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Family of regular interiors for nonrotating black holes with T8=T}

Emilio Elizalde' and Sergi R. Hildebranbit
Instituto de Ciencias del Espacio (CSIC) and Institut d’Estudis Espacials de Catalunya (IEEC/CSIC), Edifici Nexus, GraR-@apita
08034 Barcelona, Spain
(Received 1 March 2002; published 18 June 2002

We find the general solution for the spacetimes describing the interior of static black holes with an equation
of state of the typé’S:T% (T being the stress-energy tensdfhis form is the one expected from taking into
account different quantum effects associated with strong gravitational fields. We recover all the particular
examples found in the literature. We remark that all the solutions found follow the natural scheme of an interior
core linked smoothly with the exterior solution by a transient region. We also discuss their local energy
properties and give the main ideas involved in a possible generalization of the scheme in order to include other
realistic types of sources.
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[. INTRODUCTION body, and leave for a subsequent study the issue of whether

Any static black hole(BH) arises from the gravitational this region is thin or thick, in comparison with the region
collapse of some object. Under the premises in this work, thelominated by quantum vacuum effects, through one of the
object has notyet) shrunken indefinitely and has not given solutions referred to before. Finally, the only work consider-
rise to a spacetime singularity. It is then natural to consideing all the features of the structure of a regular static BH
two regions: oneexterior to the object, and the objeitself.  with a clear physical source [27]. However, Nariai space-
The exterior region, as is well known, can be described by gime was absent, as well as an implementation of previous
spacetime belonging to the Reissner-Nordst(d,2] solu-  attempts and a complete study @dcal) energy conditions.
tion. In the absence of electric, or magnetic, charge it isthys, in our opinion, it is worth carrying out a unification of
simply Schwarzschild’s spacetime. Furthermore, one can adghe different results obtained so far, as well as extending
a cosmological constant following recent observational rethem in order to cover some important issues that were over-
sults[3,4]. Then, the spacetime belongs to the Kottler-Trefftz|ooked in those analysis. Here we provide, for the first time
solution family[5,6]. In this case, the global properties of the tg our knowledge, the general solution of the scheme dis-
spacetime clearly change, e.g., the spacetime is no longe{;ssed above. In particular, we carry out an implementation
asymptotically flat(see, e.g.[1,7]). of all those previous works which, for one reason or another

Going a step further, we consider the body itself as comgid not comply with all the requirements already specified.
posed of two main regions. One is #srfaceand the other e also perform a study of the local energy conditions in all
the rest of the body, i.e., thiaterior region. One may expect these cases.
that some mechanism—having to do, e.g., with quantum Finally, it is also important to introduce other kinds of
gravity—will be able to stop the collapse of the body. There-gg|ytions for the interior region, aside from the ones referred
fore we will think of the interior of the body as being de- to before, which arise from results, or just hints, coming
scribed by some spacetime product of the present knowledggom the contribution of the quantum vacuum to gravity. To
available on the merge of quantum field theory and gravitasymmarize, these are the points that will be dealt with, suc-
tion. A widely studied issue in this direction is that of quan- cessively, in the body of this paper comprising the next ten
tum vacuum effectp8—14] and the resulting spacetime turns sections. They are clearly identified by their titles and will
out to be a de Sitte(dS) or anti—de SitteAdS) one[15—  need no further specification here. Section XII is devoted to
24]. There are other alternatives, as, e.g., thosg25{26. some final remarks, and in Sec. XlIl we provide the conclu-

In all these cases considered so far, either no distinctiogjons of the work. A brief survey can be found[@8].
haS been made betWeen the interiOI’ and the eXteI’iOI’ Of the Throughout th|s Work we will use units such tha
body (see e.g.[20—26)) or there appearssingulardistribu-  —1  ¢c=1, Einstein’s equations are written in the form
tion of matter at the surface of the boésee, e.g.[18,19). Gap=87T,z, WhereG, is the Einstein tensor—we follow
This distribution is singular in the sense that it is a matteine conventions of1}—and T, is the energy-momentum

surface density—called a singular shell. However, contrarensor. A prime will denote derivation with respect to the
to the case of electromagnetic charge densities, a matter sy ordinater.

face density has neither been observed nor has it been pre-
dicted by any theory. It is thus more natural to assume that

the matter on the surface of the body is distributed across the”_ SPACETIMES WITH A SPHERICALLY SYMMETRIC

QUANTUM VACUUM AS A SOURCE
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AdS spacetimes. Indeed, the interior solution cannot be ev- "
erywhere a spatial isotropic solution, as dS or AdS, because Ricci=

(—0°20°+0°20'+0'20°-0'20)

this would lead to a sudden change in the pressures exerted G
by the body to the exterior, and would lead to the appearance 1
of a singular mass shdlP9]. Now, the type of generalization + 52((5)2@) 0%+ 02 0%). (7)

depends on the underlying physics one is able to assume.

The isotropic case is suitable in order to link it with the 5. o other hand. for a SSQV we must havep=0 (the
expected contributions of a dominating quantum vacuum, €Sz, itinne onT,, being directly translated into conditions
pecially those associated with vacuum polarization. As We R )
are dealing with spacetimes which are spherically symmet- ap

ric, a natural generalization is to assume that the body may

be described by a solution which iisvariant to any nonro-

tating observer, with a free radial motion, instead of a solu-

Ricci=Rog( — O ® O+ Oy Or)

+Ry(OF 2 OF + O 2 6}), (8)

tion which is invariant to any observer. This generalization of

the energy-matter content of the body is caliggherically
symmetric quantum vacuuri8SQ\), after [20], see also
[22], and requires the imposition di3=T} for any nonro-

where{®}} is some orthonormalized cobasis, not necessar-
ily coincident with the one used in the computation of Eq.
(7). Therefore, we must look for an orthonormalized cobasis

tating observer. This is the type of energy-matter content thafor which the Ricci tensor(7) becomes of the typé&8).

is considered if18-28,30 and will be the one used in the
first part of this work, until we get to Sec. X. In patrticular,

Clearly this is the same as finding out whether we can have
linear expression®=A0°+BO!, andO},=CO°+ DO,

SSQVs and nonlinear electrodynamics have given some relvith — 0% 0°%=0%- 0L =0%- 0L +1=1. However, Eq.

evant results on the issue of regular BHs, see, ¢28+
25,30.

(8) is invariant under these changes. The only solution that
makes Eqs(7) and(8) compatible is then

We shall now characterize the families of spacetimes that

are suitable to become SSQVs. Any static, spherically sym-

metric spacetime can be conveniently described by
dg?=—F(r)dt?+F~1(r)dr?+ G%(r)dQ?, (1)

wheredQ?=d#?+ sir? #d¢?. There are certainly other ways

to represent these spacetimes, which avoid the problems oc-

curring near the possible horizons, or by puttiRgdQ?,
providedG'=dG(r)/dr+#0 (see, e.9.[31,32). For a local
observer at rest with respect to the coordinate grid of(Ex.
a standard computation @f,; yields (p is the energy den-
sity, p the radial pressure, amg, p; the tangential pressures,
measured by this obseryer

1
8mp=52[1-F(G'?+2GG")-GG'F'], (2

1
8wp=@[—1+FG'2+GG’F'], ©)

FH
87Tp2:877p3:7+

FG" F'G’ 4
EC .
Imposingp+p=0 in Egs.(2) and(3), we get

FG"=0. (5)

We now use thaG cannot be zero in any open region. Two
alternatives appeaF=0 orG"=0. If F=0, expressior{l)

is useless. It is first necessary to change the coordinate sys-

tem of Eq.(1) by dT=dt+(1—F)/Fdr, while keeping the
rest unchanged. Then one can impé&se0. The result is

ds’=2dTdr+2dr?+G2(r)dQ?>. (6)

In the orthonormalized cobasis given B°=dT/\2, @*
=dT/\2+2dr, ®?=Gds, and®®=G sinbde, the Ricci
tensor takes the form

G"=0.

C)

If F#0, we also haves”"=0. ThusG"=0 constitutes the
proper characterization of any possibility.
Now, from G”=0 two distinct alternatives appear

G=v, or G=ar+y, (10
where a(#0) andy are constant. Only the latter has been
considered in detail in the literature of regular BHs. We will
study it in the sequel.

Other expressions for the spacetimes describing SSQVs
In order to include the possible horizons, we write the met-

rics (1) under the common form

ds?=—(1—-H)dT?+2HdTdr+(1+H)dr?+ y*dQ?,
1D

ds’=—(1—H)dT2+2HdTdr+ (1+H)dr?+r%dQ?,
(12

whereH=1-F, and the coordinate change is given &y
=dt+(1—F)/Fdr. We will use these forms in the sequel.
We have also used the fact that the cgsear + vy is physi-
cally equivalent to the cas&=r. This is intuitively seen
becauser merely represents the scale of units used fand

v is an arbitrary(constank origin. In terms of coordinate
changes we have: The metrid) for G=ar+y is ds’
=—F(r)dt?+FY(r)dr?+ (ar + y)2dQ?2. Recalling thata
#0, one can define a new radial coordinatear +y. The
metric becomes theds?= — F[(r — y)/a]dt?+a~2F Y[ (r

— y)/a]dr 2+7T 2dQ2. Now, under a reparametrization of the
t coordinate by dt=adt we get ds’=—a?F[(r
—Ylaldt?+a 2F Y (r—y)/a]dr2+72dQ2  Whence
one can conclude that any member of E). with G=ar

+ v with a#0 is equivalent to another member of K@)
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with =1 andy=0. Since we are studying the general de-As a consequence, for a regular soupge->—p asr=0 is
scription of SSQVs it is enough to consider the representaapproached. Therefore in any regular solution the spacetime
tion «=1, y=0 andarbitrary F(r) to includeany case of becomes more and more isotropicras 0. Thus the contri-

SSQV. bution from the quantum vacuum becomes more and more
Furthermore, it is easy to show that E§2) can be writ- dominant ag tends to 0 and the initial idea of distributing
ten in the Kerr-Schild fornj33]: the singular mass shell across some region of the body is

completed.
dsz=dsf]+ 2H(r){e¢, (13 On the other hand, one can choose a similar cobasis as in

the Nariai-like case, just by replacingwith r. The Riemann
Wheredsi stands for the flat spacetime metrit,is an arbi-  tensor has the following independent components:
trary function ofr, and¢€ is a geodesic radial null one-form,

¢=(1/\/2)(dt=dr). Thus the SSQVs in Eq(12) can be S H" R R H’
thought of as the family of maximal spherically symmetric 0101~ = "5 0202~ 170308 ~
spacetimes expanded by a geodesic radial null one-form (17)

from flat spacetiméGRNSS spacegs

To summarize, there amnly two, nonequivalent, families
of SSQVs. The case witlc’'=0 is characteristic of the
Nariai solution[34,35. The Nariai solution is a solution of
Einstein’s equations for the same pattern as the de SitteFhe Ricci tensor for these spacetimes has the following non-
solution, i.e.,T,s=Aog.s, Ao being the cosmological con- zero components: Ryp= —Ry;= — (1/2)[H"+(2H'/r)],
stant. The difference lies in the “radial” coordinate. In the R,,=Rg;=(1/r)[H’+ (H/r)]. And the scalar curvature is
Nariai case there is no proper center for the spherical symgiven by R=H"+(4H'/r)+ (2H/r?). Finally, the nonzero
metry. Therefore we shall call the spacetimes wh=0  components of the Einstein’s a@yy=—G,=(1/r)[H’
generalized Nariai metrics. Finally, the other case corre-(H/r)], G,,=Ga3=—(1/2)[H"+(2H'/r)]. Other ex-
sponds to the GNRSS spaces which constitute a distinpressions that will be used later are
guished family of the class of Kerr-Schild metrics.

H' H
Ri21= Riz15= or Rozos= r_2 .

1 ) Goof

Ill. GEOMETRICAL PROPERTIES OF THE SOLUTIONS Goo= ~Gu=rz(HN)',  Gz=Gss=Goo~ —

A. Generalized Nariai metrics (18)

Using an orthonormal clobasis defined a®° In this case, the isotropitregulay GNRSS metric is the
=2(1—H/2)d'£—(H{2)dr, 0 =(+H/2)dr+(H/2)dT,  de Sitter solution, given biA(r) = (Ay/3)r2.
0°=vydf, ©°=ysindde, we see that the Riemann tensor  Exterior metrics and GNRSS metridsturns out thatll
has as independent components of the possible exterior metrics, see Sec. I, also belong to the
GNRSS family. The functiom is H(r) = (A ¢/3)r?+2m/r
o _ 2 ex
Rotor= =H"/2, Rpgos=1/7". (14 —0g?/r2, where A, stands for the external cosmological

The Ricci tensor is characterized byRgy= — Ryt constantm is the ADM mass of the BH, and its electro-

" . " magnetic charge.
=—H"/2, R,,=Rg3=1/v?. The scalar curvature B=H e . . . )
12/42, and the Einstein tensor has the following nonzero This coincidence will be very useful in the following sec

tion.
components:

Goo= —G11=1/9?, Gup=Gga=—H"/2. (15) IV. JUNCTION OF THE INTERIOR AND EXTERIOR
SOLUTIONS

The isotropic solution, the one to be found at the core, yields

H=(1/y?)r?+br+c, whereb andc are arbitrary constants.

Without losing generality, we can séic=0 (as they are eral form of a hypersurface that clearly adjusts itself to the

clearly gauge freedoms for any _spacetime _in .the fg)nily spherical symmetry of any of these spacetimes is as follows:
Thanks to the presence of the Nariai solution inside this fam-

ily, Th3™=A00,s. the factor 14? can be identified with

The junction, or matching, of two spherically symmetric
spacetimes is well-knowfsee, e.9.[29,36—38). The gen-

. . ; 0=N\y,
Ag. Thus, the only isotropic quantum vacuum belonging to o
this family is the Nariai solution. ¢=N,
3 (19
r=r(n),
B. The GNRSS metrics t=t(\),

First we note that these spacetimes fulfill the relation

where {\,\y,\,} are the parameters of the hypersurface.
One must thus identify both hypersurfaces in some way. The
identification of (;); with (\;), (1 and 2 label each of the

!

P2=—p~ 5 (16)
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spacetimesis the most natural one, due to the symmetry of a> A,
the above scheme. In the sequel, 1 labels the exterior space- Ha(R)=Hy(R) =~ =2+ ?Rz, (20
time and 2 the interior one.
In order to match the exterior solution with the interior 2m 2¢2 2A,
one, one basically demands the coincidence of the first and H)(R)=H;(R)=— F'F ?'F 3

second fundamental forms &f at each spacetime—the other 21)
way is to accept the presencesifigular mass shells, which

would not require the coincidence of the second fundamentql;,reqver, the aim here is to focus on those interior solutions

form, but we will dismiss such an unphysical option. In orderwhich are everywhere regular. From the expressions of the

to in(_:lude the possibility of matching the interiqr and the Riemann tensor and the metric, one sees that this may only
exterior at null hypersurfaceg.g., at an event horizpone accomplished if

can follow the formalism i{38]. It is worth recalling that
the exterior region is descnbgd by a mempe_r. Qf the GNRSS H,(0)=0, H(0)=0. (22)
family. Thus we have to consider two possibilities: matching

a generalized Nariai metric with a GNRSS one and tworpg we finally encounter four conditions in order to have a
GNRSS metrics with each other. regular interior solution.

From now on, we will consideH, to be a smooth func-

A. The junction of a generalized Nariai metric tion of the variabler=r/R, a most natural hypothesis in
and a GNRSS one view of the regular character prescribed for the interior so-

_ _ lution. In this case, the origin conditions tell us that
In this case one easily gets;(\)=y=const, t;(\)

=const, seg¢39] for full details. This result tells us that the s

junction between a generalized Nariai spacetime and a mem- Hy(r)= E b,r". (23
ber of the GNRSS family is impossible. It would only hap- n=2

pen for a(two-dimensiondl surface. Therefore any member

of the Nariai class cannot be regarded as a good candidate _'ﬁll(_)w’ one has to |mpo§e thejwo other~cond|_t|ons. Obviously
order to represent the interior structure of a regular, statié i the same to considet,(r) or Hp(r—1) in the whole

BH. procedure. However, we will first work withi,(r —1) in
order to implement the junction conditions directly. From the
B. The junction of two GNRSS spacetimes preceding result, one immediately has
In this case one gets that two members of the GNRSS o
family match with each other if and only if, see, elR9], H,= >, a,(r—1)", (24)
either ry(A\)=r,(\)=R=const, t;=t,, [H]=[H']=0, n=0

or ry+ty=r,+t,=const. The last condition, however, de-

scribes the motion of a null hypersurface and is not an ac2nd the junction conditions tell us that

ceptable solution in order to describe the matter inside a om 2 A

static BH. Therefore we reach the conclusion that: The only ay=Hq(1)= —— q_2+ r2 (25)
acceptable hypersurfaces fulfilling the matching conditions, R R 3

that preserve the spherical symmetry, between two space- )

tlmes oj th_e GNRSS_TamHy, ire t’ho_se satisfying(\) a1=H1(1)=2 —T+q—2+ﬂR2 , 26)
=r,(N\)=R=const, t;=t,, [H]=[H']=0. R R 3

Without losing generality, one can choose=t,=\ be- ~ B B ~
cause of the global existence of the Killing vectpr More-  where H,(r)=(2m/R)(1/r)— (q*/R?)(1/r?)+ (A,R?/3)r?

ones, in which the matching is explicitlyl. The hypersur-  step is to impose regularity of the solution, E82). We get
face, 3, will be timelike, null, or spacelike according td

<1, H=1, orH>1, respectively. * *

To summarize, if vacuum polarization is to be the domi- > (-1)"a,=0, > (—1)"na,=0, (27)
nant quantum effect, the most simple way to construct a n=0 n=1
regular BH is to build it upon GNRSS spacetimes.

g P P which, by virtue of the matching conditions, yield

V. REGULAR INTERIORS OF THE GNRSS TYPE

- . 4am 39 Ay,
As mentioned elsewhere, the exterior region can appropri- nZO (=1)"ap2=- ﬁ"' ET”L ?R , (28)
ately be characterized by a member of the Kottler-Trefftz
class, which is a subclass of the GNRSS family. Then, the o m g A
matching conditions between the exterior and the interior —1)"(n+2)a.. =2 — —+ — + —1R2| (29
regions are n§=:0( Ji(N+2)3n, R R 3 (29

124024-4
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It is clear that there are infinitely many possible candidates

for these interiors.
Isotropization Let us further analyze how they behave
near the origin. Taking into account the expressioigfin

powers ofr and using Eq(18), we get

o

1

Gll:__z +l)b|’F|72,

1 I+1 ~_o
Gzzz__z - (30)

It is then clear thaG; andG,, are different from each other.
Yet we have the very relevant property that, &y of these
spacetimes, it holds

3b,

-
(31)

lim Gll: I|m(_Goo): lim G22: lim 633:

T—0 r—0 r—0 r—0

PHYSICAL REVIEW [®5 124024

3

8m 5¢?
GC1(0)=G2A0)=~ 2

R R

LM,
3

+2( 1! 3)('_2)‘3'},

3(8m Ay, <
_E{F ?R +|Z:4(|_3)bl}
VI. EXAMPLES

We will consider six examples. Two constitute the well-
known proposals 0f18,19,4Q and[20,21]. Two more come
from a proposal if23-26, for electrically charged bodies,
and the proposal given if30], for magnetically charged
ones. More specifically, we will here derive their correspond-
ing analogues, within the present schefmédnat is actually
more than simply rewriting those cage$he remaining two
examples constitute a family of brand new candidates, which
naturally arise from the preceding expressions. We will start

Whence, we see that a general isotropization of the Einsteiith this last pair.
tensor—and consequently of the energy-momentum one—
independent of the model is actually accomplished. In terms

of a; we get
1 & -
Gllz—ﬁ 2 AMI’NI
M=0
(32
- |
Ay=(—-DMM+3 -1) a
m= (=D )|:%+2( )(|—2—M
and
1 & |v|+2 -
Gor=~ g2 > — (33
M=0
So that
. . ) ) Ay
||m G]_]_: I|m(_Goo) = ||m G22: I|m G33: - E,
F—»O ?—»0 ?_>0 ?_,0
” I
Ap=32, (- 1)’ a.
=2 |—2

Finally, making no further assumptions on the coefficients
of H,, we can isolate two of them in terms of the rest. For

simplicity, we shall isolatea, andas. The result is

10m 7¢?

a=— %+ o7 +?R2+E( 1)'(1-3)a,
6m 4 ”

ag=— o+ q +2 -'1-2

A. Two arbitrary powers

Let us just make the choice that only two specific powers
of H(r), sayM and N, be present. In order to fulfill the
regularity conditions, both must satisiyt,N=2. However,
if we wish to obtain a de Sitter-like behavior at, and near, the
origin, we must necessarily impose that one, and only one, of
them, sayM, be equal to 2. Thusi,(r) readsH,(r)=b,r?

+byrN, for N>2, with

~2m(N+1) ¢®(N+2| AR?
27 RIN-2) RZIN-2 3
by= 2 3 29°
N N—2R| MR
Gy4(r) andG,,(r) read[recall Eq.(18)]
GoF)= — A em/N+1 -2 g
ll(r)__ l+ R3 N_2 ( )

21 3(N+2)—4(N+1)rN+2

TR N—2 !
~ 6m(N+1| /(N _,
GZZ(T)Z—A +$m Er -1

21 3(N+2)—2N(N+1)rN+2
R* N—2 :

With this in hand we can write, respectively, the previousWhence one readily sees that their finite value at the origin

expression for the central value in termsagfor by, =4,

coincides, as expected,

124024-5
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G11(0)=G,(0)=—A Gm N+1 H = - 39
1(0)=620)=—A1~ =5 3 2(f)—m, (39
39°(N+2 where we have imposed E(2). The matching conditions
+? N—2/" (34 |ead to

1 3

Lowest powersThis example corresponds to the case in =
A(A+Br3) rzH:i(R),

which H, is a polynomial of lowest degree. This amounts to
settinga;=0, 1=4, in the general expressions. Its interest 3
lies in its being the simplest possible situation. The result is 2A-BR* EH’(R)

A(A+BR®? R 7

(40)

~  [8m 502 AR?. 6m 4qg°\~
Ho(r)= (F_ =3 ) 2+( -5t ﬁf) rs, whereH; comes, as usual, from the external model.
(35) In the exterior region, close to the matching hypersurface,
the quantum contributions do not turn into a cosmological-
and like term. They are of the formGqg)ex>m?/r8, as men-
tioned before. We thus have a quantum exterior which is
24m 1502 8 202 different from the one encountered in the rest of the ex-
Gqii=— AL+ (Sm— i)? (36)  amples and sections before, which cannot be described by a
11 D3 4 17T R3 ’
R R R R member of the Kottler-Trefftz class. Fortunately, our preced-
ing results are still useful. In fact, one realizes that it is pos-
24m 1502 12 20°%\~ sible to select a suitable exterior with a similar form as Eq.
Go=— 3+ go ~ M1t §§<3m— ?) r. (87 (39), just by settingA.=0 and B;l=am, where «

= BLp, beingpB of order unity, and_p, the Planck lengthd
is of order unity in Planckian units 32 is related with the

H _ _A2/p4 T
Notice thatG,, terlds to _Al q°/R" asr _tends o1, the_ number and type of the quantized fie[ds,4Q. This choice
same value a&3](r=1), in accordance with Israel’s condi- yields

tions[29].
(41

Hl(r):T__ v

2m  1/am\?
3\r ’

B. Israel and Poisson’s model

In Ref. [18], see alsd19], a plausible candidate for the \\here we have taken into account that the exterior region is

energy-matter content of the interiors of regular noncharged o minated by the Schwarzschild geometry, with massor

BHs was proposed. The authors proposed that a singul :51rge values of .

layer of noninflationary material should exist between the d Now, using Eqs(40) and (41), A andB yield

Sitter core and the external Schwarzschild metric. However,
the usual spirit of matching a stellar interior with a vacuum

exterior was lost, the reason being the unavoidable presence A= LZ, B= i 1— Lz ) (42)
of a singular layer acting as a matter surface density. Indeed, 6 a'm am _am
in [40Q] it was argued that their approach could be improved R3 R3

by imposing a smooth transition from the hypersurface to the . . -
de Sitter core. Yet this step was not implemented. In anyrinally, using Egs.(38), (Gzp)in=(2Br’°~A)/(A+Br?)%,
case, it was the only available candidate to continue the studvhereA,B have been given above. At the origin

ies of quantum regular BHs at that time. The task here will 1

be to see whether this geometrical and physical model can be G (0)=Gorf0) = — 43
recovered from our analysis. 1(0)=G2A0)=~gz- (43)

In order to do that, we search for a solution within our _ _
family which be as close as possible to this particular solu- 10 Summarize, we have proven here that a spacetime
tion. What amounts to looking for a de Sitter core for smallmodel within our family satisfies all the required geometrical
values ofr and a quantum contribution of the type of the assumptions, and yields the particular formGy,, both for

square of the characteristic curvature of Schwarzschilc]he interior and the exterior of the body, as in the above

spacetime near the matching hypersurface. These featurg%ent'oned references. A more throughout comparison of that

taken into account, we set for the interior model and ours will be given in Sec. VII B.

C. Dymnikova’s model

1
Gooin= — (G12)in= =37, 38
(Gooin=~ (Garlim (A+Br?)? =8 Some time after the appearance of the previous cases a

new model for a regular interior of a noncharged BH was
where A and B are two constants, to be determined. Usingproposed20]. However, the approach was now quite differ-
Eq. (18), we obtain ent to that of the previous authors. Now Schwarzschild’s
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solution was only recovered in an asymptotical senser for Of the form of a SSQV were presented, see 4. Their
approaching infinity only. However, if a sufficiently quick importance relied on the fact that the sources that give rise to
convergent matter model was obtained, then the quantity ghose spacetimes could be linked with nonlinear electrody-
mass outside the horizon of the collapsed body could becom@amics(NED), which besides being a theory by itself, may
as negligible as desired with regard to the interior mass. ThuBe viewed as a low energy limit of string theory or M theory.
one would, at least, recover a trial model, interesting enougffhus some plausible models of regular BHs, that took into
to support or reject the conclusions of the previous authorsaccount quantum effects in a clearer way than before, were
In a later work[21], the model was extended to incorporate Put forward. The features of their models are analogous to
the observational fact in favor of a nonvanishing cosmologithe case of Dymnikova’s model, though with a clear inter-
cal term in the exterior region. We will deal in this section Pretation of the source origin. For the sake of brevity we will

with such a model, but considering a definite end to thefocus on the model in26].

collapsed body.

The choice there waBl(r)=(2m/r)[1—tanh@2mr)],

The imposition for the energy-matter content for the inte-for anyr=0. Ours will be

rior will be of the form

(Gooin=—(Gr)m=Aexp—T°)+B, (44)

where A and B are two constants to be determined and
=r/R, whereR is the matching radiuSWe then integrate

the expression 0B, recall Eq.(18), in order to obtairH,,
getting

~  RYA ETU
Hz(r)=??(1—e "Y+Br?|, (45)

A B
r 1—tanhr—, O=r=R,
HO=Y 5 g2 (49
—_—— =, R=r,
r r

whereA andB are constants to be determined. The matching
conditions imply

2
— q B —2B/R_ 2m 1
A= Bcosﬁr, 1+e =2B < R (49

where we have already imposed the regularity conditions at
the origin, Eq.(22). The matching conditions at the spatial Defining x=A/A,, y=B/B, with Ay=2m, By=q?2m,

hypersurface yield

(e—1) 6m
A o +B=$+Al,
(4—e) 6m
A +ZB:—$+2A1,

whence
_6ém/ e B=A 6m 1 46
“Rlem2) BMTRe—y WO

Finally, using Eqs(38),

~ 3~ ~3
(Gzz)im(r)=A(§r3—1)er -B,
whereA and B have been given above. At the origin
6mje—1
C1(0)=CaA0)=A1+ 5| g5 |- (47)

In Sec. VII A we will compare, numerically, our results with

those in the model of20].

D. Ayon—Beato and Garca’s models

In a series of paper$23—26, some models of regular, was

that is the values of the model |26], we get

1
X= ycosr? Ay, l+e M=2(1-\)y, (50)

wherex=B,/R=q?/2mR. One has here to solve a transcen-
dental equation in order to find the appropriate constants of
the interior model. The parameteris the one controlling the
set of solutions. In classical electrodynamiks; 1. We see
that there is no solution in this case. In the context of general
relativity, A\=1 corresponds to the case where the exterior
metric becomes flat at a spherical surface. But the choice of
H;: cannot be zero for any positive valuerofTherefore the
matching is impossible. The same happens for the other
models in[23] and[24]. In the following section we will see
which type of solutions arise for different valuesof

E. Bronnikov’s model

In [29] a model for static, regular, purely magnetically
charged BHs with an energy-momentum tensor of the type of
SSQVs was proposed. Its interest is twofold. Again the
energy-momentum content of the objects was directly con-
nected with NED. Second, it turns out that those BHs are the
only ones based on a Lagrangian formulation of NED with a
Maxwellian behavior in the weak field limit, regardless of
the place the weak limit is taken. The example given there
a GNRSS metric with H(r)=(|q.|*%ar)[1

electrically charged BHs with an energy-momentum tensor-tanh@y/|q.|/r)] with m, the Arnowitt-Deser-Misner

For other choices see, e.§39].

(ADM) mass, equal tdqy|*¥%2a, q., being the magnetic
charge. It is then obvious that the results of the previous
section are valid now, just by changigwith q,,. The dif-
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ference lies in the fact that now one has magnetic fields and TABLE I. R in cm for various astrophysical and galactic objects

also the theory describing NED is different to that[@B8— and different scales of regularizatiors=30 corresponds to a
26). GUT'’s regularization scales=40 to a Planckian one, ejcin any
caseR/Lregis much bigger than 1R/Lgeg~ 10~ 8752). Therefore
VIl. NUMERICAL RESULTS all (I)f them are quite far from their corresponding regularization
scale.

In order to study the approximate valuesRfor a given
object, one needs to assume a particular behavior of the mat- m s=30 s=40 s=50
ter and energy inside the source. As of now, there is no

. . . M 10°° 1071 1072

agreement at this point. However, following several results, 102M 108 1018 10-28

see, e.g9.[15-23,41—-43 the geometry of the core may be e © 4, 17 7
described by a dS solution. This has been the assumption 1Mo 10_ 10_ 10_

10°Mg 1078 10716 10726

used in most of the works dealing with regularized BHs.
Here we will also include two examples with a different

bg:g\r/gl)rbzrr]\g\/ligrsﬁfla); Wfa;f\g” t?]:s:avz\;i::eisnt]glr(]:r:lc?:sseifhg result is valid for allN, since for any value dfl we have that
g ' y ’ R <[0.6,1]R3/M. It is obvious that, for any astrophysical

physical models which are as consistent as possible, theb. ; . o :
dS model being one of them. In this case, at the cord ject, the final properties are very similar. Table | comprises

we will have Gg0)=—Gy1(0)=—Gy0)= —G3x(0) different massive objects and regularization scales and their
T . sociated values & within this model.

= A,=const. Nonetheless, there is no present agreemer%s

about the scale at which regularization could act. A conve- _

nient way to handle and integrate this indeterminacy is to set B. Israel-Poisson model

A,=10%A4, s being the free parameter that governs the e have found that the corresponding model within our
renormalization scale. For instancesifs around 40, we are  family must satisfy

then considering that regularization takes place at Planck

scales, and so on. @
Finally, for the exterior region, in accordance with several A= T 2m (53
recent observationg3,4], we will assume in what follows 6— =

that py, €[107%°,2x107°] ergem °. An analysis shows,
however, that the fundamental contribution comes from thg, s caseA 2=
guantum gravitational model describing the core, and not
from the type of quantum vacuum contribution that is as-
sumed for the exterior region or near the surface of the body. R3

||m~|—'*,o GOOZAz, so that

a’m B2

“6-aA, 6—B\ALE

mL3,. (54)

A. Two arbitrary powers ] o ]
. . . ) _ This model clearly depends on the coefficighit For in-
In this numerical analysis we will consider the unchargedgiance in order to obtain a solution. we must hase

case because there are no observed objects that can be asé%'B/(AZLEH). The natural scale of regularization in this

ciated with static, charged BHSs. If there is a charge in th%odel is the Planckian one since from the beginning the

source, then the interesting situation involves rotation, Whic%oefficienta was related to the Planck length. Obviously
might be eventually connected with elementary particles other regularization scales would simply charige by the

refer the reader tp44]). The relation(34) is (now q=0) corresponding scale. Using standard valuesAfethat use a

6m/ N+1 Planckian regularization scale, and the fact ashould be
A=A+ o3l 5| YN=3, (51)  at most of order unitf18,40, we getR~3Mx10"%° cm.

R°\N—-2 ) o . ;
This result is in complete agreement with the foregoing val-
ues, even though the models possess very different functions

whence
H(r).
33 N+1 _ ’
R—R@\/M IN=2) (52 C. Dymnikova’'s model

From Sec. VI C and the assumption of a dS core, we have

where we have punh=Mmg, Mg being the Sun mass, and 6m/e—1

Rs=324ms /(A,— A,). The last value only depends on the A+ _3(_) =A,, (55)
regularization scale and corresponds to the solution for a R*\e-2

collapsed object of one solar mass in the case of the “lowest

powers” model: Rye[3X1077S,6X 107> 5] cm. For s  Whence

=40 we getRse[3X10 1% 2x102° cm. Yet we see that

the object has a quantum size very far from Planckian scales, 3/ 6m (e— 1) (56)
even ifs is bigger. In generaR,/Lp=10". Moreover, this Ar—A,
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Comparing this result with the one in E¢p2), we getR  tion, so that these results and ours are really coincittest
= NRwo powers With 0.84<\ <1.34, for anyN. ThereforeR  relative error with respect to both exact solutions being com-
is again of the same order of magnitude, despite the differpletely negligiblé.
ences in the choice of the profile of the energy density and of In general, the horizons result from the cancellation of
the tangential pressures. Joo- Thus we are left with a general set of horizons. A global
Comparing now the model proposed here with the origi-study for all the candidates encountered has not yet been
nal one in[20], we see that both yield similar conclusiois  carried out. We could focus on examples, and try then to
the instances they can be comparelor example, in the ayiract some general features from them, but we do not find
mentioned work, a characteristic raédms was found for thgyig of primary importanc@ The main point is here, in fact,
cpllapged body. Its expression B =Y6m/(A;—Ay), thal  that the matching occurs at a radius which is substantially
yields y(e—2)/(e—1)R~1.34R. Besides having a different gmajier than the Schwarzschild radius of the object. There-

description for this in our model, the values of the coeffi-fore e will always have a typical exterior, a vacuum tran-
cientsA andB are also quite differennumerically. sition region extending until the matching with the object
happens, and a quantum-dominated interior, which finally

D. Ayon—Beato and Garéa’s, and Bronnikov's models converges to a de Sitter core. In the vacuum interior region

h deali ith th dels. th . | and in some part of the quantum object, the rolearidr are
. In the papers dealing with those models, there s no analys ¢ interpreted as usuad(changes its characbeiThis is the
sis of the orders of magnitude of an eventual characteristi

. i . feason for adequately treating the horizons: to see where ex-
radius. The only such condition on these'models is to have 80L§Ctly such changes appear. But, we can still perfectly agree in
event horizon. We can now compute which are the ranges qfy ginary physical terms without requiring a general determi-
R corresponding to different cases of nation of the precise radii at which horizons occur.

First of all, Eq.(50) only has a solution for &\ <1. Moreover, in[40], the authors studied the stability of the
Therefore extremely charged objec¢those with|q|/m>1)  1n4el The same considerations there hold for our whole

cannot be described within the present framework. Thigymily of solutions, as can be easily seen after a careful
would requireR>m, so that the regularized object would not analysis.

be a BH but a “visible” object, such as an electr(ts size, Finally, there is still the issue of the topology of the solu-
thougr;, being bigger than the classical radius, or ComptoRqng \which is connected with the possibility of a “universe
size,q%/2m). . _ _reborn” in the extended spacetime. Its general structure can
For strongly charged objects, i.éql/m~1, we getthatin  pe found in[45] for the case where the sources satisfy weak
order to have a BH 1RR/m<2. Thus the regularized ob- energy conditiongsee the next sectioriThere, it was shown
ject is of a §|m|lar size as that of the event horizon. Muchipat the topology of any regular BH, satisfying the weak
bigger than in the uncharged case. , energy conditions, should be similar to that of a singularity-
The solution given by26], i.e., A=2m, B=q°/2m, can  free Reissner-Nordstno spacetime. However, there are rel-
only be valid now for very weakly charged objects|/m  evant solutions in our family that violate the weak energy

<1, and satisfyingR/m<q*m?. They showed that their congitions(WEC). It would be worth studying what happens
model was acceptable fog|/m=1.05. Now, we see that the i, those cases.

values of A and B in our model change for most of these
cases.
The same is valid for Bronnikov's model, changing the

o ; . IX. ENERGY CONDITIONS
electric field for a magnetic one. Nevertheless, rotation

should be introduced in such a case, at least whgim is A common point when dealing with the avoidance of sin-
not very small. gularities is to show that the energy conditions required in
the singularity theoremésee, e.g.[7]) fail to be valid.
VIIl. HORIZONS AND AN INTERPRETATION Here we will study the strong energy conditio(BEQ,
OF THE REGULARIZED BH the weak energy condition@VEC), the null energy condi-

_ ) o tions (NEC), and the dominant energy conditiot®EC),
Looking at Eq.(30) in [21] and comparing it with our  ithin the GNRSS family(see[46] for the case of a general
result, spherically symmetric spacetimérhe SEC are related with
the formation of singularities in the collapse of an object.
Joo=— 1+ H>, (57) The WEC are directly related with the energy density mea-
sured by an observer. The NEC are useful in order to include
some spacetimes which violate the first two, but are pre-
we realize that, substituting here our correspondihgfor dicted by some quantum models, e.g., AdS. Finally, the DEC
that model, these expressions turn out to be very similarare in fact related with the causal structure of the energy-
except for a possible overall sign difference, due to the
different signatures[e.g., (+,—,—,—) instead of our
(—=,+,+,+)]. We conclude that the same structure for the 2with respect to the other models encountered here, we have
horizons and Cauchy hypersurfaces is obtained2I, the  found that the results are rather similar to those in Dymnikova and
solutions are obtained by approximations of the exact soluSoltysek’s mode[21].
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matter content of a spacetini47].> Even though an analysis Poisson’s model, Dymnikova’s model, and Ay eGarca’s
of energy conditions helps to understand the physics of &6] and Bronnikov's model, respectively. Indeed, SEC are
model, one has to be cautious on ascribing to them morgiolated in a main portion of the object, i.Rgec=R. For
relevance than they actually have. In several systems, mainkpe evaluation of the Israel-Poisson’s model, we have used
when quantum effects play a fundamental role, they all maghe same numerical values as in Sec. VII A. In the case of

be violated with less difficultysee, e.g., the review j8]).  Dymnikova’s model the value displayed corresponds to the
Let{e,}, a=0,1,2,3, be a dual vector basis of the cobasis®@S€A2>A1. For any other case witih,>A;>0 or A,

i ! b b <0<A,, as expected, SEC are violated from bigger values
used in Sec. Il B, df’f'”ed b e,=d;, b=0,12,3. Any ot R .. Finally, in the latter case, one should evalugtior
timelike vector field,V, in the manifold can be represented different possibilitiessee Sec. VI D and the next case
by

. B. Weak energy conditions
V=Abg,, (A92=1+2 (A})? (58) Following analogous steps, one finds, for WEG.{,
' =1 ’ =0, for all V)

whereAP are some functions. WEC—p=0, p’'<0. (62)
tengcr)]rtige other hand, from the results of Sec. ll, the Ricci It turns out that WEC are satisfied in the models of Secs.
VI A-VI C, very easily for any value of (e.g., for de Sitter
Ricci=Ryy(0°2 0°— 012 @) core,p’ =0). One only needs to imposk;<A,.
Let us now consider the series of models in Secs. VID
+Ry( 0’0 0°+ 0% 0°), (59 and VIE. We have already seen thatR<1. This implies

. ) that y,x>0, and hence thaf,B>0. In general, we have
where® denotes tensor product. A similar expression h°|d§—|(r)=(A/r)[l—tanhB/r)]. We then get &p

for the Einstein tensor. =(L1/r?)(Hr)’ = (AB/r*)cosh 2(BIr) and 8mp’
- = (2AB/r%)cosh 4B/r)x[—2+(B/r)tanh@/r)]. The energy
A. Strong energy conditions density p is positive for anyr, althoughp’ may become

SEC requireR,y=R,,V3V°=0, for all V. From the ex- Positive. To see this, we first solye’ =0. Its solution isr
pressions above, we obtaiRyy=Ryy+ (Rog+ Rys)[ (A2)2 =0.48. Therefore we have for<0.48Nr<R (outside

+(A3)2]. Taking into account the expressions of the Riccite body, WEC are satisfigdWEC are violated. o,
and Einstein’s tensor given in Sec. Il B we ge{,= Gy, In the model of _Refs[ZG] and[30], one ha_sB—q fom
+(GOO+ Gzz)[(A2)2+(A3)2]. Finally, using Einstein's and |q|<105n This gives that WEC are violated far

equations, and the fact tha?,A® are free, we get <0.27m, already far away from the core. _
In our revisited model, we have basically two different

SEG-p+p,=0, p,=0, (60)  possibilities. First, for weakly charged sources, i.e., those
with |g|/m<1, the conclusions are the same as for the model
where p is the energy density measured B4, 8mp  in [26] and [30]. Second, for sources witfg|/m~1, we
=Gy, and p, is the tangential pressur@r stresy of the  have, recall Sec. VII Dm/2<R<m, for a BH. Two limiting
source, 8rp,=G,,. This is the usual representation of SEC. alternatives appear.
However, the GNRSS family allows for a new, and more The first one is thaR— 2m. In this case/~ 1 and, there-
useful, expression. Indeed, as mentioned elsewhpse, fore, WEC are violated for<0.27m. The other one is that
=—(p+rp'l2), where (J=d()/dr. Therefore we can write R—(m/2)+ ¢, with e<1. Now,y~1/4e. WEC are violated
for r<0.06m/enr<2m, that is everywhere inside the
SEG-p,=0, p'<0 (61  source. In conclusion, WEC are again violated almost

. ) ) . . everywhere.
in all the examples given before SEC are violated. This is Finally, if one letsR>2m (one does not have now a BH
natural since they are regular. Particularly, SEC are violateg ;; 5 “vis’ible” object) large enough to have<1 for any '

for r<Rsec, with |gl,m, we find that WEC are violated everywhere in the
N2 [? . 7 object.
- +lZ Y L This adds a newelementary example to the violation of
Rsec R, Rsec 32~ |R ;
N 4(6R°—a"m) WEC when quantum effects play an important redee[48]
for a recent revieywand shows clearly that, although energy
Rsec=0.6R, Rgec=0.83B, conditions do help to understand the models, they should not

. ! _ necessarily restrict the search for new solutigfig. 1).
where all the quantities have been defined in Sec. VI and the

solutions correspond to the two-power model, the Israel- C. Null energy conditions

In the case of NECY is a null vector fieldV-V=0, and

3Let us note that their Eq2.25, expressing the DEC, are wrong. requires the evaluation &,,V2V°= G, V3V*=0, VV. One
For our case, the correct ones are given in (©4). obtains
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plr) the fact thatN must be bigger than Zin order to be
singularity-freg, implies that, in practice, DEC are violated
in these models, recall WEC are satisfied throughout.

For the model of Sec. VI B, we can assuBeC to be
positive (for, if BC<0 one gets a negative Schwarzschild’s
mass outside the body andBf,C<0, B,C can be substi-
tuted by|B|,|C|). Following a similar analysis as with the
previous models, one gets that DEC are satisfied for*,
wherer * = (2B/C) 2. Therefore ifr* is less than the match-
ing R, there is a region where DEC are violated. This is the
case of our corrected model. Incidentally, in the original
model, DEC are violated for>r*. This conclusion is
AdS against physics, since thus far one expects Schwarzchild’'s
solution to be valid, and it is a vacuum’s solution with no
problems in its causal structure. Therefore the corrected ver-
sion not only describes a more realistic picture but also
solves this undesired property.

Turning back to our corrected model we have to answer

RN,

Schw

FIG. 1. Plot of the density, in arbitrary units, in terms of the

coordinater. RN means Reissner-Nordstng dS means de Sitter, hetherr * b ler thaR th . .
Schw means Schwarzschild, and AdS means anti-de Sitgr. whetherr ™ may be smaller thaR, see (n€ expressions given

=€2/1%, pys=NAys psgu=0, and pags= —|A,|. In the regionr in Sec. VI B. We get that fop> B, or B<B_, wheref,
e[0R], p can be any(smooth function rlnat|ching continuously =6(V3—1)X (LA ) and B_=—6(3+1)X(LEA,).

with p at the center and at the surface. Regions wheiincreas-  On the other hand, it is expectefd9], that L3A,~O(1)

ing violate SEC, WEC, and NEC. These are clearly most but not aland, consequently3,, B_ are of order unity. Therefore

of the possibilities. From the plog?/ R*<8mA ,, if one wants that even though there are several parameters for which DEC
the model fulfills WEC or NEC. The addition of an external  may hold, there are also many others for which DEC wiill

simply shifts the horizontal axis a quantity;. fail. A more definite answer can only be provided after a
particular field model is chosen which will yield a particular
NEC—p’'=<0. (63)  value of B. What is this plausible field model remains, as of

now, unknown.
Thus one sees that a necessary condition common to SEC, For the next mode{the one in Sec. VI§ it is easy to
WEC, and NEC is that the energy profile of the sources be ahow that DEC are satisfied throughout the source jf
nonincreasing function. NEC are satisfied in the models of>A >0, as expected. This is contrary to the other models
Secs. VIA-VIC, forA,> A, regardless of the signs &f,  since this one departs from them through the causal connec-
or A;. In the models of Secs. VID and VI E, NEC are vio- tion in its stress-energy content. It is to be noticed that DEC
lated in the same regions as WEC are, contrary to the beligfive a new input to understand the moddfEhe caseA,

expressed in30]. <A <0 also satisfies DEC, whereas the rest of the possi-
bilities violates then).
D. Dominant energy conditions Finally, for the models in Secs. VID and VIE, gsis
S o . positive andp’ is positive near the core, DEC are violated
DEC are satisfied if and only ifTo|=|Tj[, i,j=1,2,3. together with WEC.
For the GNRSS family one gets Some concluding remarks are in order. First, although

DEC are known to be different from WEC, here we see
more: it turns out that in cases wii=0, DEC are more
restrictive than WEC. Another consequence is that DEC vio-
lation and the spacetime region where it occurs are not re-
lated. That is, DEC may be violated in regions whi@) is
larger or smaller than 1. It happens, however, that after sub-
ituting expected numerical values for the physical param-

DEC«~signp=sign—p')=sign(p’ +4plr). (64)

Two immediate consequences are that iEhanges its sign,
DEC are violated, and if WEC are violated in a region with
p=0, then DEC are also violated.

Let us turn now to the models considered here. In the cas

of the Fwo-pquers model we will assum/lelzlo._ In.th|s eters involved, the values dfi(r) where DEC is violated
case,p is positive everywhere. WEC were satisfied in thesebelong mainly in the region wheté(r)=1 and a “signature

models. However, DEC may be violated. A study of the S'gnchange in spacetime has occurred.” The region vitfr)

of p'+4plr tells us that SEC are satisfied fa"™? <1 is then at Planckiafregularization scales and can thus
=<4A2/(A2=Aq)X1/(N+2). Now the question is whether pe forgotten. On the other hand, when WEC are violated, one
r is less than 1 or not. usually accepts that the energy-matter content of the model
Obviously, for anyN exceedingN*=4A,/(A,—A) can no longer be described by a classical matter source
—2=2(A>t+A)/(A>—A4), we have that DEC are vio- model. However, DEC deserve some especial attention.
lated. One may ask whether this is too odd or easy. Since one These remarks impel us to further interpret the violation
expectsA,> A 1, we readily getN*=2. This, together with of DEC from the causal interpretation of DH@7]. A pos-

124024-11



EMILIO ELIZALDE AND SERGI R. HILDEBRANDT PHYSICAL REVIEW D 65 124024

sibility is that the breakdown of causality in matter interac-is a constant, that will be related with the functignas we
tion may be interpreted in similar, though properly adaptedshall see in a moment. With this coordinate change the met-
terms as is the Einstein-Podolski-Rosen paradox interpretedc takes the form
in quantum mechanics.
If this is so, or some_thing similar can be proven, DEC dsz=—gg(l—H)dterZGdtdr+l~:dr2+r2d92, (69)
may be a more natural sign of quantum effects in matter than
WEC, for the case of positive densities. This point deserves ~ ~ )
further investigation. where G=gg(H—-1)+1+H(go—9)/g, and F=2+gg(H
We will now analyze the main features arising when one— 1)+ (9o~ 9)[2H/g+2/g5g+ (go—9) (H+1)/g5a].
replaces the de Sitter core by a different spherically symmet- The junction conditionsfor any type of hypersurface, see

ric solution. [50]) are then
X. THE MATCHING OF STATIC SPHERICALLY [r]=0, [t]=0 (69
SYMMETRIC SPACETIMES

In previous sections we have worked with the assumption [H]t2+2[G]tr +Fr2=0, (70)
that the energy-momentum tensor satisfigs- T1. Now we
would like to make the first steps towards the general case B Rt R P YR P!

Fltr—[G](tt—rr)+[H]rt+[G"]r

where T and T} may be independent of each other. There- [Fltr=[GI( JHIHIt+G]
fore our aim here is to match two spacetimes that share the +[R'—(F'/12)]r2t—[H']t%/2=0, (71)

existence of an integrable Killing field and spherical symme-
try. In order to get the most natural junction, we need to take _ ~ 5
profit of both symmetries exhaustively. The metric can al-where[f]=xf,—f,, and where we have pit=go(H—1)

ways be written, for any of them, as +1. In Egs.(70) and(71) t andr are eithert,,r; or to,r,
andA’EdA(r)/dr|,:rm . The same conditions lead, in gen-
ds*=gas(R)dX dx®+G*(R)dQ?, (65  eral, to a second order ordinary differential equationrfdn

, principle there is the possibility for asymptotic stopping so-
whereA,B=T,R. Jr ha32 beer; chosen 10 be the integrable tions, i.e., solutions for which— const ag— e, and also
K'!“ng vector and dQ?=d6’+sir? 6de?. Moreover, if o il ones. The special casg=r,=R=const is of great
G’(R)=0, we already know that they belong to the gener-jnierest, since it constitutes the solution towards which any

alized Nariai family, in which case they only match with yansitory solution should converge. Under this restriction,
another member of its own family. Thus we will only deal {he conditions become simply.

with the situationG’(R)# 0. In this case, a direct redefini-

tion of theR coordinate allows us to write : ~ ~on e

[t]=0, [H]=0, 2[G]Jt—[H']t*=0, (72)
ds?®=gag(r)dx*dxB+r2dQ?, (66)

whereA,B=T.r. wheret is eithert; or t,. Choosinggy asgs one gety G]

Spherical symmetry has thus been completely used. Wgo (the same result comes out directly in the case when the

now extract consequences from the presencelaf The normal vector o, is non-nul). The last conditions become
natural thing to do is to identify both vector fields, i.e, ~ then[H']=0. ;I]'hu.s tne conditions emerging from_tne match-
=3d7,. However, this is not a right choice, in general, be-'""9 of two spherically symmetric spacetimes with an inte-

_ - _ e grable Killing vector field are, for the case= R=const and
cause if a Killing vector is multiplied by a constant factor, taking the maximum identification between them
the resulting vector field is obviously a Killing vector field. ’
Therefore normalizing each Killing vector, when possible, ~ ~,
gives the natural way to identify them. This is indeed imple- [H]=0, [H']=0, (73)
mented in the junction process if the hypersurfaces are
spacelike or timelike everywhere. On the contrary, in thewhereH=g%(H—1)+ 1. An intrinsic characterization, valid
general case, we cannot rely on such normalization. for any representation of the for(65) or (66) (the ones most
Any metric of _mteres(to our purposgscan be written as osan dealt with in the literatupeis Fl= _gg(g. g)+ 1, gs
[recall the coordinate change to obtain E6), setting now , 1 > -
=[G'/|det(@ag)|*?],—r, Whereé is the Killing vector asso-

F=1-H] ciated with the staticity of the solutiofin some regionsof
3 , 2H +H L, (65) or (66). Finally, notice that the first condition o is
ds?=—(1-H)dT*+ FdT dr+ _gz_dr +rodQs, nothing but the requirement of the mass function to be con-
(67) tinuous across the hypersurface, while the second one is re-
lated with the continuity of the radial stress or presqses,
whereH, g#0 are functions ofr only. Looking back to e.g., Eq.(3)]. Needless to say, if one restricts oneself to the
expressions(12) and the coordinate changes mentionedfamily of metrics in Eq(12), one gets the conditions of Sec.
there, we will now putdT= godt+(go—ggl)dr, whereg IV B.
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XIl. AN APPLICATION TO SUPERSYMMETRIC STRINGY =m+m*— Q?%, i.e., the event horizon of the black hole. We
BLACK HOLES remark thatrf 4(r) is the radial coordinate which has a di-

ct interpretation in terms of the “size” of the object, and

ot r alone. All this being in complete agreement with the

hexpected transitions for extreme, and nearly extreme, super-

F,ymmetric black holes. The same idea should be extended to

Flf—gravitating strings when theffour-dimensional space-

Ime metric is obtained. For instance, the expected order of

magnitude oR found in[53] should be recovered. This issue

will be the matter of subsequent research.

The semiclassical expressions for supersymmetric string
black holes are well-establishésee, e.g.[51,52 and refer-
ences therein There are also other objects of interest, suc
as black strings, higher dimensional black holes, etc. In al
cases, one looks for a correspondence principle with gener
relativistic black holes. This transition is usually reflected in
the strength of the coupling constant, or the entrépse,
e.g., [61-54 and references therginHere we take a
complementary viewpoint.

The most interesting case to our aims is that of a self- XIl. FINAL REMARKS
gravitating stringsee, e.g.;53,54)). However, the necessary ] ) ] ) o
ingredients, specially the corresponding spacetime metric, in 1he first thing to be noticed is the intrinsic freedom
order to tackle this problem are still under study. Here wePrésentin our model, which is as large as the measure of the

will consider the most simpléand widely consideréccase, set o_f analytic fun_ction_s of one variaple. This is a very re-
that of a supersymmetric back hole. warding feature, since it allows one to impose further restric-

A family of such black holes, related with electrically tions coming from new, more accurate proposals. In particu-

charged black holes, is given ligee[51,57 for detailg lar, it will be a helpful tool when trying to find explicitly a
guantum field responsible for th&;; andG,, in the funda-

mental uncharged case. For comparison, in all previous
ds?= — fl/2(r)( 1— r_O)dtz works, based on individual models, the prospect of finding a
r quantum field related with their energy-matter content was
hopeless. To that end, we would like to draw attention to
(74)  [55], where a useful framework to deal with the interior re-
gion is given.
In the charged case, let us notice that any GNRSS space-

wheref(r)=II{_ y[1+(rosint? a;/r)], and where they are o can e linked with a solution to NEsee[56]). Of
related with the integer charges of the D-branes being usedy, rse the case of the Schwarzschild solution is a solution

If the correspondence occurs at a constant value vk get with zero charge, and the Reissner-Nordstrane is the only
one which is linear, i.e., Maxwellian. Therefore the whole
ri+rosinktf a= rzfé"‘(rz)ER:const, (75  family of GNRSS metrics has indeed an immediate interpre-
tation in terms of a field theory which is well established
2m  Q? ro rf’)? when the object is electrically or magnetically charged. This
R ¥:1+ e 1)1+ 4f is another useful result. A careful study of this fact will be
reported elsewhere.
Finally, one can free the requirement that there must be an
.

-1
r
+f1’2(r)[(l— TO) dr2+r2dQ?

(76)

22
2 1\ 2[ §1
— 2_r2 + Qg_:[ ( 1+ i) [L( 1— r_o) - 2r_g event horizon. The objects would then become “visible” and
R® R af | | 2f r r the study of the entropy of the solutions as well as their
(77 associated Hawking temperature would bring some clues on
the time evolution ofclassically static black holes.

2

where we have usegk=G'|,_g-1r), G(r)=rf*4(r), and
£ &=—1"Y41—r/ry). The subscripts, means that all

these quantities refer to the interior region, to be evaluated at Xlll. CONCLUSIONS

r=r,. For the exterior metric we have pat=aj= « for all In this work we have investigated, under quite general
i,j, because the exterior metric is that of a Reissnerconditions, the question of using Einstein’s theory of gravi-
Nordstran black hole, for which tation, extended to include semiclassical effects, with the
purpose of constraining the physical structure of the emerg-

2m=rocosh2r, Q?=r2sint a cost a, ing spacetime solutions that might be suitable for the de-

(79) scription of the interiors of nonrotating black hofes.
) In the first part of the work we have exploited the idea
ro=2ym’-Q? 2sinif a=—1+m/ym°-Q?, that vacuum polarization may indeed play an essential role in

. L the interior region. We have obtained the result that only two
wherem is the (ADM) mass of the black hole an@ is its 9 y

electric charge. Sinca‘z(rz)=Hf‘:1[l+(rosinhzai/r)]22,

the above conditions yielR as a ft_mction of Si_X of the seven  41he rotating case, which is of major astrophysical interest, and
parameters,M ,Q,(ro)zyai.- Det_alled analysis shows that the rotating and electrically charged one, which may be associated
these conditions are easily fulfilled wheg—0, «;— *,  with spinning particles, seem to yield results very similar to the

with rosint? ¢; fixed. The resultingR is very close toR,  ones presented here, e, 44.
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families fulfill the imposed requirement and, moreover, wethe search of a compatible quantum field that, once regular-
have shown that only one of them is suitable for representinjzed, may yield the same result for, at least, a particular
static black hole interiors, what is certainly a most remark-energy-momentum tensor inside the general family of mod-
able result. els consideredfor instance, within NED, see al$66]). Sec-
Then we have turned our attention to other sources for thend, once a corresponding Einsteinian metric associated with
core. Given that a promising alternative, self-gravitatinga quantum model is known, the scheme developed here has
strings, needs still to be studied in more detail, we haveyeen proven to be well suited to check the consistency of the

started this program by first giving the general conditions tgnyolved physical parameters and even, in some cases, to
be fulfilled by any spacetime with spherical symmetry andassign explicit values to them.

having some static region. Finally, we have applied the re-
sults obtained to a supersymmetric black hole as a prelimi-
nary case. We have seen that, in such a situation, the match-
ing is generically compatible, including the case of extreme
black holes. This last setting is precisely the same for which The authors acknowledge valuable discussions with A.
the correspondence between semiclassical black holes amirinskii (also his careful reading of the manuscyigind
stringy ones has been recently confirmed in the literaturevith G. Magli. This work has been supported by CICYT
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