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Maximum mass of a spherically symmetric isotropic star

Daniel Barraco and Victor H. Hamity
Facultad de Matema´tica, Astronomı´a y Fı́sica, Universidad Nacional de Co´rdoba, Ciudad Universitaria, Co´rdoba 5000, Argentina

~Received 31 December 2001; published 19 June 2002!

A well known result of a theorem due to Buchdahl, for a regular fluid sphere with a mass density which does
not increase outwards, is that the ratio of its gravitational massM to the coordinate radiusR satisfies the
inequality GM/R< 4

9 . This restriction arises from the condition that the isotropic pressure does not become
infinity at the center of the sphere to prevent collapse. Buchdahl has also derived an inequality for the value of
the central pressure of the sphere which we use to show that the minimum value for this pressure corresponds
to a fluid of constant density. Then, using these results and the energy condition (up(r )u<br(r )/3), we find
new bounds for the mass to radius ratio given by 2GM/R<S(j), whereS(j) is a nondecreasing function of

its argumentj5brc/3r̄, whererc is the central density of the star andr̄ its mean density. For a constant
density star, andb53 ~which corresponds to the dominant energy condition!, we haveS(1)53/4, which
implies an upper limit for the gravitational redshift factor for light coming from the surface of the star given by
z<1. We reobtain, for a general model and the valuesb53, rc→`, Buchdahl’s limit; however, a comparison

of our results with a previous inequality found by Buchdahl shows that for any values ofb and the ratiorc / r̄
our bound of the mass to radius ratio is more strict.

DOI: 10.1103/PhysRevD.65.124028 PACS number~s!: 04.40.Dg, 97.10.2q
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I. INTRODUCTION

Buchdahl’s theorem@1# states that for a star of fixed ra
dius R and gravitational massM the ratioGM/R<4/9, if r
>0 anddr/dr<0, with the only requirements that the pre
sure becomes zero at the border of the star and it does
diverge at its center. The equality holds only ifr is constant,
the metric is degenerategtt(r 50)50, and the pressure di
verges. The value 4/9 is therefore an absolute upper limit
all static fluid spheres whose density does not increase
wards. Buchdahl@1# has also derived an inequality for th
value of the central pressure of the sphere which we us
show that the minimum value for this pressure correspo
to a fluid of constant density. Then, using these results
the energy condition~Ref. @2#! @ up(r )u<br(r )/3#, we find
new bounds for the mass to radius ratio given by 2GM/R
<S(j), whereS(j) is a nondecreasing function of its arg
mentj5brc/3r̄, whererc is the central density of the sta
and r̄ its mean density. For a constant density star, andb
53 ~which corresponds to the dominant energy conditio!,
we haveS(1)53/4, which implies an upper limit for the
gravitational redshift factor for light coming from the surfa
of the star given byz<1. We reobtain, for a general mod
and the valuesb53, rc→`, Buchdahl’s limit; however, a
comparison of our results with a previous inequality fou
by Buchdahl shows that for any values ofb and the ratio
rc / r̄ our bound of the mass to radius ratio is more strict,
the sense thatGM/R may be smaller than the limit obtaine
by Buchdahl@1#.

For a static spherically symmetric spacetime the me
takes the Schwarzschild form

ds252B~r !dt21A~r !dr21r 2~du21sin2udf2!. ~1!

The energy-momentum tensor is assumed to be that f
perfect fluid
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Tmn5p gmn1~p1r!UmUn ~2!

with p the proper isotropic pressure,r the proper total energy
density, andUn the velocity four-vector, defined so tha
gmmUmUn521.

The identityTmn
;n50 gives

B,r

B
52

2p,r

p1r
. ~3!

From Einstein equations we can derive an equation
A(r ) alone:

Rrr

2A
1

Ruu

r 2
1

Rtt

2B
5

A,r

rA
2

1

r 2
1

1

Ar2
528pGr. ~4!

The solution withA(0) finite is

A~r !5F12
2Gm~r !

r G21

, ~5!

where

m~r !5E
0

r

4p ŕ 2r~ ŕ !dŕ. ~6!

Also, using the field equations, we obtain the Tolma
Oppenheimer-Volkoff equation:

dp

dr
52~p1r!

m~r !14pr 3p

r @r 22m~r !#
. ~7!

Thus, for fluid matter with a given equation of state,p
5p(r), an equilibrium configuration can be determined
follows: We arbitrarily prescribe a central densityrc , and
hence a central pressurepc5p(rc). Then we integrate Eqs
~5! and~7! outward untilp„r(r )… drops to zero at some poin
©2002 The American Physical Society28-1
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r 5R, which we then interpret as the radius of the particu
star where we join the solution onto the vacuum Schwa
child solution, i.e.p50 andr50 for r .R. Finally, we solve
for B(r ) using Eqs.~3! and ~7!:

B~r !5expF2E
r

`2G

ŕ 2
@m~ ŕ !14p ŕ 3p~ ŕ !#

3S 12
2Gm~ ŕ !

ŕ
D 21

dŕG . ~8!

For the particular case of the state equation

r5const ~9!

the solution forp(r ),A(r ),B(r ) is

p~r !5
3M

4pR3 F A122MGr2/R32X

3X2A122MGr2/R3G ~10!

where

X5A12~2MG/R! ~11!

and 0,X,1,

A~r !5F12
2MGr2

R3 G21

~12!

B~r !5
1

4 F3X2A12
2MGr2

R3 G 2

. ~13!

Therefore, the central pressure required for equilibrium o
uniform density star is

Pc5
3M

4pR3 F 12X

2AB~0!
G

5
3M

4pR3 F 12X

3X21G ~14!

and Pc is positive. From Eq.~10! it is easy to see that th
pressure is a monotone decreasing function ofr, then the
maximum forp is at the origin. Usually@3,4# it is required
that the pressure does not become infinite anywhere, in
ticular it is not infinite at the origin, to prevent collaps
thereforeB(0).0. The above condition is fulfilled when

GM

R
,

4

9
. ~15!

The existence of an upper mass limit in general relativity,
a given radiusR, is not just a consequence of having r
stricted consideration to stars of uniform density; if we su
ject r only to general requirements, and impose the condit
that Eq.~7! must yield a finite solution forp(r ), there is an
absolute upper limit toMG/R imposed by the structure o
12402
r
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a
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the Einstein equations, irrespective of the equation of s
@4,3,1#. This limit is just the above limit, calculated for th
r5const model.

On the other hand, for all future directed timelike vect
ja, the quantity2Tb

ajb should be a future directed timelik
or null vector. Since for an observer with 4-velocityja the
quantity 2Tb

ajb is the energy-momentum 4-current dens
of matter as seen by him; this condition is the domina
energy condition, and it can be interpreted as saying that
speed of energy flow of matter is always less than the sp
of light @4,5#. Then, in any orthonormal basis the ener
dominates the other components:

T00>uTabu. ~16!

In our case the dominant energy condition is equivalent

r~r !>up~r !u. ~17!

This last condition is more restrictive than requiring a fin
value for the pressure everywhere. Imposing this condit
upon Eq.~14!, it will be satisfied for all values ofr if

F 12X

2AB~0!
G<1. ~18!

Therefore, we have

MG

R
<

3

8
, ~19!

and this is a more restrictive bound than the usual one. In
example the use of the dominant energy condition has
sulted in a more restrictive bound for the mass to rad
ratio. We wonder if this is a general result, which we analy
in the next section.

II. NEW BOUNDS FOR M ÕR

We will show now a generalization of Buchdahl’s the
rem which proves that the bound~19! depends on the par
ticular model of the mass distribution for the fluid matter. W
begin by deriving Buchdahl’s theorem in a new way. Let
assume thatr(r )>0 and that it is a monotone decreasin
function of r; i.e. dr/dr<0. In fact, the assumption thatr
>0 follows from the monotone decreases assumption, s
the interior solution must eventually match onto the exter
Schwarzschild solution. This hypothesis aboutr give that
w,r<0 where w(r )5Gm(r )/r 3. The radius R is fixed
throughr(r )50 for r .R. Given any functionr(r ), satisfy-
ing these conditions, we can calculateA(r ) from Eq.~5!; we
can then determinep(r ) by integrating the Tolman-
Oppenheimer-Volkoff equation inward from the surfa
@with the boundary conditionp(R)50# and then calculate
B(r ) from Eq. ~8!. Assuming thatr satisfiesm(r ),r /2G,
we may be sure thatA(r ) is well behaved, and Eq.~8! will
give a finite positive definiteB(r ). Therefore, any absolute
limitation on the input functionr(r ) ~such as an upper boun
on MG/R) can only come from the condition that Eq.~7!
must give not only a finite solution for the pressurep(r ), but
8-2
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also the most restrictive requirement of the dominant ene
condition.

In what follows we shall exploit this condition rather d
rectly, at a difference with other authors@4,3,1# who attack
the problem by concentrating on the metric coefficientB(r )
rather than onp(r ) itself.

Let c be

c5An~r !
p1z

p1h
, ~20!

where

n5
1

2
A423u

u5
wb

wc

~21!

z5
wc

2p
~12n!

h5
wc

2p
~11n!

and the subscriptsc andb refer to the center and the boun
ary of the sphere, respectively. Incidentally,u<1 because
w,r<0 and then1

2 <n<1, z>0 andh>0. With these values
of the parameters involved,c is then a nonincreasing func
tion of r @1#. Accordingly, a comparison of its central an
boundary values gives

cc>cb . ~22!

Considering pb50 we have An(r 5R)51/X2n and An(r
50)51, we obtain

pc1z>
1

X2n

z

h
@pc1h#. ~23!

Let D5X2. Then using Eq.~21! we have

4ppc>
3wb~12Dn!

2@Dn~11n!2~12n!#
;n/1>n>

1

2
. ~24!

Let us call the right-hand side of the last inequality byg(n).
Then, it is not difficult to show that

dg~n!

dn
5

3wb@D2n22nDnlnD21#

2@~11n!Dn1n21#2
. ~25!

The denominator of Eq.~25! and wb are positive, then the
derivative sign depends on the bracket in the numera
f (D)5@D2n22nDnlnD21#. Also

d f

dD
52nDn21U~D! ~26!

whereU(D)5(Dn212n lnD),
12402
y

r:

dU

dD
5

n~Dn21!

D
. ~27!

Using 1.D.0, we havedU/dD,0; then U(D).U(1)
50. Thus, 05 f (1). f (D) becaused f /dD.0. This gives
dg(n)/dn,0. Then

4ppc>g~1/2!>g~n! ~28!

and substituting the value ofn51/2, we obtain

pc>S 3M

4pR3D 12X

3X21
. ~29!

According to Eq.~14! the right-hand side of Eq.~29! is the
pressure of a star with massM, radiusR and mass distribu-
tion r5 r̄[(3M /4pR3); we have called itPc . Then, for
any equation of statePc is the lowest possible value for th
pressure at the center of the star; i.e. givenM and R the
minimal central pressure for any equation of state is the c
respondingr5const. Any physical solution will have a finite
pressure everywhere. Then, the necessary condition f
physical solution will be thatPc is also bounded and then w
have the well known inequalityX. 1

3 . The last result gives
the boundGM/R, 4

9 , i.e. Buchdahl’s theorem. The way w
have followed to prove Buchdahl’s theorem allows us to g
eralize it when we have matter which satisfiesp<b/3r for
anyb. Now, if this last condition~in the formpc<b/3rc) is
not to be violated, it is necessary thatPc<b/3rc . If we
impose this condition, using Eq.~14! we obtain

12X

3X21
<

brc

3r̄
. ~30!

A straightforward calculation shows

2MG

R
<S~j! ~31!

for an all spherical star with isotropic pressure and ma
which satisfies the energy conditionp<(b/3)r. The function
S(j), j5brc/3r̄, is a non decreasing function expressed

S~j!512S 11j

113j D 2

. ~32!

This function satisfiesS(1)53/4, for b53 and a constan
density star, andS(`)58/9 if the density goes to infinity a
the origin. We can express the inequality~30! in a more
convenient way in the form

X>
1

3 S 11
2d

b1d D ~33!

where d5 r̄/rc may take any value in@0,1#. The valued
50 corresponds to a central density going to`, andd51 to
a constant density model.

Buchdahl@1# has found an inequality that in our notatio
reads
8-3
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X>
1

3 S 11
2d

b11D . ~34!

It is apparent that the bounds~33! and ~34! agree for any
value ofb whend50 or 1. However, for any other values o
d andb, we obtain a smaller limit for the values ofGM/R
from Eq. ~33! than from Eq.~34! which corresponds to the
limit obtained by Buchdahl@1#. In general, to have a value o
d we need a detailed static spherically symmetric model
an interior solution. However, an interesting estimate of
value can be achieved for a mass distribution which satis
the condition that it is always greater or equal than the val
represented by a straight line which takes the valuerc at the
origin, r 50, and rR at the border of the star,r 5R @for
example, whenr(r ) does not have an inflexion point#. A
simple calculation shows that, under these conditionsd
51/4 and, if we considerb53, the limit obtained from Eq.
~33! is 2MG/R<0.8520 . . . , while the one obtained from
Eq. ~34! is 2MG/R<0.8593 . . . . In the next section we
consider the generalized Buchdahln55 polytrope ~GB5!
family of exact interior solutions@6,7# to test the inequality
~31!.

Let now ve be the frequency of emission of light at th
surface of the star andvo the frequency measured by a
observer at a given position. Then, the redshift factor is
usual,z5ve /vo21; if we use explicitly the values ofgtt at
both positions we would have

z5

S 12
2MG

r o
D 1/2

S 12
2MG

r e
D 1/221 ~35!

where r e is the emission radius andr o is the observation
radius.

Using Eq.~30! we obtain that the maximum redshift fac
tor of light emitted from the surface of a constant dens
static star is forr e5 8

3 GM and an observation radiusr o5`.
Then

zmax5S ve

vo
D

max

2151. ~36!

On the other hand, for a mass distribution which satis
the condition that it is always greater or equal than the val
represented by a straight line which takes the valuerc at the
origin, r 50, and rR at the border of the star,r 5R, the
maximum redshift factor isz51.6.

III. THE GB5 INTERIOR SOLUTIONS

In this section we put the gravitational constantG51. We
just introduce the GB5 family of interior solutions as a te
ing ground for the inequality~31!. We write the metric in a
proper time general radial gauge as

ds252Y2~x!dt21N2~x!dx21S2~x!~du21sin2udf2!.
~37!
12402
r
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In terms of the general radial variablex, the Schwarzschild
radial variable is given byr 5S(x). The GB5 family of in-
terior solutions is given by~‘‘ s’’ means the value at the sur
face of the star!

Y5~122M /R!1/2S Ts1Xs

Ts2Xs
D T2X

T1X
,

N5S5~T1X!2 ~38!

where

T~x!5A bl23

cosh~x2D!
, X~x!5A b

coshx
. ~39!

The constantD is a nontrivial integration constant, and th
constantsb andl characterize the equation of state given

p5
a~u62l6!

~11u!5~12u!
, r5

3a~u51l6!

~11u!5
~40!

where a51/(8pb2), u5X/T and us5l, uc5l3/2e2D/2;
~‘‘ c’’ means the value at the center of the star,S50). The
parametersl and uc characterize a given member of th
GB5 family (0,l<u<uc,1). It is convenient to identify a
given solution byl and a new parameter,m, given by m
5(uc2l)/(12l). The GB5 family in the (l,m) parameter
space corresponds to the unit square, 0,l,1, 0,m,1 @7#.
For our purposes we need to complete our set of equat
by expressingM andR in terms ofl, uc , andb. The desired
relations are@7#

M5
4buc~uc

22l2!3/2~uc
22l4!3/2

~uc
21l3!~uc

22l3!3
,

~41!

R5
2buc~uc

22l2!1/2~uc
22l4!1/2~11l!2

l~uc
21l3!~uc

22l3!
.

We are now ready to compute all the necessary ingredien
construct the inequality~31!. We begin by finding a value o
b for each solution. To this end from Eq.~40!, we obtain

3p

r
<

~uc
62l6!

~l51l6!~12uc!
ªb. ~42!

Then, from Eqs.~40!, ~41!, ~42!, and the definitions ofd and
j, we obtain

j5
uc

2~uc
62l6!~uc

51l6!~11l!5

3l8~12uc!~11l!5~uc
21l3!2

. ~43!

In the calculations that we have performed we have usea
ªR/M as an input parameter andl as an independent vari
able to cover the whole family of solutions. The relatio
that yielduc in terms ofa andl are @7#

uc5l3/2S 11z

12z D 1/4

, zª
~12l2!Aa~a22!

a~11l2!2~11l!2
. ~44!
8-4
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The computational procedure is as follows: First, we cho
a value of the parametera. Second, we compute the range
l by finding its lower limit as the largest root of Eq.~44! for
uc51 ~this value corresponds tom51). And finally, we
compute the functionS(j) and check its value agains
(2M /R)52/a which should be larger than this in the who
range ofl. Then, we repeat the procedure for a new value
a. Although we have carried out the calculations for a wi
range of values ofa between 2 and̀ , we reproduce in Fig.
1 only two of the curvesS(j) vs l, which show that the
inequality ~31! is verified, as expected.

IV. CONCLUSIONS

In this paper we have followed a different procedure fro
Buchdahl@1# to obtain new bounds for the mass to radi

FIG. 1. Two typical plots of the boundS(j) and 2M /R vs the
parameterl for different values ofa showing that 2M /R<S(j).
The lower limit for the values ofl, for eacha, is obtained from the
condition that the parameterm should not exceed the value one
the parameter space of the GB5 family. The curve on the left
responds toa52.5, while that on the right corresponds toa58.
,

12402
e

f

ratio for a spherically symmetric isotropic star. We have a
lyzed the properties of the mass distribution rather than
metric of the spacetime. We have obtained, using Buchda
results and the energy condition, (up(r )u<br(r )/3), an in-
equality given by 2GM/R<S(j), whereS(j) is a nonde-
creasing function of the ratio of the density of the star at
center to the mean density,j5brc /3r̄. For a wide class of
models of mass distribution we have been able to impr
the maximum limit ofGM/R. In particular, for a constan
density star, andb53, we haveGM/R,3/8 , which implies
an upper limit for the gravitational redshift factor for ligh
coming from the surface of the star given byz<1; then, the
use of the dominant energy condition gives a more st
bound. However, for a general model the use of the domin
energy condition does not modify Buchdahl’s limit,GM/R
<4/9, which arises from the requirement that the cen
pressure must not diverge. On the other hand, a compar
of our results with a previous inequality found by Buchda
shows that for any values of the parametersb and d our
bound of the mass to radius ratio is more strict, in the se
thatGM/R may be smaller than the limit obtained by Buc
dahl @1#.

In Sec. III we have used the GB5 family of interior solu
tions as a testing ground for the inequality~31! and have
obtained that it is verified, as expected. Given a model
the mass distribution of the star, we have definite values
rc and r̄; with these values we get a more strict bound
the gravitational redshift factor than the value ofz obtained
by Buchdahl. If the kinematical effects on the redshift m
be taken into account, we hope that this difference may
come observable.

r-
-
d,
@1# H.A. Buchdahl, Phys. Rev.116, 1027 ~1959!; Seventeen
Simple Lectures of General Relativity Theory~Wiley, New
York, 1981!.

@2# D.E. Barraco and V.H. Hamity, Phys. Rev. D57, 954 ~1998!.
@3# H. Stephani,General Relativity~Cambridge University Press

Cambridge, England, 1982!.
@4# R.M. Wald, General Relativity~The University of Chicago
Press, Chicago, 1984!.
@5# S.W. Hawking and G.F. Ellis,Large Scale Structure of Space

time ~Cambridge University Press, Cambridge, Englan
1973!.

@6# W. Simon, Gen. Relativ. Gravit.26, 97 ~1994!.
@7# K. Rosquist, Phys. Rev. D59, 044022~1999!.
8-5


