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Chiral condensate and short-time evolution of(1+1)-dimensional QCD on the light cone
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Chiral condensates in the trivial light-cone vacuum emerge if defined as short-time limits of fermion propa-
gators. In gauge theories, the necessary inclusion of a gauge string in combination with the characteristic
light-cone infrared singularities contain the relevant nonperturbative ingredients responsible for the formation
of the condensate, as demonstrated for the 't Hooft model.
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I. INTRODUCTION — . — — 0
e—0

The triviality of the light-cone vacuum is the origin of
most of the simple properties of field theories if quantized onwith
the light cone(for a recent review, see RédflL]). For purely
kinematical reasons there is no distinction between the (i) .= (0| h(e) PV 0™ Auys(0)|0) 2.2
ground state of free and interacting theories. In view of the
many physical consequences usually attributed to non-trivialegularized in a gauge-invariant way. For evaluating the
vacua, this has raised considerable concern about the equivgeint-split condensaté2.2), we first consider a generic ma-
lence of light-cone and equal-time quantization schemesrix element of the type
While for bosonic theories the common belief is that the key
lies in the constrained zero-mode dynanii2§ in fermionic M(8):<0|A(8)peigféds’(dxf‘/ds’)A,L[x(s’)]B(O)|0> 2.3
theories a way out of this apparent contradiction has been
sought in prescriptions for regularization of the divergentwherex(s) is a straight path witkx(0)=0 andx(s)=¢. By
condensates such as the “parity invariant” regularization re-sshifting the argument of the gauge fietd, and using trans-
lating IR and UV cutoffg3,4]. It is doubtful that universal, lational invariance of the vacuum, we can repredéit) as
kinematical prescriptions exist that describe the formation of
condensates in theories such as gauge theories where chiral M(e)=(0|A(0)W(s)B(0)|0) (2.4
symmetry breaking is not tantamount to fermion mass cre- . ) . .
ation. In the present work, the propog8l to define order With the point splitting now specified by the operaibi(s)
parameters as vacuum expectation values of products ¢fnfomentum operatop,),
Heisenberg operators, infinitesimally split in a light-cone ) e ) )
time direction (in addition to a space directiprwill be W(s) =g 1#"Pupgfods (XasHA, (D], (2.9
shown to yield the correct condensate(in-1)-dimensional ) o )
QCD (QCD;,;)—the 't Hooft model[6]. Unlike in standard ~ Differentiation with respect ts,
guantization, the short-time limit of Heisenberg operators dW(s) ik
differs non-perturbatively from the corresponding Sehro =—i—[P,—gA,(0)]W(s), (2.6)
dinger operators. This connection between condensates and ds ds = # "
the non-triviality of the singular behavior of correlation func- . . - . . .
lons a short iht.cone times will be the focus of ths work, &1 integration of this diferential equation with the it
The condensate of the 't Hooft model has been evaluatefoNdition W(0)=1 allows one to simplify this expression,
in [7,8]. These studies make use of general relations benNeéﬂeld'ng
properties of the excited states and the condensate, derived in
standard quantizatiofthe Oakes-Renner relation and sum
rules. Here we will present a direct calculation of the con-
densate which makes use explicitly of the triviality of the
light-cone vacuum on the one hand and the non-perturbativ:
nature of the short-time limit of light-cone correlation func-
tions on the other.

W(S):efisﬂ[PM*QAM(O)]_ (27)

With this form of the operatow the chiral condensate of Eq.
2.2) is seen to be given by the space-time evolution of a

stem of light quarks coupled with the current of an infi-
nitely heavy quark. Thus, on the light cone with its kinemati-
cal vacuum, the dynamics of a heavy-light quark system de-
termines the chiral condensate. So far, everything is rather
general and applies equally well to QCD in four dimensions.

We define the condensate with respect to that of the norWe now specialize to the 't Hooft modéb] and write Eq.
interacting theory, (2.2) as
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(h),=(0] 45 (0) (e Hem) yy(0)]0) (2.8

with the effective Hamiltonian in light-cone gaugei (
:O),

g (dp’ dp” ¢](p)ei(p")
[AL(0)];j=— Eiﬁ Y- W (2.19

With this result, Eq(2.13 can be simplified by replacing in
the largeN limit the operator

T ! !

i i 278(p—p')NO(— 2.1
We have denoted the slope of the path/e*, by A and will #i(P)ei(p’)=2ma(p=p"INO(—P) 219
takee " and\ as independent parameters from now on; dueny its expectation value. Here the triviality of the light-cone
to the subtraction of the free value, the condensate will turtyacuum is explicitly used. Choosing units such that
out to be independent of. P, andP _ are the Hamiltonian

(Her)ij= (P4 +AP_)5;; —g[A(0)];; - 2.9

and momentum operator for the 't Hooft model, respectively. Ng? 1 51
For evaluation of the chiral condensate, we represent the o7 (2.18
spinor ¢ in terms of the unconstrained right-handed compo-
nente, factoring out a step functiod(—p) from C(p,t) and chang-
ing p into —p, the time evolution ofC can finally be cast
1 into the form of a typical light-cone Schdimger equation:
1
l/f(X):ﬁ1 m | e, (2.10 " - 2_ e 1 o
I\/Eé’, | (p!t)_ 2p + p (QU"’E ( !t)
and find(after Fourier transforming the fermion fields 1 i“ .1 aC(p',b) (2.19
_ dp m 2% p'=p |
=| ——C(p,e* 2.1
() f277 p (™) @19 This evolution equation foC(p,t) at short times together
_ with the initial condition[cf. Eq. (2.12)]
with
C(p,0)=N (2.20
dg .
C(D,I)ZJ'E<O|<P?(D)(G Het!):10;(0)[0). (2.12  determines the condensate. We note that
2
In order to compute this correlation function we derive its i(’;(p,tzo):N m_+)\p)'
equation of motion. In 2p
_ dq ‘ For non-interacting fermions,
iC(p,t):fE<O|¢?(P)(Heﬁe_'Heﬁt)ij@j(Q)|O>’ m2
(2.13 Co(p,t)=Nexp{—it ﬁﬂxp ] (2.21

we treat the two terms dfl ¢ [cf. Eq.(2.9)] separately. In the

ﬁrTSt term, the product of the operator® (+AP_) and oy pye to the presence of singulariti€d(p,t) deviates
¢i(p) can be replaced by their commutator. In the laNje  gjgnjficantly for arbitrarily small times from its initial value

limit, this commutator generates a combination of the quarky " characteristic for the short-time light-cone dynamics is
self-energy and momentum where, following 't Hooft's ihe infrared singularity which implies

original papef6],

solves the evolution equation with the correct initial condi-

lIMC(0t)=0+# limC(p,0). (2.22

2 t—0 p—0

ml‘
AP

2p (0l (p),

(Ol (p),Ps+AP_]=

2.14 The short-time behavior for large momenta is the same in the
' interacting and in the free theory. It is therefore irrelevant for
the evaluation of the condensate and we drop in the follow-

with the self-ener iven in principal value prescription by . .
99 P P P P ymg the ultraviolet regulator,

ol o N¢’ A=0 (2.23
m;=m-— E (215) ' :
In this case the evolution equation simplifies significantly

The right-hand side of E42.14 combines with the remain- due to the underlying covariance. We note that vitfp,t)
der of the matrix element in Eq2.13 to yield againC(p,t).  also C(Ap,\t) satisfies the evolution equatid2.19. Fur-
The term proportional té\, (0) in Hz can be expressed via thermore, ifC(p,t) satisfies the initial conditiori2.20, so
the Poisson equation in terms of the fermion color chargeloes C(Ap,\t). Assuming that the initial value problem
density: (2.19, (2.20 defines a unique solution, we conclude that
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C(p,t)=C(Ap,\t), (2.29

which implies

C(O)(p,_iT):NK(o)(p/T), (225)

where we have switched to imaginary tinin the original
units before implementing Eq2.18), the scaling variable
corresponds to the dimensionless quantityp2N g?7.] With

PHYSICAL REVIEW D65 125002
C(p,—i7)~N(p/7)PoflL=(P/7]

It can be verified that Eq2.26) is satisfied up to terms of
O(By). This expression displays the subtleties of ¢
—0 limit. It reproduces in the chiral limit the exact value for
the condensatésee beloy, i.e., the condensate is directly
connected to the change in the infrared singularity of the
quark propagator.

As a consequence of the light-cone singularity in the in-

Eq. (2.29 the time evolution is converted into the integro- frared, determination of the short-time behavior @fp, t)

differential equation

qu(q) o m?-1 1 r 1 dK(q")

K(q)— 5[ dg'——
dq 24 (@-3 , Qq,_q ao
(2.26

and the asymptotic behavior &f(q) is determined by the
initial condition for C(p,t),

limK(q)=1. (2.27

gq—»

We can also determine the infrared behavioKdf]). Using
results for Hilbert transforms of powefsf. [9]) it is seen
that for smallq

K(q)~g#o (2.28

requires a non-perturbative calculation of the functiofm).
In terms ofK )(q), the condensate is writtdief. Egs.(2.1),
(2.11] as

— m (=dq
=-Nge [ D@ Ko@) @39

Due to the scaling property2.25 the dependence on the
regulators * has disappeared entirely from the expression of
the condensate. Since the scaling variabdnd the function

K are boost invariant, Lorentz invariance @fy) is mani-
fest.

IIl. CALCULATION OF THE CONDENSATE

We now briefly sketch the evaluation of the condensate by
the Mellin transformation of the equation fét. The tech-

whereg,, denote the solutions of the 't Hooft boundary con- niques developed ifil0] will be used. We define

dition
g cotrq=1—m? (2.29

ordered according to

g==*B,, n=012... with B,e[n,n+1].
(2.30

Thus the (confining interaction in the 't Hooft model
changes the essential singularity &fy(q) of the non-
interacting theory

Ko(q)=e ™2

V(K):fo dqg ~*K(q). 3.9
The Mellin transform is only well defined if

— By<k<0. (3.2

For non-negativex the integral(3.1) diverges at large values
of g, while the infrared behaviof2.28 entails the lower
limit. The Mellin transform converts E(2.26) into the re-
cursion relation(cf. [11])

to a branch point. This remarkable phenomenon is due to the

presence of the gauge string in the correlation function (k)

C(p,t).

1
K)=— Z[mz—l—i- m(k—1)cotmr]y(k—1).

For the general case, we have not been able to express the (3.3

solution of Eq.(2.26 via the Mellin transforn{see belowin
simple terms. In the chiral Iimit[eowﬁm/weO),

1
u+ =sirfmu

® 2
Kexp —Zﬂfo du m

As can be easily verified,

(m?—1)tanmk

a
Y(K)ZWE) Bocosm(k+ B+ 1/2)

- ! 7Bn_1 mBo— (Mm?—1)tanmk
11 2 (3.4
n=1 (m*=Dtanwk | 7x+(m?—1)tanmx
m(k+nN)
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solves the recursion relatiof8.3). Condition (2.27) deter-  with m=—g?(y4). . The solution of Eq(3.9) together with
mines the normalizatiogV. The solution has the expected gq, (2.11) yields the well-known “gap equation(cf. [5])
poles at the end points of the regularity inter¢@l2) and is
free of singularities within this interval.

According to Eq.(2.31) the condensate is directly given
by the Mellin transform

— m
() ==Ng_imly()=y(0] (39

describing either the chirally symmetrién& 0) or the bro-
where ken phase. Unlike in the 't Hooft model the procedure to
regularize the condensate by subtracting the condensate of
m2)\ « the non-interacting theory is not available in the Gross-
7) I'(=«) (3.60  Neveu model. This is why we have to keep the ultraviolet
regulatorA p in the evolution equation.
Strictly speaking, also in the 't Hooft model there is the
is the Mellin transform ofKy(q) for non-interacting fermi-  possibility of a chirally symmetric solution. Indeed rat=0
ons. Expansion of the Mellin transforni3.4), (3.6) around (and\=0), Eq.(2.19 can be solved b¥(p,t)=1. By ap-
«=0, with the normalization factal chosen such that the proaching the chiral limit from finite fermion mass this
singular pieces 1/k) cancel, yields trivial solution cannot be reached. One might expect that as
in standard coordinates the difference in energy density be-
tween the chirally symmetric and broken phases is infinite.

Yo(K)=

=Nl 14y m
(ph)=-No— y+in| —
1 w 1 1 IV. CONCLUSIONS
+(1—m?) EJF 21 (,3__ﬁ>“ 3.7 In quantum field theory, condensates are calculated in
n= n

general as expectation values of Salinger operators in the
corresponding vacua. Non-vanishing order parameters reflect

This agrees with the result obtained[@]. In particular, in  the non-triviality of the vacuum. In light-cone quantization,

the chiral limit where the 13, term dominates, the result  the kinematical structure of the light-cone vacuum gives rise
to trivial vacuum expectation values of Schinger opera-

tors which therefore cannot serve as order parameters. On the
— N light-cone, condensates have to be defined as vacuum expec-
(bihy=— JTZ (3-8 tation values of the limits of Heisenberg operatdk In this
way, the condensate is obtained as the short light-cone time
limit of an appropriate correlation function. In light-cone
first derived in[7], is reproduced. The calculatiofi8,8], are  quantization, non-vanishing order parameters reflect the non-
based on low energy theorems and connect the condensdteviality of the short-time limit of the relevant Heisenberg
with properties of the mesons of the 't Hooft modgl par-  operators.
ticular the “Goldstone boson” in the chiral limit In our We have carried out a study of the chiral condensate of
approach with the quark propagator as the essential ingrediwo-dimensional QCD within light-cone quantization. A di-
ent, the condensate is determined by the short-time behavioect and explicit calculation of the condensate within the 't
of a heavy-light quark system. The equivalence of these quitelooft model has been presented. The kinematical structure
different approaches suggests a relation in light-cone quantif the light-cone vacuum has been an essential ingredient in
zation similar to the relation in ordinary coordinates based orhis calculation. Our calculation shows that the short-time
chiral Ward identities which connects quark propagators antimit of the quark propagator is afflicted by non-perturbative
the Goldstone boson Bethe-Salpeter wave fundfibr 12]). physics. On the light cone this correlation function is singu-
A comparison between the evaluation of the condensate itar in the infrared; the singularity depends on the dynamics.
the 't Hooft and the Gross-Neveu model is instructive. OurThe essential singularity of the non-interacting theory is con-
technique of evaluating the condensate via fermionic twoverted by the interactions in QGD; to a branch point—a
point functions applies as well to non-gauged theories likgphenomenon which defies a perturbative description and is
the Gross-Neveu model. In this model, Ef.19 becomes responsible for a generation of the condensate in the chiral
simply limit. The resulting fermion correlation function differs sig-
nificantly at short light-cone times from the correlation func-
tion of the Gross-Neveu model. In this two dimensional
model a chiral condensate emerges in the process of mass
generation5]. Here the essential singularity in the infrared

N2

m
S=TAp

2p CGN(pit)! (39)

iCon(p,t)=
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