PHYSICAL REVIEW D, VOLUME 65, 124028

Maximum mass of a spherically symmetric isotropic star
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A well known result of a theorem due to Buchdabhl, for a regular fluid sphere with a mass density which does
not increase outwards, is that the ratio of its gravitational Mads® the coordinate radiuR satisfies the
inequalityGM/Rs%. This restriction arises from the condition that the isotropic pressure does not become
infinity at the center of the sphere to prevent collapse. Buchdahl has also derived an inequality for the value of
the central pressure of the sphere which we use to show that the minimum value for this pressure corresponds
to a fluid of constant density. Then, using these results and the energy congiitioh| € Bp(r)/3), we find
new bounds for the mass to radius ratio given yN/R<S(¢), whereS(g) is a nondecreasing function of
its argumenté= ,BpC/Sp, wherep. is the central density of the star arpdlts mean density. For a constant
density star, angB=3 (which corresponds to the dominant energy condjtiame haveS(1)=3/4, which
implies an upper limit for the gravitational redshift factor for light coming from the surface of the star given by
z<1. We reobtain, for a general model and the val@es3, p.— =, Buchdahl’s limit; however, a comparison
of our results with a previous inequality found by Buchdahl shows that for any valyésotl the raticpC/;
our bound of the mass to radius ratio is more strict.
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I. INTRODUCTION T, =P g, +(p+pU,U, )

Buchdahl's theoreni1] states that for a star of fixed ra- with p the proper isotropic pressurethe proper total energy
dius R and gravitational maskl the ratioGM/R<4/9, if p density, andU” the velocity four-vector, defined so that
=0 anddp/dr=<0, with the only requirements that the pres- g**U ,U,=—1.
sure becomes zero at the border of the star and it does not The identityT#”.,=0 gives
diverge at its center. The equality holds onlyifs constant,
the metric is degeneratg,(r=0)=0, and the pressure di- B, 2p r 3)

verges. The value 4/9 is therefore an absolute upper limit for B p+p

all static fluid spheres whose density does not increase out-

wards. Buchdah[1] has also derived an inequality for the ~ From Einstein equations we can derive an equation for
value of the central pressure of the sphere which we use tB(r) alone:

show that the minimum value for this pressure corresponds

to a fluid of constant density. Then, using these results and R  Rep Re Ar 1 1 o 4

the energy conditioriRef. [2]) [|p(r)|<pBp(r)/3], we find 2A (2 2B rA 2 Af2 mGp. (4
new bounds for the mass to radius ratio given lyM/R

<3(§), where§(§) is a nondecreasing function of its argu- The solution withA(0Q) finite is
ment &= Bp./3p, wherep, is the central density of the star

and p its mean density. For a constant density star, gnd A(r)=[1—
=3 (which corresponds to the dominant energy condjtion
we haveS(1)=3/4, which implies an upper limit for the
gravitational redshift factor for light coming from the surface
of the star given by=<1. We reobtain, for a general model r
and the valueg=3, p.—, Buchdahl’s limit; however, a m(r)=j 47t 2p(F)dr. (6)
comparison of our results with a previous inequality found 0
by Buchdahl shows that for any values gfand the ratio Also, using the field equations, we obtain the Tolman-
pe!p our bound of the mass to radius ratio is more strict, iNOppenheimer-Volkoff equation:
the sense thab M/R may be smaller than the limit obtained
by Buchdahl[1]. dp m(r)+4mr3p

For a static spherically symmetric spacetime the metric dr —(ptp m @)
takes the Schwarzschild form

ZGm(r)}l
—

where

Thus, for fluid matter with a given equation of stafe,
ds?=—B(r)dt?+A(r)dr?+r(de*+sirfed¢?). (1)  =p(p), an equilibrium configuration can be determined as
follows: We arbitrarily prescribe a central densjy, and
The energy-momentum tensor is assumed to be that for lence a central pressupg=p(p.). Then we integrate Egs.
perfect fluid (5) and(7) outward untilp(p(r)) drops to zero at some point
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r =R, which we then interpret as the radius of the particularthe Einstein equations, irrespective of the equation of state
star where we join the solution onto the vacuum Schwarzst4,3,1]. This limit is just the above limit, calculated for the
child solution, i.ep=0 andp=0 forr>R. Finally, we solve  p=const model.
for B(r) using Eqs.(3) and (7): On the other hand, for all future directed timelike vector
&, the quantity— T3P should be a future directed timelike
* , L . or null vector. Since for an observer with 4-veloci§ the
B(r)=ex;{ B f, ?—z[m(r)+4wr3p(r)] quantity — TR£P is the energy-momentum 4-current density
of matter as seen by him; this condition is the dominant
energy condition, and it can be interpreted as saying that the
(8 speed of energy flow of matter is always less than the speed
of light [4,5]. Then, in any orthonormal basis the energy
dominates the other components:

2Gm(r
fr-m
r

For the particular case of the state equation

00 ab
p=const ) T99=|T2"]. (16)

In our case the dominant energy condition is equivalent to

p(r)=[p(r)|. (17)

the solution forp(r),A(r),B(r) is

3M | y1-2MGr?/R*—X
p(r)= 47R3| 3X— V1 2MGrI/R® (10) This last condition is more restrictive than requiring a finite
value for the pressure everywhere. Imposing this condition
where upon Eq.(14), it will be satisfied for all values of if
=1— 1-X
X=y1-(2MG/R) (11 S <1 (19
and 0<X<1, VB(0)
-1 Therefore, we have
2MGr?
A(r)= 1- = (12) G 3
R @ (19
2 2
B(r)= E 3X— 1— 2MGr (13) and this is a more restrictive bound than the usual one. In this
4 R3 example the use of the dominant energy condition has re-

sulted in a more restrictive bound for the mass to radius
Therefore, the central pressure required for equilibrium of aatio. We wonder if this is a general result, which we analyze

uniform density star is in the next section.
_3M | 1-X Il. NEW BOUNDS FOR M/R
P 4aRe| 2vB(0
77 (0) We will show now a generalization of Buchdahl's theo-
rem which proves that the bourd9) depends on the par-
3M | 1-X ticular model of the mass distribution for the fluid matter. We
S (14) : - ; )
47R3[3X—-1 begin by deriving Buchdahl's theorem in a new way. Let us

assume thap(r)=0 and that it is a monotone decreasing
and P, is positive. From Eq(10) it is easy to see that the function ofr; i.e. dp/dr<0. In fact, the assumption that
pressure is a monotone decreasing functiorr,ofhen the =0 follows from the monotone decreases assumption, since
maximum forp is at the origin. Usuallyf3,4] it is required  the interior solution must eventually match onto the exterior
that the pressure does not become infinite anywhere, in papchwarzschild solution. This hypothesis abgugive that
ticular it is not infinite at the origin, to prevent collapse; W,<0 where w(r)=Gm(r)/r3. The radiusR is fixed
thereforeB(0)>0. The above condition is fulfilled when  throughp(r)=0 for r>R. Given any functiorp(r), satisfy-
ing these conditions, we can calculdtér) from Eq.(5); we
GM 4 can then determinep(r) by integrating the Tolman-
T<§' (19 Oppenheimer-Volkoff equation inward from the surface
[with the boundary conditiop(R)=0] and then calculate
The existence of an upper mass limit in general relativity, forB(r) from Eq. (8). Assuming thatp satisfiesm(r)<r/2G,
a given radiusR, is not just a consequence of having re-we may be sure thai(r) is well behaved, and Ed8) will
stricted consideration to stars of uniform density; if we sub-give a finite positive definitd3(r). Therefore, any absolute
jectp only to general requirements, and impose the conditiodimitation on the input functiom(r) (such as an upper bound
that Eq.(7) must yield a finite solution fop(r), there is an on MG/R) can only come from the condition that E)
absolute upper limit tdVG/R imposed by the structure of must give not only a finite solution for the presspie), but
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also the most restrictive requirement of the dominant energy

condition.

In what follows we shall exploit this condition rather di-
rectly, at a difference with other authdr4,3,1] who attack
the problem by concentrating on the metric coefficiBfit)
rather than orp(r) itself.

Let s be
p+{
=A"(r)—, 20
I=A) (20
where
1
n=§\/ —360
W,
o= —2
WC
(21
_We .
— Wc 1
77—5( +n)

and the subscripts andb refer to the center and the bound-
ary of the sphere, respectively. Incidentallis=1 because
w =<0 and themg<n<1, /=0 andy=0. With these values
of the parameters involved; is then a nonincreasing func-
tion of r [1]. Accordingly, a comparison of its central and
boundary values gives

'ﬂcz wb-

Consideringp,=0 we have A"(r=R)=1/X?" and A"(r
=0)=1, we obtain

(22

{
Dc+§>@;[pc+ 7]. (23)
Let A=X2. Then using Eq(21) we have
3w(1—-A") 1
4p= Vn/l=n=5. (24
2[A"(1+n)—(1-n)] 2

Let us call the right-hand side of the last inequalityd(y).
Then, it is not difficult to show that

dg(n) 3wp[A?"—2nA"INA—1]
dn 2[(1+n)A"+n—1]?

(29

The denominator of Eq(25) and w, are positive, then the

derivative sign depends on the bracket in the numerator:

f(A)=[A2"—2nA"nA—1]. Also

2nA"1U(A)

dA 26

whereU(A)=(A"-1-nInA),
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du n(A"-1)
A" r (27)

Using I>A>0, we havedU/dA<O0; then U(A)>U(1)
=0. Thus, G=f(1)>f(A) becausedf/dA>0. This gives
dg(n)/dn<0. Then

4mp.=g(1/2)=g(n) (28)
and substituting the value of=1/2, we obtain
3M 1-X 29
=

According to Eq.(14) the right-hand side of Eq29) is the
pressure of a star with mass, radiusR and mass distribu-

tion p=p=(3M/47R%); we have called itP.. Then, for
any equation of stat® is the lowest possible value for the
pressure at the center of the star; i.e. givdnand R the
minimal central pressure for any equation of state is the cor-
responding = const. Any physical solution will have a finite
pressure everywhere. Then, the necessary condition for a
physical solution will be thaP, is also bounded and then we
have the well known inequalitX>31. The last result gives
the boundGM/R<3%, i.e. Buchdahl's theorem. The way we
have followed to prove Buchdahl’'s theorem allows us to gen-
eralize it when we have matter which satisfes 8/3p for
any B. Now, if this last condition(in the formp.<B/3p.) is

not to be violated, it is necessary thBt<pB/3p.. If we
impose this condition, using E¢14) we obtain

1-X
_Bre. (30)
3X—=1  3p
A straightforward calculation shows
2MG
—& =S8 (3D)

for an all spherical star with isotropic pressure and matter
which satisfies the energy conditipi= (8/3)p. The function

S(é), §=,3pc/3; is a non decreasing function expressed by

1+§)2
1+3¢] -

(32)

S(é)=1-

This function satisfiesS(1)=3/4, for =3 and a constant
density star, an®(«)=28/9 if the density goes to infinity at
the origin. We can express the inequali§0) in a more
convenient way in the form

1( 26
=11

=1+ ——
X B+6

3 (33

where §=p/p, may take any value if0,1]. The valueés
=0 corresponds to a central density goingtpandé=1 to
a constant density model.

Buchdahl[1] has found an inequality that in our notation
reads
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In terms of the general radial variabke the Schwarzschild
: (34 radial variable is given by =S(x). The GB5 family of in-
terior solutions is given by* s” means the value at the sur-

It is apparent that the bound83) and (34) agree for any face of the star
value of 8 whené§=0 or 1. However, for any other values of

x= 1|14 22
2_ [
3\ 7T BF1

6 and B8, we obtain a smaller limit for the values G'M/R Y=(1-2M/R)%2 TstXs ﬂ
from Eq. (33) than from Eq.(34) which corresponds to the Ts—Xs) THX
limit obtained by BuchdaHI1]. In general, to have a value of N=S=(T+X)? (39)

6 we need a detailed static spherically symmetric model for

an interior solution. However, an interesting estimate of itsyhere

value can be achieved for a mass distribution which satisfies

the condition that it is always greater or equal than the values bx 3 [ b

represented by a straight line which takes the valuat the Tx)=1/ costix—A)’ X(X)= coshx’ (39)

origin, r=0, and pgr at the border of the star,=R [for

example, wherp(r) does not have an inflexion pointA  The constant is a nontrivial integration constant, and the

simple calculation shows that, under these conditiofis, constantd and\ characterize the equation of state given by

=1/4 and, if we consideB= 3, the limit obtained from Eq.

(33) is 2MG/R<0.85D . . ., while the one obtained from a(u®—\% 3a(u®+2\%

Eq. (34) is 2MG/R=<0.85%® . .. . In thenext section we p:m' IR

consider the generalized Buchdam&5 polytrope (GB5)

family of exact interior solution$6,7] to test the inequality where a=1/(87b?), u=X/T and us=\, u.,=\%%"2?

(32). (“c” means the value at the center of the st&=0). The
Let now w, be the frequency of emission of light at the parameters\ and u, characterize a given member of the

surface of the star and, the frequency measured by an GB5 family (0<\<u<u.<1). Itis convenient to identify a

observer at a given position. Then, the redshift factor is, agjven solution byx and a new parametey, given by u

(40)

usual,z= we/wy—1; if we use explicitly the values @y at = (u.—\)/(1—\). The GBS family in the §,u) parameter
both positions we would have space corresponds to the unit square\3<1, 0<u<1[7].
12 For our purposes we need to complete our set of equations
(1_ 2MG> by expressing/l andR in terms of\, u., andb. The desired
o relations arg 7]
Z=T— 1 (35
2MG 2_ 5 2\3/2,,2 312
- 4bug(uZ—A2)3%uZ—\*
e = )
(UZ+ A3 (uZ—23)3
wherer, is the emission radius and, is the observation (41)
radius. _ . . 2bug(U2—A2)YAu2—\H VA 1+2)2
Using Eq.(30) we obtain that the maximum redshift fac- R= 3 7 3 .
tor of light emitted from the surface of a constant density AU+ A7) (Ug =A%)
) . g i e
?tr?gr? star is for.=3GM and an observation radiug=. We are now ready to compute all the necessary ingredients to
construct the inequality31). We begin by finding a value of
© B for each solution. To this end from EG0), we obtain
z :(—e) —-1=1. (36)
e 0/ max 3_p (US_)\G)

T < F (42)
On the other hand, for a mass distribution which satisfies P N1 o)
the condition that it is always greater or equal than the valueqrhen' from Eqs(40), (41), (42), and the definitions of and
represented by a straight line which takes the valuat the ¢, we obtain
origin, r=0, and pg at the border of the star,=R, the
maximum redshift factor ig=1.6. U2(U8—\®)(US+\8)(1+\)®

T 3NE(1—ug) (14 M)(U24 N2 “3
I1l. THE GB5 INTERIOR SOLUTIONS ¢ ¢

In this section we put the gravitational const@nt 1. We  In the calculations that we have performed we have used
just introduce the GB5 family of interior solutions as a test-:=R/M as an input parameter andas an independent vari-
ing ground for the inequality31). We write the metric in a able to cover the whole family of solutions. The relations
proper time general radial gauge as that yieldu, in terms of@ and\ are[7]

ds2= — Y2(x)dt2+ N2(x)dx2+ S2(x)(d 62+ sir2 6d ). u—x3g 1TE e o (1-\)Va(a—2) s
(37) ‘ 1-¢) a(1+A) = (1+)1)2
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S,2MIR =08 S,2M/R = 0.25 ratio for a spherically symmetric isotropic star. We have ana-

091 lyzed the properties of the mass distribution rather than the

0881 081 metric of the spacetime. We have obtained, using Buchdahl’'s
0.86 1 2; results and the energy conditiodp(r)|<gBp(r)/3), an in-
0.84 0'5_ equality given by ZM/R<S(¢), where S(£) is a nonde-

0.82 0_'4_ creasing function of the ratio of the density of the star at the
0.8 03] center to the mean densit§= Bp./3p. For a wide class of

models of mass distribution we have been able to improve

078 05 06 07 08 09 1 02 02 04 06 08 1

@ A ®) 2 the maximum limit of GM/R. In particular, for a constant

FIG. 1. Two typical plots of the boun8(¢) and 2V/R vs the density sta.r, "?‘”“323' we ha.vei.BM/R<3/8., which |mpllgs
parameten for different values ofa showing that M/R<S(£). an upper limit for the gravitational re_dsh|ft factor for light
The lower limit for the values of, for eacha, is obtained from the ~ €OmMing from the surface of the star given by 1; then, the
condition that the parametgr should not exceed the value one in use of the dominant energy condition gives a more strict
the parameter space of the GB5 family. The curve on the left corbound. However, for a general model the use of the dominant
responds tax= 2.5, while that on the right correspondsde-8. energy condition does not modify Buchdahl’s lim@M/R

=<4/9, which arises from the requirement that the central
The computational procedure is as follows: First, we choos@ressure must not diverge. On the other hand, a comparison
a value of the parameter. Second, we compute the range of of our results with a previous inequality found by Buchdahl
\ by findi_ng its lower limit as the largest root of_ EG@4) for  snows that for any values of the parametgrand & our
uc=1 (this value corresponds tp=1). And finally, we y,,nq of the mass to radius ratio is more strict, in the sense

compute the functionS(¢) and check its value against oo : )
(2M/R) = 2/a which should be larger than this in the whole ;h;r:f[;l'\]ﬂ/ R'may be smaller than the limit obtained by Buch

ran f\. Then, we r t the pr re for a new val . S
ange o en, we repeat the procedure for a new value o In Sec. Ill we have used the GB5 family of interior solu-

a. Although we have carried out the calculations for a wide . d for the i | 4 h
range of values ofr between 2 andq, we reproduce in Fig. tions as a testing ground for the inequali§l) and have

1 only two of the curvesS(£) vs \, which show that the obtained that it is verified, as expected. Given a model for

inequality (31) is verified, as expected. the mass distribution of the star, we have definite values of
pc and p; with these values we get a more strict bound for
IV. CONCLUSIONS the gravitational redshift factor than the valuezodbtained

by Buchdahl. If the kinematical effects on the redshift may
In this paper we have followed a different procedure frombe taken into account, we hope that this difference may be-
Buchdahl[1] to obtain new bounds for the mass to radiuscome observable.
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