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Chiral condensate and short-time evolution of„1¿1…-dimensional QCD on the light cone
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Chiral condensates in the trivial light-cone vacuum emerge if defined as short-time limits of fermion propa-
gators. In gauge theories, the necessary inclusion of a gauge string in combination with the characteristic
light-cone infrared singularities contain the relevant nonperturbative ingredients responsible for the formation
of the condensate, as demonstrated for the ’t Hooft model.
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I. INTRODUCTION

The triviality of the light-cone vacuum is the origin o
most of the simple properties of field theories if quantized
the light cone~for a recent review, see Ref.@1#!. For purely
kinematical reasons there is no distinction between
ground state of free and interacting theories. In view of
many physical consequences usually attributed to non-tri
vacua, this has raised considerable concern about the eq
lence of light-cone and equal-time quantization schem
While for bosonic theories the common belief is that the k
lies in the constrained zero-mode dynamics@2#, in fermionic
theories a way out of this apparent contradiction has b
sought in prescriptions for regularization of the diverge
condensates such as the ‘‘parity invariant’’ regularization
lating IR and UV cutoffs@3,4#. It is doubtful that universal,
kinematical prescriptions exist that describe the formation
condensates in theories such as gauge theories where
symmetry breaking is not tantamount to fermion mass c
ation. In the present work, the proposal@5# to define order
parameters as vacuum expectation values of product
Heisenberg operators, infinitesimally split in a light-co
time direction ~in addition to a space direction! will be
shown to yield the correct condensate in~111!-dimensional
QCD (QCD111)—the ’t Hooft model@6#. Unlike in standard
quantization, the short-time limit of Heisenberg operat
differs non-perturbatively from the corresponding Sch¨-
dinger operators. This connection between condensates
the non-triviality of the singular behavior of correlation fun
tions at short light-cone times will be the focus of this wor

The condensate of the ’t Hooft model has been evalua
in @7,8#. These studies make use of general relations betw
properties of the excited states and the condensate, deriv
standard quantization~the Oakes-Renner relation and su
rules!. Here we will present a direct calculation of the co
densate which makes use explicitly of the triviality of th
light-cone vacuum on the one hand and the non-perturba
nature of the short-time limit of light-cone correlation fun
tions on the other.

II. CONDENSATE AND SHORT-TIME EVOLUTION

We define the condensate with respect to that of the n
interacting theory,
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^c̄c&5 lim
«→0

@^c̄c&«2^c̄c&«
0#, ~2.1!

with

^c̄c&«5^0uc̄~«!Peig*0
« dxmAmc~0!u0& ~2.2!

regularized in a gauge-invariant way. For evaluating
point-split condensate~2.2!, we first consider a generic ma
trix element of the type

M ~«!5^0uA~«!Peig*0
sds8(dxm/ds8)Am[x(s8)]B~0!u0& ~2.3!

wherex(s) is a straight path withx(0)50 andx(s)5«. By
shifting the argument of the gauge fieldAm and using trans-
lational invariance of the vacuum, we can representM («) as

M ~«!5^0uA~0!W~s!B~0!u0& ~2.4!

with the point splitting now specified by the operatorW(s)
~momentum operatorPm),

W~s!5e2 i«mPmPeig*0
s ds8(dxm/ds8)Am[x(s8)] . ~2.5!

Differentiation with respect tos,

dW~s!

ds
52 i

dxm

ds
@Pm2gAm~0!#W~s!, ~2.6!

and integration of this differential equation with the initi
condition W(0)51 allows one to simplify this expression
yielding

W~s!5e2 i«m[ Pm2gAm(0)]. ~2.7!

With this form of the operatorW the chiral condensate of Eq
~2.2! is seen to be given by the space-time evolution o
system of light quarks coupled with the current of an in
nitely heavy quark. Thus, on the light cone with its kinema
cal vacuum, the dynamics of a heavy-light quark system
termines the chiral condensate. So far, everything is ra
general and applies equally well to QCD in four dimensio
We now specialize to the ’t Hooft model@6# and write Eq.
~2.2! as
©2002 The American Physical Society02-1
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^c̄c&«5^0uc̄ i~0!~e2 i«1Heff! i j c j~0!u0& ~2.8!

with the effective Hamiltonian in light-cone gauge (A2

50),

~Heff! i j 5~P11lP2!d i j 2g@A1~0!# i j . ~2.9!

We have denoted the slope of the path,«2/«1, by l and will
take«1 andl as independent parameters from now on; d
to the subtraction of the free value, the condensate will t
out to be independent ofl. P1 andP2 are the Hamiltonian
and momentum operator for the ’t Hooft model, respective

For evaluation of the chiral condensate, we represent
spinorc in terms of the unconstrained right-handed comp
nentw,

c~x!5
1

21/4S 1

m

iA2]2

D w, ~2.10!

and find~after Fourier transforming the fermion fields!

^c̄c&«5E dp

2p

m

p
C~p,«1! ~2.11!

with

C~p,t !5E dq

2p
^0uw i

†~p!~e2 iHeff t! i j w j~q!u0&. ~2.12!

In order to compute this correlation function we derive
equation of motion. In

iĊ~p,t !5E dq

2p
^0uw i

†~p!~Heffe
2 iHeff t! i j w j~q!u0&,

~2.13!

we treat the two terms ofHeff @cf. Eq.~2.9!# separately. In the
first term, the product of the operators (P11lP2) and
w i

†(p) can be replaced by their commutator. In the largeN
limit, this commutator generates a combination of the qu
self-energy and momentum where, following ’t Hooft
original paper@6#,

^0u@w i
†~p!,P11lP2#5S mr

2

2p
1lpD ^0uw i

†~p!,

~2.14!

with the self-energy given in principal value prescription

mr
2[m22

Ng2

2p
. ~2.15!

The right-hand side of Eq.~2.14! combines with the remain
der of the matrix element in Eq.~2.13! to yield againC(p,t).
The term proportional toA1(0) in Heff can be expressed vi
the Poisson equation in terms of the fermion color cha
density:
12500
e
n

.
e
-

k

e

@A1~0!# i j 52
g

2 «
dp8

2p

dp9

2p

w j
†~p8!w i~p9!

~p82p9!2
. ~2.16!

With this result, Eq.~2.13! can be simplified by replacing in
the largeN limit the operator

w i
†~p!w i~p8!→2pd~p2p8!Nu~2p! ~2.17!

by its expectation value. Here the triviality of the light-con
vacuum is explicitly used. Choosing units such that

Ng2

2p
51, ~2.18!

factoring out a step functionu(2p) from C(p,t) and chang-
ing p into 2p, the time evolution ofC can finally be cast
into the form of a typical light-cone Schro¨dinger equation:

iĊ~p,t !5S m221

2p
1lpDC~p,t !1

1

2p
C~0,t !

2
1

2 «0

`

dp8
1

p82p

]C~p8,t !

]p8
. ~2.19!

This evolution equation forC(p,t) at short times togethe
with the initial condition@cf. Eq. ~2.12!#

C~p,0!5N ~2.20!

determines the condensate. We note that

iĊ~p,t50!5NS m2

2p
1lpD .

For non-interacting fermions,

C0~p,t !5N expH 2 itS m2

2p
1lpD J ~2.21!

solves the evolution equation with the correct initial con
tion. Due to the presence of singularities,C(p,t) deviates
significantly for arbitrarily small times from its initial value
N. Characteristic for the short-time light-cone dynamics
the infrared singularity which implies

lim
t→0

C~0,t !50Þ lim
p→0

C~p,0!. ~2.22!

The short-time behavior for large momenta is the same in
interacting and in the free theory. It is therefore irrelevant
the evaluation of the condensate and we drop in the follo
ing the ultraviolet regulator,

l50. ~2.23!

In this case the evolution equation simplifies significan
due to the underlying covariance. We note that withC(p,t)
also C(lp,lt) satisfies the evolution equation~2.19!. Fur-
thermore, ifC(p,t) satisfies the initial condition~2.20!, so
does C(lp,lt). Assuming that the initial value problem
~2.19!, ~2.20! defines a unique solution, we conclude that
2-2
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C~p,t !5C~lp,lt !, ~2.24!

which implies

C(0)~p,2 it!5NK(0)~p/t!, ~2.25!

where we have switched to imaginary time.@In the original
units before implementing Eq.~2.18!, the scaling variable
corresponds to the dimensionless quantity 2pp/Ng2t.# With
Eq. ~2.25! the time evolution is converted into the integr
differential equation

q
dK~q!

dq
5

m221

2q
K~q!2

1

2 «0

`

dq8
1

q82q

dK~q8!

dq8
~2.26!

and the asymptotic behavior ofK(q) is determined by the
initial condition for C(p,t),

lim
q→`

K~q!51. ~2.27!

We can also determine the infrared behavior ofK(q). Using
results for Hilbert transforms of powers~cf. @9#! it is seen
that for smallq

K~q!;qb0 ~2.28!

wherebn denote the solutions of the ’t Hooft boundary co
dition

pq cotpq512m2 ~2.29!

ordered according to

q56bn , n50,1,2 . . . with bnP@n,n11#.
~2.30!

Thus the ~confining! interaction in the ’t Hooft model
changes the essential singularity ofK0(q) of the non-
interacting theory

K0~q!5e2m2/2q

to a branch point. This remarkable phenomenon is due to
presence of the gauge string in the correlation funct
C(p,t).

For the general case, we have not been able to expres
solution of Eq.~2.26! via the Mellin transform~see below! in
simple terms. In the chiral limit (b0'A3m/p→0),
12500
he
n

the

C~p,2 it!'N~p/t!b0u[12(p/t)] .

It can be verified that Eq.~2.26! is satisfied up to terms o
O(b0). This expression displays the subtleties of thep,t
→0 limit. It reproduces in the chiral limit the exact value fo
the condensate~see below!, i.e., the condensate is directl
connected to the change in the infrared singularity of
quark propagator.

As a consequence of the light-cone singularity in the
frared, determination of the short-time behavior ofC(p,t)
requires a non-perturbative calculation of the functionK(q).
In terms ofK (0)(q), the condensate is written@cf. Eqs.~2.1!,
~2.11!# as

^c̄c&52N
m

2pE0

`dq

q
@K~q!2K0~q!#. ~2.31!

Due to the scaling property~2.25! the dependence on th
regulator«1 has disappeared entirely from the expression
the condensate. Since the scaling variableq and the function
K are boost invariant, Lorentz invariance of^c̄c& is mani-
fest.

III. CALCULATION OF THE CONDENSATE

We now briefly sketch the evaluation of the condensate
the Mellin transformation of the equation forK. The tech-
niques developed in@10# will be used. We define

g~k!5E
0

`

dqqk21K~q!. ~3.1!

The Mellin transform is only well defined if

2b0,k,0. ~3.2!

For non-negativek the integral~3.1! diverges at large value
of q, while the infrared behavior~2.28! entails the lower
limit. The Mellin transform converts Eq.~2.26! into the re-
cursion relation~cf. @11#!

g~k!52
1

2k
@m2211p~k21!cotpk#g~k21!.

~3.3!

As can be easily verified,
g~k!5NS p

2 D k
expH 22pE

0

k

duS u1
1

2
sin2pu

sin 2pu
D J

b0cosp~k1b011/2! )
n51

` S 11
~m221!tanpk

pbn21

11
~m221!tanpk

p~k1n!

D pb02~m221!tanpk

pk1~m221!tanpk
~3.4!
2-3
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solves the recursion relation~3.3!. Condition ~2.27! deter-
mines the normalizationN. The solution has the expecte
poles at the end points of the regularity interval~3.2! and is
free of singularities within this interval.

According to Eq.~2.31! the condensate is directly give
by the Mellin transform

^c̄c&52N
m

2p
lim
k→0

@g~k!2g0~k!# ~3.5!

where

g0~k!5S m2

2 D k

G~2k! ~3.6!

is the Mellin transform ofK0(q) for non-interacting fermi-
ons. Expansion of the Mellin transforms~3.4!, ~3.6! around
k50, with the normalization factorN chosen such that th
singular pieces (;1/k) cancel, yields

^c̄c&52N
m

2p H 11g1 lnS m2

p D
1~12m2!F 1

b0
1 (

n51

` S 1

bn
2

1

nD G J . ~3.7!

This agrees with the result obtained in@8#. In particular, in
the chiral limit where the 1/b0 term dominates, the result

^c̄c&52
N

A12
, ~3.8!

first derived in@7#, is reproduced. The calculations@7,8#, are
based on low energy theorems and connect the conden
with properties of the mesons of the ’t Hooft model~in par-
ticular the ‘‘Goldstone boson’’ in the chiral limit!. In our
approach with the quark propagator as the essential ingr
ent, the condensate is determined by the short-time beha
of a heavy-light quark system. The equivalence of these q
different approaches suggests a relation in light-cone qua
zation similar to the relation in ordinary coordinates based
chiral Ward identities which connects quark propagators
the Goldstone boson Bethe-Salpeter wave function~cf. @12#!.

A comparison between the evaluation of the condensat
the ’t Hooft and the Gross-Neveu model is instructive. O
technique of evaluating the condensate via fermionic tw
point functions applies as well to non-gauged theories
the Gross-Neveu model. In this model, Eq.~2.19! becomes
simply

iĊGN~p,t !5S m̂2

2p
1lpDCGN~p,t !, ~3.9!
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with m̂52g2^c̄c&e . The solution of Eq.~3.9! together with
Eq. ~2.11! yields the well-known ‘‘gap equation’’~cf. @5#!

m̂S 11
Ng2

2p
ln

m̂2

L2D 50, L5
A2

«1Al
e2g, ~3.10!

describing either the chirally symmetric (m̂50) or the bro-
ken phase. Unlike in the ’t Hooft model the procedure
regularize the condensate by subtracting the condensa
the non-interacting theory is not available in the Gro
Neveu model. This is why we have to keep the ultravio
regulatorlp in the evolution equation.

Strictly speaking, also in the ’t Hooft model there is th
possibility of a chirally symmetric solution. Indeed atm50
~andl50), Eq. ~2.19! can be solved byC(p,t)51. By ap-
proaching the chiral limit from finite fermion mass th
trivial solution cannot be reached. One might expect tha
in standard coordinates the difference in energy density
tween the chirally symmetric and broken phases is infinit

IV. CONCLUSIONS

In quantum field theory, condensates are calculated
general as expectation values of Schro¨dinger operators in the
corresponding vacua. Non-vanishing order parameters re
the non-triviality of the vacuum. In light-cone quantizatio
the kinematical structure of the light-cone vacuum gives r
to trivial vacuum expectation values of Schro¨dinger opera-
tors which therefore cannot serve as order parameters. O
light-cone, condensates have to be defined as vacuum ex
tation values of the limits of Heisenberg operators@5#. In this
way, the condensate is obtained as the short light-cone
limit of an appropriate correlation function. In light-con
quantization, non-vanishing order parameters reflect the n
triviality of the short-time limit of the relevant Heisenber
operators.

We have carried out a study of the chiral condensate
two-dimensional QCD within light-cone quantization. A d
rect and explicit calculation of the condensate within the
Hooft model has been presented. The kinematical struc
of the light-cone vacuum has been an essential ingredien
this calculation. Our calculation shows that the short-tim
limit of the quark propagator is afflicted by non-perturbati
physics. On the light cone this correlation function is sing
lar in the infrared; the singularity depends on the dynam
The essential singularity of the non-interacting theory is c
verted by the interactions in QCD111 to a branch point—a
phenomenon which defies a perturbative description an
responsible for a generation of the condensate in the ch
limit. The resulting fermion correlation function differs sig
nificantly at short light-cone times from the correlation fun
tion of the Gross-Neveu model. In this two dimension
model a chiral condensate emerges in the process of m
generation@5#. Here the essential singularity in the infrare
2-4
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persists, its parameters are modified by interactions. The
cessful description of the condensates in these dynamic
very different models strongly supports the idea of recon
ing the non-trivial vacuum properties with the kinematic
nature of the light-cone vacuum by the dynamical, no
perturbative short light-cone time limit of Heisenberg ope
tors.
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