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In the covariant description of confinement, one expects the ghost correlations to be infrared enhanced.
Assuming ghost dominance, the long-range behavior of gluon and ghost correlations in Landau gauge QCD is
determined by one exponent The gluon propagator is infrared finifeanishing for k=1/2 (k>1/2) which
is still under debate. Here, we study the critical exponent and coupling for the infrared conformal behavior
from the asymptotic form of the solutions to the Dyson-Schwinger equations in an ultraviolet finite expansion
scheme. The value for is directly related to the ghost-gluon vertex. Assuming that it is regular in the infrared,
one obtainsk=0.595. This value maximizes the critical couplirg(x), yielding ag®*=(4m/N.)0.709
~2.97 forN.= 3. For largerx the vertex acquires an infrared singularity in the gluon momentum; smaller ones
imply infrared singular ghost legs. Variationsdn remain within 5% fromx=0.5 to 0.7. Above this range,
decreases more rapidly wit,— 0" ask— 1~ which sets the upper bound an
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I. INTRODUCTION will be essential for infrared critical exponents and coupling
In gauge theories without Higgs mechanism, particles carlater. We then present the ultraviolet subtraction procedure
rying the global charges of the gauge group cannot strictly pavith the special care necessary to make sure that it does not

localized. Localized physical states are necessarily neutral i@rtificially affect the infrared. Some confusion arose recently
QED and colorless in QCD. The extensionath gauge in- concemning the relation between asymptotic infrared expan-

variant and thus physical states is possible only with a mas . . S
gap in the physical world. Then, color-electric charge super: ec._III. We th_en review the nonperturbative defmltlpn qf the
selection sectors do not arise in QCD and one conclude®/™NiNg coupling that is based on the nonrenormalization of
confinement the ghost-gluon vertex in the Landau gauge, and show that in
The necessary conditions for this were formulated mordOUr dimensions it approaches a constagtin the infrared
than 20 years ago. In the next section we briefly recall thes}Q’Ihenever ttr)us vegex ha:cs r?n asymptotic conforrrll_al behavkl]or
conditions and how they constrain the infrared behavior oftS0- AS @ by-product of the vertex nonrenormalization, the
ghost and gluon propagators in the Landau gauge chnfrareq behavior of bc_)th propagators theret?y resglts to be
Based on linear-covariant gauges, their derivation may noetermined by one unique exponentin any given dimen-
fully be divorced from perturbation theory. Their essence is>/0n- The general machinery to determine the infrared critical
quite generic and summarized in the Kugo-Ojima criterion<Ponent and coupling is outlined in Sec. IV. There, we also
which should apply in one way or another, whenever somdliscuss the results with an additional regularity assumption
form of Becchi-Rouet-Storé8RS) cohomology construction  ON the vertex in the infrared, which in four dimensions leads
~ _ _max__
does for gauge theories. One way towards a nonperturbatii@ the values «~0.595 and ac=ag""=(4m/N.)0.709
definition of the Landau gauge is provided via stochastic™2-97 forNc=3. We furthermore discuss the infrared trans-
quantization for which the full five-dimensional BRS ma- versality of the vertex and show how this resolves an appar-
chinery is in the garage. The time-independent diffusiorNt contradiction with a previous study. . _
equation of this formulation is closely related to the Dyson- e then discuss more general vertices involving an addi-
Schwinger equationéDSES in four dimensions as we de- tional exponent which controls singularities in its external
scribe next. Some of the necessary extensions, which hajBomenta to discuss bounds e and «. Thereby we will
already been implemented in previous DSE studies of infrafind that values of smaller than that for the regular vertex
red exponents for other reasons, imply the Kugo-Ojima criJmply infrared divergences in ghost legs, whereas larger ones
terion. We summarize these studies and how they are cohfad to an infrared divergence of the vertex in the gluon
firmed qualitatively in this way, at the end of the momentum. While the latter can only come together with an
Introduction. These various issues related to our study ar#frared vanishing gluon propagator, which will always over-
collected in Secs. | A—1 D to supply additional backgroundcompensate this divergence, the former ac_id to the_ infrared
information. enhancement of ghost exchanges. In particular, this would
In Sec. Il, we set up the DSE structures relevant for ouave to happen for an infrared finite gluon propagétath
present study. We summarize the general properties of thi=0.5) as presently favored by lattice simulations.
ghost-gluon vertex, most importantly its nonrenormalization Our summary and conclusions are given in Sec. V, and we

and ghost-antighost symmetry in the Landau gauge, whicHiclude two appendixes which may provide the interested
reader with some more technical details.

ions and the renormalization group which we first clarify in
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transformations, in a state spateof indefinite metric is one realizes that the first of its two terms corresponds to a
assumed. The semidefinighysicalsubspace/, <= Ker Qg copoundary with respect to the space-time exterior dgrivativ_e
is defined on the basis of this algebra by those states whicfhile the second term is a BRS coboundary. Denoting their
are annihilated by the BRS char@®;. SinceQ3=0, this charges byG* andN?, respectively,

subspace contains the space Qm of so-called daughter

states which are images of others, their parent statés An Qa=J d3x(3;F5+{Qg ,ng?b})=Ga+ N&, 2)
physical Hilbert space is then obtained(tte completion of
the covariant space of equivalence classes@@imQg,  For the first term herein there are only two options, it is

the BRS-cohomology of states in the kernel modulo those irsjther ill-defined due to massless states in the spectrum of
the image ofQg, which is isomorphic to the spacg; of d,F3,, or else it vanishes.
BRS singlets. It is easy to see that the image is furthermore |n QED massless photon states contribute to the ana-
contained in the orthogonal complement of the kefgélen  |ogues of both currents in Eql), and both charges on the
completeness they are identicalt follows that states in right-hand siddrhs) in Eq.(2) are separately ill-defined. One
Im Qg do not contribute to the inner product Wy can employ an arbitrariness in the definition of the generator
Completeness is thereby important in the proof of positiv-of the global gauge transformatiof®, however, to multiply
ity for physical state§l,2], because it assures the absence othe first term by a suitable constant so chosen that these
metric partners of BRS singlets, so-called “singlet pairs.” massless contributions cancel. In this way one obtains a
With completeness, all states Whare either BRS singlets in well-defined and unbroken global gauge charge which re-
Y, or belong to so-called quartets which are metric-partneplaces the naive definition in Eq2) above[6]. Roughly
pairs of BRS-doubletgof parent with daughter statesand ~ speaking, there are two independent structures in the globally
this then exhausts all possibilities. The generalization of théonserved gauge currents in QED which both contain mass-
Gupta-Bleuler condition on physical state®g|#)=0 in less photon pontnbunons. These can be combined to yield
Vonys: €liminates half of these metric partners leaving un-one well-defined charge as the generator of global gauge
paired states of zero norm which do not contribute to anyiransformations leaving any other combination spontane-
observable. This essentially is the quartet mechanism: Just 8isly broken, such as the displacement symmetry which led
in QED’ one such quartet, the e|ementary quartet, is formea) the identification of the phOton with the massless Gold-
by the massless asymptotic states of longitudinal and timestone boson of its spontaneous breakiag].
like gluons together with ghosts and antighosts which are If 4,F%, contains no massless discrete spectrum on the
thus all unobservable. In contrast to QED, however, one exother hand, i.e., if there is no massless particle pole in the
pects the quartet mechanism also to apply to transverse gludrpurier transform of transverse gluon correlations, t&n
and quark states, as far as they exist asymptotically. A viola=0. In particular, this is the case for channels containing
tion of positivity for such states then entails that they have tonassive vector fields in theories with the Higgs mechanism,
be unobservable also. Increasing evidence for this has beé@md it is expected to be also the case in any color channel for
seen in the transverse gluon correlations over the last yeaf@CD with confinement for which it actually represents one
[3]. of the two conditions formulated by Kugo and Ojima. In
But that is only one aspect of confinement in this descripboth these situations one first has equally, however,
tion. In particular, asymptotic transverse gluon and quark
states may or may not exist in the indefinite metric spgce a_ Na— 3, abb
If either of them do, and the Kugo-Ojima criterion is realized Q=N [QB’f d™xDo'c ] &
(see beloy, they belong to unobservable quartets. Then, the -
BRS transformations of their asymptotic fields entail thatWhich is BRS exact. The second of the two conditions for
they form these quartets together with ghost-gluon and/ofonfinement is that this charge be well-defined in the whole
ghost-quark bound states, respectivigy. It is furthermore  ©Of the indefinite metric spac®. Together these conditions
crucial for Confinement’ however’ to have a mass gap i@re SuffiCient to estab”sh that a” BRS'Singlet physical states
transverse gluon correlations. The massless transverse gludfe also color singlets, and that all colored states are thus
states of perturbation theory must not exist even though the§ubject to the quartet mechanism. The second condition
would belong to quartets due to color antiscreening and suthereby provides the essential difference between the Higgs
perconvergence in QCD for less than ten quark flavorgnechanism and confinement. The operaﬂ@?cb determin-
[4,5,3. ing the chargeN? will in general contain anasslesgontri-
Confinement depends on the realization of the unfixedbution from the elementary quartet due to the asymptotic
global gauge symmetries. The identification of gauge-. = — = . , e .
invariant physical states, which are BRS singlets, with colofi€!d ¥*(x) in the antighost fielde® —  y%+--- (in the
singlets is possible only if the charge of global gauge transW&ak asymptotic limit
formations is BRS exacind unbroken. The sufficient con- Xg— =
d|t|on§ fo_r this are provided by the Kugo-Ojima criterion: Dzbcb —  (6%P+ Uab)ﬂﬂ’yb(x)‘f' - (4)
Considering the globally conserved current
A a A5 h ) . Here, the dynamical parametard® determine the contribu-
J,=d,F;,,+{Qg,D,c’ (with 4,J,=0), (1) tion of the massless asymptotic state to the composite field
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Xoﬂtfﬁ
gfaPASc® — ua3,9P+ ... These parameters can be
obtained in the limitp?>—0 from the Euclidean correlation
functions of this composite field, e.g.,

identities (STIs) to be equivalent to an infrared enhanced
ghost propagatof6]. In momentum space the nonperturba-
tive ghost propagator of Landau gauge QCD is related to the
form factor occurring in the correlations of E(p) as fol-

o lows:
f d*xePCY(DA%C(x) g Al (y) co(y))
Da(p)= _—21 1-%-;(2) with - u*°(p?)=6*"u(p?).
v u
E( Our™ %) uHp. ® o @

The Kugo-Ojima criterionu(0)= —1, thus entails that the
Landau gauge ghost propagator should be more singular than
a massless particle pole in the infrared. Indeed, there is quite
compelling evidence for this exact infrared enhancement of
b aby s b ghosts in the Landau gauf@). For lattice calculations of the
uP=u(0)=— 5. (6)  Landau gauge ghost propagator, see REf€—13. The

Then, the massless states from the elementary quartet do q}éft?(?e-?j]ilrrgt?tl c[olr;’f]mement criterion was also tested on the
contribute to the spectrum of the current N, and the yitol

equivalence between physical BRS-singlet states and coloy Lattice verifications of the positivity violations for trans-
singlets is established. 2.6, verse gluon states by now have a long histfd#—19. Nu-

In contrast, if det(+u)#0, the global gauge symmetry merical extractions of their indefinite spectral density from

enerated by the charg& in Eq. (2) is spontaneously bro- lattice data are reported [20]. As mentioned, however, this
gene y rges 1N 4. P . y o follows from color antiscreening and superconvergence in
ken in ea_ch Cha”?‘e' in which 'the gauge potenpal cont:?uns a&CD already in perturbation theofy,5], and it is indepen-
asymptotic massive vector field,,2]. While this massive gent of confinement =
Z?:r:grbsgzsigen rsetsaltjgz xhibc i isiZIISyS()Iggtljert’ir;[hse()nr?:scsol?;osgrllé% Its remaining dynémical aspect resides in the cluster de-
of the Higgs field replace the third component of the vectorf mposition property of local quantum field theory in this

L : -~ formulation[8,2]. Within the indefinite inner product struc-
field in the elementary quartet and are thus unphysical. SInCEjre of covariant QCD it can be avoided for colored clusters
the broken charges are BRS exact, thidden symmetry '

breaking is not directly observable in the physical HilbertOnly without mass gajn the full indefinite space”. In fact,

if the cluster decomposition property holds for a gauge-
space. invari duct of two(almost local fields, it b
The different scenarios are classified according to the relpvarlant product ot fwofaimost local Tields, It can be
alization of the global gauge symmeiry on the whole of theo 0N that both fields are gauge-invarial@iRS-closedl
) - 9 gauge syn y . ... themselves. With mass gap in the physical world, this then
indefinite metric space of covariant gauge theories. If it is

unbroken, as in QED and QCD, the first condition is Crucialellmlnates the possibility of scattering a physical asymptotic

for confinement. Namelv. it is then necessary to have a massstate into a color singlet consisting of widely separated col-
' Y, v ored clustergthe “behind-the-moon” problem[2].

235“;”i:}herti:]i?sl\éeLs:\/ggﬁlr;ggl”ﬂagizgls(’;éngiiﬁtqi?ﬂgiz "€ The necessity for the absence of the massless particle pole
princip phy g in anyw in the Kugo-Ojima criterion shows that then-

thus gauge-invariahstates with color, just as one has gauge- . . )
invariant charged states in QER.g., the state of one elec- physica) massless correlations to avoid the cluster decom-
i position property arenot the transverse gluon correlations.

tron alone in the world with its long-range Coulomb }ail :
Indeed, with unbroken global gauge invariance, QED ando‘n infrared suppresse_d propagator fqr the transverse gluons
; ; ized" Landau gauge confirms this condition. This holds equally
well for the infrared vanishing propagator obtained from
QSES[21,23,22, and conjectured in the studies of the impli-
gations of the Gribov horizoh24,25, as for the infrared
suppressed but possibly finite ones extracted from improved
lattice actions for quite large volum¢26—28.
An infrared finite gluon propagator with qualitative simi-
ities in the transverse components appears to result also in
simulations using the Laplacian gauff29]. Related to the
Landau gauge, this gauge fixing was proposed as an alterna-
tive for lattice studies in order to avoid Gribov copie0].
For a perturbative formulation see RE31]. Due to intrinsic
nonlocalities, its renormalizability could not be demonstrated
The (second condition in theKugo-Ojima confinement so far. Deviations from the Landau gauge condition were
criterion, u= —1 leading to well-defined chargd$?®, can in  observed already & (g?) in the bare coupling in Ref32].
Landau gauge be shown by standard arguments employingoreover, the gluon propagator was seen to develop a large
Dyson-Schwinger equation§DSE9 and Slavnov-Taylor longitudinal component in the nonperturbative regif@e].

The theorem by Kugo and Ojima asserts that@dl= N® are
well-defined in the whole o¥ (and do not suffer from spon-
taneous breakdownif and only if

state must be chargeless/colorlé® The question is the
extension to nonlocal states as approximated by local one
In QED this leads to the so-called charge superselection se
tors[8], and nonlocal physical states with charge arise. If in
QCD, with unbroken global gauge symmettgd mass gap,
every gauge-invariant state can be approximated by gaugﬁ—
invariant localized oneéwhich are colorless one concludes ar
thateverygauge-invariantBRS-singlet state must also be a
color singlet.

B. Infrared dominance of ghosts in the Landau gauge
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In fact, compared to the transverse correlations, it seems tchastic approach to be valid modulo the aforementioned ap-
provide the dominant component in the infrared, and it mightproximation. For their solutions, on the other hand, restrict-

in the end play a role analogous to that of the infrared ening the support of the Faddeev-Popov measure to the interior
hanced ghost correlations in the Landau gauge. However, thaf the Gribov region has the effect of additional boundary

precise relation with Landau gauge still seems somewhat ureonditions to select certain solutions from the set of all pos-

clear. It is certainly encouraging nevertheless to first of allsible ones which might contain others as well. Consider two
verify that no massless states contribute to the transversavariant functionsZ(k?) andG(k?) to parametrize the Lan-

gluon correlations of the Laplacian gauge either. dau gauge structure,
Z(k?) «Ky G(k?)
C. Nonperturbative Landau gauge D (k)= K2 Ouv™ K2 Da(k)=— K2
A problem mentioned repeatedly already, which is left in (8)

the dark in the description of confinement within the covari-

ant operator formulation presented so far, is the possible inn Euclidean momentum space of gluon and ghost propaga-

fluence of Gribov copief24]. tor, respectively. Additionally when obtained as DSE solu-
Recently, renewed interest in stochastic quantization aros#ons, suitable boundary conditions have to be satisfied by

because it provides ways of gauge fixing in the presence dhese functions. The following infrared bounds were derived

Gribov copies, at least in principle83,34. The relation to by Zwanziger for each of the two as properties of the propa-

Dyson-Schwinger equations is provided by a time-gators from the restricted measure.

independent version of the diffusion equation in this ap- The observation that the “volume” of configuration space

proach in which gauge-fixing is replaced by a globally re-in the infinite-dimensionalthermodynamig limit is con-

storing drift-force tangent to gauge orbits in order to preventained in its surface lead to the so-calledrizon condition

the probability distribution from drifting off along gauge or- which entails that the ghost propagator must be more singu-

bit directions. lar than a massless particle pole in the infrar@8—37),

In particular, in the limit of the Landau gauge, it is the
conservative part of this drift-force, the derivative with re- lim G~ 1(k?)=0. 9
spect to transverse gluon-field components of the Faddeev- k20

Popov action, which leads to the standard Dyson-Schwinger
equations as clarified by ZwanzigéB5|. He furthermore This condition is equivalent to the Kugo-Ojima criterian,
points out that these equations are formally unchanged i —1 for well-defined color charges in the Landau gauge,
Gribov’s original suggestion to restrict the Faddeev-Popo\ct., Egs.(6) and(7) with G(k?)=1[1+u(k?)].
measure to what has become known as the interior of the first From the proximity of the Gribov horizon in infrared di-
Gribov horizon is implemented. This is simply because therections Zwanziger furthermore concludgzb] that
Faddeev-Popov measure vanishes there, and thus no bound-
ary terms are introduced in the derivation of Dyson- lim Z(k?)/k?>=0. (10
Schwinger equation$DSES by this additional restriction. k20
Phrased otherwise, it still provides a measure such that the
expectation values of total derivatives with respect to thelThis removes the massless transverse gluon states of pertur-
fields vanish, which is all we need to formally derive the bation theory as also required by the Kugo-Ojima criterion.
same Dyson-Schwinger equations as those without restrickhe infrared vanishing of the gluon propagator is a stronger
tion. requirement than this, however. It currently remains an open
In the stochastic formulation this restriction arises natu-question why this has not been seen in Monte Carlo simula-
rally because the probability distribution gets concentratedions as yet. An infrared suppression of the gluon propagator
on the (first) Gribov region as the Landau gauge is ap-itself, rather tharZ(k?), was observed for the Landau gauge
proached. Therefore there should be no problem of principlén [38] and, more considerably, at large volumes in(3Un
with the existence of Gribov copies in the standard DSEsthe three-dimensional ca$89—-41, as well as in Coulomb
However, the distribution of the probability measure amonggauge[42]. The three-dimensional results are interesting in
the gauge orbits might be affected by neglectittte non- that the large distance gluon propagator measured there
conservativg part of the drift force. Ways to overcome this seems incompatible with a massive behavior at low momenta
approximation are currently being investigated. Moreover{that was noted also ifiL8]). At very large volumes, it even
providing for a correct counting of gauge copies inside thebecomes negativpl0,41]. This is the same qualitative be-
Gribov region, the full stochastic equation will allow com- havior as obtained for the one-dimensional Fourier transform
parison with results from Monte Carlo simulations using lat-of the DSE results of22,23 at small values for the remain-
tice implementations of the Landau gauge in a much moréng momentum components, cf., Fig. 4[8f versus Fig. 2 of
direct and reliable way. In particular, this should be the casé40] or Fig. 6 of[41]. Qualitatively, the different dimension-
for the lattice analog of the stochastic gauge fixing used irality should not matter much here. On the other hand, the
simulations such as those of Reff$6—-18. extrapolation of the zero momentum propagatdih] leads
Here, we restrict ourselves to the standard Landau gaugde a finite result which, however, still decreags®wly) with
DSEs which are best justified nonperturbatively from the stothe volume. This suggests that the physical volumes may still
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be too small yet and that further study of the volume depengluon propagator vanishes while the ghost propagator is in-
dence of the zero momentum gluon propagator might be nedrared enhanced. Then, the Kugo-Ojima criterion and the

essary[43]. boundary conditiong9) and(10) are both satisfied. The ho-
rizon condition seems understandable because the restriction
D. Infrared exponents in previous studies to the Gribov region leads to a positive measure which was

. . implicitly also assumed by requiring solutions without nodes

W|th|n_the s_tandard BRS or Faddeev-Eopov formulation,p, [22]. Here, depending on the infrared behavior of the
the functions in Eq.(8) have been studied from Dyson- ghost-gluon vertex, we will find that this requirement could
Schwinger equationeDSES for the propagators in various jn principle be maintained also far< 1/2. Taken by itself, it
truncation schemes of increasing levels of sophlst|cat|orbn|y leads to & k<1, and thus to the horizon conditi@8).
[3,44]. Typically, the known structures in the three-point ver- gyentally, with decreasing for values smaller than 1/2,
tex functions, most importantly from their Slavnov-Taylor jytrareq singularities in ghost exchanges become too strong
identities and exchange symmetries, have thereby been e a local field theory description. Aroune=1/2, however,

ployed to establish closed systems of nonlinear integrajis argument is just not strong enough, and we cannot turn it
equations that are complete on the level of the gluon, ghosLE

! o X >mto an independent additional argument in favor of Bd)
and quarl'< propagators in Landa_u gauge. This is po;slble Withy an infrared vanishing gluon propagator.
systematically neglecting contributions from explicit four-
point vertices to the propagator DSEs as well as nontrivial
four-point scattering kernels in the constructions of the three- Il. DYSON-SCHWINGER EQUATIONS
point verticeq 3,22]. Employing a one-dimensional approxi-

. ' ' . ; The D -Schwi i for th f
mation, numerical solutions were then obtained in Re&g] e Dyson-Schwinger equations for the propagators o

ghosts and gluons in the pure gauge theory without quarks

and[23]. are schematically represented by the diagrams shown in Fig.

Asymptotic expansion techniques were developed to anas \,., - :
IyticaI)I/y SFudy_ thep behavior (_)f tr?e solutions in thep infrared.a"slér\ﬁl gg tlgr;:rtif%iggglgairr]]ctehgflgstolisrgsg ct)?eFi%r.lolstNIicl)lop?rc:S%r:
The 'e"?‘d'”g infrared behavior was thereby determined b3fhe dominant contribution to the inverse gluon propagator on
one unique exponent~0.92, the left-hand side in the infrared. In our infrared analysis we
K200/ L2\ 2k K250 K will concentrate on this contribution to thgenormalized
Z(k?) ~ ) (—) (1D

and G(k?) ~ gluon DSE which reads in Euclidean momentum space with
the notations of 3] (color indices suppressgd

with a renormalization group invariant, see Sec. lll A. The D~ 1(k)=25D° (k) — g?N.Z,
general bounds @ k<1 were established in RgR2] based mr mr ¢
on the additional requirement thatand G have no zeros or d*q
poles along the positive real axis, i.e., in the Euclidean do- f 4Gﬁ(q,p)De(p)De(Q)Gv(P,Q)+ RN
main. Below, we will verify the positivity for the leading (2)
infrared behavior of both these functions in the same range, (12
independent of the one-dimensional approximation, and

based on some few and quite generic properties of the ghosjherep=k-+q, and the contributions from the four remain-
gluon vertex alone. . ing gluon loop-diagrams of Fig. 1 were not given explicitly.
The infrared behavior in Eq(1l) was later confirmed [0 s the tree-level propagatoR is the ghost propagator,
qualitatively by studies of further truncated DSEs. In Ref-andGV is the fully dressed ghost-gluon vertex function with
[45], a tree-level ghost gluon vertex was used in combinatior;ts tree-level counter part denoted ﬁiﬁ In the standard

with a one-dimensional approximation which lead to a Valuelinear—covariant gauge the latter is given by the antighost-

of k~0.77 for the infrared exponent of ghost and gluon mentum.G° —ia. . The DSE for the gh .
propagati.on in Landau gauge. Then, in the ﬁTSt infrared;aotor,evxfil:hdﬁﬂt(rg,rﬁz)atio(rl]g at thﬁs pSoint,Ofotrrrfaﬁ]y C;z;gsopa
asymptotic study of the ghost-gluon system without one-
dimensional approximation, the value &1 was obtained . - -
in Ref.[46]. There is, however, an issue about infrared transD g '(K) = —Z3k?*+9°N.Z,
versality of the gluon propagator, as we will explain below, d4q
which was not addressed in this study. As a result, the correct : _
value for the tree-level vertex is the same as that derived xf (277)4Ik“DG(q)G”(q’k)D‘”(k . (13
herein for any ghost-gluon vertex with regular infrared limit,
xk~0.595, which was first reported for the tree-level vertex
independently in Ref§47] and[35]. As we furthermore find
in our present study, inconsistency arises ker1 (from
below), and this limit, the upper bound or, is therefore
excluded.

With 1/2<k, all these values of the infrared exponent - bare bare
share, however, the same qualitative infrared behavior. The ~ Z3De=Dg ", Z3D,,=D.." Z¢9=0pare (14

The renormalized propagato3s andD ,,, and the renor-
malized couplingg are defined from the respective bare
quantities by introducing multiplicative renormalization con-
stants,
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FIG. 1. Dyson-Schwinger equations for the ghtiep) and the
gluon (bottom) propagator, diagrammatically.

FurthermoreZl—Z 21/223 is the ghost-gluon vertex renor-
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respectively. Beyond the leading behavior as dominated by
the infrared enhanced propagators within the ghost loop,
there will in general be complicated cancellations between
longitudinal contributions from various sources to ensure
transversality of the gluons in the Landau gauge. These
sources can be due to the terms neglected, to truncations of
vertices, or to the regularization scheme employed. The tad-
pole, for example, contributes only TZ>;1, and so do the
quadratic divergences with cutoff regularization. Beyond the
leading order one therefore usually employed&xensor in

the contraction of the gluon DSE in most previous studies
since that of Ref[48].

The tadpole contribution is a momentum-independent
constant, so that it will necessarily be subleading as com-
pared to the infrared singular ghost-loop, whenever that sin-
gularity is strong enough to lead to an infrared-vanishing
gluon propagator, of (k?) ~ (k?)?< with x>1/2 for k?*—0.

The infrared analysis we present below is independent of
the regularization and both these reasons in favor of the
R-tensor do therefore not apply to our present study. Never-
theless, even with ghost dominance, exact transversality will
in general only be obtained by including all different struc-
tures possible in the ghost-gluon vertex that can contribute to

malization constant. Before we discuss the properties of théhe leading infrared behavior.

ghost-gluon vertex, essentially the only unknown in Egs.

(12) and(13), we note the following.

A. The ghost-gluon vertex in the Landau gauge

If we are allowed to assume that the leading contribution

to the inverse gluon propagator in E(L.2) is completely
determined by the ghost loop, this contribution must be
transverse in the Landau gauge. In other words, writing
(15

D, (k)=k?5,,Z5 (k) —k,K,Zg ' (K?),

one should then havgs(k?) =Zr(k?)=Z(k?). Here, in par-

The ghost-gluon vertex is of particular importance in the
analysis of the infrared behavior of the gluon and ghost
propagators. We adopt the conventions of R&f. The ar-
guments of the ghost-gluon vertex denote in the following
order the two outgoing momenta for gluon and ghost, and
one incoming ghost momentum, cf., Fig. 2,

G2"(k,q,p)=(2m)*s* k+q—p)G3°Aa.p), (18)

ticular, the leading infrared behavior as extracted from the

ghost loop alone should not depend on whether we sAgly
or Zg. With all other contributions subleading, deviations
from the transversality of the “vacuum polarizationZp

G2"%(q,p) =g 3G ,(q.p). (19)

=Zg in the Landau gauge, should also be subleading. W&olor structures other than the perturbative one assumed

will assess this by studying, in parallele sometimes usb
dimensions, normallyp =4 hers,

ZEl(kz)—m e (K)P,,(K), (16)
Z§1<k2>=mo;3<kmw<k>. (17)
with
Putk)= 8,5,
Ru(K)=8,,~ kkf

here were assessed for the pure Landau gauge theory on the
lattice in Ref.[49]. In this study, there was no evidence seen
for any significant contribution due to such structures which
we will not consider henceforth.

We parametrize the general structure@®f(q,p) which
consists of two independent terms by the following form:

G,(a,p)=iq,A(k*p?a?) +ik,B(k*p%q%). (20
One might expect the second structure to be insignificant in
the Landau gauge, since it is longitudinal in the gluon mo-
mentum k. This is not necessarily the case in Dyson-
Schwinger equations, however, since the transversality of the
vacuum polarization generally arises from cancellations of
different longitudinal contributions as we discussed above.

For later reference, we recall two general properties of
this vertex. The implications of these properties are explored
below. They both refer to the ghost-gluon vertex in the Lan-
dau gauge.
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(N) NonrenormalizationZ,=Z,Z3?Z;=1 [50], which N
entails that the vertex reduces to its tree-level form at all
symmetric momentum points,

;

S

G,.(4,p)]ie=q2=p>=Gp(d.p), (21) 6
9,

in a symmetric subtraction scheme. The gauge fields being

a

k

L
\\Y\p

purely transverse, however, there is a certain freedom left in b .- SO C
the definition of the tree-level verteA. priori, any form with - h
ne[0,1], FIG. 2. Conventions for the ghost-gluon ver@%°%(k,q,p).

Gg(q,p) =7iq,+ §7ipM and p+7=1, (22 TheB_ struc':ture'is absent at the tree level and it van.ishes at
all symmetric points. Therefore a symmetric vertex in con-

may be used equally for the Landau gauge. Without furthegerse to the logic above also requires= 7=1/2 for the

specification, for the functions in EQR0) we first have tree-level vertex to be used as tB8 in a symmetric sub-
- traction scheme according to E@1).
A(Xx,x)=1 and B(X;x,X)=17. At this point, it seems important to stress that, for the

. . infrared exponent of Landau gauge QCD, only the infrared
The condition oM is 7 independent. It expresses the essenpenayior of A is relevant. The critical exponents are of

tial aspect of nonrenormalization and will be referred to aS%ourse independent of. As long as we concentrate cp
(_N;). The condition onB depends on the ambigu_ity in dg_— via Eq. (16) in the gluon DSE(13), the gluon legs of all
fining the Landau gauge, as expected. We call this conditiogetices are transversely contracted. For all internal gluon

(N2). It readsB(x;x,x)=0 for the transverse limit of the jineg this is automatically true by the transversality of the
linear-covariant gauge in standard Faddeev-Popov theory, opagator as in the ghost D$E) for example, and for the
compared toB(x;x,x)=1/2 for the analogous limit of the gyternal lines we just arranged it by hand. Thus theree-
ghost-antighost symmetric Curci-Ferrari gai§él, see also 4oy in the tree-level vertex and thg structure of the full
Ref. [3]. These are the two special choices of particular in+ertex are both irrelevant, as they should be. In an infrared

terest, corresponding tg=1 and »=»=1/2, respectively. analysis based on this manifestly transverse system we might
For renormalizability and perturbative aspects of the latteras well have standard Faddeev-Popov theory in mind with
and for the geometry of the generalgauges, see Reflb2]. =1, ;720_

(S) The ghost-antighost conjugation as part of the full

9 The only place where the dependence and th# struc-
Landau gauge symmetry, a semidirect product of SE2, e do enter is th&k-contracted gluon DSE. We therefore
and double BRS invariance, impli¢3]

introduce the generalized Landau gauge by the above modi-
fication of the tree-level vertex here as a purely technical tool
to address the transversality issue, i.e., to comgarandZy

as obtained from Eq$16) and(17), respectively. In fact, in
r%)rder to reconcile ghost dominance with transversality, the
ﬁgsult will be that for arbitrary values af one must essen-
tially have in the infraredindicated by the superscripts

A(x;y,2)=A(x;zy). (S)

While this holds for all », again, theB function is more
ambiguous. It cannot have definite symmetry properties i

symmetric tree-level vertex witly= ;;= 1/2, the interactions
with purely transverse gluons will preserve this exact sym- _ 1 .
metry of the Landau gauge, however. In the symmetric for- B (k*p?,q%) = EA'r(kZ;p21q2), (24)
mulation we therefore expect to have an exactly ghost-
antighost symmetric vertex also,

) p2_ q2
B (k%p?0Y)=— ———A"(K:p%a?). (25
G.(a,p)=G,(p,q). 2K?
DecomposingB=B, +B_ with B.(x;z,y)=*B.(X;y,2), Inserting this into Eq(20), small rearrangements reveal that
we then furthermore deduce, - the full ghost-gluon vertex therefore has to be transverse in
the infrared itself,
2B, (xy,2)=A(X;y,2). (S2 o okin gk

[ _MAuPKTIPLAK 12l 2 2
In the fully ghost-antighost symmetric formulation we can GL(a.p)= 2 AT(k%p%a9). (26
thus express the vertg0) in terms of the functions with
definite (ant)symmetry as follows: This is in contrast to its perturbative limit where tBestruc-

) ) ture is suppressed, and it is now also independent of the

g, tip, 2. 2 o 2. 2 o choice of 5. Again, however, the transverse vertex is neces-
Gula.p)= 2 A% p%0%) +ik,B-(k%p%,a%). sarily symmetric=(iq,+ip,) at a symmetric point. In order
(23 to extend the subtraction scheme of EB1l) nonperturba-
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tively into the infrared, and ensure transversality of the gluon fTx;x,x)=0 and fT(x;y,2)=f"(x;z,y). (31
propagator, we thus have to resort to the symmetric choice
n=n=1/2 in Eq.(22) also[for which Eq.(24) follows trivi-  Since this function is otherwise arbitrary, in particular, in the
ally with (S2)]. infrared, the use of solution®9) somehow seems less ap-
pealing for our present study which is concerned about the
most general bounds on the infrared exponent that can be
derived on the basis of as few and basic assumptions as
In [22] a Slavnov-Taylor identity of the standard linear- currently possible.
covariant gauge was derived to constrain the ghost-gluon |n the numerical solutions to the coupled system of trun-
vertex. Since the BRS transformations need some adjustated ghost-gluon DSEs presented in REI8] and[22], the
ments for other choices such as the ghost-antighost symmefgrm given in Eq.(29) was used for the ghost-gluon vertex
ric gauges, as it stands this identity is valid for the cgse with f'=0. This solution to the truncated ST27) (for 7
=1, ;7=0 only. A generalization might be worthwhile pur- =1) still satisfies(N1), (N2), and (S1). Because it is not
suing. However, considering the transversality of the full ver-purely transverse in the infrared, it should be used in combi-
tex in the infrared, this will not provide much additional nation with the transversely projected DSE #y from Eq.
information to be used in our present study, as we discuss i(L6), however, such that only the form @&f(x;y,z) in Eq.
this section. (29) matters. This causes ultraviolet problems in the numeri-
Neglecting irreducible ghost-ghost scattering contribu-cal studies, see below. If the infrared transversality of the
tions to the Slavnov-Taylor identitySTI) of Ref. [22], and  vertex can be maintained on the other hand, by adding suit-
thus maintaining the disconnected contributions to the ghosible transverse terms to a symmetric STI construction to sat-
four-point function only, a truncated Slavnov-Taylor identity isfy Eq. (26) above, for example, th&-tensor may be used
is obtained which, in terms of the two structu/es B in the  to contract the gluon DSE via E¢L7) by which these ultra-

B. Truncated Slavnov-Taylor identity

vertex and the ghost propagator, reads violet problems are avoided without doing harm to the infra-
N red structure of the equations.
Y X e . We believe that this will be the way to proceed with the
GX) 2 Alyx.2) yB(y,x,z)) numerical studies of full solutions to truncated DSEs in the
future. In particular, this suggests further developments in
n G(y)( Z+;_yA(x;y,z) _ xB(x;y,z)) the ghost-antighost symmetric formulation.
- 2G(X)G(y) C. Ultraviolet subtractions and infrared behavior
- Gz (27 With the parametrization of the vertex in EQ0) we now

obtain for the ghost-loop contribution to the gluon DER)
Without the symmetry propert§51), a simple solution to Eq. the two alternative expressions from the contractions accord-

(27) is given by ing to Egs.(16) and(17), respectively,
G(x 1 2N 4 2 2
G(2) Zo(K?) 3 J(2m* KpP?
This exact form was used for the ghost-gluon vertex in the X qP(k)qAKZ: g2, p2) + - - -, (32)

study of Wilsonian flow equations for Yang-Mills theory in
Ref. [53]. Implementing(S1) in addition, the most general

solution to Eq.(27) can be written in the form ! =Z5+ gzNCJ dq G(p*)G(a”)
Zp(k?) 3 J@em* Kpg?
_ G(x)  G(x) .
AYD= 5 Tay) T2 X{n(aR(K)pA(K?; 62, p?) — qR(K)k B(K?q2,p?)
GX) | x-y+z, + 7(PR(K)PAK?; 0%, p?) — PR(K)KB(K* 4%, p?)}
B(x;y,z)= G(y) -1+ 5 fl(x;y,2). e 33

(29)
where againp=k+q. One can see explicitly here that
knowledge of both invariant functions is necessary for an
infrared analysis based on tffe-tensor, cf., Eq(33), while
only the A structure enters in Eq.32) obtained with the
transverse projectdP. We furthermore allowed for the gen-
T = (i —j T(k2:p2 g2 eralized tree-level vertex withy+ =1 discussed in(N)
Cula.p)=(a.kp=Tp k)t (%p%a). 30 which does not affect Eq32). This makes the equation for
wherek=p—q as before. We obtain, however, from Eg9) Z;l particularly well suited for an infrared analysis because
with (N1) and (S1), respectively, then the invariant functio(k?; p?,g?), which parametrizes

The undetermined functiof” thereby parametrizes an un-
known transverse contribution to the ghost-gluon vertex
kG'(q,p)=0, of the typical type generally remaining un-
constrained by the Slavnov-Taylor identities,
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the essential part of the vertex, is the only unknown remainSo let us adop€s=0 and concentrate on the possible solu-
ing in the coupled system with the equallrindependent tions with infrared enhanced ghosts from now on.
ghost DSE(13), With Eq. (35) in Eq. (34) we explicitly remove the ultra-
violet divergence and obtain a manifestly finite equation to
_ ) d*q Z(p?G(g?) study the infrared behavior @& in D=4 dimensions for a
3 Z3—g CJ 2m)  KRpP given form of A in the infrared,

X kP(p)kA(p%k2,q?). (34)

4 2 2
d*q [§Z<q ICRIN

=g CJ (9%00%)
- : . G(k?) 2m*l4
We usedZ, =1 for the Landau gauge in these equations. The

ultraviolet divergences of the explicit loop-integrals are com- Z(p?)G(q?)
pensated by the renormalization constatys Z; which we - kP(D)kTA(pZ;kz,qz)] . (36
require to be infrared finite. For the ultraviolet subtractions, k“pq

which are of cours&-independent, one then needs to make

the following distinctions. _ While the ultraviolet subtraction is rather simple wiki%

(i) In DSEs for propagators of massless or infrared en-_, g herein, without this subtraction, a naive infrared analysis
hanced degrees of freedom we can perform the lihit: 0. il be aggravated by the ultraviolet divergences. Thus the
In the present case we expect this for the ghosts, i.e., theafe order of formal steps is to perform the ultraviolet sub-
left-hand side(lhs) of Eq. (34) will approach a finite constant action before the infrared analysis in this case. The opposite
Ce=lim, ;G }(x)<e which can be zero, however. In grder applies for the gluon DSE.

such a case, the renormalization constant can easily be elimi- (jj) |n DSEs for propagators of massive degrees of free-

nated, e.g., here we then have dom or even infrared-vanishing correlations, the explicit ul-
traviolet subtraction is subleading in the infrared, and it can-
~ 5 apy D71 d°q not simply be extracted from the limk?—0. This should
Z3=9°p <D (27)P certainly be the case for the transverse gluon correlations.

The least we expect as a necessary condition for confinement
1 is the mass gap. The horizon condition implies an even stron-
X—Z(q*)G(9*)A(9%04°) +Cg. (35  ger infrared singularity, as mentioned in the Introduction. In
a either case we havé 1(k?)—= for k?*—0 for the lhs in
] ] ) ~ DSEs such as Eq32) or (33). The advantage is that the
We adopted the conventions of dimensional regularizationoefficients of the divergent terms in an asymptotic infrared
with D—4" here, but others may be employed as desired. lypansion can be extracted without bothering with ultraviolet
we assume regularity &in the origin, we can conclude that gyptractions in the first place, since ultraviolet divergences
A(x;0x)—1 for x—0 from (N1). Generally, if A(x;0X)  will only occur at the subleading constant level in this ex-
does not vanish forx—0, then Eq.(39) tells us that pansion. To be specific, inside the ghost loop, the infrared
Z(9?)G(g?) —0 for g?>—0 in the infrared. OtherwiseZ;  enhanced asymptotic forms of ghost propagattegether
would be infrared divergent fob<4. On the other hand, the leading behavior of the ghost-gluon veptesll converge
9°Z(9%) G?(g?) is more and more recognized to be a goodin the ultraviolet. Here the problem rather is to extract the
candidate for a nonperturbative definition of the running counecessary ultraviolet subtraction without introducing by hand
pling in the Landau gauge, see Sec. Ill A. However, thisspurious infrared divergences. This problem had already
definition can only be reasonable if we are able to arrangbeen dealt with in Ref§23] and[22]. What generally needs
matters such that it does not vanish in the infra@@dfact,  to be done in such a case is to reverse the ordéin above
the running coupling must be monotonic to avoid a doubleand to isolate the infrared divergent contributions to the
valued B-function with spurious zergs gluon DSE on both sides prior to the ultraviolet subtraction,
So that withZ(q?)G?(g?)+0 andZ(q?)G(g?)—0 we in order to define an infrared finite renormalization constant
must have infrared enhancement of ghosts. In particulaZs.
Cs=0 in Eqg.(35) and no such constant is then possible ina Assume the coefficients in the infrared divergent terms of
nonperturbative renormalization scheme. the asymptotic expansions for the ghost propagator and the
We can also reverse the logic here, and regagd=0 as  vertex are known as well as the corresponding asymptotic
an additional boundary condition on a set of possible soluforms denoted bya'"" (g%) and A" (k% p?,g%). We can then,
tions to the DSE(34). This then implements Zwanziger's e.g., in Eq.(32) subtract on both sides an ultraviolet finite
horizon condition(9) to select the solution for the restricted contribution of the form,
Faddeev-Popov weight that vanishes outside the Gribov ho-
rizon [35], and that at the same time provides a positive

definite G(k?) >0 [22]. Once this selection is made, how- 1 92NcJ d‘q qP(k)q

ever, it then follows thaZ(q?) G?(q?)— const forg>—0 (in Zik?) 3 ) (2m* k2p2q?

D=4 dimensionswhich is a consequence of the nonrenor-

malization of the vertexN1), as we will show in Sec. Il C. XG"(p?)G"(qH)A" (k% 9%,p?), (37
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which we will actually use to determing} (k%) below, or an  additive constant is possible in E0) and is included in
analogous expression fag(k?) from Eq. (33). In both  the terms not given explicitly here. It can be used to adjust
cases, this infrared subtraction in the gluon DSE has to b#he constanC, in the gluon DSE which is subleading in the

performed up to the necessary order such that infrared, cf., Eq.(38).
To summarize, it should be possible to impose renormal-
1 1 ization conditions on the full propagators to equal the tree

—Cp=const for k*~0. (38 |evel ones at an arbitrargspace-lik¢ subtraction pointk?
=u?>0. To do this, we have two independent conditions at
On the other hand, theindependent constant contribution to OUr disposal which fix the physically insignificant overall
the rhs of the DSE is the one that contains foserall factors in each of the two propagators. For massless tree-
logarithmic divergence which is absorbed in the renormalizaleVe! propagators, we cannot without |053 of generality ex-
tion constanZs. To extract that from the infrared subtracted t€nd this subtraction scheme to include= 1= 0, however,
gluon DSE, analogous to E85) from the ghost DSE iri) since that forced the full propagators to have the same mass-
above, we first rewrite the gluon DSB2), adding a zero via less single-particle singularity. Here, the necessity of a mass

Z(kz) - Zir(k2)

the definition in Eq(37), gap in the transverse gluon correlations entails thafk?)
is infrared divergent, and it is thus impossible to fix a mul-
1 1 g?u* PN, [ d°q tiplicative factor by a subtraction g=0 requiring that
Z3= > i D-1 f 5 1/Z(0) be unity(or any other finite value We can, however,
Zp(k%)  Zp(K) (27) fix this factor by assigning the infrared subtracted (kP)

—1/Z""(k?) atk?®=0 a certain valueC, .

Xw(e(pz)e(qz)A(kZ-qz p?) That sets one of the two conditions available. Of course,
2n2~2 ! ! H
k“p“q the same argument applies to the ghost propagator=a0.

i D miFr D NP2 D 2 In this case, it is because both the Kugo-Ojima criterion and
—GH (PG (@IAT(K%A%p)+ . (39 the horizon condition tell us that the full ghost propagator

should not have the singularity structure of the free-massless
tree-level one. In particular, with G(k?)—0 we cannot fix

the overall factor by subtracting ! at zero. As mentioned
above, this case is different in that a nonvanishing constant
contribution to the ghost DSE would be infrared dominant

also the tadpole, for example, these are of the ordik? in ) ;
the DSE forz=1 . If x>1/2 thev occur at a subleadina order and cannot occur together with the infrared enhanced ghost
b y g correlations. To fix the multiplicative factor in the ghost

in the infrared expansion. Then, this problem is irrelevant for ropagator implicitly. we use the second of the two indepen-
our present study which is concerned about the leading ordeyoPad pAcItl, b

) . dent renormalization conditions on the product of both
only. Moreover, the sum of all quadratically divergent con-
tributions must vanish in the gluon DSE from gauge invari_propagators,
ance. This cannot be seen from the ghost loop alone, how-
ever. All such contributions would have to be maintained to s o 5 !
see this cancellation explicitly before one cankét-0 in G (u)Z(pn)=1, (41)
Eq. (39) to extract the logarithmically divergent contribution
that defines the ultraviolet renormalization constZgt In which can be used to define a nonperturbative running cou-
particular, this is necessary when the transversely projectegling in the Landau gauge as we discuss next.
gluon DSE forZp is used beyond the infrared analysis pre-
sented here. For th®& tensor, leading t&Zy via Eq. (17)
which is free from quadratically divergent contributidds],

A further technical complication arises from the additional
power ofg?/k? which prevents us from taking the naive limit

k?>—0 herein. This problem is due to contributions which
superficially contain quadratic ultraviolet divergences. As

IlI. RENORMALIZATION INDEPENDENT INFRARED

and with the generalized tree-level vert@>ﬁ=G2, to give ANALYSIS
an example without such complication, one readily verifies A. Infrared expansion and renormalization group
that Herein, we adopt the nonperturbative renormalization
2(D—2) dP scheme introduced in Ref§23] and [22]. To review this
Z3=— <—_ 77;7)92/“‘4DNCJ g scheme briefly, recall that the formal solutions to the renor-
D(D+2) (27)P malization group equations for the gluon and the ghost
propagator, e.g., for the latter this is E41) in Appendix A,
1 i can be written in the general forms
T IC2(A2Y TN (212 ,
><q4{G (@) =[G (@) ]F+---, (40) i 0
(tc.9) ,, YA —
. . Z(k?) =ex —2]" dli falo(te.9)], (42
from k?>—0 in Eq.(33) with the analogue of37) for the R () p[ g B Agtc)]. (42

tensor. It is infrared finite by construction, and it gives the
correct perturbative ghost-loop contribution to the gluon _ 0

o . . t, _
renormalization constarts, ultraviolet divergent foD —4. G(K2)=ex _ZJQ( k g)d|7G| fololtag)], (43
Contrary to the ghost DSE renormalization in E85), an g B)
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respectively. Heret, = (In k¥ u?)/2, andg(t,g) is the running The nonrenormalizatiofN) of the ghost-gluon vertex in

coupling, the solution ofl/dtg(t,g) = B(g) with g(0,g)=g theinfrared, cf.Z,=Z7,75Z,=1 which was derived, in par-
and the Callan-Symanzi|g function, perturbatively,3(g) t|cular for a symmetric subtraction schenké=p?=g?
=—Bo9%+O(g®). The exponential factors are the multipli- = u? with u?—0 [50], now entails for the renormalization
cative constants for finite renormalization group transformafactors in Eqs(44) and (45) that

tions (u—pu'), , _(t )
R S )
g M

|Q

] 23 ) Za(p )=

' I
zg(u',ﬂ):exp{—zjg d|7ﬁ’*((|)) , (44)
’ in Landau the gauge, which is equivalent to

-, ve(l) 1
Z3(u aM)—eXPl J di— B(')] (45 2y6(9)+ VA(9)=—§B(9)- (50

with u'?=k? in Egs.(42) and(43), whereya(g) andys(g)  This is, in fact, what allows one to define a nonperturbative
are the anomalous dimensions of the gluon and the ghostinning coupling as introduced in Ref&3] and[22] by
fields, respectively.

The structure of Eq942) and(43) is summarized as fol- ! o
lows. The momentum dependence of the propagator func- 9°Z(n'?)G%(u'?)=9"2=g’[In(n'/),9]. (51
tionsZ(k?) andG(k?) is completely determined by the run-
ning coupling evaluated ak?, which is renormalization It reduces to the unique perturbative definition for large
group invariant, i.e.x independent, sinced(dln,u,)g(tk,g) m, w', is renormalization group invariant, dimensionless,

— . and thus as good as any nonperturbative definition can be.
=[udldp+ al t.,0)=0. We can therefore parametrize : P :
thi[ébmolineﬁgt%)m ?gg(e;g)ence by a function of tfne tiof The fact that no constant of proportionality is involved in Eq.

lizati . iant. d icall (51) implies a specific renormalization condition. It corre-

over a renormalization gr‘;“p invariant, dynamicaily gener'sponds to requiring the condition on the propagators,
ated momentum scalex A gcp.

The u dependence of the propagators, on the other hand, z(,2)—f,(g), G(u?) =fs(g) with f2fa=1,
is then given only by thg=g(u) of the lower bound in the (52)
exponential renormalization factors. We can therefore always
separate these two dependences, thagop) versus that on  which is incomplete, of course, to fix both their values sepa-
k?/a, in Egs. (42) and (43) into multiplicative factors by rately at an arbitraryk?= 2. The perturbative limits are,

conveniently choosing g, such thatu?= o atg=gj, however,f, c—1,9—0, corresponding to the perturbative
momentum subtraction scheme,
g dl
_ .2 _ —
s expl ZJgoﬁ(l)]’ (49 Z(s)=1 and G(u?)-1 59

which, at the same time, definesto be a renormalization for an asy_mptotlcal_ly large Sl_JbtraCt'on. pokt= u?.

group invariant momentum scale as promised. With this so-defined running co_uplmg, by E(RD), the
Via this factorization of the g, ) dependence, we can eXistence of an infrared fixed poirg(t,g)—g. finite for t

now make theAnsatzthat the propagator functiordandG ~ — —, then follows in the Landau gauge to be in one-to-one

have asymptotic infrared expansions to some omdein  correspondence with the scaling law for the leading infrared

terms ofk?/ ¢ involving renormalization group invariant ex- €xponents of gluon and ghost propagation in the féfon

ponents and coefficients, D=4),

2\ €
Z(kz)aexp{—zf dI;A((Il))}E e (k;) , (47)

€0+250=O. (54)

To make this explicit, consider the leading infrared behavior
from Egs.(47) and(48), with the exponential factors therein

expressed by Eq$44) and (45), for k?—0,

N k2
( ; (48)

G(k?)—ex J q e d
(k?) p{ ﬁ(,) JE
for k?/c—0. Here we use a notation similar to that intro-
duced in[54]. We note, however, that our expansion involves K2\ %
the RG invariant scale- while the renormalization scale G(KA—Z d (_) 56
was used irf54]. The difference can be absorbed in a redefi- (K%)= Z5(Jor, ) do o/’ (56
nition of the coefficient®,, d, as we explain in Appendix

A. Most |mp0rtant|y this |mp||e5 that our coefficients Wthh from Eq (49) entails that the infrared behavior of the
e,, d, are also ¢,u) independent. running couplinga(k?)= g2(tk 0)/(4) is given by

k2 €
Z(K?)— Z4( \/;'M)eo(;) : (55)
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) g? R ggeodg k2\ €0t2d To e>.<emplify its influgnce, we wi!! explicitly calculate this
a(k?)=-—Z(k)G (k)= ——| — . (57)  function for the following threeAnsaze
A1 47 \o
2\ n
We therefore introduc&c=géeod§/(4w) in the following. It (i) Air(kZ;pZ,q2):(_2) , (61)
represents the infrared fixed point(k?)— a, for k?—0, q

which occurs exactly if Eq(54) holds. . .
The infrared scaling behavior in E¢54) was first ob- . o, o L[ K k2
served in the solutions to truncated DSEs in RE#€] and e S s + o2 | (62)
[23]. It was recently derived from the ghost DSE in Ref.
[54]. Therein, an additional assumption on the vertex was K\ 2\ "
used which is a bid hocand which is actually not neces- (i) A”(kz;pz,qz):(—) +(_) 1. (63)
sary. In Sec. lll C below, we therefore present an alternative q? p?
derivation of the infrared behavio{54), from Ref. [47], )
which is based on the nonrenormalization, conditia) for !N the form (i) of Eq. (61) the Ansatzdoes not bother about
the vertex alone. ghost-antighost symmetry. For= §,= — «, this form con-
tains the infrared behavior of the nonsymmetric soluti®®)
to the truncated ST(27) for the vertex of Ref[53] as a
special case. In both symmetrized versidins and (iii) one
All we need in our infrared analysis is &nsatzfor the  furthermore has<0 if infrared divergences associated with
invariant functionA which parametrizes the relevant struc- the ghost legs are to be avoided in the ghost-gluon vertex
ture of the ghost-gluon vertex in the Landau gauge. Antici-function. Version(ii) in Eq. (62) yields a finite and constant
pating a conformal behavior in the infrared also for the ver-A(qg?;0,g%) = 1/2, while(iii ) is an example for the possibility

B. Vertex Ansatz

tex, we first write, that A(q%,0,0%)=0. Version (iii) in Eq. (63) for n=8,=
K210 p2| M 2! — « includes the behavior of the symmetric soluti@9) to
A”(kz;pz,qz):<_) (p_) (q_) _ (58) the STI(27) with fT=0 as obtained in Ref22]. All three

o o o versions satisfyN1), of course, and they all reduce to the

tree-level vertex ah=0.
The nonrenormalization conditioN1) for the Landau-

gauge vertex then leads to the constraint, C. Unique infrared exponent from ghost DSE

l+m+n=0, (59 With the general form of ouAnsatz(58) for the relevant
part of the ghost-gluon vertex, we can now extract the lead-
which will be implemented in our analyses throughout. WeiNg contributions in the infrared on both sides of the ghost
will later also allow sums of terms of this form in order to DSE (36). Here, withZ" andG' denoting the leading infra-
explore versions of thidnsatzwhich are symmetrized with 'ed behavior of the propagators as given in E@&) and

respect to the ghost legs. (56), respectively, we first note that
The scaling law for the infrared propagators in E54) ) el 20
then follows for such a sum of tern{§8) via Eq. (59) only it 2 it 290  €do p=| g™
. . Z"pHG(P) = =—F——|—=| |=| . 69
from (N1), as we shall show in the next section. 92 Zo(Jo,u)\ O o

If we require, in addition, thaf\(k?;p?,q%) remain finite
when one of the ghost momenta vanishes, one of the terms ofhere use has been made also of &§) for u’ = o, g’
the form(58) must exist in the sum with either =go. The Ihs of the ghost DSE36) approaches, fok?—0,

2

—1/1,2 -1 -1 k %
G (k)= Z5 (Vo u)ds | —

m=0, I=—-n, or [=0, m=-n. (60)

(65

All other possible terms must then vanish and thus have
>0 or|>0, respectively; and if the finite contribution &  To obtain the leading behavior at smigfl o of the rhs in Eq.
in that limit was to be in itself symmetric with respect to the (36), we replace the undetermined functions in the integrand
two ghost momenta, one would only be leftwAH=1 asin  of Eq. (36) by the from given in Eq(64) and theAnsatz(58)
the tree-level vertex, since theh=m=0. In a ghost- for the leading infrared behavior of the vertex. The differ-
antighost symmetric sum of two terms on the other hand, wence in the integrand between the full functiods, G, and
need one of each kind together with<0 to avoid infrared A, and their asymptotic infrared form&", G'", andA", is
divergent ghost legs. subleading and it produces, upon integration, terms that are
After the infrared scaling54) and the general formulas also subleading in an expansion of the rhs of the DSE. This
for the infrared contributions of terms of the genuine formprocedure is not restricted to the leading infrared behavior. It
Egs.(58) and(59) will be derived, we will assume relations can straightforwardly be generalized for an infrared expan-
as in Eq.(60), in addition. The joint infrared exponertfor  sion to a given order, as long as all integrals in this expansion
ghosts and gluons then is a function of a single critical exremain finite. This is true for the leading infrared forms as
ponentn which is left as an open parameter in their vertex.discussed above. When these are inserted, the integral in Eq.
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(36) converges inD=4 dimensions. The role of the first which is infrared finite foD =4. From now on, we therefore
term in Eq.(36), however, is to just guarantee convergenceparametrize the leading infrared exponents of ghost and
of all necessary integrals at exacBy=4. It is certainly nec- gluon propagation by the joint exponertagain, inD di-
essary for the subtraction of the ultraviolet divergences whemensions,
the full functions with their logarithmic momentum depen-

dences are inserted. Here we only need this term if we insist

on a calculation inD=4 involving convergent integrals in

every step. We can, however, obtain the same result by ana-

lytic continuation of integrals performed iD dimensions. Infrared enhancement of ghosts follows for exponents0
Though this is of course precisely along the rules of dimen~ (D —2)/2 with the upper bound from the temperedness of
sional regularization, this notion might be misleading herejocal fields. In addition, D —2)/4< « for the mass gap in
since nothing is there to be regularized in the first place. It igransverse gluon correlations. Together, this then establishes
adopted here for convenience only. Upon insertion of thghe Kugo-Ojima confinement criterion in the Landau gauge.
leading infrared formg64) and (58), the first term in Eq.  Zwanziger’s horizon condition furthermore excludes equality
(36), in D dimensions, then yields a contribution to the ghostat the lower bound. We thus expect solutions for

DSE proportional to

k2 m qu q2
( d f <2w)D( g | . . . .
Once this exponent is determined, depending on the infrared
which vanishes for an{ in the analytic definition. exponents of the ghost-gluon vertex, from &67) we fur-
Therefore with Eqs(64) and (58) in the integral for the thermore obtain
relevant part of the rhs i dimensions, and with Eq65)
for the Ihs, the leading contributions to both sides of the D—2 DJ2—1
ghost DSE(36) for k?—0 are readily extracted to yield, 2

So=—K, €y=2K+2—DI2. (70)

€0+ g+l +n—2 (D—-2)l4<k<(D-2)/2. (71
(66)

NI P ) 72
k2\ ~ %o k2 egt Sp+D/2—2+I+m+n c'G (x,1,n)
_) :—NC47TO.’C<;

7 where|{?)(k,I,n) is a ratio of ' functions proportional to
d°q (1 )D/ZkP(p)k q2) D/2=1+ 80+ the integral in Eq(67) which we determine next.
f (2mP\ ¢? K \K2
2 1-ep—n IV. INFRARED EXPONENT FOR GHOST-GLUON SYSTEM,
RESULTS

The same procedure that led to E§7) in the ghost case
. . can be applied to the gluon DSE. In this case, we simply
Here,p=k=q again, and we haveqﬂqc=géeodg as Intro- inqert the leading infrared behavior of the propagators from
duced in Eq.(57) %‘iDS,‘;C' IINA; and just as for the usual gqq (55) and(56) and the vertex58) directly into Eq.(37).
replacemeng — gu , the dimension of the coupling for |, 'p gimensions, this then analogously leads to
D+#4 has been taken care of in E7) by replacinggj
—g2027 P2 The resulting explicit exponent of the scale can
be combined with the corresponding exponent of an extra k2\ ~<o
external momentum factor intok{/o)P?~2 which was (;) :Nc477ac(
added to the total exponent of this ratio on the rhs of Eq.
(67). The dimensionless integral therein is written in a form
ready to apply the integration formul81) of Appendix B.  where we used +m+n=0, and again, we conclude the

The result isk independent as we will see explicitly in the rejation for the exponents in E¢68). A comparison of Egs.
next section. Therefore from the nonrenormalization of thg72) and(73) furthermore tells us that

vertex, condition(N1) which impliesl+ m+n=0, Eq.(67)
for the leading infrared contributions to both sides of the
ghost DSE entails that !

(73

K2\ 260+ D/2—2 I(Z?(K,I n)
o

2D7TD/2

1D l,m) =19k, 1), (74)

Thus the infrared behavior of the running coupling from Eq.which determines the values allowed for the exponents,
(57) equivalently follows to be of the form, and «. The two dimensionless integrals in the infrared ex-

pansions of the DSE4) for the ghost and (ZZ) for the

. for K20, (69) transverse ghost-loop contribution to the gluon propagator,

K2\ 2-D/P2
) are explicitly given by

a(k?)— ac< -
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1P,y f d®q [ 1\”ZkP(p)k kP _1( @ o) 1[K p* o
oD D2 (27)P ? K2 K2 2 p2 K2 4\p2 K kp?
D/2—1—k+I D/2—-1-2k—n
X q_2 k_2 (75) qp(k)qzl q_2+p_2+p2q2 _1 1+q_4 p_4
k? p? ’ k2 2k k2 k) 4\T kK
) ol With these in Eqgs(75) and (76), respectively, it is now
1z, (,1,n) f d°q ( 1 qP(k)q straightforward to apply the formula in E¢B1) repeatedly
D D2 bl 2 N L2 with suitable substitutions for the exponenisand 3. For
2 (2m)~1g (D=1)k each of the two integrals this leads to a sum of six ratiok of
9 D2=1=wk=n=l /) 2\ 1Hx-l functions with arguments that differ by integer values corre-
x| = - (76)  sponding to the above six terms with different powers of the
k p momenta in each of the two integrals. After some tedious
applications of thel’s functional identity, these six ratios
To compute these, we first note that can be combined into a single one, to the effect that,
|
r P [r(1+2 r I
o D1 E—K-F (1+2,k+nM)I'(—k—1—n) ,
G (K7 7n)_ 2 D D ' ( 7)
r 5—2K—I’] raa+«-nHr E+1+K+|+n
r b |1 D 2 r b I
o B E—K—}— —5-}— K+n i—K— —n o
2o ) = S R D 2k T (A k=T (A e 1) (

Though these quite general results might look complicated athoosing the internal gluon or the ghost momentum as the
first, in fact, they are surprisingly simple. To appreciate this,integration variable in the loop. Here, both give the same in

consider the following special case first. the first place. The symmetg?«— q? in the integrand on the
Ihs of Eq.(B1) is manifest on the rhs by its explicit invari-
A. Tree-level ghost-gluon vertex ance undera—a'=D/2—p together with 3—p'=D/2

. . . — .
In this section we concentrate on the results in the event The self-

that the ghost-gluon vertex reduces to its tree-level form ir&/ield the same value of the constant, is also implemented
. i _ 0 . i _ L]

the infrared,G,=G,, . This corresponds tA"=1 and, for  qite easily in Eqs(79) and(80). In this case, for the tree-

Zg, the generalized form witlB'" = 7. We thus sef=n level vertex, one derives the condition,

=0 in the general result of Eq§77) and(78), and omit the

consistency conditiofi74), for both DSEs to

argumentd andn here. InD=4 dimensions, this amounts to 12(3—2k)(2k—1)=(xk+2)(k+1). (81)
@ 3 T?(—wl(2k—1)
Ig'(k)==5 (=20 (k—1)T(x+3) (79 This is quadratic ik, and the two possibilities are
2, _ _ 1
,(Z?(K):E (= 0l(2e=1) (80 k= 55(93+ 1200~{0.59535,1.3026 (82

2T2(k—1)T(4—2k)

The result in Eq(79) then agrees with both versions given With one unique root in & «; <1 which we have underlined
for the tree-level vertex in Ref46]. There, another method in EQ. (82). This result was first obtained independently in
was employed leading to a rather complicated form whichRefs.[47] and[35]. The corresponding value ef; is given
consists of sums of confluent hypergeometric functions an®y

which is quite difficult to simplify any further. We explain

this method and the connection to ours in Appendix B, cf., A

Eq. (B1) versus Eq.(B7), in particular. The two different ac=—F7——~2.9717 for N.=3, (83

C
forms for the result in Ref[46] thereby arose from either Nc|(e4)(K1)
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with |<G4>(Kl)=|<z‘g(,<1)~1.4096. It is smaller by this last S

factor than the value ofr,=4m/N, derived from1&)(x) I
=1 for k=1 with the tree-level vertexand alsoD=4) in
Ref.[46]. This disagreement is due to the difference between f
the transverse ghost-loop contributiaglp employed here, :
and theR-contractedZg in Ref. [46]. Our calculation for

Zr, see below, withA=1 and Bz;; for the generalized 160)
tree-level vertex leads to @
— I, ®
Zp
15,00
~(2k—3)
A )= _ _ S T @)
12 (1K) = (4K 2)(1 277’7(,<_1) 1Z2p(). (84) % 03 0a 06 08 1
K

o . FIG. 3. The infrared integral$f”’, 19, and 1y in D=4
For»=1 or O_th's IS .eqUIva.Ient to the sum of 12 confluent gimensjons with the tree-level ghost-gluon vertex, cf., Eg9). and
hypergeometric functions given as the result for the samego) and they=1 case from Eq(84), respectively. The correspond-
integral in Ref.[46]. The D=4 results for the tree-level ing value for the exponent;~0.595 is obtained from the intersec-
ghost-gluon vertex are summarized in Fig. 3. In standardion point of I 4 andlz, as marked by the circle.
Faddeev-Popov theory=1, and transversality of the ghost

loop, 159=15", required k=3/4. In order to tuneZg for {---}=qP(k)qA(k?q?p?)—(D—1)
transversality at the self-consistent value of the tree-level ex- K

ponentx,, on the other hand, we would neeg=1.16 or X (pk2+qk)| | 1+ ax A(k%g2,p?)
—0.16 which appear to be rather unnatural. It is not possible k2

in the ghost-antighost symmetric formulation.
i i ) 4)
Another important difference betwedaﬁp andl, for the —B(k%q2,p?)

tree-level vertex, as seen in Fig. 3 and By, is the obser-
vation thatl {Y(«) has a pole ak=1/2. The gluon propaga- _ .
P The first term on the rhs herein reproduces the result for

tor then necessarily vanishes in the infrared: If it was to (p . . _
approach a constant, one had to have1/2. In this case, IZP (,1,n) from Eq. (76). With tree-level setting#=1, B

however, its constant limit was proportional tol#)l(x) = # one readily verifies E(84).
: , , P The difference between the infrared integral$® = ()

which vanishes fok— 1/2. One thus obtains the strict lower Zp

bound 1/ « for the tree-level case. Zwanziger's horizon —1%, can then be written,

condition is then satisfied. The apparently infrared finite ex-

trapolations from lattice calculations are an open question AD) f dPq ( 1 )D/Z( qz) sz—l—K( k2)1+'<

. (85

still, however.

2D D2 (2m)P\ g2 K2 p2
2 2
B. Infrared transversality X% n—n+ %_ %)
This completes our presentation for the tree-level vertex.
Before we discuss more general possibilities, in particular, P2 g2\ . ’
the casesi)—(iii) in Sec. Il B, we study the constraints from X[ 1+ —=—-—= A'—2B'|. (86)
transversality of the gluon propagator on the vertex in the k® Kk

infrared in this section. Yy ir ;

For the R-contracted infrared contribution of the ghost- 1he order of the arguments A" andB" is the same here as
loop in the gluon DSE, Eq33), we must specify a form for that in Eq.(85) above. The ghost-loc_;p_mteggatlon prOJ_ects
the second, the longitudind structure of the vertex, in ad- ©Nto terms that are overall symmetric i< q?. The anti-
dition. The fact that the leading infrared behavior of the SYmmetric ones vanish upon integration. We use the symme-
propagators should not depend on the choice of studging Y (SD of A and the decompositiolB=B,+B_ into
or Zg can be used to construct an infrared form of (@ntlsymmetric part8.(x;y,z)==B.(x;z,y) for B again,
B(k2,p2,g%) analogousA” in Eq. (58). and sort out the symmetric part of the integrand in ).

First, we express the integrand in E@3) for Zg in terms |t vanishes if
of that for Zp in Eq. (32) plus a correction term which, for a

givenAnsatz A, is required to vaniskat least upon integra- (7= A" (k%02 p?) = (7— 1)2B (k% 02,p?),
tion). For the four terms in the curly brackets in £§3), this
leads to and
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22 . (k=D k(k+1)(k+2)=—3(N+2k)---(N+2k—3).
p2k2q A" (kg% p?)=B" (k*q%p?). (87) (90)

' . . The four real roots to this equation are shown #oin [ 0,1]
The first condition shows thatB =A'" for »# 5. In the in Fig. 4 on the left.

symmetric casez= = 1/2, no such restriction is implied 4The top branch, with £n<3, leads to negative’ and
here, but the same relation is then given (82), see Sec. |(zp) Both propagatorsZ(k®) and G(k?), then necessarily
Il A above. Therefore Eqg24) and (25) of Sec. Il Afollow  had zeros at some finit€, and it resulted thai,<0 (equal-

as sufficient conditions for infrared transversality indepen-ty at the boundsi=3,1 for k=0,1). We therefore rule out
dent of ». Without turning them into necessary conditions this solution as being unphysical.

this is a rather trivial result. As we showed in Sec. Il A, the  Also, we are particularly interested in solutions with at
conditions in Eqs(24) and (25 imply that the vertex itselfis  most weak singularities in vertex functions and require there-
transverse in the infrared. This is always a possibility to warfgre In|<1. This is the case for the next branch witk:f

rant infrared transversality, however. The necessary condi<2 provided 0.4222 «. This branch will no longer exist

tion is A(D_)IO. . _ after symmetrization with respect to ghost-antighost mo-
The point here is to demonstrate that, apart from possiblgnenta[see casii) below], however.
accidental cancellations, e.g., with tuning=1.16 for the For the bottom branch with€@n< — 2, the restriction to

tree-level case of the last section, for genepalthere are  weakly singular vertices;- 1<n leads tox<0.4767. With
really no possibilities left other than infrared transversality ofthis solution, it is therefore impossible to obtain the mass gap
the vertex itself. In particular, we should be allowed toin transverse gluon correlations, for which €.&. Further-
choosez such asp=1 for the standard linear-covariant or more, it does not survive the symmetrization(ip) either.

n=1/2 for the ghost-antighost symmetric case. We might For the branch that includes the tree-level result, that with
then further say that we are not interested in contributions t¢\(«,)=0, the critical coupling from Eq(72), with D=4

the vertex which themselves vanish upon integration in Edand N.=3, is shown as a function of in Fig. 5 (dashed
(86) for A(P). Up to such irrelevant contributions, which nei- line). Its maximuma '~ 2.9798 occurs ak~0.6174. It is
(25 and thus the transversality of the vertex in the infrared< 9717 given in Eq(83).
are also necessary conditions for the infrared transversality caseii). This case corresponds to a sum of two terms,
of the gluon correlations in the Landau gauge independent qfne withm=0 andl = —n as in casdi) above, and the other
7 with | =0 andm= —n. Since the ghost-loop contributidgp
) is manifestly symmetric ip2— g2, this symmetrization only
C. Bounds on the infrared exponent affects the infrared contributioh to the ghost DSE, and we

We now go back to the general results given in EGg)  can therefore write
and (78). With these results for the necessary infrared inte-

grals it requires little effort to explore infrared forms | n E} D —nm+19Dx0n 01
Al"(k?;p?,g°) other thanA'" = const for theA structure in the c(xn) 2( 6 (1, =N,M) +1g°(x,00)), (91)
ghost-gluon vertex. First, in four dimensions, the self-

consistency condition in Eq74) for these integrals leads to IZP(K,n)EI(Z‘L)(K,—n,n). (92)

+n+xk— +n+ +n+x+ +n+x+
(#n+e=D)+n+Old+nt et D+ntx+2) The self-consistency conditiolra;(K,n):IZP(K,n) can now

be used to obtain

=—-3(N+2k)(N+2xk—1)(N+2k—2) (k—=1)- - (k+2)(N+k—=1)---(N+Kk+2)
X(N+2k—3). (89 (k=1)- - (k+2)+(n+k—=1)---(N+k+2)
This then corresponds to tiasatzfor the vertex as given in L3
Egs. (58) and (59 with only condition (N1) being imple- - 5(N+2k)(N+2k—1)(N+2k—2)
mented at this stage. It is the starting point for the discussion
of the three special cases introduced in E@d)—(63) of X(n+2k—3). (93
Sec. Il B.

Case(i). Here, we simply need to set+1=0. We then  This equation has eight rootg ) which, in general, come
obtain form(88) for the possible solutions to E¢Z4) which  in complex conjugate pairs. The real roots foin [0,1] are
here reads, shown in Fig. 4 on the right.

One discovers that two out of the originally four branches,
from case(i) above, are almost unaffected by the symmetri-

!
Ig‘)(x,—n,n)=l(z‘2(:<.—n,n). (89  zation employed here: These are the unphysical one at the
top, with 1=n<3 and much the same.<0, and the one
the quartic equation to, e.g., determiméx), connected to the tree-level result, witi{«x;,)=0 for «;
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K

FIG. 4. Roots without symmetrizatiafteft), real roots with additional symmetrizatigright).

=(93— /1201)/98. Superimposing both results for the latter,same time, it seems quite encouraging that this branch, the
with and without the symmetrization, the corresponding so-only physically relevant one, is practically unaffected by the
lutions n(«) turn out to be almost indistinguishable in the Symmetrization.

whole range &< «<1 on the scales of our plots. A little bit
more appreciable, but not very significant still, are the differ-
ences in the corresponding values fef as compared to
each other in Fig. 5. For the symmetric soluti@olid line)
the maximum occurs at the value for the tree-level vertex,
ag®=a¢(k,), at which both solutions intersect. As ex-
plained in Sec. Il B, if we furthermore require the vertex-

Case(iii). In this example, the infrared behavior of the
ghost-gluon vertex as given in E(3) is such that it again
satisfies the conditioneN1), from nonrenormalization, and
(S)), from ghost-antighost symmetry. In the limit where one
ghost momentum vanishes, one now ha&?;q%,0)=0,
however. We will see that this has no dramatic consequences
either on the physically interesting solutions found in the

structureA to have no infrared divergences associated withfange(94) above.

the ghost momenta, we must hawe<0 for the ghost-

Here, by the same arguments as in cdige we can now

antighost symmetric vertex, in addition. Therefore we carfxpress the leading infrared integrals in both DSEs,

find physically acceptable solutions in the range
ki=k<l and Kadk)<aiky), (94)

correspondingly, with the values;~0.59535 andw.(«)

le(r,m) =1k, —n,n)+15(x,0n)—18)(x,0,0),

Iz, (k,m) =215k, —1,n) = 157(x,0,0). (95)

~2.9717 for the bounds as obtained, respectively, from Eqspye 1o the (=n=0) contributions herein, which arise from

(82) and (83) with the tree-level or regular vertex.

the tree-level terntwith negative sighin Eq. (63), it is gen-

For completeness we mention that the new branch for th%rally no longer possible to derive the solutionsl i x,n)

symmetrized vertexii) with —1.2<n<0, with possibly in-
teresting solutions—1<n for «<k,, leads to a,<O0
throughout, and this is also the case for the bottom branc
with n<—2.

In the range of particular interest, ¥2«<<1, we are thus
left with the branch of solutions including(x,)=0 as the
only one witha.>0 after the symmetrization ifii). At the

e
3

25
2

1.5
1

0.5

0.2 04 0.6 0.8

FIG. 5. The critical value of the running coupling over the in-
frared exponeni for case(i) (dashedl and casdii) (solid).

=IZP(K,n) as the roots of simple polynomials. Searching the

Rhysically interesting range of parameters numerically, start-
ing from the known solution fon=0, «= k;, we obtain the
dashed curve fon(x) as compared to the corresponding
branch for caséii) in Fig. 6. Again requiringh<0 to avoid
infrared divergent ghost legs, we find that the solutions in the
two cases are remarkably close to each other with<<n

<0 for k;<k<1, and again we find that— —« in the
limit k—1 in which a.—0 in all three cases, however.

One might think that another solution with=0 exists for
x=1/2 and the caséii) vertex. Since that could have im-
portant implications, we note here that this is actually not the
case. We know thdtzp in Eq. (95) reduces to the form for
the tree-level vertex at=0, which does not lead to a solu-
tion in four dimensions, cf., Fig. 3. The fact that the dashed
line in Fig. 6 appears to approach-0" for k—(1/2)" is
explained as follows. For sufficiently smail=e¢, we find
from Eq. (95) that

| 1 1 1
zp(K1 €)= k—(1—e)2 2 k—1/2]"

1
K— =

for 5
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-04

-0.6

-0.8

-1

0.6 0.7 038 0.9 1

FIG. 6. Solutionn(k) for case(iii) (dashedl compared to the
tree-level branch of cas@) (solid) in the range 1/2 k<1, both
with n(«x;)=0 at k;=(93—+/1201)/98.

FIG. 8. The value ofe, in the range 1/2 k<1 for all three
cases(i) (long dashey (ii) (solid), and (iii) (short dashed

is dominated by two nearby poles with opposite signs. Thereted enhanced. This infrared enhancement will persist for the
fore for arbitrarily small but finitee>0 the pole atc=1/2in  ghost correlations between their vertices, i@—m-I

the contribution from the last term, the negative of that in the<1. Above the upper bound, the infrared divergences be-
tree-level vertex case, will always lead to an intersection juscome too severe for the description in terms of local fields.
above k= 1/2 with 15(x,0) which approaches a constant For the cases with the ghost-antighost symmé®y) of
(corresponding to the valuem[315(0.5,0)]~2.62 in Fig. Landau gauge, we obtain from this restriction the upper
8). Forn=¢=0 on the other hand, both poles coincide andboundn<(1- «)/2<0.25 forx<1/2. This, however, leaves
their residues sum up to that of the tree-level case which i#ist enough room that it alone does not rule out the solutions
now positive, and thus, the intersection point then disapwith positiven found for 1/2< k<« in case(ii), as seen in
pears. This is confirmed also numerically and demonstratefig. 6.

in Fig. 7.
of course, if we relax the conQitionsO, we can have V. SUMMARY AND CONCLUSIONS
self-consistent solutions also for infrared exponestsxk,, . _
including those fork = 1/2 in casegi) and (ii). At the same The Dyson-Schwinger equations of standard Faddeev-
time, this leads to a singularity ia(k?; p2,q?) asg?—0. Popov theory in the Landau gauge, when supplemented by

Negativen on the other hand leads to an infrared diver-additional boundary conditions, can be derived as an ap-
gence associated with the gluon leg. However, as long agProximation to the time-independent diffusion equation of
—n< « this is overcompensated by the gluon propagator atstochastic quantization which is vah_d nonperturbatm{@&ﬂ.
tached to that leg becaus®k?) ~(k?)2~. For n=—« an The nonconservative part of the drift fprce that is ne_glected
effective massless particle pole would be left in a gluon exin this approximation cannot be described by local interac-
change between two vertices, D ,,(K)G,~ 1K2. In all so- tions. The effect of this part will _have to be |_nvest|gat_ed in
lutions we report heren——« for a.—0 (both from the future. It may well be responsible for the kind of “Gribov

above. Therefore this limit cannot be reached, since then, afioise” observed in lattice calculations.

least one of the leading infrared coefficientsor e, in the Here, we studied a slightly more general definition of the
propagators vanishes which contradicts the assumptions, ckandau gauge as a limit of a wider class including nonlinear
Egs. (55)—(57). covariant gauge$52]. This limit is controlled by an addi-

No such compensation occurs for divergences associatdipnal free parametey in the tree-level vertexwith =1 in

with ghost legs. The ghost correlations are themselves infrd=addeev-Popov theoryin particular, we find that nonrenor-
malization of the vertex in a symmetric subtraction scheme

Bron and infrared transversality of the gluon propagator in Landau
125 b0 gauge can only go together with the manifestly ghost-

0} antighost symmetric choice=1/2. In the light of the recent
: progress connecting the linear-covariant gauge with time-

AN independent stochastic quantization, the ghost-antighost
3 PP symmetric Curci-Ferrari gauges might therefore also deserve
25 Hi i rrrerranan, to be reconsidered for similar connections.
i K Optimistically assuming that perfect sense can be made of
" 0.52 0.54 0.56 0.58 0.6 . . .
25 [ Dyson-Schwinger equations nonperturbatively some day, we

studied the infrared critical exponent and coupling for gluon
and ghost propagation in the Landau gauge in quite some
FIG. 7. Iz (k,n) (dashedl for several small valuesn generality. We gave two reasons for assuming ghost domi-
={0.01,0.006,0.003andn=0 over the infrared exponertin case  nance, the Kugo-Ojima criterion for confinement and the ho-
(iii). The intersection witH 5(«,0) (solid) nearx=1/2 disappears rizon condition to restrict the measure to the first Gribov
for n=0. region, and implemented this as a boundary condition in our

-5
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infrared asymptotic discussion of the DSE solutions. Central APPENDIX A: GHOST RG EQUATION REEXAMINED
to an understanding of the infrared exponents for gluon and

ghost propagation in Landau gauge then is a knowledge q-fzef. [54] for the ghost propagator with some minor correc-
their vertex. Assuming it has a regular infrared limit, we yons These corrections do not affect the main conclusions of
obtainx=0.595. For the ghost-antighost symmetric vertices,paf [54] as far as we can judge. The correct versions, in
this value maximizes the critical coupling.(«), yielding particular, of Eqs(8)—(11) in Ref.[54], are necessary, how-
ag¥~2.97, as summarized once more ferbetween 0.5 ever, in order to establish the equivalence of their asymptotic
and 1 in Fig. 8. For largek the vertex acquires an infrared infrared expansion and the one adopted via @8) herein,
singularity in the gluon momentum, smaller ones imply in-which is a minor variation of the expansion techniques de-
frared singular ghost legs. veloped previously57-62,22.

Quite encouragingly, numerical solutions to truncated First, recall the RG equation for the ghost propagator
Dyson-Schwinger equations have recently been obtaine@(k?)=G(k? x?), in this form also given in Eq(6) of [54],
with the infrared behavior of the regular vertex, as derived
here, for the whole momentum range up to the perturbative i+,8(g)i—ZyG(g))G(kz,,uz):O. (A1)
ultraviolet regime and without one-dimensional approxima-
tion in Ref.[55].

An important detail in all our considerations is the non-
renormalization of the ghost-gluon vertex in the Landau
gauge. Derived from standard Slavnov-Taylor identities it is
one of the arguments that hold at all orders of perturbation k2, u?)= 2 d’ (g)
theory. That it is also true nonperturbatively, however, is an-
other additional assumption. It is therefore quite important
and interesting that this has been assessed and verified witiff"® denoting the coefficients [&4] as the primed onesl,,
the numerical errors in calculations using the Landau gaugI&p distinguish from those in Ed48), we first obtain
on the lattice[56]. Calculating both propagators simulta- ad! 95,
neously, this study furthermore appears to confirm a unique g(g) —+d |n(k2/,u2) ) 2d, (5, + vs(9))=0,
exponent for the combined infrared behavior of gluons and 99 99
ghosts for the first time in a lattice calculation implementing (A3)

the Landau gauge condition. Also, for & this study re-  at variance with Eq(8) of Ref. [54] in two minor ways[by
ports preliminary values o that are fully consistent with  the factor of 2 and the sign of the;(g) term]. Nevertheless,
the results obtained here somewhere near the maximumith their conclusion that therefor@s,/dg=0, we find for
g ®=(4m/N:)0.71~4.5 forN.=2. It will be very interest-  the coefficients
ing to see the final errors, so that we will be in the fortunate
position to restrict further the range of bath and . At the ady _ 2(30+v6(9))
moment, the combined evidence seems to indicate that the g B(9)
result will be somewhere in the range around 0.5 and the
maximum nearx=0.6. Unfortunately, with this conclusion the general solution of which takes the form
the question about an infrared vanishing versus finite gluon
. : : , 92(5n+ vs(1))

propagator must therefore remain open, for the time being. dn(g)ocexpf —— =2 77 dl. (A5)

Note addedP. Petreczky kindly reminded us of the lattice B
Landau gauge results for the three-dimensional gluon ProParpis however, is incompatible with E¢@) of Ref. [54],
gator of Refs.[40] and [41]. We gratefully acknowledge
communications with him on their results. From communi- d/ (g)=consty~2(%n* 76)/276* 7a, (AB)
cations with A. Davydychev, we learned that we might have
inadvertently given the impression to consider form(84) In particular, since we just noted that the exponehtareg
as new in any sense. This is not at all the case. The 2-lintndependent, they are either zero or one would ngég)
derivation in Eqs(B2) and(B3) below is given for the con- = —consiX g to obtain Eq.(A6) from Eq.(A5). By virtue of
venience to the reader. He furthermore points out that relaEd. (50), 8(9) = —9(2ys+ ya) ~ —0, this would imply that
tion (B13) follows from Eq.(11) listed on p. 534 in the tables 27Yc+ va is g independent. If we would then conclude in

of Ref.[70]. We gratefully acknowledge this information. ~ addition that bothys andy, areg independent, only then we
would obtain Eq.(A6) from Eq. (A5).

Note that such a behavigs(g) ~ — g, though in principle
possible in the infrared, would not lead to a fixed point and
thus contradict the other results [#4] as we discussed in

We gratefully acknowledge discussions and communicaSec. 11l A above. Not restricted to such a specific behavior,
tions with R. Alkofer, C. Fischer, K. Langfeld, F. Lenz, J. M. here we go back to the general form of tthein Eq. (A5).
Pawlowski, A. G. Williams, and D. Zwanziger. First, remember thag=g, for u?=o. In this case, the ex-

We repeat the renormalization groRG) analysis of

The formal solution to this equation is given by Hg.3).
With the infraredAnsatzin the form of Eq.(5) in [54],

Py
: (A2)

2

dy, (A4)
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ponential factor in our expansio@8) becomes unity, and 1 I'(D/2—v)
Egs.(48) and(A2) agree. Thusl,,=d/(go), and we can split
the solution to Eq(A4) for d;, with this initial condition into
factors as follows:

d/(g)=d p[25 Jg d } p[Z gyG(l)on} (A7)

g)=d,ex ——lex —dl}.

n n n goB(I) o B(I) f qu i D/2 q_z)a k_2
The first exponential factor herein, with E@6), is equal to (2m)°P\ g? k?) \ p?
(u?lo)n, and can be used to replag€— o in Eq. (A2).

(qz)y:477TD/2F('y)f dDX(XZ)yiDlzeiiqx (BZ)

for the two factors in the convolutiofwith the powery
given byD/2— a and 3, respectively, one thus obtains

The last exponential in EqA7) is the same overall factor 4P T(a)l(DR2-B) [ d°x K252 g KK
determining the ¢, ) dependence of the ghost propagator _(ZW)D I'(B)I'(D/2—a) (Xz)Dlz( x5 e
as in Eq.(48). Substituting Eq(A7) into the expansioifA2)
of Ref.[54], one obtains, (B3)
Equation(B1) then follows from a further application of the
k2\ on Fourier transformB2) herein, now withy=8—a.
G(K? u?) EXP[ f ,3(|) ]Z d ( ) , (A8) Alternatively, we can do the integral in E@1) which we
% denote henceforth byy(a,B) in a straightforward though
which agrees with the RG invariant expansion of E8). less elegant way by first performing all but one of the angles

of the polar coordinates iB-dimensional momentum space,
APPENDIX B: TWO WAYS TO DO THE D-DIMENSIONAL

INTEGRALS B K(D) DJ qu q2 @ 1
The basic formula we employ for the infrared analysis in fola,f)= (27 )D 2) P B[(D—1)/2,1/2]

Sec. Il involvesD-dimensional integrals of the following

form which converge for Ref)>0, Re(8—a)>0, Re(B) 1 K2\ *#

<DI2: f dZ(l—zz)(D‘"””( —2) : (B4)
d°q [ 1 2| K2\ where K(D)=2#P"?[DI'(D/2)] is the volume of the

f (—) (—) (—) D-dimensional unit ballp?=qg?+k?—2kqz and the Euler

(2mPlqg? k?) \p? beta function is given by

1 T(T(DR2-BT(B-a)
= 20,02 T(B)T(D/2— a)[ (DI2+a—B)’

(B1) X
B[(D—-1)/2,1/2]= f dtt~ Y31 —1)P-3)2
0

where p=k=+q and an explicit factor K*)#~ ¢ was intro-

duced to render the integral dimensionless. This is a textbook _ fl dz(1—72) (-3 (B5)
formula, cf., Eq.(2.5.178 in [63]. For a simple derivation '

with the general exponenf§4] one observes that the lhs of

Eg. (B1) is a convolution integral which reduces to an ordi- For the azimuthal integration in E¢B4), the formula 2 in

nary product upon Fourier transformation. Using 3.6650f Ref. [65] can be used to obtain,
o a—p 2
K(D) D kadq q D D g fmdqz q? D D k
fola,B)= = Fil B.B—=+tLl=;—= |+ | —|—= Fi| B.8—=+1=;,—
p(a.,p) 2mP0 2| )o@ 2 21ﬁ3 > 2032 g | K2 2Fa| BB—5 2’ ¢
_ 1 fldx o By F D 1_D_ 86
_ZD’TFTF(D/Z) 07(X HXPTO R BB 5+ 150X (B6)
= ! ! F b 1 D 1;1)+ F D 1 D 1;1
= 0P (prz) a2 B.B= 5 tlaz,atl; a2 BB=5tlp-a5 . frat
(B7)
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where for the last step the following integration formula for Many more relations of this kind, including less known ones,
the generalized hypergeometric functions led to the final reare listed in the tables on hypergeometric functions of Ref.
sult in Eq.(B7): [70]. We originally thought it might be interesting to note
that the two ways to calculatl,(«,) leading to the rhs of
Egs.(B1) and(B7), respectively, allow one to devise some of
these additional relations. For example, by simple re-

namings, a comparison of the rhs in E¢B1) and (B7)
X({a,y+1}h{b,y+2}1), (B8  yjelds,

which is most easily derived foy>—1 (see, e.g., the ap- 1
pendixes of Refs[46] and[47]) from the power series ex- 53F2(a,a+ b,a+b—c+1;c,a+1;1)
pansion for the generalized hypergeometric functions,

1 1
J'O dxxprq(a;b;x) =Mp+ 1Fq+1

1
o (a)y - (ap)y 2" + EsFa(batbatb-ctlcbt1;l)

Fa@bD=2 G5 g ®Y
I'(a)I'(b) I'(c)I'(c—a—b)
by noting the relation, " TI'(a+b) I'(c—a)'(c—h)
1 1 (y+1), =B(a,b),Fi(a,b;c;1). (B13)
N+l y+1(y+2), (B10
Y Y Y n This formula follows with replacingb—a+b, 1-c—c
for the Pochhammer symbols, —a—b, andd—c upon rearrangement from E¢L1) on p.
534 in[70], and our presentation here seems obsolete now
I'(a+n) [71]. At least, the equivalence of the results from the infrared
(a n=w- (B11) analysis of DSEs in Ref46], to the expressions in Eq&.9)

and (84) with »=0 for the tree-level vertex case of Sec.
For other general properties and a variety of relationdV A is explicitly established in this way. The second proce-
amongst the different hypergeometric functions, e.g., sedure to calculate integrals suchfas «,8) was thereby used
Refs.[66—69. A well-known one, for example, expresses in Ref.[46]. Each of the results therein are readily expressed

the Gauss series as a ratio of gamma functions, in terms of one simple ratio of gamma functions when using
T(c)T( b) the relations presented in this appendix. Though equivalent
c)'(c—a— _
oFi(a,b;c;1)= B12 ©EQ (B7) of course, use of EqB1) thereby is far more

I'(c—a)l'(c—b)’ convenient for all practical purposes.
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