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Gravitational wave propagation in isotropic cosmologies

P. A. Hogan* and E. M. O’Shea†

Mathematical Physics Department, National University of Ireland–Dublin, Belfield, Dublin 4, Ireland
~Received 1 March 2002; published 7 June 2002!

We study the propagation of gravitational waves carrying arbitrary information through isotropic cosmolo-
gies. The waves are modeled as small perturbations of the background Robertson-Walker geometry. The
perfect fluid matter distribution of the isotropic background is, in general, modified by small anisotropic
stresses. For pure gravity waves, in which the perturbed Weyl tensor is radiative~i.e. typeN in the Petrov
classification!, we construct explicit examples for which the presence of the anisotropic stress is shown to be
essential and the histories of the wave fronts in the background Robertson-Walker geometry are shear-free null
hypersurfaces. The examples derived in this case are analogous to the Bateman waves of electromagnetic
theory.

DOI: 10.1103/PhysRevD.65.124017 PACS number~s!: 04.30.Nk
he
th
pe

lk
ia

on
m

-
n
e
-
io
b
a
e
or

t
id
n
’s

n
in
a

m
as
va
ne
ib
su
ud
e

ve-
free
om-
ull
ba-
ing
of
of

gous

he
Bi-
rgy
o-
ow
The
s in
nd
is

to
that
ur-
ve
sion
.

asic
We

ese
m-

the

al
h a
or
I. INTRODUCTION

This paper is primarily concerned with investigating t
influence of gravitational waves on the matter content of
universe. The gravitational waves are modeled as small
turbations of Friedmann-Lemaıˆtre cosmological models with
a spatially homogeneous and isotropic Robertson-Wa
~RW! geometry. We use the gauge-invariant and covar
perturbation approach of Ellis and Bruni@1#. This technique
has previously been used to study aspects of gravitati
wave propagation in isotropic cosmologies which differ fro
those considered here~see, for example,@2,3#!.

We look for gravitational waves which carry arbitrary in
formation and this motivates us to require the Ellis-Bru
gauge-invariant variables to have an arbitrary dependenc
a function. Thus by ‘‘arbitrary information’’ in the perturba
tions we mean that they depend upon an arbitrary funct
This in turn means that the profile of the waves described
the perturbations is unspecified. The idea of introducing
bitrary functions into solutions of Einstein’s equations d
scribing gravitational waves goes back to pioneering w
by Trautman@4#. This point of view was initiated in the
present context by Hogan and Ellis@5#, but whereas in tha
work the perturbed matter distribution was a perfect flu
here we allow it to be completely general. The Ellis-Bru
approach does not involve working directly with Einstein
field equations but instead the basic equations used are
Ricci identities, Bianchi identities and the matter equatio
of motion and energy conservation equation, with Einste
field equations incorporated in them. We work in the line
approximation in terms of the Ellis-Bruni variables and de
onstrate that consistency of our assumptions with the b
equations necessarily leads to all perturbation variables
ishing except the perturbed shear of the matter world-li
and the anisotropic stress perturbation of the matter distr
tion. The consistency of the equations satisfied by these
viving variables is established. We then specialize our st
to pure gravity wave perturbations for which the perturb
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Weyl tensor is radiative~type N in the Petrov classification!.
We show that for such waves the histories of their wa
fronts in the background RW space-time can be shear-
null hypersurfaces. The various open and closed RW ge
etries admit, in a natural way, families of shear-free n
hypersurfaces. We derive explicit solutions of the pertur
tion equations describing gravitational waves propagat
through these isotropic universes for which the histories
their wave fronts are these naturally occurring families
shear-free null hypersurfaces. These solutions are analo
to the Bateman waves@6# in electromagnetic theory.

The paper is organized as follows. In Sec. II we list t
basic exact equations derived from the Ricci identities,
anchi identities and the equations of motion and of ene
conservation of the matter distribution. In Sec. III we intr
duce the Ellis-Bruni gauge-invariant variables and show h
for us they have an arbitrary dependence on a function.
consistency of these assumptions with the basic equation
the linear approximation is then systematically studied, a
the mathematical consistency of the surviving equations
established. This is followed in Sec. IV by specialization
pure gravity wave perturbations and the demonstration
their wave-front histories can be shear-free null hypers
faces. In Sec. V some explicit families of pure gravity wa
perturbations are derived. The paper ends with a discus
in which we comment on the solutions obtained in Sec. V

II. THE BASIC EXACT EQUATIONS

To make the paper as self-contained as possible the b
equations required for our study are given in this section.
use the notation and sign conventions of@7# and all of the
equations given here can be found in@7# with the exception
that the Bianchi identities given in@7# apply to a perfect fluid
matter distribution whereas we require the extension of th
to a general matter distribution with energy-momentu
stress tensor given by Eq.~2.2! below. This covariant ap-
proach to cosmology began in a systematic way with
work of Schücking, Ehlers and Sachs~see@7,8# for example!
while Hawking@9# gave the first description of cosmologic
perturbations in this context. We are concerned here wit
four dimensional space-time manifold with metric tens
©2002 The American Physical Society17-1
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componentsgab , in a local coordinate system$xa%, and a
preferred congruence of world-lines tangent to the unit tim
like vector field with componentsua ~with ua ua521).
With respect to this 4-velocity field the Weyl tensor, wi
componentsCabcd, is decomposed into an ‘‘electric part
and a ‘‘magnetic part’’ given respectively by

Eab5Capbqup uq, Hab5 * Capbqup uq. ~2.1!

Here * Capbq5
1
2 hap

rs Crsbq is the dual of the Weyl tenso
~the left and right duals being equal!, habcd5A2g eabcd
with g5det (gab) and eabcd is the Levi-Civita permutation
symbol. The expression for the Weyl tensor in terms ofEab
andHab is given in @7#. The symmetric energy-momentum
stress tensorTab can be decomposed with respect to t
4-velocity fieldua as

Tab5m ua ub1p hab1qa ub1qb ua1pab, ~2.2!

where

hab5gab1ua ub, ~2.3!

is the projection tensor and

qa ua50, pab ub50, pa
a50, ~2.4!

with pab5pba. Here m is interpreted as the matter energ
density measured by the observer with 4-velocityua, p is the
isotropic pressure,qa is the energy flow~such as heat flow!
measured by this observer andpab is the anisotropic stres
~due, for example, to viscosity!. We shall indicate covarian
differentiation with a semicolon, partial differentiation by
comma, covariant differentiation in the direction ofua by a
dot and a definition by a colon followed by an equality sig
Thus the 4-acceleration of the timelike congruence is

u̇a
ªua

;b ub, ~2.5!

andua;b can be decomposed into

ua;b5vab1sab1 1
3 u hab2u̇a ub , ~2.6!

with

vabªu[a;b]1u̇[a ub] , ~2.7!

the vorticity tensor of the congruence tangent toua. The
square brackets denote skew-symmetrization as usual. A

sabªu(a;b)1u̇(a ub)2
1
3 u hab , ~2.8!

is the shear tensor of the congruence. The round brac
denote symmetrization and

uªua
;a , ~2.9!

is the expansion~or contraction! of the congruence.
The key equations we shall need are obtained by pro

tions in the directionua and orthogonal toua ~using the
projection tensorhab) of the Ricci identities
12401
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ua;dc2ua;cd5Rabcdub, ~2.10!

whereRabcd is the Riemann curvature tensor, theequations
of motionand theenergy conservation equationcontained in

Tab
;b50, ~2.11!

and theBianchi identitieswritten conveniently in the form

Cabcd
;d5Rc[a;b]2 1

6 gc[a R;b] . ~2.12!

HereRca
ªRcba

b are the components of the Ricci tensor a
RªRc

c is the Ricci scalar. Einstein’s field equations, aft
absorbing the coupling constant into the energy-moment
stress tensor, take the form

Rab2 1
2 gab R5Tab . ~2.13!

The Ricci identities yieldRaychaudhuri’s equation,

u̇1 1
3 u22u̇;a

a 12 ~s22v2!1 1
2 ~m13 p!50 ~2.14!

~heres2
ª

1
2 sab sab, v2

ª

1
2 vab vab) thevorticity propaga-

tion equation,

hb
a v̇b1 2

3 u va5sa
b vb1 1

2 habcdub u̇c;d ~2.15!

~here va
ª

1
2 habcdub vcd is the vorticity vector! the shear

propagation equation,

ha
f hb

g ~ ṡ f g2u̇( f ;g)!2u̇a u̇b1va vb1sa f s f
b1 2

3 u sab

1hab~2 1
3 v22 2

3 s21 1
3 u̇;c

c !2 1
2 pab1Eab50,

~2.16!

the (0,n)-field equation~see@7# for the explanation of this
terminology!,

2
3 hb

a u ,b2hb
a sbc

;d hc
d2hacd f uc ~vd; f12 vd u̇f !5qa,

~2.17!

the divergence of vorticity equation,

va
;b ha

b5va u̇a , ~2.18!

and themagnetic part of the Weyl tensor,

Hab52 u̇(a vb)2ha
t hb

s ~v (t
g;c1s (t

g;c! hs) f gc uf .
~2.19!

Next Eq. ~2.11! projected orthogonal toua and alongua

respectively give theequations of motion of matter,

~m1p! u̇a1hac ~p,c1pb
c;b1q̇c!

1~vab1sab1 4
3 u hab! qb50, ~2.20!

and theenergy conservation equation,

ṁ1u ~m1p!1pab sab1qa
;a1u̇a qa50. ~2.21!
7-2
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GRAVITATIONAL WAVE PROPAGATION IN ISOTROPIC . . . PHYSICAL REVIEW D65 124017
Finally the various projections of the Bianchi identitie
~2.12! along and orthogonal toua give analogous equation
to Maxwell’s equations forEab andHab in Eq. ~2.1!. These
consist of thediv-E equation,

hg
b Egd

; f hd
f 13 vs Hs

b2hbapqua sd
p Hqd

5 1
3 hc

b m ,c1 1
2$2pbd

;d1ub scd pcd23 vbd qd

1sbd qd2 2
3 u qb1pbd u̇d% , ~2.22!

the div-H equation,

hg
b Hgd

; f hd
f 23 vs Es

b1hbapqua sd
p Eqd

5~m1p! vb1 1
2 hb

qacuq qa;c

1 1
2 hb

qacuq ~vdc1sdc! pa
d , ~2.23!

the Ė-equation,

hf
b Ėf g hg

t 1ha
(b h t)rsd urHs;d

a 22 Hs
(b h t)drs udu̇r

2Es
(t vb)s23 Es

(t sb)s1htb Edp sdp1u Ebt

52 1
2 ~m1p! s tb2 1

6 htb $ṁ1u ~m1p!%2 q(b u̇t)

2 1
2 u(b q̇t)2 1

2 q(t;b)1 1
2 $vc(b1sc(b% ut) qc1 1

6 u u(t qb)

2 1
2 ṗbt1pc(b ut) u̇c2 1

2 $vc(b1sc(b% p t)
c2 1

6 u pbt,

~2.24!

and theḢ-equation,

hf
b Ḣ f g hg

t 2ha
(b h t)rsd urEs;d

a 12 Es
(b h t)drs udu̇r

2Hs
(t vb)s23 Hs

(t sb)s1htb Hdp sdp1u Hbt

52q(t vb)2 1
2 h (t

rad $vb)d1sb)d% ur qa

2 1
2 h (b

rad p t)a;d ur1
1
2 h (b

rad ut) ur $vcd1scd% pa
c .

~2.25!

III. PERTURBATIONS OF ISOTROPIC COSMOLOGIES

We shall now assume that the space-time in Sec. II
perturbed RW space-time. Thus the background metric
sor gab is the Robertson-Walker metric, the backgrou
energy-momentum-stress tensor is Eq.~2.2! specialized to a
perfect-fluid ~by putting qa505pab) with fluid 4-velocity
ua and the background Weyl tensor vanishes. The Ellis-Br
@1# approach to perturbations of this background is to w
with gauge-invariant small quantities rather than small p
turbations of the background metric. Such gauge-invar
quantities have the important property that they vanish in
background space-time. Thus for an isotropic background
Ellis-Bruni variables, which will henceforth be considere
small of first order, areEab ,Hab ,sab ,u̇a,vab ~or equiva-
lently the vorticity vectorva), Xa5ha

b m ,b ,Ya5ha
b p,b , Za

5ha
b u ,b , pab andqa. The equations satisfied by these qua

tities are given by Eqs.~2.15!–~2.20! and by Eqs.~2.22!–
12401
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chaudhuri’s equation~2.14! and the energy conservatio
equation~2.21! are not immediately useful because they a
not expressed in terms of these gauge-invariant variables
can however get useful equations from Eqs.~2.14! and~2.21!
by calculating the spatial gradients of these equations
then retaining only linear terms in the gauge-invariant va
ables. This results in the two equations

Ża1u Za2 u̇ u̇a2hab~ u̇a
;a! ,b1 1

2 Xa1 3
2 Ya50, ~3.1!

and

Ẋa1 4
3 u Xa1~m1p! Za1u Ya2ṁ u̇a1hab ~qc

;c! ,b50.
~3.2!

The background value ofu̇ to be substituted into Eq.~3.1! is
given by

u̇52 1
3 u22 1

2 ~m13 p!, ~3.3!

which is obtained by specializing Raychaudhuri’s equat
~2.14! to the background. In Eq.~3.2! the background value
of ṁ is given by

ṁ52u ~m1p!, ~3.4!

which follows from Eq.~2.21! specialized to the background
We shall assume an equation of state of the formp5p(m) so
that the Ellis-Bruni variablesXa andYa are related by

Ya5
dp

dm
Xa . ~3.5!

Finally we shall assume that in the backgroundm1pÞ0 so
that we do indeed have a cosmological model in which
Einstein tensor determines a unique timelike 4-velocity
the matter.

We look for solutionssab , u̇a,vab (⇔va),Xa @and thus
Ya by Eq. ~3.5!#, Za, pab andqa of the linearized versions
of Eqs. ~2.15!–~2.20! and ~2.22!–~2.25! along with Eqs.
~3.1! and ~3.2! for which these variables depend upon
arbitrary function. This is because we expect that this dep
dence of perturbations will describe gravitational waves c
rying arbitrary information. We note thatEab ,Hab are de-
rived variables. Specifically we assume that

sab5sab F~f!,u̇b5ab F~f!,

vab5wab F~f!@⇔ va5wa F~f!#,
~3.6!

Xa5xa F~f!,Za5za F~f!,

pab5Pab F~f!,qa5Qa F~f!,

whereF is an arbitrary real-valued function of its argume
f(xa). This form for the gauge-invariant variables was fir
introduced by Hogan and Ellis@5# where the perturbed mat
ter distribution was taken to be a perfect fluid. As we me
tioned in the Introduction, the idea of introducing arbitra
7-3
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functions into solutions of Einstein’s equations describ
gravitational waves goes back to pioneering work by Tra
man @4#. We note that all of the quantities in Eqs.~3.6! are
orthogonal toua and thatsab ,Pab are trace-free with respec
to the background metricgab ~i.e. sa

a505Pa
a).

When Eqs.~3.6! are substituted into the linearized ve
sions of Eqs.~2.15!–~2.20!, ~2.22!–~2.25! and~3.1!, ~3.2! the
following extensive but surveyable list of equations emer
as indicated.

From the shear propagation equation,

Eab5~ 1
2 Pab1pab!F1mab F8, ~3.7!

with F85dF/df and

pab5a(a;b)1u(a ȧb)2
1
3 u u(a ab)2

1
3 af

; f hab

2 ṡab2 2
3 u sab , ~3.8!

mab5a(a lb)2
1
3 x hab2ḟ sab . ~3.9!

Here and throughout la5ha
b f ,b , x5f , f af and ḟ

5f ,a ua.
From the magnetic part of the Weyl tensor,

Hab5qab F1 l ab F8, ~3.10!

with

qab5w(a;b)1ẇ(a ub)2
1
3 u w(a ub)

2s(a
p;c hb) f pc uf2hab wc

;c , ~3.11!

l ab5w(a lb)2wc f ,chab2s(a
p hb) f pc uf f ,c.

~3.12!

From the div-E equation,

mab f ,b50, ~3.13!

Pab f ,b1pab f ,b1mab
;b50, ~3.14!

Pab
;b1pab

;b5 1
3 xa2 1

3 u Qa. ~3.15!

From the div-H equation,

l ab f ,b50, ~3.16!

qab f ,b1 l ab
;b5 1

2 ha
qbcuq Qb f ,c, ~3.17!

qab
;b2~m1p! wa5 1

2 ha
qbcuq Qb;c. ~3.18!

From the Ė-equation,

Ṗbt1 2
3 u Pbt2 1

6 hbt Qa
;a1 1

2 u(t Q̇b)1 1
2 Q(t;b)2 1

6 u u(t Qb)

52 ṗbt2ur q(b
s;d h t)rsd2u pbt2 1

2 ~m1p! sbt , ~3.19!
12401
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ḟ Pbt2 1
6 hbt Qa f ,a1 1

2 Q(t lb)

52ḟ pbt2ṁbt2u mbt2ur ~q(b
s f ,d1 l (b

s;d!h t)rsd,
~3.20!

ḟ mbt1 l (b
s h t)rsd ur f ,d50. ~3.21!

From the Ḣ-equation,

q̇bt2ur p(b
s;d h t)rsd1u qbt50, ~3.22!

ḟ qbt1 l̇ bt1u l bt2ur ~p(b
s f ,d1m(b

s;d! h t)rsd50, ~3.23!

ḟ l bt2m(b
s h t)rsd ur f ,d50. ~3.24!

From the(0,n)-field equation,

sab f ,b1hacd f uc wd f , f50, ~3.25!

Qa5 2
3 za2sab

;b2hacd f uc wd; f .
~3.26!

From the vorticity propagation equation,

ẇa1
2

3
u wa5 1

2 hacbduc ab;d , ~3.27!

ḟ wa5 1
2 hacbduc ab f ,d . ~3.28!

From the divergence of vorticity equation,

wa
;a50, ~3.29!

wa f ,a50. ~3.30!

From the spatial gradient of Raychaudhuri’s equation,

żc1u zc1 1
2 xc1 3

2 yc5hcb ~ad
;d! ,b1 u̇ ac, ~3.31!

ḟ zc5ad
;d lc1hcb ~ad f ,d! ,b , ~3.32!

~ad f ,d! lc50. ~3.33!

From the equations of motion of matter,

ya1Q̇a52~m1p! aa2Pab
;b , ~3.34!

ḟ Qa52Pab f ,b . ~3.35!

From the spatial gradient of the energy conservati
equation,

ẋc1 4
3 u xc1u yc1hcb ~Qa

;a! ,b

52~m1p! u ac2~m1p! zc, ~3.36!

ḟ xc1Qa
;a lc1hc

b ~Qa f ,a! ,b50, ~3.37!
7-4
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~Qa f ,a! lb50. ~3.38!

On account of Eq.~3.5! the variableya appearing in Eqs.
~3.31!, ~3.34! and ~3.36! is related toxa by

ya5
dp

dm
xa. ~3.39!

We must now examine the internal consistency of th
equations.

Our first enquiry parallels the work in@5#. Putting

Vbt5mbt1 i l bt, ~3.40!

we can write Eqs.~3.21! and ~3.24! as a single complex
equation

2 ḟ Vbt5 i h trsd ur Vb
s f ,d1 i hbrsd ur Vt

s f ,d .
~3.41!

From this we calculate that

ḟ hbpql V
bt up52 i Vt

[q l l ] . ~3.42!

When this is substituted into each term on the right-hand s
of Eq. ~3.41! we obtain

2 ḟ Vbt52 ḟ Vbt12 ḟ21f ,d f ,d Vbt. ~3.43!

Hence withḟÞ0 andVbtÞ0 we must have

f ,d f ,d50. ~3.44!

The hypersurfacesf(xa)5const in the background isotropi
cosmological model must be null@see Sec. IV below where
the physical implications of Eq.~3.44! are discussed#. Thus
la5ha

b f ,b5f ,a1ḟ uaÞ0 and so we now have, in additio
to Eq. ~3.44!, the following vanishing scalar products:

wa f ,a50, aaf ,a50, Qa f ,a50, ~3.45!

on account of Eqs.~3.30!, ~3.33! and ~3.38!. The latter two
simplify Eqs.~3.32! and ~3.37! respectively.

We will next show that for consistency of our equatio
we must haveQa50. Let us, for convenience, write Eq
~3.8! as

pab5Aab2 ṡab2 2
3 u sab, ~3.46!

with

Aab5a(a;b)1u(a ȧb)2 1
3 u u(a ab)2 1

3 af
; f hab. ~3.47!

Using the fact that in the backgroundu ,a52 u̇ ua we have
from Eq. ~3.46!,

pab
;b5Aab

;b2 ṡab
;b2 2

3 u sab
;b . ~3.48!

In the backgroundua;b5 1
3 u hab and so this equation can b

written

pab
;b5Aab

;b2sab
;cb uc2u sab

;b . ~3.49!
12401
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The Ricci identities satisfied bysab give

sab
;cb uc5~sab

;b! ., ~3.50!

and so Eq.~3.49! becomes

pab
;b5Aab

;b2~sab
;b! .2u sab

;b . ~3.51!

Now Eq. ~3.26! is

sab
;b52Qa1 2

3 za1A a, ~3.52!

with

A a52hacd f uc wd; f . ~3.53!

Putting Eq.~3.52! into Eq. ~3.51! yields

pab
;b5Aab

;b1Q̇a1u Qa2 2
3 ża2 2

3 u za2Ȧa2u A a. ~3.54!

Alternatively from Eqs.~3.15! and ~3.34! we have

pab
;b5 1

3 xa2 1
3 u Qa1ya1Q̇a1~m1p! aa. ~3.55!

Thus Eqs.~3.54! and ~3.55! are consistent provided

4
3 u Qa5 2

3 ~ ża1u za1 1
2 xa1 3

2 ya!

1~m1p! aa1Ȧa1u A2Aab
;b . ~3.56!

Making use of Eq.~3.28! to write wa in terms of aa and
using the propagation equation~3.27! for wa along ua it
follows that

Ȧa1u A a5 1
2 äa1 1

2 u ȧa

2$ 1
4 ~m2p!2 1

6 u̇2 1
9 u2%

3aa2 1
2 hac ~ab

;b! ,c2 1
3 u ab

;b ua1 1
2 aa;b

;b .

~3.57!

Direct calculation from Eq.~3.47! yields

Aab
;b5 1

2 äa1 1
2 u ȧa1$ 1

4 ~m2p!2 1
6 u̇2 2

9 u2% aa

1 1
6 hac ~ab

;b! ,c2 1
3 u ab

;b ua1 1
2 aa;b

;b . ~3.58!

Putting Eqs.~3.57! and ~3.58! into Eq. ~3.56! and using the
background Raychaudhuri equation~3.3! gives

4
3 u Qa5 2

3 $ża1u za1 1
2 xa1 3

2 ya2hac ~ab
;b! ,c2 u̇ aa%.

~3.59!

It thus follows from Eq.~3.31! that

u Qa50. ~3.60!

Sinceu.0 we must have

Qa50. ~3.61!

It now follows from Eqs.~3.37! and ~3.38! that

xa50, ~3.62!
7-5
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and so Eq.~3.39! yields

ya50. ~3.63!

Now Eq. ~3.32! with Eq. ~3.45! becomes

ḟ zc5ad
;d lc, ~3.64!

while Eq. ~3.36! reduces to

~m1p! ~zc1u ac!50. ~3.65!

Contracting Eq.~3.64! with f ,c and using Eq.~3.44! results
in

zc f ,c5ḟ ad
;d , ~3.66!

and, noting Eq.~3.45! again, contracting Eq.~3.65! with f ,c
gives

ḟ ~m1p! ad
;d50. ~3.67!

With ḟÞ0,m1pÞ0 we must havead
;d50 and so Eq.

~3.64! becomes

zc50. ~3.68!

Now Eq. ~3.65! with u.0 andm1pÞ0 yields

ac50. ~3.69!

It now follows from Eq.~3.28! that

wa50. ~3.70!

At this stage the only surviving gauge-invariant sm
quantities from the list~3.6! aresab andpab or equivalently
sab,Pab. We see that now Eqs.~3.25! and ~3.35! require

sab f ,b50, Pab f ,b50. ~3.71!

Also Eqs.~3.26! and ~3.34! requiresab, Pab to satisfy

sab
;b50, Pab

;b50. ~3.72!

We will write the remaining equations from Eqs.~3.13!–
~3.38!, which have not reduced to 050, in terms ofsab,Pab.
We will then check that the equations we obtain forsab,Pab

@including Eqs.~3.71! and ~3.72!# are consistent. We begi
with Eq. ~3.20! with Qa50 and substitute into itpab from
Eq. ~3.8! with aa50 andmab from Eq. ~3.9! with aa50 to
obtain

ḟ Pbt52 ḟ ṡbt1 5
3 u ḟ sbt1f̈ sbt

2ur ~q(b
s f ,d1 l (b

s;d! h t)rsd. ~3.73!

With qab given by Eq.~3.11! with wa50 we calculate

hbrsd qt
s ur f ,d52 ṡtp f ,p ub1stb;p f ,p1ḟ ṡtb

2stp;b f ,p1 1
3 u ḟ stb. ~3.74!

Next usingl ab in Eq. ~3.12! with wa50 we find
12401
l

hbrsd ur l st52ḟ sd
t ub1sb

t f ,d1ḟ sb
t ud2sd

t f ,b.
~3.75!

The first of Eqs.~3.72! and the background expressionud
;d

5u help us to deduce from Eq.~3.75! that

hbrsd ur l t
s;d52ḟ ,d std ub2 1

3 uḟ stb1stb
;d f ,d1stb f ,d

;d

1f̈ stb1ḟ ṡtb1u ḟ stb2f ,b
;d std. ~3.76!

Putting Eqs.~3.74! and ~3.76! together we get

hbrsd ur ~qt
s f ,d1 l t

s;d!52 stb;d f ,d1f ,d
;d stb12 ḟ ṡtb

1f̈ stb1u ḟ stb, ~3.77!

which is symmetric in (t,b). Substituting this into Eq.~3.73!
gives the equation

stb8 1~ 1
2 f ,d

;d2 1
3 u ḟ!stb52 1

2 ḟ P tb , ~3.78!

with stb8 ªstb;d f ,d. This is a propagation equation for stb

along the null geodesics tangent tof ,d.
We now turn our attention to Eq.~3.23!. Substituting for

pab,mab from Eqs.~3.8! and ~3.9! with aa50 we see that

pb
s f ,d1mb

s;d52~f ,d sb
s!

.2u f ,d sb
s

2 1
3 u ḟ ud sb

s2ḟ sb
s;d . ~3.79!

We notice in passing from this that now Eq.~3.14!, which
reads

pab f ,b1mab
;b50, ~3.80!

on account of the second of Eqs.~3.71!, is automatically
satisfied because of the first equation in Eqs.~3.71! and in
Eq. ~3.72!. Writing out Eq.~3.23! with qab substituted from
Eq. ~3.11! with wa50 we have

l̇ bt1u l bt2ur ~ḟ s(b
s;d1p(b

s f ,d1m(b
s;d! h t)rsd50.

~3.81!

Now using Eq.~3.79! we can write this as

l̇ bt1u l bt1ur $~f ,d s(b
s!

.1u f ,d s(b
s% h t)rsd50.

~3.82!

This can be rearranged as

~ l bt1ur f ,d s(b
s h t)rsd!•1u ~ l bt1ur f ,d s(b

s h t)rsd!50.
~3.83!

With l bt given in Eq. ~3.12! with wa50 we see that Eq.
~3.83! is identically satisfied.

We next examine Eq.~3.22!. It is identically satisfied and
this can be seen as follows: withpab in Eq. ~3.8! and aa

50, we find

pb
s;d52 ṡb

s;d1 2
3 u̇ ud sb

s2
2
3 u sb

s;d . ~3.84!

From the Ricci identities satisfied bysab we have
7-6
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ṡb
s;d5~sb

s;d! .1~ 1
6 m1 1

2 p! ~ub sds1sb
d us!

1 1
3 u ~sb

s;d1 ṡb
s ud!. ~3.85!

This allows us to write

h trsd ur pb
s;d52~h trsd ur sb

s;d! .2u h trsd ur sb
s;d .

~3.86!

When this is entered into Eq.~3.22! the equation can be
rearranged as

~qbt1ur s(b
s;d h t)rsd! .1u ~qbt1ur s(b

s;d h t)rsd!50,
~3.87!

which is an identity on account of~3.11! with wa50.
We now consider Eq.~3.19! with Qa50. If we first sub-

stitute forpab into it from Eq. ~3.8! with aa50 we obtain

2 s̈bt2 5
3 u ṡbt2 2

3 u̇ sbt2 2
3 u2sbt1 1

2 ~m1p! sbt

1ur q(b
s;d h t)rsd52Ṗbt2 2

3 u Pbt. ~3.88!

However usingqab in Eq. ~3.11! with wa50 we find that

hbrsd ur qt
s52 1

3 u std ub1 1
3 u stb ud2 ṡtd ub

1 ṡbt ud2std;b1stb;d, ~3.89!

and thus, using the first of Eqs.~3.72!,

hbrsd ur qt
s;d5 2

9 u2stb1 1
3 u̇ stb1 s̈tb

1u ṡtb2std;b
;d1stb;d

;d . ~3.90!

The second to last term here can be simplified using
Ricci identities satisfied bysab and the first of Eqs.~3.72! to
read

std;b
;d5~ 5

6 m2 1
2 p! stb. ~3.91!

We see that now Eq.~3.90! is symmetric in (b,t) and on
substitution into Eq.~3.88! we arrive ata wave equation for
sab, namely,

sab;d
;d2 2

3 u ṡab2~ 1
3 u̇1 4

9 u2! sab1~p2 1
3 m! sab

52Ṗab2 2
3 u Pab. ~3.92!

With wa505Qa we have from Eq.~3.18! that

qab
;b50. ~3.93!

This equation is satisfied byqab given by Eq.~3.11! with
wa50. Substituting the latter expression forqab into the left-
hand side of Eq.~3.93! and using Eq.~3.91! we have

qab
;b52 1

4 ~sa
p;cb2sa

p;bc! hbc f puf ,

52 1
4 ~Ra

gcbsg
p1Rpgcbsag! hbc f p uf , ~3.94!

using the Bianchi identities. HereRa
gcb are the component

of the Riemann tensor of the isotropic background. Th
12401
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components can be easily written in terms of the perfect-fl
energy-momentum-stress tensor of the background bec
the background, being isotropic, is conformally flat. Wh
this is done it is found that each of the Riemann tensor te
in Eq. ~3.94! separately vanishes and so Eq.~3.93! is satis-
fied.

With the second of Eq.~3.72! holding we have from Eq.
~3.15!

pab
;b50. ~3.95!

That this is satisfied bypab given by Eq.~3.8! with aa50 is
straightforward when one notes thatṡb

s;b5(sb
;b) .50, which

follows from Eq.~3.85! after summation over (b,d) and the
properties ofsab.

Finally we must check Eq.~3.17! with Qa50. This reads

qd
b f ,d1 l d

b;d50. ~3.96!

To see thatqab andl ab satisfy this equation we start with Eq
~3.77! and multiply it byhbpqt . Since the right-hand side o
Eq. ~3.77! is symmetric in (t,b) we obtain

~qm
p f ,m1 l m

p;m! uq2~qm
q f ,m1 l m

q;m! up50.
~3.97!

If this is multiplied byup then Eq.~3.96! results.
At this point all of the equations~3.13!–~3.38! are satis-

fied providedsab,Pab satisfy the algebraic relations withf ,a
in Eq. ~3.71!, are divergence-free as indicated in Eq.~3.72!
and satisfy the propagation equation~3.78! for sab along the
integral curves off ,a in the background space-time and sa
isfy the wave equation~3.92!. These equations reduce t
those obtained in@5# when Pab50. We need to check tha
Eqs.~3.71!, ~3.72!, ~3.78! and ~3.92! are consistent.

Using the Bianchi identities we can show that

~sab;d
;d! ;b5~sab

;b! ;d
;d1~ 7

6 m2 1
2 p! sab

;b , ~3.98!

ṡab
;b5~sab

;b! .1 1
3 u sab

;b , ~3.99!

Ṗab
;b5~Pab

;b! .1 1
3 u Pab

;b . ~3.100!

With the help of these equations it is straightforward to s
that the wave equation~3.92! is consistent with Eq.~3.72!.
Also using

sab;d
;d ub5~sab ub! ;d

;d2 2
3 u sab

;b , ~3.101!

one can easily see that the wave equation~3.92! is consistent
with sab ub505Pab ub . The wave equation~3.92! is also
consistent withsab f ,b505Pab f ,b . This follows from

sab;d
;d f ,b522 ~sab;d f ,d! ;b2sab ~f ,d

;d! ,b ,
~3.102!

which is obtained using the Bianchi identities satisfied bysab

andf ,a . The propagation equation~3.78! allows us to write
Eq. ~3.102! as
7-7
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sab;d
;d f ,b52 2

3 u ḟ ,b sab1ḟ ,bPab. ~3.103!

One can also derive this by multiplying the wave equat
~3.92! by f ,b and using the fact that (f ,b) .5ḟ ,b2 1

3 u lb

with, as always,lb5hb
c f ,c .

The propagation equation~3.78! is clearly consistent with
Eq. ~3.71! because the integral curves off ,a are geodesics
That Eq. ~3.78! is also consistent withsab ub505Pab ub

follows from ub85ub;c f ,c5 1
3 u lb . The consistency of Eq

~3.78! with Eq. ~3.72! requires the wave equation~3.92!.
This is because on taking the divergence of Eq.~3.78! and
using the Ricci identities one arrives at

2 1
2 ḟ Pab

;b1 1
2 f ,b Ṗab52 1

2 f ,b sab;d
;d1 1

3 u ṡab f ,b .

~3.104!

Substituting forsab;d
;d here from the wave equation~3.92!,

this equation reduces toPab
;b50.

IV. PURE GRAVITY WAVE PERTURBATIONS

As a result of the calculations outlined in Sec. III th
perturbations of the Weyl tensor now have ‘‘electric’’ an
‘‘magnetic’’ parts given by

Eab5~ 1
2 Pab1pab!F1mab F8, ~4.1!

Hab5qab F1 l ab F8, ~4.2!

with

pab52 ṡab2 2
3 u sab, mab52ḟ sab , ~4.3!

qab52s(a
p;c hb) f pc uf , l ab52s(a

p hb) f pc uf f ,c.
~4.4!

Also sab,Pab satisfy the consistent equations~3.71!, ~3.72!,
~3.78! and ~3.92! andf ,a is a null vector field in the back
ground RW space-time. From the first of Eqs.~3.71! we see
from Eqs.~4.3! and ~4.4! that

mab f ,b50, l ab f ,b50, ~4.5!

verifying that Eqs.~3.13! and ~3.16! are satisfied. Thus the
F8-parts ofEab ,Hab above are typeN in the Petrov classi-
fication with degenerate principal null directionf ,a. We
therefore consider theF8-part of this perturbed field as de
scribing gravitational waves having propagation direct
f ,a in the RW background and the histories of the wa
fronts are the null hypersurfacesf(xa)5const. This inter-
pretation is based on the well-known analogy with elect
magnetic radiation@10#. The F-parts ofEab ,Hab are not in
general typeN and so do not necessarily describe gravi
tional waves.

For the remainder of this paper we will consider pure ty
N perturbations~i.e. pure gravity wave perturbations! of the
RW background. We could do this by requiring theF-parts of
Eab ,Hab in Eqs. ~4.1! and ~4.2! to vanish. It is possible to
exhibit solutions of our basic equations~3.71!, ~3.72!, ~3.78!
and ~3.92! having this property~see Sec. VI below! but it is
12401
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less restrictive to require that theF-parts ofEab ,Hab also be
type N in the Petrov classification withf ,a as degenerate
principal null direction. This means that, in the light of th
second of Eqs.~3.71!, we should require

pab f ,b50, qab f ,b50, ~4.6!

with pab,qab given above in Eqs.~4.3! and~4.4!. The first of
these can be written

sab f ,b;c uc50, ~4.7!

while the second gives us

sab f ,a
;c2sac f ,a

;b50. ~4.8!

To elucidate the meaning of Eqs.~4.7! and~4.8! it is conve-
nient to make use of a null tetrad in the background R
space-time. First we note thatka52ḟ21f ,a and l a5ua
2 1

2 ka are two real covariant vector fields satisfyingka ka

50, l a l a50 andka l a521. Let ma ,m̄a be a complex co-
variant vector field and its complex conjugate~indicated by a
bar! chosen so that they are null (ma ma505m̄a m̄a), are
orthogonal to ka and l a and satisfy ma m̄a51. Now
ka, l a, ma, m̄a constitute a null tetrad with respect t
which sab can be written ~because sa

a50 , sab ub
50 , sab kb50 and sosab l b50)

sab5 s̄ ma mb1s m̄a m̄b. ~4.9!

Thususu25 1
2 sab sab . Substituting Eq.~4.9! into Eq.~4.7! we

easily see that Eq.~4.7! is equivalent to

s f ,b;c m̄b l c50, ~4.10!

from which we conclude that providedsÞ0 (⇔sabÞ0! we
must have

f ,b;c m̄b l c50. ~4.11!

On using Eq.~4.9! in Eq. ~4.8! we find that, in addition to
Eq. ~4.11!,

s̄ f ,a;b ma mb5s f ,a;b m̄a m̄b. ~4.12!

A simple way to satisfy this withsÞ0 is to require the null
hypersurfacesf(xa)5const to satisfy

f ,a;b ma mb50. ~4.13!

This means thatthe complex shear of the null geodesic co
gruence tangent tof ,a in the background RW space-tim
vanishes. If we can find a family of null hypersurface
f(xa)5const in the background space-time satisfying E
~4.11! and ~4.13! then Eq.~4.6! will be satisfied. The solu-
tions we then obtain of Eqs.~3.71!, ~3.72!, ~3.78! and~3.92!
will be analogous to the Bateman waves@6# of electromag-
netic theory.
7-8
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V. EXPLICIT EXAMPLES

To exhibit explicit examples of pure typeN perturbations
of the RW space-times we first select in such space-tim
some naturally occurring shear-free null hypersurfa
f(xa)5const. We begin with the general Robertson-Walk
line-element in standard form,

ds25R2~ t !
@~dx1!21~dx2!21~dx3!2#

S 11
k

4
r 2D 2 2dt2, ~5.1!

whereR(t) is the scale factor,r 25(x1)21(x2)21(x3)2 and
k50,61 is the Gaussian curvature of the spacelike hyp
surfacest5const. We can put these line-elements in the f
lowing interesting forms for our purposes@11#:

ds25R2~ t ! $dx21p0
22f 2~dy21dz2!%2dt2, ~5.2!

with p0511(K/4)(y21z2),K5const,f 5 f (x). The follow-
ing cases arise:~i! if k511 thenK511 and f (x)5sinx;
~ii ! if k50 then K50,11 with f (x)51 when K50 and
f (x)5x when K511; ~iii ! if k521 thenK50,61 with
f (x)5 1

2 ex when K50, f (x)5sinhx when K511 and
f (x)5coshx whenK521.

Case~i! above arises because whenk511 the closed
model universe with line-element~5.1! has t5const hyper-
surfaces with line-element which can be put in the fo
dl25R2(t) ds0

2 with

ds0
25dx21sin2x ~dq21sin2q dw2!, ~5.3!

and we then use stereographic coordinatesy,z such thaty
1 iz52 eiw cot(q/2) in place of the polar anglesq,w.

Case~ii ! arises because whenk50 the open, spatially fla
universe with line-element~5.1! has t5const hypersurface
with line-elementdl25R2(t) ds0

2 where

ds0
25dx21dy21dz2, ~5.4!

or

ds0
25dx21x2~dq21sin2q dw2!, ~5.5!

and in the latter we introduce the stereographic coordin
y,z again in place ofq,w.

Case~iii ! is due to the fact that in Eq.~5.1! when k5
21 thet5const hypersurfaces can, modulo the factorR2(t),
each be viewed as the future sheet of a unit timelike hyp
sphereH3 in four dimensional Minkowskian space-tim
M4. Thus if the line-element ofM4 is written

ds0
25~dz1!21~dz2!21~dz3!22~dz4!2, ~5.6!

thenH3 is given by

~z1!21~z2!21~z3!22~z4!2521, z4.0. ~5.7!

The different parts of case~iii ! above are due to the differen
ways one can parametrize Eq.~5.7!. One possibility is with
12401
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z11 iz25~y1 iz! p0
21sinhx, ~5.8!

z35~ 1
4 ~y21z2!21! p0

21sinhx, ~5.9!

z45coshx, ~5.10!

with p0511 1
4 (y21z2). Substitution into Eq.~5.6! gives

ds0
25dx21p0

22sinh2x ~dy21dz2!. ~5.11!

The next possibility is

z11 iz25 1
2 ex ~y1 iz!, ~5.12!

z35 1
4 ex ~y21z221!1e2x, ~5.13!

z45 1
4 ex ~y21z211!1e2x, ~5.14!

and now Eq.~5.6! reads

ds0
25dx21 1

4 e2 x ~dy21dz2!. ~5.15!

Finally we can take

z11 iz25~y1 iz! p0
21coshx, ~5.16!

z35sinhx, ~5.17!

z45~ 1
4 ~y21z2!11!p0

21coshx, ~5.18!

with p0512 1
4 (y21z2). With this Eq.~5.6! takes the form

ds0
25dx21p0

22cosh2x ~dy21dz2!. ~5.19!

In the space-times with line-elements~5.2!, with the spe-
cial cases outlined following Eq.~5.2!, the hypersurfaces

f~xa!ªx2T~ t !5const, ~5.20!

with dT/dt5R21 arenull hypersurfaces. They are generated
by null geodesics having expansion

1
2 f ,a

;a5
f 8

R2f
1

Ṙ

R2
. ~5.21!

Here f 85d f /dx,Ṙ5dR/dt. The integral curves of the vecto
field ]/]t are the world lines of the fluid particles. The com
ponents of this vector field are denoted byua and using Eq.
~5.20! we can show that

2 f ,a;b5ja f ,b1jb f ,a1f ,d
;d gab , ~5.22!

with

ja52
f 8

f
f ,a1R f ,d

;d ua . ~5.23!

With sab f ,b505sab ub we see on substituting Eq.~5.22!
that Eqs.~4.7! and~4.8! are now satisfied. On account of E
~5.22! it follows thatf ,a is shear-free@12#. Alternatively we
7-9
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can easily verify Eqs.~4.11! and ~4.13! using the null tetrad
described following Eq.~4.8! which is given via the 1-forms

ka dxa5R dx2dt, l a dxa52 1
2 ~R dx1dt!,

ma dxa5
1

A2
R p0

21f ~dy1 i dz!. ~5.24!

For convenience we have used the same coordinate la
$x,y,z,t% for all of the special cases included in Eq.~5.2!. Of
course the ranges of some of these coordinates will be
ferent in the different cases@for example, in case~ii ! xP
(2`, 1`) if K50 whereasxP@0,1`) if K511#. Simi-
larly the shear-free null hypersurfaces~5.20! differ from case
to case, and within cases~ii ! and ~iii !, as can be seen b
noting the intersections of these null hypersurfaces with
spacelike hypersurfacest5const. In case~i! the intersection
is a 2-sphere. In case~ii ! it is a 2-sphere ifK511 and a
2-plane ifK50. Thus Eq.~5.20! describes two quite differ-
ent families of shear-free null hypersurfaces that can aris
an open, spatially flat universe. In case~iii ! the intersection
of Eq. ~5.20! with t5const can be a 2-space of positive (K
511), negative (K521) or zero (K50) curvature giving
three different families of shear-free null hypersurfaces i
k521 open universe. A geometrical explanation for the
subcases is given in@11#.

We begin withf(xa) given by Eq.~5.20! and ua]/]xa

5]/]t. Sincesab andPab are orthogonal toua andf ,a and
trace-free, with respect to the metric tensor given via
line-element~5.2!, each have only two independent comp
nents. If the coordinates are labeledx15x,x25y,x35z,x4

5t then the surviving components ares3352s22

5a(x,y,z,t),s235s325b(x,y,z,t) and P3352P22

5A(x,y,z,t),P235P325B(x,y,z,t). We can conveniently
express these on the null tetrad~5.24!. We havesab given by
Eq. ~4.9! with

s̄52R2p0
22f 2~a1 i b!, ~5.25!

and

Pab5P̄ ma mb1P m̄a m̄b, ~5.26!

with

P̄52R2p0
22f 2~A1 i B !. ~5.27!

Calculation of the first of Eqs.~3.72! to be satisfied bysab

shows thata,b must satisfy the Cauchy-Riemann equatio

]

]y
~p0

24a!2
]

]z
~p0

24b!50, ~5.28!

]

]y
~p0

24b!1
]

]z
~p0

24a!50. ~5.29!

In addition Pab and thusA,B must satisfy the same equa
tions,
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]

]y
~p0

24A!2
]

]z
~p0

24B!50, ~5.30!

]

]y
~p0

24B!1
]

]z
~p0

24A!50. ~5.31!

We shall find it convenient to work witha0 ,b0 rather than
a,b where

a05a f 3R3, b05b f 3R3. ~5.32!

Sincef 5 f (x), R5R(t) we have Eqs.~5.28! and~5.29! sat-
isfied bya0 andb0 and these equations can be written ec
nomically as

]

]z̄
$p0

24~a01 i b0!%50, ~5.33!

with z5y1 i z, giving

a01 i b05p0
4 G~z,x,t !, ~5.34!

whereG is an analytic function ofz. Now Eq. ~5.25! reads

s̄52R21p0
2f 21G~z,x,t !. ~5.35!

The propagation equation~3.78! for sab along the integral
curves off ,a givesA,B in terms ofa0 ,b0. Writing this in
terms ofP given by Eq.~5.27! we find that

P̄522 R22p0
2f 21~DG1ṘG!. ~5.36!

Here the operatorD is given by D5]/]x1R ]/]t5]/]x
1]/]T with T(t) introduced in Eq.~5.20!. Also the dot in-
dicates differentiation ofR(t). It follows from this and Eq.
~5.27! that A1 i B is analytic in z and so Eqs.~5.30! and
~5.31! are automatically satisfied. The only remaining equ
tion to satisfy is the wave equation~3.92!. With sab given by
Eqs.~4.9! and~5.35! and withPab given by Eqs.~5.26! and
~5.36! we find, after a lengthy calculation, that Eq.~3.92!
reduces to the remarkably simple wave equation

D2G1k G50, ~5.37!

with k50,61 labeling the RW backgrounds with line
elements of the form~5.2!. Thus we have fork50,

G~z,x,t !5a~z,x2T! ~x1T!1b~z,x2T!, ~5.38!

for k511,

G~z,x,t !5a~z,x2T! sinS x1T

2 D
1b~z,x2T! cosS x1T

2 D , ~5.39!

and fork521,
7-10



e

of

r
nd
pe
ec

sit

can

e

nts
is

esent
tro-

d
s
.

q.
ic

his
is

ld

i-
und
ing
lo-
so-
ect

ty
ant
this

GRAVITATIONAL WAVE PROPAGATION IN ISOTROPIC . . . PHYSICAL REVIEW D65 124017
G~z,x,t !5a~z,x2T! sinhS x1T

2 D
1b~z,x2T! coshS x1T

2 D , ~5.40!

where in each casea(z,x2T), b(z,x2T) are arbitrary
functions. In deriving Eq.~5.37! we have made use of th
equations

f 952k f , ~ f 8!21k f25K, ~5.41!

which are satisfied in the cases~i!–~iii ! described following
Eq. ~5.2! above.

With sab andPab known we can calculatemab, l ab,pab

and qab in order to form the electric and magnetic parts
the perturbed Weyl tensor as indicated in Eqs.~4.1! and
~4.2!. We can write the result compactly as

Eab1 i H ab522 R22p0
2f 21

]

]x
~G F ! ma mb. ~5.42!

We emphasize thatG is given by Eqs.~5.38!–~5.40! in the
various cases and nowF5F(x2T) so thatF85]F/]x. Also
p0511(K/4)(y21z2), f 5 f (x) described following Eq.
~5.2!, and R(t) is the scale factor. It is immediately clea
from Eq.~5.42! that the perturbations of the RW backgrou
which we have constructed here are pure gravity wave
turbations. We will discuss some of their properties in S
VI.

VI. DISCUSSION

The propagation equation~3.78! for sab along the null
geodesics tangent tof ,a shows that ifsab50 thenPab50.
An important converse property of the pure typeN perturba-
tions described in Sec. V is thatif Pab50 then sab50 pro-
vided m1pÞ0. To see this we have from Eq.~5.36! that
Pab50 is equivalent to

DG1ṘG50. ~6.1!

Substituting this into the wave equation~5.37! results in

~Ṙ22R R̈1k! G50. ~6.2!

For the background RW space-time the fluid proper den
m and isotropic pressurep satisfy

2

R2
~Ṙ22R R̈1k!5m1p, ~6.3!
ss

12401
r-
.

y

as a consequence of Einstein’s field equations. Hence we
rewrite Eq.~6.2! simply as

~m1p! G50. ~6.4!

From this and Eq.~5.35! it follows that sab50 providedm
1pÞ0.

The perturbed Weyl tensor given via Eq.~5.42! for the
pure typeN perturbations can be infinite wherep0(y,z) is
infinite ~when y21z2→1` if KÞ0) and wheref (x) van-
ishes@when k511 at x50, whenk521 at x→2` (K
50) or at x50 (K50)#. There is one nonsingular cas
corresponding to k50, K50 for whichp051 andf 51. In
this case the expansion of the history of the wave fro
~5.21! is entirely due to the expansion of the universe. Th
case is as close as one can get to plane waves in the pr
context and is analogous to plane Bateman waves in elec
magnetic theory.

Had we wished to construct examples of typeN perturba-
tions for which theF-parts of Eqs.~4.1! and~4.2! vanish we
see from Eq.~5.42! that these would be given by Eq.~5.42!
with ]G/]x50. This condition would then be incorporate
into the wave equation~5.37! and the appropriate solution
G(z,t) replacing Eqs.~5.38!–~5.40! could easily be obtained

We note that we have used the assumptionu.0 in the
background cosmological models to conclude from E
~3.60! that Qa50. If the background were an Einstein stat
universe thenu50 and we would haveQaÞ0. It is well-
known ~see, for example@13#! that the Einstein universe is
unstable and it might be interesting to investigate how t
instability manifests itself in the formalism we use in th
paper.

There are exact cosmological solutions of Einstein’s fie
equations known which contain gravitational waves~see
@14,15# and references therein!. These solutions describe un
verses with a stiff equation of state so that the speed of so
is equal to the speed of light. Our perturbations describ
gravitational waves propagating through isotropic cosmo
gies place no restriction on the equation of state of the i
tropic background and thus we would not in general exp
them to approximate to these known exact solutions.
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