argument is just not strong enough, and we cannot tu
into an independent additional argument in favor of Eq.~10!
for an infrared vanishing gluon propagator.

II. DYSON-SCHWINGER EQUATIONS

The Dyson-Schwinger equations for the propagators
ghosts and gluons in the pure gauge theory without qua
are schematically represented by the diagrams shown in
1. With infrared dominance of ghosts, the ghost loop rep
sented by the diagram in the last line of Fig. 1 will provid
the dominant contribution to the inverse gluon propagator
the left-hand side in the infrared. In our infrared analysis
will concentrate on this contribution to the~renormalized!
gluon DSE which reads in Euclidean momentum space w
the notations of@3# ~color indices suppressed!,

Dmn
21~k!5Z3D0

mn
21~k!2g2NcZ̃1

3E d4q

~2p!4
Gm

0 ~q,p!DG~p!DG~q!Gn~p,q!1•••,

~12!

wherep5k1q, and the contributions from the four remain
ing gluon loop-diagrams of Fig. 1 were not given explicitl
D0 is the tree-level propagator,DG is the ghost propagator
andGn is the fully dressed ghost-gluon vertex function wi
its tree-level counter part denoted byGm

0 . In the standard
linear-covariant gauge the latter is given by the antigho
momentum,Gm

0 (q,p)5 iqm . The DSE for the ghost propa
gator, without truncations at this point, formally reads

DG
21~k!52Z̃3k21g2NcZ̃1

3E d4q

~2p!4
ikmDG~q!Gn~q,k!Dmn~k2q!. ~13!

The renormalized propagators,DG andDmn , and the renor-
malized couplingg are defined from the respective ba
quantities by introducing multiplicative renormalization co
stants,

Z̃3DG5DG
bare, Z3Dmn5Dmn

bare, Zgg5gbare. ~14!
6-5
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CHRISTOPH LERCHE AND LORENZ VON SMEKAL PHYSICAL REVIEW D65 125006
Furthermore,Z̃15ZgZ3
1/2Z̃3 is the ghost-gluon vertex renor

malization constant. Before we discuss the properties of
ghost-gluon vertex, essentially the only unknown in E
~12! and ~13!, we note the following.

If we are allowed to assume that the leading contribut
to the inverse gluon propagator in Eq.~12! is completely
determined by the ghost loop, this contribution must
transverse in the Landau gauge. In other words, writing

Dmn
21~k!5k2dmnZP

21~k2!2kmknZR
21~k2!, ~15!

one should then haveZP(k2)5ZR(k2)[Z(k2). Here, in par-
ticular, the leading infrared behavior as extracted from
ghost loop alone should not depend on whether we studyZP
or ZR . With all other contributions subleading, deviatio
from the transversality of the ‘‘vacuum polarization,’’ZP
5ZR in the Landau gauge, should also be subleading.
will assess this by studying, in parallel~we sometimes useD
dimensions, normallyD54 here!,

ZP
21~k2!5

1

~D21!k2
Dmn

21~k!Pmn~k!, ~16!

ZR
21~k2!5

1

~D21!k2
Dmn

21~k!Rmn~k!, ~17!

with

Pmn~k!5dmn2
kmkn

k2
,

Rmn~k!5dmn2D
kmkn

k2
,

FIG. 1. Dyson-Schwinger equations for the ghost~top! and the
gluon ~bottom! propagator, diagrammatically.
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respectively. Beyond the leading behavior as dominated
the infrared enhanced propagators within the ghost lo
there will in general be complicated cancellations betwe
longitudinal contributions from various sources to ensu
transversality of the gluons in the Landau gauge. Th
sources can be due to the terms neglected, to truncation
vertices, or to the regularization scheme employed. The
pole, for example, contributes only toZP

21 , and so do the
quadratic divergences with cutoff regularization. Beyond
leading order one therefore usually employed theR-tensor in
the contraction of the gluon DSE in most previous stud
since that of Ref.@48#.

The tadpole contribution is a momentum-independ
constant, so that it will necessarily be subleading as co
pared to the infrared singular ghost-loop, whenever that
gularity is strong enough to lead to an infrared-vanish
gluon propagator, orZ(k2);(k2)2k with k.1/2 for k2→0.

The infrared analysis we present below is independen
the regularization and both these reasons in favor of
R-tensor do therefore not apply to our present study. Nev
theless, even with ghost dominance, exact transversality
in general only be obtained by including all different stru
tures possible in the ghost-gluon vertex that can contribut
the leading infrared behavior.

A. The ghost-gluon vertex in the Landau gauge

The ghost-gluon vertex is of particular importance in t
analysis of the infrared behavior of the gluon and gh
propagators. We adopt the conventions of Ref.@3#. The ar-
guments of the ghost-gluon vertex denote in the followi
order the two outgoing momenta for gluon and ghost, a
one incoming ghost momentum, cf., Fig. 2,

Gm
abc~k,q,p!5~2p!4d4~k1q2p!Gm

abc~q,p!, ~18!

Gm
abc~q,p!5g fabcGm~q,p!. ~19!

Color structures other than the perturbative one assu
here were assessed for the pure Landau gauge theory o
lattice in Ref.@49#. In this study, there was no evidence se
for any significant contribution due to such structures wh
we will not consider henceforth.

We parametrize the general structure ofGm(q,p) which
consists of two independent terms by the following form:

Gm~q,p!5 iqmA~k2;p2,q2!1 ikmB~k2;p2,q2!. ~20!

One might expect the second structure to be insignifican
the Landau gauge, since it is longitudinal in the gluon m
mentum k. This is not necessarily the case in Dyso
Schwinger equations, however, since the transversality of
vacuum polarization generally arises from cancellations
different longitudinal contributions as we discussed abov

For later reference, we recall two general properties
this vertex. The implications of these properties are explo
below. They both refer to the ghost-gluon vertex in the La
dau gauge.
6-6
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INFRARED EXPONENT FOR GLUON AND GHOST . . . PHYSICAL REVIEW D 65 125006
„N… Nonrenormalization,Z̃15ZgZ3
1/2Z̃351 @50#, which

entails that the vertex reduces to its tree-level form at
symmetric momentum points,

Gm~q,p!uk25q25p25Gm
0 ~q,p!, ~21!

in a symmetric subtraction scheme. The gauge fields be
purely transverse, however, there is a certain freedom le
the definition of the tree-level vertex.A priori, any form with
hP@0,1#,

Gm
0 ~q,p!5h iqm1ĥ ipm and h1ĥ51, ~22!

may be used equally for the Landau gauge. Without furt
specification, for the functions in Eq.~20! we first have

A~x;x,x!51 and B~x;x,x!5ĥ.

The condition onA is h independent. It expresses the ess
tial aspect of nonrenormalization and will be referred to
„N1…. The condition onB depends on the ambiguity in de
fining the Landau gauge, as expected. We call this condi
„N2…. It readsB(x;x,x)50 for the transverse limit of the
linear-covariant gauge in standard Faddeev-Popov theor
compared toB(x;x,x)51/2 for the analogous limit of the
ghost-antighost symmetric Curci-Ferrari gauge@51#, see also
Ref. @3#. These are the two special choices of particular
terest, corresponding toh51 andh5ĥ51/2, respectively.
For renormalizability and perturbative aspects of the lat
and for the geometry of the generalh gauges, see Refs.@52#.

„S… The ghost-antighost conjugation as part of the f
Landau gauge symmetry, a semidirect product of SL(2R)
and double BRS invariance, implies@3#

A~x;y,z!5A~x;z,y!. „S1…

While this holds for allh, again, theB function is more
ambiguous. It cannot have definite symmetry properties
general. For the symmetrized Landau gauge, based on
symmetric tree-level vertex withh5ĥ51/2, the interactions
with purely transverse gluons will preserve this exact sy
metry of the Landau gauge, however. In the symmetric f
mulation we therefore expect to have an exactly gho
antighost symmetric vertex also,

Gm~q,p!5Gm~p,q!.

DecomposingB5B11B2 with B6(x;z,y)56B6(x;y,z),
we then furthermore deduce,

2B1~x;y,z!5A~x;y,z!. „S2…

In the fully ghost-antighost symmetric formulation we c
thus express the vertex~20! in terms of the functions with
definite ~anti!symmetry as follows:

Gm~q,p!5
iqm1 ipm

2
A~k2;p2,q2!1 ikmB2~k2;p2,q2!.

~23!
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TheB2 structure is absent at the tree level and it vanishe
all symmetric points. Therefore a symmetric vertex in co
verse to the logic above also requiresh5ĥ51/2 for the
tree-level vertex to be used as theGm

0 in a symmetric sub-
traction scheme according to Eq.~21!.

At this point, it seems important to stress that, for t
infrared exponent of Landau gauge QCD, only the infrar
behavior of A is relevant. The critical exponents are
course independent ofh. As long as we concentrate onZP
via Eq. ~16! in the gluon DSE~13!, the gluon legs of all
vertices are transversely contracted. For all internal glu
lines this is automatically true by the transversality of t
propagator as in the ghost DSE~13! for example, and for the
external lines we just arranged it by hand. Thus theh free-
dom in the tree-level vertex and theB structure of the full
vertex are both irrelevant, as they should be. In an infra
analysis based on this manifestly transverse system we m
as well have standard Faddeev-Popov theory in mind w
h51, ĥ50.

The only place where theh dependence and theB struc-
ture do enter is theR-contracted gluon DSE. We therefor
introduce the generalized Landau gauge by the above m
fication of the tree-level vertex here as a purely technical t
to address the transversality issue, i.e., to compareZP andZR
as obtained from Eqs.~16! and~17!, respectively. In fact, in
order to reconcile ghost dominance with transversality,
result will be that for arbitrary values ofh one must essen
tially have in the infrared~indicated by the superscripts!,

B1
ir ~k2;p2,q2!5

1

2
Air ~k2;p2,q2!, ~24!

B2
ir ~k2;p2,q2!52

p22q2

2k2
Air ~k2;p2,q2!. ~25!

Inserting this into Eq.~20!, small rearrangements reveal th
the full ghost-gluon vertex therefore has to be transverse
the infrared itself,

Gm
ir ~q,p!5

iqmpk2 ipmqk

k2
Air ~k2;p2,q2!. ~26!

This is in contrast to its perturbative limit where theB struc-
ture is suppressed, and it is now also independent of
choice ofh. Again, however, the transverse vertex is nec
sarily symmetric}( iqm1 ipm) at a symmetric point. In orde
to extend the subtraction scheme of Eq.~21! nonperturba-

FIG. 2. Conventions for the ghost-gluon vertexGm
abc(k,q,p).
6-7
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CHRISTOPH LERCHE AND LORENZ VON SMEKAL PHYSICAL REVIEW D65 125006
tively into the infrared, and ensure transversality of the glu
propagator, we thus have to resort to the symmetric cho
h5ĥ51/2 in Eq.~22! also@for which Eq.~24! follows trivi-
ally with „S2…#.

B. Truncated Slavnov-Taylor identity

In @22# a Slavnov-Taylor identity of the standard linea
covariant gauge was derived to constrain the ghost-gl
vertex. Since the BRS transformations need some ad
ments for other choices such as the ghost-antighost sym
ric gauges, as it stands this identity is valid for the caseh
51, ĥ50 only. A generalization might be worthwhile pu
suing. However, considering the transversality of the full v
tex in the infrared, this will not provide much addition
information to be used in our present study, as we discus
this section.

Neglecting irreducible ghost-ghost scattering contrib
tions to the Slavnov-Taylor identity~STI! of Ref. @22#, and
thus maintaining the disconnected contributions to the gh
four-point function only, a truncated Slavnov-Taylor identi
is obtained which, in terms of the two structuresA, B in the
vertex and the ghost propagator, reads

G~x!S z1y2x

2
A~y;x,z!2yB~y;x,z! D

1G~y!S z1x2y

2
A~x;y,z!2xB~x;y,z! D

5
zG~x!G~y!

G~z!
. ~27!

Without the symmetry property„S1…, a simple solution to Eq
~27! is given by

A~x;y,z!5
G~x!

G~z!
, B~x;y,z![0. ~28!

This exact form was used for the ghost-gluon vertex in
study of Wilsonian flow equations for Yang-Mills theory i
Ref. @53#. Implementing„S1… in addition, the most genera
solution to Eq.~27! can be written in the form

A~x;y,z!5
G~x!

G~z!
1

G~x!

G~y!
211x fT~x;y,z!,

B~x;y,z!5
G~x!

G~y!
211

x2y1z

2
f T~x;y,z!.

~29!

The undetermined functionf T thereby parametrizes an un
known transverse contribution to the ghost-gluon vert
kGT(q,p)50, of the typical type generally remaining un
constrained by the Slavnov-Taylor identities,

Gm
T~q,p!5~ iqmkp2 ipmkq! f T~k2;p2,q2!, ~30!

wherek5p2q as before. We obtain, however, from Eq.~29!
with „N1… and„S1…, respectively,
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f T~x;x,x!50 and f T~x;y,z!5 f T~x;z,y!. ~31!

Since this function is otherwise arbitrary, in particular, in t
infrared, the use of solutions~29! somehow seems less ap
pealing for our present study which is concerned about
most general bounds on the infrared exponent that can
derived on the basis of as few and basic assumptions
currently possible.

In the numerical solutions to the coupled system of tru
cated ghost-gluon DSEs presented in Refs.@23# and@22#, the
form given in Eq.~29! was used for the ghost-gluon verte
with f T[0. This solution to the truncated STI~27! ~for h
51) still satisfies„N1…, „N2…, and „S1…. Because it is not
purely transverse in the infrared, it should be used in com
nation with the transversely projected DSE forZP from Eq.
~16!, however, such that only the form ofA(x;y,z) in Eq.
~29! matters. This causes ultraviolet problems in the num
cal studies, see below. If the infrared transversality of
vertex can be maintained on the other hand, by adding s
able transverse terms to a symmetric STI construction to
isfy Eq. ~26! above, for example, theR-tensor may be used
to contract the gluon DSE via Eq.~17! by which these ultra-
violet problems are avoided without doing harm to the inf
red structure of the equations.

We believe that this will be the way to proceed with th
numerical studies of full solutions to truncated DSEs in t
future. In particular, this suggests further developments
the ghost-antighost symmetric formulation.

C. Ultraviolet subtractions and infrared behavior

With the parametrization of the vertex in Eq.~20! we now
obtain for the ghost-loop contribution to the gluon DSE~12!
the two alternative expressions from the contractions acc
ing to Eqs.~16! and ~17!, respectively,

1

ZP~k2!
5Z31

g2Nc

3 E d4q

~2p!4

G~p2!G~q2!

k2p2q2

3qP~k!qA~k2;q2,p2!1•••, ~32!

1

ZR~k2!
5Z31

g2Nc

3 E d4q

~2p!4

G~p2!G~q2!

k2p2q2

3$h„qR~k!pA~k2;q2,p2!2qR~k!k B~k2;q2,p2!…

1ĥ„pR~k!pA~k2;q2,p2!2pR~k!kB~k2;q2,p2!…%

1•••, ~33!

where againp5k1q. One can see explicitly here tha
knowledge of both invariant functions is necessary for
infrared analysis based on theR-tensor, cf., Eq.~33!, while
only the A structure enters in Eq.~32! obtained with the
transverse projectorP. We furthermore allowed for the gen
eralized tree-level vertex withh1ĥ51 discussed in„N…

which does not affect Eq.~32!. This makes the equation fo
ZP

21 particularly well suited for an infrared analysis becau
then the invariant functionA(k2;p2,q2), which parametrizes
6-8
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INFRARED EXPONENT FOR GLUON AND GHOST . . . PHYSICAL REVIEW D 65 125006
the essential part of the vertex, is the only unknown rema
ing in the coupled system with the equallyh-independent
ghost DSE~13!,

1

G~k2!
5Z̃32g2NcE d4q

~2p!4

Z~p2!G~q2!

k2p2q2

3kP~p!kA~p2;k2,q2!. ~34!

We usedZ̃151 for the Landau gauge in these equations. T
ultraviolet divergences of the explicit loop-integrals are co
pensated by the renormalization constantsZ3 , Z̃3 which we
require to be infrared finite. For the ultraviolet subtractio
which are of coursek-independent, one then needs to ma
the following distinctions.

~i! In DSEs for propagators of massless or infrared
hanced degrees of freedom we can perform the limitk2→0.
In the present case we expect this for the ghosts, i.e.,
left-hand side~lhs! of Eq. ~34! will approach a finite constan
CG[ limx→0G21(x),` which can be zero, however. I
such a case, the renormalization constant can easily be e
nated, e.g., here we then have

Z̃35g2m42DNc

D21

D E dDq

~2p!D

3
1

q4
Z~q2!G~q2!A~q2;0,q2!1CG . ~35!

We adopted the conventions of dimensional regulariza
with D→42 here, but others may be employed as desired
we assume regularity ofA in the origin, we can conclude tha
A(x;0,x)→1 for x→0 from „N1…. Generally, if A(x;0,x)
does not vanish forx→0, then Eq. ~35! tells us that
Z(q2)G(q2)→0 for q2→0 in the infrared. Otherwise,Z̃3
would be infrared divergent forD<4. On the other hand
g2Z(q2)G2(q2) is more and more recognized to be a go
candidate for a nonperturbative definition of the running c
pling in the Landau gauge, see Sec. III A. However, t
definition can only be reasonable if we are able to arra
matters such that it does not vanish in the infrared~in fact,
the running coupling must be monotonic to avoid a dou
valuedb-function with spurious zeros!.

So that withZ(q2)G2(q2)→” 0 and Z(q2)G(q2)→0 we
must have infrared enhancement of ghosts. In particu
CG50 in Eq.~35! and no such constant is then possible in
nonperturbative renormalization scheme.

We can also reverse the logic here, and regardCG50 as
an additional boundary condition on a set of possible so
tions to the DSE~34!. This then implements Zwanziger’
horizon condition~9! to select the solution for the restricte
Faddeev-Popov weight that vanishes outside the Gribov
rizon @35#, and that at the same time provides a posit
definite G(k2).0 @22#. Once this selection is made, how
ever, it then follows thatZ(q2)G2(q2)→const forq2→0 ~in
D54 dimensions! which is a consequence of the nonreno
malization of the vertex„N1…, as we will show in Sec. III C.
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So let us adoptCG50 and concentrate on the possible so
tions with infrared enhanced ghosts from now on.

With Eq. ~35! in Eq. ~34! we explicitly remove the ultra-
violet divergence and obtain a manifestly finite equation
study the infrared behavior ofG in D54 dimensions for a
given form ofA in the infrared,

1

G~k2!
5g2NcE d4q

~2p!4 H 3

4

Z~q2!G~q2!

q4
A~q2;0,q2!

2kP~p!k
Z~p2!G~q2!

k2p2q2
A~p2;k2,q2!J . ~36!

While the ultraviolet subtraction is rather simple withk2

→0 herein, without this subtraction, a naive infrared analy
will be aggravated by the ultraviolet divergences. Thus
safe order of formal steps is to perform the ultraviolet su
traction before the infrared analysis in this case. The oppo
order applies for the gluon DSE.

~ii ! In DSEs for propagators of massive degrees of fr
dom or even infrared-vanishing correlations, the explicit
traviolet subtraction is subleading in the infrared, and it ca
not simply be extracted from the limitk2→0. This should
certainly be the case for the transverse gluon correlatio
The least we expect as a necessary condition for confinem
is the mass gap. The horizon condition implies an even str
ger infrared singularity, as mentioned in the Introduction.
either case we haveZ21(k2)→` for k2→0 for the lhs in
DSEs such as Eq.~32! or ~33!. The advantage is that th
coefficients of the divergent terms in an asymptotic infrar
expansion can be extracted without bothering with ultravio
subtractions in the first place, since ultraviolet divergen
will only occur at the subleading constant level in this e
pansion. To be specific, inside the ghost loop, the infra
enhanced asymptotic forms of ghost propagators~together
the leading behavior of the ghost-gluon vertex! will converge
in the ultraviolet. Here the problem rather is to extract t
necessary ultraviolet subtraction without introducing by ha
spurious infrared divergences. This problem had alre
been dealt with in Refs.@23# and@22#. What generally needs
to be done in such a case is to reverse the order of~i! above
and to isolate the infrared divergent contributions to t
gluon DSE on both sides prior to the ultraviolet subtractio
in order to define an infrared finite renormalization const
Z3.

Assume the coefficients in the infrared divergent terms
the asymptotic expansions for the ghost propagator and
vertex are known as well as the corresponding asympt
forms denoted byGir (q2) andAir (k2;p2,q2). We can then,
e.g., in Eq.~32! subtract on both sides an ultraviolet fini
contribution of the form,

1

ZP
ir ~k2!

[
g2Nc

3 E d4q

~2p!4

qP~k!q

k2p2q2

3Gir ~p2!Gir ~q2!Air ~k2;q2,p2!, ~37!
6-9
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CHRISTOPH LERCHE AND LORENZ VON SMEKAL PHYSICAL REVIEW D65 125006
which we will actually use to determineZP
ir (k2) below, or an

analogous expression forZR
ir (k2) from Eq. ~33!. In both

cases, this infrared subtraction in the gluon DSE has to
performed up to the necessary order such that

1

Z~k2!
2

1

Zir ~k2!
→CA5const for k2→0. ~38!

On the other hand, thek-independent constant contribution
the rhs of the DSE is the one that contains the~overall!
logarithmic divergence which is absorbed in the renormali
tion constantZ3. To extract that from the infrared subtracte
gluon DSE, analogous to Eq.~35! from the ghost DSE in~i!
above, we first rewrite the gluon DSE~32!, adding a zero via
the definition in Eq.~37!,

Z35
1

ZP~k2!
2

1

ZP
ir ~k2!

2
g2m42DNc

D21 E dDq

~2p!D

3
qP~k!q

k2p2q2
~G~p2!G~q2!A~k2;q2,p2!

2Gir ~p2!Gir ~q2!Air ~k2;q2,p2!!1•••. ~39!

A further technical complication arises from the addition
power ofq2/k2 which prevents us from taking the naive lim
k2→0 herein. This problem is due to contributions whi
superficially contain quadratic ultraviolet divergences.
also the tadpole, for example, these are of the order;1/k2 in
the DSE forZP

21 . If k.1/2 they occur at a subleading ord
in the infrared expansion. Then, this problem is irrelevant
our present study which is concerned about the leading o
only. Moreover, the sum of all quadratically divergent co
tributions must vanish in the gluon DSE from gauge inva
ance. This cannot be seen from the ghost loop alone, h
ever. All such contributions would have to be maintained
see this cancellation explicitly before one can letk2→0 in
Eq. ~39! to extract the logarithmically divergent contributio
that defines the ultraviolet renormalization constantZ3. In
particular, this is necessary when the transversely proje
gluon DSE forZP is used beyond the infrared analysis pr
sented here. For theR tensor, leading toZR via Eq. ~17!
which is free from quadratically divergent contributions@48#,
and with the generalized tree-level vertexGm5Gm

0 , to give
an example without such complication, one readily verifi
that

Z352S 2~D22!

D~D12!
2hĥ Dg2m42DNcE dDq

~2p!D

3
1

q4
$G2~q2!2@Gir ~q2!#2%1•••, ~40!

from k2→0 in Eq. ~33! with the analogue of~37! for the R
tensor. It is infrared finite by construction, and it gives t
correct perturbative ghost-loop contribution to the glu
renormalization constantZ3, ultraviolet divergent forD→4.
Contrary to the ghost DSE renormalization in Eq.~35!, an
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additive constant is possible in Eq.~40! and is included in
the terms not given explicitly here. It can be used to adj
the constantCA in the gluon DSE which is subleading in th
infrared, cf., Eq.~38!.

To summarize, it should be possible to impose renorm
ization conditions on the full propagators to equal the t
level ones at an arbitrary~space-like! subtraction pointk2

5m2.0. To do this, we have two independent conditions
our disposal which fix the physically insignificant overa
factors in each of the two propagators. For massless t
level propagators, we cannot without loss of generality
tend this subtraction scheme to includek25m250, however,
since that forced the full propagators to have the same m
less single-particle singularity. Here, the necessity of a m
gap in the transverse gluon correlations entails that 1/Z(k2)
is infrared divergent, and it is thus impossible to fix a mu
tiplicative factor by a subtraction atm50 requiring that
1/Z(0) be unity~or any other finite value!. We can, however,
fix this factor by assigning the infrared subtracted 1/Z(k2)
21/Zir (k2) at k250 a certain valueCA .

That sets one of the two conditions available. Of cour
the same argument applies to the ghost propagator atm50.
In this case, it is because both the Kugo-Ojima criterion a
the horizon condition tell us that the full ghost propaga
should not have the singularity structure of the free-mass
tree-level one. In particular, with 1/G(k2)→0 we cannot fix
the overall factor by subtractingG21 at zero. As mentioned
above, this case is different in that a nonvanishing cons
contribution to the ghost DSE would be infrared domina
and cannot occur together with the infrared enhanced g
correlations. To fix the multiplicative factor in the gho
propagator implicitly, we use the second of the two indep
dent renormalization conditions on the product of bo
propagators,

G2~m2!Z~m2!5
!

1, ~41!

which can be used to define a nonperturbative running c
pling in the Landau gauge as we discuss next.

III. RENORMALIZATION INDEPENDENT INFRARED
ANALYSIS

A. Infrared expansion and renormalization group

Herein, we adopt the nonperturbative renormalizat
scheme introduced in Refs.@23# and @22#. To review this
scheme briefly, recall that the formal solutions to the ren
malization group equations for the gluon and the gh
propagator, e.g., for the latter this is Eq.~A1! in Appendix A,
can be written in the general forms,

Z~k2!5expH 22E
g

ḡ(tk ,g)
dl

gA~ l !

b~ l ! J f A@ ḡ~ tk ,g!#, ~42!

G~k2!5expH 22E
g

ḡ(tk ,g)
dl

gG~ l !

b~ l ! J f G@ ḡ~ tk ,g!#, ~43!
6-10
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respectively. Here,tk5(ln k2/m2)/2, andḡ(t,g) is the running
coupling, the solution ofd/dtḡ(t,g)5b(ḡ) with ḡ(0,g)5g
and the Callan-Symanzikb function, perturbatively,b(g)
52b0g31O(g5). The exponential factors are the multipl
cative constants for finite renormalization group transform
tions (m→m8),

Z3~m8,m!5expH 22E
g

g8
dl

gA~ l !

b~ l ! J , ~44!

Z̃3~m8,m!5expH 22E
g

g8
dl

gG~ l !

b~ l ! J , ~45!

with m825k2 in Eqs.~42! and~43!, wheregA(g) andgG(g)
are the anomalous dimensions of the gluon and the g
fields, respectively.

The structure of Eqs.~42! and~43! is summarized as fol-
lows. The momentum dependence of the propagator fu
tions Z(k2) andG(k2) is completely determined by the run
ning coupling evaluated atk2, which is renormalization
group invariant, i.e.,m independent, since (d/d ln m)ḡ(tk ,g)
5@m]/]m1b(g)]/]g#ḡ(tk ,g)50. We can therefore parametriz
this momentum dependence by a function of the ratio ofk2

over a renormalization group invariant, dynamically gen
ated momentum scales}LQCD

2 .
The m dependence of the propagators, on the other ha

is then given only by theg[g(m) of the lower bound in the
exponential renormalization factors. We can therefore alw
separate these two dependences, that on (g,m) versus that on
k2/s, in Eqs. ~42! and ~43! into multiplicative factors by
conveniently choosing ag0 such thatm25s at g5g0,

s5m2expH 22E
g0

g dl

b~ l !J , ~46!

which, at the same time, definess to be a renormalization
group invariant momentum scale as promised.

Via this factorization of the (g,m) dependence, we ca
now make theAnsatzthat the propagator functionsZ andG
have asymptotic infrared expansions to some orderN in
terms ofk2/s involving renormalization group invariant ex
ponents and coefficients,

Z~k2!→expH 22E
g

g0
dl

gA~ l !

b~ l ! J (
n

N

enS k2

s D en

, ~47!

G~k2!→expH 22E
g

g0
dl

gG~ l !

b~ l ! J (
n

N

dnS k2

s D dn

, ~48!

for k2/s→0. Here we use a notation similar to that intr
duced in@54#. We note, however, that our expansion involv
the RG invariant scales while the renormalization scalem
was used in@54#. The difference can be absorbed in a rede
nition of the coefficientsen , dn as we explain in Appendix
A. Most importantly, this implies that our coefficien
en , dn are also (g,m) independent.
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The nonrenormalization„N… of the ghost-gluon vertex in
the infrared, cf.,Z̃15ZgZ3

1/2Z̃351 which was derived, in par-
ticular, for a symmetric subtraction schemek25p25q2

5m2 with m2→0 @50#, now entails for the renormalization
factors in Eqs.~44! and ~45! that

Z 3
1/2~m8,m!Z̃3~m8,m!5

g8

g
[

ḡ~ t,g!

g
, t5 ln

m8

m
, ~49!

in Landau the gauge, which is equivalent to

2gG~g!1gA~g!52
1

g
b~g!. ~50!

This is, in fact, what allows one to define a nonperturbat
running coupling as introduced in Refs.@23# and @22# by

g2Z~m82!G2~m82!5
!

g825ḡ2@ ln~m8/m!,g#. ~51!

It reduces to the unique perturbative definition for lar
m, m8, is renormalization group invariant, dimensionles
and thus as good as any nonperturbative definition can
The fact that no constant of proportionality is involved in E
~51! implies a specific renormalization condition. It corr
sponds to requiring the condition on the propagators,

Z~m2!5 f A~g!, G~m2!5 f G~g! with f G
2 f A51,

~52!

which is incomplete, of course, to fix both their values se
rately at an arbitraryk25m2. The perturbative limits are
however, f A,G→1,g→0, corresponding to the perturbativ
momentum subtraction scheme,

Z~m2!51 and G~m2!51 ~53!

for an asymptotically large subtraction pointk25m2.
With this so-defined running coupling, by Eq.~51!, the

existence of an infrared fixed point,ḡ(t,g)→gc finite for t
→2`, then follows in the Landau gauge to be in one-to-o
correspondence with the scaling law for the leading infra
exponents of gluon and ghost propagation in the form~for
D54),

e012d050. ~54!

To make this explicit, consider the leading infrared behav
from Eqs.~47! and~48!, with the exponential factors therei
expressed by Eqs.~44! and ~45!, for k2→0,

Z~k2!→Z3~As,m!e0S k2

s D e0

, ~55!

G~k2!→Z̃3~As,m!d0S k2

s D d0

, ~56!

which, from Eq.~49!, entails that the infrared behavior of th
running couplinga(k2)[ḡ2(tk ,g)/(4p) is given by
6-11
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a~k2![
g2

4p
Z~k2!G2~k2!→

g0
2e0d0

2

4p S k2

s D e012d0

. ~57!

We therefore introduceac5g0
2e0d0

2/(4p) in the following. It
represents the infrared fixed point,a(k2)→ac for k2→0,
which occurs exactly if Eq.~54! holds.

The infrared scaling behavior in Eq.~54! was first ob-
served in the solutions to truncated DSEs in Refs.@22# and
@23#. It was recently derived from the ghost DSE in Re
@54#. Therein, an additional assumption on the vertex w
used which is a bitad hocand which is actually not neces
sary. In Sec. III C below, we therefore present an alterna
derivation of the infrared behavior~54!, from Ref. @47#,
which is based on the nonrenormalization, condition„N1… for
the vertex alone.

B. Vertex Ansatz

All we need in our infrared analysis is anAnsatzfor the
invariant functionA which parametrizes the relevant stru
ture of the ghost-gluon vertex in the Landau gauge. Ant
pating a conformal behavior in the infrared also for the v
tex, we first write,

Air ~k2;p2,q2!5S k2

s D nS p2

s D mS q2

s D l

. ~58!

The nonrenormalization condition„N1… for the Landau-
gauge vertex then leads to the constraint,

l 1m1n50, ~59!

which will be implemented in our analyses throughout. W
will later also allow sums of terms of this form in order
explore versions of thisAnsatzwhich are symmetrized with
respect to the ghost legs.

The scaling law for the infrared propagators in Eq.~54!
then follows for such a sum of terms~58! via Eq. ~59! only
from „N1…, as we shall show in the next section.

If we require, in addition, thatA(k2;p2,q2) remain finite
when one of the ghost momenta vanishes, one of the term
the form ~58! must exist in the sum with either

m50, l 52n, or l 50, m52n. ~60!

All other possible terms must then vanish and thus havem
.0 or l .0, respectively; and if the finite contribution toA
in that limit was to be in itself symmetric with respect to th
two ghost momenta, one would only be left withAir [1 as in
the tree-level vertex, since thenl 5m50. In a ghost-
antighost symmetric sum of two terms on the other hand,
need one of each kind together withn,0 to avoid infrared
divergent ghost legs.

After the infrared scaling~54! and the general formula
for the infrared contributions of terms of the genuine fo
Eqs.~58! and~59! will be derived, we will assume relation
as in Eq.~60!, in addition. The joint infrared exponentk for
ghosts and gluons then is a function of a single critical
ponentn which is left as an open parameter in their verte
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To exemplify its influence, we will explicitly calculate thi
function for the following threeAnsätze:

~ i! Air ~k2;p2,q2!5S k2

q2D n

, ~61!

~ ii ! Air ~k2;p2,q2!5
1

2 F S k2

q2D n

1S k2

p2D nG , ~62!

~ iii ! Air ~k2;p2,q2!5S k2

q2D n

1S k2

p2D n

21. ~63!

In the form ~i! of Eq. ~61! the Ansatzdoes not bother abou
ghost-antighost symmetry. Forn5d0[2k, this form con-
tains the infrared behavior of the nonsymmetric solution~28!
to the truncated STI~27! for the vertex of Ref.@53# as a
special case. In both symmetrized versions~ii ! and ~iii ! one
furthermore hasn<0 if infrared divergences associated wi
the ghost legs are to be avoided in the ghost-gluon ve
function. Version~ii ! in Eq. ~62! yields a finite and constan
A(q2;0,q2)51/2, while~iii ! is an example for the possibility
that A(q2;0,q2)50. Version ~iii ! in Eq. ~63! for n5d0[
2k includes the behavior of the symmetric solution~29! to
the STI ~27! with f T[0 as obtained in Ref.@22#. All three
versions satisfy„N1…, of course, and they all reduce to th
tree-level vertex atn50.

C. Unique infrared exponent from ghost DSE

With the general form of ourAnsatz~58! for the relevant
part of the ghost-gluon vertex, we can now extract the le
ing contributions in the infrared on both sides of the gh
DSE ~36!. Here, withZir andGir denoting the leading infra-
red behavior of the propagators as given in Eqs.~55! and
~56!, respectively, we first note that

Zir ~p2!Gir ~q2!5
g0

2

g2

e0d0

Z̃3~As,m!
S p2

s D e0S q2

s D d0

, ~64!

where use has been made also of Eq.~49! for m85As, g8
5g0. The lhs of the ghost DSE~36! approaches, fork2→0,

G21~k2!→Z̃3
21~As,m!d0

21S k2

s D 2d0

. ~65!

To obtain the leading behavior at smallk2/s of the rhs in Eq.
~36!, we replace the undetermined functions in the integra
of Eq. ~36! by the from given in Eq.~64! and theAnsatz~58!
for the leading infrared behavior of the vertex. The diffe
ence in the integrand between the full functions,Z, G, and
A, and their asymptotic infrared forms,Zir , Gir , andAir , is
subleading and it produces, upon integration, terms that
also subleading in an expansion of the rhs of the DSE. T
procedure is not restricted to the leading infrared behavio
can straightforwardly be generalized for an infrared exp
sion to a given order, as long as all integrals in this expans
remain finite. This is true for the leading infrared forms
discussed above. When these are inserted, the integral in
6-12
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~36! converges inD54 dimensions. The role of the firs
term in Eq.~36!, however, is to just guarantee convergen
of all necessary integrals at exactlyD54. It is certainly nec-
essary for the subtraction of the ultraviolet divergences w
the full functions with their logarithmic momentum depe
dences are inserted. Here we only need this term if we in
on a calculation inD54 involving convergent integrals in
every step. We can, however, obtain the same result by
lytic continuation of integrals performed inD dimensions.
Though this is of course precisely along the rules of dim
sional regularization, this notion might be misleading he
since nothing is there to be regularized in the first place. I
adopted here for convenience only. Upon insertion of
leading infrared forms~64! and ~58!, the first term in Eq.
~36!, in D dimensions, then yields a contribution to the gho
DSE proportional to

S k2

s D mE dDq

~2p!D S q2

s D e01d01 l 1n22

~66!

which vanishes for anyD in the analytic definition.
Therefore with Eqs.~64! and ~58! in the integral for the

relevant part of the rhs inD dimensions, and with Eq.~65!
for the lhs, the leading contributions to both sides of t
ghost DSE~36! for k2→0 are readily extracted to yield,

S k2

s D 2d0

52Nc4pacS k2

s D e01d01D/2221 l 1m1n

3E dDq

~2p!D S 1

q2D D/2
kP~p!k

k2 S q2

k2D D/2211d01 l

3S k2

p2D 12e02n

. ~67!

Here,p5k6q again, and we have 4pac5g0
2e0d0

2 as intro-
duced in Eq.~57! of Sec. III A; and just as for the usua
replacementg→gm22D/2, the dimension of the coupling fo
DÞ4 has been taken care of in Eq.~67! by replacingg0

2

→g0
2s22D/2. The resulting explicit exponent of the scale c

be combined with the corresponding exponent of an e
external momentum factor into (k2/s)D/222 which was
added to the total exponent of this ratio on the rhs of E
~67!. The dimensionless integral therein is written in a fo
ready to apply the integration formula~B1! of Appendix B.
The result isk independent as we will see explicitly in th
next section. Therefore from the nonrenormalization of
vertex, condition„N1… which impliesl 1m1n50, Eq. ~67!
for the leading infrared contributions to both sides of t
ghost DSE entails that

e012d0522D/2. ~68!

Thus the infrared behavior of the running coupling from E
~57! equivalently follows to be of the form,

a~k2!→acS k2

s D 22D/2

, for k2→0, ~69!
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which is infrared finite forD54. From now on, we therefore
parametrize the leading infrared exponents of ghost
gluon propagation by the joint exponentk again, inD di-
mensions,

d052k, e052k122D/2. ~70!

Infrared enhancement of ghosts follows for exponents 0,k
,(D22)/2 with the upper bound from the temperedness
local fields. In addition, (D22)/4<k for the mass gap in
transverse gluon correlations. Together, this then establi
the Kugo-Ojima confinement criterion in the Landau gau
Zwanziger’s horizon condition furthermore excludes equa
at the lower bound. We thus expect solutions for

~D22!/4,k,~D22!/2. ~71!

Once this exponent is determined, depending on the infra
exponents of the ghost-gluon vertex, from Eq.~67! we fur-
thermore obtain

ac5
2D22pD/221

NcI G
(D)~k,l ,n!

, ~72!

where I G
(D)(k,l ,n) is a ratio ofG functions proportional to

the integral in Eq.~67! which we determine next.

IV. INFRARED EXPONENT FOR GHOST-GLUON SYSTEM,
RESULTS

The same procedure that led to Eq.~67! in the ghost case
can be applied to the gluon DSE. In this case, we sim
insert the leading infrared behavior of the propagators fr
Eqs.~55! and~56! and the vertex~58! directly into Eq.~37!.
In D dimensions, this then analogously leads to

S k2

s D 2e0

5Nc4pacS k2

s D 2d01D/222 I ZP

(D)~k,l ,n!

2DpD/2
, ~73!

where we usedl 1m1n50, and again, we conclude th
relation for the exponents in Eq.~68!. A comparison of Eqs.
~72! and ~73! furthermore tells us that

I G
(D)~k,l ,n!5

!

I ZP

(D)~k,l ,n!, ~74!

which determines the values allowed for the exponentsn, l ,
and k. The two dimensionless integrals in the infrared e
pansions of the DSEs,I G

(D) for the ghost andI ZP

(D) for the

transverse ghost-loop contribution to the gluon propaga
are explicitly given by
6-13



f
re-
the
us

CHRISTOPH LERCHE AND LORENZ VON SMEKAL PHYSICAL REVIEW D65 125006
I G
(D)~k,l ,n!

2DpD/2
52E dDq

~2p!D S 1

q2D D/2
kP~p!k

k2

3S q2

k2D D/2212k1 lS k2

p2D D/22122k2n

, ~75!

I ZP

(D)~k,l ,n!

2DpD/2
5E dDq

~2p!D S 1

q2D D/2
qP~k!q

~D21!k2

3S q2

k2D D/2212k2n2 lS k2

p2D 11k2 l

. ~76!

To compute these, we first note that
d
is

e
i

o

n
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ic
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kP~p!k

k2
5

1

2 S 11
q2

p2
1

q2

k2D 2
1

4 S k2

p2
1

p2

k2
1

q4

k2p2D ,

qP~k!q

k2
5

1

2 S q2

k2
1

p2

k2
1

p2q2

k4 D 2
1

4 S 11
q4

k4
1

p4

k4D .

With these in Eqs.~75! and ~76!, respectively, it is now
straightforward to apply the formula in Eq.~B1! repeatedly
with suitable substitutions for the exponentsa and b. For
each of the two integrals this leads to a sum of six ratios oG
functions with arguments that differ by integer values cor
sponding to the above six terms with different powers of
momenta in each of the two integrals. After some tedio
applications of theG ’s functional identity, these six ratios
can be combined into a single one, to the effect that,
I G
(D)~k,l ,n!52

D21

2

GS D

2
2k1 l DG~112k1n!G~2k2 l 2n!

GS D

2
22k2nDG~11k2 l !GS D

2
111k1 l 1nD , ~77!

I ZP

(D)~k,l ,n!5
1

2

GS D

2
2k1 l DGS 12

D

2
12k1nDGS D

2
2k2 l 2nD

G~D22k2n!G~11k2 l !G~11k1 l 1n!
. ~78!
the
in

-

-

in
Though these quite general results might look complicate
first, in fact, they are surprisingly simple. To appreciate th
consider the following special case first.

A. Tree-level ghost-gluon vertex

In this section we concentrate on the results in the ev
that the ghost-gluon vertex reduces to its tree-level form
the infrared,Gm

ir 5Gm
0 . This corresponds toAir 51 and, for

ZR , the generalized form withBir 5ĥ. We thus setl 5n
50 in the general result of Eqs.~77! and~78!, and omit the
argumentsl andn here. InD54 dimensions, this amounts t

I G
(4)~k!52

3

2

G2~2k!G~2k21!

G~22k!G~k21!G~k13!
, ~79!

I ZP

(4)~k!5
1

2

G2~2k!G~2k21!

G2~k21!G~422k!
. ~80!

The result in Eq.~79! then agrees with both versions give
for the tree-level vertex in Ref.@46#. There, another metho
was employed leading to a rather complicated form wh
consists of sums of confluent hypergeometric functions
which is quite difficult to simplify any further. We explain
this method and the connection to ours in Appendix B,
Eq. ~B1! versus Eq.~B7!, in particular. The two different
forms for the result in Ref.@46# thereby arose from eithe
at
,

nt
n

h
d

.,

choosing the internal gluon or the ghost momentum as
integration variable in the loop. Here, both give the same
the first place. The symmetryp2↔q2 in the integrand on the
lhs of Eq. ~B1! is manifest on the rhs by its explicit invari
ance undera→a85D/22b together with b→b85D/2
2a.

The self-consistency condition~74!, for both DSEs to
yield the same value of the constantac , is also implemented
quite easily in Eqs.~79! and ~80!. In this case, for the tree
level vertex, one derives the condition,

12~322k!~2k21!5~k12!~k11!. ~81!

This is quadratic ink, and the two possibilities are

k5
1

98
~937A1201!'$0.59535,1.3026%, ~82!

with one unique root in 0,k1,1 which we have underlined
in Eq. ~82!. This result was first obtained independently
Refs.@47# and @35#. The corresponding value ofac is given
by

ac5
4p

NcI G
(4)~k1!

'2.9717 for Nc53, ~83!
6-14



t

e

n
m
l
ar
t

e

ib

-

to

r
n

ex
tio

e
la

th

t-

-
he

o

-

for

s
ts

me-

-
-

INFRARED EXPONENT FOR GLUON AND GHOST . . . PHYSICAL REVIEW D 65 125006
with I G
(4)(k1)5I ZP

(4)(k1)'1.4096. It is smaller by this las

factor than the value ofac54p/Nc derived from I G
(4)(k)

51 for k51 with the tree-level vertex~and alsoD54) in
Ref. @46#. This disagreement is due to the difference betwe
the transverse ghost-loop contributionZP employed here,
and theR-contractedZR in Ref. @46#. Our calculation for

ZR , see below, withA51 and B5ĥ for the generalized
tree-level vertex leads to

I ZR

(4)~k!5~4k22!S 122hĥ
~2k23!

~k21! D I ZP

(4)~k!. ~84!

For h51 or 0 this is equivalent to the sum of 12 conflue
hypergeometric functions given as the result for the sa
integral in Ref. @46#. The D54 results for the tree-leve
ghost-gluon vertex are summarized in Fig. 3. In stand
Faddeev-Popov theoryh51, and transversality of the ghos
loop, I ZR

(4)5I ZP

(4) , requiredk53/4. In order to tuneZR for

transversality at the self-consistent value of the tree-level
ponentk1, on the other hand, we would needh'1.16 or
20.16 which appear to be rather unnatural. It is not poss
in the ghost-antighost symmetric formulation.

Another important difference betweenI ZP

(4) andI ZR

(4) for the

tree-level vertex, as seen in Fig. 3 and Eq.~84!, is the obser-
vation thatI ZP

(4)(k) has a pole atk51/2. The gluon propaga

tor then necessarily vanishes in the infrared: If it was
approach a constant, one had to havek51/2. In this case,
however, its constant limit was proportional to 1/I ZP

(4)(k)

which vanishes fork→1/2. One thus obtains the strict lowe
bound 1/2,k for the tree-level case. Zwanziger’s horizo
condition is then satisfied. The apparently infrared finite
trapolations from lattice calculations are an open ques
still, however.

B. Infrared transversality

This completes our presentation for the tree-level vert
Before we discuss more general possibilities, in particu
the cases~i!–~iii ! in Sec. III B, we study the constraints from
transversality of the gluon propagator on the vertex in
infrared in this section.

For theR-contracted infrared contribution of the ghos
loop in the gluon DSE, Eq.~33!, we must specify a form for
the second, the longitudinalB structure of the vertex, in ad
dition. The fact that the leading infrared behavior of t
propagators should not depend on the choice of studyingZP
or ZR can be used to construct an infrared form
B(k2,p2,q2) analogousAir in Eq. ~58!.

First, we express the integrand in Eq.~33! for ZR in terms
of that forZP in Eq. ~32! plus a correction term which, for a
givenAnsatz Air , is required to vanish~at least upon integra
tion!. For the four terms in the curly brackets in Eq.~33!, this
leads to
12500
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-
n

x.
r,

e

f

$•••%5qP~k!qA~k2;q2,p2!2~D21!

3~ ĥk21qk!F S 11
qk

k2 D A~k2;q2,p2!

2B~k2;q2,p2!G . ~85!

The first term on the rhs herein reproduces the result
I ZP

(D)(k,l ,n) from Eq. ~76!. With tree-level settingsA51, B

5ĥ one readily verifies Eq.~84!.
The difference between the infrared integrals,D (D)[I ZP

(D)

2I ZR

(D) , can then be written,

D (D)

2DpD/2
5E dDq

~2p!D S 1

q2D D/2S q2

k2D D/2212kS k2

p2D 11k

3
1

4 S ĥ2h1
p2

k2
2

q2

k2D
3F S 11

p2

k2
2

q2

k2D Air 22Bir G . ~86!

The order of the arguments inAir andBir is the same here a
that in Eq. ~85! above. The ghost-loop integration projec
onto terms that are overall symmetric inp2↔q2. The anti-
symmetric ones vanish upon integration. We use the sym
try „S1… of A and the decompositionB5B11B2 into
~anti!symmetric partsB6(x;y,z)56B6(x;z,y) for B again,
and sort out the symmetric part of the integrand in Eq.~86!.
It vanishes if

~ ĥ2h!Air ~k2;q2,p2!5~ ĥ2h!2B1
ir ~k2;q2,p2!,

and

FIG. 3. The infrared integralsI G
(D) , I ZP

(D) , and I ZR

(D) in D54
dimensions with the tree-level ghost-gluon vertex, cf., Eqs.~79! and
~80! and theh51 case from Eq.~84!, respectively. The correspond
ing value for the exponentk1'0.595 is obtained from the intersec
tion point of I G and I ZP

as marked by the circle.
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p22q2

2k2
Air ~k2;q2,p2!5B2

ir ~k2;q2,p2!. ~87!

The first condition shows that 2B1
ir 5Air for ĥÞh. In the

symmetric case,ĥ5h51/2, no such restriction is implied
here, but the same relation is then given by„S2…, see Sec.
II A above. Therefore Eqs.~24! and~25! of Sec. II A follow
as sufficient conditions for infrared transversality indepe
dent of h. Without turning them into necessary conditio
this is a rather trivial result. As we showed in Sec. II A, t
conditions in Eqs.~24! and~25! imply that the vertex itself is
transverse in the infrared. This is always a possibility to w
rant infrared transversality, however. The necessary co
tion is D (D)50.

The point here is to demonstrate that, apart from poss
accidental cancellations, e.g., with tuningh51.16 for the
tree-level case of the last section, for generalh, there are
really no possibilities left other than infrared transversality
the vertex itself. In particular, we should be allowed
chooseh such ash51 for the standard linear-covariant o
h51/2 for the ghost-antighost symmetric case. We mi
then further say that we are not interested in contribution
the vertex which themselves vanish upon integration in
~86! for D (D). Up to such irrelevant contributions, which ne
ther contribute to the gluon nor the ghost DSE, Eqs.~24! and
~25! and thus the transversality of the vertex in the infrar
are also necessary conditions for the infrared transvers
of the gluon correlations in the Landau gauge independen
h.

C. Bounds on the infrared exponent

We now go back to the general results given in Eqs.~77!
and ~78!. With these results for the necessary infrared in
grals it requires little effort to explore infrared form
Air (k2;p2,q2) other thanAir 5const for theA structure in the
ghost-gluon vertex. First, in four dimensions, the se
consistency condition in Eq.~74! for these integrals leads t

~ l 1n1k21!~ l 1n1k!~ l 1n1k11!~ l 1n1k12!

5
!

23~n12k!~n12k21!~n12k22!

3~n12k23!. ~88!

This then corresponds to theAnsatzfor the vertex as given in
Eqs. ~58! and ~59! with only condition „N1… being imple-
mented at this stage. It is the starting point for the discuss
of the three special cases introduced in Eqs.~61!–~63! of
Sec. III B.

Case~i!. Here, we simply need to setn1 l 50. We then
obtain form~88! for the possible solutions to Eq.~74! which
here reads,

I G
(4)~k,2n,n!5

!

I ZP

(4)~k,2n,n!, ~89!

the quartic equation to, e.g., determinen(k),
12500
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~k21!k~k11!~k12!523~n12k!•••~n12k23!.
~90!

The four real roots to this equation are shown fork in @0,1#
in Fig. 4 on the left.

The top branch, with 1<n<3, leads to negativeI G
(4) and

I ZP

(4) . Both propagators,Z(k2) and G(k2), then necessarily

had zeros at some finitek2, and it resulted thatac<0 ~equal-
ity at the boundsn53,1 for k50,1). We therefore rule ou
this solution as being unphysical.

Also, we are particularly interested in solutions with
most weak singularities in vertex functions and require the
fore unu,1. This is the case for the next branch with 0,n
,2 provided 0.4222,k. This branch will no longer exist
after symmetrization with respect to ghost-antighost m
menta@see case~ii ! below#, however.

For the bottom branch with 0<n<22, the restriction to
weakly singular vertices,21,n leads tok,0.4767. With
this solution, it is therefore impossible to obtain the mass g
in transverse gluon correlations, for which 0.5<k. Further-
more, it does not survive the symmetrization in~ii ! either.

For the branch that includes the tree-level result, that w
n(k1)50, the critical coupling from Eq.~72!, with D54
and Nc53, is shown as a function ofk in Fig. 5 ~dashed
line!. Its maximumac

max'2.9798 occurs atk'0.6174. It is
thus slightly larger than the tree-level valueac(k1)
'2.9717 given in Eq.~83!.

Case~ii !. This case corresponds to a sum of two term
one withm50 andl 52n as in case~i! above, and the othe
with l 50 andm52n. Since the ghost-loop contributionI ZP

is manifestly symmetric inp2↔q2, this symmetrization only
affects the infrared contributionI G to the ghost DSE, and we
can therefore write

I G~k,n![
1

2
„I G

(4)~k,2n,n!1I G
(4)~k,0,n!…, ~91!

I ZP
~k,n![I ZP

(4)~k,2n,n!. ~92!

The self-consistency conditionI G(k,n)5I ZP
(k,n) can now

be used to obtain

~k21!•••~k12!~n1k21!•••~n1k12!

~k21!•••~k12!1~n1k21!•••~n1k12!

5
!

2
3
2 ~n12k!~n12k21!~n12k22!

3~n12k23!. ~93!

This equation has eight rootsn(k) which, in general, come
in complex conjugate pairs. The real roots fork in @0,1# are
shown in Fig. 4 on the right.

One discovers that two out of the originally four branche
from case~i! above, are almost unaffected by the symme
zation employed here: These are the unphysical one at
top, with 1<n<3 and much the sameac<0, and the one
connected to the tree-level result, withn(k1)50 for k1
6-16
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FIG. 4. Roots without symmetrization~left!, real roots with additional symmetrization~right!.
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5(932A1201)/98. Superimposing both results for the latt
with and without the symmetrization, the corresponding
lutions n(k) turn out to be almost indistinguishable in th
whole range 0,k,1 on the scales of our plots. A little bi
more appreciable, but not very significant still, are the diff
ences in the corresponding values forac as compared to
each other in Fig. 5. For the symmetric solution~solid line!
the maximum occurs at the valuek1 for the tree-level vertex,
ac

max5ac(k1), at which both solutions intersect. As e
plained in Sec. III B, if we furthermore require the verte
structureA to have no infrared divergences associated w
the ghost momenta, we must haven<0 for the ghost-
antighost symmetric vertex, in addition. Therefore we c
find physically acceptable solutions in the range

k1<k,1 and 0,ac~k!<ac~k1!, ~94!

correspondingly, with the valuesk1'0.59535 andac(k1)
'2.9717 for the bounds as obtained, respectively, from E
~82! and ~83! with the tree-level or regular vertex.

For completeness we mention that the new branch for
symmetrized vertex~ii ! with 21.2,n,0, with possibly in-
teresting solutions21<n for k<k1, leads to ac<0
throughout, and this is also the case for the bottom bra
with n,22.

In the range of particular interest, 1/2<k,1, we are thus
left with the branch of solutions includingn(k1)50 as the
only one withac.0 after the symmetrization in~ii !. At the

FIG. 5. The critical value of the running coupling over the i
frared exponentk for case~i! ~dashed! and case~ii ! ~solid!.
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same time, it seems quite encouraging that this branch,
only physically relevant one, is practically unaffected by t
symmetrization.

Case~iii !. In this example, the infrared behavior of th
ghost-gluon vertex as given in Eq.~63! is such that it again
satisfies the conditions„N1…, from nonrenormalization, and
„S1…, from ghost-antighost symmetry. In the limit where o
ghost momentum vanishes, one now hasA(q2;q2,0)50,
however. We will see that this has no dramatic consequen
either on the physically interesting solutions found in t
range~94! above.

Here, by the same arguments as in case~ii !, we can now
express the leading infrared integrals in both DSEs,

I G~k,n![I G
(4)~k,2n,n!1I G

(4)~k,0,n!2I G
(4)~k,0,0!,

I ZP
~k,n![2I ZP

(4)~k,2n,n!2I ZP

(4)~k,0,0!. ~95!

Due to the (l 5n50) contributions herein, which arise from
the tree-level term~with negative sign! in Eq. ~63!, it is gen-
erally no longer possible to derive the solutions toI G(k,n)
5I ZP

(k,n) as the roots of simple polynomials. Searching t
physically interesting range of parameters numerically, st
ing from the known solution forn50, k5k1, we obtain the
dashed curve forn(k) as compared to the correspondin
branch for case~ii ! in Fig. 6. Again requiringn<0 to avoid
infrared divergent ghost legs, we find that the solutions in
two cases are remarkably close to each other with2k,n
<0 for k1<k,1, and again we find thatn→2k in the
limit k→1 in which ac→0 in all three cases, however.

One might think that another solution withn50 exists for
k51/2 and the case~iii ! vertex. Since that could have im
portant implications, we note here that this is actually not
case. We know thatI ZP

in Eq. ~95! reduces to the form for

the tree-level vertex atn50, which does not lead to a solu
tion in four dimensions, cf., Fig. 3. The fact that the dash
line in Fig. 6 appears to approachn→01 for k→(1/2)1 is
explained as follows. For sufficiently smalln5e, we find
from Eq. ~95! that

I ZP
~k,e!;S 1

k2~12e!/2
2

1

2

1

k21/2D , for k→ 1

2
,

6-17
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is dominated by two nearby poles with opposite signs. The
fore for arbitrarily small but finitee.0 the pole atk51/2 in
the contribution from the last term, the negative of that in
tree-level vertex case, will always lead to an intersection
above k51/2 with I G(k,0) which approaches a consta
~corresponding to the value 4p/@3I G(0.5,0)#'2.62 in Fig.
8!. For n5e50 on the other hand, both poles coincide a
their residues sum up to that of the tree-level case whic
now positive, and thus, the intersection point then dis
pears. This is confirmed also numerically and demonstra
in Fig. 7.

Of course, if we relax the conditionn<0, we can have
self-consistent solutions also for infrared exponentsk,k1,
including those fork51/2 in cases~i! and ~ii !. At the same
time, this leads to a singularity inA(k2;p2,q2) asq2→0.

Negativen on the other hand leads to an infrared dive
gence associated with the gluon leg. However, as long
2n,k this is overcompensated by the gluon propagator
tached to that leg becauseZ(k2);(k2)2k. For n52k an
effective massless particle pole would be left in a gluon
change between two vertices,GmDmn(k)Gn;1/k2. In all so-
lutions we report here,n→2k for ac→0 ~both from
above!. Therefore this limit cannot be reached, since then
least one of the leading infrared coefficientsd0 or e0 in the
propagators vanishes which contradicts the assumptions
Eqs.~55!–~57!.

No such compensation occurs for divergences associ
with ghost legs. The ghost correlations are themselves in

FIG. 6. Solutionn(k) for case~iii ! ~dashed! compared to the
tree-level branch of case~ii ! ~solid! in the range 1/2,k,1, both
with n(k1)50 at k15(932A1201)/98.

FIG. 7. I ZP
(k,n) ~dashed! for several small valuesn

5$0.01,0.006,0.003% andn50 over the infrared exponentk in case
~iii !. The intersection withI G(k,0) ~solid! neark51/2 disappears
for n50.
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red enhanced. This infrared enhancement will persist for
ghost correlations between their vertices, if 0,k2m2 l
,1. Above the upper bound, the infrared divergences
come too severe for the description in terms of local fiel
For the cases with the ghost-antighost symmetry„S1… of
Landau gauge, we obtain from this restriction the upp
boundn,(12k)/2<0.25 fork<1/2. This, however, leaves
just enough room that it alone does not rule out the soluti
with positiven found for 1/2<k<k1 in case~ii !, as seen in
Fig. 6.

V. SUMMARY AND CONCLUSIONS

The Dyson-Schwinger equations of standard Fadde
Popov theory in the Landau gauge, when supplemented
additional boundary conditions, can be derived as an
proximation to the time-independent diffusion equation
stochastic quantization which is valid nonperturbatively@35#.
The nonconservative part of the drift force that is neglec
in this approximation cannot be described by local inter
tions. The effect of this part will have to be investigated
the future. It may well be responsible for the kind of ‘‘Gribo
noise’’ observed in lattice calculations.

Here, we studied a slightly more general definition of t
Landau gauge as a limit of a wider class including nonlin
covariant gauges@52#. This limit is controlled by an addi-
tional free parameterh in the tree-level vertex~with h51 in
Faddeev-Popov theory!. In particular, we find that nonrenor
malization of the vertex in a symmetric subtraction sche
and infrared transversality of the gluon propagator in Land
gauge can only go together with the manifestly gho
antighost symmetric choiceh51/2. In the light of the recent
progress connecting the linear-covariant gauge with tim
independent stochastic quantization, the ghost-antigh
symmetric Curci-Ferrari gauges might therefore also dese
to be reconsidered for similar connections.

Optimistically assuming that perfect sense can be mad
Dyson-Schwinger equations nonperturbatively some day,
studied the infrared critical exponent and coupling for glu
and ghost propagation in the Landau gauge in quite so
generality. We gave two reasons for assuming ghost do
nance, the Kugo-Ojima criterion for confinement and the h
rizon condition to restrict the measure to the first Grib
region, and implemented this as a boundary condition in

FIG. 8. The value ofac in the range 1/2,k,1 for all three
cases,~i! ~long dashed!, ~ii ! ~solid!, and~iii ! ~short dashed!.
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infrared asymptotic discussion of the DSE solutions. Cen
to an understanding of the infrared exponents for gluon
ghost propagation in Landau gauge then is a knowledg
their vertex. Assuming it has a regular infrared limit, w
obtaink.0.595. For the ghost-antighost symmetric vertic
this value maximizes the critical couplingac(k), yielding
ac

max'2.97, as summarized once more fork between 0.5
and 1 in Fig. 8. For largerk the vertex acquires an infrare
singularity in the gluon momentum, smaller ones imply
frared singular ghost legs.

Quite encouragingly, numerical solutions to truncat
Dyson-Schwinger equations have recently been obta
with the infrared behavior of the regular vertex, as deriv
here, for the whole momentum range up to the perturba
ultraviolet regime and without one-dimensional approxim
tion in Ref. @55#.

An important detail in all our considerations is the no
renormalization of the ghost-gluon vertex in the Land
gauge. Derived from standard Slavnov-Taylor identities i
one of the arguments that hold at all orders of perturba
theory. That it is also true nonperturbatively, however, is
other additional assumption. It is therefore quite import
and interesting that this has been assessed and verified w
the numerical errors in calculations using the Landau ga
on the lattice@56#. Calculating both propagators simulta
neously, this study furthermore appears to confirm a uni
exponent for the combined infrared behavior of gluons a
ghosts for the first time in a lattice calculation implementi
the Landau gauge condition. Also, for SU~2! this study re-
ports preliminary values ofac that are fully consistent with
the results obtained here somewhere near the maxim
ac

max.(4p/Nc)0.71'4.5 forNc52. It will be very interest-
ing to see the final errors, so that we will be in the fortun
position to restrict further the range of bothac andk. At the
moment, the combined evidence seems to indicate that
result will be somewhere in the range aroundk50.5 and the
maximum neark50.6. Unfortunately, with this conclusion
the question about an infrared vanishing versus finite gl
propagator must therefore remain open, for the time bein

Note added. P. Petreczky kindly reminded us of the lattic
Landau gauge results for the three-dimensional gluon pro
gator of Refs.@40# and @41#. We gratefully acknowledge
communications with him on their results. From commu
cations with A. Davydychev, we learned that we might ha
inadvertently given the impression to consider formula~B1!
as new in any sense. This is not at all the case. The 2-
derivation in Eqs.~B2! and~B3! below is given for the con-
venience to the reader. He furthermore points out that r
tion ~B13! follows from Eq.~11! listed on p. 534 in the table
of Ref. @70#. We gratefully acknowledge this information.
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APPENDIX A: GHOST RG EQUATION REEXAMINED

We repeat the renormalization group~RG! analysis of
Ref. @54# for the ghost propagator with some minor corre
tions. These corrections do not affect the main conclusion
Ref. @54# as far as we can judge. The correct versions,
particular, of Eqs.~8!–~11! in Ref. @54#, are necessary, how
ever, in order to establish the equivalence of their asympt
infrared expansion and the one adopted via Eq.~48! herein,
which is a minor variation of the expansion techniques
veloped previously@57–62,22#.

First, recall the RG equation for the ghost propaga
G(k2)[G(k2,m2), in this form also given in Eq.~6! of @54#,

S m
]

]m
1b~g!

]

]g
22gG~g! DG~k2,m2!50. ~A1!

The formal solution to this equation is given by Eq.~43!.
With the infraredAnsatzin the form of Eq.~5! in @54#,

G~k2,m2!.(
n

N

dn8~g!S k2

m2D dn

, ~A2!

here denoting the coefficients of@54# as the primed ones,dn8 ,
to distinguish from those in Eq.~48!, we first obtain

b~g!S ]dn8

]g
1dn8 ln~k2/m2!

]dn

]g D 22dn8„dn1gG~g!…50,

~A3!

at variance with Eq.~8! of Ref. @54# in two minor ways@by
the factor of 2 and the sign of thegG(g) term#. Nevertheless,
with their conclusion that therefore]dn /]g50, we find for
the coefficients

]dn8

]g
5

2„dn1gG~g!…

b~g!
dn8 , ~A4!

the general solution of which takes the form

dn8~g!}expEg2„dn1gG~ l !…

b~ l !
dl. ~A5!

This, however, is incompatible with Eq.~9! of Ref. @54#,

dn8~g!5constg22(dn1gG)/2gG1gA. ~A6!

In particular, since we just noted that the exponentsdn areg
independent, they are either zero or one would needb(g)
52const3g to obtain Eq.~A6! from Eq.~A5!. By virtue of
Eq. ~50!, b(g)52g(2gG1gA);2g, this would imply that
2gG1gA is g independent. If we would then conclude
addition that bothgG andgA areg independent, only then we
would obtain Eq.~A6! from Eq. ~A5!.

Note that such a behavior,b(g);2g, though in principle
possible in the infrared, would not lead to a fixed point a
thus contradict the other results of@54# as we discussed in
Sec. III A above. Not restricted to such a specific behav
here we go back to the general form of thedn8 in Eq. ~A5!.
First, remember thatg5g0 for m25s. In this case, the ex-
6-19
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CHRISTOPH LERCHE AND LORENZ VON SMEKAL PHYSICAL REVIEW D65 125006
ponential factor in our expansion~48! becomes unity, and
Eqs.~48! and~A2! agree. Thusdn5dn8(g0), and we can split
the solution to Eq.~A4! for dn8 with this initial condition into
factors as follows:

dn8~g!5dnexpH 2dnE
g0

g dl

b~ l !J expH 2E
g0

g gG~ l !

b~ l !
dlJ . ~A7!

The first exponential factor herein, with Eq.~46!, is equal to
(m2/s)dn, and can be used to replacem2→s in Eq. ~A2!.
The last exponential in Eq.~A7! is the same overall facto
determining the (g,m) dependence of the ghost propaga
as in Eq.~48!. Substituting Eq.~A7! into the expansion~A2!
of Ref. @54#, one obtains,

G~k2,m2!.expH 2E
g0

g gG~ l !

b~ l !
dlJ (

n

N

dnS k2

s D dn

, ~A8!

which agrees with the RG invariant expansion of Eq.~48!.

APPENDIX B: TWO WAYS TO DO THE D-DIMENSIONAL
INTEGRALS

The basic formula we employ for the infrared analysis
Sec. III involvesD-dimensional integrals of the following
form which converge for Re(a).0, Re(b2a).0, Re(b)
,D/2:

E dDq

~2p!D S 1

q2D D/2S q2

k2D aS k2

p2D b

5
1

2DpD/2

G~a!G~D/22b!G~b2a!

G~b!G~D/22a!G~D/21a2b!
, ~B1!

where p5k6q and an explicit factor (k2)b2a was intro-
duced to render the integral dimensionless. This is a textb
formula, cf., Eq.~2.5.178! in @63#. For a simple derivation
with the general exponents@64# one observes that the lhs o
Eq. ~B1! is a convolution integral which reduces to an ord
nary product upon Fourier transformation. Using
12500
r
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1

~q2!g
5

G~D/22g!

4gpD/2G~g!
E dDx~x2!g2D/2e2 iqx ~B2!

for the two factors in the convolution~with the powerg
given byD/22a andb, respectively!, one thus obtains

E dDq

~2p!D S 1

q2D D/2S q2

k2D aS k2

p2D b

5
4a2b

~2p!D

G~a!G~D/22b!

G~b!G~D/22a!
E dDx

~x2!D/2
~k2x2!b2ae2 ikx.

~B3!

Equation~B1! then follows from a further application of th
Fourier transform~B2! herein, now withg5b2a.

Alternatively, we can do the integral in Eq.~B1! which we
denote henceforth byf D(a,b) in a straightforward though
less elegant way by first performing all but one of the ang
of the polar coordinates inD-dimensional momentum space

f D~a,b!5
K~D !

~2p!D

D

2 E dq2

q2 S q2

k2D a
1

B@~D21!/2,1/2#

3E
21

1

dz~12z2!(D23)/2S k2

p2D b

, ~B4!

where K(D)52pD/2/@DG(D/2)# is the volume of the
D-dimensional unit ball,p25q21k222kqz, and the Euler
beta function is given by

B@~D21!/2,1/2#5E
0

1

dtt21/2~12t !(D23)/2

5E
21

1

dz~12z2!(D23)/2. ~B5!

For the azimuthal integration in Eq.~B4!, the formula 2 in
3.665of Ref. @65# can be used to obtain,
f D~a,b!5
K~D !

~2p!D

D

2 F E
0

k2dq2

q2 S q2

k2D a

2

F1S b,b2
D

2
11;

D

2
;
q2

k2D 1E
k2

`dq2

q2 S q2

k2D a2b

2F1S b,b2
D

2
11;

D

2
;
k2

q2D G
5

1

2DpD/2G~D/2!
F E

0

1dx

x
~xa1xb2a! 2F1S b,b2

D

2
11;

D

2
;xD G ~B6!

5
1

2DpD/2G~D/2!
F 1

a 3F2S b,b2
D

2
11,a;

D

2
,a11;1D1

1

b2a 3F2S b,b2
D

2
11,b2a;

D

2
,b2a11;1D G ,

~B7!
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where for the last step the following integration formula f
the generalized hypergeometric functions led to the final
sult in Eq.~B7!:

E
0

1

dxxg
pFq~a;b;x!5

1

g11 p11Fq11

3~$a,g11%;$b,g12%;1!, ~B8!

which is most easily derived forg.21 ~see, e.g., the ap
pendixes of Refs.@46# and @47#! from the power series ex
pansion for the generalized hypergeometric functions,

pFq~a;b;z!5 (
n50

`
~a1!n•••~ap!n

~b1!n•••~bq!n

zn

n!
, ~B9!

by noting the relation,

1

g1n11
5

1

g11

~g11!n

~g12!n
, ~B10!

for the Pochhammer symbols,

~a!n5
G~a1n!

G~a!
. ~B11!

For other general properties and a variety of relatio
amongst the different hypergeometric functions, e.g.,
Refs. @66–69#. A well-known one, for example, expresse
the Gauss series as a ratio of gamma functions,

2F1~a,b;c;1!5
G~c!G~c2a2b!

G~c2a!G~c2b!
. ~B12!
ry

y

no

B

B

12500
-

s
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Many more relations of this kind, including less known one
are listed in the tables on hypergeometric functions of R
@70#. We originally thought it might be interesting to not
that the two ways to calculatef D(a,b) leading to the rhs of
Eqs.~B1! and~B7!, respectively, allow one to devise some
these additional relations. For example, by simple
namings, a comparison of the rhs in Eqs.~B1! and ~B7!
yields,

1

a 3F2~a,a1b,a1b2c11;c,a11;1!

1
1

b 3F2~b,a1b,a1b2c11;c,b11;1!

5
G~a!G~b!

G~a1b!

G~c!G~c2a2b!

G~c2a!G~c2b!

5B~a,b! 2F1~a,b;c;1!. ~B13!

This formula follows with replacingb→a1b, 12c→c
2a2b, andd→c upon rearrangement from Eq.~11! on p.
534 in @70#, and our presentation here seems obsolete n
@71#. At least, the equivalence of the results from the infrar
analysis of DSEs in Ref.@46#, to the expressions in Eqs.~79!
and ~84! with h50 for the tree-level vertex case of Se
IV A is explicitly established in this way. The second proc
dure to calculate integrals such asf D(a,b) was thereby used
in Ref. @46#. Each of the results therein are readily express
in terms of one simple ratio of gamma functions when us
the relations presented in this appendix. Though equiva
to Eq. ~B7! of course, use of Eq.~B1! thereby is far more
convenient for all practical purposes.
a,

a,

.
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