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Wormholes supported by pure exotic radiation
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Traversible wormhole space-times are found as static, spherically symmetric solutions to the Einstein equa-
tions with ingoing and outgoing pure radiation of negative energy density. Switching off the radiation causes
the wormhole to collapse to a Schwarzschild black hole.
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The idea of space-time wormholes originated w
Wheeler@1#, with traversible wormholes becoming popul
after the article of Morris and Thorne@2#. More recently,
renewed interest has focused on outstanding questions
as how to construct wormholes@3#, their dynamical behavior
@4#, their stability@5,6# and the nature of the negative-ener
matter needed to support them@7#. This paper proposes
very simple model of negative-energy radiation and exhib
resulting wormhole solutions, which can be used to study
other questions.

The simplest radiation model is pure radiation, a
known as null dust, for which the energy tensor isru^ u,
whereu is a null vector andr is the energy density~which,
if positive, can be absorbed in the normalization ofu). This
represents incoherent radiation and occurs in the geome
optics limit of massless particles such as photons. The ma
model proposed here is simply pure radiation with nega
energy density. One might expect this pure exotic radiat
to be a similarly valid model of negative-energy radiatio
More realistic models, such as semiclassical quantum fi
such as those produced by Hawking radiation@8#, are often
not analytically tractable, so a simple model has theoret
merit.

With pure radiation of the usual positive energy dens
the static, spherically symmetric Einstein system has b
studied by Date@9#, with solutions found by Kramer@10#
and, more generally, by Gergely@11#. Reversing appropriate
signs leads to the wormhole solutions derived below. Ho
ever, the geometry is quite different, in particular being no
singular. It is curious that benign wormhole solutions na
rally appear under such situations.

Liberally adopting the method and notation of Gerge
the line element of a static, spherically symmetric space-t
may be written as

ds25r 2dV21 f ~r !21dr22h~r !dt2 ~1!

wherer is the areal radius,t is the time,dV2 refers to the
unit sphere and the metric functionsf andh are positive. The
active gravitational mass-energy@12,13# of such a space-time
is

m~r !5@12 f ~r !#r /2. ~2!
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The energy tensor of pure exotic radiation is2tu^ u, where
u is a null vector andt>0 is the negative energy densit
With both ingoing and outgoing radiation, the energy ten
is

T52t1u1 ^ u12t2u2 ^ u2 ~3!

whereu6 are null vectors. For the above metric, one m
take

A2u65
1

Ah

]

]t
6Af

]

]r
~4!

so that the null vectors are relatively normalized. Static
lutions require the same negative energy densityt5t6 for
both ingoing and outgoing radiation. This specialized ma
model can also be regarded as an anisotropic fluid with d
sity 2t, radial pressure2t and vanishing tangential pres
sure. Here and throughout, units are such that the spee
light and Newton’s constant are unity.

The energy-momentum conservation equations¹•T50
reduce to

~hr2t!850 ~5!

where the prime denotesd/dr. Thus the~gravitationally red-
shifted! radial tension or negative linear mass density

l54pr 2ht ~6!

is a positive constant. It is possible to absorb the magnit
of l in the static Killing vector, but it will be retained here
In terms of the function

b522l/h ~7!

the Einstein equationsG58pT reduce to

r f 8512b2 f ~8!

r f h85h~11b2 f ! ~9!

r f b852b~11b2 f ! ~10!

where one equation is redundant, having already solved
conservation equation. Transforming tor5 ln r and using a
dot to denoted/dr, the reduced system is

ḟ 512b2 f ~11!
©2002 The American Physical Society16-1
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f ḃ52b~11b2 f !. ~12!

The second equation yields

f 5
11b

b2ḃ
b ~13!

which can be eliminated from the first equation to yield

~11b!bb̈2~b12!ḃ21b~122b!ḃ12b350. ~14!

Dividing by b3, this becomes an exact differential, integra
ing to

11b

b2 ḃ2
1

b
22 ln

b

r
5D ~15!

whereD is the integration constant. This leads to the alg
braic relation

~11b!2

2 f b
5 lnS 2

r

ab D ~16!

wherea5exp@2(11D)/2# is a positive constant. The branc
of the logarithm corresponds to negativeb, reflecting the
negative energy density. Returning to the reduced sys
one may eliminater or r to give

d f

db
5

f ~b1 f 21!

b~b2 f 11!
. ~17!

Since solutions with negativeb are being sought, the metho
of Gergely is now modified by defining

p5A22 f b, l 5
11b

A22 f b
. ~18!

Then the above equation becomes

dp

dl
52~pl21!. ~19!

Integrating the corresponding homogeneous equation yie

p522el 2f ~20!

and the solution is completed by

f~ l !5E
0

,

e2,2
dl1b5

Ap

2
erf ~ l !1b ~21!

whereb is constant and erf denotes the error function,
symmetric integral of the standard normal distribution. T
solution is mathematically familiar compared with the ca
of positive energy density. Then

b5pl2152122lel 2f. ~22!
12401
-

m,

s

e
e
e

Collecting results, the class of solutions depends on the
rameters (a,b) and the normalizablel, and may be summa
rized by

r 52abe2 l 25a~e2 l 212lf! ~23!

h52
2l

b
5

2l

112lel 2f
~24!

f 52
p2

2b
5

2e2l 2f2

112lel 2f
~25!

as substituted into the line element~1!. By construction, this
is the unique class of static, spherically symmetric solutio
to the Einstein equations with pure exotic radiation.

It is straightforward to calculate

dr

dl
52af ~26!

m5~e2 l 212lf22el 2f2!a/2 ~27!

dm

dl
52~112lel 2f!af. ~28!

The line element may then be written explicitly in (t,l ) co-
ordinates as

ds25a2~e2 l 212lf!2dV212a2e2 l 2~e2 l 212lf!dl2

2
2ldt2

112lel 2f
. ~29!

In the caseb50, f( l ) is an odd function and the metric i
even in the spatial coordinatel. This describes a symmetri
wormhole with spatial topologyR3S2 and minimal surfaces
at the wormhole throatl 50, with radiusr 5a. The space-
time is not asymptotically flat, but otherwise constitutes
Morris-Thorne wormhole. There are no singularities, unli
in the corresponding positive-energy solutions. Theb5” 0
cases include asymmetric wormholes which are analogou
the asymmetric Ellis wormholes@14# for an exotic Klein-
Gordon field.

The solutions may be written in dual-null form

ds25r 2dV22hdx1dx2 ~30!

in terms of null coordinatesx6 defined by

dx65dt6
a

Al
~e2 l 212lf!dl. ~31!

Integration by parts yields an analytic solution:

x65t6
a

2Al
@ le2 l 21~112l 2!f#. ~32!
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Thus the metric functions are implicitly known as functio
of x12x2. Using the relations

]6l 56
Al

2a~e2 l 212lf!
~33!

the solutions have been checked by substitution in the d
null form of the Einstein equations@12,13# for the general
spherically symmetric line element~30! with non-zero en-
ergy componentsT6652ht/2.

Returning to more general issues, the simplicity of pu
radiation means that it is easier to study how the wormho
react to changes in the radiation level. This has not b
analytically tractable previously except in a two-dimensio
model @3#. In particular, the ingoing and outgoing radiatio
simply pass through one another without interaction, follo
ing null geodesics with propagation equations]6(hr2t6)
50. For instance, it is not difficult to see what happens if
radiation supporting the wormhole is turned off, as follow

Consider a static wormhole for$x1,0,x2,0%, with the
radiation then switched off from both sides of the wormho
so thatt750 for x6.0, respectively. The solutions in th
regions$x6.0,x7,0% will be similar to Vaidya solutions
D
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@15#, while the solution in the future region$x1.0,x2.0%
will be vacuum and therefore, by a version of Birkhoff
theorem valid through the horizons of a black hole@12#,
Schwarzschild. Further, this region can be seen to be
interior of a Schwarzschild black hole with massa/2, by
differentiability of the metric atx15x250. Specifically,
continuity of the trapping horizons]6r 50 @12,13#, which
initially form the throat$x15x2,x6,0% of the wormhole,
means that they can be joined to the event horizons$x6

50,x7.0% of a black hole. In summary, if the supportin
radiation is switched off, the wormhole collapses to
Schwarzschild black hole.

This generally unexpected connection between wo
holes and black holes was predicted by a general theor
both @4#. By close analogy to the results obtained in t
two-dimensional model@3#, it should be possible to demon
strate the dynamic stability of the wormholes, and how
construct them by irradiating a Schwarzschild black hole

This research was supported by the Korea Research F
dation grant KRF-2001-015-DP0095. I would like to than
Sung-Won Kim for support and Hisa-aki Shinkai for discu
sions.
@1# J.A. Wheeler, Ann. Phys.~N.Y.! 2, 604 ~1957!.
@2# M.S. Morris and K.S. Thorne, Am. J. Phys.56, 395 ~1988!.
@3# S.A. Hayward, S-W. Kim, and H. Lee, Phys. Rev. D65,

064003~2002!.
@4# S.A. Hayward, Int. J. Mod. Phys. D8, 373 ~1999!.
@5# C. Armendariz-Picon, Phys. Rev. D65, 104010~2002!.
@6# K.A. Bronnikov and S. Grinyok, gr-qc/0201083.
@7# N. Dadhich, S. Kar, S. Mukherji, and M. Visser, Phys. Rev.

65, 064004~2002!.
@8# D. Hochberg, A. Popov, and S.V. Sushkov, Phys. Rev. Lett.78,
2050 ~1997!.

@9# G. Date, Gen. Relativ. Gravit.29, 953 ~1997!.
@10# D. Kramer, Class. Quantum Grav.15, L31 ~1998!.
@11# L.A. Gergely, Phys. Rev. D58, 084030~1998!.
@12# S.A. Hayward, Phys. Rev. D53, 1938~1996!.
@13# S.A. Hayward, Class. Quantum Grav.15, 3147~1998!.
@14# H.G. Ellis, J. Math. Phys.14, 395 ~1973!.
@15# P.C. Vaidya, Proc.-Indian Acad. Sci., Sect. A33, 264 ~1951!.
6-3


