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Gravitational wave propagation in isotropic cosmologies
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We study the propagation of gravitational waves carrying arbitrary information through isotropic cosmolo-
gies. The waves are modeled as small perturbations of the background Robertson-Walker geometry. The
perfect fluid matter distribution of the isotropic background is, in general, modified by small anisotropic
stresses. For pure gravity waves, in which the perturbed Weyl tensor is radiativeype N in the Petrov
classification, we construct explicit examples for which the presence of the anisotropic stress is shown to be
essential and the histories of the wave fronts in the background Robertson-Walker geometry are shear-free null
hypersurfaces. The examples derived in this case are analogous to the Bateman waves of electromagnetic
theory.
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[. INTRODUCTION Weyl tensor is radiativétype N in the Petrov classification
We show that for such waves the histories of their wave-
This paper is primarily concerned with investigating thefronts in the background RW space-time can be shear-free
influence of gravitational waves on the matter content of theéll hypersurfaces. The various open and closed RW geom-
universe. The gravitational waves are modeled as small peftries admit, in a natural way, families of shear-free null
turbations of Friedmann-Lentee cosmological models with hypersurfaces. We derive explicit solutions of the perturba-
a spatially homogeneous and isotropic Robertson-Walkeion equations describing gravitational waves propagating
(RW) geometry. We use the gauge-invariant and covarianthrough these isotropic universes for which the histories of
perturbation approach of Ellis and Bri_[r]i] This technique their wave fronts are these naturally occurring families of
has previous|y been used to Study aspects of gravitationﬂhear-free null hypersurfaces. These solutions are analogous
wave propagation in isotropic cosmologies which differ fromto the Bateman wave$] in electromagnetic theory.
those considered hefsee, for exampld2,3)). The paper is organized as follows. In Sec. Il we list the
We look for gravitational waves which carry arbitrary in- basic exact equations derived from the Ricci identities, Bi-
formation and this motivates us to require the Ellis-Brunianchi identities and the equations of motion and of energy
gauge_invariant variables to have an arbitrary dependence dﬁ)nservation of the matter distribution. In Sec. Ill we intro-
a function. Thus by “arbitrary information” in the perturba- duce the Ellis-Bruni gauge-invariant variables and show how
tions we mean that they depend upon an arbitrary functiorfor us they have an arbitrary dependence on a function. The
This in turn means that the profile of the waves described bgonsistency of these assumptions with the basic equations in
the perturbations is unspecified. The idea of introducing arthe linear approximation is then systematically studied, and
bitrary functions into solutions of Einstein's equations de-the mathematical consistency of the surviving equations is
Scribing gravitationa| waves goes back to pioneering Workestablished. This is followed in Sec. IV by specialization to
by Trautman[4]. This point of view was initiated in the Pure gravity wave perturbations and the demonstration that
present context by Hogan and EI[i§], but whereas in that their wave-front histories can be shear-free null hypersur-
work the perturbed matter distribution was a perfect fluid,faces. In Sec. V some explicit families of pure gravity wave
here we allow it to be completely general. The Ellis-Bruni Perturbations are derived. The paper ends with a discussion
approach does not involve working directly with Einstein’s in which we comment on the solutions obtained in Sec. V.
field equations but instead the basic equations used are the
Ricci identities, Bianchi identities and the matter equations
of motion and energy conservation equation, with Einstein’s
field equations incorporated in them. We work in the linear To make the paper as self-contained as possible the basic
approximation in terms of the Ellis-Bruni variables and dem-equations required for our study are given in this section. We
onstrate that consistency of our assumptions with the basigse the notation and sign conventions[@f and all of the
equations necessarily leads to all perturbation variables varequations given here can be found[#f] with the exception
ishing except the perturbed shear of the matter world-lineshat the Bianchi identities given (7] apply to a perfect fluid
and the anisotropic stress perturbation of the matter distribumatter distribution whereas we require the extension of these
tion. The consistency of the equations satisfied by these sute a general matter distribution with energy-momentum-
viving variables is established. We then specialize our studgtress tensor given by E@2.2) below. This covariant ap-
to pure gravity wave perturbations for which the perturbedproach to cosmology began in a systematic way with the
work of Schicking, Ehlers and Sacl{see[7,8] for example
while Hawking[9] gave the first description of cosmological
*Email address: phogan@ollamh.ucd.ie perturbations in this context. We are concerned here with a
"Email address: emer.oshea.2@student.ucd.ie four dimensional space-time manifold with metric tensor

Il. THE BASIC EXACT EQUATIONS
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componentsy,,, in a local coordinate syste#x?}, and a Ugdge— ua;cd:Rabcdubr (2.10
preferred congruence of world-lines tangent to the unit time-

like vector field with componentai® (with u?u,=—1). whereR,,.q is the Riemann curvature tensor, thguations
With respect to this 4-velocity field the Weyl tensor, with of motionand theenergy conservation equati@ontained in
componentsC,.q, IS decomposed into an “electric part”

and a “magnetic part” given respectively by T2,,=0, (2.1

Eab=CapbquP U9, Hap=*CqppquPud.  (2.1)  and theBianchi identitieswritten conveniently in the form

Here * Capbq= 3 7ap ° Crsbq iS the dual of the Weyl tensor cabed (= Relabl — tgela gibl, (2.12

(the left and right duals being eqUalyapcq= '~ 9 €apcd

with g=det(g,,) and e,,.q is the Levi-Civita permutation HereR®:=R°P3, are the components of the Ricci tensor and
symbol. The expression for the Weyl tensor in termsEgf R:=R°; is the Ricci scalar. Einstein’s field equations, after
andH,, is given in[7]. The symmetric energy-momentum- absorbing the coupling constant into the energy-momentum-
stress tensoff®® can be decomposed with respect to thestress tensor, take the form

4-velocity fieldu? as L
Rab—29ap R=Tap. (2.13

T2%= 4 uduP+p 2P+ g2 uP+ P ud+ #2°, (2.2 o . .
The Ricci identities yieldRaychaudhuri’s equatign

where . )
0+3560°—uQ+2 (0’ —0?)+3(nt+3p)=0 (2.19
hab=gab+ ya y®, (2.3
_ o (hereo?:=30,, 0% w?=}w,,»2) thevorticity propaga-
is the projection tensor and tion equation

q?u,=0, 7*Pu,=0, #%,=0, (2.4

g(.l)b+%0wa:0'ab wb-l-%nadeub Uc;d (213
with 73°= 722 Here 1 is interpreted as the matter energy
density measured by the observer with 4-veloatty p is the
isotropic pressureg? is the energy flow(such as heat flow
measured by this observer amd® is the anisotropic stress
(due, for example, to viscosityWe shall indicate covariant
differentiation with a semicolon, partial differentiation by a
comma, covariant differentiation in the direction wf by a
dot and a definition by a colon followed by an equality sign. (2.16
Thus the 4-acceleration of the timelike congruence is

(here w?:=3% 72°°%uy, w4 is the vorticity vectoy the shear

propagation equation
f : : . f2
ha Mg (01g— Uf;g) ~Ua Up T @q 0+ 0ar 0y + 50 0gp

1.2 2 2,1'¢c 1 _
+hab(_§w —30 +§U;c)—§77ab+Eab—0,

the (0p)-field equation(see[7] for the explanation of this

ud:=ud, uP, (2.5  terminology,
andu,, can be decomposed into 2h2 9P—h2 0P hd— 72°9Tu (g1 +2 wqUg) =q3,
. (2.17
Ug;h= Wap™T Uab+%0hab_ Ua Up, (2.6 . .. .
the divergence of vorticity equation
with .
.y h?=w?u,, (2.18

wab=:u[a;b]+u[a Ub] , (27) ]
and themagnetic part of the Weyl tensor
the vorticity tensor of the congruence tangentufd The .
square brackets denote skew-symmetrization as usual. Also Hap=2 UGy wp)— hta hy (w(t93C+ g(tg?c) Ns)tge uf.

(2.19

Next Eq.(2.11) projected orthogonal to® and alongu?
is the shear tensor of the congruence. The round bracketespectively give thequations of motion of matter
denote symmetrization and

Uab’=u(a;b)+u(aub)_%ahabv (2.9

(u+p) U+h3¢(p o+ 7°p+qc)

0:= Ua-a, (29)
' + (04 0%+ 4 6h?) q,=0, (2.20
is the expansiorior contraction of the congruence.
The key equations we shall need are obtained by projecand theenergy conservation equation
tions in the directionu® and orthogonal tau?® (using the

projection tensoh,;,) of the Ricci identities ut O (ptp)+ 7o+, +udg,=0. (2.2D)
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Finally the various projections of the Bianchi identities (2.25 neglecting nonlinear terms in these variables. Ray-
(2.12 along and orthogonal ta? give analogous equations chaudhuri's equation2.14 and the energy conservation
to Maxwell’s equations foE,, andH,, in Eq. (2.1). These equation(2.21) are not immediately useful because they are

consist of thediv-E equation not expressed in terms of these gauge-invariant variables. We
bad ot b b § can however get useful equations from E@s14) and(2.21)
hg E%%.1 hg+3 0®HJ— 7°Pu, 0% Hyq by calculating the spatial gradients of these equations and
then retaining only linear terms in the gauge-invariant vari-
— b _ bd b d_ bd . . .
=zhewo+ %{ Tt U o =3 04y ables. This results in the two equations
-+UMQd_§0qb+ﬂbﬁM}i (2.22 73+ 92— gud—h3d(ud ) p+ X3+ 2Y23=0, (3.2
the div-H equation and

b ygd f_ seb bapq d . -
Mg H*% Mg =3 @7 et 77 Ua 07 Eqg X2 20X+ (o p) 224+ 0 Y2~ P+ ha0(q8) p=0

=(putp) wb+%77bqacuq q*° (32
+37°acU% (094 %) 7y, (2.23  The background value df to be substituted into Eq3.1) is
. given by
the E-equation .
0=—36"—3(u+3p), (3.3

h? Efg ht +h(b 77t)rsdurHa_d_z H(b 77t)drs udur
g 2 * s which is obtained by specializing Raychaudhuri’s equation

—E{ 0”5—3E{ 6?5+ hP EWP oy + 9 EP! (2.14 to the background. In Eq3.2) the background value

: : of u is given by

=—3(utp) a®=3h®{u+0(u+p}-—qPu

- . u=—0(u+p), 3.4
Lyl — 1B 4 11 ey oy 40 g+ Loyt gh) Iz (n+p) (3.4
1ty bty 1 cba c(by ) _ 1 bt which follows from Eq.(2.21) specialized to the background.

2+ TP U U {0 P+ o g We shall assume an equation of state of the fprap(u) so

(2.24  that the Ellis-Bruni variableX, andY, are related by

o\ . d
and theH-equation Ya:£xa- (3.5
h? HI9 hL—h(® 70rsd U B2+ 2 E® 709 g0,

Finally we shall assume that in the backgroyngt p#0 so

t b t b b gd b . . . .
—H{ 0”=3H{ o”5+h® HP gy + 6 H! that we do indeed have a cosmological model in which the
— 4t b)_ 1t b)d_ D) f g2 Einstein tensor determines a unique timelike 4-velocity of
A" 0P =2 raa{e o UG the matter.
— 29 U+ 29 ud U {0+ o 7. We look for solutionsr,,, U2, wa, (& ?),X, [and thus

(2.2 Y, by Eq.(3.5], 23, «? andqg? of the linearized versions
' of Egs. (2.19—(2.20 and (2.22—(2.25 along with Egs.
(3.1 and (3.2 for which these variables depend upon an
IIl. PERTURBATIONS OF ISOTROPIC COSMOLOGIES arbitrary function. This is because we expect that this depen-
We shall now assume that the space-time in Sec. Il is Sence of perturbations will describe gravitational waves car-
perturbed RW space-time. Thus the background metric ted¥ing arbitrary information. We note thd,p,Hqp are de-
sor g.p is the Robertson-Walker metric, the backgroundfived variables. Specifically we assume that
energy-momentum-stress tensor is EJ2) specialized to a o b
perfect-fluid (by putting g*=0=72?) with fluid 4-velocity Tap=Sap F(¢),u"=a’F (),
u? and the background Weyl tensor vanishes. The Ellis-Bruni b . ab _
[1] approach to perturbations of this background is to work oP=WPF()[= 0*=wF(H)],
with gauge-invariant small quantities rather than small per- NI 78— AF (3.6
turbations of the background metric. Such gauge-invariant =x*F($),2°=2"F(¢),
guantities have the important property that they vanish in the ab_ 1rab 4. ~a
background space-time. Thus for an isotropic background the 7 =1F(4).0°=Q7F(4),

Ellis-Bruni variables, which will hengeforth be considered whereF is an arbitrary real-valued function of its argument
small of first order, areE,,,Hap,0ap,U% wap (OF €Quiva-  $(x?). This form for the gauge-invariant variables was first
lently the vorticity vector®), X,=h3 up,Ya=h2p,, Za  introduced by Hogan and EIli&] where the perturbed mat-

= hg 0, mapandg® The equations satisfied by these quan-ter distribution was taken to be a perfect fluid. As we men-
tities are given by EQs(2.19-(2.20 and by Eqs.(2.22—  tioned in the Introduction, the idea of introducing arbitrary
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functions into solutions of Einstein’s equations describing('ﬁ TP — LhPt Q2 ¢+ 1QUAD)
gravitational waves goes back to pioneering work by Traut- ’
man[4]. We note that all of the quantities in Eq8.6) are bt bt bt b b Orsd
orthogonal tau? and thats,,,I1,, are trace-free with respect ¢ pPi=m—om”—u; (40 ¢ o105 " '(3 20
to the background metrig,, (i.e. s%,=0=112,). '
When Egs.(3.6) are substituted into the linearized ver-
sions of Eqs(2.15—(2.20), (2.22—(2.25 and(3.1), (3.2) the
following extensive but surveyable list of equations emerges
as indicated.
From the shear propagation equation

¢ mPt [ (b prsd ¢ ¢=0. (3.21)

From the Hequation
a*=u, pPgq 70+ 9 0”'=0, (3.2
Eab:(%nab"' pab)F—i-mabF', (3.7

with F'=dF/d¢ and

¢+ 1P+ 017" —u, (pPs ¢ g+ mPsq) 777°0=0, (323

P 1P =mP sy ¢ =0, (3.29

_ ; f
Pab=2(ab) T U(a @) =36 Ua 8p)~ 381 Nap From the(0,»)-field equation
_-Sab_ C% Hsabi (38) Sab ¢ b+ ﬂaCdech ¢ f:01 (323
Map=a(a Apy— 5 X Nab— ¢ Sap - (3.9 Q¥=372"—s — MU wys .
. (3.2
Here and throughout)\a=h21 bp, X=¢ ¢ a' and ¢ o ] ]
= U From the vorticity propagation equation
From the magnetic part of the Weyl tensor 5
Wa+ §0Wa:%7]adeUc apd (32D
Hap=0apF+1apF’, (3.10
with pwi=17p2u a, b 4. (3.28
qab:W(a;b)+W(a Up)— L 6W(, Upy From the divergence of vorticity equation
_S(ap;C o) tpc u'— hap W, (3.1 w?,=0, (3.29
a —
lab=Wa Aoy =W ¢°ap—S(a” 7pypc U’ ¢°. a1 W $,a=0. (3:30
(312 From the spatial gradient of Raychaudhuri’'s equation
From the div-E equation . .
Z°+ 025+ 3x°+ 3y°=hP(a ) L+ 0 ac, (3.3)
m# ¢ ,=0, (3.13 .
pz=a g\ +h®@% e gy, (3.32
Hab ¢,b+ pab ¢,b+mab;b:0, (3.14)
d =
Hab;b_,_ pab;b: %Xa_ % 0Qa_ (3_13 (a ¢d) )\c 0. (3-33
From the div-H equation From the equations of motion of matter
a, ~a_ _ a_ yyab
|ab¢'b:0' (3.16 yi+Q=—(u+p)a*~Il by (3.39
b Q=112 ¢ . 3.3
qab ¢,b+|ab;b=%77aqbcuq Qb ¢'Ca (3-17) ¢Q d)’b (339
. ) . From the spatial gradient of the energy conservation
0%%p— (e +p) W= 3 7%pc Ut Q"C. (3.18  equation
From the Eequation XC+ 40X+ 9ye+heP(Q2,)
P4 2011 Pt Q2 + LUt QP + QU — Lyt QP =—(pt+p) da—(utp)z, (3.3
= PP g S T B (utp) S, (3.19 & X+ Qe hE Q% 6,0) 5=0, (3.37
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(Q%¢ o) \p,=0. (3.38 The Ricci identities satisfied bs?® give

On account of Eq(3.5) the variabley® appearing in Egs. s, cp U= (s, (3.50

H a
(3.3, (3.34) and(3.36) is related tox® by and so Eq(3.49 becomes

(3.39 PP =A™= (5%p) — 057 (3.51

) ) ) Now Eq.(3.26) is
We must now examine the internal consistency of these

equations. $P = — Q¥+ 35722+ A2, (3.52
Our first enquiry parallels the work ifb]. Putting

dp
a—__— ya
Y =Gu

with
VPt=mPt4j | P, (3.40
.Aa: - ﬁaCdeC Wd;f . (353
we can write Eqs(3.21) and (3.24 as a single complex
equation Putting Eq.(3.52 into Eq. (3.5)) yields
2 V=i U, VP b g+ P u, Vi g pPp=ATp+Q 1+ 0Q -5~ F0 7~ A -0 A% (354
(343 Alternatively from Eqs.(3.15 and (3.34) we have
From this we calculate that )
. PPPp=5-30Q%+y*+ Q%+ (utp)a® (359
(}S nbpq|Vbtup=2in[q )\|] . (34

Thus Eqs(3.54 and(3.55 are consistent provided
When this is substituted into each term on the right-hand side

of Eq. (3.41) we obtain 10Q2=2(22+ 027+ L x2+ 3y?)
2pVPI=2 VP2 p 1 4 pd VPL (3.43 +(p+p)ad+ A2+ 0 A-A, . (3.50
Hence with¢#0 andVP'+0 we must have Making use of Eq.(3.28 to write w? in terms ofa? and
using the propagation equatig8.27 for w? along u? it
¢4 ¢9=0. (3.44  follows that

The hypersurfaceg(x®) =const in the background isotropic 42+ g 42=133+ 1942
cosmological model must be nikee Sec. IV below where _

the physical implications of Eq3.44 are discussed Thus —{i(u—p)—3:6—356°%
Na=h2 ¢ p=¢ .+ ¢ u,#0 and so we now have, in addition

a_ lpac/,4b 1 b ay l,ab
to Eq. (3.44), the following vanishing scalar products: Xa'=zh™ (@) c—50a%p Ui+ 28"

(3.57
wa ¢,a:01 aa¢,a:01 Qa d’,azoa (3.495
Direct calculation from Eq(3.47) yields
on account of Eqs(3.30, (3.33 and(3.38. The latter two
simplify Egs. (3.32 and(3.37) respectively. _ AP =122+210a%+{H(u—p)—L6—26% a®
We will next show that for consistency of our equations .
we must haveQ?=0. Let us, for convenience, write Eq. +gh?¢(ab,) —30a°,ud+3a%, . (3.58
3.8 as
38 Putting Eqs.(3.57 and(3.58 into Eqg. (3.56) and using the
pab:Aab_'Sab_éesab, (3.46 background Raychaudhuri equatith3) gives
with 10Q3=4{z"+ 022+ 1x3+ 3y3—h3°(aP) .— ha?}.

. (3.59
Aab: (a;b)+ (aqb)__ 1 (aqb)__ 1 f_ hab_ 4
a uratosoutatosan (347 It thus follows from Eq.(3.31) that
Using the fact that in the backgrourtll,= — 6 u, we have 00%=0 36
from Eq. (3.46), Q"=0. (3.60

Since >0 we must have

pab:b:Aab;b_-sab;b_gesab;b- (3.48
Q2=0. (3.61
In the background,.,= 3 6 h,, and so this equation can be
written It now follows from Eqs.(3.37) and(3.38) that
pab;bzAab;b_Sab;cb uc— ﬂsab;b. (349) XaZO, (362
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and so Eq(3.39 yields

y2=0. (3.63
Now Eq. (3.32 with Eq. (3.45 becomes
dZ=ad 4\°, (3.64
while Eq. (3.36 reduces to
(u+p) (2°+0a°)=0. (3.69

Contracting Eq(3.64 with ¢ . and using Eq(3.44 results
in

o =¢paly, (3.66

and, noting Eq(3.45 again, contracting Eq3.65 with ¢ .
gives

¢ (u+p)ady=0. (3.67

With ¢#0,u+p+#0 we must havead;dzo and so Eq.

(3.64) becomes

z=0. (3.69
Now Eq. (3.65 with >0 andu+p+#0 yields

a®=0. (3.69
It now follows from Eq.(3.28 that

w2=0. (3.70

At this stage the only surviving gauge-invariant small

quantities from the list3.6) are 0®° and 72 or equivalently
s T12P, We see that now Eq$3.25 and(3.35 require

¢ =0, TI1%°¢,=0. (3.70)
Also Egs.(3.26 and(3.34) requires®”, 1P to satisfy
s, =0, 113" ,=0. (3.72

We will write the remaining equations from Eqg&3.13—
(3.38), which have not reduced to=00, in terms ofs®?, T2,
We will then check that the equations we obtain $8, 112"

[including Eqgs.(3.71) and (3.72] are consistent. We begin

with Eq. (3.20 with Q2=0 and substitute into ip2® from
Eq. (3.8 with a®=0 andm?® from Eq. (3.9) with a®=0 to
obtain

HIIP=2 p P4 29 ¢ SOt p SPt
—u; (a5 ¢,4+1059) 790 (373
With g2° given by Eq.(3.11) with w3=0 we calculate
PGl Uy b g= — 8P b, UP+SPP b p 5D
—sPPp +30¢sP. (3.74
Next usingl®” in Eq. (3.12 with w3=0 we find

PHYSICAL REVIEW D65 124017

7%, = — ¢ s uP+s® gt ¢ sPud—s? ¢t

(3.79

The first of Eqs«(3.72 and the background expressiuﬁd
=0 help us to deduce from E@3.75 that

ﬂbrSdur |ts;d= _ (.ﬁ,d Std ub_ % 0¢ Stb‘f‘Stb;d ¢,d+stb d),d;d

+psP+psP+0psP— Py (376
Putting Eqs«(3.74 and (3.76) together we get

nbrSdur (qts ¢,d+ Its;d) =2 Stb;d ¢,d+ ¢'d;d Stb+ 2 d’ -Stb
(3.77

which is symmetric in{,b). Substituting this into Eq.3.73
gives the equation

+p s+ ¢st,

St (30— 30 P)Sw=—3¢1lp, (379
with S{p:=Sp.q ¢Y. This is a propagation equation for,s
along the null geodesics tangent ¢o°.

We now turn our attention to Eq3.23. Substituting for
p2®,m3® from Egs.(3.8) and (3.9 with a®=0 we see that

pbs ¢,d+ mbs;d: _(¢,d Sbs) —0 ¢,d Sbs
_%9¢ud Sbs_(-lssbs;d- (3-79)

We notice in passing from this that now E@®.14), which
reads

P2 ¢ p+mP. =0,

(3.80

on account of the second of Eg8.71), is automatically
satisfied because of the first equation in E@71) and in
Eq. (3.72. Writing out Eq.(3.23 with q®° substituted from
Eq. (3.11) with w?=0 we have

1Pt g 1Pt Uy (d’ S(bs;d+ p(bs bat m(bs;d) ﬂt)rSd: 0.
(3.8)
Now using Eq.(3.79 we can write this as
14 01+ U {(,g509) + 6 ¢4 505} nr9=0.
(3.82

This can be rearranged as

(Ibt+ U ¢4 S(bs ﬂt)rSd) -+ 0(|bt+ Uy &g S(bs ﬂt)rSd) =0

(3.83

With 1P given in Eq.(3.12 with w3=0 we see that Eq.
(3.83 is identically satisfied.

We next examine E(3.22). It is identically satisfied and
this can be seen as follows: witp® in Eq. (3.8) and a?
=0, we find

pbs;d: - ébs;d"‘ % 0 Ug Sbs_ % 0 Sbs;d .

(3.89

From the Ricci identities satisfied 5f° we have
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)

_(ab . 1 1 b b
S°s.d=(S°s.q) + (st 3p) (U’ SystS g Us)

1 b b
+360(S7sq+ S sUqg).

(3.8

This allows us to write

trsd trsd

n Uy pbs;d:_(n b

b . trsd
UrSs;d)—i??? Ur Ss.q-

(3.89

When this is entered into Eq3.22 the equation can be
rearranged as

(qbt+ Uy S(bs;d Ut)rSd) +6 (qbt"' Uy S(bs;d ﬂt)rSd) = Ov

(3.87

which is an identity on account @¢8.11) with w?=0.
We now consider Eq(3.19 with Q#=0. If we first sub-
stitute forp?® into it from Eq. (3.8) with a®=0 we obtain

— bt S ght_2pebt 2 2gPty 1 () 4 ) sbt
+u, qPs pVrsd= 1Pt 2 g rbt, (3.88
However usingg®® in Eq. (3.11) with w3=0 we find that

77bl’sd U, th: _ % 0 Std Ub+ % 6Stb ud_'std ub

+'Sbtud_std;b+stb;d’ (3.89
and thus, using the first of Eq&3.72,
77brsd U, qts;d: % azstb+ % 0 Stb+ étb
+0sP—sidb +stbid (3,90

PHYSICAL REVIEW D65 124017

components can be easily written in terms of the perfect-fluid
energy-momentum-stress tensor of the background because
the background, being isotropic, is conformally flat. When
this is done it is found that each of the Riemann tensor terms
in Eq. (3.99 separately vanishes and so E§.93 is satis-
fied.

With the second of Eq(3.72 holding we have from Eq.
(3.15

(3.95

That this is satisfied bp° given by Eq.(3.8) with a®=0 is
straightforward when one notes tl'ﬁg;f (sb;b) =0, which
follows from Eq.(3.85 after summation overl(d) and the
properties ofs?®.

Finally we must check Eq3.17) with Q#=0. This reads

(3.99

To see thag®” and| 2 satisfy this equation we start with Eq.
(3.77) and multiply it by 7,,4:. Since the right-hand side of
Eq. (3.77) is symmetric in {,b) we obtain

pab;b: 0.

9% & q+1%.4=0.

(qmp ¢,m+ I mp;m) lJq_ (qmq ¢,m+ I mq;m) Up= 0.
(3.97

If this is multiplied byuP then Eq.(3.96) results.

At this point all of the equation§3.13—(3.38 are satis-
fied provideds®®, 112" satisfy the algebraic relations with ,
in Eqg. (3.71), are divergence-free as indicated in E8.72
and satisfy the propagation equatith79 for s*° along the
integral curves ofp'? in the background space-time and sat-
isfy the wave equation(3.92. These equations reduce to

The second to last term here can be simplified using théngse obtained if5] when I13°=0. We need to check that

Ricci identities satisfied bg?® and the first of Eqs(3.72 to
read

(3.9

We see that now Eq3.90 is symmetric in p,t) and on
substitution into Eq(3.88 we arrive ata wave equation for
s namely,

td;b _ /5 1 th
sTP.q=(5u—2p)s”.

S — 50— (50+56%) s+ (p—3p) ST

=— 112" %911°". (3.92
With w®=0=Q? we have from Eq(3.18 that
q2°.,=0. (3.93

This equation is satisfied bg?® given by Eq.(3.11) with
w?=0. Substituting the latter expression ff® into the left-
hand side of Eq(3.93 and using Eq(3.91) we have

ab _— _1l/.a a bef
q ;b__Z(S p;ch™S p;bc)77 pufy
=—l(Ra s +R Sag) b(:fpu
1 gcbSTp pgch n fs

(3.99

using the Bianchi identities. HeR®,,, are the components

Egs.(3.71), (3.72, (3.78 and(3.92 are consistent.
Using the Bianchi identities we can show that

(Sab;d:d);b:(sab;b);d;d+(%M_%p) Sab;b, (3.98
= (%) + 5950, (3.99
1120, = (1120,) + § 9 112, (3.100

With the help of these equations it is straightforward to see
that the wave equatio(B8.92 is consistent with Eq(3.72.
Also using
s g up=(sup) g 5605,  (3.109
one can easily see that the wave equat®0? is consistent
with s*Pu,=0=1I12%u,. The wave equatiori3.92 is also
consistent withs®® ¢ ,=0=113 ¢ ,,. This follows from

s b= —2(2 ) =52 () p,
(3.102

which is obtained using the Bianchi identities satisfiedsty
and¢ ,. The propagation equatid.78 allows us to write

of the Riemann tensor of the isotropic background. Thesé&g. (3.102 as
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Sab:d;d ¢,b=—§9¢,bsab+ ('stbl'[ab, (3.103
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less restrictive to require that tikeparts ofE,},,H,, also be
type N in the Petrov classification witlp® as degenerate

One can also derive this by multiplying the wave equationprincipal null direction. This means that, in the light of the

(3.92 by ¢, and using the fact that#(,) = ¢
with, as always\,=hg ¢ ..

The propagation equatidi3.78) is clearly consistent with
Eq. (3.71) because the integral curves ¢f* are geodesics.
That Eq.(3.79 is also consistent withs?® u,=0=112"u,
follows from u)=up.. ¢°=3 #\,,. The consistency of Eq.
(3.78 with Eq. (3.72 requires the wave equatiof3.92.
This is because on taking the divergence of E378 and
using the Ricci identities one arrives at

b—3 O \p

— 3T+ 3, [13P=— 3¢ 5?04 +105%0 ¢ .
(3.109

Substituting fors®”“.4 here from the wave equatiai3.92),
this equation reduces 2., =0.

ab;d

IV. PURE GRAVITY WAVE PERTURBATIONS

second of Eqs(3.71), we should require

PP p=0, g*¢,=0, (4.6

with p2®,g2® given above in Eqg4.3) and(4.4). The first of
these can be written

S é b;cU°=0, 4.7
while the second gives us
s 4 ¢~ p ,P=0. 4.8

To elucidate the meaning of Eq&l.7) and(4.8) it is conve-
nient to make use of a null tetrad in the background RW

space-time. First we note thMﬁ=—¢*1¢,a and | ;=u,
— 1k, are two real covariant vector fields satisfyikgk?®

=0, 1,12=0 andk, 2= —1. Letm,,m, be a complex co-

As a result of the calculations outlined in Sec. Il the Vanant vector field and its Comp'ex ConjugamK:ated by a

perturbatlons of the Weyl tensor now have “electric” and

“magnetic” parts given by

Eab:(%Hab+ pab)F""mabF,a (4.)
Hab=0anF+1apF’, (4.2)
with
Pap=— éab_ % 0 Sapb Map= — ¢ Sab 4.3
Uab= —S@" ¢ MoytpcU’s  lab=—S(@” Myrpc U’ ¢°
(4.4

Also s2° 12 satisfy the consistent equatiot®71), (3.72,
(3.78 and(3.92 and ¢? is a null vector field in the back-
ground RW space-time. From the first of E¢3.71) we see
from Egs.(4.3) and(4.4) that
mab ¢|b:O!

120 =0, (4.9

verifying that Eqs.(3.13 and (3.16 are satisfied. Thus the

F’-parts ofE,},,H,, above are typéN in the Petrov classi-
fication with degenerate principal null directiof®. We

therefore consider thE’-part of this perturbed field as de-

ban chosen so that they are nulingm?=0=m, m?), are
orthogonal to k% and 12 and satisfy m,m 1 Now

k%, 12, m?, m? constitute a null tetrad with respect to

which s?® can be written (because s3,=0 , s?°u

=0 , s*’k,=0 and sos?®1,=0)
sP=sm2mP+s nf m. (4.9

Thus|s|?= 3 s?Ps,,. Substituting Eq(4.9) into Eq.(4.7) we
easily see that Eq4.7) is equivalent to

(4.10

S ¢ p.cM°1°=0,

from which we conclude that providest 0 (< s2#0) we
must have

b e MP1°= (4.11)

On using Eq.(4.9 in Eq. (4.8 we find that, in addition to
Eq. (4.11),

g‘b,a:bma mP=s d’,a;bﬁa%b- (4.12

scribing gravitational waves having propagation directionA simple way to satisfy this witls# 0 is to require the null
¢? in the RW background and the histories of the wavehypersurfaces)(x?)=const to satisfy

fronts are the null hypersurfaces(x?®) =const. This inter-

pretation is based on the well-known analogy with electro-

magnetic radiatio10]. The F-parts ofE,,,H,, are not in

¢ apM*mP=0.

(4.13

general typeN and so do not necessarily describe gravita-This means thathe complex shear of the null geodesic con-

tional waves.

gruence tangent tap'® in the background RW space-time

For the remainder of this paper we will consider pure typevanishes If we can find a family of null hypersurfaces

N perturbationgi.e. pure gravity wave perturbationsf the
RW background. We could do this by requiring fRearts of
Eap,Hap In Egs. (4.1 and (4.2) to vanish. It is possible to
exhibit solutions of our basic equatiot%71), (3.72), (3.78
and(3.92 having this propertysee Sec. VI belowbut it is

¢(x¥)=const in the background space-time satisfying Egs.
(4.11) and (4.13 then Eq.(4.6) will be satisfied. The solu-
tions we then obtain of Eq$3.71), (3.72, (3.78 and(3.92

will be analogous to the Bateman wa\&g of electromag-
netic theory.
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V. EXPLICIT EXAMPLES z'+iz2=(y+iz) pg 'sinhx, (5.9
To exhibit explicit examples of pure type perturbations ) L

of the RW space-times we first select in such space-times 2= (3(y*+27%) 1) p, 'sinhx, (5.9

some naturally occurring shear-free null hypersurfaces

&(x?)=const. We begin with the general Robertson-Walker z*=coshx, (5.10

line-element in standard form, ) S )
with po=1+ 2(y?+z%). Substitution into Eq(5.6) gives

[(dxD)2+(dx®)?+(dx*)?]

ds?=RA(t) 5 dt?, (5.0 ds3=dx?+ pg %sint’x (dy?+d 7). (5.1
1+ —r?
4r The next possibility is
whereR(t) is the scale factor,?=(x)?+ (x?)%+ (x%)? and ZA+iz?=1ie(y+iz), (5.12
k=0,=1 is the Gaussian curvature of the spacelike hyper-
surfaceg = const. We can put these line-elements in the fol- =1 (y?+ 22— 1)+e X, (5.13

lowing interesting forms for our purposé$l]:
=1 (y?+22+1)+e ¥, (5.19
ds?=R2(t) {dx®+ p, 2fA(dy?+dZP)} —dt?, (5.2
and now Eq(5.6) reads
with po= 1+ (K/4)(y?+ z%),K =constf = f(x). The follow-
ing cases arise(i) if k=+1 thenK=+1 andf(x)=sinx; dsi=dx*+ 3 € (dy*+d2). (5.19
(ii) if k=0 thenK=0,+1 with f(x)=1 whenK=0 and .
f(x)=x whenK=+1; (iii) if k=—1 thenk=0,=1 with  Finally we can take
f(x)=3€ when K=0, f(x)=sinhx when K=+1 and

£(x) = coshx whenK = — 1. 7' +iz?=(y+iz) py ‘coshx, (5.16
Case(i) above arises because whkr +1 the closed S sinh

model universe with line-elemeif6.1) hast=const hyper- Z =sinhx, (5.17

surfaces with line-element which can be put in the form 1o o .

dI?=R2(t) ds2 with Z*=(z(y*+2z°)+1)p, “coshx, (5.19
ds2=dx®+ sirex (d 92+ sirtd de?), (5.3  With pp=1—7 (y*+2°). With this Eq.(5.6) takes the form

— -2
and we then use stereographic coordinatgssuch thaty dsj=dx?+ pg “cositx (dy*+d 7). (5.19

+iz=2 d¥cot(9/2) in place of the polar angles, ¢.
Case(ii) arises because whém=0 the open, spatially flat
universe with line-elemen{.1) hast=const hypersurfaces

In the space-times with line-elemer(&2), with the spe-
cial cases outlined following Ed5.2), the hypersurfaces

with line-elementd|?= R(t) dsj where H(x?) :=x—T(t)=const (5.20
dsi=dx?+dy*+d7, (54 with dT/dt=R"! arenull hypersurfacesThey are generated
by null geodesics having expansion
or
— 2 2 2 i 2 f’ R
d%—dx +x2(d9?+sirtd dg?), (5.5 12 =—t+ —. (5.2
7 R} R?
and in the latter we introduce the stereographic coordinates .
Y,z again in place ofd,¢. Heref’=df/dx,R=dR/dt. The integral curves of the vector
Case(iii) is due to the fact that in Eq5.1) when k= field /ot are the world lines of the fluid particles. The com-

— 1 thet=const hypersurfaces can, modulo the fa®éft), ponents of this vector field are denoted éyyand using Eq.
each be viewed as the future sheet of a unit timelike hypert5.20 we can show that

sphere Hs in four dimensional Minkowskian space-time ,

M,. Thus if the line-element afM, is written 2¢ ab=Eabpténdat b g Gap, (5.22

d2=(dzY)2+(d2)2+(dB)2—(dZ)2, (5.6  With

!

then; is given by b=~ T atR ¢ q9u,. (5.23

(2H2+ (%)% +(2)%—(2H?=-1, z*>0. (5.7
With s ¢ ,=0=s%"u, we see on substituting Eq5.22)
The different parts of cagg@i) above are due to the different that Eqs(4.7) and(4.8) are now satisfied. On account of Eq.
ways one can parametrize E&.7). One possibility is with  (5.22 it follows that ¢ , is shear-fred12]. Alternatively we

124017-9



P. A. HOGAN AND E. M. O'SHEA

can easily verify Eqs(4.11) and(4.13 using the null tetrad
described following Eq(4.8) which is given via the 1-forms

k,dx®=Rdx—dt, |,dx®=—3(Rdx+dt),

1
m, dx@= —R p, *f (dy+idz). (5.29

V2

PHYSICAL REVIEW D65 124017

i oA i 0, ‘B)=0 5.3
W(po )~ 5, (Po 'B)=0, (5.30

i ’4B+ﬁ “4A) =0 5.3
ay(po )+ - (P "A)=0. (5.3D

We shall find it convenient to work witlag, 8 rather than
a, 3 where

For convenience we have used the same coordinate labels

{x,y,z,t} for all of the special cases included in E§.2). Of

ap=afR%,  By=pB RS (5.32

course the ranges of some of these coordinates will be dif-

ferent in the different casegdor example, in caseii) xe
(=, +) if K=0 whereasce[0,+») if K=+ 1]. Simi-
larly the shear-free null hypersurfacégs20 differ from case

to case, and within casdd) and (iii), as can be seen by
noting the intersections of these null hypersurfaces with the

spacelike hypersurfacés- const. In caséi) the intersection
is a 2-sphere. In cas@) it is a 2-sphere iiK=+1 and a
2-plane ifK=0. Thus Eq.(5.20 describes two quite differ-

ent families of shear-free null hypersurfaces that can arise i

an open, spatially flat universe. In ca@i¢) the intersection
of Eq. (5.20 with t=const can be a 2-space of positiu€ (
=+1), negative K= —1) or zero K=0) curvature giving

three different families of shear-free null hypersurfaces in a
k=—1 open universe. A geometrical explanation for these —

subcases is given irl1].
We begin with ¢(x?) given by Eq.(5.20 and u?a/ox?
=g/ t. Sinces?? andII° are orthogonal ta? and ¢ and

trace-free, with respect to the metric tensor given via th
line-element(5.2), each have only two independent compo-

nents. If the coordinates are labelet=x,x>=y,x*=z,x*

=t then the surviving components are>’=—s??

=a(X,y,z,1),52°=5%2=B(x,y,z1) and  [1%%=-]1??

=A(x,y,z,t),I1?°=T11%?=B(x,y,zt). We can conveniently
express these on the null tetré&l24). We haves®® given by

Eq. (4.9 with

s=—R%p, 2t (a+i p), (5.25

and
[12P= 1 m@ mP+ 1T m2 m®, (5.26

with
= —R%p, 2f%(A+iB). (5.27

Calculation of the first of Eqs(3.72 to be satisfied bys??

shows thate, 8 must satisfy the Cauchy-Riemann equations

J .4 J 4
W(po a)‘&(po B)=0, (5.28

Jd 4 Jdo a4
E(po ﬁ)"‘&(po a)=0. (5.29

In addition T12° and thusA,B must satisfy the same equa-

tions,

Sincef=f(x), R=R(t) we have Eqs(5.28 and(5.29 sat-
isfied by ag and B, and these equations can be written eco-
nomically as

Jd

a_?{p64(ao+i Bo)}=0, (5.33
Hvith {=y+iz, giving

aO—i_i Bong g(gaxrt)v (534)

whereg is an analytic function of. Now Eg. (5.25 reads
s=—R™'pgf1G(Lx,b). (5.35

The propagation equatiof8.78 for s?” along the integral

gfurves of¢'? givesA,B in terms ofag, 8. Writing this in

terms ofIl given by Eq.(5.27) we find that

(5.3

Here the operatoD is given by D=d/dx+ R dldt=dl Ix
+d/dT with T(t) introduced in Eq(5.20. Also the dot in-
dicates differentiation oR(t). It follows from this and Eg.
(5.27 that A+iB is analytic in{ and so Egs(5.30 and
(5.31) are automatically satisfied. The only remaining equa-
tion to satisfy is the wave equatid8.92. With sab given by
Egs.(4.9) and(5.35 and withII2° given by Eqs(5.26 and
(5.36 we find, after a lengthy calculation, that E®.92
reduces to the remarkably simple wave equation

IM=-2R 2p2f Y DG+RQ).

D2G+kG=0, (5.37

with k=0,=1 labeling the RW backgrounds with line-
elements of the fornf5.2). Thus we have fok=0,

G x0=a(lx=T) (x+T)+b(fx~T), (5.39
for k=+1,
x+T
ggxty=a(g,x=T) Sin(T)
X+T
+b({,x=T) co{ T) , (5.39
and fork=—1,
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X+ T as a consequence of Einstein’s field equations. Hence we can

g(¢.xt)=a(f,x=T) Sin"<7) rewrite Eq.(6.2) simply as
+ =0. 6.4

+b(¢,x—T) cosk(?), (5.40 (ntp)G 64
From this and Eq(5.35 it follows that s2®=0 provided
where in each casa({,x—T), b({,x—T) are arbitrary +p#0.
functions. In deriving Eq(5.37 we have made use of the  The perturbed Weyl tensor given via E¢.42 for the
equations pure typeN perturbations can be infinite whemg(y,z) is
infinite (wheny?+ z>— + if K#0) and wheref(x) van-
ishes[whenk=+1 atx=0, whenk=—-1 atx—— (K
=0) or atx=0 (K=0)]. There is one nonsingular case
corresponding to k0, K=0 for whichpy=1 andf=1. In
this case the expansion of the history of the wave fronts
(5.2)) is entirely due to the expansion of the universe. This
case is as close as one can get to plane waves in the present

fr=—kf, (f")2+kf=K, (5.41
which are satisfied in the cas@$—(iii) described following
Eq. (5.2 above.

With s2® and IT13° known we can calculat;??, 3P p3P

andg?® in order to form the electric and magnetic parts of

the perturbed Weyl tensor as indicated in E¢.1) and
(4.2). We can write the result compactly as

J
E3P+jHaP=—2 R*Zpgf*&(g F)ym*mP. (5.42

We emphasize thaf is given by Eqs.(5.39—(5.40 in the
various cases and nolv=F(x—T) so thatF’ = dF/dx. Also

context and is analogous to plane Bateman waves in electro-
magnetic theory.

Had we wished to construct examples of typ@erturba-
tions for which theF-parts of Eqs(4.1) and(4.2) vanish we
see from Eq(5.42 that these would be given by E.42
with 9G/9x=0. This condition would then be incorporated
into the wave equatios.37) and the appropriate solutions
G(¢Z,t) replacing Egs(5.38—(5.40 could easily be obtained.

Po=1+(K/4)(y?>+2%),f=f(x) described following Eq. _
(5.2, and R(t) is the scale factor. It is immediately clear Ve note that we have used the assumpton0 in the
from Eq.(5.42 that the perturbations of the RW background backgroundacosmologlcal models to conclude from Eg.
which we have constructed here are pure gravity wave pet3-60 thatQ®=0. If the background were an Einstein static
turbations. We will discuss some of their properties in SecUniverse theng=0 and we would hav)®+0. It is well-

VI.

VI. DISCUSSION

The propagation equatio8.78 for s?° along the null
geodesics tangent 2 shows that ifs*’=0 thenI12°=0.
An important converse property of the pure tygeerturba-
tions described in Sec. V is thidtI12°=0 then $°=0 pro-
vided u+p#0. To see this we have from E@.36 that
I13°=0 is equivalent to

DG+RG=0. (6.1

Substituting this into the wave equati¢h.37) results in

(RZ—R R+k) G=0. (6.2)

For the background RW space-time the fluid proper densit¥h

u and isotropic pressurne satisfy

2 . .
E(RZ—R R+k)=u+p, (6.3

known (see, for exampl¢l13]) that the Einstein universe is
unstable and it might be interesting to investigate how this
instability manifests itself in the formalism we use in this
paper.

There are exact cosmological solutions of Einstein’s field
equations known which contain gravitational wavese
[14,15 and references therginrhese solutions describe uni-
verses with a stiff equation of state so that the speed of sound
is equal to the speed of light. Our perturbations describing
gravitational waves propagating through isotropic cosmolo-
gies place no restriction on the equation of state of the iso-
tropic background and thus we would not in general expect
them to approximate to these known exact solutions.
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