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Family of regular interiors for nonrotating black holes with T0
0ÄT1
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We find the general solution for the spacetimes describing the interior of static black holes with an equation
of state of the typeT0

05T1
1 (T being the stress-energy tensor!. This form is the one expected from taking into

account different quantum effects associated with strong gravitational fields. We recover all the particular
examples found in the literature. We remark that all the solutions found follow the natural scheme of an interior
core linked smoothly with the exterior solution by a transient region. We also discuss their local energy
properties and give the main ideas involved in a possible generalization of the scheme in order to include other
realistic types of sources.
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I. INTRODUCTION

Any static black hole~BH! arises from the gravitationa
collapse of some object. Under the premises in this work,
object has not~yet! shrunken indefinitely and has not give
rise to a spacetime singularity. It is then natural to consi
two regions: oneexterior to the object, and the objectitself.
The exterior region, as is well known, can be described b
spacetime belonging to the Reissner-Nordstro¨m @1,2# solu-
tion. In the absence of electric, or magnetic, charge it
simply Schwarzschild’s spacetime. Furthermore, one can
a cosmological constant following recent observational
sults@3,4#. Then, the spacetime belongs to the Kottler-Tref
solution family@5,6#. In this case, the global properties of th
spacetime clearly change, e.g., the spacetime is no lo
asymptotically flat~see, e.g.,@1,7#!.

Going a step further, we consider the body itself as co
posed of two main regions. One is itssurfaceand the other
the rest of the body, i.e., theinterior region. One may expec
that some mechanism—having to do, e.g., with quant
gravity—will be able to stop the collapse of the body. The
fore we will think of the interior of the body as being de
scribed by some spacetime product of the present knowle
available on the merge of quantum field theory and grav
tion. A widely studied issue in this direction is that of qua
tum vacuum effects@8–14# and the resulting spacetime turn
out to be a de Sitter~dS! or anti–de Sitter~AdS! one @15–
24#. There are other alternatives, as, e.g., those of@25,26#.

In all these cases considered so far, either no distinc
has been made between the interior and the exterior of
body ~see e.g.,@20–26#! or there appears asingulardistribu-
tion of matter at the surface of the body~see, e.g.,@18,19#!.
This distribution is singular in the sense that it is a mat
surface density—called a singular shell. However, contr
to the case of electromagnetic charge densities, a matter
face density has neither been observed nor has it been
dicted by any theory. It is thus more natural to assume
the matter on the surface of the body is distributed across
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body, and leave for a subsequent study the issue of whe
this region is thin or thick, in comparison with the regio
dominated by quantum vacuum effects, through one of
solutions referred to before. Finally, the only work consid
ing all the features of the structure of a regular static B
with a clear physical source is@27#. However, Nariai space
time was absent, as well as an implementation of previ
attempts and a complete study of~local! energy conditions.
Thus, in our opinion, it is worth carrying out a unification o
the different results obtained so far, as well as extend
them in order to cover some important issues that were o
looked in those analysis. Here we provide, for the first tim
to our knowledge, the general solution of the scheme d
cussed above. In particular, we carry out an implementa
of all those previous works which, for one reason or anot
did not comply with all the requirements already specifie
We also perform a study of the local energy conditions in
these cases.

Finally, it is also important to introduce other kinds o
solutions for the interior region, aside from the ones refer
to before, which arise from results, or just hints, comi
from the contribution of the quantum vacuum to gravity. T
summarize, these are the points that will be dealt with, s
cessively, in the body of this paper comprising the next
sections. They are clearly identified by their titles and w
need no further specification here. Section XII is devoted
some final remarks, and in Sec. XIII we provide the conc
sions of the work. A brief survey can be found in@28#.

Throughout this work we will use units such thatG
51, c51, Einstein’s equations are written in the for
Gab58pTab , whereGab is the Einstein tensor—we follow
the conventions of@1#—and Tab is the energy-momentum
tensor. A prime will denote derivation with respect to th
coordinater.

II. SPACETIMES WITH A SPHERICALLY SYMMETRIC
QUANTUM VACUUM AS A SOURCE

Because of the imposed limitation of nonaccepting sin
lar mass shells, the spacetimes describing the interior of
body are not allowed to be of a well known kind as dS
©2002 The American Physical Society24-1
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AdS spacetimes. Indeed, the interior solution cannot be
erywhere a spatial isotropic solution, as dS or AdS, beca
this would lead to a sudden change in the pressures exe
by the body to the exterior, and would lead to the appeara
of a singular mass shell@29#. Now, the type of generalization
depends on the underlying physics one is able to assu
The isotropic case is suitable in order to link it with th
expected contributions of a dominating quantum vacuum,
pecially those associated with vacuum polarization. As
are dealing with spacetimes which are spherically symm
ric, a natural generalization is to assume that the body m
be described by a solution which isinvariant to any nonro-
tating observer, with a free radial motion, instead of a so
tion which is invariant to any observer. This generalization
the energy-matter content of the body is calledspherically
symmetric quantum vacuum~SSQV!, after @20#, see also
@22#, and requires the imposition ofT0

05T1
1 for any nonro-

tating observer. This is the type of energy-matter content
is considered in@18–28,30# and will be the one used in th
first part of this work, until we get to Sec. X. In particula
SSQVs and nonlinear electrodynamics have given some
evant results on the issue of regular BHs, see, e.g.,@23–
25,30#.

We shall now characterize the families of spacetimes
are suitable to become SSQVs. Any static, spherically s
metric spacetime can be conveniently described by

ds252F~r !dt21F21~r !dr21G2~r !dV2, ~1!

wheredV2[du21sin2 u dw2. There are certainly other way
to represent these spacetimes, which avoid the problems
curring near the possible horizons, or by puttingR2dV2,
providedG8[dG(r )/drÞ0 ~see, e.g.,@31,32#!. For a local
observer at rest with respect to the coordinate grid of Eq.~1!,
a standard computation ofTab yields ~r is the energy den-
sity, p the radial pressure, andp2,p3 the tangential pressures
measured by this observer!

8pr5
1

G2 @12F~G8212GG9!2GG8F8#, ~2!

8pp5
1

G2 @211FG821GG8F8#, ~3!

8pp258pp35
F9

2
1

FG9

G
1

F8G8

G
. ~4!

Imposingr1p50 in Eqs.~2! and ~3!, we get

FG950. ~5!

We now use thatG cannot be zero in any open region. Tw
alternatives appear:F50 or G950. If F50, expression~1!
is useless. It is first necessary to change the coordinate
tem of Eq.~1! by dT[dt1(12F)/Fdr, while keeping the
rest unchanged. Then one can imposeF50. The result is

ds252dTdr12dr21G2~r !dV2. ~6!

In the orthonormalized cobasis given byQ05dT/A2, Q1

5dT/A21A2dr, Q25Gdu, andQ35G sinudw, the Ricci
tensor takes the form
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Ricci5
G9

G
~2Q0

^ Q01Q0
^ Q11Q1

^ Q02Q1
^ Q1!

1
1

G2 ~Q2
^ Q21Q3

^ Q3!. ~7!

On the other hand, for a SSQV we must haver1p50 ~the
conditions onTab being directly translated into condition
for Rab)

Ricci5R00~2QN
0

^ QN
0 1QN

1
^ QN

1 !

1R22~QN
2

^ QN
2 1QN

3
^ QN

3 !, ~8!

where$QN
V% is some orthonormalized cobasis, not necess

ily coincident with the one used in the computation of E
~7!. Therefore, we must look for an orthonormalized coba
for which the Ricci tensor~7! becomes of the type~8!.
Clearly this is the same as finding out whether we can h
linear expressionsQN

0 [AQ01BQ1, andQN
1 5CQ01DQ1,

with 2QN
0
•QN

0 5QN
1
•QN

1 5QN
0
•QN

1 1151. However, Eq.
~8! is invariant under these changes. The only solution t
makes Eqs.~7! and ~8! compatible is then

G950. ~9!

If FÞ0, we also haveG950. ThusG950 constitutes the
proper characterization of any possibility.

Now, from G950 two distinct alternatives appear

G5g, or G5ar 1g, ~10!

wherea(Þ0) andg are constant. Only the latter has be
considered in detail in the literature of regular BHs. We w
study it in the sequel.

Other expressions for the spacetimes describing SSQ.
In order to include the possible horizons, we write the m
rics ~1! under the common form

ds252~12H !dT212HdTdr1~11H !dr21g2dV2,
~11!

ds252~12H !dT212HdTdr1~11H !dr21r 2dV2,
~12!

whereH[12F, and the coordinate change is given bydT
5dt1(12F)/Fdr. We will use these forms in the seque
We have also used the fact that the caseg5ar 1g is physi-
cally equivalent to the caseG5r . This is intuitively seen
becausea merely represents the scale of units used forr and
g is an arbitrary~constant! origin. In terms of coordinate
changes we have: The metric~1! for G5ar 1g is ds2

52F(r )dt21F21(r )dr21(ar 1g)2dV2. Recalling thata
Þ0, one can define a new radial coordinater̃[ar 1g. The
metric becomes thends252F@( r̃ 2g)/a#dt21a22F21@( r̃
2g)/a#dr̃ 21 r̃ 2dV2. Now, under a reparametrization of th
t coordinate by dt[ad t̃ we get ds252a2F@( r̃
2g)/a#d t̃ 21a22F21@( r̃ 2g)/a#dr̃ 21 r̃ 2dV2. Whence
one can conclude that any member of Eq.~1! with G5ar
1g with aÞ0 is equivalent to another member of Eq.~1!
4-2
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FAMILY OF REGULAR INTERIORS FOR NONROTATING . . . PHYSICAL REVIEW D65 124024
with a51 andg50. Since we are studying the general d
scription of SSQVs it is enough to consider the represe
tion a51, g50 andarbitrary F(r ) to includeany case of
SSQV.

Furthermore, it is easy to show that Eq.~12! can be writ-
ten in the Kerr-Schild form@33#:

ds25dsh
212H~r !ø^ ø, ~13!

wheredsh
2 stands for the flat spacetime metric,H is an arbi-

trary function ofr, andø is a geodesic radial null one-form
ø5(1/A2)(dt6dr). Thus the SSQVs in Eq.~12! can be
thought of as the family of maximal spherically symmet
spacetimes expanded by a geodesic radial null one-f
from flat spacetime~GRNSS spaces!.

To summarize, there areonly two, nonequivalent, families
of SSQVs. The case withG850 is characteristic of the
Nariai solution@34,35#. The Nariai solution is a solution o
Einstein’s equations for the same pattern as the de S
solution, i.e.,Tab5L0gab , L0 being the cosmological con
stant. The difference lies in the ‘‘radial’’ coordinate. In th
Nariai case there is no proper center for the spherical s
metry. Therefore we shall call the spacetimes withG850
generalized Nariai metrics. Finally, the other case co
sponds to the GNRSS spaces which constitute a dis
guished family of the class of Kerr-Schild metrics.

III. GEOMETRICAL PROPERTIES OF THE SOLUTIONS

A. Generalized Nariai metrics

Using an orthonormal cobasis defined asQ0

5(12H/2)dT2(H/2)dr, Q15(1H/2)dr1(H/2)dT,
Q25gdu, Q35g sinudw, we see that the Riemann tens
has as independent components

R010152H9/2, R232351/g2. ~14!

The Ricci tensor is characterized byR0052R11
52H9/2, R225R3351/g2. The scalar curvature isR5H9
12/g2, and the Einstein tensor has the following nonze
components:

G0052G1151/g2, G225G3352H9/2. ~15!

The isotropic solution, the one to be found at the core, yie
H5(1/g2)r 21br1c, whereb andc are arbitrary constants
Without losing generality, we can setb,c50 ~as they are
clearly gauge freedoms for any spacetime in the fami!.
Thanks to the presence of the Nariai solution inside this fa
ily, Tab

Nariai5L0gab , the factor 1/g2 can be identified with
L0. Thus, the only isotropic quantum vacuum belonging
this family is the Nariai solution.

B. The GNRSS metrics

First we note that these spacetimes fulfill the relation

p252r2
r8r

2
. ~16!
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As a consequence, for a regular sourcep2→2r as r 50 is
approached. Therefore in any regular solution the space
becomes more and more isotropic asr→0. Thus the contri-
bution from the quantum vacuum becomes more and m
dominant asr tends to 0 and the initial idea of distributin
the singular mass shell across some region of the bod
completed.

On the other hand, one can choose a similar cobasis a
the Nariai-like case, just by replacingg with r. The Riemann
tensor has the following independent components:

R010152
H9

2
, R02025R030352

H8

2r
,

~17!

R12125R13135
H8

2r
, R23235

H

r 2
.

The Ricci tensor for these spacetimes has the following n
zero components: R0052R1152(1/2)@H91(2H8/r )#,
R225R335(1/r )@H81(H/r )#. And the scalar curvature is
given by R5H91(4H8/r )1(2H/r 2). Finally, the nonzero
components of the Einstein’s areG0052G115(1/r )@H8
1(H/r )#, G225G3352(1/2)@H91(2H8/r )#. Other ex-
pressions that will be used later are

G0052G115
1

r 2 ~Hr !8, G225G335G002
G008 r

2
.

~18!

In this case, the isotropic~regular! GNRSS metric is the
de Sitter solution, given byH(r )5(L0/3)r 2.

Exterior metrics and GNRSS metrics. It turns out thatall
of the possible exterior metrics, see Sec. I, also belong to
GNRSS family. The functionH is H(r )5(Lext/3)r 212m/r
2q2/r 2, where Lext stands for the external cosmologic
constant,m is the ADM mass of the BH, andq its electro-
magnetic charge.

This coincidence will be very useful in the following se
tion.

IV. JUNCTION OF THE INTERIOR AND EXTERIOR
SOLUTIONS

The junction, or matching, of two spherically symmetr
spacetimes is well-known~see, e.g.,@29,36–38#!. The gen-
eral form of a hypersurface that clearly adjusts itself to
spherical symmetry of any of these spacetimes is as follo

S:5
u5lu ,

w5lw ,

r 5r ~l!,

t5t~l!,

~19!

where $l,lu ,lw% are the parameters of the hypersurfac
One must thus identify both hypersurfaces in some way. T
identification of (l i)1 with (l i)2 ~1 and 2 label each of the
4-3
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EMILIO ELIZALDE AND SERGI R. HILDEBRANDT PHYSICAL REVIEW D 65 124024
spacetimes! is the most natural one, due to the symmetry
the above scheme. In the sequel, 1 labels the exterior sp
time and 2 the interior one.

In order to match the exterior solution with the interi
one, one basically demands the coincidence of the first
second fundamental forms ofS at each spacetime—the oth
way is to accept the presence ofsingular mass shells, which
would not require the coincidence of the second fundame
form, but we will dismiss such an unphysical option. In ord
to include the possibility of matching the interior and t
exterior at null hypersurfaces~e.g., at an event horizon! one
can follow the formalism in@38#. It is worth recalling that
the exterior region is described by a member of the GNR
family. Thus we have to consider two possibilities: matchi
a generalized Nariai metric with a GNRSS one and t
GNRSS metrics with each other.

A. The junction of a generalized Nariai metric
and a GNRSS one

In this case one easily getsr 1(l)5g5const, t1(l)
5const, see@39# for full details. This result tells us that th
junction between a generalized Nariai spacetime and a m
ber of the GNRSS family is impossible. It would only ha
pen for a~two-dimensional! surface. Therefore any membe
of the Nariai class cannot be regarded as a good candida
order to represent the interior structure of a regular, st
BH.

B. The junction of two GNRSS spacetimes

In this case one gets that two members of the GNR
family match with each other if and only if, see, e.g.,@39#,
either r 1(l)5r 2(l)5R5const, ṫ15 ṫ2 , @H#5@H8#50,
or r 11t15r 21t25const. The last condition, however, d
scribes the motion of a null hypersurface and is not an
ceptable solution in order to describe the matter insid
static BH. Therefore we reach the conclusion that: The o
acceptable hypersurfaces fulfilling the matching conditio
that preserve the spherical symmetry, between two sp
times of the GNRSS family, are those satisfyingr 1(l)
5r 2(l)5R5const, ṫ15 ṫ2 , @H#5@H8#50.

Without losing generality, one can chooset15t25l be-
cause of the global existence of the Killing vector] t . More-
over, we realize that the chosen coordinates are privile
ones, in which the matching is explicitlyC1. The hypersur-
face,S, will be timelike, null, or spacelike according toH
,1, H51, or H.1, respectively.

To summarize, if vacuum polarization is to be the dom
nant quantum effect, the most simple way to construc
regular BH is to build it upon GNRSS spacetimes.

V. REGULAR INTERIORS OF THE GNRSS TYPE

As mentioned elsewhere, the exterior region can appro
ately be characterized by a member of the Kottler-Tre
class, which is a subclass of the GNRSS family. Then,
matching conditions between the exterior and the inte
regions are
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H2~R!5H1~R!5
2m

R
2

q2

R2 1
L1

3
R2, ~20!

H28~R!5H18~R!52
2m

R2 1
2q2

R3 1
2L1

3
R.

~21!

Moreover, the aim here is to focus on those interior solutio
which are everywhere regular. From the expressions of
Riemann tensor and the metric, one sees that this may
be accomplished if

H2~0!50, H28~0!50. ~22!

Thus we finally encounter four conditions in order to have
regular interior solution.

From now on, we will considerH2 to be a smooth func-
tion of the variabler̃[r /R, a most natural hypothesis i
view of the regular character prescribed for the interior
lution. In this case, the origin conditions tell us that

H2~ r̃ !5 (
n52

`

bnr̃ n. ~23!

Now, one has to impose the two other conditions. Obviou
it is the same to considerH2( r̃ ) or H2( r̃ 21) in the whole
procedure. However, we will first work withH2( r̃ 21) in
order to implement the junction conditions directly. From t
preceding result, one immediately has

H25 (
n50

`

an~ r̃ 21!n, ~24!

and the junction conditions tell us that

a05H1~1!5
2m

R
2

q2

R2 1
L1

3
R2, ~25!

a15Ḣ1~1!52S 2
m

R
1

q2

R2 1
L1

3
R2D , ~26!

where H1( r̃ )5(2m/R)(1/r̃ )2(q2/R2)(1/r̃ 2)1(L1R2/3)r̃ 2

and a dot denotes derivation with respect tor̃ . The following
step is to impose regularity of the solution, Eq.~22!. We get

(
n50

`

~21!nan50, (
n51

`

~21!nnan50, ~27!

which, by virtue of the matching conditions, yield

(
n50

`

~21!nan1252
4m

R
1

3q2

R2 1
L1

3
R2, ~28!

(
n50

`

~21!n~n12!an1252S 2
m

R
1

q2

R2 1
L1

3
R2D . ~29!
4-4



te

e

.

te
e
rm

nt
o

us

ll-

,

d-

ich
tart

ers

the
, of

igin

FAMILY OF REGULAR INTERIORS FOR NONROTATING . . . PHYSICAL REVIEW D65 124024
It is clear that there are infinitely many possible candida
for these interiors.

Isotropization. Let us further analyze how they behav
near the origin. Taking into account the expression ofH2 in
powers ofr̃ and using Eq.~18!, we get

G1152
1

R2 (
l 52

`

~ l 11!bl r̃
l 22,

G2252
1

R2(
l 52

` S l 11

2 D bl r̃
l 22. ~30!

It is then clear thatG11 andG22 are different from each other
Yet we have the very relevant property that, foranyof these
spacetimes, it holds

lim
r̃→0

G115 lim
r̃→0

~2G00!5 lim
r̃→0

G225 lim
r̃→0

G3352
3b2

R2
.

~31!

Whence, we see that a general isotropization of the Eins
tensor—and consequently of the energy-momentum on
independent of the model is actually accomplished. In te
of al we get

G1152
1

R2 (
M50

`

AMr̃ M,

~32!

AM5~21!M~M13! (
l 5M12

`

~21! l S l

l 222M D al ,

and

G2252
1

R2 (
M50

`
M12

2
AMr̃ M. ~33!

So that

lim
r̃→0

G115 lim
r̃→0

~2G00!5 lim
r̃→0

G225 lim
r̃→0

G3352
A0

R2 ,

A053(
l 52

`

~21! l S l

l 22D al .

Finally, making no further assumptions on the coefficie
of H2, we can isolate two of them in terms of the rest. F
simplicity, we shall isolatea2 anda3. The result is

a252
10m

R
1

7q2

R2 1
L1

3
R21(

l 54

`

~21! l~ l 23!al ,

a352
6m

R
1

4q2

R2 1(
l 54

`

~21! l~ l 22!al .

With this in hand we can write, respectively, the previo
expression for the central value in terms ofal or bl , l>4,
12402
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G11~0!5G22~0!52
3

R2 F8m

R
2

5q2

R2 1
L1

3
R2

1(
l 54

`

~21! l
~ l 23!~ l 22!

2
al G ,

52
3

R2 F8m

R
1

L1

3
R21(

l 54

`

~ l 23!bl G .

VI. EXAMPLES

We will consider six examples. Two constitute the we
known proposals of@18,19,40# and@20,21#. Two more come
from a proposal in@23–26#, for electrically charged bodies
and the proposal given in@30#, for magnetically charged
ones. More specifically, we will here derive their correspon
ing analogues, within the present scheme~what is actually
more than simply rewriting those cases!. The remaining two
examples constitute a family of brand new candidates, wh
naturally arise from the preceding expressions. We will s
with this last pair.

A. Two arbitrary powers

Let us just make the choice that only two specific pow
of H(r ), say M and N, be present. In order to fulfill the
regularity conditions, both must satisfyM ,N>2. However,
if we wish to obtain a de Sitter-like behavior at, and near,
origin, we must necessarily impose that one, and only one
them, sayM, be equal to 2. ThusH2( r̃ ) readsH2( r̃ )5b2r̃ 2

1bNr̃ N, for N.2, with

b25
2m

R S N11

N22D2
q2

R2 S N12

N22D1
L1R2

3
,

bN5
2

~N22!R S 23m1
2q2

R D .

G11( r̃ ) andG22( r̃ ) read@recall Eq.~18!#

G11~ r̃ !52L11
6m

R3 S N11

N22D ~ r̃ N2221!

1
q2

R4 F3~N12!24~N11! r̃ N12

N22
G ,

G22~ r̃ !52L11
6m

R3 S N11

N22D S N

2
r̃ N2221D

1
q2

R4 F3~N12!22N~N11! r̃ N12

N22
G .

Whence one readily sees that their finite value at the or
coincides, as expected,
4-5
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G11~0!5G22~0!52L12
6m

R3 S N11

N22D
1

3q2

R4 S N12

N22D . ~34!

Lowest powers. This example corresponds to the case
which H2 is a polynomial of lowest degree. This amounts
settingal50, l>4, in the general expressions. Its intere
lies in its being the simplest possible situation. The resul

H2~ r̃ !5S 8m

R
2

5q2

R2 1
L1R2

3 D r̃ 21S 2
6m

R
1

4q2

R2 D r̃ 3,

~35!

and

G1152
24m

R3 1
15q2

R4 2L11
8

R3 S 3m2
2q2

R D r̃ , ~36!

G2252
24m

r 3 1
15q2

R4 2L11
12

R3 S 3m2
2q2

R D r̃ . ~37!

Notice thatG11 tends to2L12q2/R4 as r̃ tends to 1, the
same value asG11

ext( r̃ 51), in accordance with Israel’s cond
tions @29#.

B. Israel and Poisson’s model

In Ref. @18#, see also@19#, a plausible candidate for th
energy-matter content of the interiors of regular nonchar
BHs was proposed. The authors proposed that a sing
layer of noninflationary material should exist between the
Sitter core and the external Schwarzschild metric. Howe
the usual spirit of matching a stellar interior with a vacuu
exterior was lost, the reason being the unavoidable pres
of a singular layer acting as a matter surface density. Ind
in @40# it was argued that their approach could be improv
by imposing a smooth transition from the hypersurface to
de Sitter core. Yet this step was not implemented. In a
case, it was the only available candidate to continue the s
ies of quantum regular BHs at that time. The task here w
be to see whether this geometrical and physical model ca
recovered from our analysis.

In order to do that, we search for a solution within o
family which be as close as possible to this particular so
tion. What amounts to looking for a de Sitter core for sm
values of r̃ and a quantum contribution of the type of th
square of the characteristic curvature of Schwarzsc
spacetime near the matching hypersurface. These fea
taken into account, we set for the interior

~G00! int52~G11! int5
1

~A1Br3!2 , ~38!

whereA and B are two constants, to be determined. Usi
Eq. ~18!, we obtain
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H2~r !5
r 2

3A~A1Br3!
, ~39!

where we have imposed Eq.~22!. The matching conditions
lead to

1

A~A1Br3!
5

3

R2 H1~R!,

~40!
2A2BR3

A~A1BR3!25
3

R
H18~R!,

whereH1 comes, as usual, from the external model.
In the exterior region, close to the matching hypersurfa

the quantum contributions do not turn into a cosmologic
like term. They are of the form (G00)ext}m2/r 6, as men-
tioned before. We thus have a quantum exterior which
different from the one encountered in the rest of the
amples and sections before, which cannot be described
member of the Kottler-Trefftz class. Fortunately, our prece
ing results are still useful. In fact, one realizes that it is p
sible to select a suitable exterior with a similar form as E
~38!, just by setting Aext50 and Bext

215am, where a
5bLPl , beingb of order unity, andLPl the Planck length (a
is of order unity in Planckian units!. b2 is related with the
number and type of the quantized fields@18,40#. This choice
yields

H1~r !5
2m

r
2

1

3 S am

r 2 D 2

, ~41!

where we have taken into account that the exterior regio
dominated by the Schwarzschild geometry, with massm, for
large values ofr̃ .

Now, using Eqs.~40! and ~41!, A andB yield

A5
a

62
a2m

R3

, B5
2

amS 12
3

62
a2m

R3
D . ~42!

Finally, using Eqs.~38!, (G22) int5(2Br32A)/(A1Br3)2,
whereA,B have been given above. At the origin

G11~0!5G22~0!52
1

B2 . ~43!

To summarize, we have proven here that a spacet
model within our family satisfies all the required geometric
assumptions, and yields the particular form ofG00, both for
the interior and the exterior of the body, as in the abo
mentioned references. A more throughout comparison of
model and ours will be given in Sec. VII B.

C. Dymnikova’s model

Some time after the appearance of the previous cas
new model for a regular interior of a noncharged BH w
proposed@20#. However, the approach was now quite diffe
ent to that of the previous authors. Now Schwarzschil
4-6
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solution was only recovered in an asymptotical sense, for̃
approaching infinity only. However, if a sufficiently quic
convergent matter model was obtained, then the quantit
mass outside the horizon of the collapsed body could bec
as negligible as desired with regard to the interior mass. T
one would, at least, recover a trial model, interesting eno
to support or reject the conclusions of the previous auth
In a later work@21#, the model was extended to incorpora
the observational fact in favor of a nonvanishing cosmolo
cal term in the exterior region. We will deal in this sectio
with such a model, but considering a definite end to
collapsed body.

The imposition for the energy-matter content for the in
rior will be of the form

~G00! int52~G11! int5A exp~2 r̃ 3!1B, ~44!

where A and B are two constants to be determined andr̃
[r /R, whereR is the matching radius.1 We then integrate
the expression ofG00, recall Eq.~18!, in order to obtainH2,
getting

H2~ r̃ !5
R2

3 FA

r̃
~12e2 r̃ 3

!1Br̃ 2G , ~45!

where we have already imposed the regularity condition
the origin, Eq.~22!. The matching conditions at the spati
hypersurface yield

A
~e21!

e
1B5

6m

R3 1L1 ,

A
~42e!

e
12B52

6m

R3 12L1 ,

whence

A5
6m

R3 S e

e22D , B5L12
6m

R3

1

~e22!
. ~46!

Finally, using Eqs.~38!,

~G22! int~ r̃ !5AS 3

2
r̃ 321Der̃ 3

2B,

whereA andB have been given above. At the origin

G11~0!5G22~0!5L11
6m

R3 S e21

e22D . ~47!

In Sec. VII A we will compare, numerically, our results wit
those in the model of@20#.

D. Ayón–Beato and Garcı́a’s models

In a series of papers,@23–26#, some models of regular
electrically charged BHs with an energy-momentum ten

1For other choices see, e.g.,@39#.
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of the form of a SSQV were presented, see also@24#. Their
importance relied on the fact that the sources that give ris
those spacetimes could be linked with nonlinear electro
namics~NED!, which besides being a theory by itself, ma
be viewed as a low energy limit of string theory or M theor
Thus some plausible models of regular BHs, that took i
account quantum effects in a clearer way than before, w
put forward. The features of their models are analogous
the case of Dymnikova’s model, though with a clear int
pretation of the source origin. For the sake of brevity we w
focus on the model in@26#.

The choice there wasH(r )5(2m/r )@12tanh(q2/2mr)#,
for any r>0. Ours will be

H~r !5H A

r F12tanh
B

r G , 0<r<R,

2m

r
2

q2

r 2 , R<r ,

~48!

whereA andB are constants to be determined. The match
conditions imply

A5
q2

B
cosh2

B

r
, 11e22B/R52BS 2m

q2 2
1

RD . ~49!

Defining x[A/A0 , y[B/B0 with A052m, B05q2/2m,
that is the values of the model in@26#, we get

x5
1

y
cosh2 ly, 11e2ly52~12l!y, ~50!

wherel[B0 /R5q2/2mR. One has here to solve a transce
dental equation in order to find the appropriate constant
the interior model. The parameterl is the one controlling the
set of solutions. In classical electrodynamics,l51. We see
that there is no solution in this case. In the context of gene
relativity, l51 corresponds to the case where the exte
metric becomes flat at a spherical surface. But the choic
H int cannot be zero for any positive value ofr. Therefore the
matching is impossible. The same happens for the o
models in@23# and@24#. In the following section we will see
which type of solutions arise for different values ofl.

E. Bronnikov’s model

In @29# a model for static, regular, purely magnetical
charged BHs with an energy-momentum tensor of the type
SSQVs was proposed. Its interest is twofold. Again t
energy-momentum content of the objects was directly c
nected with NED. Second, it turns out that those BHs are
only ones based on a Lagrangian formulation of NED with
Maxwellian behavior in the weak field limit, regardless
the place the weak limit is taken. The example given th
was a GNRSS metric with H(r )5(uqmu3/2/ar)@1
2tanh(aAuqmu/r )# with m, the Arnowitt-Deser-Misner
~ADM ! mass, equal touqmu3/2/2a, qm being the magnetic
charge. It is then obvious that the results of the previo
section are valid now, just by changingq with qm . The dif-
4-7
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ference lies in the fact that now one has magnetic fields
also the theory describing NED is different to that of@23–
26#.

VII. NUMERICAL RESULTS

In order to study the approximate values ofR for a given
object, one needs to assume a particular behavior of the
ter and energy inside the source. As of now, there is
agreement at this point. However, following several resu
see, e.g.,@15–23,41–43#, the geometry of the core may b
described by a dS solution. This has been the assump
used in most of the works dealing with regularized BH
Here we will also include two examples with a differe
behavior and in Sec. X we will draw the main lines of
general behavior. In any case, the aim is to choose th
physical models which are as consistent as possible,
dS model being one of them. In this case, at the c
we will have G00(0)52G11(0)52G22(0)52G33(0)
5L25const. Nonetheless, there is no present agreem
about the scale at which regularization could act. A con
nient way to handle and integrate this indeterminacy is to
L25103sL1 , s being the free parameter that governs t
renormalization scale. For instance, ifs is around 40, we are
then considering that regularization takes place at Pla
scales, and so on.

Finally, for the exterior region, in accordance with seve
recent observations@3,4#, we will assume in what follows
that rL1

P@10210,231028# erg cm23. An analysis shows
however, that the fundamental contribution comes from
quantum gravitational model describing the core, and
from the type of quantum vacuum contribution that is a
sumed for the exterior region or near the surface of the bo

A. Two arbitrary powers

In this numerical analysis we will consider the uncharg
case because there are no observed objects that can be
ciated with static, charged BHs. If there is a charge in
source, then the interesting situation involves rotation, wh
might be eventually connected with elementary particles~we
refer the reader to@44#!. The relation~34! is ~now q50)

L15L21
6m

R3 S N11

N22D , ;N>3, ~51!

whence

R5R(A3 M
3A N11

4~N22!
, ~52!

where we have putm5Mm( , m( being the Sun mass, an
Rs[A3 24m( /(L22L1). The last value only depends on th
regularization scale and corresponds to the solution fo
collapsed object of one solar mass in the case of the ‘‘low
powers’’ model: RsP@3310212s,6310202s# cm. For s
540 we getRsP@3310219,2310220# cm. Yet we see tha
the object has a quantum size very far from Planckian sca
even if s is bigger. In generalRs /LPl>1013. Moreover, this
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result is valid for allN, since for any value ofN we have that
RP@0.6,1#RsA3 M . It is obvious that, for any astrophysica
object, the final properties are very similar. Table I compris
different massive objects and regularization scales and t
associated values ofR within this model.

B. Israel-Poisson model

We have found that the corresponding model within o
family must satisfy

A5
a

62
a2m

R3

. ~53!

In this case,A225 lim r̃→0 G005L2, so that

R35
a2m

62aAL2

5
b2

62bAL2LPl
2

mLPl
2 . ~54!

This model clearly depends on the coefficientb. For in-
stance, in order to obtain a solution, we must haveb2

,36/(L2LPl
2 ). The natural scale of regularization in th

model is the Planckian one since from the beginning
coefficient a was related to the Planck length. Obvious
other regularization scales would simply changeLPl by the
corresponding scale. Using standard values forL2 that use a
Planckian regularization scale, and the fact thatb2 should be
at most of order unity@18,40#, we getR;A3 M310220 cm.
This result is in complete agreement with the foregoing v
ues, even though the models possess very different funct
H(r ).

C. Dymnikova’s model

From Sec. VI C and the assumption of a dS core, we h

L11
6m

R3 S e21

e22D5L2 , ~55!

whence

R5
3A 6m

L22L1
S e21

e22D . ~56!

TABLE I. R in cm for various astrophysical and galactic objec
and different scales of regularization (s530 corresponds to a
GUT’s regularization scale,s540 to a Planckian one, etc.!. In any
caseR/LReg is much bigger than 1 (R/LReg;10(261s/2)). Therefore
all of them are quite far from their corresponding regularizati
scale.

m s530 s540 s550

M ( 1029 10219 10229

103M ( 1028 10218 10228

106M ( 1027 10217 10227

109M ( 1026 10216 10226
4-8
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Comparing this result with the one in Eq.~52!, we getR
5lRTwo powers, with 0.84,l,1.34, for anyN. ThereforeR
is again of the same order of magnitude, despite the dif
ences in the choice of the profile of the energy density an
the tangential pressures.

Comparing now the model proposed here with the or
nal one in@20#, we see that both yield similar conclusions~in
the instances they can be compared!. For example, in the
mentioned work, a characteristic radius was found for
collapsed body. Its expression isRc5A3 6m/(L22L1), that
yieldsA3 (e22)/(e21)R;1.34R. Besides having a differen
description for this in our model, the values of the coe
cientsA andB are also quite different~numerically!.

D. Ayón–Beato and Garcı́a’s, and Bronnikov’s models

In the papers dealing with those models, there is no an
sis of the orders of magnitude of an eventual character
radius. The only such condition on these models is to hav
event horizon. We can now compute which are the range
R corresponding to different cases ofl.

First of all, Eq. ~50! only has a solution for 0,l,1.
Therefore extremely charged objects~those withuqu/m@1)
cannot be described within the present framework. T
would requireR@m, so that the regularized object would n
be a BH but a ‘‘visible’’ object, such as an electron~its size,
though, being bigger than the classical radius, or Comp
size,q2/2m).

For strongly charged objects, i.e.,uqu/m;1, we get that in
order to have a BH 1/2,R/m,2. Thus the regularized ob
ject is of a similar size as that of the event horizon. Mu
bigger than in the uncharged case.

The solution given by@26#, i.e., A52m, B5q2/2m, can
only be valid now for very weakly charged objects,uqu/m
!1, and satisfyingR/m,q2/m2. They showed that thei
model was acceptable foruqu/m<1.05. Now, we see that th
values ofA and B in our model change for most of thes
cases.

The same is valid for Bronnikov’s model, changing t
electric field for a magnetic one. Nevertheless, rotat
should be introduced in such a case, at least whenuqu/m is
not very small.

VIII. HORIZONS AND AN INTERPRETATION
OF THE REGULARIZED BH

Looking at Eq.~30! in @21# and comparing it with our
result,

g005211H2 , ~57!

we realize that, substituting here our correspondingH2 for
that model, these expressions turn out to be very sim
except for a possible overall sign difference, due to
different signatures@e.g., (1,2,2,2) instead of our
(2,1,1,1)#. We conclude that the same structure for t
horizons and Cauchy hypersurfaces is obtained. In@21#, the
solutions are obtained by approximations of the exact s
12402
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tion, so that these results and ours are really coincident~the
relative error with respect to both exact solutions being co
pletely negligible!.

In general, the horizons result from the cancellation
g00. Thus we are left with a general set of horizons. A glob
study for all the candidates encountered has not yet b
carried out. We could focus on examples, and try then
extract some general features from them, but we do not
this of primary importance.2 The main point is here, in fact
that the matching occurs at a radius which is substanti
smaller than the Schwarzschild radius of the object. The
fore we will always have a typical exterior, a vacuum tra
sition region extending until the matching with the obje
happens, and a quantum-dominated interior, which fina
converges to a de Sitter core. In the vacuum interior reg
and in some part of the quantum object, the role oft andr are
not interpreted as usual (] t changes its character!. This is the
reason for adequately treating the horizons: to see where
actly such changes appear. But, we can still perfectly agre
ordinary physical terms without requiring a general determ
nation of the precise radii at which horizons occur.

Moreover, in@40#, the authors studied the stability of th
model. The same considerations there hold for our wh
family of solutions, as can be easily seen after a care
analysis.

Finally, there is still the issue of the topology of the sol
tions, which is connected with the possibility of a ‘‘univers
reborn’’ in the extended spacetime. Its general structure
be found in@45# for the case where the sources satisfy we
energy conditions~see the next section!. There, it was shown
that the topology of any regular BH, satisfying the we
energy conditions, should be similar to that of a singulari
free Reissner-Nordstro¨m spacetime. However, there are re
evant solutions in our family that violate the weak ener
conditions~WEC!. It would be worth studying what happen
in those cases.

IX. ENERGY CONDITIONS

A common point when dealing with the avoidance of s
gularities is to show that the energy conditions required
the singularity theorems~see, e.g.,@7#! fail to be valid.

Here we will study the strong energy conditions~SEC!,
the weak energy conditions~WEC!, the null energy condi-
tions ~NEC!, and the dominant energy conditions~DEC!,
within the GNRSS family~see@46# for the case of a genera
spherically symmetric spacetime!. The SEC are related with
the formation of singularities in the collapse of an obje
The WEC are directly related with the energy density m
sured by an observer. The NEC are useful in order to incl
some spacetimes which violate the first two, but are p
dicted by some quantum models, e.g., AdS. Finally, the D
are in fact related with the causal structure of the ener

2With respect to the other models encountered here, we h
found that the results are rather similar to those in Dymnikova
Soltysek’s model@21#.
4-9



s
f
o
in
a

si

d

cc

ld

c

C
re

i
te

th
e

re

sed
of

the

es

cs.

I D

nt
se
del

t

e
ost

,

e

y
not

.

EMILIO ELIZALDE AND SERGI R. HILDEBRANDT PHYSICAL REVIEW D 65 124024
matter content of a spacetime@47#.3 Even though an analysi
of energy conditions helps to understand the physics o
model, one has to be cautious on ascribing to them m
relevance than they actually have. In several systems, ma
when quantum effects play a fundamental role, they all m
be violated with less difficulty~see, e.g., the review in@48#!.

Let $eWa%, a50,1,2,3, be a dual vector basis of the coba
used in Sec. III B, defined byQbeWa[da

b , b50,1,2,3. Any

timelike vector field,VW , in the manifold can be represente
by

VW 5AbeWb , ~A0!2511(
i 51

3

~Ai !2, ~58!

whereAb are some functions.
On the other hand, from the results of Sec. II, the Ri

tensor is

Ricci5R00~Q0
^ Q02Q1

^ Q1!

1R22~Q2
^ Q21Q3

^ Q3!, ~59!

where^ denotes tensor product. A similar expression ho
for the Einstein tensor.

A. Strong energy conditions

SEC requireRVV[RabV
aVb>0, for all VW . From the ex-

pressions above, we obtainRVV5R001(R001R22)@(A2)2

1(A3)2#. Taking into account the expressions of the Ric
and Einstein’s tensor given in Sec. III B we getRVV5G22
1(G001G22)@(A2)21(A3)2#. Finally, using Einstein’s
equations, and the fact thatA2,A3 are free, we get

SEC↔r1p2>0, p2>0, ~60!

where r is the energy density measured byeW0 , 8pr
5G00, and p2 is the tangential pressure~or stress! of the
source, 8pp25G22. This is the usual representation of SE
However, the GNRSS family allows for a new, and mo
useful, expression. Indeed, as mentioned elsewhere,p2
52(r1rr8/2), where ()8[d()/dr. Therefore we can write

SEC↔p2>0, r8<0 ~61!

in all the examples given before SEC are violated. This
natural since they are regular. Particularly, SEC are viola
for r<RSEC, with

RSEC5
N22A2

N
R, RSEC5S 3A a2m

4~6R32a2m!
DR,

RSEC50.68R, RSEC50.83B,

where all the quantities have been defined in Sec. VI and
solutions correspond to the two-power model, the Isra

3Let us note that their Eq.~2.25!, expressing the DEC, are wrong
For our case, the correct ones are given in Eq.~64!.
12402
a
re
ly
y

s

i

s

i

.

s
d

e
l-

Poisson’s model, Dymnikova’s model, and Ayo´n–Garcı´a’s
@26# and Bronnikov’s model, respectively. Indeed, SEC a
violated in a main portion of the object, i.e.,RSEC&R. For
the evaluation of the Israel-Poisson’s model, we have u
the same numerical values as in Sec. VII A. In the case
Dymnikova’s model the value displayed corresponds to
caseL2@L1. For any other case withL2.L1.0 or L2
,0,L1, as expected, SEC are violated from bigger valu
of RSEC. Finally, in the latter case, one should evaluateB for
different possibilities~see Sec. VI D and the next case!.

B. Weak energy conditions

Following analogous steps, one finds, for WEC (GVV

>0, for all VW !

WEC↔r>0, r8<0. ~62!

It turns out that WEC are satisfied in the models of Se
VI A–VI C, very easily for any value ofr ~e.g., for de Sitter
core,r850!. One only needs to imposeL1,L2.

Let us now consider the series of models in Secs. V
and VI E. We have already seen that 0,l,1. This implies
that y,x.0, and hence thatA,B.0. In general, we have
H(r )5(A/r )@12tanh(B/r)#. We then get 8pr
5(1/r 2)(Hr )85(AB/r 4)cosh22(B/r) and 8pr8
5(2AB/r 5)cosh22(B/r)3@221(B/r)tanh(B/r)#. The energy
density r is positive for anyr, althoughr8 may become
positive. To see this, we first solver850. Its solution isr
.0.48B. Therefore we have forr ,0.48Bùr ,R ~outside
the body, WEC are satisfied!, WEC are violated.

In the model of Refs.@26# and @30#, one hasB5q2/2m
and uqu,1.05m. This gives that WEC are violated forr
,0.27m, already far away from the core.

In our revisited model, we have basically two differe
possibilities. First, for weakly charged sources, i.e., tho
with uqu/m!1, the conclusions are the same as for the mo
in @26# and @30#. Second, for sources withuqu/m;1, we
have, recall Sec. VII D,m/2,R,m, for a BH. Two limiting
alternatives appear.

The first one is thatR→2m. In this casey;1 and, there-
fore, WEC are violated forr ,0.27m. The other one is tha
R→(m/2)1e, with e!1. Now, y;1/4e. WEC are violated
for r ,0.06m/eùr ,2m, that is everywhere inside th
source. In conclusion, WEC are again violated alm
everywhere.

Finally, if one letsR.2m ~one does not have now a BH
but a ‘‘visible’’ object! large enough to havel,1 for any
uqu,m, we find that WEC are violated everywhere in th
object.

This adds a new~elementary! example to the violation of
WEC when quantum effects play an important role~see@48#
for a recent review! and shows clearly that, although energ
conditions do help to understand the models, they should
necessarily restrict the search for new solutions~Fig. 1!.

C. Null energy conditions

In the case of NEC,VW is a null vector field,VW •VW 50, and
requires the evaluation ofRabV

aVb5GabV
aVb>0, ;VW . One

obtains
4-10
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NEC↔r8<0. ~63!

Thus one sees that a necessary condition common to S
WEC, and NEC is that the energy profile of the sources b
nonincreasing function. NEC are satisfied in the models
Secs. VI A–VI C, forL2.L1, regardless of the signs ofL2
or L1. In the models of Secs. VI D and VI E, NEC are vio
lated in the same regions as WEC are, contrary to the be
expressed in@30#.

D. Dominant energy conditions

DEC are satisfied if and only ifuT0
0u>uTj

i u, i , j 51,2,3.
For the GNRSS family one gets

DEC↔signr5sign~2r8!5sign~r814r/r !. ~64!

Two immediate consequences are that ifr changes its sign
DEC are violated, and if WEC are violated in a region w
r>0, then DEC are also violated.

Let us turn now to the models considered here. In the c
of the two-powers model we will assumeL1>0. In this
case,r is positive everywhere. WEC were satisfied in the
models. However, DEC may be violated. A study of the s
of r814r/r tells us that SEC are satisfied forr̃ N22

<4L2 /(L22L1)31/(N12). Now the question is whethe
r̃ is less than 1 or not.

Obviously, for any N exceedingN* [4L2 /(L22L1)
2252(L21L1)/(L22L1), we have that DEC are vio
lated. One may ask whether this is too odd or easy. Since
expectsL2@L1, we readily getN* .2. This, together with

FIG. 1. Plot of the densityr, in arbitrary units, in terms of the
coordinater. RN means Reissner-Nordstro¨m, dS means de Sitter
Schw means Schwarzschild, and AdS means anti-de Sitter.rRN

5e2/r 4, rdS5L2 , rSchw50, and rAdS52uL2u. In the regionr
P@0,R#, r can be any~smooth! function matching continuously
with r at the center and at the surface. Regions wherer is increas-
ing violate SEC, WEC, and NEC. These are clearly most but no
of the possibilities. From the plot,e2/R4,8pL2, if one wants that
the model fulfills WEC or NEC. The addition of an externalL
simply shifts the horizontal axis a quantityL1.
12402
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the fact that N must be bigger than 2~in order to be
singularity-free!, implies that, in practice, DEC are violate
in these models, recall WEC are satisfied throughout.

For the model of Sec. VI B, we can assumeB,C to be
positive ~for, if BC,0 one gets a negative Schwarzschild
mass outside the body and ifB,C,0, B,C can be substi-
tuted by uBu,uCu). Following a similar analysis as with th
previous models, one gets that DEC are satisfied forr<r * ,
wherer * [(2B/C)1/3. Therefore ifr * is less than the match
ing R, there is a region where DEC are violated. This is t
case of our corrected model. Incidentally, in the origin
model, DEC are violated forr .r * . This conclusion is
against physics, since thus far one expects Schwarzch
solution to be valid, and it is a vacuum’s solution with n
problems in its causal structure. Therefore the corrected
sion not only describes a more realistic picture but a
solves this undesired property.

Turning back to our corrected model we have to answ
whetherr * may be smaller thanR, see the expressions give
in Sec. VI B. We get that forb.b1 or b,b2 , whereb1

[6(A321)3A(LPl
2 L2) and b2[26(A311)3A(LPl

2 L2).
On the other hand, it is expected,@49#, that LPl

2 L2;O(1)
and, consequently,b1 , b2 are of order unity. Therefore
even though there are several parameters for which D
may hold, there are also many others for which DEC w
fail. A more definite answer can only be provided after
particular field model is chosen which will yield a particul
value ofb. What is this plausible field model remains, as
now, unknown.

For the next model~the one in Sec. VI C!, it is easy to
show that DEC are satisfied throughout the source ifL2
.L1.0, as expected. This is contrary to the other mod
since this one departs from them through the causal con
tion in its stress-energy content. It is to be noticed that D
give a new input to understand the models.~The caseL2
,L1,0 also satisfies DEC, whereas the rest of the po
bilities violates them.!

Finally, for the models in Secs. VI D and VI E, asr is
positive andr8 is positive near the core, DEC are violate
together with WEC.

Some concluding remarks are in order. First, althou
DEC are known to be different from WEC, here we s
more: it turns out that in cases withr>0, DEC are more
restrictive than WEC. Another consequence is that DEC v
lation and the spacetime region where it occurs are not
lated. That is, DEC may be violated in regions whereH(r ) is
larger or smaller than 1. It happens, however, that after s
stituting expected numerical values for the physical para
eters involved, the values ofH(r ) where DEC is violated
belong mainly in the region whereH(r )>1 and a ‘‘signature
change in spacetime has occurred.’’ The region withH(r )
<1 is then at Planckian~regularization! scales and can thu
be forgotten. On the other hand, when WEC are violated,
usually accepts that the energy-matter content of the mo
can no longer be described by a classical matter sou
model. However, DEC deserve some especial attention.

These remarks impel us to further interpret the violati
of DEC from the causal interpretation of DEC@47#. A pos-

ll
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sibility is that the breakdown of causality in matter intera
tion may be interpreted in similar, though properly adapt
terms as is the Einstein-Podolski-Rosen paradox interpr
in quantum mechanics.

If this is so, or something similar can be proven, DE
may be a more natural sign of quantum effects in matter t
WEC, for the case of positive densities. This point deser
further investigation.

We will now analyze the main features arising when o
replaces the de Sitter core by a different spherically symm
ric solution.

X. THE MATCHING OF STATIC SPHERICALLY
SYMMETRIC SPACETIMES

In previous sections we have worked with the assump
that the energy-momentum tensor satisfiesT0

05T1
1. Now we

would like to make the first steps towards the general c
whereT0

0 andT1
1 may be independent of each other. The

fore our aim here is to match two spacetimes that share
existence of an integrable Killing field and spherical symm
try. In order to get the most natural junction, we need to ta
profit of both symmetries exhaustively. The metric can
ways be written, for any of them, as

ds25gAB~R!dxAdxB1G2~R!dV2, ~65!

whereA,B5T,R. ]T has been chosen to be the integra
Killing vector and dV25du21sin2 udw2. Moreover, if
G8(R)50, we already know that they belong to the gen
alized Nariai family, in which case they only match wi
another member of its own family. Thus we will only de
with the situationG8(R)Þ0. In this case, a direct redefin
tion of theR coordinate allows us to write

ds25gAB~r !dxAdxB1r 2dV2, ~66!

whereA,B5T,r .
Spherical symmetry has thus been completely used.

now extract consequences from the presence of]T . The
natural thing to do is to identify both vector fields, i.e.,]T1

[S]T2
. However, this is not a right choice, in general, b

cause if a Killing vector is multiplied by a constant facto
the resulting vector field is obviously a Killing vector field
Therefore normalizing each Killing vector, when possib
gives the natural way to identify them. This is indeed imp
mented in the junction process if the hypersurfaces
spacelike or timelike everywhere. On the contrary, in
general case, we cannot rely on such normalization.

Any metric of interest~to our purposes! can be written as
@recall the coordinate change to obtain Eq.~6!, setting now
F512H#

ds252~12H !dT21
2H

g
dT dr1

11H

g2 dr21r 2dV2,

~67!

where H, gÞ0 are functions ofr only. Looking back to
expressions~12! and the coordinate changes mention
there, we will now putdT5g0dt1(g02g0

21)dr, whereg0
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is a constant, that will be related with the functiong, as we
shall see in a moment. With this coordinate change the m
ric takes the form

ds252g0
2~12H !dt212G̃dt dr1F̃dr21r 2dV2, ~68!

where G̃5g0
2(H21)111H(g02g)/g, and F̃521g0

2(H
21)1(g02g)@2H/g12/g0

2g1(g02g)(H11)/g0
2g#.

The junction conditions~for any type of hypersurface, se
@50#! are then

@r #50, @ ṫ #50 ~69!

@H̃# ṫ212@G̃# ṫ ṙ 1F̃ ṙ 250, ~70!

@ F̃# ṫ r̈ 2@G̃#~ ẗ ṫ2 r̈ ṙ !1@H̃# ṙ ẗ1@G̃8# ṙ 3

1@H̃82~ F̃8/2!# ṙ 2 ṫ2@H̃8# ṫ3/250, ~71!

where@ f #5S f 22 f 1, and where we have putH̃[g0
2(H21)

11. In Eqs.~70! and ~71! ṫ and ṙ are eitherṫ1 , ṙ 1 or ṫ2 , ṙ 2,
andA8[dA(r )/drur 5r (l) . The same conditions lead, in gen
eral, to a second order ordinary differential equation forr. In
principle there is the possibility for asymptotic stopping s
lutions, i.e., solutions for whichr→const ast→`, and also
for null ones. The special caser 15r 25R5const is of great
interest, since it constitutes the solution towards which a
transitory solution should converge. Under this restrictio
the conditions become, simply,

@ ṫ #50, @H̃#50, 2@G̃# ẗ2@H̃8# ṫ250, ~72!

where t is either t1 or t2. Choosingg0 as gS one gets@G̃#
50 ~the same result comes out directly in the case when
normal vector ofS is non-null!. The last conditions becom
then@H̃8#50. Thus the conditions emerging from the matc
ing of two spherically symmetric spacetimes with an in
grable Killing vector field are, for the caser 5R5const and
taking the maximum identification between them,

@H̃#50, @H̃8#50, ~73!

whereH̃[gS
2 (H21)11. An intrinsic characterization, valid

for any representation of the form~65! or ~66! ~the ones most
often dealt with in the literature! is H̃[2gS

2 (jW•jW )11, gS

[@G8/udet(gAB)u1/2# r 5R , wherejW is the Killing vector asso-
ciated with the staticity of the solution~in some regions! of
~65! or ~66!. Finally, notice that the first condition onH̃ is
nothing but the requirement of the mass function to be c
tinuous across the hypersurface, while the second one is
lated with the continuity of the radial stress or pressure@see,
e.g., Eq.~3!#. Needless to say, if one restricts oneself to t
family of metrics in Eq.~12!, one gets the conditions of Se
IV B.
4-12
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XI. AN APPLICATION TO SUPERSYMMETRIC STRINGY
BLACK HOLES

The semiclassical expressions for supersymmetric stri
black holes are well-established~see, e.g.,@51,52# and refer-
ences therein!. There are also other objects of interest, su
as black strings, higher dimensional black holes, etc. In
cases, one looks for a correspondence principle with gen
relativistic black holes. This transition is usually reflected
the strength of the coupling constant, or the entropy~see,
e.g., @51–54# and references therein!. Here we take a
complementary viewpoint.

The most interesting case to our aims is that of a s
gravitating string~see, e.g.,@53,54#!. However, the necessar
ingredients, specially the corresponding spacetime metric
order to tackle this problem are still under study. Here
will consider the most simple~and widely considered! case,
that of a supersymmetric back hole.

A family of such black holes, related with electrical
charged black holes, is given by~see@51,52# for details!

ds252 f 21/2~r !S 12
r 0

r Ddt2

1 f 1/2~r !F S 12
r 0

r D 21

dr21r 2dV2G , ~74!

where f (r )5) i 51
4 @11(r 0 sinh2 ai /r)#, and where thea i are

related with the integer charges of the D-branes being u
If the correspondence occurs at a constant value ofr, we get

r 11r 0 sinh2 a5r 2f 2
1/4~r 2![R5const, ~75!

2m

R
2

Q2

R2511F S r 0

r
21D S 11

r f 8

4 f D 2G
S2

, ~76!

2
2m

R2 1
2Q2

R3 5H S 11
r f 8

4 f D 2F f 8

2 f S 12
r 0

r D22
r 0

r 2G J
S2

,

~77!

where we have usedgS5G8ur 5G21(R) , G(r )5r f 1/4(r ), and
jW•jW52 f 21/2(12r /r 0). The subscriptS2 means that all
these quantities refer to the interior region, to be evaluate
r 5r 2. For the exterior metric we have puta i5a j[a for all
i , j , because the exterior metric is that of a Reissn
Nordström black hole, for which

2m5r 0 cosh 2a, Q25r 0
2 sinh2 a cosh2 a,

~78!

r 052Am22Q2, 2 sinh2 a5211m/Am22Q2,

wherem is the ~ADM ! mass of the black hole andQ is its
electric charge. Sincef 2(r 2)5) i 51

4 @11(r 0 sinh2 ai /r)#S2
,

the above conditions yieldR as a function of six of the seve
parameters,M ,Q,(r 0)2 ,a i . Detailed analysis shows tha
these conditions are easily fulfilled whenr 0→0, a i→6`,
with r 0 sinh2 ai fixed. The resultingR is very close toR0
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[m1Am22Q2, i.e., the event horizon of the black hole. W
remark thatr f 1/4(r ) is the radial coordinate which has a d
rect interpretation in terms of the ‘‘size’’ of the object, an
not r alone. All this being in complete agreement with th
expected transitions for extreme, and nearly extreme, su
symmetric black holes. The same idea should be extende
self-gravitating strings when their~four-dimensional! space-
time metric is obtained. For instance, the expected orde
magnitude ofR found in@53# should be recovered. This issu
will be the matter of subsequent research.

XII. FINAL REMARKS

The first thing to be noticed is the intrinsic freedo
present in our model, which is as large as the measure o
set of analytic functions of one variable. This is a very r
warding feature, since it allows one to impose further rest
tions coming from new, more accurate proposals. In parti
lar, it will be a helpful tool when trying to find explicitly a
quantum field responsible for theG11 andG22 in the funda-
mental uncharged case. For comparison, in all previ
works, based on individual models, the prospect of findin
quantum field related with their energy-matter content w
hopeless. To that end, we would like to draw attention
@55#, where a useful framework to deal with the interior r
gion is given.

In the charged case, let us notice that any GNRSS sp
time can be linked with a solution to NED~see @56#!. Of
course, the case of the Schwarzschild solution is a solu
with zero charge, and the Reissner-Nordstro¨m one is the only
one which is linear, i.e., Maxwellian. Therefore the who
family of GNRSS metrics has indeed an immediate interp
tation in terms of a field theory which is well establishe
when the object is electrically or magnetically charged. T
is another useful result. A careful study of this fact will b
reported elsewhere.

Finally, one can free the requirement that there must be
event horizon. The objects would then become ‘‘visible’’ a
the study of the entropy of the solutions as well as th
associated Hawking temperature would bring some clues
the time evolution of~classically! static black holes.

XIII. CONCLUSIONS

In this work we have investigated, under quite gene
conditions, the question of using Einstein’s theory of gra
tation, extended to include semiclassical effects, with
purpose of constraining the physical structure of the eme
ing spacetime solutions that might be suitable for the
scription of the interiors of nonrotating black holes.4

In the first part of the work we have exploited the id
that vacuum polarization may indeed play an essential rol
the interior region. We have obtained the result that only t

4The rotating case, which is of major astrophysical interest,
the rotating and electrically charged one, which may be associ
with spinning particles, seem to yield results very similar to t
ones presented here, see@41,44#.
4-13
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families fulfill the imposed requirement and, moreover,
have shown that only one of them is suitable for represen
static black hole interiors, what is certainly a most rema
able result.

Then we have turned our attention to other sources for
core. Given that a promising alternative, self-gravitati
strings, needs still to be studied in more detail, we ha
started this program by first giving the general conditions
be fulfilled by any spacetime with spherical symmetry a
having some static region. Finally, we have applied the
sults obtained to a supersymmetric black hole as a prel
nary case. We have seen that, in such a situation, the ma
ing is generically compatible, including the case of extre
black holes. This last setting is precisely the same for wh
the correspondence between semiclassical black holes
stringy ones has been recently confirmed in the literat
~see, e.g.,@53,54#!.

Briefly, our overall conclusion is the following. First, th
results in the first sections have opened a new window
s

f
n-

c-

S
ns

D
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the search of a compatible quantum field that, once regu
ized, may yield the same result for, at least, a particu
energy-momentum tensor inside the general family of m
els considered~for instance, within NED, see also@56#!. Sec-
ond, once a corresponding Einsteinian metric associated
a quantum model is known, the scheme developed here
been proven to be well suited to check the consistency of
involved physical parameters and even, in some cases
assign explicit values to them.
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